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Lemma 9.1 in the paper is incorrect as stated. The proof given there yields the following
corrected statement.

Lemma9.1 For any L — 2k > k' > k+ 10 > 11 and n > 1, let Ay denote
an event, measurable on the excursions of the Brownian motion from dBy(y, hy') to
0Bgq(y, hir_1) during the first n excursions from d B4 (y, hy) — 0B4(y, hx—1). Then,

n
v.k—k—1 y
P(Ay | ]‘y’k’_l_)k’ = my, gk)

hyr— " LY
= (1 +0 ((k’ —0= )) P(Ap | TS =me) . (9.1)

In particular, for allmy; 1 =k', ... L, and all y € %,

P vk Sk—1 . '1 ykSk—1 y
(Ty,l—1—>1 = I’I’l[,l = k + y e L | Tv,k/—l—>k’ =my, gk)

The original article can be found online at https://doi.org/10.1007/s00440-019-00940-2.
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=<1+0((k’ k)h"‘)) :
k
kB k—1

k—k—1
IP’(Tyyl Ll =mpl=k+1,. L|Tyk/ o = mi). 9.2)

In Lemma 9.1 we have ’0 ((k/ Jey = 1)‘ <100 ((k/ oy et 1)

This necessitates numerous correctlons, mostly in the order in which estimates are
applied. The changes occur in Section 4, as sketched below. Full details are given in
the companion posting [2]. Here and in what follows, boldfaced numbers refer to the
original numbering in [1].

1. Section 4.1 (first moment estimate) The estimate (4.56) is incorrect. Instead, one
needs to use the decoupling estimates from Section 4.5. This necessitates changes
starting from the paragraph following (4.47) through the end of the subsection, as
follows.

Let
1 & o
WE (n) = :dl. (—239 . vk) e ——1 } (1.1)
y’k ‘Wa ki X f >
n = 2/n
so that
W5k (Nka) S Uniog i Wk (Nka) (1.2)
and consequently, setting
»Ck,m,p,a = ,Ck,p,a N ;f]?:(Nk,a)7 (13)
we have
P (Kk,p.a) < Z P (Limpa)- (1.4)
m=logk

Thus to prove (4.47) it suffices to show that for all m > logk, alld* <k < L_,
and all 0 < z < (log L)/4,

L3/4 L3/4

oY P(Lrmpa) < e e e Ee (1.5)

a= [kl/4 =[(k— 3)1/4]

Write
Limpa =Hiap [ VHea [ YWk (Ni.a)- (1.6)

Since the 6 ; arei.i.d. vg-distributed random variables, as explained in the paragraph
before (4.19), it follows from (4.17) that

P (W (Nea)

1) = 207 (1.7)
The following lemma is immediate, details in [2, Lemma 4.6].
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Lemma 1.1 There exist constants c, ¢’ > 0 so that

P (L;{’m’p’a> <c e—2k—2(z—p)—(z—p)2/4ke—mz/Se—c’(a—p)Z_ (1.8)

Let
Kkt =k+T110"0%0gL], kT =k+2[10"log LT, (1.9)

B) i = {y () < /21" forl =k +3, ..., k",

\/E € IpL(Lkﬂﬂ-/}, (1.10)

and

@y,k+++1,L = {,OL(L — 1) <21 forl = k™" +1,..., L — 1,
\/ﬁ = 0} . (1.11)
We have that,

13/4 13/4

P (ﬁkﬁm,p,a) = ]P)( ;c,m,p,a ﬂ By’k‘H’L) = Z

j’=(k+)l/4 jw=(k++)1/4

J' R . Vilz
P ([’;ﬁm,p,a n IBgy.k+3,k+ OBy ptti1,1s Y, 2Tk++ € IpL(L—k++)+j”> ’
(1.12)

up to an error due to the restriction of j/, j” < L3/* which is little o of the right-hand
side of [1, (4.43)]. Let

g
kt+
= o-algebra generated by the excursions from 0 By (y, hy+_1) to 0By (y, hy+)

(1.13)

(In the definition of Ql“:Jr, if we start outside dBy(y, hy+_1) we include the initial
excursion to d Bz (y, hy+_1). Do not confuse with (3.38).) Note that

Ajr = Limpa VB s € Gis- (1.14)

Using (1.14) we have

1 . R
P(-Aj’; \/ﬂ S IpL(L—k++)+j”’ %}',k+++l,L>
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< sup P (.Aj/; 1/ZTky_;:f € Ly(L—k++)+js

S€lp(Lttytjs VL ity

2
& kL :
P (%By,k+++1,L 1Ty e = V272, gg+>) : (1.15)

By Lemma9.1 with the k, k’ there replaced by k™, k™ and using that (1+10(k™+ —
k) e+ Jhy+ )4L2 is bounded above uniformly, we have that for some universal ¢ < oo

x2/2
> N S | 2 y
P (%y,k+++l,L | Ty,k++,lﬁk++ =v7/2, gk+
s2)2
S kTS -1 2
<cP (sBy’kJrJr_i_LL | Ty,k++—1—>k++ =v7/2). (1.16)

By the barrier estimate of Lemma 8.4 in Appendix I, we see that for j” in the range
of summation in (1.12), uniformly in s € I,y g+ and v € I, (g _p++y4 7,

2
v e

S N =2 L—kTTy—2 "
P(%MHH,L [Ty i s irs = v2/2> <c(l+4 jMe 22207 (1.17)

Thus, uniformly in k4% <a < L34,

— _ kTt
P (Lmpa) =P (Lhmopa 0 Brasar ) < ce 2

13/4 L3/4

N _2]'” / j/vj//
> Z Z j"e P (Ek’m’p,a N By,k+3,k+,k++> )
j’:(k*)w j//:(k++)l/4
(1.18)

where

Bj/}cli3 o = {V ) =< 2le,zz forl =k +3,..., kT, k™,

Y,
Yilz Y.tz
2177 € Lyt jrs 21045 € Loy (n—ikt+y+jr - (1.19)

From this point, the estimates needed are similar to the argument in [1, Section 4.1],
using the barrier estimates of Section 8 according to different values of m. The full
details and the division to different cases appear in [2, Section 4.1].

Section 4.4 (Second moment estimate: early branching) The last inequality in (4.87)
is incorrect. In order to fix that, one needs to change the events to which one applies
decoupling, starting from below (4.83), as follows.
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Recall the events ]B%; kq3t and %y,k+++ 1,» and the o-algebra G, . We have that

13/4 1,3/4
P (Wyk(Nka) 0 Byiiar N Hia NIy ) < Y >
j/=(k+)l/4 j//=(k++)1/4

]P (Wy,k(Nk,a) N B;,k+3,k+ N %y,k+++l,L n Hk,a N Iy’,k,za
\/ﬂ € IpL<Lk++>+j~> +o(e"“E(k)), (1.20)
where the error term is coming from the restriction j’, j” < L3/*. Next, set

Ajr = W) (Y Hea (Tvke VB, €90 (12D

Using (1.21) we have

Wz =
IP)(“41'/; \/ﬂ € Lo (L—k++)+jm %y,k+++1,L>
= sup P (./4 i’y \/27"](7)::‘: S Ip(L—k++)+j”;

SEIp(L_kﬂ_*_j/, ”elp(L—k++)+j”

s2)2

~ ,k+~>k+71
P (%y,k+++1,L Ty pagrs = V°/2, g,f)) : (122)

Recall the estimates (1.16) and (1.17). We then have that
uniformly in [k1/4] <a < L34

P (Wy k(Nka) N By k43,0 N Hia NIy ;)
13/4 13/4

< C€—2(L—k++) Z Z (1 +j//)€—2j”

Jr=H) =)'

P (Wy,k(zvk,a) OB/ o N Hea D fy,,k,z) , (1.23)

4

where IE’l%;”lcﬁ_?’JdJ{Jr+ isasin (1.19).

The next lemma handles the last term in (1.23) and replaces Lemma 4.7 in [1]. The
proof, which is given in detail in [2, Lemma 4.9], is very similar to the proof of Lemma
4.7; it uses the decoupling lemma (Lemma 4.11), barrier estimates and the control on

Wasserstein distance contained in (4.17).

Lemma 1.2 For some My < oo and k, a, J' in the ranges specified above,
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IP)(Vvy,k(Nk,a) m B;’}CJ+3yk+yk++ m Hk,a mfy’,k,z)
< Feajjr P@yaz) +e 2LVE (1.24)

where

— 2kttt =
Fiajr.jn = cae~2ae 26 =0 Z

U1 = 1=2Mg log k)
{j":1)"—J"1=2Mo log k}

_ e~ U= @kt k) 25 e U'=J"? /20 k)

-k k™ — k)

(1.25)

Assuming Lemma 1.2, the rest of the proof is similar to [1, Section 4.4]. Full details
appear in [2, Section 4.4].
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