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Abstract
Consider a critical branching random walk on Zd , d ≥ 1, started with a single particle
at the origin, and let L(x) be the total number of particles that ever visit a vertex x .
We study the tail of L(x) under suitable conditions on the offspring distribution. In
particular, our results hold if the offspring distribution has an exponential moment.

Mathematics Subject Classification 60J80 · 60J55

1 Introduction

In this paper we study the tail of the number of times a critical branching random
walk on Z

d returns to the origin. The result is most interesting in the upper-critical
dimension d = 4, where we find that the local time has a stretched-exponential tail.

Theorem 1.1 Let d ≥ 1, let (Bn)n≥0 be a branching random walk on Z
d whose

offspring distribution μ is critical, non-trivial, and sub-exponential, started with a
single particle at the origin, and let L(0) be the total number of particles that visit the
origin. Then

Pμ,0 (L(0) ≥ n) =

⎧
⎪⎨

⎪⎩

�
(
n−2/(4−d)

)
d < 4

exp
[−�(

√
n)
]

d = 4

exp [−�(n)] d > 4
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for every n ≥ 1.

Here, we say that the offspring distribution μ is critical if it has mean 1, non-
trivial if μ(1) < 1, and sub-exponential if there exist positive constants C and c
such that μ(n) ≤ Ce−cn for every n ≥ 1. We use both “ f (n) = �(g(n)) for every
n ≥ 1” and “ f (n) � g(n) for every n ≥ 1” to mean that there exist positive constants
c, C depending only on the offspring distribution μ and the dimension d such that
cg(n) ≤ f (n) ≤ Cg(n) for every n ≥ 1. Similar meaning applies to the symbols �
and �, so that, for example, “ fn(x) � gn(x) for every n ≥ 1 and x ∈ Z

d” means that
there exists a positive constant C depending only on the offspring distribution μ and
the dimension d such that fn(x) ≤ Cgn(x) for every n ≥ 1 and x ∈ Z

d .
Our work is motivated in part by our hope to understand the analogous questions for

the Abelian sandpile model [4,18]. In this model, surveyed in [6], the total number of
times the origin topples in an avalanche at equillibrium (equivalently, the total number
of waves in an avalanche) is expected to behave in a roughly analogous way to the
branching randomwalk local time at the origin, with a closer analogy expected to hold
in dimensions d > 4. Currently, the distribution of the total number of waves in an
avalanche remains poorly understood even in the high-dimensional case, where other
aspects of the model are now fairly well-understood [3,5,7].

There is an extensive literature on critical branching random walk on Z
d , with

works particularly relevant to the present paper including [2,11–14,21–24]. In light of
this extensive literature, we were surprised to find that the tail of the local time had not
previously been studied. The basicmethods thatwe use (inductive analysis ofmoments
via diagrammatic sums) are well-known to experts, but we have included a detailed
exposition so that this paper could be used as an introduction to these techniques.

We also prove the following off-diagonal version of Theorem 1.1. We use the
notation 〈x〉 = 2 ∨ d(0, x), where d(0, x) denotes the graph distance between 0 and
x , to avoid dividing by zero.

Theorem 1.2 Let d ≥ 1, let (Bn)n≥0 be a branching random walk on Z
d whose

offspring distribution is critical, non-trivial, and sub-exponential, started with a single
particle at the origin, and let L(x) be the total number of particles that visit x. Then

Pμ,0(L(x) ≥ n) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
{
n−2/(4−d), 〈x〉−2

}
d < 4

exp

[

− �
(
min

{√
n, n

log〈x〉
}) ]

〈x〉−2 log−1〈x〉 d = 4

exp
[

− �(n)
]
〈x〉−d+2 d > 4

for every n ≥ 1 and x ∈ Z
d .

The proof of Theorem 1.2 relies on the asymptotics of the hitting probability

Pμ,0(L(x) ≥ 1) �

⎧
⎪⎨

⎪⎩

〈x〉−2 d ≤ 3

〈x〉−2 log−1〈x〉 d = 4

〈x〉−d+2 d ≥ 5

for every x ∈ Z
d : (1.1)
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These estimates are due in the case d �= 4 to Le Gall and Lin [13,14], who also proved
the lower bound in the case d = 4, while the d = 4 upper bound in the case was
proven by Zhu [23,24]. (In fact the exact asymptotics of Pμ,0(L(x) ≥ 1) have also
been established by the same authors, see [13, Theorem 7] and [21,23].)

Remark 1.3 It is well-known that a critical branching random walk conditioned to
survive forever visits the origin infinitely often if and only if d ≤ 4 [2]. This is closely
related to the fact that the conditional distribution of L(x) given L(x) > 0 is tight as
x → ∞ if and only if d ≥ 5.

Remark 1.4 In the context of super-Brownian motion (which is a continuum analogue
of critical branching random walk), Le Gall and Merle [15] studied the conditional
distribution of the occupation measure Z(B1(x)) of the unit ball B1(x) for large x ,
given that this measure is positive. Their results are closely related to Theorem 1.2. In
particular, they show that if d = 4 then the conditional distribution of the normalized
occupation measure Z(B1(x))/ log |x | given that it is positive converges to an expo-
nential distribution as x → ∞. It would be interesting to establish a version of their
theorem in the discrete case.

Remark 1.5 It is natural to consider the distribution of L(x) for branching random
walks on graphs other than Z

d . It should be straightforward to adapt the proof of
Theorem 1.1 to bounded degree graphs that are d-Ahlfors regular and satisfy Gaussian
heat kernel estimates. See e.g. [10,20] for background on these notions. We restrict
attention to the usual nearest-neighbour random walk on Zd for clarity of exposition.

2 Background

2.1 Branching randomwalk

Let us now very briefly define the model, referring the reader to e.g. [17,21] for more
details on branching processes and Galton-Watson trees. Given d ≥ 1, an offspring
distribution μ (i.e., a probability measure on {0, 1, . . .}), and a point x ∈ Z

d we write
Pμ,x for the law of a branching randomwalk (Bn)n≥0 onZd with offspring distribution
μ started with a single particle at x . More precisely, (Bn)n≥0 is a Markov chain whose
state space is the set of finitely supported functions Zd → {0, 1 . . .}, where B0(y) =
1(y = x) and where we think of Bn(y) as the number of particles occupying the point
y at generation n. At each time step, each particle splits into a random number of
offspring particles independently at random according to the offspring distribution μ,
and each offspring particle immediately performs an independent simple randomwalk
step.Wedefine the local time Ln(x) = ∑n

m=0 Bm(x) to be the total number of particles
that occupy the site x up to time n, and similarly define the limit L(x) = ∑∞

m=0 Bm(x).
Alternatively, we may construct branching random walk by first taking a Galton-

Watson tree T with offspring distribution μ, which encodes the genealogy of the
particles of the branching random walk, letting X : V (T ) → Z

d be a uniform random
graph homomorphism from T intoZd mapping the root to x (i.e., a simple randomwalk
on Zd started at x and indexed by T ), and letting Bn(y) = #{v ∈ ∂Tn : X(v) = y} for
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every n ≥ 0 and y ∈ Z
d . We write ∂Tr for the set of vertices of T at distance exactly r

from the root. It is easily seen that ifμ is critical then Eμ,0[#∂Tr ] = 1 for every r ≥ 0.
Moreover, if μ is critical, non-trivial, and has finite variance σ 2, then Kolmogorov’s
estimate states that

Pμ,0(∂Tr �= ∅) ∼ 2

σ 2r
as r → ∞. (2.1)

This estimate was proven by Kolmogorov under a third moment assumption [9], and
in full generality by Kesten, Ney, and Spitzer [8]; see [16] for a modern proof.

2.2 Randomwalk estimates

We now briefly recall the relevant background concerning random walk on Zd , refer-
ring the reader to e.g. [10,20] for further background. Let pn(u, v) denote the n-step
transition probabilities of simple random walk on Z

d . The Gaussian heat kernel
estimates state that

pn(x, y) + pn+1(x, y) � n−d/2 exp
[
−�

(
d(x, y)2/n

)]
(2.2)

for every x, y ∈ Z
d and n ≥ 1, where d(x, y) denotes the graph distance between x

and y. (Note that the constants in the � notation may differ for the lower and upper
bounds.) Note that pn(x, y) = 0 if n has a different parity to d(x, y). In particular, we
have that

p2n(x, x) � n−d/2 (2.3)

for every x ∈ Z
d and n ≥ 1. If d ≥ 3, the Gaussian heat kernel estimates can be

integrated over time to obtain that the Green’s function G(u, v) = ∑
n≥0 pn(u, v)

satisfies

G(u, v) � d(u, v)−d+2 (2.4)

for every u, v ∈ Z
d .

3 Diagrammatic expansion of moments

In this section we discuss how the moments of the branching random walk local
time may be expanded in terms of diagrammatic sums, and then prove a recursive
inequality that may be used to bound these sums. This basic methodology is well-
known to experts, see e.g. [15, eq. 6] for an application to super-Brownian motion,
and [1] for related techniques in percolation.

Recall that a rooted plane tree is a locally finite treewith a distinguished root vertex
and a distinguished linear ordering of the children of each vertex; an isomorphism of
trees is an isomorphism of rooted plane trees if it preserves this additional data. Note
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On the tail of the branching randomwalk local time 471

that a rooted plane tree cannot have any nontrivial automorphisms. We may consider
a Galton-Watson tree T to be a rooted plane tree by picking a uniform random linear
ordering of the children of every vertex.

Let k ≥ 0. We define a k-labelled rooted plane tree to be a finite rooted plane tree
S with vertex set V (S), together with a (not necessarily injective) labelling function
� : {0, 1, . . . , k} → V (S) mapping 0 to the root of S such that every leaf of S is
labelled (i.e., is in the image of �). Note that leaves of S may have multiple labels,
and that internal vertices may also have labels. Given a k-labelled rooted plane tree
S, we write ∂V (S) = �({0, 1, . . . , k}) and V ◦(S) = V (S) \ ∂V (S) to denote the sets
of labelled and unlabelled vertices of S. An isomorphism of rooted plane trees is an
isomorphism of labelled rooted plane trees if it preserves the labelling.

We say that a k-labelled rooted plane tree is a (labelled) k-skeleton if every unla-
belled vertex has at least two children.

In particular, up to isomorphism there is only one 0-skeleton, which has one vertex
labelled 0 and no edges. Similarly, there are exactly two isomorphism classes of 1-
skeletons, which have one and two vertices respectively. For each k ≥ 0, we let Sk

be a set of isomorphism class representatives for the set of labelled k-skeletons and
let Hk be a set of isomorphism class respresentatives for the set of k-labelled rooted
plane trees.

We will use the modified Green’s function

G̃(x, y) =
∑

k≥1

pk(x, y) = G(x, y) − 1(x = y),

and

G̃n(x, y) =
n∑

k=1

pk(x, y) = Gn(x, y) − 1(x = y)

for each x, y ∈ Z
d and n ≥ 1.

For each k ≥ 0, each k-labelled rooted plane tree S, and each x = (x0, . . . , xk) ∈
(Zd)k+1 we write �(x; S) = �(x0, . . . , xk; S) for the set y = (yu)u∈V (S) ∈ (Zd)V (S)

such that y�(i) = xi for every 0 ≤ i ≤ k. (This set is empty if �(i) = �( j) but xi �= x j .)
When S is a k-skeleton, we define the S-diagram to be the function D( · ; S) :
(Zd)k+1 → [0,∞] given by

D(x; S) = D(x0, . . . , xk; S) =
∑

y∈�(x;S)

∏

u∼v

G̃(yu, yv),

where the second product is over all unordered pairs of adjacent vertices in S. In
particular, if S is the 0-skeleton thenD( · ; S) ≡ 1, while if S is the 1-skeletonwith two
vertices thenD(x, y; S) ≡ G̃(x, y). Similarly, for each k, n ≥ 0 and each k-skeleton S
we define the truncated S-diagram to be the functionDn( · ; S) : (Zd)k+1 → [0,∞]
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472 O. Angel et al.

given by

Dn(x; S) = Dn(x0, . . . , xk; S) =
∑

y∈�(x;S)

∏

u∼v

G̃n(yu, yv),

where, as before, the second product is over all unordered pairs of adjacent vertices
in S.

Recall thatEμ,x denotes the lawof a branching randomwalk (Bn)n≥0 with offspring
distribution μ started with a single particle at x . Recall also that we write Ln(y) =∑n

k=0 Bk(y) for the total number of particles that visit y up to time n, and write
L(y) = ∑∞

k=0 Bk(y) for the total number of particles that ever visit y. For each k ≥ 0,
we define bk to be the expectation of the binomial coefficient

( ·
k

)

under the offspring distribution μ, that is,

bk =
∞∑

n=k

(
n

k

)

μ(n).

In particular, b0 = b1 = 1 when μ is critical, bk < ∞ if and only if μ has a finite kth
moment, and bk > 0 if and only if

∑
n≥k μ(n) > 0. In particular b2 > 0 whenever μ

is critical and non-trivial. For each vertex v in a rooted plane tree S, we write c(v) for
the number of children of v.

Proposition 3.1 (Diagrammatic expansionofmoments)Letμbe critical and let d ≥ 1.
We have that

Eμ,x0

[
k∏

i=1

L(xi )

]

=
∑

S∈Sk

D(x0, x1, . . . , xk; S)
∏

v∈V (S)

bc(u)

and

Eμ,x0

[
k∏

i=1

Ln(xi )

]

≤
∑

S∈Sk

Dn(x0, x1, . . . , xk; S)
∏

v∈V (S)

bc(u)

for every n, k ≥ 0 and x0, . . . , xk ∈ Z
d .

Proof We first explain the appearance of the combinatorial term
∏

bc(u) in the propo-
sition. Let T be the genealogical tree of B, and let X be the random embedding of T
into Zd . Let H be a k-labelled rooted plane tree. We say that a graph homomorphism
φ from H into the Galton-Watson tree T is an embedding if it is injective, maps the
root of H to the root of T , and respects the plane structure of H and T in the sense
that for every vertex v of H with children u1, . . . , un , the children φ(u1), . . . , φ(un)

of φ(v) in T appear in the same linear order as u1, . . . , un do in H . However, T may
have additional vertices not corresponding to any vertex in H . It is easily seen by
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On the tail of the branching randomwalk local time 473

induction on the height of H that

Eμ,x0

[
#{embeddings of H into T }] =

∏

u∈H

bc(u) (3.1)

for every finite rooted plane tree H . (This equality holds even if μ is not critical.)
We begin with the first, non-trucated formula. Given a k-tuple of not necessarily

distinct vertices v = (v1, . . . , vk) ∈ V (T )k , let H(v) be the k-labelled rooted plane
tree spanned by the union of the geodesics between the root of T and the vertices
v1, . . . , vk , with labelling function defined by setting �(0) to be the root of T and
setting �(i) = vi for each 1 ≤ i ≤ k. We can write

k∏

i=1

L(xi ) = #
{
v ∈ V (T )k : X(vi ) = xi ∀1 ≤ i ≤ k

}
.

=
∑

H∈Hk

#
{
v ∈ V (T )k : H(v) ∼= H , X(vi ) = xi ∀1 ≤ i ≤ k

}
.

On the other hand, by definition of the embedding X we have that

E

[
k∏

i=1

L(xi )

∣
∣
∣
∣T

]

=
∑

H∈Hk

#
{
v ∈ V (T )k : H(v) ∼= H

} ∑

y∈�(x,H)

∏

u∼v

p1(yu, yv).

=
∑

H∈Hk

#{embeddings of H into T }
∑

y∈�(x,H)

∏

u∼v

p1(yu, yv),

where p1(·, ·) denotes the one-step transition probabilities for simple random walk on
Z

d . Taking expectations over T and applying (3.1), we obtain that

Eμ,x0

[
k∏

i=1

L(xi )

]

=
∑

H∈Hk

∑

y∈�(x,H)

∏

u∈H

bc(u)

∏

v=c(u)

p1(yu, yv). (3.2)

For each H in Hk , let S(H) ∈ Sk denote the k-skeleton obtained from H by
replacing each path whose interior vertices are unlabelled vertices of degree two by
a single edge. Thus, for each S ∈ Sk , the set of H ∈ Hk with S(H) = S is equal to
the set of k-labelled rooted plane trees that can be obtained from S by replacing each
edge with a path of arbitrary length. Since μ is critical and b1 = 1, one may readily
verify that

∑

H∈Hk
S(H)=S

∑

y∈�(x,H)

∏

u∈H

bc(u)

∏

v=c(u)

p1(yu, yv) =
∑

y∈�(x,S)

∏

u∈V (S)

bc(u)

∏

v=c(u)

G̃(yu, yv)

for every S ∈ Sk and x0, x1, . . . , xk ∈ Z
d . The first claim follows from this together

with (3.2).
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The proof in the truncated case is fairly similar, and we give only a very brief
outline. For each n ≥ 0 and k ≥ 0, let Hn,k ⊂ Hk denote the set of k-labelled rooted
plane trees with height at most n, and letH′

n,k denote the set of k-labelled rooted plane
trees in which each path whose interior vertices are unlabelled vertices of degree two
has length at most n. Clearly Hn,k ⊂ H′

n,k . We have by similar reasoning to above
that

E

[
k∏

i=1

Ln(xi )

]

=
∑

H∈Hn,k

∑

y∈�(x,H)

∏

u∈H

bc(u)

∏

v=c(u)

p1(yu, yv)

≤
∑

H∈H′
n,k

∑

y∈�(x,H)

∏

u∈H

bc(u)

∏

v=c(u)

p1(yu, yv)

=
∑

S∈Sk

∑

y∈�(x,S)

∏

u∈V (S)

bc(u)

∏

v=c(u)

G̃n(yu, yv)

as claimed. ��

We next state and prove a recursive inequality that allows us to bound the diagram-
matic sums arising in Lemma 3.1. For each k ≥ 0, let S ′

k be the set of k-skeletons
whose labelling function is injective. We observe that for any tuple x, the maximum
maxS∈S ′

k
D(x; S) is invariant to permuting the elements of x. Indeed,D(x; S) is invari-

ant under applying the same permutation to both the entries of x and the labels of S.
(If 0 is not a fixed point of the permutation, this requires one to change the root of S.)
The symmetry of the random walk implies that such re-rooting also does not change
D. In light of this, for each k ≥ 1 and x ∈ Z

d , we define

Mk(x) := max
S∈S ′

k

D(0, . . . , 0, x; S)=max
S∈S ′

k

D(x, 0, . . . , 0; S) = max
S∈S ′

k

D(0, x, . . . , x; S),

where the equality of these three expressions follow from the symmetry noted above.
We could equivalently define Mk(x) by maximizing D(x; S) over all S ∈ S ′

k and all x
which are a permutation of (0, . . . , 0, x). Similarly, we define the truncated version

Mk,n(x) := max
S∈S ′

k

Dn(0, . . . , 0, x; S) = max
S∈S ′

k

Dn(x, 0, . . . , 0; S) = max
S∈S ′

k

Dn(0, x, . . . , x; S)

for each k ≥ 0 and n ≥ 0. Note that M1(x) = G̃(0, x) and M1,n(x) = G̃n(0, x) for
every x ∈ Z

d and n ≥ 0.

Lemma 3.2 (Recursive inequality for the maximal diagram) Let d ≥ 1 and k ≥ 2.
Then

Mk(x) ≤
[
1 ∨ G̃(0, 0)−1

]
max
0<r<k

⎧
⎨

⎩

∑

y∈Zd

Mr (y)Mk−r (y)G̃(y, x)

⎫
⎬

⎭
(3.3)
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On the tail of the branching randomwalk local time 475

and

Mk,n(x) ≤
[
1 ∨ G̃n(0, 0)−1

]
max
0<r<k

⎧
⎨

⎩

∑

y∈Zd

Mr ,n(y)Mk−r ,n(y)G̃n(y, x)

⎫
⎬

⎭
. (3.4)

Note that the quantities 1 ∨ G̃n(0, 0)−1 and 1 ∨ G̃(0, 0)−1 are bounded above by
p2(0, 0)−1 = 2d when n ≥ 2. Be warned, however, that 1 ∨ G̃n(0, 0)−1 is infinite
when n ∈ {0, 1}. Later in the paper we will be careful to avoid this case.

Proof of Lemma 3.2 We will prove (3.3), the proof of (3.4) being almost identical. It
suffices to prove that

Mk(x) ≤ max
0<r<k

{
Mr (x)Mk−r (x)

}
∨ Mk−1(0)G̃(0, x) ∨

max
0<r<k

⎧
⎨

⎩

∑

y∈Zd

Mr (y)Mk−r (y)G̃(y, x)

⎫
⎬

⎭
(3.5)

for every k ≥ 2. Indeed, the first and second terms are each clearly smaller than the
third multiplied by M1(0)−1 = G̃(0, 0)−1 (consider the contributions to the sum in
the third term from y = 0 and y = x).

Let k ≥ 2, let S ∈ S ′
k , let x ∈ Z

d , and let x = (0, . . . , 0, x) ∈ (Zd)k+1. We
consider three cases, which correspond to the three terms being maximized over in
the inequality (3.5):

1. �(k) is not a leaf.
2. �(k) is a leaf and the parent of �(k) is in ∂V (S) (i.e. is labelled).
3. �(k) is a leaf and the parent of �(k) is in V ◦(S) (i.e., is unlabelled).

Case 1 Let a ≥ 1 be the number of labelled vertices that are descendants of �(k) in S.
Since � is injective, �(k) is not the root of S and a < k.

Let S1 be the a-skeleton formed by �(k) and its descendants in S, where we consider
�(k) to be the root of S1 and re-index the labels if necessary so that the labelling function
has domain {0, . . . , a}. Similarly, let S2 = (T2, �2) be the (k − a)-skeleton obtained
from S by deleting all the descendants of �(k), and re-indexing the labels so that the
labelling function �2 has domain {0, 1, . . . , k − a} and satisfies �2(k − a) = �(k). (In
both cases, the details of relabelling are not important.) Having done this, we observe
that, by the definitions,

D(0, . . . , 0, x; S) = D(x, 0, . . . , 0; S1)D(0, . . . , 0, x; S2)

≤ Ma(x)Mk−a(x). (3.6)

We deduce that if S ∈ S ′
k is such that �(k) is not a leaf of S then

D(0, . . . , 0, x; S) ≤ max
{

Mr (x)Mk−r (x) : 1 ≤ r ≤ k − 1
}
, (3.7)
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476 O. Angel et al.

which corresponds to the first term in (3.5).
Case 2 We may define a (k − 1)-skeleton S′ by deleting �(k) from S.

The definitions then ensure that

D(0, . . . , 0, x; S) = D(0, . . . , 0; S′)G̃(0, x) ≤ Mk−1(0)G̃(0, x), (3.8)

which corresponds to the second term in (3.5).
Case 3 Let v be the (unlabelled) parent of �(k). Let a be the number of labelled
descendants of v other than �(k). Since v is unlabelled it has at least two children, and
therefore has a ≥ 1. Let S1 be the a-skeleton consisting of v and its descendants other
than �(k), where we consider v to be the root of S1 and re-index the other labels as
appropriate. Similarly, let S2 be the (k − a)-skeleton obtained from S by deleting all
the descendants of v (but not v itself), re-indexing all the remaining labelled vertices
to have labels in {0, . . . , k − a − 1}, and giving v the label k − a. (The details of how
this is done are not important.) It follows from the definitions that

D(0, . . . , 0, x; S) =
∑

y∈Zd

D(0, . . . , 0, y; S2)D(y, 0, . . . , 0; S1)G̃(y, x)

≤
∑

y∈Zd

Ma(y)Mk−a(y)G̃(y, x).

We deduce that if S ∈ S ′
k is such that �(k) is a leaf and the parent of �(k) is in V ◦(S)

then

D(0, . . . , 0, x; S) ≤ max
0<r<k

⎧
⎨

⎩

∑

y∈Zd

Mr (y)Mk−r (y)G̃(y, x)

⎫
⎬

⎭
, (3.9)

which corresponds to the third term in (3.5).
Since one of the three cases above holds for every S ∈ S ′

k , the claimed inequality
(3.5) follows from (3.7), (3.8), and (3.9). ��

We now note that bounds on Mk and Mk,n yield bounds on all diagrams, i.e. also
with non-injective labels. Indeed, suppose that S ∈ Sk for some k ≥ 1 and that the
labelling function of S is not injective. Let r = |�({0, . . . , k})|−1, letσ : {0, . . . , r} →
{0, . . . , k} be defined recursively by σ(0) = 0 and σ(i) = min{ j > σ(i − 1) : �( j) /∈
�({0, . . . , σ (i − 1)})} for each 1 ≤ i ≤ r , and let S′ be the r -skeleton with the same
underlying rooted plane tree as S and with labelling function �′(i) = �(σ (i)). Then it
follows from the definitions that

D(x0, x1, . . . , xk; S) = 1
(

xi = x j for every 0 ≤, i, j ≤ k with �(i) = �( j)
)

D(x0, xσ(1), . . . , xσ(r); S′)
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for every x0, x1, . . . , xk ∈ Z
d . In particular, it follows that

max
S∈Sk

D(0, . . . , 0, x; S) ≤ max
0≤r≤k

Mr (x) (3.10)

for every k ≥ 0 and x ∈ Z
d . Similar reasoning gives that

max
S∈Sk

Dn(0, . . . , 0, x; S) ≤ max
0≤r≤k

Mr ,n(x) (3.11)

for every k ≥ 0, x ∈ Z
d , and n ≥ 0.

4 Low dimensions

In this section we prove the following proposition, which implies the case d < 4
of Theorems 1.1 and 1.2. We remark that in this low dimensional case we do not
require a sub-exponential tail for the offspring distribution, and a moment condition
is sufficient.

Proposition 4.1 Suppose either that d ∈ {1, 2} and that the offspring distribution μ

is critical, non-trivial, and has finite second moment, or that d = 3 and the offspring
distribution μ is critical, non-trivial, and has finite third moment. Then

Pμ,0(L(x) ≥ n) � min
{

n−2/(4−d), 〈x〉−2
}

for every n ≥ 1 and x ∈ Z
d .

for every n ≥ 1.

Remark 4.2 One can also obtain from our proof that if d = 3 and μ has finite second
moment then

n−2 log−1(n + 1) � Pμ,0(L(0) ≥ n) � n−2 log(n + 1)

for every n ≥ 1.

Our analysis is informed by the following heuristic: In low dimensions, the easiest
way for the local time L(x) to be large is for the genealogical tree to be sufficiently
large, without any other unusual behaviour for the tree or the associated random
walks. Indeed, intuitively, if the genealogical tree survives to generation k, which
occurs with probability �(k−1), then it typically contains roughly k2 vertices, and the
locations of the corresponding particles are roughly uniformly distributed on the ball
of radius k1/2. Thus, if R denotes the survival time of the branching random walk,
we should typically have that L(x) = 0 if R � 〈x〉2 and that L(x) is �(R(4−d)/2)

if R = �(〈x〉2). Thus, we expect that the easiest way to have L(x) ≥ n is for R to
be at least min

{〈x〉2, n2/(4−d)
}
, which leads to the expression given in Proposition

4.1. One may think of this heuristic argument as yielding a hyperscaling relation for
branching random walk below the critical dimension, and the proof of Proposition 4.1
as a rigorous verification of this hyperscaling relation.
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We now begin the rigorous proof of Proposition 4.1. We shall see that it is sufficient
to look at the first three moments of the truncated local time Ln(x). (In dimensions
d = 1, 2 it suffices to consider the first and secondmoment, while in d = 3 dimensions
using the second moment results in an unwanted logarithmic correction.)

Lemma 4.3 Let μ be critical, and let d ∈ {1, 2, 3}. Then the following moment bounds
hold.

(a) If μ has finite second moment then

Eμ,0

[
Ln(x)2

]
�
{

n3−d d ≤ 2

log(n + 1) d = 3
for every x ∈ Z

d and n ≥ 1. (4.1)

(b) If μ has finite third moment, then

Eμ,0

[
Ln(x)3

]
� n(10−3d)/2 for every x ∈ Z

d and n ≥ 1. (4.2)

Note that these bounds are clearly not sharp when, say, 〈x〉 � √
n. This will not be

a problem for us as the estimates are sharp in the regimes that we wish to apply them.
We will frequently use the easily proved fact that for every c > 0 and α ∈ R there

exists a constant C = C(c, α) such that

∑

r≥1

rα exp
[
−cr2/n

]
≤ C

⎧
⎪⎨

⎪⎩

n(1+α)/2 α > −1

log(n + 1) α = −1

1 α < −1

for every n ≥ 1.

Proof of Lemma 4.3 It suffices to consider the case n ≥ 2, so that 1 ∨ G̃n(0, 0)−1 ≤
4d2 � 1.

(a) Secondmoment. Let S ∈ S2 be a 2-skeleton. Fix 1 ≤ d ≤ 3. No 2-skeleton has
a vertex of degree more than three. Since b0, b1, b2 < ∞ by assumption, and there is
a finite number (10) of 2-skeletons, it suffices by Lemma 3.1 to prove that

Mk,n(x) �
{

n3−d d ≤ 2

log(n + 1) d = 3
for every x ∈ Z

d and n ≥ 1. (4.3)

for every k = 0, 1, 2 and x ∈ Z
d . This bound is trivially satisfied for k = 0, since in

this case M0,n(x) = 1(x = 0) ≤ 1. For k = 1 we have that

M1,n(x) = G̃n(0, x) �
n∑

k=1

k−d/2 �

⎧
⎪⎨

⎪⎩

n1/2 d = 1

log(n + 1) d = 2

1 d = 3,

(4.4)
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which is of lower order than the required bound. For k = 2, we apply Lemma 3.2 to
deduce that

M2,n(x) �
∑

y∈Zd

G̃n(0, y)2G̃n(y, x) (4.5)

for every x ∈ Z
d and n ≥ 2. Applying the Gaussian heat kernel estimates eq. (2.2)

we deduce that there exists a positive constant c such that

M2,n(x) �
∑

y∈Zd

n∑

k1=1

n∑

k2=1

n∑

k3=1

k−d/2
1 k−d/2

2 k−d/2
3 exp

[

− c〈y〉2
k1

− c〈y〉2
k2

− c〈x − y〉2
k3

]

.

(4.6)

Using that #{y ∈ Z
d : 〈y〉 = r} = O(rd−1) and changing variables to z = x − y if

k3 = min{k1, k2, k3}, we have that
∑

y∈Zd

exp

[

−c〈y〉2
k1

− c〈y〉2
k2

− c〈x − y〉2
k3

]

�
∑

r=1

rd−1 exp

[

− cr2

min{k1, k2, k3}
]

� min{k1, k2, k3}d/2

and hence that

M2,n(x) �
n∑

k1=1

n∑

k2=1

n∑

k3=1

k−d/2
1 k−d/2

2 k−d/2
3 min{k1, k2, k3}d/2.

If d ∈ {1, 2}, we bound min{k1, k2, k3}d/2 ≤ kd/6
1 kd/6

2 kd/6
3 and deduce that

M2,n(x) �
n∑

k1=1

n∑

k2=1

n∑

k3=1

k−d/3
1 k−d/3

2 k−d/3
3 � n3−d

for every n ≥ 2 as claimed. Meanwhile, if d = 3, we compute that

M2,n(x) �
n∑

k1=k3

n∑

k2=k3

n∑

k3=1

k−3/2
1 k−3/2

2 �
n∑

k3=1

k−1
3 � log(n + 1)

for every n ≥ 2 as claimed.

(b) Thirdmoment. Since no 3-skeleton has a vertex with more than 3 offspring, and
since b0, b1, b2, b3 < ∞ by assumption, it suffices by Lemma 3.1 to prove that

Mk,n(x) � n(10−3d)/2
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for every n ≥ 2, k = 0, 1, 2, 3, and x ∈ Z
d . The fact that this bound is satisfied for

k = 0, 1, 2 has already been established. For k = 3, we apply Lemma 3.2 and (4.5)
to deduce that

M3,n(x) �
∑

y∈Zd

∑

z∈Zd

G̃n(0, z)2G̃n(z, y)G̃n(0, y)G̃n(y, x).

As before, we apply the Gaussian heat kernel estimates (2.2) to bound this sum by

M3,n(x) �
∑

y,z∈Zd

∑

1≤k1,...,k5≤n

k−d/2
1 k−d/2

2 k−d/2
3 k−d/2

4 k−d/2
5

· exp
[

−c〈z〉2
k1

− c〈z〉2
k2

− c〈z − y〉2
k3

− c〈y〉2
k4

− c〈x − y〉2
k5

]

.

By similar reasoning to above, we can bound

∑

y,z∈Zd

exp

[

−c〈z〉2
k1

− c〈z〉2
k2

− c〈z − y〉2
k3

− c〈y〉2
k4

− c〈x − y〉2
k5

]

�
∑

z∈Zd

exp

[

−c〈z〉2
k1

− c〈z〉2
k2

]

min{k3, k4, k5}d/2

� min{k1, k2}d/2 min{k3, k4, k5}d/2.

Bysymmetrywecan alsobound the left hand sidebymin{k1, k2, k3}d/2 min{k4, k5}d/2.
Now observe that, using that min{k3, k4, k5} ≤ k2/53 k3/104 k3/105

min
{
min{k1, k2}d/2 min{k3, k4, k5}d/2,min{k1, k2, k3}d/2 min{k4, k5}d/2

}

≤ min
{

kd/4
1 kd/4

2 kd/5
3 k3d/20

4 k3d/20
5 , k3d/20

1 k3d/20
2 kd/5

3 kd/4
4 kd/4

5

}
≤

5∏

i=1

kd/5
i ,

where we once again bounded the minimum by the geometric mean and used that
(1/4 + 3/20)/2 = 2/5 in the final inequality. Thus, we may bound

M3,n(x) �
∑

1≤k1,...,k5≤n

5∏

i=1

k−3d/10
i �

(
n1−3d/10

)5 = n(10−3d)/2

for every n ≥ 1 and x ∈ Z
d as required. ��

Before applying Lemma 4.3 to prove Proposition 4.1, let us recall the Paley-
Zygmund inequality and its higher-moment variants. The usual Paley-Zygmund
inequality states that if X is a non-negative random variable with finite secondmoment
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then

P (X ≥ εE[X ]) ≥ (1 − ε)2E[X ]2
E[X2]

for every 0 ≤ ε ≤ 1. Applying this inequality to the conditional distribution of a non-
negative random variable X given that X > 0 and doing a little algebra, we obtain
that in fact

P (X ≥ εE [X | X > 0]) ≥ (1 − ε)2E[X ]2
E[X2]

for every 0 ≤ ε ≤ 1.
The Paley-Zygmund inequlity also has the following L p version.We include a short

proof since this inequality is less standard.

Lemma 4.4 Let X be a non-negative random variable. Then

P (X ≥ εE [X ]) ≥ (1 − ε)p/(p−1)
E[X ]p/(p−1)

E[X p]1/(p−1)

for every p > 1 and 0 ≤ ε ≤ 1.

Proof Hölder’s inequality implies that

E[X ] ≤ εE [X ]P (X < εE [X ]) + E [X1 (X ≥ εE [X ])]

≤ εE [X ] + E
[
X p]1/p

P (X ≥ εE [X ])(p−1)/p .

Rearranging gives the desired inequality. ��
Now suppose that X is a nonnegative random variable. Applying the above inequal-

ity to a random variable Z distributed according to the conditional distribution of X
given X > 0 gives that

P (X ≥ εE [X | X > 0])

= P(X > 0)P (Z ≥ εE[Z ])
≥ P(X > 0)

(1 − ε)p/(p−1)
E[Z ]p/(p−1)

E[Z p]1/(p−1)
= (1 − ε)p/(p−1)

E[X ]p/(p−1)

E[X p]1/(p−1)

(4.7)

for every p > 1 and 0 ≤ ε ≤ 1.

Proof of Proposition 4.1 Let 1 ≤ d ≤ 3. We assume that μ has finite second moment
if d ∈ {1, 2} and that μ has finite third moment if d = 3. We begin with the upper
bounds. We have by (1.1) that

Pμ,0(L(x) ≥ n) ≤ Pμ,0(L(x) ≥ 1) � 〈x〉−2
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for every n ≥ 1 and x ∈ Z
d . (When d = 3 this estimate can be proven directly by

noting that the expectation of L(x) is equal toG(0, x) and applying the estimate (2.4).)
Thus it suffices to prove that

Pμ,0(L(x) ≥ n) � n−2/(4−d)

for every n ≥ 1 and x ∈ Z
d . Since μ has finite second moment, is critical and

non-trivial, we have by the Kolmogorov estimate (2.1) that

Pμ,0(∂Tr �= ∅) � 1

r
for every r ≥ 1,

where T is the genealogical tree of the branching process. Thus, we can bound

Pμ,0(L(x) ≥ n) ≤ Pμ,0 (Lr (x) ≥ n) + Pμ,0(∂Tr �= ∅)

≤ 1

nd
Eμ,0

[
Lr (x)d

]
+ Pμ,0(∂Tr �= ∅) �

⎧
⎪⎨

⎪⎩

n−1r1/2 + r−1 d = 1

n−2r + r−1 d = 2

n−3r1/2 + r−1 d = 3

for every n, r ≥ 1. Taking r = n2/3 when d = 1, r = n when d = 2, and r = n2

when d = 3, we obtain that

Pμ,0(L(x) ≥ n) � n−2/(4−d)

for every n ≥ 1 and x ∈ Z
d as desired.

We now turn to the lower bounds. It suffices to prove that there exists a constant c
such that

Pμ,0(L(x) ≥ n) � n−2/(4−d)

for every x ∈ Z
d and every n ≥ c〈x〉4−d : the required bound for smaller n follows

since Pμ,0(L(x) ≥ n) is a decreasing function of n. For each r ≥ 1 we have by
linearity of expectation that

Eμ,0

[
2r∑

�=r

B�(x)

∣
∣
∣
∣

2r∑

�=r

B�(x) > 0

]

≥ Eμ,0

[
2r∑

�=r

B�(x)

∣
∣
∣
∣∂Tr �= ∅

]

= Eμ,0

[
2r∑

�=r

|∂T�|p�(0, x)

]

P(∂Tr �= ∅)−1 � r
2r∑

�=r

p�(0, x)
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for every x ∈ Z
d and r ≥ 1. If r � 〈x〉2 and � has the right parity then p�(0, x) �

r−d/2. It follows that

Eμ,0

[
2r∑

�=r

B�(x)

∣
∣
∣
∣

2r∑

�=r

B�(x) > 0

]

� r (4−d)/2 (4.8)

for every x ∈ Z
d and r ≥ 〈x〉2.

Suppose that d ∈ {1, 2}. We deduce from (4.8), (4.1) and the Paley-Zygmund
inequality that there exists a constant c > 0 such that if r ≥ 〈x〉2 then

Pμ,0

[
L(x) ≥ cr (4−d)/2

]
≥ Pμ,0

[
2r∑

�=r

B�(x) ≥ cr (4−d)/2

]

� r2−d

r3−d
= 1

r
,

and the desired lower bound follows by taking r = �(n/c)2/(4−d)�. Now suppose that
d = 3. Applying (4.7) with p = 3 we obtain that there exists a constant c such that

Pμ,0

[
L(x) ≥ cr (4−d)/2

]
≥ Pμ,0

[
2r∑

�=r

B�(x) ≥ cr (4−d)/2

]

� r−1,

and we conclude as before. ��

5 High dimensions

In this section we treat the case d ≥ 5.

Proposition 5.1 Let d ≥ 5 and suppose that the offspring distribution μ is critical,
non-trivial, and sub-exponential. Then

Pμ,0(L(x) ≥ n) = exp [−�(n)] 〈x〉−d+2

for every n ≥ 1 and x ∈ Z
d .

The lower bound is simple, and most of our work will go into proving the upper
bound. By a standard computation, which we reproduce below, it suffices to prove that
there exists a constant C = C(μ, d) such that Eμ,0[L(x)k] ≤ Ckk!〈x〉−d+2 for every
k ≥ 1. Thus, applying Lemma 3.1, it suffices to prove the following two lemmas.
Recall that c(u) is the number of offspring of a vertex u in a skeleton.

Lemma 5.2 (The skeleton partition function) If μ is critical and sub-exponential then
there exist a constant κ = κ(μ) such that

∑
S∈Sk

∏
u∈S bc(u) � κkk! for every k ≥ 1.

Lemma 5.3 (Contribution of a single skeleton) Let d ≥ 5. There exists a constant
λ = λ(d) such that

D(0, x, . . . , x; S) ≤ λk〈x〉−d+2
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for every k ≥ 0, S ∈ Sk and x ∈ Z
d .

We begin with Lemma 5.2.

Proof of Lemma 5.2 Since μ is subexponential it satisfies a bound of the form μ(n) ≤
Cλn for some C < ∞ and λ < 1. Thus, we have by a standard generating function
calculation [19, Eq. 1.31] that

bk ≤ C
∞∑

n=k

(
n

k

)

λn = C

1 − λ

(
λ

1 − λ

)k

for every k ≥ 0. Since
∑

u∈S c(u) = |V (S)| − 1 for every skeleton S, it follows that

∏

u∈S

bc(u) ≤
(

C

1 − λ

)|V (S)| (
λ

1 − λ

)|V (S)|−1

for every skeleton S.
Let Sn,k ⊆ Sk be the set of isomorphism classes of k-skeletons with exactly n

vertices, and let Tn denote the set of isomorphism classes of rooted plane trees with
exactly n vertices. It is well known [19, Example 2.16] that |Tn| is given by the Catalan
number

|Tn| = 1

n

(
2n − 2

n − 1

)

≤ 4n . (5.1)

For each rooted plane tree T ∈ Tn there are at most nk isomorphism classes of k-
skeletons with underlying rooted tree T , so that |Sn,k | ≤ 4nnk for every n ≥ 1 and
k ≥ 0. On the other hand, if S ∈ Sk then every vertex of V ◦(S) has degree at least
three, so that

3|V ◦(S)| + |∂V (S)| ≤
∑

u∈V (S)

deg(u) = 2|V (S)| − 2 = 2|V ◦(S)| + 2|∂V (S)| − 2

(5.2)

and hence that |V (S)| ≤ 2k. Putting these observations together, we obtain that

∑

S∈Sk

∏

u∈S

bc(u) ≤
∑

S∈Sk

(
C

1 − λ

)|V (S)| (
λ

1 − λ

)|V (S)|−1

=
2k∑

n=1

|Sn,k |
(

C

1 − λ

)n (
λ

1 − λ

)n−1

≤
2k∑

n=1

4nnk
(

C

1 − λ

)n (
λ

1 − λ

)n−1

,

for every k ≥ 0, from which the claim follows easily. ��
Lemma 5.3 will be proven using the recursive inequality Lemma 3.2 together with

the following simple fact, which is related to the fact that the simple random walk
bubble diagram converges when d ≥ 5.
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Lemma 5.4 Let d ≥ 5. Then there exists a constant C = C(d) ≥ 1 such that

C−1〈x〉−d+2 ≤
∑

y∈Zd

〈y〉−2d+4〈x − y〉−d+2 ≤ C〈x〉−d+2

for every x ∈ Z
d .

Proof of Lemma 5.4 The lower bound is trivial from the contribution of y = 0. For the
upper bound, consider the set A = {y ∈ Z

d : d(x, y) ≥ d(0, x)/2}. We will control
the contribution to the sum from A and Ac separately. If y ∈ A then 〈x − y〉 � 〈x〉,
so that

∑

y∈A

〈y〉−2d+4〈x − y〉−d+2 �
∑

y∈A

〈y〉−2d+4〈x〉−d+2 � 〈x〉−d+2, (5.3)

where we used that
∑

y∈Zd 〈y〉−2d+4 is finite when d ≥ 5. On the other hand, if y ∈ Ac

then d(0, x)/2 ≤ d(0, y) ≤ 3d(0, x)/2 and we have that

∑

y∈Ac

〈y〉−2d+4〈x − y〉−d+2 � 〈x〉−2d+4
∑

y∈Ac

〈x − y〉−d+2.

Since there are O(rd−1) points y with 〈x − y〉 = r for each r ≥ 1, we deduce that

∑

y∈Ac

〈y〉−2d+4〈x − y〉−d+2 � 〈x〉−2d+4
3〈x〉/2∑

r=1

r � 〈x〉−2d+6 � 〈x〉−d+2 (5.4)

where we used that d ≥ 4 in the last inequality. Combining (5.3) and (5.4) completes
the proof. ��
Proof of Lemma 5.3 LetC1 ≥ 1be such that G̃(x, y) ≤ C1〈x−y〉−d+2 for every x, y ∈
Z

d , let C2 ≥ 1 be the constant from Lemma 5.4, and let λ = C2
1C2[1 ∨ G̃(0, 0)−1].

We will prove by induction on k that

Mk(x) ≤ C1λ
k−1〈x〉−d+2 (5.5)

for every k ≥ 1. The base case k = 1 is immediate, since S ′
1 has only one element and

this element S has D(0, x; S) = G̃(0, x) ≤ C1〈x〉−2. Now suppose that k ≥ 2 and
that the induction hypothesis (5.3) holds for all 1 ≤ r ≤ k − 1. Applying Lemma 3.2
and Lemma 5.4 we obtain that

Mk(x) ≤
[
1 ∨ G̃(0, 0)−1

]
max

⎧
⎨

⎩
C3
1λ

k−r−1λr−1
∑

y∈Zd

〈y〉−2d+4〈x − y〉−d+2 : 1 ≤ r ≤ k − 1

⎫
⎬

⎭

≤
[
1 ∨ G̃(0, 0)−1

]
C3
1C2λ

k−2〈x〉−d+2 ≤ C1λ
k−1〈x〉−d+2
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for every x ∈ Z
d . This completes the induction.

The claim follows from (5.5) and (3.10). ��
Proof of Proposition 5.1 We begin with the upper bound. Lemmas 3.1 , 5.2, and 5.3
imply that there exists a constant α such that Eμ,0[L(x)k] ≤ αkk!〈x〉−d+2 for every
k ≥ 1 and x ∈ Z

d . We deduce that

Eμ,0

[
eL(x)/2α1(L(x) > 0)

]
≤ e1/2α

e1/2α − 1
Eμ,0

[
eL(x)/2α − 1

]

= e1/2α

e1/2α − 1

∑

k≥1

1

2kαkk!Eμ,0

[
L(x)k

]
≤ e1/2α

e1/2α − 1
〈x〉−d+2 (5.6)

for every x ∈ Z
d , and hence by Markov’s inequality that

Pμ,0(L(x) ≥ n) ≤ e−(n−1)/2α〈x〉−d+2

e1/2α − 1

for every x ∈ Z
d and n ≥ 1 as claimed.

We finish with the lower bound. First suppose that x = 0. The probability q that the
initial particle has at least one grandchild is positive, and any grandchild has probability
1/(2d) of being back at the origin. By the Markov property, the probability that there
are at least n visits to 0 is at least (q/2d)n = e−�(n) for every n ≥ 1. If x �= 0, then
we claim that

Pμ,0(L(x) ≥ n) ≥ Pμ,0(L(x) > 0)Pμ,x (L(x) ≥ n)

= Pμ,0(L(x) > 0)Pμ,0(L(0) ≥ n) � 〈x〉2−de−�(n)

as required, where the final inequality follows from (1.1). Indeed, for the first inequal-
ity, note that if we explore the genealogical tree T in a breadth-first manner until x is
visited for the first time, the part of the branching process that is descended from this
first visit to x has conditional law Pμ,x . This completes the proof. ��

6 The critical dimension

In this section we deal with the case of the upper critical dimension d = 4, which is
the most technical. We rely on the machinery developed in the previous sections, in
particular Lemmas 5.2 and 3.2. The following is the d = 4 case of Theorem 1.2.

Proposition 6.1 Let d = 4 and suppose that the offspring distribution μ is critical,
nontrivial, and subexponential. Then

Pμ,0(L(x) ≥ n) � exp

[

− �
(
min

{√
n, n

log〈x〉
}) ]

〈x〉−2 log−1〈x〉

for every n ≥ 1 and x ∈ Z
d .
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On the tail of the branching randomwalk local time 487

Remark 6.2 Proposition 6.1 shows that in four dimensions, unlike in low dimensions,
the easiest way for L(0) to be large is not for the genealogical tree to be “large in a
typical way”. Indeed, L(0) is typically logarithmic in the size of the tree, so for L(0)
to be of order n we would need the tree to survive to generation e�(n). This occurs
with probability e−�(n), which is much smaller than the probability that L(0) ≥ n.

The proof of this proposition relies on the results of Zhu [23,24] (i.e., the d = 4
case of the hitting probability estimate (1.1)) in the case x �= 0, but is self-contained
in the case x = 0. Indeed, the proposition will follow from Zhu’s results together with
the following proposition.

Proposition 6.3 Let d = 4 and suppose that the offspring distribution μ is critical,
non-trivial, and subexponential. Then there exist positive constants c and C such that

ckk![k + log〈x〉]k−1〈x〉−2 ≤ Eμ,0[L(x)k] ≤ Ckk![k + log〈x〉]k−1〈x〉−2

for every x ∈ Z
d and k ≥ 1.

We begin with the following lemma, which is the four-dimensional analogue of
Lemma 5.4.

Lemma 6.4 Let d = 4. Then there exists a positive constant C such that

∑

y∈Zd

〈x − y〉−2〈y〉−4[k + log〈y〉]k ≤ C〈x〉−2

k + 1
[k + 1 + log〈x〉]k+1

for every x ∈ Z
d and k ≥ 0.

Proof of Lemma 6.4 Partition Z4 into three sets A, B, C according to the distance to 0
and x :

A = {y ∈ Z
d : d(0, y) ≤ 2d(0, x) and d(x, y) ≥ d(0, x)/2},

B = {y ∈ Z
d : d(x, y) < d(0, x)/2},

C = {y ∈ Z
d : d(0, y) > 2d(0, x)}.

We will control the contribution to the sum of each of these three sets separately.
If y ∈ A then 〈x〉/2 ≤ 〈x − y〉 ≤ 3〈x〉, so that
∑

y∈A

〈x − y〉−2〈y〉−4[k + log〈y〉]k � 〈x〉−2
∑

y∈A

〈y〉−4[k + log〈y〉]k � 〈x〉−2
2〈x〉∑

r=1

r−1[k + log r ]k .

The sum on the right hand side can be bounded with a little calculus: We have the
integral identity

∫ s

1
t−1(k + log t)kdt = (k + log s)k+1

k + 1
− kk+1

k + 1
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for every s ≥ 1, and since the function t−1(k + log t)k is decreasing when t ≥ 1 (as
can be seen by computing the derivative to be −t−2(k + log t)k−1 log t), we have that

2〈x〉∑

r=1

r−1[k + log r ]k ≤ kk +
∫ 2〈x〉

1
t−1[k + log t]kdt = [k + log 2〈x〉]k+1

k + 1
+ kk

k + 1

≤ 2

k + 1
[k + 1 + log〈x〉]k+1

and hence that

∑

y∈A

〈x − y〉−2〈y〉−4[k + log〈y〉]k � 〈x〉−2

k + 1
[k + 1 + log〈x〉]k+1 (6.1)

as required.
It remains to upper bound the contributions from B andC . If y ∈ B thend(0, x)/2 ≤

d(0, y) ≤ 2d(0, x) and we have that

∑

y∈B

〈x − y〉−2〈y〉−4[k + log〈y〉]k � 〈x〉−4[k + log 2〈x〉]k
∑

y∈B

〈x − y〉−2

� 〈x〉−4[k + 1 + log〈x〉]k
2〈x〉∑

r=1

r

� 〈x〉−2[k + 1 + log〈x〉]k ≤ 〈x〉−2

k + 1
[k + 1 + log〈x〉]k+1 (6.2)

as required.
Finally, if y ∈ C then d(x, y) ≥ d(0, y) − d(0, x) ≥ d(0, y)/2 and d(0, y) >

d(0, x), so that

∑

y∈C

〈x − y〉−2〈y〉−4[k + log〈y〉]k �
∑

y∈C

〈y〉−6[k + log〈y〉]k (6.3)

Up to constants, there are 24n choices for y with 2n ≤ 〈y〉 < 2n+1. For each such y
we have 〈y〉−6[k + log〈y〉]k � 2−6n(k + n log 2)k , so the total contribution from all
such y’s is (up to constants) 2−2n(k + n log 2)k . Thus

∑

y∈C

〈x − y〉−2〈y〉−4[k + log〈y〉]k �
∑

2n>〈x〉
2−2n(k + n log 2)k . (6.4)

The ratio of consecutive terms in this sum is

2−2(n+1)(k + (n + 1) log 2)k

2−2n(k + n log 2)k
≤ 1

4

(

1 + 1

k + n log 2

)k

≤ e

4
.
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Since e/4 < 1, it follows that the sum on the right of (6.4) is of the same order as its
first term, and we deduce that

∑

y∈C

〈x − y〉−2〈y〉−4[k + log〈y〉]k � 〈x〉−2[k + log 2〈x〉]k � 〈x〉−2

k + 1
[k + 1 + log〈x〉]k+1.

(6.5)

This is also of the required order, completing the proof. ��
Proof of Proposition 6.3 We begin with the upper bound. Let C1 ≥ 1 be a constant
such that G̃(0, x) ≤ C1〈x〉−2 for every x ∈ Z

4, let C2 ≥ 1 be the constant from
Lemma 6.4, and let λ = C2

1C2[1 ∨ G̃(0, 0)−1]. We prove by induction on k that

Mk(x) ≤ C1λ
k−1〈x〉−2[k − 1 + log〈x〉]k−1 (6.6)

for every k ≥ 1 and x ∈ Z
4. The base case k = 1 is trivial. For k ≥ 2, we may apply

Lemma 3.2 and the induction hypothesis to obtain that

Mk(x) ≤ [1 ∨ G̃(0, 0)−1]C3
1λ

k−2

·max

{∑

y∈Z4

〈y〉−4〈x − y〉−2[k − r − 1 + log〈y〉]k−r−1[r − 1 + log〈y〉]r−1 : 1 ≤ r ≤ k − 1

}

and hence that

Mk(x) ≤ [1 ∨ G̃(0, 0)−1]C3
1λ

k−2
∑

y∈Z4

〈y〉−4〈x − y〉−2[k − 2 + log〈y〉]k−2

≤ C1λ
k−1〈x〉−2[k − 1 + log〈x〉]k−1

as desired, where we applied Lemma 6.4 in the second line. As in the proof of Propo-
sition 5.1, it follows from (6.6), Lemmas 3.1, and 5.2 that there exists a constant C3
such that

Eμ,0[L(x)k] ≤ Ck
3k![k − 1 + log〈x〉]k−1〈x〉−2 (6.7)

for every x ∈ Z
d and k ≥ 1 as claimed.

We now turn to the lower bound. We first prove the bound for k of the form 2� for
some natural number � ≥ 1. For each � ≥ 0, let k = 2� and let T = T� be the rooted
plane tree with boundary in which the root has degree 1, the descendants of the root’s
child form a complete binary tree of height �, and ∂V (T�) is equal to the set of leaves
of T . Let ρ be the root of T�, let v0 be the child of the root, and for each vertex v

of T� other than ρ, let σ(v) denote the parent of v in T . There are k! ways to label
the non-root leaves of T with the labels {1, . . . , k}, and each such labelling yields a
distinct k-skeleton. Let S = S� be one such labelled k-skeleton. Applying Lemma 3.1,
we have by symmetry that

Eμ,0[L(x)k] = Eμ,x [L(0)k] ≥ k!(b2)k−1D(x, 0, . . . , 0; S). (6.8)

123



490 O. Angel et al.

(Recall that b2 is the second descending moment of the offspring distribution, which
is positive since μ is critical and nontrivial.)

Consider the set � of functions φ : V ◦(T ) → {0, 1, . . . , k ∨ �log2〈x〉�} that are
decreasing along each branch of the tree, i.e. such that

φ(σ(v)) ≥ φ(v) for each v ∈ V ◦(T ) \ {v0}. For each φ ∈ �, we define �(φ) to
be the set of functions f : V ◦(T ) → Z

4 such that 2φ(v) ≤ d(0, f (v)) < 2φ(v)+1 for
every v ∈ V ◦(T ). Note that the sets �(φ) and �(ψ) are disjoint whenever φ,ψ ∈ �

are distinct. Moreover, if φ ∈ � and f ∈ �(φ) then
d( f (v), f (σ (v)) ≤ 2max{d(0, f (v)), d(0, f (σ (v))} so that 〈 f (v) − f (σ (v))〉 �

〈 f (σ (v))〉 � 2φ(σ(v)) for every v ∈ V ◦ \ {v0}. Similarly, we necessarily have that
〈x − f (v0)〉 � 2k∨log2〈x〉 ≤ 2k〈x〉. Thus, we obtain from the definitions that there
exists a positive constant c1 such that

D(x, 0, . . . , 0; S) ≥ ck
1〈x〉−2

∑

φ∈�

|�(φ)|
∏

v∈V ◦(T )

2−4φ(v).

Next observe that there exists a positive constant c2 such that

|�(φ)| =
∏

v∈V ◦(T )

|{y ∈ Z
4 : 2φ(v) ≤ d(0, y) < 2φ(v)+1}| ≥ ck

2

∏

v∈V ◦(T )

24φ(v),

so that there exists a positive constant c3 such that

D(x, 0, . . . , 0; S) ≥ ck
3〈x〉−2|�|.

It remains to estimate |�|. Let Ei be the set of edges of T connecting vertices at
distance i from the root to the children of these vertices, so that |Ei | = 2i for 0 ≤ i ≤ �,
and let E ′ = ⋃�−1

i=0 Ei . Let� be the set of functionsψ : E ′ → {0, . . . , k ∨�log2〈x〉�}
such that if e ∈ Ei then ψ(e) ≤ 2i−�(k ∨ �log2〈x〉�). We clearly have that

|�| =
�∏

m=1

⌊
k ∨ �log2〈x〉�

2m
+ 1

⌋2�−m

≥
�∏

m=1

[
k ∨ log2〈x〉

2m

]2�−m

= [k ∨ log2〈x〉]2�−12−∑�
m=1 m2�−m

We claim that there is an injection � → �. Given ψ ∈ �, let φ ∈ � be defined
recursively by φ(v0) = k ∨ �log2〈x〉� and φ(v) = φ(σ(v)) − ψ({v, σ (v)}) for
every v ∈ V ◦(T ) \ {v0}. The function φ is indeed an element of �, since φ(v) ≥
k ∨ log2〈x〉 −∑�−1

i=1 2
i−�(k ∨ log2〈x〉) ≥ 0 for every v ∈ V ◦(T ). Moreover, distinct

elements of� clearly lead to distinct elements of� under this assignment, as claimed.
We deduce that

|�| ≥ |�| ≥ [k ∨ log2〈x〉]k−12−∑�−1
m=1 m2�−m ≥ ck

4[k ∨ log2〈x〉]k−1
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where c4 = 2−∑∞
m=1 m2−m

> 0. It follows that there exists a constant c5 > 0 such that

D(x, 0, . . . , 0; S�) ≥ ck
5[k + log2〈x〉]k−1〈x〉−2 (6.9)

for every k = 2� ≥ 2 and x ∈ Z
4. Putting together (6.8) and (6.9), we obtain that

there exists a constant c6 > 0 such that

Eμ,0[L(x)k] ≥ ck
6k! [k + log〈x〉]k−1 〈x〉−2 (6.10)

for every x ∈ Z
4 and every k = 2� for some � ≥ 1.

To get the lower bound for k which is not a power of 2, we interpolate using log-
convexity. By Cauchy-Schwarz, for any random variable X ≥ 0 and any a ≥ i ≥ 0
we have (EXa)2 ≤ (

EXa−i
) (
EXa+i

)
, so that the moments EXn are a log-convex

sequence. Since we have the claimed upper bound for every k and the lower bound
for powers of 2, the lower bound follows for all k. More precisely, let a ∈ [k, 2k] be
a power of 2, and let b = 2a − k. Log-convexity gives

Eμ,0

[
L(x)k

]
≥ Eμ,0[L(x)a]2

Eμ,0[L(x)b] .

Applying (6.10) to control the numerator and (6.7) to control the denominator yields
the lower bound for arbitrary k. ��

Proof of Proposition 6.1 By Zhu’s Theorem, it suffices to prove that

Pμ,0(L(x) ≥ n | L(x) > 0) = exp

[

−�

(

min

{√
n,

n

log〈x〉
})]

for every x ∈ Z
4 and n ≥ 1. Moreover, Zhu’s Theorem and Proposition 6.3 imply that

there exist positive constants c1 and C2 such that

ck
1ek log k [k ∨ log〈x〉]k−1 log〈x〉 ≤ Eμ,0

[
L(x)k

∣
∣L(x) > 0

]
≤ Ck

1ek log k [k ∨ log〈x〉]k−1 log〈x〉

for every x ∈ Z
4 and k ≥ 1, and hence that there exist positive constants c2 and

C2 ≥ 1 such that

ck
2ek log k[k ∨ log〈x〉]k ≤ Eμ,0

[
L(x)k | L(x) > 0

]
≤ Ck

2ek log k[k ∨ log〈x〉]k

(6.11)

for every x ∈ Z
4 and k ≥ 1.
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For the upper bound, we apply (6.11) and Stirling’s approximation to obtain that
there exists a constant C3 such that

Eμ,0

[

exp

(
1

2eC2
min

{
L(x)

log〈x〉 ,
√

L(x)

})

| L(x) > 0

]

=
∞∑

k=0

(2eC2)
−k

k! Eμ,0

[

min

{
L(x)

log〈x〉 ,
√

L(x)

}k

| L(x) > 0

]

≤
∞∑

k=0

(2eC2)
−k

k! min

{

Eμ,0

[
L(x)k

logk〈x〉 | L(x) > 0

]

,Eμ,0

[
L(x)k/2 | L(x) > 0

]}

≤
�log〈x〉�∑

k=0

(2e)−k

k! ek log k +
∞∑

k=1+�log〈x〉�

e−k(2C2)
−k/2

k! ek log k ≤ C3.

Thus, it follows by Markov’s inequality that there exists a constant C3 such that

P (L(x) ≥ n | L(x) > 0) ≤ C3 exp

(

− 1

2eC2
min

{
n

log〈x〉 ,
√

n

})

for every x ∈ Z
4 and n ≥ 1 as required.

For the lower bound, we apply the Paley-Zygmund inequality to obtain that there
exists a positive constant c3 such that

Pμ,0

(

L(x)k ≥ 1

2
ck
2ek log k[k ∨ log〈x〉]k

)

≥ Pμ,0

(

L(x)k ≥ 1

2
Eμ,0

[
L(x)k | L(x) > 0

])

≥ 1

4
Eμ,0

[
L(x)2k

]−1
Eμ,0

[
L(x)k

]2

≥ 1

4

c2k
2 e2k log k[k ∨ log〈x〉]2k

C2k
2 e2k log 2k[2k ∨ log〈x〉]2k

≥ ck
3

for every k ≥ 1 and x ∈ Z
4, and hence that there exists a positive constant c4 such

that

Pμ,0 (L(x) ≥ c4k[k ∨ log〈x〉]) ≥ ck
3

for every k ≥ 1 and x ∈ Z
4. The claimed lower bound follows from this inequality

by taking k = min
{⌈√

n/c4
⌉

, �n/(c4 log〈x〉)�}. ��
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