
Probability Theory and Related Fields (2020) 177:369–396
https://doi.org/10.1007/s00440-019-00951-z

Mean-field avalanche size exponent for sandpiles on
Galton–Watson trees

Antal A. Járai1 ·Wioletta M. Ruszel2,3 · Ellen Saada4

Received: 4 July 2018 / Revised: 14 October 2019 / Published online: 3 November 2019
© The Author(s) 2019

Abstract
We show that in Abelian sandpiles on infinite Galton–Watson trees, the probability
that the total avalanche has more than t topplings decays as t−1/2. We prove both
quenched and annealed bounds, under suitable moment conditions. Our proofs are
based on an analysis of the conductance martingale of Morris (Probab Theory Relat
Fields 125:259–265, 2003), that was previously used byLyons et al. (Electron J Probab
13(58):1702–1725, 2008) to study uniform spanning forests on Z

d , d ≥ 3, and other
transient graphs.

Keywords Abelian sandpile · Uniform spanning tree · Conductance martingale ·
Wired spanning forest
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1 Introduction and results

The Abelian sandpile model was introduced in 1988 by Bak, Tang and Wiesenfeld
in [3] as a toy model displaying self-organized criticality. A self-organized critical
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model is postulated to drive itself into a critical state which is characterized by power-
law behaviour of, for example, correlation functions, without fine-tuning an external
parameter. For a general overview we refer to [17,27] and to some of the physics
literature [8,9]. There are connections of the sandpile model to Tutte polynomials
[7], logarithmic conformal invariance [30], uniform spanning trees [8], and neuronal
communication [4].

Consider a finite connected graph G = (V ∪ {s}, E) with a distinguished vertex s
called the sink. Assign to each vertex x ∈ V a natural number ηx ∈ N representing its
height or mass.

The Abelian sandpile model is defined as follows: choose at every discrete time
step a vertex x ∈ V uniformly at random and add mass 1 to it. If the resulting mass at
x is at least the number of neighbours of x , then we topple the vertex x by sending unit
mass to each neighbour of x . Mass can leave the system via the sink s, according to a
rule depending on the graph. The topplings in V will continue until all the vertices in
V are stable, that is, they have mass which is smaller than the number of neighbours.
The sequence of consecutive topplings is called an avalanche. The order of topplings
does not matter, hence the model is called Abelian. The unique stationary measure for
this Markov chain is the uniform measure on the recurrent configurations.

There are various interesting quantities studied, for example the avalanche size or
diameter distribution depending on the underlying graph [5,10,14,16], the toppling
durations, infinite-volume models [2,24], and continuous height analogues [19].

In particular, it is known that on a regular tree (Bethe lattice) the probability that an
avalanche of size at least t occurs, decays like a power law with mean-field exponent
−1/2 for large t [10], and the same is true on the complete graph [16]. Very recently,
this has been extended by Hutchcroft [14] to a large class of graphs that are, in a
suitable sense, high-dimensional. No assumptions of transitivity are needed in [14],
but the proofs require bounded degree. In particular, [14] shows that the exponent
−1/2 holds for the lattice Zd for d ≥ 5, and also for bounded degree non-amenable
graphs. See also [5] for related upper and lower bounds on critical exponents on Z

d

for d ≥ 2.
In [28] sandpile models on random binomial (resp. binary) trees are considered, i.e.

every vertex has two descendants with probability p2, one with probability 2p(1− p)

and none with probability (1 − p)2 (resp. 2 offspring with probability p and none
with probability 1 − p); there, in a toppling, mass 3 is ejected by the toppling site,
independently of its number of neighbours; hence there is dissipation (that is, there
is mass which is not sent to a neighbouring site, but which is lost) when this number
is less than 2. It is proven in [28] that in a small supercritical regime p > 1/2 the
(quenched and annealed) avalanche sizes decay exponentially, hence the model is
not critical. Moreover (see [29]) the critical branching parameter for these models is
p = 1. The reason is that as soon as there exist vertices with degree strictly less than
2, the extra dissipation thus introduced to the system is destroying the criticality of
the model.

In this paper, we consider an Abelian sandpile model on a supercritical Galton–
Watson branching tree Twith possibly unbounded offspring distribution p = {pk}k≥0
under somemoment assumptions.Weprove that the probability that the total avalanche
has more than t topplings decays as t−1/2. Our proofs rely on a quantitative analysis
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Mean-field avalanche size exponent for sandpiles on… 371

of the conductance martingale of Morris [22,26], that he introduced to study uniform
spanning forests on Z

d and other transient graphs). The use of this martingale is the
major novelty of our paper, and our hope is that this gives insight into the behaviour
of this martingale on more general graphs.

Ourmethods are very different from those of [14].While the results of [14] are stated
for bounded degree graphs (andmore generally for networks with vertex conductances
bounded away from 0 and infinity), Hutchcroft’s approach can also be applied to
unbounded degree graphs: In our context, under suitable moment conditions, the proof
methods of [14] would yield the t−1/2 behaviour with an extra power of log t present
(T. Hutchcroft, personal communication).

We write νT for the probability distribution of the sandpile model conditioned on
the environment T. Let S denote the total number of topplings upon addition at the
root, which is a.s. finite (see later on for details). Then we prove the following.

Theorem 1 Conditioned on the event that T survives, there exists C = C(p) such that
for all t large enough depending on T we have

νT[S > t] ≤ C t−1/2.

Furthermore if p has an exponential moment then there exists c0 = c0(T) that is
a.s. positive on the event that T survives, such that we have

νT
[
S > t

] ≥ c0 t−1/2.

We also have the following annealed bounds.

Theorem 2 Let P denote the probability distribution for the Galton–Watson trees, and
E the corresponding expectation. There exists C = C(p) > 0 such that

E
[
νT[S > t] ∣∣T survives

] ≤ C t−1/2.

and if p has exponential moment then there exists c = c(p) such that

E
[
νT[S > t] ∣∣T survives

] ≥ c t−1/2.

The paper is organized as follows. First in Sect. 2 we introduce the setting and
notation and in particular we recall the decomposition of avalanches into waves. In
Sect. 3 we prove upper bounds on the waves and in the subsequent Sect. 4 correspond-
ing lower bounds. We deduce the corresponding bounds on S from the bounds on the
waves in Sect. 5 and finally we prove annealed bounds in Sect. 6.

2 Notation and preliminaries

2.1 Abelian sandpile model on subtrees of the Galton–Watson tree

We consider a supercritical Galton–Watson process with offspring distribution p =
{pk}k≥0 with mean

∑
k≥0 kpk > 1, starting with a single individual.
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372 A. A. Járai et al.

Let us fix a realization T(ω) of the family tree of this Galton–Watson process with
root denoted by o. We will call

F := {T survives}, (1)

and assume thatω ∈ F . The randomenvironmentT = T(ω) is defined on a probability
space (Ω,G ,P). The edge set of T is denoted by E(T). We use the notation T to refer
to both the tree and to its vertex set. Take a subset A ⊂ T and let us denote by
∂E A the edge boundary of A, i.e. the set of edges e = (v, u) ∈ E(T) such that
v ∈ A and u ∈ Ac, where Ac is the complement of A in T. We denote by |A|
the cardinality of A. We say that A is connected if the subgraph induced in T is
connected. Then the distance d(u, v) between the two vertices u, v ∈ A is defined
as the number of edges of the shortest path joining them within A. For v ∈ T we
write |v| = d(o, v). The (outer) vertex boundary ∂V A is defined as follows. A vertex
v ∈ T belongs to ∂V A if v ∈ Ac and there exists u ∈ A such that (u, v) ∈ E(T). Let
∂ in

V A = {v ∈ A : ∃ w ∈ Ac such that (v,w) ∈ E(T)} be the internal vertex boundary
of A. We will further use the notation (V , o) for a graph with vertex set V and root o.

By a result of Chen and Peres ([6, Corollary 1.3]) we know that conditioned on F
the tree T satisfies anchored isoperimetry, meaning that the edge boundary of a set
containing a fixed vertex is larger than some positive constant times the volume. This
isoperimetric inequality ensures an exponential growth condition on the random tree.

They proved (case (ii) in the proof of [6, Corollary 1.3]) that there exists δ0 =
δ0(p) > 0 and a random variable N1 = N1(T) that is a.s. finite on F , such that for
any finite connected o ∈ A ⊂ T with |A| ≥ N1 we have

|∂E A| ≥ δ0|A|. (2)

It also follows from the proof of [6, Corollary 1.3] that there exists c1 = c1(p) > 0
such that

P[N1 ≥ n | F] ≤ e−c1n, n ≥ 0. (3)

We denote by Tk = {v ∈ T : d(o, v) = k} (respectively T<k = {v ∈ T : d(o, v) <

k}) the set of vertices at precisely distance k (respectively at distance less than k) from
the root, and analogously we define T≤k . We write T(v) for the subtree of T rooted
at v. For a vertex v ∈ T we denote by deg(v) the degree degT(v) of vertex v within T
(i.e. the number of edges in E(T) with one end equal to v), and we denote by deg+(v)

the forward degree deg+
T
(v) of v, that is the number of children of v.

For some finite connected subset H ⊂ T such that o ∈ H we write T
∗
H for the

finite connected wired graph, i.e. such that each vertex in Hc is identified with some
cemetery vertex s, called a sink. For a vertex v ∈ H we denote by degH (v) the degree
of vertex v within H (i.e. the number of edges in E(T∗

H ) with one end equal to v),
and we denote by deg+

H (v) the forward degree of v within H . We fix such a subset H
from now on.

We gather in the following subsections results we need on the Abelian sandpile
model, for which we refer for instance to [8,12,17,27].
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Mean-field avalanche size exponent for sandpiles on… 373

2.1.1 Height configurations and legal topplings

Height configurations on T∗
H are elements η ∈ {0, 1, 2, · · · }H . For u ∈ H , ηu denotes

the height at vertexu.Aheight configurationη is stable ifηu ∈ {0, 1, 2, . . . , degH (u)−
1} for all u ∈ H . Stable configurations are collected in the setΩH . Note that degH (u),
u ∈ H , and ΩH , depend on the realization of the Galton–Watson tree T, hence are
random.

For a configuration η, we define the toppling operator Tu via

(Tu(η))v = ηv − ΔH
uv

where ΔH is the toppling matrix, indexed by vertices u, v ∈ H and defined by

ΔH
uv =

{
degH (u), if u = v

−1, if (u, v) ∈ E(T∗
H ).

Inwords, in a toppling at u, degH (u) particles are removed from u, and every neighbour
of u receives one particle. Note that ΔH depends on the realization of T which hence
is random in contrast to the case of the binary tree studied in [28]. Therefore there is
no dissipation in a toppling, except for the particles received by the sink of T∗

H .
A toppling at u ∈ H in configuration η is called legal if ηu ≥ degH (u). A sequence

of legal topplings is a composition Tun ◦ · · · ◦ Tu1(η) such that for all k = 1, · · · , n
the toppling at uk is legal in Tuk−1 ◦ · · · ◦ Tu1(η). The stabilization of a configuration
η is defined as the unique stable configuration S(η) ∈ ΩH that arises from η by a
sequence of legal topplings. Every η ∈ {0, 1, 2, · · · }H can be stabilized thanks to the
presence of a sink.

2.1.2 Addition operator and Markovian dynamics

Let u ∈ H , the addition operator is the map au : ΩH → ΩH defined via

auη = S(η + δu)

where δu ∈ {0, 1}H is such that δu(u) = 1 and δu(z) = 0 for z ∈ H , z �= u. In
other words, auη is the effect of an addition of a single grain at u in η, followed by
stabilization.

The dynamics of the sandpile model can be defined as a discrete-timeMarkov chain
{η(n), n ∈ N} on ΩH with

η(n) =
n∏

i=1

aXi η(0) (4)

where Xi , 1 ≤ i ≤ n, are i.i.d. uniformly chosen vertices in H .
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2.1.3 Recurrent configurations, spanning trees and stationary measure

The set of recurrent configurations RH of the sandpile model corresponds to the
recurrent states of the Markov chain (4) defined above. This Markov chain has a
unique stationary probability measure νH which is the uniform measure on the set
RH . There is a bijection between RH and the spanning trees of T∗

H [25], that is useful
in analyzing νH .

Let o ∈ H1 ⊂ H2 ⊂ · · · ⊂ Hn ⊂ · · · be a sequence of finite sets with union equal
to T. The sandpile measure νT on T is defined as the weak limit of the stationary
measures νHn for the sandpile model on T∗

Hn
, when the limit exists. By [20, Theorem

3], an infinite volume sandpile measure νT on T exists if each tree in theWSF (Wired
Uniform Spanning Forest) on T has one end almost surely. TheWSF is defined as the
weak limit of the uniform spanning trees measure onT∗

Hn
, as n → ∞. We refer to [23]

for background on wired spanning forests. We define the related measureWSFo in the
following way. Identify o and s in T∗

Hn
and letWSFo be the weak limit of the uniform

spanning tree in the resulting graph Gn as n → ∞. From now on, when working on
a finite set H , we will abbreviate this procedure by H → T (or H goes to T).

Let Fo denote the connected component of o underWSFo. Almost sure finiteness of
Fo is equivalent to one endedness of the component of o underWSF, see [22]. The one
end property for trees with bounded degree in the WSF of Galton–Watson trees was
proven by [1, Theorem 7.2]. In the unbounded case it follows directly by [13, Theorem
2.1]. Draw a configuration from the measure νT, add a particle at o and carry out all
possible topplings. By [18, Theorem 3.11], one-endedness of the components and
transience of T (for simple random walk) imply that there will be only finitely many
topplings νT-a.s., and as a consequence the total number S of topplings is a.s. finite.

2.1.4 Waves, avalanches andWilson’s method

Given a stable height configuration η and o ∈ H , we define the avalanche cluster
AvH (η) induced by addition at o in η to be the set of vertices in H that have to be
toppled at least once in the course of the stabilization of η + δo. Avalanches can be
decomposed into waves (see [15,18]) corresponding to carrying out topplings in a
special order. The first wave denotes the set of vertices in H which have to be toppled
in course of stabilization until o has to be toppled again. The second wave starts again
from o and collects all the vertices involved in the toppling procedure until o has to
be toppled for the second time etc.

Let NH (η) denote the number of waves caused by addition at o to the configuration
η in H . For fixed T, the avalanche can be decomposed into

AvH (η) =
NH (η)⋃

i=1

W i
H (η) (5)

where W i
H (η) is the i-th wave. We write W last

H (η) for W NH (η)
H (η). Further we denote

by

SH (η) = |W 1
H (η)| + · · · + |W last

H (η)| (6)
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Mean-field avalanche size exponent for sandpiles on… 375

the total number of topplings in the avalanche AvH (η).
Note that waves can be defined on the full tree T as well where now it is possible to

have infinitelymanywaves.However, due to the almost surefiniteness of the avalanche,
NH under νH converges weakly to N under the sandpile measure which is νT -a.s.
finite. Furthermore W i

H converges weakly to W i . We thus have

Av(η) =
N (η)⋃

i=1

W i (η)

S(η) = |W 1(η)| + · · · + |W last(η)|
S(η) ≥ |Av(η)|.

Lemma 1 For any stable configuration η on T we have the following.

(i) W 1(η) equals the connected component of o in {v ∈ T : ηv = deg(v) − 1}
(possibly empty);

(ii) N (η) = 1 + max{k ∈ N : Tk ⊂ W 1(η)}, with the right hand side interpreted as
0 when W 1(η) = ∅;

(iii) W 1(η) ⊃ · · · ⊃ W last(η).

Proof (i) Call A the connected component of o in {v ∈ T : ηv = deg(v) − 1}. Then
all of the vertices in A topple in the first wave (and they topple exactly once). On
the other hand each vertex in ∂V A only receives one particle and hence will not
topple.

(ii) After the firstwave vertices other than o in ∂ in
V W 1(η) have atmost deg(v)−2 parti-

cles and hence W 2(η) equals the connected component of o in W 1(η)\∂ in
V W 1(η).

Let us call K = max{k ∈ N : Tk ⊂ W 1(η)}. ThenT≤K ⊂ W 1(η) but there exists
v ∈ TK such that v ∈ ∂ in

V W 1(η) and therefore T≤K−1 ⊂ W 2(η) but v /∈ W 2(η).
The claim follows now by repeating this argument for ∂ in

V W 2(η), W 3(η), etc. up
to W last(η).

(iii) This last assertion follows from the arguments in the proof of (ii). ��
Recall that T is a fixed realization of a supercritical Galton–Watson tree. Observe

that in the supercritical case, a.s. on F there exists a vertex v∗ = v∗(T) such that v∗
has at least two children with an infinite line of descent, and v∗ is the closest such
vertex to o. Hence, in the sequel we may assume without loss of generality that our
sample T is such that v∗ exists.

Lemma 2 For νT-a.e. η there is at most one wave with the property that v∗ topples
but one of its children does not. When this happens, we have N (η) ≥ |v∗| + 1, and
the wave in question is W N−|v∗|(η).

Proof Let o = u0, . . . , u|v∗| = v∗ be the path from o to v∗. Then for each 0 ≤ k ≤
|v∗| − 1, the only child of uk with an infinite line of descent is uk+1. This implies that
the graph H0 := T\T(v∗) is finite. Consider any finite subtree H of T that contains
{v∗} ∪ H0. By the burning test of Dhar [8,12], under νH we have η(w) = deg(w) − 1
for allw ∈ H0. Taking theweak limit, this also holds under νT (which exists for a.e.T).
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It follows from this and Lemma 1 that either v∗ does not topple in the avalanche (when
η(v∗) ≤ deg(v∗) − 2), or if v∗ topples, then there is an earliest wave W 	(η) such that
v∗ topples in W 	(η), but one of its children does not. It follows then by induction that
in W 	+k(η) the vertex u|v∗|−k topples, but u|v∗|−k+1 does not, for 1 ≤ k ≤ |v∗|. Hence
	 + |v∗| = N , and the claim follows. ��

In addition to the above lemmas, we will use the following upper bound. Let
GT(x, y) = (ΔT)−1(x, y), where ΔT is the graph Laplacian of T. This is the same
as the Green’s function of the continuous time simple random walk on T that crosses
each edge at rate 1.

Lemma 3 For η sampled from νT and the corresponding WSFo-measure we have

νT(W 1(η) ∈ A ) ≤ GT(o, o)WSFo(Fo ∈ A )

where A is a cylinder event.

Proof We first show the statement in finite volume H and then take the weak limit. Let
RH be the set of configurations that appear just before a wave (thus each η satisfies
η(o) = degH (o)), and write WH (η) for the set of vertices that topple in the wave
represented by η. By [15] there is a bijection between RH and 2-component spanning
forest on T

∗
H such that o and s are in different components. Alternatively these are

spanning trees of the graph G obtained from T
∗
H by identifying o and s. Let us call

the uniform spanning tree measure on this finite graph WSFo,H . We have

νH (W 1
H (η) ∈ A ) =

∣∣{η ∈ RH : W 1
H (η) ∈ A }∣∣

|RH |
≤ |RH |

|RH | ·
∣
∣{η ∈ RH : WH (η) ∈ A }∣∣

|RH |
= EνH (N )WSFo,H (Fo ∈ A )

where the last step follows from the bijection. By Dhar’s formula [8] and taking the
weak limit H → T (see Sect. 2.1.3) we conclude the claim. ��

Occasionally, we will use Wilson’s algorithm [31], that provides a way to sample
uniform spanning trees in finite graphs, and as such can be used to sample Fo under
WSFo,H , as follows. Enumerate H\{o} as {v1, . . . , v|H |−1}. Run a loop-erased random
walk (LERW) in T

∗
H from v1 until it hits {o, s}, which yields a path γ1. Then run a

LERW from v2 until it hits γ1 ∪ {o, s}, yielding a path γ2, etc. The union of all the
LERWs is a two component spanning forest with o and s in different components, and
the component containing o is distributed as Fo. By passing to the limit H → T and
using transience of T, one obtains the following algorithm to sample Fo underWSFo.
Enumerate T\{o} = {v1, v2, . . .}. Run a LERW from v1, stopped if it hits o, yielding
a path γ1. Then run a LERW from v2, stopped if it hits γ1∪{o}, yielding a path γ2, etc.
Then the union of the paths that attach to o is distributed as Fo underWSFo. (Compare
[23, Section 10.1] on Wilson’s method rooted at infinity.)
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2.2 Electrical networks and the conductancemartingale

2.2.1 Effective conductances and resistances

A general reference for this section is the book [23]. Let G = (V , E) be a finite
or locally finite infinite graph, for example T

∗
H or T(v). We can regard them as an

electrical network where each edge has conductance (and hence resistance) 1. An
oriented edge e = (e−, e+) (or e→) has a head e+ and a tail e−. The set of oriented
edges is denoted by E→. In a finite network, the effective resistance R between two
sets A and B will be denoted by R(A ↔ B). The effective conductance C between
A and B is equal to

C (A ↔ B) = 1

R(A ↔ B)
.

In an infinite network G, we will need the effective resistance to infinity R(A ↔
∞; G) and

R(A ↔ ∞; G) = 1

C (A ↔ ∞; G)
.

where C (A ↔ ∞; G) denotes the effective conductance to infinity in G.
Since we are dealing with trees, we will often be able to compute resistances and

conductances using series and parallel laws. If G is a finite network and T is the
uniform spanning tree of G we can write

P(e ∈ T) = R(e− ↔ e+)

due to Kirchhoff’s law [21]. For any vertex v ∈ T denote

C (v) := C (v ↔ ∞; T(v)) ≤ deg+(v), (7)

where the inequality follows since each edge has unit resistance.
The following lemma is a special case of a computation in the proof of themartingale

property in [26, Theorem 6]. For convenience of the reader, we give here a short proof
based on Wilson’s algorithm, which is possible since we are dealing with trees.

Lemma 4 Let o ∈ A ⊂ T be connected, B ⊂ ∂V A and e = (e−, e+) ∈ ∂E A with
e+ /∈ B. Then we have

WSFo(e
+ ∈ Fo|A ⊂ Fo, B ∩ Fo = ∅) = 1

1 + C (e+)
.

Proof Take H large enough such that A ∪ B ∪ {e+} ⊂ H and let G be the graph
obtained from T

∗
H by identifying o and s. Let T∗

H (e+) be the subgraph of T∗
H induced

by the vertices in (T(e+)∩ H)∪{s}. UsingWilson’s algorithm to sampleWSFo,H , we
have thatWSFo,H (e+ ∈ Fo|A ⊂ Fo, B ∩Fo = ∅) equals the probability that a simple
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random walk in T
∗
H started at e+ hits e− before hitting s. This equals [1 + C (e+ ↔

s;T∗
H (e+))]−1, and letting H go to T we obtain the result. ��

2.2.2 The conductance martingale

Let us fix an environmentT, and let F denote a sample from the measureWSFo defined
on the graph T. Recall Fo is the connected component of o in F.

We inductively construct a random increasing sequence E0 ⊂ E1 ⊂ E2 ⊂ · · · of
edges. Put E0 = ∅. Assuming n ≥ 0 and that En has been defined, let Sn be the set of
vertices in the connected component of o in En ∩ F (we have S0 = {o}). Let us call
all edges in T\En that are incident to Sn active at time n, and let us denote by An the
event that this set of active edges is empty. On the event An , that is, when all edges
in T incident to Sn belong to En , we set En+1 = En . On the event A c

n , we select an
active edge en+1, and we set En+1 = En ∪ {en+1}. (Note: at this point we have not
yet specified how we select an active edge. In some cases this will not matter, in some
other cases we will make a more specific choice later, see Sect. 3). Note that the event
{|Fo| < ∞} equals⋃n≥1An . Let

Mn := C (Sn↔∞; T\En).

LetFn denote the σ -field generated by En and En ∩F. By a result of Morris (see [26,
Theorem 8] and [22, Lemma 3.3]) Mn is an Fn-martingale.

Since we are dealing with trees, the increments of Mn can be expressed very simply.
LetCn := C (e+

n+1) (cf. (7)) and recall that this is the conductance from e+
n+1 to infinity

in the subtreeT(e+
n+1). Then by Lemma 4 the probability, givenFn , that en+1 belongs

to Fo equals (1 + Cn)−1. On this event, we have

Mn+1 − Mn = − 1

1 + 1
Cn

+ Cn = − Cn

1 + Cn
+ Cn = C 2

n

1 + Cn
.

Here the negative term is the conductance from e−
n+1 to infinity via the edge en+1.

This implies that conditionally on Fn we have

Mn+1 − Mn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C 2
n

1 + Cn
with probability

1

1 + Cn
;

− Cn

1 + Cn
with probability

Cn

1 + Cn
.

Let

Di = ET
[
M2

i+1 − M2
i

∣∣Fi
] = Ci

C 2
i

(1 + Ci )2
. (8)

We will use the short notation PT instead of WSFo from now on and denote ET the
associated expectation.
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3 Upper bound on waves

In this section we give upper bounds on waves for general offspring distributions,
conditioning the environment on the event F (cf. (1)).

Let T′ denote the subtree of T consisting of those vertices v such that T(v) is
infinite. We will write

C (v) := max{C (v), 1}. (9)

Recall the random variable N1(T) from (2).

Theorem 3 Suppose that 1 <
∑

k≥0 kpk ≤ ∞. There exist C1 = C1(p) and t0 = t0(p)

such that on the event of survival we have

PT
[|Fo| > t

] ≤ C1 C (o) t−1/2, t ≥ max{t0(p), N1(T)}.

Therefore,

PT
[|Fo| > t

] ≤ C1 N 1/2
1 C (o) t−1/2, t > 0.

We will use the following stopping times:

τ− = inf{n ≥ 0 : Mn = 0}
τb,t = inf{n ≥ 0 : Mn ≥ bt1/2}, b > 0, t > 0.

We impose the following restriction on selecting edges to examine for the martin-
gale. If there is an active edge e available with C (e+)2/(1+C (e+)) < (1/2)t1/2, we
select one such edge to examine, otherwise we select any other edge.

Observe that on the event F , we have M0 > 0 (recall that M0 = C (o)), and Doob’s
inequality gives

PT[τ1/4,t < τ−] ≤ PT

[
sup

n
Mn ≥ 1

4
t1/2

]
≤ 4M0t−1/2.

Moreover, as long as n < τ−, we have Mn > 0. Consider the stopping time

σ = τ1/4,t ∧ inf

{
n ≥ 0 : C (e+)2

1 + C (e+)
≥ 1

2
t1/2 for all active e at time n

}
.

When there are no active edges at all, that is, at time τ−, the condition on them holds
vacuously, and hence σ ≤ τ− ∧ τ1/4,t .

Lemma 5 On the event {σ < τ−},
(i) we have Mσ ≤ t1/2;
(ii) we either have the event {τ1/4,t < τ−} or else no edges are added to the cluster

after time σ , that is: Fσ = Fn = Fτ− for all σ ≤ n ≤ τ−.
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Proof (i) The claim amounts to showing that when Mσ ≥ 1
4 t1/2, we have Mσ ≤ t1/2

(if Mσ ≤ 1
4 t1/2, then Mσ ≤ t1/2). Let e be the edge examined at time σ − 1. Then

Mσ ≤ Mσ−1 + C (e+)2

1 + C (e+)
≤ 1

4
t1/2 + 1

2
t1/2 < t1/2.

(ii) Let us assume that Mσ < 1
4 t1/2 (otherwise the event {τ1/4,t < τ−} has

occurred). Let e1, . . . , e	 be the available edges at time σ . Examine each of the edges
e1, . . . , e	 in turn, to determine whether they belong to Fo or not. Suppose that for
some 1 ≤ j ≤ 	 we have that e j is found to belong to Fo, and let j be the minimal
such index. Then (recall the definition of σ )

Mσ+ j = Mσ+ j−1 + C (e+
j )2

1 + C (e+
j )

>
C (e+

j )2

1 + C (e+
j )

≥ 1

2
t1/2 >

1

4
t1/2.

Thus the event {τ1/4,t < τ−} occurs. This proves our claim. ��
We have

M2
0 = ET

[
M2

σ 1σ<τ−
]

− ET

[
σ−1∑

i=0

Di

]

.

Here, due to Lemma 5(i), the first term is bounded above by

ET

[
M2

σ 1σ<τ−
]

≤ t1/2ET
[
Mσ 1σ<τ−

] = t1/2M0,

and hence

ET

[
σ−1∑

i=0

Di

]

≤ M0t1/2. (10)

The idea is to show that there cannot be many active edges at time σ fromwhich the
conductance is low, and hence there are sufficiently many terms Di such that Di > c
for some c > 0.

Recall the anchored isoperimetry equation (2) and exponential bound (3). The fol-
lowing proposition gives a bound on the probability of there being any connected
subset of the Galton–Watson tree that has ‘many’ boundary edges with low conduc-
tance to infinity. Let o ∈ A ⊂ T be a finite connected set of vertices such that |A| = n.
Let us call e ∈ ∂E A δ-good if C (e+)/(1+C (e+)) ≥ δ. Let us say that A is δ-good if

∣∣ {e ∈ ∂E A : e is δ-good} ∣∣ ≥ δ |∂E A| .

We are going to need the isoperimetric profile function (see [23, Section 6.8]) given
by:

ψ(A, t) := inf
{|∂E K | : A ⊂ K , K/A connected, t ≤ |K |deg < ∞}

, (11)

where |K |deg = ∑
v∈K deg(v).
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Proposition 1 Assume 1 <
∑

k≥0 kpk ≤ ∞. There exists δ1 = δ1(p) > 0 such that
all finite connected sets A with o ∈ A ⊂ T and |A| ≥ N1 are δ1-good.

Proof Observe that if o ∈ A and A is connected, then any K inside the infimum in
(11) is a tree, and hence

|K |deg =
∑

v∈K

deg(v) = 2|K | − 2 + |∂E K |.

This implies that if |A| ≥ N1(T), we have

|∂E K |
|K |deg = |∂E K |

2|K | − 2 + |∂E K | ≥ |∂E K |
2|K | + |∂E K | ≥ δ0|K |

2|K | + δ0|K | = δ0

2 + δ0
.

Consequently,

ψ(A, t) ≥ δ0

2 + δ0
t =: f (t).

Therefore, an application of [23, Theorem 6.41] (which gives an upper bound of the
effective resistance in terms of integrals over the lower bound of the isoperimetric
profile function) yields that

R(A↔∞) ≤
∫ ∞

|A|deg
16

f (t)2
dt = 16 (2 + δ0)

2

δ20
|A|−1

deg.

Hence

C (A↔∞) ≥ δ20

16 (2 + δ0)2
|A|deg ≥ δ20

16 (2 + δ0)2
|∂E A|.

Put

δ1 = 1

2

(
δ20

16 (2 + δ0)2

)

.

Since

C (A↔∞) =
∑

e∈∂E A

C (e+)

1 + C (e+)
,

we have that
∣∣∣∣

{
e ∈ ∂E A : C (e+)

1 + C (e+)
≥ δ1

}∣∣∣∣ ≥ δ1|∂E A|,

which is the claimed inequality. ��
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Proof of Theorem 3 Recall the positive constant δ0 from (2), the positive constant δ1
of Proposition 1, and the a.s. finite random variable N1 = N1(T) of (3).

Assume that T satisfies the event {N1(T) ≤ t}. On the event
{
sup

n
Mn ≤ 1

4
t1/2

}
∩ { |(edges in Fo)| > t − 1

}
,

we have |Fo| ≥ N1. Hence by the anchored isoperimetry equation (2) and by Propo-
sition 1 we have

|(edges in Fo)| = |Fo| − 1

≤ 1

δ0
|∂EFo|

≤ 1

δ0 δ1

∣∣∣∣(edges e in ∂EFo with
C (e+)

1 + C (e+)
≥ δ1)

∣∣∣∣

≤ 1

δ0 δ1

(
1

δ31

σ−1∑

i=0

Di + |(edges in ∂EFo examined after time σ − 1)|
)

,

(12)

where the last inequality used that when Ci/(1 + Ci ) ≥ δ1, we have (recall (8))

Di = Ci
C 2

i

(1 + Ci )2
≥ δ31 .

In order to estimate the last term in the right hand side of (12), we use that if e1, . . . , e	

are the edges that are examined after time σ , then on the event {supn Mn < (1/4)t1/2},
we have

(1/4)t1/2 > Mσ =
	∑

j=1

C (e+
j )

1 + C (e+
j )

≥ 	
(1/2)t1/2

1 + (1/2)t1/2
= 	

1

1 + 2t−1/2 ≥ 	 (1 − 2t−1/2),

and hence for t ≥ 16 we have

	 ≤ (1/4)t1/2

1 − 2t−1/2 ≤ (1/2)t1/2.

This gives that the right hand side of (12) is at most

1

δ0 δ41

σ−1∑

i=0

Di + 1

δ0 δ1

t1/2

2
.
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The inequality (10) implies that

PT

[
σ−1∑

i=0

Di >
t δ0 δ41

2

]

≤ 2 M0

δ0 δ41
t−1/2.

Therefore, if t ≥ t0 := (δ0 δ1)
−2 and T satisfies the event {N1(T) ≤ t}, we have

1
δ0 δ1

t1/2
2 ≤ t

2 , and hence for all t ≥ t0 we have

PT
[|Fo| > t

] = PT[#(edges in Fo) > t − 1]

≤ PT

[
sup

n
Mn ≥ 1

4
t1/2

]
+ PT

[

sup
n

Mn <
1

4
t1/2,

1

δ0 δ41

σ−1∑

i=0

Di >
t

2

]

≤ 4M0t−1/2 + 2 M0

δ0 δ41
t−1/2

= C (o)

[

4 + 2

δ0 δ41

]

t−1/2.

This completes the proof of the first statement, for t ≥ max{t0(p), N1(T)}. The second
statement of the theorem follows immediately, since C1 > 1, and also N 1/2

1 t−1/2 > 1
if t < N1. ��

4 Lower bound on waves

In this section we prove the lower bound corresponding to Theorem 3. Denote by f
the generating function of p, that is f (z) = ∑

k≥0 pk zk . We introduce the following
assumption on f :

there exists z0 := eβ0 > 1 such that f (z0) < ∞. (M-β)

Theorem 4 Suppose thatp satisfies Assumption (M-β)with some β0 > 0, and suppose
that

∑
k≥0 kpk > 1. Then conditioned on F there exists c = c(T) > 0 such that

PT
[|Fo| > t

] ≥ ct−1/2.

We will need the following a.s. upper bound on the vertex boundary of sets.

Proposition 2 Under Assumption (M-β), there exists an a.s. finite C ′ = C ′(T), such
that for any finite connected set o ∈ A ⊂ T we have

|A ∪ ∂V A| ≤ C ′|A|. (13)
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Proof Fix a plane tree A (i.e. A is a rooted tree with root o and the children of each
vertex of A are ordered). Also fix numbers nv, mv for v ∈ A, with the following
properties:

nv = number of children of v in A

n := |A| =
∑

v∈A

nv + 1

mv ≥ 0

dv := nv + mv

M :=
∑

v∈A

mv.

For each v ∈ A, fix a subset Iv ⊂ {1, . . . , dv} such that |Iv| = nv . If we view A as a
subtree of T then every vertex v ∈ A has forward degree nv in A and forward degree
dv in T. Thus each v ∈ A has mv children in T which belong to ∂V A. We define the
event

E(A, {mv}, {Iv}) =
⎧
⎨

⎩

(T, o) has a rooted subtree (A′, o) isomorphic to
(A, o) such that the forward degree in T of each v ∈ A′ equals dv

and the set of children in A′ of each v ∈ A′ equals Iv

⎫
⎬

⎭
.

The probability of E(A, {mv}, {Iv}) equals

P
[
E(A, {mv}, {Iv})

] =
∏

v∈A

p(dv) =
∏

v∈A

p(nv + mv),

where for readability we wrote p(dv) and p(nv + mv) instead of pdv and pnv+mv .
Hence, if 1 < eβ < z0, we have

P [E(A, {mv}, {Iv})] = exp(−βM)
∏

v∈A

p(nv + mv) eβ mv . (14)

Let

E ′(A, {mv}) =
{

(T, o) has a rooted subtree (A′, o) isomorphic to (A, o)

such that the forward degree in T of each v ∈ A′ equals dv

}
.

Taking a union bound in (14) and summing over {Iv} yields:

P
[
E ′(A, {mv})

]

≤ exp(−βM)
∏

v∈A

(
nv + mv

nv

)
p(nv + mv) eβ mv

= exp(−βM)
∏

v∈A

1

nv! (mv + nv) · · · (mv + 1) p(nv + mv) eβ mv .

(15)
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In order to sum over mv , we are going to use that

∑

m≥0

(
n + m

n

)
p(n + m) zm = 1

n!
∑

m≥0

p(n + m) (m + n) · · · (m + 1) zm = 1

n! f (n)(z).

For a fixed M̃ , let us define

E ′′(A, M̃) =
{

(T, o) has a rooted subtree (A′, o) isomorphic to
(A, o) such that

∣∣∂V A′∣∣ ≥ M̃

}
.

Recall that 1 < z1 := eβ < z0. Fix some C ′′ and sum (15) over all {mv}, with
M ≥ M̃ := (C ′′ − 1)n. This gives

P
[
E ′′(A, M̃)

] ≤ exp(−β(C ′′ − 1)n)
∏

v∈A

1

nv! f (nv)(z1). (16)

Due to Cauchy’s theorem, we have

1

nv! f (nv)(z1) ≤ f (z0)
1

(z0 − z1)nv+1 ≤ f (z0) Cnv+1.

Substituting this into (16) and summing over A, while keeping n fixed, yields

P
[∃ connected set o ∈ A ⊂ T with |A| = n such that |∂V A| > (C ′′ − 1)n

]

≤ exp(−β(C ′′ − 1)n) 4n f (z0)
n C2n−1.

Here we used that there are ≤ 4n non-isomorphic rooted plane trees (A, o) of n
vertices. (This can be seen by considering the depth-first search path of A starting
from o, which gives an encoding of the tree by a simple random walk path of length
2n.) IfC ′′ is sufficiently large, the estimate in the right hand side is summable in n ≥ 1,
and hence we have |A ∪ ∂V A| ≤ C ′′|A| = C ′′n for all but finitely many n. Increasing
C ′′ to some C ′ if necessary, yields the claim (13) on the size of the boundary. ��
Lemma 6 Under Assumption (M-β), there exists an a.s. finite C = C(T) such that

ET
[
τ− ∧ t

] ≤ Ct1/2, t ≥ 1.

Proof Note that the set of edges examined by the conductance martingale up to time
τ− equals the edges inFo union the edge boundary ofFo. Thus τ− = |Fo|−1+|∂VFo|.
Using (13) of Proposition 2, we have

PT
[
τ− ≥ s

] ≤ PT
[|Fo ∪ ∂VFo| ≥ s

] ≤ PT
[|Fo| ≥ (1/C ′)s

]
.

The right hand side is at most Cs−1/2, due to Theorem 3. Summing over 1 ≤ s ≤ t
proves the claim. ��
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We need one more proposition for the proof of Theorem 4.

Proposition 3 Under Assumption (M-β), there exists an a.s. finite C = C(T) such
that

τ−∧t−1∑

i=0

Di ≤ C(τ− ∧ t).

Proof Let A be the connected subgraph of T consisting of the edges inside Fo that
have been examined by time τ− ∧ t and found to be in Fo. Then |A| ≤ τ− ∧ t . For
times i such that the edge ei = (e−

i , e+
i ) examined at time i was found to be in Fo, we

use the bound (cf. (7), (8))

Di = Ci
C 2

i

(1 + Ci )2
≤ Ci ≤ deg+(e+

i ).

The sum of Di over such i is hence bounded by |A ∪ ∂V A|. We can bound the sum of
Di over the rest of the times by |∂V (A ∪ ∂V A)|. Due to Proposition 2, there exists an
a.s. finite C = C(T) such that

τ−∧t−1∑

i=0

Di ≤ |A ∪ ∂V A| +
∑

w∈∂V A

C (w) ≤ C ′|A| + (C ′)2|A| ≤ C(τ− ∧ t).

��
Proof of Theorem 4 Recall that on the event F = {T survives} we have that M0 > 0.
Using Proposition 3 and Lemma 6, we write

ET

[
M2

t

]
= ET

[
M2

t 1τ−>t

]
= M2

0 + ET

⎡

⎣
τ−∧t−1∑

i=0

Di

⎤

⎦ ≤ M2
0 + C ET

[
τ− ∧ t

]

≤ M2
0 + C t1/2 ≤ C ′′t1/2.

This gives

M0 = ET
[
Mt
] = ET

[
Mt 1τ−>t

] ≤
(

ET

[
M2

t

])1/2
PT
[
τ− > t

]1/2
,

and hence

PT
[
τ− > t

] ≥ M2
0

C ′′t1/2
.

This gives, using (13) of Proposition 2, that

PT
[|Fo| ≥ t

] ≥ PT
[|Fo ∪ ∂VFo| ≥ C ′ t

]

= PT
[|Fo| − 1 + |∂VFo| ≥ C ′ t − 1

]
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= PT
[
τ− ≥ C ′ t − 1

]

≥ c4 t−1/2. ��

5 Fromwaves to avalanches

We use the following decomposition of the supercritical branching process (see [23,
Section 5.7]). Recall the definition of the subtree T

′ of T: for any v ∈ T such that
T(v) is finite, we remove all vertices of T(v) from T, and hence T′ consists of those
vertices of T with an infinite line of descent. Note that o ∈ T

′. Let { p̃k}k≥0 be the
offspring distribution of T conditioned on extinction. Then T can be obtained from T

′
as follows. Let {T̃v : v ∈ T

′} be i.i.d. family trees with offspring distribution { p̃k}k≥0.
Identify the root of T̃v with vertex v of T′. Then

T
′ ∪ (∪v∈T′T̃v

) dist= T.

Lemma 7 Let v ∈ T
′. On the event v ∈ Fo, we also have T̃

v ⊂ Fo.

Proof Use Wilson’s algorithm to generate Fo by first starting a random walk at v. If
this walk hits o, all vertices of T̃v will belong to Fo. ��
Remark 1 Alternatively, it is possible to verify directly that a recurrent sandpile con-
figuration restricted to any set T̃v\{v} is deterministic, and its height equals deg(w)−1
at w. Hence if v topples in a wave, all of T̃v topples.

5.1 Quenched lower bound on avalanche size

Recall that given a supercritical Galton–Watson treeT, we denoted by v∗ = v∗(T) the
closest vertex to o with the property that v∗ has at least two children with an infinite
line of descent. LetT′

k (T
′≤k , etc.) denote the set of vertices in the k-th generation ofT′

(in all generations up to generation k, etc.), respectively. That is, the smallest integer
k such that |T′

k+1| > 1 is |v∗|.
The following theorem implies the quenched lower bound of Theorem 1 stated in

the introduction.

Theorem 5 Under assumption (M-β)and μ = ∑
k≥0 kpk > 1, there exists c0 = c0(T)

that is a.s. positive on the event when T survives, such that we have

νT
[
S > t

] ≥ νT

[∣∣∣W 1(η)

∣
∣∣ > t

]
≥ νT

[∣∣∣W N−|v∗|(η)

∣
∣∣ > t

]
≥ c0 t−1/2. (17)

Proof The first inequality follows from (7) and the second one fromLemma 1 (iii). For
the third inequality, assume the event that T survives. Let y1, . . . , y	 be the children
of v∗ with infinite line of descent, 	 ≥ 2. Let G be the connected component of o in

T\
(
∪	

j=1T(y j )
)
, and note that G is a finite graph. We will use Wilson’s algorithm to

construct an event on which v∗ is in Fo but y1 is not. Let us use Wilson’s algorithm
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with the walks S(∗), S(1), S(2) started at v∗, y1, y2 respectively, in this order. Consider
the event:

U :=
{

S(∗) hits o; S(1) does not hit v∗; S(2) hits v∗} .

On this event Fo will correspond to a wave with the property that v∗ topples, but
at least one of its children, namely y1, does not. Hence by Lemma 2 this wave is
W N−|v∗|(η). Moreover, we have

Fo ⊃ G ∪ F(2)
o ,

where F(2)
o is distributed as theWSFo component of y2 inT(y2). To complete the proof

we note that

νT

[
|W N−|v∗|(η)| > t

]
≥ PT

[
U , |F(2)

o | > t
] = PT

[
U
]

PT(y2)
[|Fo| > t

]

≥ c(T) c(T(y2)) t−1/2

where the equality follows from the fact that, conditioned on U , F(2)
o is equal in law to

Fo on T(y2). The final lower bound follows from the transience of the random walk
on T(y1) on the one hand, and on Theorem 4 on the other hand. ��

5.2 Upper bound on avalanche size

In this section we prove the following avalanche size bound.

Theorem 6 Assume that 1 <
∑

k≥0 kpk ≤ ∞. There exists C = C(p) and on the
event F an a.s. finite N2 = N2(T) such that for all t ≥ N2 we have

PT[S > t] ≤ C t−1/2.

Recall that N denotes the number of waves. This equals 1 plus the largest integer k,
such that the first wave contains all vertices in the k-th generation of T, see Lemma 1
(ii).

We use the notation PT
v for the law of a simple random walk {Sn}n≥0 on T with

S0 = v. We denote the hitting time of a set A by ξA := inf{n ≥ 0 : Sn ∈ A}.

Lemma 8 We have

νT
[
N ≥ k + 1

] ≤ GT(o, o)
∏

e:e+∈T′
k

1

1 + C (e+)
, k ≥ 0,

where the empty product for k = 0 is interpreted as 1.
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Proof We can bound from above the probability that the first wave contains T≤k by
GT(o, o) times the probability that a typical wave contains it. Thus by Lemma 3

νT
[
N ≥ k + 1

] ≤ GT(o, o) PT
[
Fo ⊃ T≤k

] = GT(o, o) PT
[
Fo ⊃ T

′
k

]
.

In the last step, we used that T≤k ⊂ Fo if and only if T′
k ⊂ Fo. This is implied by

Lemma 7, since ifFo misses a vertexw ∈ T≤k , it will also necessarilymiss an ancestor
of w lying in T′≤k , and hence will also miss a vertex of T′

k . Using Wilson’s algorithm
and Lemma 4 with walks started at vertices in T

′
k , we get that the probability in the

right hand side is at most

∏

e:e+∈T′
k

PT

e+(ξe− < ∞) =
∏

e:e+∈T′
k

1

1 + C (e+)
.

��
We denote by p′ = {p′

k}k≥0 the offspring distribution of T′.

Lemma 9 Assume that 1 <
∑

k≥0 kpk ≤ ∞.

(i) We can find a constant C2 = C2(p), and on the event F an a.s. finite K1 =
K1(T

′) ≥ N1(T
′) such that for all k ≥ K1 we have

max
{

N1(T(w)) : w ∈ T
′
k

} ≤ C2
∣∣T′

k

∣∣.

Moreover, we have P[K1 ≥ k | F] ≤ C exp(−δ′
0k), where δ′

0 = δ0(p′) is the
isoperimetric expansion constant of p′.

(ii) We can also find C3 = C3(p) and c2 = c2(p) > 0 such that for all k ≥ N1(T
′)

we have

(k + 1)1/2
∣∣T′

k

∣∣

⎛

⎝
∑

w∈T′
k

C (w)

⎞

⎠
∏

v∈T′
k

1

1 + C (v)
≤ C3 exp(−c2k). (18)

Proof (i) Conditioned on T
′≤k , the trees

{
T(w) : w ∈ T

′
k

}
are independent, and the

variables N1(T(w)) have an exponential tail, due to (3). Hence we have

P
[
max

{
N1(T(w)) : w ∈ T

′
k

}
> C2

∣∣T′
k

∣∣
]

= E
[
P
[
max

{
N1(T(w)) : w ∈ T

′
k

}
> C2

∣∣T′
k

∣∣
∣∣∣T≤k

]]

≤ E

⎡

⎣
∑

w∈T′
k

P
[

N1(T(w)) > C2
∣
∣T′

k

∣
∣
∣∣
∣T′≤k

]
⎤

⎦

≤ E
[∣∣T′

k

∣∣ C exp
(−c C2

∣∣T′
k

∣∣)] .
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If C2 > 2/c, then the right hand side is at most

C E[exp(−|T′
k |)]. (19)

If k ≥ N1(T
′), then

|T′
k | ≥ δ′

0|T′
<k | ≥ δ′

0k (20)

and hence (19) is summable in k ≥ 1. Therefore, statement (i) follows from the
Borel–Cantelli Lemma.

(ii) Let us write the sum over w, together with the product over v in the form:

∑

w∈T′
k

C (w)

1 + C (w)

∏

v∈T′
k :v �=w

1

1 + C (v)
≤
∑

w∈T′
k

∏

v∈T′
k :v �=w

1

1 + C (v)

Assume k ≥ N1(T
′). Then Proposition 1 can be applied with A = T

′
<k (since

|A| ≥ k ≥ N1(T
′)), and this gives that, for δ′

1 := δ1(p′), we have at least for a
proportion δ′

1 of the δ′
1-good vertices v that

C (v) >
C (v)

1 + C (v)
≥ δ′

1,

so for these v we have 1/(1 + C (v)) < (1 + δ′
1)

−1. Therefore

∏

v∈T′
k :v �=w

1

1 + C (v)
≤ (

1 + δ′
1

)−δ′
1|T′

k |+1 ≤ (1 + δ′
1) exp

(
−(δ′

1)
2 |T′

k |
)

.

Thus the left hand side expression in (18) is bounded above by

(k + 1)1/2 |T′
k | (1 + δ′

1) exp(−(δ′
1)

2 |T′
k |).

Since |T′
k | ≥ δ′

0 k, the statement follows. ��
In what follows, we write

T = T (k) := T
′
<k ∪

(
∪v∈T′

<k
T̃

v
)

. (21)

Lemma 10 Assume that 1 <
∑

k≥0 kpk ≤ ∞. There exists an a.s. finite K2 =
K2(T

′) ≥ K1 such that for all k ≥ K2(T
′) we have

|T | ≤ (1/α)
∣
∣T′

<k

∣
∣ ≤ (α δ0)

−1
∣
∣T′

k

∣
∣ . (22)

Moreover,

P[K2 ≥ k] ≤ C exp(−ck).
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Proof Note that the size of T̃o has an exponential tail; see for example [11, Theorem
13.1]. Thus there exists λ0 = λ0(p) > 0 such that

E
[
exp(λ0|T̃o|)] =: C(λ0) < ∞. (23)

Let 0 < b ≤ 1/2 be a number that we fix with the property that

C(λ0)
b ≤ eλ0/4. (24)

Conditionally on T
′≤k , the trees {T̃v : v ∈ T

′
<k} are i.i.d. with the distribution of T̃o.

Therefore, for α := b/(1 + b) ≤ 1/3, using (23) and (24), we have that

P
[|T | > (1/α)|T′

<k |
] =

∑

A

P
[
T

′
<k = A

]
P
[|T | > (1/α)|A| ∣∣T′

<k = A
]

=
∑

A

P
[
T

′
<k = A

]
P

[
∑

v∈A

∣∣T̃v
∣∣ > (1/b)|A|

]

≤
∑

A

P
[
T

′
<k = A

]
e−λ0 (1/b) |A| C(λ0)

|A|

≤
∑

A

P
[
T

′
<k = A

]
e−(3/4) (λ0/b) |A| ≤ e−(3/4) k λ0/b.

Thus the claim follows from the Borel–Cantelli Lemma. ��

Proof of Theorem 6 In the course of the proof we are going to choose K = K (t) ≥ K2
(recall K2 defined in Lemma 10). We can then write:

PT[S > t] ≤ PT[N ≥ K +1]+PT[1 ≤ N ≤ K2, S > t]+
∑

K2≤k<K

PT[N = k+1, S > t].

(25)
The first term in the right hand side of (25) can be bounded using Lemma 8:

PT[N ≥ K + 1] ≤ GT(o, o)
∏

e:e+∈T′
K

1

1 + C (e+)
.

Since K ≥ K1 ≥ N1(T
′), we can apply Proposition 1 to A = T

′
<k , and hence

PT[N ≥ K + 1] ≤ GT(o, o)
(
1 + δ′

1

)−δ′
1 |T′

K
| ≤ GT(o, o) exp(−(δ′

1)
2 |T′

K
|).

Let us choose

K = min
{
k ≥ 0 : ∣∣T′

k

∣∣ ≥ C3 log t
}
,
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where C3 = C3(p′) := [2(δ′
1)

2]−1. With this choice, we have

PT[N ≥ K + 1] ≤ GT(o, o) t−1/2. (26)

We turn to the second term in the right hand side of (25). Since S(η) = |W 1(η)| +
· · · + |W N (η)|, where W 1(η) ⊃ · · · ⊃ W N (η), see Lemma 1(iii), we can write

PT[1 ≤ N ≤ K2, S > t] ≤ PT[|W 1(η)| > t/K2] ≤ GT(o, o) PT[|Fo| > t/K2],

where we used Lemma 3 in the last step. An application of Theorem 3 gives:

PT[1 ≤ N ≤ K2, S > t] ≤ C1 GT(o, o) N 1/2
1 C (o) K 1/2

2 t−1/2. (27)

Finally, we bound the third term in the right hand side of (25). Let K2 ≤ k < K .
Using again (7), Lemmas 1 and 3, we can write

PT[N = k + 1, S > t] ≤ PT

[
N = k + 1, |W 1(η)| >

t

k + 1

]

≤ PT

[
N ≥ k + 1, |W 1(η)| >

t

k + 1

]

= PT

[
W 1(η) ⊃ T

′
k, |W 1(η)| >

t

k + 1

]

≤ GT(o, o) PT

[
Fo ⊃ T

′
k, |Fo| >

t

k + 1

]

= GT(o, o) PT
[
Fo ⊃ T

′
k

]
PT

[
|Fo| >

t

k + 1

∣∣∣Fo ⊃ T
′
k

]
.

(28)

An application of Lemma 8 yields that

PT
[
Fo ⊃ T

′
k

] ≤
∏

v∈T′
k

1

1 + C (v)
. (29)

We proceed to bound the conditional probability in the right hand side of (28). For
any w ∈ T

′
k , let us write Fo,w = Fo ∩T(w). This way, conditionally on Fo ⊃ T

′
k , we

have

Fo = T ∪
( ⋃

w∈T′
k

Fo,w

)
,

where T was defined in (21), and where the conditional distribution of Fo,w equals
that of Fo(T(w)). Then, using the restriction k ≥ K2, we have

PT

[
|Fo| >

t

k + 1

∣
∣∣Fo ⊃ T

′
k

]
≤ PT

[ ∑

w∈T′
k

|Fo,w| >
t

k + 1
− |T |

∣
∣∣∣Fo ⊃ T

′
k

]
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≤ PT

[ ∑

w∈T′
k

|Fo,w| >
t

k + 1
− (α δ0)

−1 |T′
k |
∣∣
∣∣Fo ⊃ T

′
k

]

≤
∑

w∈T′
k

PT(w)

[
|Fo(T(w))| >

t

(k + 1) |T′
k |

− (α δ0)
−1
]

≤
∑

w∈T′
k

PT(w)

[
|Fo(T(w))| >

t

2 (k + 1) |T′
k |
]

. (30)

In the second inequality we use (22) and in the last step we use that on the one hand
k < K implies |T′

k | < C3 log t and on the other hand k ≤ |T′
<k | ≤ (δ′

0)
−1|T′

k | ≤
(δ′

0)
−1 C3 log t (cf. (20)) and hence the inequality follows for t ≥ t1 = t1(p).
Applying Theorem 3 to the probability in the right hand side of (30) yields the

upper bound

C ′ t−1/2 (k + 1)1/2 |T′
k |1/2

∑

w∈T′
k

C (w) N 1/2
1 (T(w)).

Due to k ≥ K2 ≥ K1, and Lemma 9(i), this expression is at most

C ′′ t−1/2 (k + 1)1/2 |T′
k |
∑

w∈T′
k

C (w). (31)

Substituting (29) and (31) into the right hand side of (28) and using Lemma 9(ii) yields

∑

K2≤k<K

PT[N = k +1, S > t] ≤ C t−1/2 GT(o, o)
∑

k≥K2

exp(−ck) ≤ C GT(o, o) t−1/2.

(32)
The inequalities (26), (27) and (32) substituted into (25) complete the proof of the
theorem. ��

6 Annealed bounds

Finally, we prove annealed bounds.

Theorem 7 (i) Under Assumption (M-β), there exists c = c(p) > 0 such that

E
[
νT[S > t] ∣∣T survives

] ≥ E
[
νT[|Av(η)| > t] ∣∣T survives

] ≥ c t−1/2.

(ii) Assume that 1 <
∑

k≥0 kpk ≤ ∞. There exists C = C(p) such that

E
[
νT[|Av(η)| > t] ∣∣T survives

] ≤ E
[
νT[S > t] ∣∣T survives

] ≤ C t−1/2.
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Proof Part (i) follows immediately after taking expectations in (17) of Theorem 5.
For part (ii), we take expectations in the right hand sides of (26), (27) and (32).

We detail the bound on the expectation of (27), the other two are similar and simpler.
Recall the notation C (o) in (7), and C (o) in (9). We similarly denote by R(o) the
effective resistance in T from o to infinity. We have GT(o, o) = R(o). Therefore,
GT(o, o)C (o) = max{1, R(o)}, and we need to bound the expectation of

max{1, R(o)} N 1/2
1 K 1/2

2 .

Here N1 has an exponential tail, due to (3), and K2 has an exponential tail due to
Lemma 10. We now show that R(o) also has an exponential tail, which immediately
implies that the expectation is finite.

First observe thatR(o) is also the effective resistance inT′ from o to infinity, hence
we may restrict to T

′. Recall that {p′
k}k≥0 denotes the offspring distribution of T′. In

the case p′
1 = 0, there is at least binary branching, and hence R(o) ≤ 1. Henceforth

we assume 0 < p′
1 < 1. Let v∅ be the first descendant of o in T

′, where the tree
branches, that is, there are single offspring until v∅, but v∅ has at least two offspring.
Consider only the first two offspring of v∅. Let v1 and v2 be the first descendants of
v∅ where branching occurs, that is, each individual on the path between v∅ and vi has
a single offspring, but vi has at least two offspring (i = 1, 2). Analogously, we define
vε1,...,εk for each (ε1, . . . , εk) ∈ {1, 2}k , k ≥ 0.

Let R∅ be the resistance between o and v∅ (this is the same as the generation
difference, since each edge has resistance 1), let Rvi be the resistance between v∅ and
vi (for i = 1, 2) and more generally let Rε1,...,εk be the resistance between vε1,...,εk−1

and vε1,...,εk for k ≥ 1. These random variables are independent, and apart from R∅,
they are identically distributed with distribution P[Rε1,...,εk = r ] = (p′

1)
r−1(1 − p′

1),
r ≥ 1. The variable R∅ has distribution: P[R∅ = r ] = (p′

1)
r (1 − p′

1), r ≥ 0.
For any 0 < t < − log(p′

1) the resistance variables all satisfy the bound

E[exp(t Rε1,...,εk )] ≤ ϕ(t) := 1 − p′
1

p′
1

p′
1et

1 − p′
1et

= (1 − p′
1)e

t

1 − p′
1et

.

We fix t0 = − 1
2 log(p′

1) > 0, so that for all 0 < t ≤ t0 the right hand side is bounded

above by (1 + √
p1)/

√
p1 =

√
C ′
2 < ∞.

By the series and parallel laws, the resistance between o and {v1, v2} is

R∅ + 1
1
R1

+ 1
R2

. (33)

By the inequality between the harmonic mean and arithmetic mean, (33) can be
bounded above by

R∅ + 1

2

1
1

R1
+ 1

R2
2

≤ R∅ + 1

2

R1 + R2

2
= R∅ + R1

4
+ R2

4
.
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Iterating this argument, we get for the effective resistanceR(o) between o and infinity,

R(o) ≤ R∅ + 1

4
(R1 + R2) + 1

16
(R1,1 + R1,2 + R2,1 + R2,2) + · · · .

Consequently, by Jensen’s inequality, we have

E[exp(tR(o))] ≤ E[exp(t R1)]E
[
exp

(
t

2
R1

)]
E
[
exp

(
t

4
R1,1

)]
· · ·

≤ E[exp(t R1)]E[exp(t R1)]1/2 E[exp(t R1,1)]1/4 · · ·
≤ ϕ(t)1+

1
2+ 1

4+···

= ϕ(t)2 ≤ C ′
2, 0 < t ≤ t0.

This yields the claimed exponential decay, and the proof is complete. ��
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