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Abstract
We consider an infinite balls-in-boxes occupancy scheme with boxes organised in
nested hierarchy, and random probabilities of boxes defined in terms of iterated frag-
mentation of a unit mass. We obtain a multivariate functional limit theorem for the
cumulative occupancy counts as the number of balls approaches infinity. In the case
of fragmentation driven by a homogeneous residual allocation model our result gen-
eralises the functional central limit theorem for the block counts in Ewens’ and more
general regenerative partitions.

Keywords Bernoulli sieve · Ewens’ partition · Functional limit theorem · Infinite
occupancy · Nested hierarchy
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1 Introduction

In the infinite multinomial occupancy scheme balls are thrown independently in a
series of boxes, so that each ball hits box k = 1, 2, . . . with probability pk , where
pk > 0 and

∑
k∈N pk = 1. This classical model is sometimes named after Karlin

due to his seminal contribution [32]. Features of the occupancy pattern emerging after
the first n balls are thrown have been intensely studied, see [6,20,28] for survey and
references and [7,13,14,16] for recent advances. Statistics in focus of most of the

B Alexander Gnedin
a.gnedin@qmul.ac.uk

Alexander Iksanov
iksan@univ.kiev.ua

1 School of Mathematical Sciences, Queen Mary University of London, Mile End Road,
London E1 4NS, UK

2 Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv,
Kyiv 01601, Ukraine

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-020-00963-0&domain=pdf
http://orcid.org/0000-0002-6764-7330


856 A. Gnedin, A. Iksanov

previous work, and also relevant to the subject of this paper, are not sensitive to the
labelling of boxes but rather only depend on the integer partition of n comprised of
nonzero occupancy numbers.

In the infinite occupancy scheme in a randomenvironment the (hitting) probabilities
of boxes are positive random variables (Pk)k∈N with an arbitrary joint distribution sat-
isfying

∑
k∈N Pk = 1 almost surely (a.s.). Conditionally on (Pk)k∈N, balls are thrown

independently, with probability Pk of hitting box k. Instances of this general setup have
received considerable attention within the circle of questions around exchangeable
partitions, discrete random measures and their applications to population genetics,
Bayesian statistics and computer science. In the most studied and analytically best
tractable case the probabilities of boxes are representable as the residual allocation (or
stick-breaking) model

Pk = U1U2 . . .Uk−1(1 −Uk), k ∈ N, (1)

where the Ui ’s are independent with beta(θ, 1) distribution1 on (0, 1) and θ > 0. In
this case the distribution of the sequence (Pk)k∈N is known as the Griffiths–Engen–
McCloskey (GEM) distribution with parameter θ . The sequence of the Pk’s arranged
in decreasing order has the Poisson–Dirichlet (PD) distribution with parameter θ , and
the induced exchangeable partition on the set of n balls follows the celebrated Ewens
sampling formula [3,35,37,38]. Generalisations have been proposed in various direc-
tions. The two-parameter extension due to Pitman and Yor [35] involves probabilities
of form (1) with independent but not identically distributed Ui ’s, where the distribu-
tion of Ui is beta(θ + αi, 1 − α) (with 0 < α < 1 and θ > −α). Residual allocation
models with other choices of parameters for the Ui ’s with different beta distributions
are found in [30,39]. Much effort has been devoted to the occupancy scheme, known
as the Bernoulli sieve, which is based on a homogeneous residual allocation model
(1), that is, with independent and identically distributed (iid) factors Ui having arbi-
trary distribution on (0, 1), see [2,15,22,28,29,36]. The homogeneous model has a
multiplicative regenerative property, also inherited by the partition of the set of balls.

In more sophisticated constructions of random environments probabilities (Pk)k∈N
are identifiedwith some arrangement in sequence ofmasses of a purely atomic random
probability measure. A widely explored possibility is to define a random cumulative
distribution function F by transforming the path of an increasing drift-free Lévy
process (subordinator) (X(t))t≥0. In particular, in the regenerative model F is defined
by F(t) = 1−e−X(t) for t ≥ 0, see [5,21,24,25] and also Sect. 5. Such an F is called in
the statistical literature neutral-to-the right prior [18]. In the Poisson–Kingman model
F is given by F(t) = X(t)/X(1) for t ∈ [0, 1], see [18,35] and also Sect. 6.

Following [8,12,31] we shall study a nested infinite occupancy scheme in random
environment. In this context we regard (Pk)k∈N as a random fragmentation law (with
Pk > 0 and

∑
k∈N Pk = 1 a.s.). To introduce hierarchy of boxes, for each j ∈ N0 let

I j be the set of words of length j over N, where I0 := {∅}. The set I = ⋃
j∈N0

I j

of all finite words has the natural structure of a ∞-storey tree with root ∅ and ∞-ary

1 Recall that a random variable X has a beta distribution with parameters α > 0 and β > 0 if P{X ∈ dx} =
(1/B(α, β))xα−1(1 − x)β−1 1(0,1)(x)dx . Here, B(·, ·) is the beta function.
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branching at every node, where v1, v2, . . . ∈ I j+1 are the immediate followers of

v ∈ I j . Let {(P(v)
k )k∈N, v ∈ I} be a family of independent copies of (Pk)k∈N. With

each v ∈ I we associate a box divided in sub-boxes v1, v2, . . . of the next level. The
probabilities of boxes are defined recursively by

P(∅) = 1, P(vk) = P(v)P(v)
k for v ∈ I, k ∈ N (2)

(note that the factors P(v) and P(v)
k are independent). Given (P(v))v∈I , balls are

thrown independently, with probability P(v) of hitting box v. Since
∑

v∈I j
P(v) = 1

the allocation of balls in boxes of level j occurs according to the ordinary Karlin’s
occupancy scheme.

Recursion (2) defines a discrete-time mass-fragmentation process, where the
generic mass splits in proportions according to the same fragmentation law, indepen-
dently of the history and masses of the co-existing fragments. The nested occupancy
scheme can be seen as a combinatorial version of this fragmentation process. Initially
all balls are placed in box∅, and at each consecutive step j+1 each ball in box v ∈ I j

is placed in sub-box vk with probability P(v)
k . The inclusion relation on the hierarchy

of boxes induces a combinatorial structure on the (labelled) set of balls called total
partition, that is a sequence of refinements from the trivial one-block partition down
to the partition in singletons. The paper [17] highlights the role of exchangeability and
gives the general de Finetti-style connection between mass-fragmentations and total
partitions.

We consider the random probabilities of the hierarchy of boxes and the outcome of
throwing infinitely many balls all defined on the same underlying probability space.
For j, r ∈ N, denote by Kn, j,r the number of boxes v ∈ I j of the j th level that contain
exactly r out of n first balls, and let

Kn, j (s) :=
n∑

r=�n1−s�
Kn, j,r , s ∈ [0, 1], (3)

be a cumulative count of occupied boxes, where � · � is the integer ceiling func-
tion. With probability one the random function s �→ Kn, j (s) is nondecreasing and
right-continuous, hence belongs to the Skorokhod space D[0, 1]. Also observe that
Kn, j (0) = Kn, j,n is zero unless all balls fall in the same box and that Kn, j (1) is the
number of occupied boxes in the j th level. In [8] a central limit theorem with ran-
dom centering was proved for Kn, j (1) for j growing with n at certain rate. Our focus
is different. We are interested in the joint weak convergence of (Kn, j (s)) j∈N,s∈[0,1],
properly normalised and centered, as the number of balls n tends to ∞. As far as we
know, this question has not been addressed so far. We prove a multivariate functional
limit theorem (Theorem 2.1) applicable to the fragmentation laws representable by
homogeneous residual allocations models (including the GEM/PD distribution) and
someothermodelswhere the sequence of Pk ’s arranged in decreasing order approaches
zero sufficiently fast. A univariate functional limit for (Kn,1(s))s∈[0,1] in the case of
Bernoulli sieve was previously obtained in [2].
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2 Main result

For given fragmentation law (Pk)k∈N, let ρ(s) := #{k ∈ N: Pk ≥ 1/s} for s > 0,
and N (t) := ρ(et ), V (t) := EN (t) for t ∈ R. The joint distribution of Kn, j,r ’s
is completely determined by the probability law of the random function ρ(·), which
captures the fragmentation lawup to re-arrangement of Pk ’s. For our purposes therefore
we can make no difference between fragmentation laws with the same ρ(·).

Similarly, using probabilities of boxes in level j ∈ N define ρ j (s) := #{v ∈
I j : P(v) ≥ 1/s} for s > 0, and N j (t) := ρ j (et ), Vj (t) := EN j (t) for t ∈ R. Note
that N j (t) = 0 for t < 0. Since

∑
v∈I j

P(v) = 1 a.s. we have ρ j (s) ≤ s, whence

N j (t) ≤ et a.s. and Vj (t) ≤ et .
Let Tk := − log Pk for k ∈ N. Here is a basic decomposition of principal importance

for what follows:
N j (t) =

∑

k∈N
N (k)

j−1(t − Tk), t ∈ R, (4)

where (N (k)
j−1(t))t≥0 for k ∈ N are independent copies of (N j−1(t))t≥0 which are also

independent of T1, T2, . . . A consequence of (4) is a recursion for the expectations

Vj (t) =
∫

[0, t]
Vj−1(t − y)dV (y), t ≥ 0, j ≥ 2, (5)

which shows that Vj (·) is the j th convolution power of V (·).
The assumptions on fragmentation law and the functional limit will involve a cen-

tered Gaussian processW := (W (s))s≥0 which is a.s. locally Hölder continuous with
exponent β > 0 and satisfy W (0) = 0. In particular, for any T > 0

|W (x) − W (y)| ≤ MT |x − y|β, 0 ≤ x, y ≤ T (6)

for some a.s. finite random variable MT . For each u > 0, we set further

R(u)
1 (s) := W (s), R(u)

j (s) :=
∫

[0, s]
(s − y)u( j−1)dW (y), s ≥ 0, j ≥ 2.

For j ≥ 2, the process R(u)
j is understood as the result of integration by parts

R(u)
j (s) = u( j − 1)

∫ s

0
(s − y)u( j−1)−1W (y)dy, s ≥ 0.

In particular, when u( j − 1) is a positive integer,

R(u)
j (s) = (u( j − 1))!

∫ s1

0

∫ s2

0
. . .

∫ su( j−1)

0
W (y)dydsu( j−1) . . . ds2, s ≥ 0, j ≥ 2,

where s1 = s, which can be seen with the help of repeated integration by parts.
Throughout the paper D := D[0,∞) and D[0, 1] denote the standard Skorokhod

spaces. Here is our main result.
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Theorem 2.1 Assume the following conditions hold:
(i)

b0 + b1t
ω−ε1 ≤ V (t) − ctω ≤ a0 + a1t

ω−ε2 (7)

for all t ≥ 0 and some constants c, ω, a0, a1 > 0, 0 < ε1, ε2 ≤ ω and b0, b1 ∈
R,

(ii)
E sup

s∈[0, t]
(N (s) − V (s))2 = O(t2γ ), t → ∞ (8)

for some γ ∈ (ω − min(1, ε1, ε2), ω).
(iii)

N (t ·) − c(t ·)ω
atγ

⇒ W (·), t → ∞ (9)

in the J1-topology on D for some a > 0 and the same γ as in (8).

Then (
Kn, j (·) − c j (log n(·))ω j

ac j−1(log n)γ+ω( j−1)

)

j∈N
⇒ (R(ω)

j (·)) j∈N, n → ∞ (10)

in the J1-topology on D[0, 1]N, where

c j := (c	(ω + 1)) j

	(ω j + 1)
, j ≥ 0 (11)

with 	(·) denoting the gamma function.

Remark 2.2 Observe that the limit processes in (10) are the restrictions of R(ω)
j to

[0, 1]. We could have defined the processes R(u)
j on [0, 1] only and assumed that (9)

holds on D[0, 1] rather than on D. However, we do not think that such an assumption
would be more natural than the present one.

Remark 2.3 The assumption 0 < ε1, ε2 ≤ ω ensures that γ > 0. Furthermore, in view
of (7) and the choice of γ relation (9) is equivalent to

N (t ·) − V (t ·)
atγ

⇒ W (·), t → ∞ (12)

in the J1-topology on D. Similarly, in view of (13) given below relation (10) is
equivalent to

(
Kn, j (·) − Vj (log n(·))
ac j−1(log n)γ+ω( j−1)

)

j∈N
⇒ (R(ω)

j (·)) j∈N, n → ∞

in the J1-topology on D[0, 1]N.
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3 Proof of Theorem 2.1

3.1 Auxiliary results

Lemma 3.1 (a) Condition (7) ensures that, for j ∈ N and t ≥ 0,

b0, j + b1, j t
ω j−ε1 ≤ Vj (t) − c j t

ω j ≤ a0, j + a1, j t
ω j−ε2 , (13)

where c j is given by (11), a0, j , a1, j > 0 and b0, j , b1, j ∈ R are constants with
a0,1 := a0, a1,1 := a1, b0,1 := b0 and b1,1 := b1. In particular, for j ∈ N,

V j (t) ∼ c j t
ω j , t → ∞ (14)

and, for j ∈ N and u, v ≥ 0,

Vj (u + v) − Vj (v) ≤ c j (1{ω j∈(0,1]} uω j + 1{ω j>1} ω j(u + v)ω j−1u)

+ a0, j + a1, j (u + v)ω j−ε2 − b0, j − b1, jv
ω j−ε1 .

(15)

(b) Suppose (7) and (8). Then

lim
t→∞

N (t)

V (t)
= 1 a.s. (16)

(c) Suppose (7) and (8). Then, for j ∈ N,

E sup
s∈[0, t]

(N j (t) − Vj (t))
2 = O(t2γ+2ω( j−1)), t → ∞ (17)

Proof (a) We only prove the second inequality in (13). To this end, we first check
that for any b > 0

∫

[0, t]
(t − y)bdV (y) ≤ a0t

b + ba1B(b, 1 + ω − ε)tω−ε+b + bcB(b, 1 + ω)tω+b,

where B(·, ·) is the beta function, and we write ε for ε2 to ease notation. Indeed, using
(7) we obtain

∫

[0, t]
(t − y)bdV (y) = b

∫ t

0
(V (t − y) − c(t − y)ω)yb−1dy

+ bc
∫ t

0
(t − y)ωyb−1dy

≤ ba0

∫ t

0
yb−1dy + ba1

∫ t

0
(t − y)ω−ε yb−1dy
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+ bc
∫ t

0
(t − y)ωyb−1dy

= a0t
b + ba1B(b, 1 + ω − ε)tω−ε+b + bcB(b, 1 + ω)tω+b.

To prove the second inequality in (13) we use induction. The case j = 1 is covered
by (7). Assume the inequality holds for j = k − 1. Then, for t ≥ 0 recalling (5) we
obtain

Vk(t) =
∫

[0, t]
(Vk−1(t − y) − ck−1(t − y)ω(k−1))dV (y)

+ ck−1

∫

[0, t]
(t − y)ω(k−1)dV (y)

≤ a0,k−1V (t) + a1,k−1

∫

[0, t]
(t − y)ω(k−1)−εdV (y)

+ ck−1

∫

[0, t]
(t − y)ω(k−1)dV (y)

≤ a0,k−1V (t) + a1,k−1
(
a0t

ω(k−1)−ε

+ (ω(k − 1) − ε)a1B(ω(k − 1) − ε, 1 + ω − ε)tωk−2ε

+ (ω(k − 1) − ε)cB(ω(k − 1) − ε, 1 + ω)tωk−ε
)

+ ck−1
(
a0t

ω(k−1) + ω(k − 1)a1B(ω(k − 1), 1 + ω − ε)tωk−ε

+ ω(k − 1)cB(ω(k − 1), 1 + ω)tωk
) ≤ ckt

ωk + a0,k + a1,k t
ωk−ε

for appropriate positive a0,k and a1,k , where we used

ck = ck−1ω(k − 1)cB(ω(k − 1), 1 + ω). (18)

Further, (14) is an immediate consequence of (13). To prove (15), we use (13) to
obtain, for j ∈ N and u, v ≥ 0,

Vj (u+v)−Vj (v) ≤ c j ((u+v)ω j−vω j )+a0, j+a1, j (u+v)ω j−ε2−b0, j−b1, jv
ω j−ε1 .

If ω j ∈ (0, 1], we have (u + v)ω j − vω j ≤ uω j by subadditivity. If ω j > 1, we have
(u + v)ω j − vω j ≤ ω j(u + v)ω j−1u by the mean value theorem and monotonicity.
This completes the proof of (15).

(b) Condition (8) ensures that Var N (t) = O(t2γ ) as t → ∞. Pick any δ > 0 such
that δ(ω −γ ) > 1/2. An application of Markov’s inequality yields, for any ε > 0 and
positive integer �,

P{|N (�δ) − V (�δ)| > εV (�δ)} ≤ Var N (�δ)

ε2(V (�δ))2
= O(�−2δ(ω−γ )), � → ∞.

This entails lim�→∞(N (�δ)/V (�δ)) = 1 a.s. by the Borel–Cantelli lemma. For any
t > 1 there exists an integer � ≥ 2 such that (� − 1)δ < t ≤ �δ , whence, by
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monotonicity,

N ((� − 1)δ)

V ((� − 1)δ)

V ((� − 1)δ)

V (�δ)
≤ N (t)

V (t)
≤ N (�δ)

V (�δ)

V (�δ)

V ((� − 1)δ)
.

Since lim�→∞(V (�δ)/V ((� − 1)δ)) = 1 we infer (16).

(c) We use the induction on j . When j = 1, relation (17) holds according to (8).
Assuming that (17) holds for j = i − 1 we intend to show that it also holds for j = i .

Recalling (4), write, for i ≥ 2 and t ≥ 0,

Ni (t) − Vi (t) =
∑

k∈N

(
N (k)
i−1(t − Tk) − Vi−1(t − Tk)

)

+
(∑

k∈N
Vi−1(t − Tk) − Vi (t)

)

=: Xi (t) + Yi (t). (19)

An integration by parts yields, for s ≥ 0,

|Yi (s)| =
∣
∣
∣

∫

[0, s]
Vi−1(s − x)d(N1(x) − V1(x))

∣
∣
∣

≤
∫

[0, s]
|N1(s − x) − V1(s − x)|dVi−1(x)

≤ sup
y∈[0, s]

|N1(y) − V1(y)|Vi−1(s).

Hence,

E

[

sup
s∈[0, t]

Yi (s)

]2

≤ E

[

sup
y∈[0, t]

(N (y) − V (y))

]2

(Vi−1(t))
2 = O(t2γ+2ω(i−1)),

t → ∞

by (8) and (14).
Passing to the analysis of Xi we obtain, for s ≥ 0

[

sup
s∈[0, t]

Xi (s)

]2

≤ sup
s∈[0, t]

(
N1(s)

∑

k∈N

(
N (k)
i−1(s − Tk) − Vi−1(s − Tk)

)2
1{Tk≤s}

)

≤ N1(t)
∑

k∈N
sup

s∈[0, t]
(
N (k)
i−1(s) − Vi−1(s)

)2
1{Tk≤t} .
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Therefore, E[sups∈[0, t] Xi (s)]2 ≤ E[N (t)]2E[sups∈[0, t](Ni−1(s) − Vi−1(s))]2 =
O(t2γ+2ω(i−1)) as t → ∞ by the induction assumption and the asymptotics
E[N (t)]2 = Var N (t) + (V (t))2 ∼ (V (t))2 as t → ∞. It remains to note that

E

[

sup
s∈[0, t]

(Ni (s) − Vi (s))

]2

≤ 2

⎛

⎝E

[

sup
s∈[0, t]

Xi (s)

]2

+ E

[

sup
s∈[0, t]

Yi (s)

]2
⎞

⎠

= O(t2γ+2ω(i−1)), t → ∞. �
Our main result, Theorem 2.1, is an immediate consequence of Proposition 3.7

given in Sect. 3.2, Theorem 3.2 given next and its corollary.

Theorem 3.2 Suppose (7), (8) and (9). Then

(
N j (t ·) − Vj (t ·)
ac j−1tγ+ω( j−1)

)

j∈N
⇒ (R(ω)

j (·)) j∈N (20)

in the J1-topology on DN.

Corollary 3.3 In the setting of Theorem 3.2, for j ∈ N and h > 0,

t−γ−ω( j−1) sup
y∈[0, 1]

(N j (yt + h) − N j (yt))
P→ 0, t → ∞. (21)

It is convenient to prove Corollary 3.3 at this early stage.

Proof Fix any j ∈ N. Since R(ω)
j is a.s. continuous, relation (20) in combination with

(13) ensures that, for any h > 0,

(
N j (t ·) − c j (t ·)ω j

ac j−1tγ+ω( j−1)
,
N j (t · +h) − c j (t · +h)ω j

ac j−1tγ+ω( j−1)

)

⇒ (R(ω)
j (·), R(ω)

j (·)), t → ∞

in the J1-topology on D × D, whence

t−γ−ω( j−1) sup
y∈[0, 1]

(N j (yt + h) − N j (yt) − c j ((yt + h)ω j − (yt)ω j ))
P→ 0,

t → ∞.

Using

sup
y∈[0, 1]

((yt + h)ω j − (yt)ω j ) ≤ 1{ω j∈(0,1]} hω j + 1{ω j>1} ω j(t + h)ω j−1h

we conclude that the right-hand side is o(tγ+ω( j−1)) as t → ∞ because γ > ω − 1
by assumption and also γ > 0 as explained in Remark 2.3. �
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Theorem 3.2 follows, in its turn, from Propositions 3.4 and 3.5. Below we use the
processes X j and Y j as defined in (19).

Proposition 3.4 Suppose (7) and (9). Then

(
N1(t ·) − V1(t ·)

atγ
,

(
Y j (t ·)

ac j−1tγ+ω( j−1)

)

j≥2

)

⇒ (R(ω)
j (·)) j∈N, t → ∞, (22)

in the J1-topology on DN.

Proposition 3.5 Suppose (7), (8) and (9). Then, for each integer j ≥ 2 and each
T > 0,

t−(γ+ω( j−1)) sup
y∈[0, T ]

X j (t y)
P→ 0, t → ∞. (23)

3.2 Connecting twoways of box-counting

We retreat for a while from our main theme to focus on Karlin’s occupancy scheme
with deterministic probabilities (pk)k∈N. By the law of large numbers a box of proba-
bility p gets occupied by about np balls, provided np is big enough. This suggests to
relate counting the boxes occupied by at least n1−s balls to the number of boxes with
probability at least n−s . Let ρ̄(t) := #{k ∈ N: pk ≥ 1/t} for t > 0, and let K̄n,r be
the number of boxes containing exactly r out of n balls. We shall estimate uniformly
the difference between

K̄n(s) :=
n∑

r=�n1−s�
K̄n,r , s ∈ [0, 1],

and (ρ̄(ns))s∈[0,1]. The following result is very close to Proposition 4.1 in [2]. How-
ever, we did not succeed to apply the cited proposition directly and will combine the
estimates obtained in its proof.

Proposition 3.6 The following universal estimate holds for each n ∈ N

E sup
s∈[0,1]

∣
∣K̄n(s) − ρ̄(ns)

∣
∣ ≤ 4

(
ρ̄(n) − ρ̄(y0n(log n)−2)

)+ 2ρ̄(n)(log n)−1

+
∫ ∞

1
x−2(ρ̄(nx) − ρ̄(n))dx + 2 sup

s∈[0,1]
(ρ̄(ens) − ρ̄(e−1ns)),

(24)

where y0 ∈ (0, 1) is a constant which does not depend on n, nor on (pk)k∈N.

Proof For k ∈ N, denote by Z̄n,k the number of balls falling in the kth box, so that

K̄n(s) =
∑

k∈N
1{n1−s≤Z̄n,k≤n}, s ∈ [0, 1].
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Then, for n ∈ N and s ∈ [0, 1],

|K̄n(1 − s) − ρ̄(n1−s)| ≤
∑

k∈N
1{Z̄n,k≥ns , 1≤npk≤ns } +

∑

k∈N
1{Z̄n,k≥ns , npk<1}

+
∑

k∈N
1{Z̄n,k≤ns , npk≥ns }

:= An(s) + Bn(s) + Cn(s).

In [2] it was shown that, for n ∈ N,

E sup
s∈[0,1]

An(s) ≤ 2(ρ̄(n) − ρ̄(y0n(log n)−2)) + ρ̄(n)

log n
+ sup

s∈[0,1]
(ρ̄(ens) − ρ̄(ns))

(see [2], pp. 1004–1005) and

E sup
s∈[0,1]

Cn(s) ≤ 2(ρ̄(n) − ρ̄(y0n(log n)−2)) + ρ̄(n)

log n
+ sup

s∈[0,1]
(ρ̄(ns) − ρ̄(e−1ns))

(see [2], p. 1006). Finally, for n ∈ N,

E sup
s∈[0,1]

Bn(s) = E

∑

k∈N
1{Z̄n,k≥1, npk<1} =

∑

k∈N
(1 − (1 − pk)

n)1{npk<1}

≤
∑

k∈N
npk 1{npk<1}

=
∫

(1,∞)

1

x
d(ρ̄(nx) − ρ̄(n)) =

∫ ∞

1

ρ̄(nx) − ρ̄(n)

x2
dx .

Combining the estimates we arrive at (24) because

sup
s∈[0,1]

∣
∣K̄n(s) − ρ̄(ns)

∣
∣ = sup

s∈[0,1]
∣
∣K̄n(1 − s) − ρ̄(n1−s)

∣
∣. �

We apply next Proposition 3.6 to the setting of Theorem 2.1. This result shows that
(10) is equivalent to the analogous limit relation with ρ j (nt ) = N j (t log n) replacing
Kn, j (t).

Proposition 3.7 Suppose (7) and (9). Then, for each j ∈ N,

sups∈[0,1]
∣
∣Kn, j (s) − ρ j (ns)|

(log n)γ+ω( j−1)
P→ 0, n → ∞. (25)
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Proof Fix any j ∈ N. By Proposition 3.6, for n ∈ N,

E

(

sup
s∈[0,1]

∣
∣Kn, j (s) − ρ j (n

s)
∣
∣
∣
∣
∣(P(v))v∈I j

)

≤ 4
(
ρ j (n) − ρ j (y0n(log n)−2)

)+ 2ρ j (n)(log n)−1

+
∫ ∞

1
x−2(ρ j (nx) − ρ j (n))dx

+ 2 sup
s∈[0,1]

(ρ j (en
s) − ρ j (e

−1ns)). (26)

Recall the notation

c j = (c	(ω + 1)) j

	(ω j + 1)
, j ∈ N

and our assumption γ > ω − min(1, ε1, ε2). In view of (14),

Eρ j (n)

log n
= Vj (log n)

log n
∼ c j (log n)ω j−1 = o((log n)γ+ω( j−1)), n → ∞. (27)

The next step is to show that

E

∫ ∞

1
x−2(ρ j (nx) − ρ j (n))dx = o

(
(log n)γ+ω( j−1)

)
, n → ∞. (28)

As a preparation for the proof of (28) we first note that according to (15)

E(ρ j (nx) − ρ j (n)) = Vj (log n + log x) − Vj (log n)

≤ c j (1{ω j∈(0,1]}(log x)ω j + 1{ω j>1} ω j(log n + log x)ω j−1 log x)

+ a0, j + a1, j (log n + log x)ω j−ε2 − b0, j + |b1, j |(log n)ω j−ε1

for n ∈ N and x ≥ 1. Further, using the inequality (u + v)α ≤ (2α−1 ∧ 1)(uα + vα)

which holds for α > 0 and u, v ≥ 0 yields

∫ ∞

1
x−2(log n + log x)ω j−ε2dx = O((log n)ω j−ε2), n → ∞

and

∫ ∞

1
x−2(log n + log x)ω j−1dx = O((log n)ω j−1), n → ∞,

and (28) follows.
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An appeal to (13) enables us to conclude that for large enough n

E(ρ j (n) − ρ j (y0n(log n)−2))

= Vj (log n) − Vj (log n + log y0 − 2 log log n)

≤ c j (log n)ω j
(
1 −

(
1 − 2 log log n − log y0

log n

)ω j)

+ a0, j + a1, j (log n)ω j−ε2 − b0, j − b1, j (log n + log y0 − 2 log log n)ω j−ε1

≤ 4ω jc j (log n)ω j−1 log log n + a0, j + a1, j (log n)ω j−ε2

− b0, j + |b1, j |(log n + log y0 − 2 log log n)ω j−ε1 .

Hence,

E(ρ j (n) − ρ j (y0n(log n)−2)) = o((log n)γ+ω( j−1)), n → ∞ (29)

by the same reasoning as above. Finally,

sups∈[0,1](ρ j (ens) − ρ j (e−1ns))

(log n)γ+ω( j−1)

= sups∈[0,1](N j (s log n + 1) − N j (s log n − 1))

(log n)γ+ω( j−1)
P→ 0, n → ∞ (30)

by Corollary 3.3. Using (27)–(30) in combination with Markov’s inequality [applied
to the first three terms on the right-hand side of (26)] shows that the left-hand side of
(26) divided by (log n)γ+ω( j−1) converges to zero in probability as n → ∞. Now (25)
follows by another application ofMarkov’s inequality and the dominated convergence
theorem. �

3.3 Proof of Proposition 3.4

We shall use an integral representation which has already appeared in the proof of
Lemma 3.1(c):

Y j (t) =
∑

k∈N
Vj−1(t − Tk) − Vj (t) =

∫

[0, t]
Vj−1(t − y)d(N1(y) − V1(y))

=
∫

(0, t]
(N1(y) − V1(y))dy(−Vj−1(t − y)) (31)

for j ≥ 2 and t ≥ 0. Here, the last equality is obtained with the help of integration by
parts.

In viewof (12) Skorokhod’s representation theoremensures that there exist versions
Ŵ (t) and Ŵ of N1(t ·)−V1(t ·)

atγ and W , respectively, such that

lim
t→∞ sup

y∈[0, T ]

∣
∣
∣Ŵ (t)(y) − Ŵ (y)

∣
∣
∣ = 0 a.s. (32)
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868 A. Gnedin, A. Iksanov

for all T > 0. This implies that (22) is equivalent to

⎛

⎝Ŵ (·),
(

Ẑ j (t, ·)
c j−1tω( j−1)

)

j≥2

⎞

⎠ ⇒ (R(ω)
j (·)) j∈N, t → ∞, (33)

where Ẑ j (t, x) := ∫
(0, x] Ŵ (y)dy(−Vj−1(t(x − y)) for j ≥ 2 and t, x ≥ 0. As far

as the first coordinate is concerned the equivalence is an immediate consequence of
(32). As for the other coordinates, note that, for each t > 0, the process (Y j (t ·)) j≥2
has the same distribution as

( ∫
(0, ·] Ŵ

(t)(y)dy(−Vj−1(t(· − y)))
)
j≥2 and then write,

for s > 0 fixed and j ≥ 2

∫

[0, s]
Ŵ (t)(y)dy

−Vj−1(t(s − y))

c j−1tω( j−1)
=
∫

(0, s]
(
Ŵ (t)(y) − Ŵ (y)

)
dy

−Vj−1(t(s − y))

c j−1tω( j−1)

+
∫

(0, s]
Ŵ (y)dy

−Vj−1(t(s − y))

c j−1tω( j−1)
.

Denoting by L(t, s) the first term on the right-hand side, we infer, for all T > 0,

sup
s∈[0, T ]

|L(t, s)|

≤ sup
y∈[0, T ]

∣
∣Ŵ (t)(y) − Ŵ (y)

∣
∣
((
c j−1t

ω( j−1))−1
Vj−1(T t)

) → 0, t → ∞ a.s.

in view of (14) which implies that

lim
t→∞

(
c j−1t

ω( j−1))−1
Vj−1(T t) = T ω( j−1) (34)

and (32).
For j ≥ 2 and t, x ≥ 0, set Z j (t, x) := ∫

(0, x] W (y)dy(−Vj−1(t(x − y)) and note
that (33) is equivalent to

(

W (·),
(

Z j (t, ·)
c j−1tω( j−1)

)

j≥2

)

⇒ (R(ω)
j (·)) j∈N, t → ∞ (35)

because the left-hand sides of (33) and (35) have the same distribution.
It remains to check two properties:

(a) weak convergence of finite-dimensional distributions, i.e. that for all n ∈ N, all
0 ≤ s1 < s2 < · · · < sn < ∞ and all integer � ≥ 2

(

W (si ),

(
Z j (t, si )

c j−1tω( j−1)

)

2≤ j≤�

)

1≤i≤n

d→ (R(ω)
j (si ))1≤ j≤�, 1≤i≤n (36)

as t → ∞;
(b) tightness of the distributions of coordinates in (35), excluding the first one.

123



On nested infinite occupancy scheme in random environment 869

Proof of (36) If s1 = 0, we have W (s1) = Z j (t, s1) = R(ω)
k (s1) = 0 a.s. for j ≥ 2

and k ∈ N. Hence, in what follows we consider the case s1 > 0. Both the limit and
the converging vectors in (36) are Gaussian. In view of this it suffices to prove that

lim
t→∞ t−ω(k+ j−2)

E[Zk(t, s)Z j (t, u)] = ck−1c j−1E

[
R(ω)
k (s)R(ω)

j (u)
]

=
{
ck−1c j−1

∫ s
0

∫ u
0 r(s − y, u − z)dyω(k−1)dzω( j−1), if k, j ≥ 2,

c j−1
∫ u
0 r(s, u − z)dzω( j−1), if k = 1, j ≥ 2

(37)

for k, j ∈ N, k + j ≥ 3 and s, u > 0, where we set Z1(t, ·) = W (·) and
r(x, y) := E[W (x)W (y)] for x, y ≥ 0. We only consider the case where k, j ≥ 2,
the complementary case being similar and simpler.

To prove (37) we need some preparation. For each t > 0 denote by θk,t and
θ j,t independent random variables with the distribution functions P{θk,t ≤ y} =
Vk−1(t y)/Vk−1(ts) on [0, s] and P{θ j,t ≤ y} = Vj−1(t y)/Vj−1(tu) on [0, u], respec-
tively. Further, let θk and θ j denote independent random variables with the distribution
functions P{θk ≤ y} = (y/s)ω(k−1) on [0, s] and P{θ j ≤ y} = (y/u)ω( j−1) on

[0, u], respectively. According to (14), (θk,t , θ j,t )
d→ (θk, θ j ) as t → ∞. Now

observe that the function r(x, y) = E[W (x)W (y)] is continuous, hence bounded, on
[0, T ] × [0, T ] for every T > 0. This follows from the assumed a.s. continuity of W ,
the dominated convergence theorem in combination with E[supz∈[0, T ] W (z)]2 < ∞
for every T > 0 (for the latter, see Theorem 3.2 on p. 63 in [1]). As a result,

r(s − θk,t , u − θ j,t )
d→ r(s − θk, u − θ j ) as t → ∞ and thereupon

lim
t→∞ Er(s − θk,t , u − θ j,t ) = Er(s − θk, u − θ j )

by the dominated convergence theorem.
This together with (34) leads to formula (37):

E[t−ω(k+ j−2)Zk(t, s)Z j (t, u)]
= Vk−1(ts)

tω(k−1)

Vj−1(tu)

tω( j−1)

∫ s

0

∫ u

0
r(s − y, u − z)dy

(
Vk−1(t y)

Vk−1(ts)

)

dz

(
Vj−1(t z)

Vj−1(tu)

)

= Vk−1(ts)

tω(k−1)

Vj−1(tu)

tω( j−1)
Er(s − θk,t , u − θ j,t )

→ ck−1s
k−1c j−1s

j−1
Er(s − θk, u − θ j )

= ck−1c j−1

∫ s

0

∫ u

0
r(s − y, u − z)dyω(k−1)dzω( j−1)

as t → ∞. �
Proof of Tightness Choose j ≥ 2. We intend to prove tightness of (t−ω( j−1)

Z j (t, u))u≥0 on D[0, T ] for all T > 0. Since the function t �→ t−ω( j−1) is regu-
larly varying at ∞ it is enough to investigate the case T = 1 only. By Theorem 15.5
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870 A. Gnedin, A. Iksanov

in [9] it suffices to show that for any κ1 > 0 and κ2 > 0 there exist t0 > 0 and δ > 0
such that

P

{

sup
0≤u,v≤1,|u−v|≤δ

|Z j (t, u) − Z j (t, v)| > κ1t
ω( j−1)

}

≤ κ2 (38)

for all t ≥ t0. We only analyze the case where 0 ≤ v < u ≤ 1, the complementary
case being analogous.

SetW (x) = 0 for x < 0. The basic observation for the subsequent proof is that (6)
extends to

|W (x) − W (y)| ≤ MT |x − y|β (39)

whenever −∞ < x, y ≤ T for the same positive random variable MT as in (6). This
is trivial when x ∨ y ≤ 0 and a consequence of (6) when x ∧ y ≥ 0. Assume that
x∧ y ≤ 0 < x∨ y. Then |W (x)−W (y)| = |W (x∨ y)| ≤ MT (x∨ y)β ≤ MT |x− y|β ,
where the first inequality follows from (6) with y = 0.

Let 0 ≤ v < u ≤ 1 and u − v ≤ δ for some δ ∈ (0, 1]. Using (39) and (14) we
obtain

t−ω( j−1)|Z j (t, u) − Z j (t, v)| = t−ω( j−1)
∣
∣
∣
∣

∫

[0, u)

(
W (u − y) − W (v − y)

)
dVj−1(t y)

∣
∣
∣
∣

≤ M1(u − v)β(t−ω( j−1)Vj−1(t)) ≤ M1δ
βλ

for large enough t and a positive constant λ. This proves (38). �

3.4 Proof of Proposition 3.5

Relation (23) will be proved by induction in three steps.

Step 1 To prove (23) with j = 2, use (42) below with k = 1 which is nothing else
but (9) and repeat verbatim the proof of Step 3.
Step 2 Assume that (23) holds for j = 2, . . . , k. We claim that then

(
N j (t ·) − Vj (t ·)
ac j−1tγ+ω( j−1)

)

j=1,...,k
⇒ (R(ω)

j (·)) j=1,...,k (40)

in the J1-topology on Dk . Indeed, in view of (19) and the induction hypothesis relation
(40) is equivalent to

(
N1(t ·) − V1(t ·)

atγ
,

(
Y j (t ·)

ac j−1tγ+ω( j−1)

)

j=2,...,k

)

⇒ (R(ω)
j (·)) j=1,...,k, t → ∞.

(41)
The latter holds by Proposition 3.4.
Step 3 Using

Nk(t ·) − Vk(t ·)
ack−1tγ+ω(k−1)

⇒ R(ω)
k (·), t → ∞ (42)
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in the J1-topology on D which is a consequence of (40) we shall prove that (23) holds
with j = k + 1.

In view of (42) and the fact that R(ω)
k is a.s. continuous Skorokhod’s representation

theorem ensures that there exist R̂(ω)
k a version of R(ω)

k and, for each t > 0, R̂(t,ω)
k

a version of the process on the left-hand side of (42) for which (42) holds locally
uniformly a.s. We can assume that the probability space on which these versions are
defined is rich enough to accommodate

• R̂(t,ω,1)
k , R̂(t,ω,2)

k , . . . which are independent copies of R̂(t,ω)
k for each t > 0;

• R̂(ω,1)
k , R̂(ω,2)

k , . . . which are independent copies of R̂(ω)
k ;

• random variables T̂1, T̂2, . . . which are versions of T1, T2, . . . independent of
(R̂(t,ω,1)

k , R̂(ω,1)
k ), (R̂(t,ω,2)

k , R̂(ω,2)
k ), . . .

Furthermore,
lim
t→∞ sup

y∈[0, T ]
∣
∣R̂(t,ω,r)

k (y) − R̂(ω,r)
k (y)

∣
∣ = 0 a.s. (43)

for all T > 0 and r ∈ N.
For each t > 0, set

X̂ (t)
k+1(y) :=

∑

r∈N
R̂(t,ω,r)
k (y − t−1T̂r )1{T̂r≤t y}, y ≥ 0.

The process X̂ (t)
k+1(·) has the same distribution as Xk+1(t ·)/(ack−1tγ+ω(k−1)). There-

fore, (23) with j = k + 1 is equivalent to

t−ω sup
y∈[0, T ]

X̂ (t)
k+1(y)

P→ 0, t → ∞. (44)

To prove this, write

t−ω X̂ (t)
k+1(y) = t−ω

∑

r∈N

(
R̂(t,ω,r)
k (y − t−1T̂r ) − R̂(ω,r)

k (y − t−1T̂r )
)
1{T̂r≤t y}

+ t−ω
∑

r∈N
R̂(ω,r)
k (y − t−1T̂r )1{T̂r≤t y} =: t−ω(Ẑ1(t, y) + Ẑ2(t, y)).

For all T > 0,

sup
y∈[0, T ]

|Ẑ1(t, y)| ≤
∑

r∈N
sup

y∈[0, T ]
∣
∣R̂(t,ω,r)

k (y) − R̂(ω,r)
k (y)

∣
∣1{T̂r≤tT } . (45)

For r ∈ N, the random variables ηr (t) := supy∈[0, T ]
∣
∣R̂(t,ω,r)

k (y) − R̂(ω,r)
k (y)

∣
∣ are

i.i.d. and independent of T̂1, T̂2, . . .. Furthermore,
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E[η1(t)]2 ≤ 2

⎛

⎝
E[sups∈[0, T t](Nk(s) − Vk(s))]2

(ack−1tγ+ω(k−1))2
+ E

[

sup
s∈[0, T ]

R(ω)
k (s)

]2
⎞

⎠

= O(1), t → ∞ (46)

in view of (17) and the well-known fact that the supremum over [0, T ] of any a.s.
continuous Gaussian process has an exponential tail. Since limt→∞ η1(t) = 0 a.s.,
inequality (46) ensures that limt→∞ Eη1(t) = 0. The right-hand side in (45)multiplied
by t−ω is dominated by

t−ω
∑

r∈N
(ηr (t) − Eηr (t))1{T̂r≤tT } +t−ω N̂ (tT )Eη1(t),

where N̂ (t) := #{r ∈ N: T̂r ≤ t}. Using the last limit relation and (16) we conclude
that the second summand converges to 0 a.s., as t → ∞. The first summand con-
verges to zero in probability, as t → ∞, by Markov’s inequality in combination with

t−2ω
E

(∑
r∈N(ηr (t)− Eηr (t))1{T̂r≤t}

)2 = t−2ωV (t)Var η1(t) = O(t−ω). Thus, for

all T > 0, t−ω supy∈[0, T ] |Ẑ1(t, y)| P→ 0, as t → ∞.
The process (Ẑ2(t, y)) has the same distribution as the process (Z2(t, y)) in which

the random variables involved do not carry the hats, and R(ω,1)
k , R(ω,2)

k , . . . are inde-

pendent copies of R(ω)
k which are independent of T1, T2, . . . Thus, it suffices to prove

that
t−ω sup

y∈[0, T ]
|Z2(t, y)| P→ 0, t → ∞. (47)

In what follows we write E(Tr )(·) for E(·|(Tr )) and P(Tr )(·) for P(·|(Tr )). Note that

E(Tr )[Z2(t, y)]2 = (E[R(ω)
k (1)]2) ∫[0, t y](y − t−1x)2(γ+ω(k−1))dN1(x) ≤

(E[R(ω)
k (1)]2)y2(γ+ω(k−1))N1(t y). Using now the Cramér–Wold device andMarkov’s

inequality in combination with (16) we infer that, given (Tr ), with probability one
finite-dimensional distributions of (t−ωZ2(t, y))y≥0 converge weakly to the zero vec-
tor, as t → ∞. Thus, (47) follows if we can show that the family of P(Tr )-distributions

of (t−ωZ2(t, y))y≥0 is tight. As a preparation, we observe that the process R
(ω)
k inher-

its the local Hölder continuity ofW . Indeed, recalling (39) we obtain, for x, y ∈ [0, T ]
and k ≥ 2,

|R(ω)
k (x) − R(ω)

k (y)| ≤ ω(k − 1)
∫ x∨y

0
|W (x − z) − W (y − z)|zω(k−1)−1dz

≤ MT T
ω(k−1)|x − y|β a.s. (48)

It is also important that the random variable MT has finite moments of all positive
orders, seeTheorem1 in [4]. Picknow integern ≥ 2 such that 2nβ > 1.ByRosenthal’s
inequality (Theorem 3 in [40]), for x, y ∈ [0, T ] and a positive constant Cn which
does not depend on (Tr ) nor on t ,
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E(Tr )(Z2(t, x) − Z2(t, y))
2n

≤ Cn

((
∑

r∈N
E(Tr )(R

(ω,r)
k (x − t−1Tr ) − R(ω,r)

k (y − t−1Tr ))
2 1{Tr≤tT }

)n

+
∑

r∈N
E(Tr )(R

(ω,r)
k (x − t−1Tr ) − R(ω,r)

k (y − t−1Tr ))
2n 1{Tr≤tT }

)

≤ 2CnT
2nω(k−1)(E[MT ]2n)|x − y|2nβ(N1(tT ))n

having utilized (48) for the second inequality. In view of (16), this entails that a
classical sufficient condition for tightness (formula (12.51) on p. 95 in [9]) holds

t−2nω
E(Tr )(Z2(t, x) − Z2(t, y))

2n ≤ θn|x − y|2nβ a.s.

for a positive random variable θn and large enough t . Thus, we have proved that (47)
holds conditionally on (Tr ), hence, also unconditionally.

4 The case of homogeneous residual allocationmodel

In this section we apply Theorem 2.1 to the case of fragmentation law given by homo-
geneous residual allocation model (1). Let B := (B(s))s≥0 be a standard Brownian
motion (BM) and for q ≥ 0 let

Bq(s) :=
∫

[0, s]
(s − y)qdB(y), s ≥ 0.

The process Bq := (Bq(s))s≥0 is a centered Gaussian process called the fractionally
integrated BM or the Riemann–Liouville process. Clearly B = B0, and for q ∈ N the
process can be obtained as a repeated integral of the BM. It is known that Bq is locally
Hölder continuous with any exponent β < q + 1/2 [27].

Theorem 4.1 Let (Pk)k∈N be given by (1) with iid Ui ’s such that

μ := E| logU1| < ∞, σ 2 := Var(logU1) ∈ (0,∞)

and E| log(1 −U1)| < ∞. Then

(
( j − 1)!(Kn, j (·) − ( j !)−1(μ−1 log n(·)) j )

√
σ 2μ−2 j−1(log n)2 j−1

)

j∈N
⇒ (Bj−1(·)) j∈N, n → ∞

in the product J1-topology on D[0, 1]N.
Proof Let (ξk, ηk)k∈N be independent copies of a random vector (ξ, η) with positive
arbitrarily dependent components. Denote by (Sk)k∈N0 the zero-delayed ordinary ran-
dom walk with increments ξk , that is, S0 := 0 and Sk := ξ1 + · · · + ξk for k ∈ N.
Consider a perturbed random walk
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874 A. Gnedin, A. Iksanov

T̃k := Sk−1 + ηk, k ∈ N (49)

and then define Ñ (t) := #{k ∈ N: T̃k ≤ t} and Ṽ (t) := EÑ (t) for t ≥ 0. It is clear
that

Ṽ (t) = EU ((t − η)+) =
∫

[0, t]
U (t − y)dG̃(y), t ≥ 0 (50)

where, for t ≥ 0,U (t) := ∑
k≥0 P{Sk ≤ t} is the renewal function and G̃(t) = P{η ≤

t}.
For Pk written as (1), Tk = − log Pk becomes

Tk = | logU1| + · · · + | logUk−1| + | log(1 −Uk)|, k ∈ N

which is a particular case of (49) with (ξ, η) = (| logU1|, | log(1 −U1)|). In view of
this and Lemma 4.2 given below, the conditions of Theorem 2.1 hold with ω = ε1 =
ε2 = 1, γ = 1/2, c = μ−1, W = B and R j = Bj−1. �
Lemma 4.2 Assume that m := Eξ < ∞, s2 := Var ξ ∈ (0,∞) and Eη < ∞. Then

(a)
b1 ≤ Ṽ (t) − m−1t ≤ a0, t ≥ 0 (51)

for some constants b1 < 0 and a0 > 0. Also,

Ñ (t ·) − m−1(t ·)
(s2m−3t)1/2

⇒ B(·), t → ∞

in the J1-topology on D.
(b) E[sups∈[0, t](Ñ (s) − Ṽ (s))2] = O(t) as t → ∞.

Proof (a) A standard result of the renewal theory tells us that

0 ≤ U (t) − m−1t ≤ a0, (52)

where a0 is a known positive constant. The second inequality in combination with
Ṽ (t) ≤ U (t) proves the second inequality in (51). Using the first inequality in (52)
yields

Ṽ (t) − m−1t =
∫

[0, t]
(U (t − y) − m−1(t − y))dG̃(y)

−m−1
∫ t

0
(1 − G̃(y))dy ≥ −m−1

∫ t

0
(1 − G̃(y))dy ≥ −m−1

Eη.

For a proof of weak convergence, see Theorem 3.2 in [2].
(b) We shall use a decomposition

Ñ (t) − Ṽ (t) =
∑

r≥0

(1{Sr+ηr+1≤t} −G̃(t − Sr )) +
∫

[0, t]
G̃(t − x)d(ν(x) −U (x)),
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where ν(x) := #{r ∈ N0: Sr ≤ x} for x ≥ 0, so that U (x) = Eν(x). It suffices to
prove that

E

⎡

⎢
⎣ sup
s∈[0, t]

⎛

⎝
∑

r≥0

(1{Sr+ηr+1≤s} −G̃(s − Sr ))

⎞

⎠

2
⎤

⎥
⎦ = O(t), t → ∞ (53)

and

D(t) := E

[

sup
s∈[0, t]

(∫

[0, s]
G̃(s − x)d(ν(x) −U (x))

)2
]

= O(t), t → ∞. (54)

Proof of (53) For each j ∈ N, we write

sup
s∈[ j, j+1)

∑

r≥0

(1{Sr+ηr+1≤s} −G̃(s − Sr )) ≤
∑

r≥0

(1{Sr+ηr+1≤ j+1} −G̃( j + 1 − Sr ))

+
∑

r≥0

(G̃( j + 1 − Sr ) − G̃( j − Sr )).

Similarly,

sup
s∈[ j, j+1)

∑

r≥0

(1{Sr+ηr+1≤s} −G̃(s − Sr )) ≥
∑

r≥0

(1{Sr+ηr+1≤ j} −G̃( j − Sr ))

−
∑

r≥0

(G̃( j + 1 − Sr ) − G̃( j − Sr )).

Thus, (53) is a consequence of

�t�+1∑

j=0

E

⎡

⎣
∑

r≥0

(1{Sr+ηr+1≤ j} −G̃( j − Sr ))

⎤

⎦

2

= O(t), t → ∞ (55)

and
�t�+1∑

j=0

E

⎡

⎣
∑

r≥0

(G̃( j + 1 − Sr ) − G̃( j − Sr ))

⎤

⎦

2

= O(t), t → ∞. (56)

The second moment in (55) is equal to
∫
[0, j] G̃( j − x)(1 − G̃( j − x))dU (x) ≤

∫
[0, j](1 − G̃( j − x))dU (x). In view of Eη < ∞, the function x �→ 1 − G̃(x) is
directly Riemann integrable on [0,∞). According to Lemma 6.2.8 in [28] this implies
that the right-hand side of the last inequality is O(1), as j → ∞, thereby proving
(55).
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876 A. Gnedin, A. Iksanov

Further, set K ( j) := ∫
[0, j](G̃( j + 1 − x) − G̃( j − x))dν(x) for j ∈ N0. Then

E

⎡

⎣
∑

r≥0

(G̃( j + 1 − Sr ) − G̃( j − Sr ))

⎤

⎦

2

≤ 2(E[K ( j)]2 + E[ν( j + 1) − ν( j)]2)

≤ 2(E[K ( j)]2 + E[ν(1)]2),

where the last inequality is a consequence of distributional subadditivity of ν, that is,
P{ν(t + s) − ν(s) > x} ≤ P{ν(t) > x} for t, s, x ≥ 0. Recall that ν(1) has finite
exponential moments, so that trivially E[ν(1)]2 < ∞. Left with estimating E[K ( j)]2
we infer

E[K ( j)]2 = E

⎡

⎣G̃( j + 1) − G̃( j)+
j−1∑

k=0

∫

[k, k+1)
(G̃( j + 1−x)−G̃( j−x))dν(x)

⎤

⎦

2

≤ E

⎡

⎣1 +
j−1∑

k=0

(G̃( j + 1 − k) − G̃( j − k))(ν(k + 1) − ν(k))

⎤

⎦

2

≤ 2

⎛

⎝1 + (G̃( j) + G̃( j + 1) − G̃(1))2
j−1∑

k=0

G̃( j + 1 − k) − G̃( j − k)

G̃( j) + G̃( j + 1) − G̃(1)

E[ν(k + 1) − ν(k)]2
)

≤ 2(1 + (G̃( j) + G̃( j + 1) − G̃(1))2E[ν(1)]2) ≤ 2(1 + 4E[ν(1)]2).

Here, the second inequality is implied by convexity of x �→ x2 and Jensen’s inequality
in the form (

∑ j−1
k=0 p j, k xk)2 ≤ ∑ j−1

k=0 p j, k x2k , where p j, k := (G̃( j +1− k)− G̃( j −
k))/(G̃( j) + G̃( j + 1) − G̃(1)) and xk := ν(k + 1) − ν(k). Note that the p j, k satisfy
∑ j−1

k=0 p j, k = 1. Combining the obtained estimates together we arrive at (56). �
Proof of (54) Assuming that

E

[

sup
s∈[0, t]

(ν(s) −U (s))2
]

= O(t), (57)

integration by parts in (54) yields

D(t) = E

[

sup
s∈[0, t]

(∫

[0, s]
(ν(s − x) −U (s − x))dG̃(x)

)2
]

≤ (G̃(t))2E

[

sup
s∈[0, t]

(ν(s) −U (s))2
]

= O(t)

which proves (54).
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Passing to the proof of (57) we first observe that in view of (52) relation (57) is
equivalent to

E

[

sup
s∈[0, t]

(ν(s) − m−1s)2
]

= O(t), t → ∞. (58)

Since s �→ ν(s) − m−1s is a (random) piecewise linear function with slope −m−1

having unit jumps at times S0, S1, . . . we conclude that

sup
s∈[0, t]

(ν(s) − m−1s)2 ≤ max

(

max
0≤k≤ν(t)

(k − m−1Sk)
2, max

0≤k≤ν(t)−1
(k + 1 − m−1Sk)

2
)

≤ 2

(

1 + max
0≤k≤ν(t)

(k − m−1Sk)
2
)

.

Applying Doob’s inequality to the martingale (Sν(t)∧n − m(ν(t) ∧ n))n∈N0 (this is a
martingale with respect to the filtration generated by the ξk because ν(t) is a stopping
time with respect to the same filtration) we obtain

E[ max
0≤k≤ν(t)∧n(Sk − mk)2] = E

[

max
0≤k≤n

(Sν(t)∧k − m(ν(t) ∧ k))2
]

≤ 4E[Sν(t)∧n − m(ν(t) ∧ n)]2 = 4s2E[ν(t) ∧ n]

for each n ∈ N. Here, the last equality is nothing else but Wald’s identity. An applica-
tion of Lévy’s monotone convergence theorem yields

E

[

max
0≤k≤ν(t)

(Sk − mk)2
]

≤ 4s2U (t).

In view of (52) the right-hand side is O(t), as t → ∞, and (58) follows. �

Recall that (Pk)k∈N follows the GEM distribution with parameter θ > 0 when the
Ui ’s in (1) are beta distributedwith parameters θ and 1, inwhich caseμ = E| logU1| =
θ−1, σ 2 = Var(logU1) = θ−2 and E| log(1 −U1)| = θ

∑
n≥1 n

−1(n + θ)−1 < ∞.

Corollary 4.3 For θ > 0 let (Pk)k∈N be GEM-distributed with parameter θ , or any
random sequence such that the sequence of Pk’s arranged in decreasing order follows
the PD distribution with parameter θ . Then

(
( j − 1)!(Kn, j (·) − ( j !)−1(θ log n(·)) j )

√
(θ log n)2 j−1

)

j∈N
⇒ (Bj−1(·)) j∈N, n → ∞. (59)

in the product J1-topology on D[0, 1]N.
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5 Some regenerativemodels

For (X(t))t≥0 a drift-free subordinator with X(0) = 0 and a nonzero Lévy measure ν

supported by (0,∞) let

�X(t) = X(t) − X(t−), t ≥ 0,

be the associated process of jumps. The process �X(·) assumes nonzero values on
a countable set, which is dense in case ν(0,∞) = ∞. The transformed process
(multiplicative subordinator) F(t) = 1− e−X(t), t ≥ 0, has the associated process of
jumps

�F(t) = e−X(t−)(1 − e−�X(t)), t ≥ 0.

In this section we identify the fragmentation law (Pk)k∈N with nonzero jumps �F(·)
arranged in some order (for instance by decrease). Note that multiplying the Lévy
measure by a positive factor corresponds to a time-change for F , hence does not affect
the derived fragmentation law.

We shall assume that the Lévy measure ν is infinite and has the right tail ν([x,∞))

satisfying

β0 + β1| log x |q−r2 ≤ ν([x,∞)) − c0| log x |q ≤ α0 + α1| log x |q−r1 (60)

for small enough x > 0 and some c0, α0, α1 > 0, q ≥ 1, 1 ≤ r1, r2 ≤ q and
β0, β1 < 0.

Theorem 5.1 Assume that (60) holds and

m := EX(1) =
∫

[0,∞)

xν(dx) < ∞, s2 := Var X(1) =
∫

[0,∞)

x2ν(dx) < ∞.

Then

( Kn, j (·) − c∗
j (log n(·))(q+1) j

qB(q, (q + 1) j − q)sm−3/2c∗
j−1(log n)(q+1) j−1/2

)

j∈N
⇒ (B(q+1) j−1(·)) j∈N, n → ∞

in the product J1-topology on D[0, 1]N, where

c∗
j :=

(c0	(q + 2)

m(q + 1)

) j 1

	((q + 1) j + 1)
, j ∈ N0.

Theorem 5.1 applies to the gamma subordinator with the Lévy measure

ν(dx) = θx−1e−λx 1(0,∞)(x)dx
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and to the subordinator with

ν(dx) = θ(1 − e−x )−1e−λx 1(0,∞)(x)dx, (61)

where θ, λ > 0. In both cases s2 < ∞ and (60) holds with c0 = θ and q = r1 =
r2 = 1. Let X(·) be a subordinator with Lévy measure (61). We note in passing that∫∞
0 exp(−X(t))dt is the weak limit of the total tree length, properly normalized, of
a beta (2, λ) coalescent, see Section 5 in [33] or Table 3 in the survey [23]. Also, the
image of ν given in (61) under the transformation x �→ 1 − e−x yields a particular
instance of the driving measure for a beta process, see formula (4) in [11].

Theorem 5.1 is a consequence of Theorem 2.1, the easily checked formula

∫

[0, u]
(u − y)αdBq(y) = qB(q, α + 1)

∫

[0, u]
(u − y)q+αdB(y), u ≥ 0, α, q > 0

which we use for α = (q + 1)( j − 1), and the next lemma.

Lemma 5.2 Assume that (60) holds and s2 < ∞. Then the following is true:

(a)

b0 + b1t
q−r2+1 ≤ V (t) − c0(m(q + 1))−1tq+1 ≤ a0 + a1t

q , t > 0 (62)

for some constants a0, a1 > 0 and b0, b1 ≤ 0, where m = EX(1) < ∞;
(b)

N (t ·) − c0(m(q + 1))−1(t ·)q+1

sm−3/2tq+1/2 ⇒ Bq(·), t → ∞

in the J1-topology on D;
(c) E sups∈[0, t](N (s) − V (s))2 = O(t2q+1), as t → ∞.

Proof (a) Set f (x) := ν([− log(1 − e−x ),∞)) for x ≥ 0. Inequality (60) in combi-
nation with limx→∞ ν([x,∞)) = 0 entails

β0 + β1x
q−r2 ≤ f (x) − c0x

q ≤ α0 + α1x
q−r1 (63)

for all x > 0 and some constants α0, α1, β0 and β1 which are not necessarily the same
as in (60).

Since

N (t) =
∑

1{X(s−)−log(1−e−�X(s))≤t} =
∑

1{�X(s)≥− log(1−e−(t−X(s−)))},

where the summation extends to all s > 0 with �X(s) > 0, we conclude that V (x) =
EN (x) = ∫

[0, x] f (x − y)dU∗(y), where U∗(x) := ∫∞
0 P{X(t) ≤ x}dt = ET (x) is

the renewal function and T (x) := inf{t > 0: X(t) > x} for x ≥ 0.
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Similarly to (52) we have

0 ≤ U∗(t) − m−1t ≤ a∗
0 , t ≥ 0, (64)

where a∗
0 is a known positive constant. Using this and (63) we infer

V (t) − c0(m(q + 1))−1tq+1

=
∫

[0, t]
(U∗(t − y) − m−1(t − y))d f (y)

+m−1
∫ t

0
( f (y) − c0y

q)dy ≤ a∗
0 f (t) + m−1

∫ t

0
(α0 + α1y

q−r1)dy

≤ a∗
0(α0 + α1t

q−r1 + c0t
q) + m−1(α0t + α1(q − r1 + 1)−1tq−r1+1).

This proves the second inequality in (62). Arguing analogously we obtain

V (t) − c0(m(q + 1))−1tq+1 ≥ m−1
∫ t

0
( f (y) − c0y

q )dy ≥ m−1
∫ t

0
(β0 + β1y

q−r2 )dy

= m−1(β0t + β1(q − r2 + 1)−1tq−r2+1),

thereby proving the first inequality in (62).

(b) Write

N (t) =
∑(

1{�X(s)≥− log(1−e−(t−X(s−)))} − f (t − X(s−))
)
1{X(s−)≤t}

+
∑

f (t − X(s−))1{X(s−)≤t} =: N1(t) + N2(t). (65)

As a preparation for the proof of part (b) we intend to show that

lim
t→∞ t−q−1/2N1(t) = 0 a.s. (66)

Proof of (66) To reduce technicalities to a minimum we only consider the case q > 1.
Since E[N1(t)]2 = V (t) and V (t) ∼ c0(m(q + 1))−1tq+1 as t → ∞ we conclude
that

lim
N��→∞ �−(q+1/2)N1(�) = 0 a.s.

by the Borel–Cantelli lemma. For each t ≥ 0, there exists � ∈ N0 such that t ∈
[�, � + 1). Now we use a.s. monotonicity of N (t) and N2(t) to obtain

(� + 1)−(q+1/2)(N1(�) − (N2(� + 1) − N2(�))) ≤ t−(q+1/2)N1(t)

≤ �−(q+1/2)(N1(� + 1) + N2(� + 1) − N2(�)) a.s.
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Thus, it remains to check that

lim
�→∞ �−(q+1/2)(N2(� + 1) − N2(�)) = 0 a.s.

In view of (63), f satisfies a counterpart of (15), whence

N2(� + 1) − N2(�) =
∫

[0, �]
( f (� + 1 − y) − f (� − y))dT (y)

+
∫

(�, �+1]
f (� + 1 − y)dT (y)

≤ (c0(q − 1)(� + 1)q−1 + α0 + α1(� + 1)q−r1 − β0

+ |β1|�q−r2 + f (1))T (� + 1)

= O(�q) (67)

a.s. as � → ∞. For the last equality we have used the strong law of large numbers for
T (y).

We are ready to prove part (b). We shall use representation (65). Relation (66)
entails

t−q−1/2 sup
y∈[0, T ]

N1(t y)
P→ 0, t → ∞. (68)

for each T > 0. Thus, we are left with showing that

N2(t ·) − c0(m(q + 1))−1(t ·)q+1

sm−3/2tq+1/2 ⇒ Bq(·), t → ∞

in the J1-topology on D. The proof of this is similar to that of weak convergence of
the j th coordinate, j ≥ 2, in (22). The only difference is that, instead of (12), we use

T (t ·) − m−1(t ·)
sm−3/2t1/2

⇒ B(·), t → ∞

in the J1-topology on D, where B is a Brownian motion, see Theorem 2a in [10].
(c) Since the proof is analogous to that of Lemma 4.2(b) we only give a sketch. In
view of (65) it suffices to show that, as t → ∞,

E

[

sup
s∈[0, t]

(∑(
1{�X(v)≥− log(1−e−(s−X(v−)))} − f (s − X(v−))

)
1{X(v−)≤s}

)2
]

= O(t2q+1) (69)
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and

E

[

sup
s∈[0, t]

(∫

[0, s]
f (s − x)d(T (x) −U∗(x))

)2
]

= O(t2q+1). (70)

�
Proof of (69) Arguing as in the proof of Lemma 4.2(b) we conclude that (69) is a
consequence of

�t�+1∑

�=0

E

[∑(
1{�X(v)≥− log(1−e−(�−X(v−)))} − f (� − X(v−))

)
1{X(v−)≤�}

]2 = O(t2q+1)

(71)
and

�t�+1∑

�=0

E[N2(� + 1) − N2(�)]2 = O(t2q+1). (72)

The second moment in (71) is equal to V (�) = O(�q+1). This entails that the left-
hand side of (71) is O(tq+2), hence O(t2q+1) because of the assumption q ≥ 1.
Finally, since r1, r2 ≥ 1 by assumption andE[T (�)]2 = O(�2), inequality (67) entails
E[N2(� + 1) − N2(�)]2 = O(�2q) and thereupon (72). �
Proof of (70) Set ν̂(x) := inf{k ∈ N: X(k) > x} for x ≥ 0. Since T (x) ≤ ν̂(x) ≤
T (x)+1 a.s. and, according to (57), E[sups∈[0, t](ν̂(s)−Eν̂(s))2] = O(t) as t → ∞,
we infer E[sups∈[0, t](T (s) −U∗(s))2] = O(t) as t → ∞. With this at hand, relation
(70) readily follows. �

6 The Poisson–Kingmanmodel

Let (X(t))t≥0 be a subordinator as in Sect. 5 with the only differences that the param-
eters in (60) satisfy q ∈ (0, 2), q/2 < r1, r2 ≤ q and that we additionally assume

∫

(1,∞)

(log x)sν(dx) < ∞, (73)

where s = 2q when q ∈ (0, 3/2) and s = ε + q/(2 − q) for some ε > 0 when
q ∈ [3/2, 2).

The ranked sequence of jumps of the process (X(t)/X(1))t∈[0,1] can be rep-
resented as Pj := L j/L > 0, where L1 ≥ L2 ≥ · · · is the sequence of
atoms of a non-homogeneous Poisson random measure with mean measure ν, and

L := ∑
j≥1 L j

d= X(1). This is the Poisson–Kingman construction [34, Section 3]
of probabilities (Pj ) j∈N, which we regard as fragmentation law underlying a nested
occupancy scheme.
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Theorem 6.1 Assume that the function x �→ ν((x,∞)) is strictly decreasing and
continuous on (0,∞). For the fragmentation law as described above limit relation
(10) holds with ω = q, γ = q/2, c = c0, a = c1/20 and W (s) := B(sq) for s ≥ 0
being a time changed Brownian motion.

Theorem 6.1 is a consequence of Theorem 2.1 and Lemma 6.2 given next.

Lemma 6.2 Under the assumptions of Theorem 6.1 the following is true:

(a)
β2 + β3t

q−r4 ≤ V (t) − c0t
q ≤ α2 + α3t

q−r3, t > 0 (74)

for some constants α2, α3 > 0, q ∈ (0, 2), q/2 < r3, r4 ≤ q and β2, β3 < 0.
(b)

E sup
s∈[0, t]

(N (s) − V (s))2 = O(tq), t → ∞.

(c)

N (t ·) − c0(t ·)q
(c0tq)1/2

⇒ W (·), t → ∞

in the J1-topology on D, where W (s) = B(sq) for s ≥ 0.

Proof For t ∈ R, set N̂ (t) := #{k ∈ N: Lk ≥ e−t } so that N (t) = #{k ∈ N: Lk/L ≥
e−t } = N̂ (t − log L). Note that N (t) = 0 for t < 0. Further, putm(t) := ν((e−t ,∞))

for t ∈ R and note that m is a strictly increasing and continuous function with
m(−∞) = 0. In view of (60)

β0 + β1t
q−r2 ≤ m(t) − c0t

q ≤ α0 + α1t
q−r1 (75)

for2 t ≥ 0, where α0, α1 > 0, q ∈ (0, 2), q/2 < r1, r2 ≤ q and β0, β1 < 0. Later, we
shall need the following consequences of (75):

m(t) ∼ c0t
q , t → ∞ (76)

and

lim
t→∞ sup

s∈[0, s0]

∣
∣
∣
m(ts)

c0tq
− sq

∣
∣
∣ = 0 (77)

for all s0 > 0. For the latter we have also used Dini’s theorem.
The random process (N̂ (t))t∈R is non-homogeneous Poisson. In particular, N̂ (t)

has a Poisson distribution of mean m(t). Let P := (P(t))t≥0 denote a homogeneous
Poisson process of unit intensity. Throughout the proof we use the representation
(N̂ (t))t∈R = (P(m(t))t∈R which gives us a transition from P to N̂ . The converse

2 Actually, (60) only ensures that (75) holds for large enough t . However, adjusting αi and βi , i = 0, 1
properly one obtains (75) for all t ≥ 0. Of course, αi and βi in (75) are not necessarily the same as in (60).
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transition, namely that the arrival times of P are m(− log L1), m(− log L2), . . . is
secured by our assumption thatm is strictly increasing and continuous (this assumption
is not needed to guarantee the direct transition).

(a) Write

N (t) − N̂ (t) = (N̂ (t − log L) − N̂ (t))1{L≤1} −(N̂ (t) − N̂ (t − log L))1{L>1}
=: N1(t) − N2(t)

and observe that

N1(t) ≤ (N̂ (t − log L1) − N̂ (t))1{L1≤1} ≤ (1 + P∗(m(t − log L1) − m(− log L1))

−P∗(m(t) − m(− log L1)))1{L1≤1}, (78)

where P∗ := (P∗(t))t≥0 is a homogeneous Poisson process of unit intensity which
is independent of L1. More precisely, the arrival times of P∗ are m(− log L2) −
m(− log L1), m(− log L3) − m(− log L1), . . .. For later use we note that

((P∗(m(t − log L1) − m(− log L1)) − P∗(m(t) − m(− log L1)))1{e−t≤L1≤1})t≥0

d= ((P∗(m(t − log L1)) − P∗(m(t)))1{e−t≤L1≤1})t≥0, (79)

where
d= means that the distributions of the processes are the same. Inequality (78)

entails

E[N1(t)] ≤ E(1 + m(t − log L1) − m(t ∨ (− log L1)))1{L1≤1}
≤ E(1 + m(t − log L1) − m(t))1{L1≤1} .

In view of (75) for t, x ≥ 0

m(t + x) − m(t) ≤ c0((t + x)q − tq) + α0 + α1(x + t)q−r1 + |β0| + |β1|tq−r2

≤ c0(x
q 1{q∈(0,1]} +q(xq−1 + tq−1)x 1{q∈(1,2)})

+α0 + α1(x
q−r1 + tq−r1) + |β0| + |β1|tq−r2 . (80)

We have used subadditivity of x �→ xκ on R+ := [0,∞) when κ ∈ (0, 1] and the
mean value theorem for differentiable functions to obtain (t+x)κ −tκ ≤ κx(t+x)κ−1

when κ > 1. We infer

E[log− L1]α < ∞ for any α > 0 (81)

as a consequence of
∫∞
1 yα−1

P{− log L1 > y}dy = ∫∞
1 yα−1e−m(y)dy < ∞, where

the finiteness is justified by (75). Here, as usual, log− x = (− log x) ∨ 0 for x ≥ 0.
Hence,
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E[N1(t)] ≤ 1 + c0(E[log− L1]q 1{q∈(0,1]} +q(E[log− L1]q
+ tq−1

E[log− L1]1{q∈(1,2)}) + α0

+α1(E[log− L1]q−r1 + tq−r1) + |β0| + |β1|tq−r2 .

Thus, the right-hand inequality in part (a) holds with r3 = r1 ∧ r2 when q ∈ (0, 1]
and r3 = r1 ∧ r2 ∧ 1 when q ∈ (1, 2).

To analyse N2(t), set θ := q if q ∈ (0, 1] and θ := q/(2 − q) if q ∈ (1, 2) and
then pick ε > 0 such that θ +ε ≤ 2q when q ∈ (0, 3/2) and take the same ε as in (73)
when q ∈ [3/2, 2). Further, choose δ ∈ (0, 1 − (q ∨ 1)/2) and �1 > 1 sufficiently
close to one to ensure that r5 := (θ + ε)δ/�1 > q/2. Put �2 := �1/(�1 − 1). It holds
that

N2(t) = (N̂ (t) − N̂ (t − log L))1{1<L≤exp(tδ)} +(N̂ (t) − N̂ (t − log L))1{L>exp(tδ)}
≤ (N̂ (t) − N̂ (t − tδ)) + N̂ (t)1{L>exp(tδ)} . (82)

Condition (73) ensures that E[log+ L]θ+ε < ∞ by Theorem 25.3 in [41]. Here,
log+ x = (log x)∨ 0 for x ≥ 0. A combination of Hölder’s and Markov’s inequalities
yields

E[N̂ (t)1{L>exp(tδ)}] ≤ (E[N̂ (t)]�2)1/�2(P{log L > tδ})1/�1
≤ (E[N̂ (t)]�2)1/�2(E[log+ L]θ+ε)1/�1 t−(θ+ε)δ/�1 .

Since N̂ (t) has a Poisson distribution of mean m(t), and m(t) satisfies (76), the right-
hand side does not exceed α5 + α4tq−r5 for t ≥ 0 and some α4, α5 > 0.

Further, using (75) we obtain for t ≥ 0

E[N̂ (t) − N̂ (t − tδ)] = m(t) − m(t − tδ) ≤ c0(t
δq 1{q∈(0,1]} +qtq−1+δ 1{q∈(1,2)})

+α0 + α1t
q−r1 + |β0| + |β1|tq−r2 ≤ α7 + α6t

q−r6 . (83)

Note that r6 satisfies r6 > q/2 because δ < 1 − (q ∨ 1)/2. We have proved the
left-hand inequality in part (a) with r4 := r5 ∧ r6.

(b) Having written

E

[

sup
s∈[0, t]

(N (s) − V (s))2 1{L>1}

]

≤ 3

(

E

[

sup
s∈[0, t]

(P(m(s − log L)) − m(s − log L))2 1{L>1}

]

+ E

[

sup
s∈[0, t]

(m(s − log L) − m(s))2 1{L>1}

]

+ sup
s∈[0, t]

(m(s) − V (s))2
)

,

we intend to show that each of the three terms on the right-hand side is O(tq).
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1st summand Recall that (P(t) − t)t≥0 is a martingale with respect to the natural
filtration. Using

sup
s∈[0, t]

(P(m(s − log L)) − m(s − log L))2 1{L>1} ≤ sup
s∈(−∞, t]

(P(m(s)) − m(s))2

≤ sup
s∈[0,m(t)]

(P(s) − s)2

and then invoking Doob’s inequality we obtain

E

[

sup
s∈[0, t]

(P(m(s − log L)) − m(s − log L))2 1{L>1}

]

≤ E

[

sup
s∈[0,m(t)]

(P(s) − s)2
]

≤ 4E[P(m(t)) − m(t)]2 = 4m(t) = O(tq).

2nd summand. The following inequalities hold

E

[

sup
s∈[0, t]

(m(s) − m(s − log L))2 1{L>1}
]

≤ (m(t) − m(0))2P{log L > t} + E

[

sup
s∈[0, t−log L]

(m(s + log L) − m(s))2 1{0<log L≤t}
]

≤ (m(t) − m(0))2P{log L > t} + E

[

sup
s∈[0, t]

(m(s + log L) − m(s))2 1{log L>0}
]

. (84)

Note that (73) entails E[log+ L]2q < ∞. Thus, the first summand on the right-hand
side of (84) is O(1) by (76) and Markov’s inequality. Using (80) in combination with
E[log+ L]2q < ∞ we conclude that the second summand on the right-hand side of
(84) is O(tq).
3rd summand Appealing to (74) and (75) yields sups∈[0, t](m(s) − V (s))2 ≤
sups∈[0, t](C1 + C2sq−r )2 = O(t2q−2r ) for appropriate constants C1, C2 and q/2 <

r ≤ q. The latter inequality ensures that sups∈[0, t](m(s) − V (s))2 = O(tq).
To deal with the expectation in question on the event {L ≤ 1} we write

E

[

sup
s∈[0, t]

(N (s) − V (s))2 1{L≤1}

]

≤ 3

(

E

[

sup
s∈[0, t]

(P(m(s − log L)) − P(m(s)))2 1{L≤1}

]

+ E

[

sup
s∈[0, t]

(P(m(s)) − m(s))2
]

+ sup
s∈[0, t]

(m(s) − V (s))2
)

.
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We already know from the previous part of the proof, that the second and the third
summand on the right-hand side are O(tq). As for the first summand, we use (78) and
(79) to obtain

E

[

sup
s∈[0, t]

(P(m(s − log L)) − P(m(s)))2 1{L≤1}

]

≤ E[(1 + P∗(m(t − log L1)) − m(− log L1))
2 1{− log L1>t}]

+ E

[

sup
s∈[− log L1, t]

(1 + P∗(m(s − log L1)) − P(m(s)))2 1{0≤− log L1≤t}

]

.

The principal asymptotic term of the first summand is E[(m(t − log L1) −
m(t))2 1{− log L1>t}]. Invoking (80) and (81) we infer that the last expression is o(1).
To estimate the second summand we write

E

[

sup
s∈[− log L1, t]

(P∗(m(s − log L1)) − P(m(s)))2 1{0≤− log L1≤t}

]

≤ 3

(

E

[

sup
s∈[− log L1, t]

(P∗(m(s − log L1)) − m(s − log L1))
2 1{0≤− log L1≤t}

]

+ E

[

sup
s∈[0, t]

(P∗(m(s)) − m(s))2
]

+ E

[

sup
s∈[0, t]

(m(s − log L1) − m(s))2 1{− log L1≥0}

])

≤ 3

(

2E

[

sup
s∈[0, 2t]

(P∗(m(s)) − m(s))2
]

+ E

[

sup
s∈[0, t]

(m(s − log L1) − m(s))2 1{− log L1≥0}

])

.

The last expression is O(tq) which can be seen by mimicking the arguments used in
the previous part of the proof.

(c) A specialization of the functional limit theorem for the renewal processes with
finite variance (see, for instance, Theorem 3.1 on p. 162 in [26]) yields

P(t ·) − (t ·)
t1/2

⇒ B(·), t → ∞ (85)

in the J1-topology on D.
It iswell-known (see, for instance,Lemma2.3 onp. 159 in [26]) that the composition

mapping (x, ϕ) �→ (x ◦ ϕ) is continuous at continuous functions x : R+ → R and
nondecreasing continuous functions ϕ: R+ → R+. This observation taken together
with (85) and (77) enables us to conclude that
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N̂ (t ·) − m(t ·)
(c0tq)1/2

⇒ W (·), t → ∞ (86)

in the J1-topology on D. Noting that, for all s0 > 0, sups∈[0, s0] |s − t−1 log L −
s| = t−1| log L| → 0 a.s. as t → ∞ and applying the aforementioned result on
compositions to (86) we infer

N (t ·) − m(t · − log L)

(c0tq)1/2
⇒ W (·), t → ∞ (87)

in the J1-topology on D.
It remains to prove that in (87) we can replace m(t · − log L) by c0(t ·)q . To this

end, it is enough to show that, for all s0 > 0,

t−q/2 sup
s∈[0, s0]

|m(ts − log L) − c0(ts)
q | P→ 0, t → ∞.

This can be done as follows. Use (75) to obtain

sup
s∈[0, s0]

|m(ts) − c0(ts)
q | ≤ max(α0 + α1(ts0)

q−r1 , |β0| + |β1|(ts0)q−r2)

whence

lim
t→∞ t−q/2 sup

s∈[0, s0]
|m(ts) − c0(ts)

q | = 0,

where the assumption r1, r2 > q/2 has to be recalled. The analysis of
sups∈[0, s0] |m(ts − log L)−m(ts)| is very similar to (but simpler than) the arguments
given in the proof of part (a). Appealing to (80) we conclude that, as t → ∞,

t−q/2 sup
s∈[0, s0]

|m(ts − log L) − m(ts)|1{log L≤0}

= t−q/2 sup
s∈[0, s0]

(m(ts − log L) − m(ts))1{log L≤0}
P→ 0.

Fix any δ ∈ (0, (q ∨ 1)/2). Further, we argue as for (82)

sup
s∈[0, s0]

|m(ts) − m(ts − log L))1{log L>0}

≤ sup
s∈[0, s0]

(m(ts) − m(ts − log L))1{0<log L≤(ts)δ}

+ sup
s∈[0, s0]

(m(ts) − m(ts − log L)|1{log L>(ts)δ}

≤ sup
s∈[0, s0]

(m(ts) − m(ts − (ts)δ))

+ sup
s∈[0, s0]

(m(ts)1{log L>(ts)δ}).
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Using (83) yields sups∈[0, s0](m(ts) − m(ts − (ts)δ)) = o(tq/2) as t → ∞. Finally,

sup
s∈[0, s0]

(m(ts)1{log L>(ts)δ}) ≤ m(((log L)+)1/δ) a.s.
�
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