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Abstract

We study the mean field Schrodinger problem (MFSP), that is the problem of finding
the most likely evolution of a cloud of inferacting Brownian particles conditionally
on the observation of their initial and final configuration. Its rigorous formulation is
in terms of an optimization problem with marginal constraints whose objective func-
tion is the large deviation rate function associated with a system of weakly dependent
Brownian particles. We undertake a fine study of the dynamics of its solutions, includ-
ing quantitative energy dissipation estimates yielding the exponential convergence to
equilibrium as the time between observations grows larger and larger, as well as a
novel class of functional inequalities involving the mean field entropic cost (i.e. the
optimal value in (MFSP)). Our strategy unveils an interesting connection between for-
ward backward stochastic differential equations and the Riemannian calculus on the
space of probability measures introduced by Otto, which is of independent interest.
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1 Introduction and statement of the main results

In the seminal works [46,47] Schrodinger addressed the problem of finding the most
likely evolution of a cloud of independent Brownian particles conditionally on the
observation of their initial and final configuration. In modern language this is an
entropy minimization problem with marginal constraints. The aim of this work is
to take the first steps in the understanding of the Mean Field Schrodinger Problem,
obtained by replacing in the above description the independent particles by interacting
ones.

To obtain an informal description of the problem, consider N Brownian particles
(X i’N )re[0,T],1<i<N interacting through a pair potential W

. N . .
dxiN = —%kzl vw (XN — xENydr 4 dB! "
XyN i
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Their evolution is encoded in the random empirical path measure

1 N
5 2 Sy )
i=1

At a given time T, the configuration of the particle system is visible to an external
observer that finds it close to an “unexpected” (écart spontané et considérable in [47])
probability measure 1", namely

1 N
N 2 S 3)
i=1

It is a classical result [4,20,49] that the sequence of empirical path measures (2) obeys
the large deviations principle (LDP). Thus, the problem of finding the most likely
evolution conditionally on the observations is recast as the problem of minimizing
the LDP rate function among all path measures whose marginal at time 0 is ™ and
whose marginal at time 7 is 1", This is the mean field Schrodinger problem (MFSP).
Extending naturally the classical terminology we say that an optimal path measure
is a mean field Schrodinger bridge (henceforth MFSB) and the optimal value is the
mean field entropic cost. The latter generalizes both the Wasserstein distance and the
entropic cost.

The classical Schrodinger problem has been the object of recent intense research
activity (see [36]). This is due to the computational advantages deriving from introduc-
ing an entropic penalization in the Monge-Kantrovich problem [19] or to its relations
with functional inequalities, entropy estimates and the geometrical aspects of optimal
transport. Our article contributes to this second line of research, recently explored by
the papers [17,28,32,34,43,44]. Leaving all precise statements to the main body of the
introduction, let us give a concise summary of our contributions.

Dynamics of mean field Schrodinger bridges Our mean field version of the
Schrodinger problem stems from fundamental results in large deviations for weakly
interacting particle systems such as [20,49] and shares some analogies with the control
problems considered in [16] and with the article [2] in which an entropic formulation
of second order variational mean field games is studied. Among the more fundamental
results we establish for the mean field Schrodinger problem, we highlight

e the existence of MFSBs and, starting from the original large deviations for-
mulation, the derivation of both an equivalent reformulation in terms of a
McKean—Vlasov control problem as well as a Benamou-Brenier formula,

e establishing that MFSBs solve forward backward stochastic differential equations
(FBSDE) of McKean—Vlasov type (cf. [10,11]).

The proof strategy we adopt in this article combines ideas coming from large deviations
and stochastic calculus of variations, see [18,23,52]. Another interesting consequence
of having a large deviations viewpoint is that we can also exhibit some regularity
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properties of MFSBs, taking advantage of Follmer’s results [25] on time reversal.
Building on [17,28] we establish a link between FBSDEs and the Riemannian calculus
on probability measures introduced by Otto [41] that is of independent interest and
underlies our proof strategies. In a nutshell, the seminal article [31] established that the
heat equation is the gradient flow of the relative entropy w.r.t. the squared Wasserstein
distance. Thus, classical first order SDEs yield probabilistic representations for first
order ODEs in the Riemannian manifold of optimal transport. Our observation may
be seen as the second order counterpart to the results of [31]: indeed we will present
an heuristic strongly supporting the fact that Markov solutions of “second order”
trajectorial equations (FBSDEs) yield probabilistic representations for second order
ODEs in the Riemannian manifold of optimal transport.

Ergodicity of Schrodinger bridges and functional inequalities Consider again (1)
and assume that W is convex so that the particle system is rapidly mixing and there
is a well defined notion of equilibrium configuration |Loo. If N and T are large, one
expects that

(i) The conﬁguratlons ~ Zl_l SX, attimes t = 0, T /2, T are almost independent.
(i) The configuration at 7' /2 is with high probability very similar to jtoo.

Because of (i), even when the external observer acquires the information (3), he/she
still expects (ii) to hold. Thus mean field Schrodinger bridges are to spend most of
their time around the equilibrium configuration. All our quantitative results originate
in an attempt to justify rigorously this claim.

In this work we obtain a number of precise quantitative energy dissipation estimates.
These lead us to the main quantitative results of the article:

e we characterize the long time behavior of MFSBs, proving exponential conver-
gence to equilibrium with sharp exponential rates,

e we derive a novel class of functional inequalities involving the mean field entropic
cost. Precisely, we obtain a Talagrand inequality and an HWI inequality' that
generalize those previously obtained in [12] by Carrillo, McCann and Villani.

Regarding the second point above, we can in fact retrieve (formally) the inequalities
in [12] by looking at asymptotic regimes for the mean field Schrodinger problem.
Besides the intrinsic interest and their usefulness in establishing some of our main
results, our functional inequalities may have consequences in terms of concentration
of measure and hypercontractivity of non linear semigroups, but this is left to future
work.

The fact that optimal curves of a given optimal control problem spend most of
their time around an equilibrium is known in the literature as the turnpike property.
The first turnpike theorems have been established in the 60°s for problems arising in
econometry [39]; general results for deterministic finite dimensional problems are by
now available, see [50]. In view of the McKean—Vlasov formulation of the mean field
Schrddinger problem, some of our results may be viewed as turnpike theorems as well,

LA Talagrand inequality states that a transportation cost is dominated by a divergence, whereas a HWI
inequality states that a divergence is dominated by a transportation cost and a Fisher information.
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but for a class of infinite dimensional and stochastic problems. An interesting feature
is that, by exploiting the specific structure of our setting, we are able to establish the
turnpike property in a quantitative, rather than qualitative form. The McKean—Vlasov
formulation also connects our findings with the study of the long time behavior of
mean field games [5,7-9].

Concerning the proof methods, our starting point is Otto calculus and the recent
rigorous results of [17] together with the heuristics put forward in [28]. The first new
ingredient of our proof strategy is the above mentioned connection between FBSDEs
and Otto calculus that plays a key role in turning the heuristics into rigorous statements.
It is worth remarking that using a trajectorial approach does not just provide with a
way of making some heuristics rigorous, but it also permits to obtain a stronger form
of some of the results conjectured in [28] which then simply follow by averaging
trajectorial estimates. The second new ingredient in our proofs involves a conserved
quantity that plays an analogous role to the total energy of a physical system. For such
quantity we derive a further functional inequality which seems to be novel already in
the classical Schrdinger problem (i.e. for independent particles) and allows to establish
the turnpike property.

Structure of the article  In the remainder introductory section we state and comment
our main results. In Sect. 2 we provide a geometrical interpretation sketching some
interesting heuristic connections between optimal transport and stochastic calculus.
The material of this section is not used later on; therefore the reader who is not
interested in optimal transport may avoid it. Sections 3 and 4 contain the proofs of
our main results, the former being devoted to the results concerning the dynamics of
MFSBs and the latter one dealing with the ergodic results. Finally an appendix section
contains some technical results.

1.1 Frequently used notation

e (2, F;, Fr) is the canonical space of R4-valued continuous paths on [0, T], so
{F:}i<r is the coordinate filtration. €2 is endowed with the uniform topology.

e P(Q) and P(RY) denote the set of Borel probability measures on 2 and R4
respectively.

e (X;):efo,7] 1s the canonical (i.e. identity) process on £2.

e R/ is the Wiener measure with starting distribution .

e H(P|Q) denotes the relative entropy of P with respect to Q, defined as

Ep [log (3—5)] if P « Q and 400 otherwise.

e P; denotes the marginal distribution of a measure P € P(£2) at time ¢.

e Pp(£2) is the set of measures on €2 for which sup, . | X; |/3 is integrable. Pg (RY)
is the set of measures on R? for which the function | - |# is integrable.
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e The B-Wasserstein distance on Pg(£2) is defined by

1/
2 ._ : _ B
Pp(2)” > (P, Q) — Wg(P,Q) = (Nl}ngE[ sup |Y; — Z| }) .

te[0,T]

With a slight abuse of notation we also denote by Wg the B-Wasserstein distance
on Pg (R?) defined analogously.

e For a given measurable marginal flow [0, T] > t +— u; € P(Rd), we denote by
L?((t1)1ej0.7)) the space of square integrable functions from [0, T] x R? to R?
associated to the reference measure w;(dx)ds and the corresponding almost-sure
identification. We consider likewise the Hilbert space

H_ 1 ((r)rero,71)s

defined as the closure in LZ((,uf),E[o,T]) of the smooth subspace
{\p [0, T] x RY — RY s.. W = Vi, ¢ € C([0, T x Rd)}.

e y and A are respectively the standard Gaussian and Lebesgue measure in R¥.

e C'([0, T] x R?; R¥) is the set of functions from [0, 7] x R? to R¥ which have [
continuous derivatives in the first (ie. time) variable and m continuous derivatives
in the second (ie. space) variable. The space C™ (R?; R¥) is defined in the same
way. C2°([0, T'] x RY) is the space of real-valued smooth functions on [0, T'] x R4
with compact support. The gradient V and Laplacian A act only in the space
variable.

e If f is a function and u a measure, its convolution is x > f % u(x) := f flx—

Vu(dy).
1.2 The mean field Schrédinger problem and its equivalent formulations

We are given a so-called interaction potential W : RY — R, for which we assume

W is of class Cz(Rd; R) and symmetric, i.e. W(-) = W(—-), (HD)
sup v - VZW(z) -V < 400.

z,veR4 Jv|=1

Besides the interaction potential, the data of the problem are a pair of probability
measures 1", 1™ on which we impose

wi, win e Py (RY) and F(p™), F(uM) < +o0, (H2)
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where the free energy or entropy functional F is defined for i € P»(RY) by

- log u(x)p(dx) + fpa W p(x)p(dx), ifu <A
ﬂm=rw e @)

+00, otherwise.

In the above, and in the rest of the article, we shall make no distinction between a
measure and its density against Lebesgue measure A, provided it exists.
We recall that the McKean—Vlasov dynamics is the non linear SDE

{dY, = —VW % u,(Y,)dt +dB;, )

Yo~ pui", = Law(Y,), Vtel[0,T]

Under the hypothesis (H1), it is a classical result (see e.g. [13, Thm 2.6]) that (5)
admits a unique strong solution whose law we denote PV, The functional F plays a
crucial role in the sequel. For the moment, let us just remark that the marginal flow
of the McKean—Vlasov dynamics may be viewed as the gradient flow of %j’:’ in the
Wasserstein space (P> R, Wh (-, ).

If P € P1(R2) is given, then the stochastic differential equation

dZ[ = —VW * Pt(Zt)dt + dBt,
Zo ~ p'",

admits a unique strong solution (cf. Sect. 3.2) whose law we denote I"(P). With this
we can now introduce the main object of study of the article:

Definition 1.1 The mean field Schrodinger problem? is
inf {H(P|F(P)) . PePi(Q), Pp=pu™, Pr = Mﬁ“} ) (MFSP)

Its optimal value, denoted 67 (p,i“, ,u,ﬁ“), is called mean field entropic transportation
cost. Its optimizers are called mean field Schrodinger bridges (MFSB).

It is not difficult to provide existence of optimizers for (MFSP). In the classical
case, uniqueness is an easy consequence of the convexity of the entropy functional.
However, the rate function H(P|I"(P)) is not convex in general.

Proposition 1.1 Grant (H1), (H2). Then (MFSP) admits at least an optimal solution.

Remark 1.1 The dynamics of the McKean—Vlasov dynamics for the particle system
(1) displays a wide array of different behaviors, including phase transitions, see [51]
for example. Thus, we do not expect uniqueness of mean field Schodinger bridges in

2 The choice of W as interaction mechanism is a particular one. Thus (MFSP) is not the only mean field
Schrodinger problem of interest. It would have been easy to include in the dynamics a confinement (single-
site) potential. However, since one of the goals of this article is to understand the role of the pair potential
W, we preferred not to do that, as the single site potential may be the one that determines the long time
behavior of mean field Schrodinger bridges.
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482 J. Backhoff et al.

general. However, in the case when W is convex, although the rate function H (P|I" (P))
is not convex in the usual sense, the entropy F is displacement convex in the sense of
McCann [38]. This observation was indeed used to prove uniqueness of minimizers
for F, and could be the starting point towards uniqueness for (MFSP).

1.2.1 Large deviations principle (LDP)

We start by deriving the LDP interpretation of (MFSP). Recall the interacting particle
system (X f’N) re[0,7],1<i<y of (1). The theory of stochastic differential equations
guarantees the strong existence and uniqueness for this particle system under (H1),
(H2). In the next theorem we obtain a LDP for the sequence of empirical path measures;
in view of the classical results of [20], it is not surprising that the LDP holds. However,
even the most recent works on large deviations for weakly interacting particle systems
such as [4] do not seem to cover the setting and scope of Theorem 1.1. Essentially,
this is because in those references the LDPs are obtained for a topology that is weaker
than the W, -topology, that is what we need later on.

Theorem 1.1 In addition to (H1), (H2) assume that
/ exp(rlx '™ (dx) < oo forall r > 0. (6)
R4

Then the sequence of empirical measures

1 N
{NZ(SXi‘N;N EN},

i=1

satisfies the LDP on P1(S2) equipped with the Wi-topology, with good rate function
given by

HEPIT'(P)), PLI(P),
+00, otherwise.

Pi1(Q2) 5P~ J(P):= { @)

In fact we will prove in Sect. 3 a strengthened version of Theorem 1.1 where the

drift term is much more general. For this, we will follow Tanaka’s elegant reasoning
[49].
Remark 1.2 Having a rate function implies Prob[% Zf\/: 1 8yin ~AP]~exp(—=N Z(P))
heuristically. Hence Problem (MFSP) has the desired interpretation of finding the most
likely evolution of the particle system conditionally on the observations (when N is
very large).

1.2.2 McKean-Vlasov control and Benamou-Brenier formulation

We now reinterpret the mean field Schrodinger problem (MFSP) in terms of McKean—
Vlasov stochastic control (also known as mean field control).
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Lemma 1.1 Let P be admissible for (MFESP). There exists a predictable process
@M)iero.7y s.1.

T
Ep U |atp|2dt:| < +00 (®)
0
and so that
'
X, — / (—VW «Py(X,) + af) ds )
0
has law R™" under P. The problem (MFSP) is equivalent to

1 T .
inf {—Ep U |a}’|2dt] : PePi(Q), Pp=pu, Pr = u™ of asin (9)} ,
0

2
(10)
as well as to
1 r )
inf —[Ep |®; + VW x P, (X;)|"dt
> Lo (11)

. —1 )
s.t. P e PL(Q), Pp = u™, Pr = u Po <X —/ <I>Sds> = R"",
0

The formulations (10)—(11) can be seen as McKean—Vlasov stochastic control prob-
lems. In the first case one is steering through o part of the drift of a McKean—Vlasov
SDE. In the second case one is controlling the drift ® of a standard SDE but the
optimization cost depends non-linearly on the law of the controlled process. In both
cases, the condition Py = " is rather unconventional. By analogy with the theory of
mean field games, one could refer to (10)—(11) as planning McKean—Vlasov stochastic
control problems, owing to this type of terminal condition.

The third and last formulation of (MFSP) we propose relates to the well known
fluid dynamics representation of the Monge Kantorovich distance due to Benamou and
Brenier (cf. [53]) thathas been recently extended to the standard entropic transportation
cost [15,27]. The interest of this formula is twofold: on the one hand it clearly shows
that (MFSP) is equivalent and gives a rigorous meaning to some of the generalized
Schrodinger problems formally introduced in [28,34]. On the other hand, it allows
to interpret (MFSP) as a control problem in the Riemannian manifold of optimal
transport. This viewpoint, that we shall explore in more detail in Sect. 2, provides with
a strong guideline towards the study of the long time behavior of Schrodinger bridges.

We define the set A as the collection of all absolutely continuous curves
()reo.7] € P2(R?) (cf. Sect. 4.2) such that 1o = ', ur = p™ and

(t,z) > Vlog i, (z) € L*(du,dr),
(t,2) > VW % p,(z) € L*(dp,dr).

@ Springer



484 J. Backhoff et al.

We then define

o 17
%BB(,U,IH,,U,M) = inf _/ / |w; (2)
r (uiepned, 2 Jo Jre
Oy +V-(wy py)=0

1
+ 5 Viog (@) + VW @)s P e)dr. (12)
Theorem 1.2 Ler (H1), (H2) hold. Then
Cr(u, pt =P8 (", 1.

If P is optimal for (MESP) and the latter is finite, then (P;);c[0,1) is optimal in (12)
and its associated tangent vector field w is given by

1
—VW xP;(z2) + ¥ (z) — EVlogP,,

where WV is as in Theorem 1.3 below. _
Conversely, if (11)re(0, 11 is optimal for %TBB(/L"‘, w) and the latter is finite, then
there exists an optimizer of €1 (1™, ™) whose marginal flow equals (r)refo,1]-

1.3 Mean field Schrodinger bridges

Leveraging the stochastic control interpretation, and building on the stochastic calculus
of variations perspective, we obtain the following necessary optimality conditions for
(MFSP).

Theorem 1.3 Assume (H1), (H2) and let P be optimal for (MESP). Then there exist
W e H_1((P))sef0,77) such that

(dr x dP-a.s.) of =W, (X)), (13)

where (atp),e[o,T] is related to P as in Lemma 1.1. The process t — W;(X;) is contin-
uous® and the process (M;):c[o,1] defined by

! ~ ~ ~
M, = Wi (X)) —/O Ep [V2W (X, = ) - (W,(X) —We(Ro)] ds (14)

is a continuous martingale under P on [0, T[, where (X',),e[o,r] is an independent
copy of (Xt)ej0,1] defined on some probability space (2,5, P) and E; denotes the
expectation on (fZ, @, 15).

We shall refer to W as the corrector of P. Correctors will play an important role in

the ergodic results. In this part, we give an interpretation of Theorem 1.1 in terms of
stochastic analysis (FBSDEs) and partial differential equations.

3 More precisely, it has a continuous version adapted to the P-augmented canonical filtration.
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1.3.1 Planning McKean-Vlasov FBSDE for MFSB

We consider the following McKean Vlasov forward-backward stochastic differential
equation (FBSDE) in the unknowns (X, Y, Z):

dX, = —E[VW (X, — X,)]dt + Y,dt + dB;

dy, = E[V2W (X, — X,) - (¥, — Yp]dt + Z, - dB, (15)
Xo ~ Min’ Xr ~ Mﬁn_
As in the stochastic control interpretation of the mean field Schrodinger problem, here
too the terminal condition X7 ~ " is somewhat unconventional. We hence call this
forward-backward system the planning McKean—Viasov FBSDE.

Thanks to the results in Sect. 1.2.2 we can actually solve (15). If P is optimal for
(MFSP) with associated W as recalled in Theorem 1.3 above, all we need to do is take
Y, := ¥, (X,) and reinterpret (9) for the dynamics of the canonical process X and (14)
for the dynamics of Y (in the latter case using martingale representation).

One remarkable aspect of this connection between Schrédinger problems and FBS-
DEs is that one can prove existence of solutions to such FBSDEs by a purely variational
method. Indeed, we remark that (15) is beyond the scope of existing FBSDE theory,
such as Carmona and Delarue’s [11, Theorem 5.1]. Further, we also obtained for free
an extra bit of information: the constructed process Y lives in H_1 ((P;);¢[0,77). This is
in tandem with the usual heuristic relating FBSDEs and PDEs (where Y is conjectured
to be an actual gradient) as explained in Carmona and Delarue’s [10, Remark 3.1].
In fact, if we make the additional assumption that Y; = Vi, (X;) for some potential
Y (x), and we set u; = (X;)#P, then after some computations we arrive at the PDE
system4:

e () — FAR () + V- (VW s 1 (x) + Vi () (x)) = 0
VY (x) + FVAY (x) + V2 (x) - (= VW s 1y (x) + Vi (1))
= [pa VEW (x —X) - (Vi (x) — Vi (0)) s (d5),

fo(x) = i (x), pr(x) = pi"(x).

(16)

1.3.2 Schrédinger potentials and the mean field planning PDE system

The PDE system (16) is the literal translation of the planning McKean—Vlasov FBSDE
in the case when the process Y is an actual gradient, Y = V1. In the next corollary we
show that if this is the case, and if ¥ is sufficiently regular, then (16) can be rewritten
as a system of two coupled PDEzs, the first being a Hamilton—Jacobi—Bellman equation
for ¥, and the second one being a Fokker-Planck equation. This type of PDE system
is the prototype of a planning mean field game [33].

4 The Laplacian of a vectorial function is defined coordinate-wise.
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Corollary 1.1 Let P be an optimizer for (MFSP), W.(-) be as in Theorem 1.3 and set
ur = P; forallt € [0, T). If u.(-) is everywhere positive and of class cl-2([0, T x
R, R) and W.(+) is of class CL2([0, T1x R?; RY) then there exists ¥ [0, T]x RY —
R such that V,(x) = Vy,(x) for all (t,x) € [0, T] x RY. Moreover, (y.(+), i1.(+))
form a classical solution of

WV () + 3 AV )+ VY ()P = fpa VW (x — F) - (Vi (x) = Vi (8)) e (d5),
dpr (X) — FA () + V- (VW 5 1, (x) + Vi () s (x)) = 0,
po(x) = wim(x), ur(x) = pwin(x)

(17)

A fundamental result [26,57] concerning the structure of optimizers in the classical
Schrodinger problem is that their density takes a product form, i.e.

we = exp(¥r + @),

where ¢;(x), ¥;(x) solve respectively the forward and backward Hamilton Jacobi
Bellman equation

WY+ 3AY + 5IVY |2 =0,

1 1 2 (18)
—0p + 380 + 5|Ve|~ = 0.

It is interesting to see that this structure is preserved in (MFSP), at least formally.
The effect of having considered interacting Brownian particles instead of independent
ones is reflected in the fact that the two Hamilton—Jacobi—Bellman PDEs are coupled
not only through the boundary conditions but also through their dynamics.

Corollary 1.2 Using the same notation and under the same hypotheses of Corollary 1.1,
if we define ¢ : [0, T] x R¢ — R via

e = exp(=2W * us + @ + Yr)
then (Y.(-), ¢.()) solves

{ 0 (X) 4+ 3 AV () + 5 VY ()P = [ VW (x — %) - (Vi (x) = Vi (9) s (d5),
—001 () + 3801 () + 3V (O = [ VW (x = 3) - (Ve (1) = Voo () e (d5).
1.4 Convergence to equilibrium and functional inequalities

Our aim is to show that MFSBs spend most of their time in a small neighborhood of the

equilibrium configuration o, to study their long time behavior, and to derive a new
class of functional inequalities involving the mean field entropic cost €7 ('™, pfi").
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Throughout this section we make the assumption that W is uniformly convex, ie.
that

I >0 s.t. VzeR?, VZW(Z) > klyxa, (H3)

where the inequality above has to be understood as an inequality between quadratic
forms. Under (H3) the McKean Vlasov dynamics associated with the particle system
(1) converges in the limit as 7 — 400 to an equilibrium measure (4, that is found
by minimizing the functional F over the elements of P,(RY) whose mean is the same
as ui“. Existence and uniqueness of i1 has been proven in [38].

We shall often assume that ;'™ and pfi* have the same mean:

/ x i (dx) =/ x i (dx). (H4)
Rd Rd

Remark 1.3 Assumption (H3) is a classical one ensuring exponential convergence rates
for the McKean—Vlasov dynamics. It may be weakened in various ways, see the work
[12] by Carrillo, McCann and Villani or the more recent [3] by Bolley, Gentil and
Guillin, for instance. It is an interesting question to determine which of the results
of this section still hold in the more general setup. Hypothesis (H4) can be easily
removed using the fact that the mean evolves linearly along any Schrodinger bridge
(see Lemma 4.2 below). We insist that the only key assumption is (H3).

Long time behavior of mean field games The articles [5,7-9] study the asymptotic
behaviour of dynamic mean field games showing convergence towards an ergodic
mean field game with exponential rates. Following [33], we can associate to (17) an
ergodic PDE system with unknowns (A, ¥, ;). Such PDE system expresses optimality
conditions for the ergodic control problem corresponding to (10). It is easy to see that
(0, 0, ;oo 1s a solution of that ergodic system. Therefore, we are addressing the same
questions studied in the above mentioned articles. However, the equations we are
looking at are quite different. A fundamental difference is that the coupling terms in
(10) are not monotone in the sense of [6, Eq.(7) p. 8].

1.4.1 Exponential convergence to equilibrium and the turnpike property
A key step towards the forthcoming quantitative estimates is to consider the time-
reversed version of our mean field Schrodinger problem. For Q € P(£2) the time

reversal Q is the law of the time reversed process (X7—;):ef0,7]- In Lemma 4.5 we
prove that if P is an optimizer for (MFSP), then p optimizes

inf {HQIF@) : Qe Pi(®), Q=™ Qr =4} (19)

The optimality of P implies the existence of an associated process U as described
in Theorem 1.3. We show at Theorem 1.6 below that the function
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[0, 713 1 > Ep[W,(X,) - U7, (X7_)] (20)

is a constant, that we denote &p (™, 1) and call the conserved quantity. Naturally
this quantity depends also on 7" but we omit this from the notation.

Theorem 1.4 confirms the intuition that mean field Schrodinger bridges are localized
around jto providing an explicit upper bound for F(P;) along any MFSB, where

F(w) = F(u) — Flfroo)- 21)

We recall that s is found by minimizing F among all elements of P, (R whose
mean is the same as . If F is thought of as a free energy, then F should be thought
of as a divergence (from equilibrium). A graphical illustration of Theorem 1.4 and the
turnpike property is provided in the appendix.

Theorem 1.4 Assume (H1)—(H4) and let P be an optimizer for (MESP). For all t €
[0, T] we have

sinhQi (T = 1) /4 (™, pfin)
F ) = sinh(2k T) (]:(M ) - 2k )
sinh (2kc7) iy Gp(u™, MM\ Ep (i, ufi)
sinh(2«T) (“f (™) 2 )+ w2

Moreover, for all fixed 6 € (0, 1) there exists a decreasing function B(-) such that
F(Por) < Bk)(F(u™) + F(u™)) exp(—2« min{0, 1 — 0}T) (23)

uniformly in T > 1.

In particular, since F (Pg7) dominates Wh (Por, 1too) (seee.g. [12, (ii), Thm 2.2 1]),
we obtain that Py converges exponentially to 1o, With exponential rate proportional
to k. The proof of (22) is done by bounding the second derivative of the function ¢ —
JF(P;) along Schrodinger bridges with the help of the logarithmic Sobolev inequality
established in [12]. To obtain (23) from (22) we use a functional inequality for the
conserved quantity and a Talagrand inequality for 7 (1™, /i), that are the content
of Theorem 1.6 and Corollary 1.3 below. It is worth mentioning that the estimates (22),
(23) (as well as (32) below) appear to be new even for the classical Schrodinger bridge
problem and have not been anticipated by the heuristic articles [28,34]. Conversely,
the above mentioned estimates admit a geometrical interpretation in the framework
of Otto calculus that allows to formally extend their validity to the whole class of
problems studied in [28].

Remark 1.4 The exponential rate in (23) has a sharp dependence on «. To see this, fix
™™ and choose pfin = PV, Then it is easy to see that the restriction of P¥" to the
interval [0, T'] is an optimizer for (MFSP). Setting & = 1/2 and considering (23) for
T = 2t we arrive at

Vi =172, FP™) < B(k)exp(—2k1)
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Thus, we obtain the same exponential rate as in [12]°, that is easily seen to be optimal
under the assumption that W is k-convex. A similar argument can be used to show the
optimal dependence of the rate in 6.

In the previous theorem we showed that, when looking at a timescale that is propor-
tional to 7', the marginal distribution of any Schrédinger bridge is exponentially close
to 0. Here we show that for a fixed value of 7, we have an exponential convergence
towards the law of the McKean—Vlasov dynamics P**Y, see (5).

Theorem 1.5 Assume (H1)-(H4) and let P be an optimizer for (MFSP). For all t €
[0, T] we have

W3 (P;, P

<2 ( F(u™) exp(2kT) —exp2c(T — 1))  F(u™) ) o4
exp(2kT) — 1 expk (T —1)) — 1 exp(2kT) — 1

In particular, the above theorem tells that W22 (P;, PY'™™V) decays asymptotically at
least as fast as exp(—2«T) when T is large.

1.4.2 Functional inequalities for the mean field entropic cost

It is well known that analysing the evolution of entropy-like functionals along the so-
called displacement interpolation of optimal transport has far reaching consequences
in terms functional inequalities [55]. Since (MFSP) provides with an alternative way
of interpolating between probability measures, it is tempting to see if it leads to new
functional inequalities involving the cost €7 (™™, 1f"). Here, we present a Talagrand
and an HWI inequality that we used in order to study the long time behavior of MFSBs.
They generalize their respective counterparts in [48], [42]. Both inequalities are based
on another upper bound for the evolution of F along MFSBs, whose presentation we
postpone to Theorem 4.1.

The following Talagrand inequality tells that the mean field entropic cost grows at
most linearly with F:

Corollary 1.3 (A Talagrand inequality) Assume (H1)—(H4). Then for all T > 0 we
have

. . 1 :
VY, T)., m’ fin in
1€ (0,7), er(n™,pn™) < expxn) —1 lf(u )

exp2k (T — 1))

fin
k(T 1) =17 #)- @)

In particular, choosing ™ = oo leads to

in 1 in
CT(U™, o) < W}—(M ). (26)

5 Some doubt on the numeric value of the exponential rates may arise from the fact that in our definition
of F, there is no 1/2 in front of W, as it is the case in [12, Eq. 1.3]. However, as we pointed out before, the
McKean-Vlasov dynamics for the particle system (1) is the gradient flow of 1/2F and not of F.
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Unlike the classical case, in the entropic HWI inequality the Wasserstein distance
is replaced by the conserved quantity &p in the first term on the rhs and by the mean
field entropic cost in the second term. An extra positive contribution }TI 7 is present in
the first term. Our interpretation is that this compensates for the fact that in the “gain”
term we put the cost 6, that is larger than the squared Wasserstein distance. In order
to state the HWI inequality, we introduce the non linear Fisher information functional
Zr defined for € P>(RY) by

2
Jra ‘Vlog,u +OVW sk u(0)| p(dx), if Viegu € L2

Ir(p) = 27)

+00 otherwise.

where by Vlog u € Li we mean 4 < A and that log  is an absolutely continuous
function on R? whose derivative is in Li. The non linear Fisher information can be

seen to be equal to the derivative of the free energy F along the marginal flow of the
McKean Vlasov dynamics.

Corollary 1.4 (An HWI inequality) Assume (H1)—(H3) and choose u™ = pioo. If P is

an optimizer for (MFSP) and t — T (P;) is continuous® in a right neighbourhood
of 0, then
i 1 —exp(=2«T) o (1 . . 12
Fun = ——2 = (If(u‘“) (fo(u”‘) — (™, ;m)))

—(1 — exp(=2T)Cr (1™, too)- (28)

Itis worth noticing that by letting T — 400 in the above HWI inequality we obtain
the logarithmic Sobolev inequality [12, Thm 2.2]. Indeed, €7 (1™, itoo) is always non
negative and we shall see at Theorem 1.6 below that &p( Mi“, oo) — 0. The short time
regime is also interesting. Indeed, if W = 0, 67 ([Lin, Uoo) is the standard entropic
cost and we have under suitable hypothesis on Wi (see [40])

. : 1 -
lim TC7 (1™, foo) = W3 (U™, fhoo). (29)
T—0 2

The heuristic arguments put forward in [28] tell that (29) is expected to be true even
when W is a general potential satisfying (H1). Following again (29), one also expects
that

T2 . . .
Jim —=Tr(u") = TG (1™, o) = W3 (", jicc). (30)

Putting (29) and (30) together we obtain an heuristic justification of the fact that in
the limit as 7 — 0 (28) becomes the classical HWI inequality put forward in [12],

6 We were not able to conclude that in general (H1) and (H2) imply this, although we could establish the
continuity of Zz(P;) on any open subinterval of [0, T'].
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namely
F(™) < Wa(u™™, o)L (™2 — W3 (1™, too)-

Our last result is a functional inequality that establishes a hierarchical relation
between the conserved quantity and the mean field entropic cost: the former is expo-
nentially small in 7 and « in comparison with the latter. We may refer to this as
an energy-transport inequality since the conserved quantity may be geometrically
interpreted as the total energy of a physical system (cf. [17, Corollary 1.1]).

Theorem 1.6 Assume (H1)—(H4) and let P be an optimizer. Then the function
[0. 715 t > Ep[W,(X,) - Wr_,(X7_,)] 31

is constant. Denoting this constant by & (1™, u™), we have

4k

. . ) 12
in  fin in  fin fin  in . 2
60" 1M = e (G M W ) (32)

In general the term €7 (1™, ™67 (1", 1™ in (32) cannot be simplified further,
since typically €7 (u™™, ") # €7 (u™, u'™). E.g. €7 (80, v) = 0if v is the law of the
unconstrained McKean—Vlasov SDE at time 7 started at zero, whereas €7 (v, §9) > 0,
as it takes effort to drive such SDE to zero.

2 Connections with optimal transport

In this section we shall see how the results of this article relate to the Riemannian
calculus on P, (Rd ) introduced by Otto [41], at least formally. The reader not interested
in optimal transport per se is encouraged to skip this section in a first reading. The
link is rooted in a seemingly novel connection between (McKean—Vlasov) FBSDEs
and second order ODEs in the Riemannian manifold of optimal transport that we find
of independent interest. To better understand this connection, let us begin by recalling
that in the seminal article [31] it is proven that the marginal flow of the trajectorial
SDE

dX, = —VU(X,)dt + dB, (33)

can be interpreted as the gradient flow of the entropy functional

1
p s / log () (dx) + / U (0)p(dx)
Rd ]Rd

w.r.t. the 2-Wasserstein metric. Thus, first order It6 SDEs provide with probabilistic
representations for first order ODEs in the Riemannian manifold of optimal transport.
Of course, since a path measure is not fully determined by its one time marginals,
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the SDE (33) contains more information than the gradient flow equation. It has been
shown in [17] that the marginal flow of a classical Schrodinger bridge satisfies a
second order ODE, more precisely a Newton’s law in which the acceleration field is
the Wasserstein gradient of the Fisher information functional. The natural question is
then: What trajectorial (second order) SDE governs the dynamics of a Schrodinger
bridge and yields a probabilistic representation for the associated Newton’s law? In
order to answer this, let us first recall some notions of Otto calculus.

2.1 Second order calculus on P, (RY)

In the next lines, we sketch the ideas behind the Riemannian calculus on P;(R?).
It would be impossible to provide a self-contained introduction in this work and we
refer to [53] or [29] for detailed accounts. The main idea is to equip P, (R?) with a
Riemannian metric such that the associated geodesic distance is WA (-, -). To do this,
one begins by identifying the tangent space 7,,P> at . € P» (R?) as the space closure
in Li of the subspace of gradient vector fields

LZ
T, P2 ={Vg, 9 € CCRH} .

The velocity (first derivative) of a sufficiently regularcurve [0, T] 3 t > u, € Ps (R%)
is then defined by looking at the only solution v, (x) of the continuity equation

e + V() =0

such that v, € 7, P> for all t € [0, T]. Finally, the Riemannian metric (Otto metric)
(-, -)7,/P, is defined by

(Vo.Vi¥)1,p, = /Rd Vo - Vi (x) pu(dx). (34)

It can be seen that the constant speed geodesic curves associated to the Riemannian
metric we have introduced coincide with the displacement interpolations of optimal
transport and that the corresponding geodesic distance is indeed Wa (-, -). This makes
it possible to carry out several explicit calculations. In particular, we can compute the
gradient grad”V2 F and the Hessian Hess"Y2 F of a smooth functional F : P (R?Y) —
R. At least formally, we have

d
W, _ .
(erad V2 F. Vo) 1,p, = —-F((id + hVe)s) ‘h:()

e
(Vo, Hess}iwf(vw))npz = W}—((ld —i—hV(p)#,u)‘h_O,

where we used the notation # for the push forward. In particular, setting W = 0 for
simplicity in (27) we obtain that the classical Fisher information functional Z has a
gradient that can be computed with the rules above. One obtains that (cf. [54])
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grad”™2Z(u) = —2VAlog u — V|V log u|?.

The Levi-Civita connection associated to the Riemannian metric (34) can also be
explicitly computed with the help of the orthogonal projection operator IT, : Li —
7,,P». To do this, consider a regular curve (u;);e0,7] With velocity (v/);e[o0,7] and a
tangent vector field t — u; € 7, P> along (1/);ef0,7]- It turns out that if one defines
the covariant derivative %u, of (us)req0,7] along (144)ref0,7 as the vector field

D
aut = Hﬂt (8;“[ + Dut . Ut)

then this covariant derivative satisfies the compatibility with the metric and the torsion-
free identity, i.e. it is the Levi-Civita connection. The acceleration of the curve
(1t)zefo,1 1s then the covariant derivative of the velocity along the curve, i.e.

— 0V = v + -V .
dr ! o 2 v

2.2 Newton’s laws and FBSDEs

According to the above discussion the Newton’s law in (P> (RY), (., )TP,)

D _ 1 W,
Doy = LeradZ ()

. (36)
po = pu", pr = pin

provides with a geometrical interpretation for the PDE system (see [17] for more
details)

Ot (x) + V- (Vo () e (x)) =0

¥V (x) + 5 VIV (x)> = =1 VAlog s (x) — §V|log 11 (x)[? (37)
po = ", ur = pfin,

where to derive the latter equation we observe that the requirement that v; € 7, P> for
all + € [0, T'] is formally equivalent to v; = V¢, for some time dependent potential
(7, x) = ¢ (x).

As we have seen in Sect. 1.3.1, solutions of the FBSDE

dXt = Ytdt + dBt
dY[ e Z[ . dBt (38)

Xo ~ ui, Xp ~ pfin,
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having the additional property that Y; = Vi, (X;) yield a probabilistic representation
for

Bite(X) — L AR () + V- (Vi () (1)) = 0,
VY (X) + SVAY(x) + V2 (x) - Vi (x) = 0, (39)

pro(x) = u™(x), ur(x) = nfin(x).

Some tedious though standard calculations allow to see that the change of variable
¢ = —% log u; + Y transforms the PDE system (39) in (37). Summing up, we have
obtained the following

Informal statement  We have:

(1) If (X:, Yy, Zi)ielo,7) i a solution for the FBSDE (38) such that Y; = Vi (X;)
Sfor some time-varying potential \r, then the marginal flow (14;):efo0,11 of X; is a
solution for the Newton's law (36).

(ii) If P is the (classical) Schrodinger bridge between p,i“ and u,ﬁ“, then under P
the canonical process (X;)ie[0,1] is such that there exist processes (Y;):e[0.1],
(Zt)ie[0,1) with the property that (X;, Y;, Zt)ic[0,7] is a solution for (38) and Y;
isasin (i)

We leave it to future work to prove a rigorous version of the informal statement above.

On the formal level, there is no conceptual difficulty in extending it to include the

interaction potential W. Essentially, the only difference is that one has to deal with

the non linear Fisher information functional Z r instead of Z.

Beside its intrinsic interest, the parallelism between Newton’s laws and FBSDEs is
very useful when studying the long time behavior of the latter. Indeed, the Riemannian
structure underlying (36) allows to find tractable expressions for the first and second
derivative of entropy-like functionals along the marginal flow of the FBSDE.

Remark 2.1 Classical Schrodinger bridges are & —transforms in the sense of Doob [22].
Therefore, one can also describe their dynamics with a first order SDE and a PDE that
encodes the evolution of the drift field. This is not strictly speaking a probabilistic
representation of (36) since there is already a PDE involved. Our FBSDE approach
may be viewed as a way to interpret in a trajectorial sense the PDE governing the drift
in the s —transform representation.

3 The mean field Schrédinger problem and its equivalent
formulations: proofs

In this part we complement the discussion undertaken in Sect. 1.2 and provide the
proofs of the results stated therein. This section is organized into four subsections so
that

e Section 3.1 contains the proof of Theorem 3.1, which generalizes Theorem 1.1,
along with several useful lemmas,
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e Section 3.2 is where we prove Proposition 1.1, Lemma 1.1 and Theorem 1.3.
e Theorem 1.2 is proven in Sect. 3.3.
e Finally, Corollary 1.1 and 1.2 are proven in Sect. 3.4.

In the whole section, apart from Sect. 3.1 that has its own assumptions, we always
assume that (H1), (H2) are in force, even if we do not write them down explicitly in
the statements of the lemmas and propositions.

3.1 A large deviations principle for particles interacting through their drifts

We consider for N € N the interacting particle system

where {B’ : i = 1,..., N} are independent Brownian motions and {Xé’N Qo=
1, ..., N} are independent to each other and to the Brownian motions. Regarding the
drift b, we assume

[0, T]x 2 x 2> (t,w,w) — b(t,w,w) € R? is progressively measurable, (40)

b(t, 0", &) — b(t, 2>|<C{sup|w — |+sup|w — @ |} (41)

s<t

T
/ Ib(s,0,0)|ds < C, (42)
0

2

for some constant C > 0 and all (¢, o, o*, &', 5)2) e [0, T] x Q4. Finally, regarding

the measure ui“ we assume that
/ exp(r|x|?)u'"(dx) < oo forall r > 0. (43)
R4

We stress that the usual theory of stochastic differential equations guarantees the strong
existence and uniqueness for the above interacting particle system. Furthermore, if
P € P1(R2) then the same arguments show that the stochastic differential equation

dXP =[[b(t. X", @) P(da)] dt + dB;
XP“M :

admits a unique strong solution. We denote I'(P) the law of X. We can now state the
main result of this part, which contains Theorem 1.1 as a very particular case.
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Theorem 3.1 Let B € [1,2) and assume (40), (41), (42), (43). Then the sequence of
empirical measures

1 N
!NZaxf.N : NGN},
i=1

satisfies a LDP on Pg(2) equipped with the Wg-topology, with good rate function
given by

HEPITP), PLI(P),

+00, otherwise. (44)

Pp(Q) 5P > F(P) := {

The result is sharp, in that it fails for 8 = 2; see [56]. We follow Tanaka’s reasoning
[49] in order to establish this large deviations result. We remark that the assumption
on exponential moments (43) is only used in the proof of Theorem 3.1, and not in the
results preceding this proof.

For Q € Pg(£2) we consider the equation

13
N =o+ [ [ [ b 7@, Y(@))Q(d@)] ds. (45)
0
Lemma 3.1 Take Yt(o) (@) 1= wo, Q € Pg(2), and consider the iterations

t
Y (w) = o + / [ / b(s. Y (), Y(”)(@))Q(dcb)} ds, s <T.
0

Then

(a) The iteration is well-defined w-by-w (in particular, the Q-integrals are well-
defined and finite) and in fact sup,, Eq [sup, -y |Y7'|F] is finite.
(b) For each w € 2 the sequence (Y (w)hpen is convergent in the sup-norm to

some limiting continuous path Y (w). Further Eq |sup,<r |Yt(°°)|ﬂ] < 09,
Eq [SuPng |Y,(°°) — Yt(”)l] — 0, and Y is adapted to the canonical filtration.

Proof From the Lipschitz assumption on b we first derive

T t
sup |Y"TD| < sup |y +/ |b(s, 0,0)|ds + cf sup |¥,"|dr
0 0

s<t s<t r<s

t
+C / Eq |:sup|Yr(")|i|dr. (46)
0

r<s

Raising this to §, taking expectations and using Jensen’s inequality, we derive

t
Eq |:sup |x§"+1>|ﬁ} <’ (1 +Eq |:sup |ws|ﬂ] +f Eq [sup |Y}”>|ﬁ] dr) ,
s<t s<T 0 r<s

@ Springer



The mean field Schrodinger problem: ergodic behavior... 497

where C’ only depends on T and 8. From this we establish for some R > 0 that

supEq |:sup |YS(”)|’3:| < Ref.
n

s<t

Now denote A} := sup,, |¥ S(") —Y, S(n_l) |. Again by the Lipschitz property
1
At < c/ {AT + Eqg[A71} ds,
0
which we can bootstrap to obtain
1
AT L Eo[AMT < 30/0 [A? +EqlA}]} ds.

Observe that Atl < 2sup,.y lws — wo| + C, so from the above inequality we obtain
by induction that A} ™" + Eq[A*!] < C”L. From this {A% + Eq[A%1}yen is (for
each w) summable in 7, so the same happens to {A7.},cn and therefore the uniform
limit of the Y™ exists for all w. We denote by ¥ this limit. By Fatou’s lemma
Eq [SuPng |Y,(°°)|‘3] < o0. Since (Eq[A}]),  is summable we must also have

Eq [SungT |Y,(°°) - Yt(”)|] — 0. Since clearly each Y ™ is adapted so is ¥ too.
O

Lemma 3.2 For any Q € Pg there exists a unique adapted continuous process satis-
fying (45) pointwise. Denoting Y Q this process, we further have

Qo (YO e Ps(R).

Proof If X and Y are solutions, then the Lipschitz assumption on b implies

t
Eq |:SUP|Ys - Xsl] = K/ Eq |:sup|Yr - X,|:| dr,
0

s<t r<s

so from Gronwall we derive Eq [sups <1 1¥s — X |] = 0. With this, and using again
the Lipschitz assumption on b, we find

t
sup | ¥y — X SK/ sup |Y, — X,|dr,
0

s<t r<s

so by Gronwall we deduce that X = Y pointwise. For the existence of a solution we
employ Point (b) of Lemma 3.1, taking limits in the iterations therein (the exchange
of limit and integral is justified by the Lipschitz property of b). Finally Qo (YQ)~!
‘P (£2) follows by Point (b) of Lemma 3.1 too. O
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Thanks to this result we can define the operator

® :(Pg, Wg) — (P, Wp)

47
Q> 0(Q :=Qo (¥, @7

where YQ denotes the unique solution of (45).
Lemma 3.3 YR is the unique strong solution to the McKean—Vlasov SDE

dz, =[[b(t, Z, @) P(d®)] dr + dB
Z ~P, Zy ~ ui".

Furthermore, if (XN i < N, N e N} is the aforementioned interacting particle
system, which is driven by {B' : i € N} independent Brownian motions started like
W™, then

1 & |
®<N l;aB,-) == ;(SX;,N, a.s. (48)

Proof ThatY R is a solution to the McKean—Vlasov SDE is clear since w is a Brow-
nian motion under R“". That the solution is unique follows by observing that the drift
in this SDE is Lipschitz jointly in Z and P = Law(Z), from where usual arguments
apply. For the second point, consider first ', ..., @" continuous paths and define
Q= % ZZN=1 8,i- Then forall 1 <i < N we have

t
Y() = o +/0 (% > b(s. Yo, YQ(wk)))ds.

k<N

Replacing the deterministic paths o', N by those of B', ..., BY we conclude.
O

The key observation is that % ZINZ | Opi satisfies a large deviations principle in
P (£2) equipped with the Wg topology, with good rate function given by the relative

entropy H(- IR“™). This is true for B < 2 under our exponential moments assumption
(43), but fails for 8 = 2, as follows easily from [56]. By Lemma 3.3 we may derive,
via the contraction principle ([21, Theorem 4.2.1]) a large deviations principle for

| N
{N Z5Xi,N N e N},
i=1
if we could only establish the continuity of ®. This is our next step.

Lemma 3.4 O is Lipschitz-continuous and injective.
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Proof We first prove the Lipschitz property. Let 7 be a coupling with first marginal Q
and second marginal P. Denoting (w, @) the canonical process on 2 x €2, and by the
Lipschitz assumption on b, we have

t
E, [sup 1¥Q(w) — Yf(@)|ﬂ] < K/ E, [lYSQ(a)) - Yf(a))v"] ds
0

s<t

+E,; [sup lws — cT)S|’3i| .

s<t

By Gronwall we have

Ex [sup YQ(w) — Yf@nﬁ} < K'Eq [sup |ws — a‘mﬂ} :

s<T s<T
so taking infimum over such & we conclude that
Ws(©(Q), ©(P)) < K'Ws(Q, P).

We now prove that ® is injective. Let P = ©(Q) = @(Q). By definition we have
Q-a.s.

t
o = Y(w) — /O [ / b(s, YQ(w), YSQ(cT)))Q(ch))] ds

t
=Y2(w) —/O [/ b(s, YS(w),cz))P(d@)} ds,

and the same holds for Q instead of Q. Denoting

F(w) :=w-— f |:/ b(s,w,c_o)P(dc?))i| ds,
0

w =F¥Y, Q—as.),
w = FYY, (Q—a.s.).

we therefore have

Hence Q = O(Q) o (F) ' =Po (F) ' =0Q) o (F)" 1 = Q. O
We can now provide the proof of Theorem 3.1:

Proof of Theorem 3.1 As we have observed, if {B' : i e N}is and iid sequence of
R*"_distributed processes, then % vazl dpi satisfies a large deviations principle in
P (£2) equipped with the Wg topology, with good rate function given by the relative
entropy H(~|R“m). By (48), and since ® : (Pg, Wg) — (Pg, Wpg) is continuous,
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the contraction principle establishes that {% vazl Syin N € N} satisfies a large
deviations principle in Pg(£2) equipped with the VW5 topology. Since © is injective
the good rate function is given by

~ -1 Mi" .
F(P) = {H(® P)IR*7) if P e .range(®)
+00 otherwise.
In fact observe that if P € range(®) and ©~! (P) « R*" then’ P < R*", so

H(O(P)R") if P € range (©) and P « R*"
+00 otherwise.

Z(P) := {

Now take P € range(®) and call Q = ©~1(P). It is immediate by the definition of I'(-)

that ' (P) = R*" o (YQ)~!. On the other hand observe that the filtration generated by
Y < is equal to the canonical filtration: indeed Y Q is adapted and conversely

1
w =Y —/0 U b(s, YSQ,d))P(ch)):| ds =: h,(Y2),

so the canonical process is ¥ Q-adapted. From this

d(Qo (YQ)—I)

: = ERudn |: inn |U(YQ)i| = de oh
d<R;u“ o (YQ)—I) dR~# dR#*
Hence
in d
HPIT(P) = HQo (YR o (Y™ = Egyya)t [log dR—S ° h}

= HQIRM") = HO ' (P)[R""),
and therefore

H(P|'(P)) if P € range (®) and P « RA"
400 otherwise.

J(P) = {

The next step is to show that P « RA" implies P € range(®). In fact, denote by t the
adapted transformation

t
= 7w = o —/ /b(s, w, ®)P(d@)ds.
0

7 LetP = O(Q) for Q R4 The process YQ satisfies pointwise dYtQ = dw; + b(t, YQ)dr, where
b(t,y) = [ b(t, y, YU))Q(d®). We have R*" o (YQ)~! « R¥" since in fact their relative entropy is

finite. Hence, if R“" (4) = 0 then R%™ (YQ)~1(4)) = 0, and s0 Q < R%™ implies Q(YQ)~1(4)) = 0
therefore P(A) = 0 as desired.
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On the other hand call X" the unique adapted pointwise solution to

t
xP =a)0+/ Ub(s,xp,a)) P(dcb)] ds +
0

which exists by Lemma 3.2 applied to the drift f b(-, -, w)P(dw). As we recall in

Lemma 5.4, X¥ and 7 are P-a.s. inverses if P < R“in, since the above drift is Lipschitz.
Now introduce Q := P o (¢)~!, so that Q o (X¥)~! = P and in particular

t
xP = wy +/0 [/b (s, xP, XP(@)) Q(dd))} ds + w;.

By Lemma 3.2 we have ©(Q) := Qo (YO~ = Qo (XP)~! =P.
We have arrived at

Gy = |HEIT®) it P <R
+00 otherwise.

To obtain the desired form (44) of the rate function it suffices to use Lemma 5.2 in the
Appendix. O

3.2 McKean-Vlasov formulation and planning McKean-Vlasov FBSDE

Proof of Lemma 1.1 and Proposition 1.1
Under (H1) for any P € P;(£2) the vector field

[0, T] x RY > (t,x) > —VW xP;(x) == — /d VW(x — z2)P;(dz),
R

is very well-behaved. Precisely:

Lemma3.5 Let P € Pi(2) and grant (H1). Then the time-dependent vector field
(t,x) = —VW x P;(x) belongs c%1(o0, 1 x RY; Rd) and is uniformly Lipschitz in
the space variable.

Proof We begin by proving continuity. Fix ¢, x and (¢,, x,) — (¢, x). The sequence
VW(x, — X;,) converges pointwise to VW (x — X;), since X is the (continu-
ous) canonical process. By the fundamental theorem of calculus and (H1) we have
IVW(x,—X;,)| < Ci1+C3 SUPse(0,7] | Xs|. Since P € P1(£2), we may use dominated
convergence to conclude Ep[VW (x, — X; )] — Ep [VW (x — X;)]. The space Lips-
chitzianity of —VW x P, follows from (H1). Space differentiability follows similarly
from (H1) and dominated convergence. O

We will often make use of the next technical lemma, whose proof we defer to the
appendix:

@ Springer



502 J. Backhoff et al.

Lemma3.6 Let i € P>(RY) and b be of class C%1 ([0, T] x R?; R?) and such that
Vi €[0,T], x,y € R? |b(t,x) —b(t, y)| < Clx — y| (49)
for some C < +o0. Define R as the law of the SDE
dX, =b(t, X,)dt +dB,, Xo~ (50)

and let P € P(Q2) with Xy ~ . The following are equivalent

(i) H(P|R) < +o0.
(ii) There exist a P-a.s. defined adapted process (& )ic[0,1] Such that

T
Ep [ / |5lt|2dfi| < 400 51)
0

and
t
X,—/ [b(s, Xy) + as]ds (52)
0

is a Brownian motion under P.

Moreover, if (i), or equivalently (ii), holds, then we have

_ 1 T
H(PIR) = 5Ep [ / |o‘et|2dr] (53)
0
and
]Ep|: sup | X, |+ |b(t, Xt)2|i| < +o0. (54)
1€[0,T]

In particular, if (i), or equivalently (ii), holds we have that P € P>(2).
We turn to proving Lemma 1.1 stated in the introduction:

Proof of Lemma 1.1 Define the vector field b(t,z) == —VWxP,(z). Lemma 3.5 grants
that b fulfills the hypotheses of Lemma 3.6, giving the desired conclusions. O

We can prove Proposition 1.1 of the introduction, concerning the existence of
MFSBs. Recall the definition of I'(P) and (MFSP) from the introduction.

Proof of Proposition 1.1 Let R“" be the law of the Brownian motion started at p'™.
(H2) grants that the classical Schrodinger problem (namely wrt. Brownian motion) is
admissible. To see this, it suffices to verify that the coupling ™™ ® " is admissible for
the static version of the Schrodinger problem [36, Def 2.2] and then use the equivalence
between the static and dynamic versions [36, Prop 2.3]. Therefore, there exist some
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P € P() such that Py = u™ and H(PlR”m) < 4o00. Lemma 3.6 (or its specialization
Lemma 5.1 in the appendix) yields that P € P;(£2). On the other hand Lemma 5.2 in the
appendix proves that for any P € P(Q2) H(P|['(P)) < 400 if and only if H(PlR"m) <
+00. Thus (MFSP) is admissible as well. Now observe that P — H(P|I"(P)) is lower
semicontinuous in Pg(£2), since on the one hand the relative entropy is jointly lower
semicontinuous in the weak topology, and on the other hand I" is readily seen to be
continuous in Py (£2). Recalling the definition of the operator ® given in (47), to finish
the proof we only need to justify that

Oy =[P € P () : HO '(P)RM") < M, Py = pi"},

is relatively compact in PP (€2) for each M, since the proof of Theorem 3.1 established®
that H(®~'(P)|R*") = H(P|T'(P)) if P « R*". Now remark that

Om CO® <{Q - HQIRM") < M, Qo=,uin}> C) ({Q - H(QIRY) <M, QO:Min}> ’

where y denotes the standard Gaussian, since by the decomposition of the entropy we
have

H(PIRY) = H(1™|y) + HPRM™),

and by Assumption (H2)

H(uPly) = f log 1 ()2 (dx) — f log(y (1)) (dx)
in in |x|2 in
:/logp. (x)u (dx)+c—/Tu (dx) < oo.

As O is per Lemma 3.4 Lipschitz in P; (£2), it remains to prove that {H(Q|RY) < M}
is Wi-compact. This can be easily done by hand, or by invoking Sanov Theorem in
the W -topology for independent particles distributed according to R” (see e.g. [56]),
finishing the proof. O

Proof of Theorem 1.3 We split the proof into two propositions, namely Propositions 3.1
and 3.2. We begin by addressing the issue of Markovianity of the minimizers. Recall
the definition of H_;((14/)c0,77) given under ‘frequently used notation.” We rely
strongly on the work [14] by Cattiaux and Léonard for the proof of the following
result:

8 This part of the proof did not use the existence of exponential moments for wiM If we assume existence
of exponential moments, then the compactness of 8, follows from Theorem 3.1, since the rate function
must be good.
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Proposition 3.1 Let P be optimal for (MESP). Then there exists ¥ € H_1((P;)s¢[0,7])
such that

(dr x dP-a.s.) of =W, (X)), (55)

where (a}))te[O,T] is given in Lemma 1.1.
Proof If P be optimal for (MFSP), then it is also optimal for

inf {H(QIT'(P)) : Q € P1(R), Q; =P, forallr € [0, T]}, (56)
since I'(P) only depends on the marginals of P. The above problem is an instance of
[14], ie. its optimizer is a so-called critical Nelson process. However, the drift of the
path-measure I' (P) may not fulfill the hypotheses in [14]. For this reason we need to
make a slight detour. Let 6" € C2°([0, T] x R?) and R” be defined as in Lemma 5.3
in the appendix, meaning that V6" (-) converges to —VW x P;(z) in H_1 ((P;):¢[0,71)
and that R” is the law of

dY, = VO (Y,)dr +dB,, Yo~ pu" € Pr(RY).

For any n consider the problem

min {H(QIR") : Q € P1(R), Q, =P, forall € [0, T]}. (57)
Using [14, Lemma 3.1,Theorem 3.6] we obtain that for all  the unique optimizer P

of (57) is the same for all n, and is such that there exists ® € H_{((P;);¢[0,77) such
that

t
X, —f D, (X;)ds (58)
0

is a Brownian motion under P. Lemma 3.5 grants that if we set b(t,z) = —VW %P, (2)
then the hypotheses of Lemma 3.6 are met. Since H(P|I"(P)) < 400, we derive from
(54) therein that

T T
Ep U VW *P,(X,)|2dt} =Ep U VW *P,(X,)|2dt} < +o0.
0 0
Hence
T
E; [/ |®/(X,) + VW P[(Xt)|2dt} < +o00. (59)
0

Using the implication (ii) = (/) of Lemma 3.6 we finally obtain that HP|T(P)) <
00 and therefore that we can use Lemma 5.3 for the choice Q = P therein.
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Now consider Q admissible for (56) and such that H(Q|I'(P)) < +oo. Using
Lemma 5.3 twice we obtain

H(PIT(P)) = ggnilggH(PIR") = liminf H(QIR") = H(QIT'(P))

Thus P is also an optimizer for (56). But then P = P since (56) can have at most one
minimizer by strict convexity of the entropy and convexity of the admissible region.
Combining (58) with (9) we get that fé (=VW % Py(Xy) + af — d4(X,))ds is a
continuous martingale with finite variation. But then itis constant P-a.s. The conclusion
follows setting W,(z) := ®,(z) + VW x P,(z) and observing that VW x P.(-) €
H_1((Py)refo,17)- a

Notice that the above proposition proves the first half of Theorem 1.3 from the
introduction. We now establish the second half of this result:

Proposition 3.2 Assume that P is optimal for (MFSP). Then V;(X;) has a continuous
version adapted to the P-augmented canonical filtration, and the process (M;):c[0.T]
defined by

t ~ ~ ~
My = Wi(X) — /0 By [V2W (X, = %) - (W,(Xp) = We(Xo)] ds (60)

is a continuous martingale under P on [0, T[ and satisfies Ep [fOT | M, |2dt] < 4o00.

To carry out the proof, we will use a well-known characterization of martin-
gales (see e.g. [23]) which is as follows: an adapted process (M;);e[o,7] such that

Ep [fOT | M, |2dt] < 400 is a martingale in [0, 7'[ under P if and only if

T
0

for all adapted processes (/;)s¢[0,7] such that
T T
Ep U |ht|2dt} < +o00, and[ hydt =0 P—as. (62)
0 0

Proof Define (M;);c[0,7] via (60). Using (H1), (8) and (54) we get that Ep[fOT |M; |2dt]
< 4-00. Therefore, using the characterization of martingales [23, pp. 148-149] in
order to show that M; is a martingale on [0, 7[ we need to show (61) for all adapted
processes (/1;)¢(0,7] satisfying (62). By a standard density argument, one can show
that it suffices to obtain (61) under the additional assumption that (%;);<[o, 7] is bounded
and Lipschitz, i.e.

Viel0,T], w,0 €, sup |hs(w)— hyg(®)]
s€[0,1]
<C sup |wg—awgl, sup |h(w)| <C, (63)
sel0,t] 1€[0,T]
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for some C > 0. Consider now a process (h;);c[0,7] satisfying (62) and (63) and for
& > 0 define the shift transformation

t
1R —Q, f(w)=w —i—e/ hg(w)ds. (64)
0

Under the current assumptions, t® admits an adapted inverse Y?, i.e. there exists an
adapted process (Y/);e[0, 7] such that

P—as. 7,(Y(w) =Y (t°(w) =w; Vtel0,T]. (65)

Indeed, since H(P|T'(P)) < +o00, Lemma 5.2 in the appendix yields that P « R“m;
this entitles us to apply Lemma 5.4 in the same section, providing the existence of the
inverse Y°.

If we set P£ = P o (%)~ we have that P® € P;() is admissible for (MFSP),
thanks to (62). Moreover, Lemma 1.1 and (65) imply that

t
X, — / (shs(YE) S (YE) — VW % Ps(xf))ds
0

is a Brownian motion under P¢. Combining (8), (63) and (H1) we get that

1 T
SEp [/ W, (YF) + 8h, (YE) — VW % Py (YF) + VW % Pf(x,)|2dr] < +o0.
0
(66)

Lemma 3.5 grants that b(r, x) = —VW % P? (x) fulfills the hypothesis of Lemma 3.6
and (66) allows to use the implication (ii) = (i) which yields that H(P?|["(P?)) is
finite and equals the left hand side of (66). Using the definition of P?, we can rewrite
H(P?|T'(P?)) as

1 T
SEp [/ lehy + U, (X,) + VW % PE(25) — VW # Py (X)) ds}
0

Imposing optimality of P and letting ¢ to zero, using Taylor’s expansion

0 < lim inf HEPE|(P?) — HPIT(P))

e—0 &

T t
=FEp U W, (X,) - (ht +E; |:V2W(X, - X)) / hy — fzsds]) dt] .
0 0

In the above equation, (X ‘s t)tE[O 7]1s an 1ndependent copy of (X¢, ht)selo, T| defined
on some probability space (2, 5. P) and E~ denotes the expectation on (£2, 5. D).
Moreover, the exchange of limit and expectatlon is justified by (49), (8) and the domi-
nated convergence theorem. Using the symmetry of W, and taking 4/, we can rewrite
the latter condition as
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T
OZEP [/ q’[(X[)hldth
0

T ~ ~ ~
+Ep [ /0 Bp [ (WX —wi(X0) - VAW (X~ X)) |- fo

t

hyds dt:| .

By integration by parts and the boundary condition (62) , we arrive at

T t
0=Ep [ / (%(X:)— / Ep [(%(Xs)—%(XS))-VZW(XS—XS)]ds)-h,dr]
0 0

proving the desired martingale property. By [45, Theorem 1V.36.5] we know that a
martingale in an augmented Brownian filtration admits a continuous version. Using
again Lemma 5.2 we have that P < R*, and we so obtain a continuous version of our
martingale (60), and a fortiori of W, (X,). O

3.3 Benamou-Brenier formulation

We finally turn to the Benamou-Brenier formulation. Recall that 67 ( ,uin, ,uﬁ“) denotes
the optimal value of the mean field Schrodinger problem. We define the set A as the
collection of all absolutely continuous curves (us):c0,7] C P2 (R?) (see Sect. 4.2)
such that

(t.2) > Vlog u:(z) € L*(dp,d),
(t,2) > VW % u,(z) € L>(dp,dr).

Recall from the introduction the problem

ot 3 f [l
= inf — wy(z) + =V log u;(z)
()reo.r€A, 2 ! 2 g
O et +V-(wrp)=0

VW 5 1 (212 e (dz)de (67)

In (67), solutions to the continuity equation d;u; + V - (w; ;) = 0 are meant in the
weak sense.

Proof of Theorem 1.2 We first show that €7 (u!, ufi") > €BB (uin, ufin). To this end,
we may assume that the Lh.s. if finite and denote P an optimizer. As established in
Theorem 1.3, the drift of X under P is equal to

t
/ Wi (X5) — VW % Py(X)ds,
0
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where W € H_{ ((P;);¢[0,71) and

1

Cr(um, iy = 5 f / W, (2) [P, (dz)d.

As we will see in Lemma 4.4 and Remark 4.1, the flow of marginals (P;);¢[0,7] 18
absolutely continuous and its tangent velocity field v is given by

1
v (2) i= =VW P (2) + ¥ (2) — EVlogP,.

Hence

o a1
Gr (", 1) = 5//

We conclude the desired inequality by noticing that V log P, € L%(dP,dr) and VW
P, € L?(dP,dr). To wit, the first statement follows from [25, Thm 3.10] combined with
Lemma 5.2 in our appendix, and the second from (54) used with b=—-VW % P,(2).
We now establish €7 (u", ufin) < ‘KfB (u™, 1fim), so we may assume that (Mt)ref0,1]
is feasible for the r.h.s. and leads to a finite value. Denote by v its tangent velocity
field. We define ®,(z) := v;(z) + %V log 14 (z), so from the continuity equation for
(mt)refo,7) we deduce the following equation in the distributional sense

1 2
v (2) + EVIOgP, + VW % P;(2)| P;(dz)dt.

1
e + Vo (U ®y) — EAIM =0.

Observing that ® € H_1 ((14¢):¢[0,71), We may apply the equivalence “(a)iff (¢)”in[14,
Theorem 3.4].° We thus obtain a measure P whose marginals are exactly (;)¢[0,71-
and by the uniqueness statement in [14, Theorem 3.4] we also know that the drift of
X under P is precisely ®@;(X,). Hence

:

1
_ Ef/|<I>t(z>+VW*m(z)|2m(dz)dr

2

- 1
v (2) + EV log p;(z) + VW x u,(2)| p(dz)de

T
- %EP U |D(X,) + VW Pt<xt)|2dt}
0

> Cr(u™, nin),

where the inequality follows from the equivalent expression of €7 (1", ;") given in
(10).

9 That is for the construction of a Nelson process with marginals (is);e[o, 77, With respect to the reference
measure given by Wiener started at p'".
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We have proven 67 (u'", ity = €288 (", pfin), and the other statements follow
from the previous arguments. O

3.4 Schrédinger potentials and mean field PDE system: proofs

We start with an observation concerning the link between (15) and (16):

Remark 3.1 Itis worth stressing that the link between (15) and (16) can be established
if the FBSDE solution Y; is a gradient vector field depending only on ¢ and X,. We
have gathered preliminary evidence that (15) admits non Markov solutions even in
the simple case when W = 0. More precisely, we expect that all processes in the
reciprocal class of Brownian motion (meaning that they share the same bridges, but
see [37] for details) fulfilling the marginal constraints of (1.1) are solutions to (15).
This is in contrast with what is expected for standard FBSDEs [10, Lemma 3.5] whose
boundary conditions are not of planning type.

We now provide the belated proofs:

Proof of Corollary 1.1 We know by Theorem 1.1 that W belongs to H((u;))s¢f0,77- The
regularity hypothesis imposed on W;(x) and u,;(x) allow us to conclude that W is a
true gradient, i.e. there exist ¥ such that ¥, (x) = Vi, (x) forall (¢, x) € [0, T] x R<.
Lemma 1.1 together with Theorem 1.3 yield that i, is a weak solution of the Fokker
Planck equation in (17). Because of the regularity assumptions we made on ¥ and p,
we can conclude that y, is indeed a classical solution. For the same reasons, we can
turn the martingale condition (1.3) into the system of PDEs

Vl = 1, cons d 8,8,” Wt(x) + E(ax;wt(x))
- /Rd 0y (VW (x —x)) - (VY (x) — Vi (X)), (dx) =0,

where L is the generator % A+ (V(=Wxu,+1,))- V. After some tedious but standard
calculations we can rewrite the above as

1 1
Ay, (moc) + AV () + 5|wz<x)|2

+ /R YW= D) (V) - wt(zsz(df))) —0

Since ¥ is defined up to the addition of a function that depends on time only, the
conclusion follows. O

Corollary 1.2 can be proven with a direct calculation using the definition of ¢; and
an.
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4 Convergence to equilibrium and functional inequalities: proofs

In this part we complement the discussion undertaken in Sect. 1.4 and provide proofs
for the results stated therein. This section is organized as follows:

e Sections 4.1, 4.2, 4.3 are devoted to stating and proving some preparatory results
that we shall use at different times in the proofs of the main results.

e In Section 4.4 we prove Theorem 1.6, and we state and prove Theorem 4.1 together
with its corollaries: the Talagrand (Corollary 1.3) and the HWI (Corollary 1.4)
inequalities.

e Finally, in Sect. 4.5 we prove Theorems 1.4 and 1.5.

In all the lemmas and theorems in this subsection we always assume (H1)-(H2) to
hold, and throughout P, of, W, M are as given in Theorem 1.3. We refer to Sects. 1.2
and 1.4 for any unexplained notation.

4.1 Exponential upper bound for the corrector

Recall that we called W the corrector. The goal of this part is to quantify the size of the
corrector, as stated in Lemma 4.3 below. Before doing this we prove two preliminary
lemmas. As usual, we denote by (-) the quadratic variation of a semimartingale.

Lemma 4.1 We have
Vi € [0, T[, Ep[|M;|*] = Ep[(M),] < +oc. (68)
Moreover the function t +— E [(M);] is continuous on [0, T[ and

Vi € [0, T[, sup Ep[|¥(X,)I*] < +o0 (69)
s€[0,7]

Proof We have shown at Theorem 3.2 that Ep [ fOT | M, |2dt] < 400 which gives that

Ep [lMtlz] < 400 for almost every ¢ € [0, T'[. But since Ep [|M,|2] is an increasing
function of ¢, we get Ep [|M;|*] < +oo for all € [0, T[. To complete the proof of
(68) it suffices to observe that by definition of quadratic variation and since M; is an
L?-martingale on [0, T'[, we have Ep [|M;|*] = Ep[(M,)]. To prove the continuity of
t — Ep[(M);] we start by observing that since M; is a continuous martingale, then
(M), has continuous and increasing paths. Thus, we obtain by monotone convergence
that Ep[(M);4+n] — Ep[(M);] as h | 0, which gives the desired result. The proof
of (69) follows from (60), the bounded Hessian of W (see(H1)) and the first part of
Theorem 1.3. m]

Lemma 4.2 The function t +— Ep[X,] is linear, the function t +— Ep[W;(X;)] is
constant, and

Vi €[0,T[, Ep[X/]=Ep[Xol+ Ep[Wo(Xo)lt
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Proof Using the symmetry of W and the martingale property (60) it is easily derived
that Ep[W;(X;)] is constant as a function of ¢. Therefore we get for all r € [0, T']

t
Ep[X,] = Ep[Xol — /o Ep[VW * Py (X)1ds + Ep[Wo(Xo) ]t

Using again the symmetry of W we get that fot Ep[VW % P;(X,)]ds = 0, from which
the conclusion follows. O

We can now provide some key estimates on the corrector:

Lemma 4.3 Assume (H1)—(H4). If P is an optimizer for (MFSP) and ¥ the associated
corrector, then for any t € (0, T) we have

1 ! exp(2xt) — 1 ~
-E W (X)) _= in -, fin
> p[/o [Ws (X))l dS} Sexp(sz)_l‘fT(u S, (70)

and

2k Cr(u, pin)
expQk(T —1)) — 1~

1
SEp [ 1w (X0 < an

Proof Consider the function t — ¢(¢) defined by

1 t
@) = EEP [/ |\ps(Xs)|2ds:| .
0

Fubini’s theorem allows to interchange the time integral and the expectation to get
that ¢ is an absolutely continuous function with derivative

¢'(1) = Ep [ 1% (X)), (72)

From Itd’s formula and Theorem 1.3 we get that for all ¢ € [0, T'[

t
W (X)) |* — [Wo(Xo)|* = 2/0 W, (X,) - dM,

t
2 [0 BIviwe, - )
0

(U, (X,) — W (X, )] dr + (M),

We observe that the fact that M; is a martingale together with (69) and (68) make sure
that Ep [ f(; . (X,) - er] = 0. Thus, taking expectation on both sides of the above
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equation yields

t ~ ~ ~
(ﬂ/(l‘) - @’(0) = Ep |:2/(‘) v, (X;) - E]S[VZW(Xr = X)) - (Y (X)) — ¥ (X)) dr:|
+Ep[{(M);]. (73)

Because of (69) we can use Fubini’s Theorem and write

t
Ep [2 / W (X)) - Bg[V2W (X, — Xp) - (U(X,) — W (X)) dr}
0
t
=2 [ Be [w,0X) - B VWX, — X (00X — 4, (R ar
0

t
= / Epgp [ (¥ (X,) = W, (%) - VAW (X, = X,) - (U(X) = (X)) ],
0
(74)
where we used the symmetry of W to obtain the last expression. Plugging it back in
(73) and using that t — ¢'(¢) is

e continuous on [0, T'[ because so are (74) and E[(M),] (cf. Lemma 4.1),
e increasing on [0, T[ since W is convex and the quadratic variation is an increasing
process,

we conclude that ¢ — ¢'(¢) is absolutely continuous on the same interval. More-
over, using the «-convexity of W and again the fact that the quadratic variation is an
increasing process we get

¢" (1) = 26 Bp[|W, (X)1*] = 2 ¢/ (1) (75)

where to establish the last inequality we used that the hypothesis on ™™ and pfi"
together with Lemma 4.2 imply Ep[W, (X,)] = 0. The bound (70) follows by integrat-
ing the differential inequality (75) as done for instance in Lemma 5.5 in the Appendix,

and observing that %Ep [fOT W, (X)) |2dr] = H(P|["(P)). To prove (71), we begin by
observing that (75) also yields that

Vs €[ T) Ep[1W,(X)P| = exp(e(s —)Ep [ 1w (X)F ] (76)

Next, by definition of entropic cost we get the trivial bound

T T
%(w“,uﬁ%:%ﬁlp [ / |‘Ijs(Xs)|2de|Z%EP [ / |%(Xs)|2dt}
0

t

The desired conclusion follows by plugging (76) in the above equation and some
standard calculations. O
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4.2 First derivative of F

We compute the first derivative of F along the marginal flow of Q, assuming that
H(QIT'(Q)) < +o00 and that Q is Markov. To do this, we use an approach based on
optimal transport, and some results of [25]. To be self-contained, we recall the basic
notions of optimal transport we need to state the results. We refer to [1] for more
details.

Tangent space Let u € P>(RY). The tangent space Tan,, P, at u is the closure in
L2 of
yr:

[y v cczmn).

Since Li is an Hilbert space, given an arbitrary W € L2, there exists a unique projec-
tion IT, (¥) of ¥ onto TanMPQ(IRd).

Absolutely continuous curves and velocity field Following [1, Th 8.3.1], we say
that a curve (us)e0,1] < Pz(Rd) is absolutely continuous if there exists a Borel
measurable vector field (¢, z) — w;(z) such that

o (w;):ef0,1] solves (in the sense of distributions) the continuity equation
e + V- (wepy) = 0. (77)

e w; satisfies the integrability condition

T 1/2
/ (/ |wt(Z)|2Mz(dZ)) dt < +o0.
0 R4

Consider an absolutely continuous curve (u;):c[o,7]. It is a consequence of the
results in Chapter 8, and in particular of Proposition 8.4.5 of [1], that there exist a
unique Borel measurable vector field v;(z) solving (77) and such that z — v;(2)
belongs to the tangent space Tan,,, P> for almost every ¢ € [0, T']. We call such v, the

(tangent) velocity field of (ii)ief0,1]-

Remark 4.1 Let (14/);c[0,7] be an absolutely continuous curve and w;(z) be in
H_1((ts)sefo,77)- It is rather easy to see that z — w,(z) belongs to Tan,, P> for
almost every ¢ € [0, T'].

Throughout the rest of the paper, if Q € P(2) is such that H(Q|'(Q)) < +o0, we
say that Q is Markov if a2 is o (X,)-measurable for all € [0, T1, (Q);ef0.7] being
defined by (8). In that case we write E?(X ;) instead of a,Q.

Lemma 4.4 Let Q be such that H(Q|I'(Q)) < 400 and Markov. Then
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(i) (Qp)iero,1 is an absolutely continuous curve. Its tangent velocity field is given
by

1
v () = —VW % Q(z) + g, (E(2) — 5 V1ogQi(2). (78)

Moreover,

T
A AHM%Q&<+%. (79)

(ii) The function t — F (P;) is absolutely continuous and

t
VO <5<t F(Qz)—F(Qs)=f fd(WogQr
K R
LYW % Q)() - 0 ()Q (d2) dr. (80)

Proof Proof of (i) To show that (Q;);c[0,7] is absolutely continuous it suffices to show
that there exists a distributional solution of the continuity equation

4Q +V-(wQ)=0 (81)

with the property that

T 1/2
/ (/ |w,<z>|2Qt(z>> dr < 4o0. (82)
0 R4

Let now ¢ € C°(]0, T[xR%). Using Itd’s formula and taking expectation we obtain

T 1
/ / (Vgo(t,z)(— VW>|<Qt(z)+E?(z))+—A<p(z‘,z)+8;go(t,z)) Q;(dz)=0.
0 R4 2
(83)

Lemma 5.2 in the appendix grants that under the current assumptions HQRM") <
+00, where R" is the Wiener measure started at uin. But then, using [25, Thm 3.10] 10
we obtain that log Q; is an absolutely continuous function for almost every ¢ and that
(t,z) — VlogQ(z) belongs to H_1((Q;):e[0,71)- Therefore we can use integration
by parts in (83) to obtain

1 1
veelo.T]. 5 /Rd Vot )Qidz) = —5 /Rd Alogo(t,z) - VIeg Q(z) Q:(dz)

which gives, using the definition of the projection operator Ilg,, that the rhs of (78)
solves the continuity equation in the sense of distributions. Next, we observe that (8)

10 Strictly speaking, Follmer’s result is only concerned with the case /ﬂ“ = §p. However, a simple adap-
tation of his argument show that its validity extends to any u'™ satisfying (H2).
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grants that ITq, (EQt,2)) e H., ((Q)¢ef0,71)- We have already shown that V log Q; €
H_1((Q)¢e[0,71), and (54) used with b=—-VW % Q:(z) yields that —=VW % Q;(z) €
H_1((Q)¢ef0,77). Thus v;(z) € H_1((Q)seq0,77) as well, which gives (82) and (79).
Finally, Remark 4.1 yields that (v;);¢[0,7] is indeed the tangent velocity field.

Proof of (ii) From point (i) we know that z — V log Q,(z) belongs to Lé for almost
every ¢; this implies that V log Q; +2V W % Q, belongs to the subdifferential of F at Q;
for almost every ¢ (see e.g. [1, Thm. 10.4.13]). The chain rule [1, sec. E, pp. 233-234]
gives the desired result (80), provided its hypothesis are verified. We have to check that
(a) (Qs)re0,77 1s an absolutely continuous curve and F(Q;) < 4+oo forallt € [0, T],
(b) F(-) is displacement A-convex for some A € R, and (c) that

T 1/2
f <f |vt|2th) (/ ViogQ; +2VW % Q,
0 R4 R4

To wit, (a) follows from point (i) and the fact that H(Q|I'(Q)) < +o0, and (b) is a
consequence of displacement convexity of the entropy and (H1). Finally, (c) is granted
by (79) and the fact that V log Q;(z) +2VW x Q;(z) belongs to H_; ((Q¢):¢[0,7]) (see
the proof of (i)). O

5 1/2
th) dt < +o0.

4.3 Time reversal
For Q € P(£2) the time reversal Q is the law of the time reversed process (X1—;)/¢[0,7]-

In this section we derive an expression for H(Q| F(Q)) and use it to derive the bound
(91) below, which plays a fundamental role in the proof of Theorem 4.1.

Proposition 4.1 Ler Q € P1(R2) be Markov and such that H(Q|T'(Q)) < 4o0.
(i) If Qo = ui, Qr = ™ then HQIT'(Q)) < 400 as well and

HQINQ) = HQIT(Q) + F(u™) = F(u™) (84)
(ii) IfQo = ™, Qr = ™ then H(QIT'(Q)) < +o0 as well and

HQIN(Q) = HQIT(Q) + F(u'™) — F(u™) (85)
Proof We only prove (i), (ii) being completely analogous. Recalling (see Lemma 5.2)

that H(Q|I'(Q)) < +oo implies H(Q|R“m) < 400, we can use [25, Thm. 3.10,
Eq. 3.9] to obtain that there exist a Borel measurable vector field b, (x) such that

t
X, - / By(Xy)ds
0

is a Brownian motion under P and that
Q—as. b(X)) = —br_(X,) + VlogQr_,(X,) Vte[0,T], (86)
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where b, (z) is the drift of Q, that, in view of Lemma 1.1 we write as — VW xQ, + E? (2).
Thus, we deduce that under Q we have that

t
&—/—WW*Q@Q+E&&MS
0

is a Brownian motion, where

A

Q—as. E%x,) = —E(Tz,,(xt)
+V1ogQr—i(X;) +2VW % Qr—(X;) Vi €[0,T]. (87)

In the proof of Lemma 4.4, it was shown that (V log Q;):e[0,71, (VW * Q.);¢[0,7]
and (@?)te[o,n are all in H_;((Q)¢efo,77). This implies that (E?),e[oj] €
H_1((Q¢)sef0.77) as well. But then using (ii) = (i) in Lemma 3.6 for the choice
b(t,z) = =VW % Q;(z) we get that H(Q|I'(Q)) < +oc and

A (O 1 T ey
HQINQ) = K, [/0 187 (X0 dt} :

Using (87) in the above equation we get

HQIT(Q))

1 T
= EEQ I:/O |E(]2‘_,(Xt) - (V log Qr—/(X;) +2VW x QT—I(XI))lzdt]

1 T Q2
= 5Eq 12Q(x,)2ds
0

1 T
+ EEQI:/(; (V log Q:(X;) +2VW *Qr(Xt))‘

(—282(X,) + V1og Qi(X,) +2VW x QI(X,))dt]

8

T
= HQII'(Q)) — Eq [/0 (V1og Qi (X;) + 2VW % Q,(X,)) - vz(Xz)dt} :

The conclusion follows from point (ii) of Lemma 4.4. O
A consequence of Proposition 4.1 is that optimality is preserved under time reversal.

Lemma 4.5 Let P be an optimizer for (MFSP). Then p optimizes
inf {HQIM@Q) : Qe PI(R), Qo =™, Qr = 4"} (88)

Proof Let us observe that since (H2) makes no distinction between p'™ and pu'in,
the problem (88) admits at least an optimal solution by Proposition 1.1. Applying
Proposition 3.1 inverting the roles of ;'", " we get that the optimizers of (88) are
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Markov. So it sufﬁpes to show that for any Markov Q admissible for (88) we have
H(QIT'(Q)) = H(P|I'(P)). Take any such Q. We have

rop. 4.1(ii A A -
HQIPQ) "= HQINQ) + F(u™) — F(u™)
Opt. of P . f
S HEPIDP)) + F(u™) — Fufn)
Propé.l(i)

H(P|T(P)).

4.4 Functional inequalities: proofs and the behaviour of F

The goal of this section is to prove Theorem 1.6 as well as the Talagrand and HWI
inequalities. The latter are colloraries of the following new result concerning the
behaviour of F along bridges:

Theorem 4.1 Assume (H1)-(H4) and let T > 0 be fixed. If P is an optimizer for
(MFSP), then for all t € [0, T] we have

exp(x (T —1)) — 1 in exp(2xT) — expRe (T —t)) fin
FO) < = @y =1 T W exp(2kT) — 1 T
_ (exp2k (T — 1)) — D)(exp(2kt) — 1) in  fin
o) 1 Cr (" u™). (89)

This bound generalizes to the mean field setup the results of [17], and may be seen
as a rigorous version of some of the heuristic arguments put forward in [28] and [34],
upon slightly modifying the definition of 47.

4.4.1 Proof of Theorem 4.1

Using a time reversal argument, we prove the bound (91) which is the key ingredient

of the proof of Theorem 4.1 together with the bound for the correction term (70).
The backward corrector ¥ is obtained by the same argument used in Proposi-

tion 4.1, replacmg (MFSP) with (88) to obtain that there exist a Borel measurable
vector field lIlt (z) e H- 1((Pt),e[0 71) such that

t
X, — / (—VW # Py (X)) + \ifs(xs)) ds
0

is a Brownian motion under P. Moreover, the following relation holds

P—as. W(X,) =—-Wr_(X;) + VlogPr_,(X,)
+2VW % Pr_(X;) Vtel0,T]. 90)
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Lemma 4.6 Assume (H3), (H4) and let P be an optimizer for (MFSP). Then

exp2k (T —r)) — 1C5T(,U«in7 Mﬂn)

T
FP) + %Ep [ / |xvs<xs)|2ds} <

exp(2«T) — 1
expe(T —r) =1 __ i exp(eT) —exp(T —1)) g,
exp(2cT) — 1 )+ exp(2cT) — 1 F(u™) 91)
and
1 N 5 2k %T(Mﬁn, Min)
EEP |:|\I}T—r(Xr)| ] < W (92)

hold for allr € (0, T).
Proof Using (78) we can rewrite the above equation (90) as

P—as. U,(X)) = Wr_(X;) — 2vr_(X;) Vt€l0,T] (93)
From Proposition 4.5 we also know that P is optimal for (88) and hence that

H(f’|r‘(f’)) = €r(u™™, u'"). Therefore, by inverting again the roles of ™" and sfin,
we can use Lemma 4.3 for the problem (88) setting t = T — r to derive that

1 IT=r . 5 expi(T —r) —1_ ~ .
7B [/0 |Ws (X)) ds} < expeT) — 1 H(PIT(P)). (94)

Thanks to (93) we can write

1 T—r R ) 1 T )
SEp [/ |Ws (X)) dS] = -Ep [/ |Ws (X))l dS]
2 0 2 g

T
—Ep / (2“IIS(XS) - ZUS(XS))US(Xs)dS:|

78)+WeH_; 1 T
(T8 e ‘EEPU |ws(xs)|2ds]
r

T
—Ep / (VlogPS(XS)+2VW*PS(XS))-vs(Xs)ds]

T
@ lg, [/ l\h(X.;)lzdS] + F(Pr) = F(u™. ©3)

[\S]

The bound (91) follows by plugging in (95) into (94) using the above equation, (84)
and recalling that H(P|T"(P)) = 67 (u™™, ™). The proof of (92) goes along the same
lines: Since P is optimal for (88) we also get from Lemma 4.3, and in particular from
(71) for the choice t = T — r that
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26 Cr (ufin, pim)

LBy [N, (X <
2P " T exp2kr) — 1

O

Now the proof of Theorem 4.1 and its corollaries in the introduction is an easy task,
given all the preparatory work.

Proof of Theorem 4.1 Tt amounts to add (70) and (91) with the choice r = 7, and use
the relation

1 T .
H(PIF(P)) = SEp [ /0 |\vt(xt)|2dt} = Crun, 1M

O

Proof of Corollary 1.3 It follows from Theorem 4.1 (Eq. (89)), observing that F(P;) >
0. O

Proof of Corollary 1.4 Combining (90), (93), (31) we get that

; 1
/ o P 0Py (dx) = =& (1™, oo) + L7 (Py).
R4 4

Using the above relation, Cauchy Schwartz inequality and the continuity of Z£(P;) in
a neighborhood of 0, (80) we get that

o] 1 ) , 1/2
lim inf ;(-7:(Pz) —F(Po)) = - <Z}'(Mm)(ZI]—'(Mm) — &p(n™, Moo))> .
(96)
Consider now the bound (89). Observing that F (i4«,) = 0, subtracting F (,ui“) on both
sides, dividing by ¢, letting + — 0, using (96) and finally rearranging the resulting
terms we get (28). O

4.4.2 Proof of Theorem 1.6

We prove here Theorem 1.6 of the introduction. In the proof we will write
/R (VW =) (B (X) = b)) Pr(dy),

instead of
o [VZW(XS Xy - (Wy(Xy) — xps(ffs))] ,

which is used in the rest of the article. This is done in order to better deal with time
reversal.
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Proof of Theorem 1.6 Let M, be the martingale defined at (14). Since P is optimal for
(88), from Proposition 3.2 we get that

My =¥ (X) - /0 t /R CVEWEs = y) - (Bs(X) = Bs(9) Pr(dy) ds
is an Lz-martingale on [0, T[ under P. We define the stochastic processes
A= [ WO =) () = W) P
and
A= /R [ VEWEs =) - (B (X)) — By () Pa(dy).
We have, using the Markovianity of both P and f’, that

Ep [ (X0 - dr— (X7
T—t

r t
—Ep | (M, + / Ayds) - (Mr—; + / Asds)]
L 0 0

t T—t
—Ep (EP[MTIX[O,z]]—i- / Asds) - (EP[MﬂX[o,T_,]H / Asds)}
0 0

T
— Ep | Ep[Wr (X7) — / Ayds | Xjo] - Epl¥r(X7) — /
t

T—t

T
Agds |X[0,Tt]]i|

T
— Ep | Ep[Wr (X7) — / Ayds | X, Ep[Wr (R7) — /
t T

T ~ A
Agds IXz]}

—t

T T
= Ep (lI/T(XT)—/ Asds) . (@T(fm—/ Asds):|.
t T—t

Therefore,

d u A
e [9(X)) - B (R0
T

T
— Ep [—At-@r()?r)— / A+ Ar_s - (Wr(Xp) — f Asds>}
t

T—t

= Ep [~ A (W7 — My + 7 (Rr-0) + Ar— - (M = M, + (X)) |

Taking conditional expectation w.r.t. o (X[o ) and using that both A; and AT_[ are
X|0,r1-measurable we get that the above expression equals

Ep [_At : ‘iJT—t()A(T—t) + AT—I : ‘I’t(Xt)] .
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Using the fact that W is symmetric and the definition of A;, Ar_;, one easily obtains
that the latter expression is worth 0. Indeed it holds that

Ep [Ar G (Rr- | = Ee [Ar—y - wiX0)]

_ / By () — U7y () - VAW (x — 3) - (U ()
R4 x R4

=W (y)P; (dx)P (dy).

The proof that the function (31) is constant on (0, 7') is now concluded. In order to
establish (32) we set = T'/2 in (31) and Cauchy Schwartz to get that

in  fin 2 2 o 2\ /2
|Ep(u™, ™| < (EP[I‘I‘T/z(XT/z)I 1Ep[1Wr/2(XT1/2)] ])
The desired conclusion follows from (71) and (92). O

4.5 Convergence to equilibrium: proofs
4.5.1 Proof of Theorem 1.4

Proof of Theorem 1.4 Lemma 4.4 provides with

d
G F®) D Ep [(ViogP (X)) +2VW % P, (X)) - v (X)]
1 o ~ n “
OO 2k [ (Wi X + B (Rr-0) - (WX = by (R

1 A A
= 3Ep [ 19 (XD = N7 (Rr-P?].

Reasoning as in the proof of Lemma 4.3 we get that both Ep [|\IJ,(Xt)|2] and

Ep [llifr_t(f( T_,)|2] are differentiable as functions of ¢ in the open interval (0, T').
Moreover

1d 2 I % 2
S 3B (19X = 197 (K71

(72)+(75) ~ ~
= ke 19 (X0 + 1B (R0
= K Ep [ (X) + Br(Rr—)2 =20 (X)) - br—y (K70

@D Ep [|v log P,(X;) + 2VW * P,(X,)|2] — 2k S (i, iy,

The k-convexity of W and the fact that the center of mass Ep[X;] is constant (see
Lemma 4.2) allow to use the logarithmic Sobolev inequality [12, (ii), Thm 2.2] to
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obtain!!
«Ep [|V10g P,(X,) + 2VW % PZ(X,)|2] > 42 F(P,).

Thus we have proven that for almost every ¢ € [0, T']
d 2 in , fin
m}'(Pz) = 4" F(Py) — 2cép(u™, ™),
from which (22) follows by integrating this differential inequality (see Lemma 5.6).

Setting = 6T in (22) and using (32) to bound the conserved quantity gives (23) after
some standard calculations. O

4.5.2 Proof of Theorem 1.5

Proof of Theorem 1.5 Let P be optimal for (MFSP) and W be given by Proposition 3.1.
Then if we define

t
B, =X, — / VW % Py(Xs) + W, (X,)ds
0

the process (B;);c[o,7] 1s a Brownian motion under P. Since the McKean Vlasov SDE
admits a unique strong solution, there existsamap Y : & — QsuchthatYoB. :=7Y
satisfies Yo = X (P — a.s.) and

t
P—as. Yt:YO—/ VW % PV (Y)ds + B;.
0

Define now 8(¢) = Ep[|X; —Y;|?]. Using It6’s formula we get that § (¢) is differentiable
with derivative

8'(t) = —2Ep[(X; — Y1) - (VW % P,(X;) — VW % PY™(Y,))]
+2Ep[(X; — Yr) - W (Xy)]

The same arguments as in Lemma 4.3 give
2Ep[(X; — Y,) - (VW Pi(X,) = VW P (¥,))] = 2«Ep[| X, — ¥,[*] > 0.

Moreover, by Cauchy Schwartz:

172 1/2
Ep[(X: — ¥) - Wi (X0)1 < Be [1X: = Y| 7 e 1w (X0P]

n Again, the apparent mismatch between the constant in the Log Sobolev inequality from [12] and the
one we use here is due to the fact that in our definition of F, there is no 1/2 in front of W.
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Therefore
1/2 2 12
§'(1) = 2800 [19,(X)1?

which gives

1/2
(/8 () < Bp 19, (X0 ]

Integrating the differential inequality and using that §(0) = 0:

Vo < [ s [wocof] Fas <2 [ e fleccor]as)

(70) 1/2( exp(2«t) — 1 . fin\ /2
< (/L Gpu™, ) .
< xp(kT) 1 T(n™, w)

The conclusion follows from (25) and the observation that sz (P, Py <6(1). O
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5 Appendix

We begin with the promised graphical illustration of Theorem 1.4 (Fig. 1).

Fig.1 A qualitative illustration

of the turnpike property 1
expressed by Theorem 1.4: at 8
first F(1;) decreases

exponentially fast and then it

stays close to the minimum ~ 6
value for a long time; towards é‘

the end it abruptly increases to 4
reach its final value
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The following lemma is well known. For simple proofs see [35] or the appendix of
[24].

Lemma 5.1 For i € P>(RY) let R* be the law of the Brownian with initial law . For
P € P(Q) withP o (X0)~' = u the following are equivalent

(i) H(PIR*) < 4o0.
(ii) There exist a P-a.s. defined adapted process (o;);c[0,1] Such that

T
Ep [/ Iat|2dt:| < +00
0
t
X,—/ ogds
0

and

is a Brownian motion under P.

Moreover, if (ii) holds, then

T
H(PR¥) = lEP [/ |oz,|2dt:| . 97)
2 0
and

Ep[ sup |X,|2] < 400. (98)
1€[0,T]

With the help of Lemma 5.1 we can readily prove its generalization given in
Lemma 3.6 concerning the case when R* is replaced by the law of a diffusion with
Lipschitz drift.

Proof of Lemma 3.6 The proof of (i) = (ii) follows the arguments in [35]. Now
assume that (i7) holds. Because of the continuity of # — b(z, 0) and (49) we get that

Y(r,x) € [0, T1 x RY, |b(t,x)| < C'(1 + |x]) (99)

for some C’ < +o00. Consider the sequence of stopping times 7, = inf{r > 0 :
|X¢| = n} A T. Using (99), (52) and some standard calculations we find that there
exist C” < +oo such P almost surely

VneN,te[0,T]: sup|X,ar,|?

r<t

t t
<c” <IX0|2+ 1+ / sup | X, 7, |°ds + / |&s|2ds+sup|an|2)
0 0

r<s r<t
where B is a Brownian motion. Taking expectation, using (8), using Gronwall’s
Lemma, and eventually letting n — +00, one obtains

sup Ep[ sup |X;

|2] < +00. (100)
tel0,T] t€(0,T]
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But then, thanks to (99) and (51) we also obtain that [Ep [fOT 1b(s, Xs)4as|2ds] < 4o00.
Lemma 5.1 yields then (as usual R* is Wiener measure started like w)

T
H(PR") < +o0, and H(P|R“)=%Ep|:/ |B(r,x,)+&,|2dt] (101)
0

Under the current hypotheses on b, R* and R are mutually absolutely continuous and

—— =exp <—/ b(t, X,) -dX, + —1 / |b(t, X )|2dt>
— = exX s . , .
dR 0 ! ) 0 !

Therefore, using some standard calculations and (ii) we get

dR# Ty 1. _
Ep [log ﬁ} = —FEp |;/0 (Olt + Eb(t, Xt)) . b(f, X;)dl:| < +o0. (102)

Since R* and R are mutually absolutely continuous and H (P|R*) < 400 we get that
P < R and

H(PR) = Ep [log dp dRM} (103)

log
arRi T8GR

Thus, H(P|R) < 400 if both H(P|R*) and Ep [log %] are finite. But this is indeed
the case, thanks to (102), (101). The proof that (ii) = (i) is now complete. The

desired form of the relative entropy follows by plugging in (101) and (102) into (103).
Finally (54) follows from (100) and (99), and the last statement from (54). O

Lemma5.2 Let " € P(R?) andP € Py(Q) withPy = p'". Then H(P|I'(P)) < +00
if and only if H(P|R*") < 4-o0.

Proof Define b(t, z) = —VW x P;(z). Lemma 3.5 ensures that b is of class C%! and
that (49) holds. Assume that H(P|I"(P)) < 400 and let (a;);c[0,7] be given by the
implication (i) = (ii) of Lemma 3.6. If we define (&/);c[0,7] by

P—as. ap=b@t, X)) +a, Vtel0,T],

then (54) together with (51) entitle us to use the implication (ii) = (i) of Lemma 5.1
to obtain the desired result. The converse implication is done inverting the roles of
Lemmas 3.6 and 5.1. O

Lemma 5.3 Assume (H1), (H2) P, Q € P1(2) be such that H(P|T' (P)), H(Q|T'(P)) <
+o0 and (Q))reo,11 = P)ieio,71- If (0"nen S CX([0, T x RY) is such that V6"
converges to —VW x P (2) in H_1((P;)s¢0,77), i.e.

lim |VO! (z) + VW % P,(2)[*P,(dz) dt = 0, (104)
n—+o0 [O,T]XR‘{
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then
,im_ H(QIR") = H(QIT'(P)),
where R" is the law of
dY, = VO (Y,)dr +dB;, Yo~ u™ € Po(RY).

Proof By Lemma 5.2 we have H(Q|R/‘m) < +00, where R*" is the law of the
Brownian motion with initial law ;Li“. Using implication (i) = (ii) from Lemma 5.1
and then (ii) = (i) together with (53) from Lemma 3.6 for the choice b= Ve, we
getforalln e N:

T

1
HQR") = EEQ [/O loey — VGI"(X,)|2dti| , (105)

where «; is the dirft of Q (see Lemma 5.1). Moreover, using H(Q|I'(P)) < 400 and
Lemma 3.6, we also get that

1 T
H(Q|T(P)) = EEQ [/ loy + VW P,(X,)|2dt] ) (106)
0
Using (Qy)re0.71 = (Pr)sefo,77 and (104) we get

T T
lim Eq [/ |V9;’(X,)|2dt] =Eq U VW *P,(X,)lzdt] . (107)
0 0

n—+00

On the other hand, let &, (X;) be a measurable version of Eq[a,|X;], the existence
of which is guaranteed e.g. by [30, Proposition 4.4]. Using conditional Jensen and

Eq [fOT |a,|2dt] < o0, it is easy to verify that @ € H_{((P;);¢[0,77). Moreover

T
0 [0,T]xRd

Since @ € H_1 ((Py):ef0,71) we get from (104), (Q;)refo.71 = (Pr)refo, 1] and the basic
properties of conditional expectation

T
lim @ (z) - VO (z)P;(dz)dr = Eq |:/ o - VW % PI(X,)dt:| .
n—=>+00 J[0, T]x R4 0
(108)
Gathering (106), (108), (105), (107) the conclusion follows. O
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Lemma 5.4 Assume P < R* and that (h;)c(0,1] Is an adapted process satisfying the
Lipschitz condition in (63). Then the shift t. defined at (64) admits an almost sure
inverse, i.e. there exists an adapted process (Y{):c[0,7] Such that

P—as tE(Y¢(w) =Y (t°(®) =w, Viel0, T] (109)

Proof Let R* be the law of the Brownian motion started at 1. The fact that (109) holds
R* almost surely under the Lipschitz condition (63) is a classical result, see e.g. [52,
pp- 209-210]. In this case the a.s. inverse is nothing but the strong solution of the SDE

dY? = —eh, (YF)dt + dB,

We conclude by P <« R*. O
The next lemma follows from [17, Lemma 4.1]:

Lemma5.5 Let ¢ : [0, T] — R be twice differentiable on (0, T) with ¢(0) = 0 and
letk e R If %C(I) > ZK%C(t)for allt € (0, T), then

exp(2«t) — 1
Vi €e[0,T], c(@) < WC(T) (110)

The following lemma is also useful for the quantitative estimates:

Lemma5.6 Let ¢ : [0, T] — R be twice differentiable on (0, T) and assume that
@(t) satisfies the differential inequality
d? 5
— @ > A —AE
dt2 Ot = Pt

where & is a constant. Then we have forall0 <t < T,

- _ § sinh(A(T —t)) n _ § sinh(At) n § (1)
or=\P" %) " sinh(aT) YT =% ) simnary T A

Proof Consider the function y; = ¢, — v, where ¥, is the right hand side of (111).

It is easily verified that %1//, = 2%y, — & and Yo = @o, Y7 = @r. Consequently,

we have that :Tzzy, > Azy, fort € [0, T] and yp = yr = 0. Assume y;, > 0 for some

t. Since yp = 0, there must exist #p < #{ such that y;, > 0 and %y,o > (. But this
contradicts Lemma 5.7 below. O

Lemma 5.7 Assume that A > 0. Let 0 <ty < T and y : [0, T] — R be a function
satisfying

2
g?yl = )"yl‘at € [th T]a

Yio > 0, yr =0.
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Then %y,o <0.

Proof Assume ad absurdum that (%y,o > 0. Since yr = 0 it must be that t{ = inf{r >
to; %y, = 0} belongs to (fy, T']. By definition of #;, and since %y,o > 0 we have that
Vi = Vi, > Oforall t € [to, t1]. But then

d d g2 g
0> —y, — —y, = —ydt > A dr >0,
dr Yt dr Yo /to dt2 Vi sl \/t;) Vi =

which is absurd. O
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