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Abstract
We investigate the scaling limit of the range (the set of visited vertices) for a general
class of critical lattice models, starting from a single initial particle at the origin.
Conditions are given on the random sets and an associated “ancestral relation” under
which, conditional on longterm survival, the rescaled ranges converge weakly to the
range of super-Brownian motion as random sets. These hypotheses also give precise
asymptotics for the limiting behaviour of the probability of exiting a large ball, that is
for the extrinsic one-arm probability.We show that these conditions are satisfied by the
voter model in dimensions d ≥ 2, sufficiently spread out critical oriented percolation
and critical contact processes in dimensions d > 4, and sufficiently spread out critical
lattice trees in dimensions d > 8. The latter result proves Conjecture 1.6 of van der
Hofstad et al. (Ann Probab 45:278–376, 2017) and also has important consequences
for the behaviour of random walks on lattice trees in high dimensions.
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942 M. Holmes, E. Perkins

1 Introduction

Super-Brownianmotion is ameasure-valued process arising as a universal scaling limit
for a variety of critical lattice models above the critical dimension in statistical physics
and mathematical biology. Examples include oriented percolation [44], lattice trees
[22], models for competing species such as voter models [3,8], models for spread of
disease such as contact processes [42], and percolation [18], where the full result in the
latter context is the subject of ongoing research (e.g., [20]). The nature of the conver-
gence in all these contexts is that of convergence of the associated empirical processes,
conditioned on long term survival and suitably rescaled, to super-Brownian motion
conditioned on survival. Moreover, often only convergence of the finite-dimensional
distributions is known. Extending this to convergence on path space for lattice trees
was recently carried out in [39] with great effort.

Convergence of the actual random sets of occupied sites to the range of super-
Brownian motion is one of the most natural questions, but has not been achieved in
any of these settings (convergence at a fixed time was done for the voter model in [3],
and for the simple setting of branching randomwalk it is implicit in [10]).We provide a
unified solution to this problem in the form of quite general conditions under which the
rescaled ranges of a single occupancy particle model on the integer lattice (in discrete
or continuous time) converge to the range of super-Brownian motion, conditional on
survival. The conditions include convergence of the associated integrated measure-
valued processes to integrated super-Brownian motion, but a feature of our results is
that convergence of finite-dimensional distributions suffices (see Lemma 2.2 below).
We verify the conditions for the voter model in two or more dimensions, for critical
oriented percolation and the critical contact process in more than 4 dimensions, and
for critical lattice trees in more than eight dimensions.

As a consequence of the above convergence, we obtain the precise asymptotics for
the extrinsic one-arm probability (i.e. the probability that the random set is not con-
tained in the ball of radius r , centred at the origin). The simpler problem of establishing
the asymptotics of the intrinsic one-arm probability (the probability that there is an
occupied site at time t) has itself only recently been resolved at this level of generality
[38]. For sufficiently spread-out (unoriented) percolation in dimensions d > 6, Kozma
and Nachmias [28] have identified the correct power law decay, but have not proved
a limit theorem.

Our general lattice models include a random “ancestral relation” which in the case
of random graphs such as lattice trees or oriented percolation is a fundamental part of
the model, but for particle models such as the voter model or contact process, arises
naturally from the graphical construction of such models. Our first main result will in
fact be a uniform modulus of continuity for all “ancestral paths”. This result plays a
crucial role in our proof of the above convergence, but it is also important in its own
right.

We begin by briefly defining the four models which motivated our general results.
These models depend on a random walk step kernel (probability mass function), D :
Z
d → R+, with finite range and covariance matrix σ 2

D Id×d for some σ 2
D > 0, and

such that D(−x) = D(x) and D(o) = 0, where o will denote the origin. By finite
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On the range of lattice models in high dimensions 943

range we mean there is an L ≥ 1 such that D(x) = 0 if ‖x‖ > L where ‖x‖ is the
L∞ norm of x . Let |A| denote the cardinality of a finite set A.

The voter model

The voter model onZ
d (introduced in [7,21]) is a spin-flip system, and so in particular,

a continuous time Feller process (ξt )t≥0 with state space {0, 1}Zd
and flip rates as

follows. With rate one each vertex, say at x , imposes its type (0 or 1) on a randomly
chosen vertex y with probability D(y − x). Let ξt (x) ∈ {0, 1} denote the type of
x ∈ Z

d at time t ≥ 0, and let Tt := {x ∈ Z
d : ξt (x) = 1}. In the notation of [30] the

flip rate at site x in state ξ is

c(x, ξ) =
∑

y:ξ(y) �=ξ(x)

D(y − x).

If E[|T0|] < ∞, then |Tt | is a non-negative martingale and the extinction time S(1) =
inf{t ≥ 0 : |Tt | = 0} is a.s. finite (see Lemma 7.1(b) below). We will usually assume
that the process starts with a single site of type 1 at time 0, located at the origin o, i.e.

P(T0 = {o}) = 1.

Oriented percolation

For an introduction to oriented percolation (OP) see e.g. [44]. For simplicity we take D
to be uniformon ([−L, L]d\{o})∩Z

d , where d > 4, althoughmore general kernels are
possible (see Remark 2.7). The bond ((n, x), (n + 1, y)) is occupied with probability
pD(y − x), where p ∈ [0, ‖D‖−1∞ ], independent of all other bonds. Let Pp denote
the law of the model. We say that there is an occupied path from (n, x) to (n′, x ′),
and write (n, x) → (n′, x ′), if there is a sequence x = x0, x1, . . . , xn′−n = x ′ in
Z
d such that ((n + i − 1, xi−1), (n + i, xi )) is occupied for each i = 1, . . . , n′ −

n ≥ 0. We include the convention that (n, x) → (n, x ′) if and only if x = x ′. Let
Tn = {x ∈ Z

d : (0, o) → (n, x)}, and observe that Pp(T0 = {o}) = 1. Define
pc = sup{p : limn→∞ Pp(Tn �= ∅) = 0}. By (1.12) of [44], pc = 1 + O(L−d),
and so pc ∈ (0, ‖D‖−1∞ ) for L large. Let P = Ppc . It is well known (e.g. [38]) that
limn→∞ P(Tn �= ∅) = 0.

Lattice trees

A lattice tree (LT) T on Z
d , is a finite connected simple graph in Z

d with no cycles. It
consists of a set of lattice bonds, E(T ) (unordered pairs of points inZ

d ), together with
the corresponding set of end-vertices, V (T ), inZ

d . By connected wemean that for any
distinct v1, v2 ∈ V (T ) there is an m ∈ N and a function w : {0, . . . ,m} → V (T ) so
thatw(0) = v1,w(m) = v2, and for all 1 ≤ k ≤ m, {w(k−1), w(k)} ∈ E(T ). We call
w a path in T of length m from v1 to v2. Given any two vertices v1, v2 in the tree, the
lack of cycles means there is a unique path (length 0 if v1 = v2) of bonds connecting
v1 and v2. The number of such bonds, dT (v1, v2), is the tree distance between v1 and
v2. It is a metric on the set of vertices, called the tree metric. Let TL(x) denote the
countable space of lattice trees on Z

d whose vertex set contains x ∈ Z
d and for which
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944 M. Holmes, E. Perkins

every bond has L∞-norm at most L ≥ 1. The parameter L will be taken sufficiently
large for our main results. We now describe a way of choosing a “random” lattice tree
T containing the origin, i.e. T ∈ TL := TL(o).

Let d > 8 and let D(·) be the probability mass function of the uniform distribution
on a finite box ([−L, L]d\o) ∩ Z

d (see Remark 2.7). For e = (y, x), let D(e) :=
D(x − y). For a lattice tree T ∈ TL(x) define

Wz,D(T ) = z|T |
∏

e∈E(T )

D(e), (1.1)

where |T | is the number of edges in T . Since D is uniform (1.1) could also be written
as (cLz)|T |. For any z > 0 such that ρz :=∑

T∈TL (o) Wz,D(T ) < ∞ we can define a
probability on TL(o) by Pz(T = T ) = ρ−1z Wz,D(T ). Sub-additivity arguments show
that zD = sup{z > 0 : ρz <∞} ∈ (0,∞). It is known (e.g. Theorem 1.2 of [17]) that
ρzD < ∞ and that zD = sup{z : Ez[|T |] < ∞}, but EzD [|T |] = ∞. Hereafter we
write W (·) for the critical weighting WzD,D(·), write ρ := ρzD and P = PzD , and we
select a random tree T according to this critical weighting.

For T ∈ TL(o) and m ∈ Z+, let Tm denote the set of vertices in T of tree distance
m from o, so Tm is the corresponding set of vertices for our random tree T and
P(T0 = {o}) = 1. Note that limn→∞ P(Tn �= ∅) = 0 (see e.g. [38]).

Contact process

The contact process (CP) on Z
d is a spin-flip system (ξt )t≥0 (hence a cadlag Feller

process) with state space {0, 1}Zd
and rates (λ > 0)

c(x, ξ) = ξ(x)+ (1− ξ(x))λ
∑

y

D(y − x)ξ(y).

It describes the spread of an infection in that ξt (x) = 1 if and only if site x is infected
at time t , and the above rates imply that an infected site x recovers at rate 1, and an
uninfected site x with rate λ chooses a “neighbour” y with probability D(y − x) and
becomes infected if y is infected. For simplicity (see Remark 2.7) we will take D to be
the probabilitymass function of the uniformdistribution on ([−L, L]d\{o})∩Z

d where
d > 4. We start from a single infected particle at the origin at time 0. Let Pλ denote a
probability measure under which (ξt )t≥0 has the law above with rates λ. Let Tt = {x :
ξt (x) = 1}, so Pλ(T0 = {o}) = 1. Let λc = sup{λ : limt→∞ Pλ(Tt �= ∅) = 0}, and
P = Pλc . It is known (e.g. [38,41]) that λc ∈ (0,∞), and that limt→∞ P(Tt �= ∅) = 0.

General models and ancestral relations

Our goal is to establish general conditions for convergence of the ranges of a wide
class of rescaled latticemodels (including the votermodel, oriented percolation, lattice
trees, the contact process, and perhaps also percolation). We introduce our general
framework in this section. The time index I will either be Z+ (discrete time) or
[0,∞) (continuous time). We use the notation It = {s ∈ I : s ≤ t}. As we will be
dealing with random compact sets, we let K denote the set of compact subsets of R

d .
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On the range of lattice models in high dimensions 945

We equip it with the Hausdorff metric d0 (and note that (K, d0) is Polish) defined by
d0(∅, K ) = d0(K , ∅) = 1 for K �= ∅, while for K , K ′ �= ∅

d0(K , K ′) = d1(K , K ′) ∧ 1, where

d1(K , K ′) := Δ1(K , K ′)+Δ1(K
′, K ),

Δ1(K , K ′) := inf
{
δ > 0 : K ⊂ {x : d(x, K ′) ≤ δ}}, and

d(x, K ) := inf{|x − y| : y ∈ K }. (1.2)

As our models of interest will be single occupancy models, we assume throughout
that

T = (Tt )t∈I is a stochastic process taking values in the finite

subsets of Z
d such that T0 = {o}, and in continuous time the

sample paths are cadlag K − valued. (1.3)

Notation. For a metric space M , D([0,∞), M) will denote the space of cadlag M-
valued paths with the Skorokhod topology, and Cb(M) is the space of bounded R-
valued continuous functions on M .C2

b (R
d) is the set of bounded continuous functions

whose first and second order partials are also in Cb(R
d). Integration of f with respect

to a measure μ is often denoted by μ( f ).
Cadlag paths are bounded on bounded intervals and so this implies

for any t ∈ I ,∪s∈ItTs is a finite subset of Z
d . (1.4)

We will write

(t, x) ∈ T if and only if x ∈ Tt , where (t, x) ∈ I × Z
d .

(Ft )t∈I will denote a filtration with respect to which (Tt )t∈I is adapted. In practice it
may be larger than the filtration generated by T .

A random ancestral relation, (s, y)
a→ (t, x), on I ×Z

d will be fundamental to our
analysis. If it holds we say that (s, y) is an ancestor of (t, x), and it will imply s ≤ t .
We write

(s1, y1)
a→ · · · a→ (sN , yN ) iff (si , yi )

a→ (si+1, yi+1) for i = 1, . . . , N − 1,

and define (for s, t ∈ I , x, y ∈ Z
d ),

es,t (y, x) =
{
1((s, y)

a→ (t, x)) if s < t

1(x = y ∈ Tt ) if s ≥ t,
and êt (y, x)(s) = es,t (y, x). (1.5)
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946 M. Holmes, E. Perkins

We will assume
a→ satisfies the following conditions where (AR)(i)–(iii) will hold off

a single null set which we usually ignore:

(AR)(i) For all (s, y), (t, x) ∈ I × Z
d :

(s, y)
a→ (s, x) iff x = y ∈ Ts, (1.6)

(s, y)
a→ (t, x) implies s ≤ t, y ∈ Ts, and x ∈ Tt , (1.7)

(0, o)
a→ (t, x) iff x ∈ Tt . (1.8)

(i i) For any 0 ≤ s1 < s2 < s3 in I and y1, y2, y3 ∈ Z
d :

(s1, y1)
a→ (s2, y2)

a→ (s3, y3) implies (s1, y1)
a→ (s3, y3). (1.9)

Conversely if (s1, y1)
a→ (s3, y3) then ∃y2 ∈ Ts2 s.t. (1.10)

(s1, y1)
a→ (s2, y2)

a→ (s3, y3).

(i i i) If I = [0,∞), then for every x, y ∈ Z
d : (1.11)

êt (y, x) ∈ D([0,∞), R) =: DR, for every t ∈ I , and

t �→ êt (y, x) ∈ D([0,∞),DR).

(iv) es,t (y, x) is Ft −measurable for all s, t in I and x, y ∈ Z
d . (1.12)

We call
a→ an ancestral relation iff (AR) holds. In this casewe call (T ,

a→) an ancestral
system.

Remark 1.1 (1) It is immediate from (1.8) and (1.10) (the latter with (s1, s2, s3) =
(0, s, t)) that

Ts = ∅ ⇒ Tt = ∅ ∀t ≥ s. (1.13)

(2) In practice it is often easiest to verify (AR)(iii) by showing s �→ es,t (y, x) is
cadlag for each t, x, y, and that

For each t ≥ 0, x, y ∈ Z
d there is a δ > 0 s.t.

êu(y, x) = êt (y, x), ∀u ∈ [t, t + δ) and (1.14)

êu(y, x) = êu′(y, x), ∀u, u′ ∈ (t − δ, t) ∩ [0,∞). (1.15)

We will always assume (1.3) and (AR) when dealing with our abstract models.

In the discrete time case we can extend Tt and Ft to t ∈ [0,∞) by

Tt = T�t�, T = {(t, x) : x ∈ Tt , t ≥ 0}, Ft = F�t�,

and define (s, y)
a→ (t, x) for all t ≥ s ≥ 0 by

(s, y)
a→ (t, x) iff (�s�, y) a→ (�t�, x). (1.16)

It is easy to check then that in the discrete case (AR)(i)–(iv) hold, where now s, si , t
are allowed to take values in [0,∞). Moreover (1.14) and (1.15) hold.
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On the range of lattice models in high dimensions 947

Note: We allow n to denote a real parameter in [1,∞).

For A ⊂ R
d and a ∈ R define aA = {ax : x ∈ A}. To rescale our model for

n ∈ [1,∞) we set

T (n)

t = Tnt/
√
n, for t ≥ 0,

and for s, t ≥ 0, x, y ∈ Z
d/
√
n

we write (s, y)
a,n→ (t, x) iff (ns,

√
ny)

a→ (nt,
√
nx).

We also define for n ∈ [1,∞), s, t ≥ 0 and x, y ∈ Z
d/
√
n,

ê(n)

t (y, x)(s) = e(n)

s,t (y, x) = ens,nt (
√
ny,

√
nx), (1.17)

and note that ê(n)

t (y, x)(s) = ênt (
√
ny,

√
nx)(ns).

Here is a simple consequence of (AR)(ii) which will be used frequently.

Lemma 1.2 W.p.1 if n ∈ [1,∞), M ∈ N, 0 ≤ s0 < s1 < · · · < sM , and (s0, y0)
a,n→

(sM , yM ), then there are y1 ∈ T (n)
s1 , . . . , yM−1 ∈ T (n)

sM−1 s.t. (si−1, yi−1)
a,n→ (si , yi ) for

i = 1, . . . , M.

Proof Fix ω s.t. (AR)(i)–(iii) hold. By scaling we may assume n = 1. By (1.10) there

is a y1 ∈ Ts1 s.t. (s0, y0)
a→ (s1, y1)

a→ (sM , yM ). Repeat this argument M − 2 times
to construct the required sequence. ��
Definition 1.3 An ancestral path to (t, x) ∈ T is a cadlag path w = (ws)s≥0 for

which (s, ws)
a→ (s′, ws′) for every 0 ≤ s ≤ s′ ≤ t , and ws = x for all s ≥ t . The

random collection of all ancestral paths to points in T is denoted by W and is called

the system of ancestral paths for (T ,
a→).

If n ∈ [1,∞) and w is an ancestral path to (nt,
√
nx), we define the rescaled

ancestral path w(n) by w
(n)
s = wns/

√
n, and call w(n) an ancestral path to (t, x) ∈ T (n)

t .

Remark 1.4 It is easy to check that if I = Z+ then (1.16) and (1.6) imply that for any
ancestral path w ∈W , ws = w�s� for all s ≥ 0. For this reason we will often restrict
our ancestral paths to s ∈ Z+.

Proposition 1.5 With probability 1 for any (t, x) ∈ T ,W includes at least one ances-
tral path to (t, x).

The elementary proof is given in Sect. 6 below.
Let us briefly consider (1.3) and (AR) for our prototype models. For lattice trees

(1.3) is immediate. Since a lattice tree T ∈ TL is a tree, for any x ∈ Tm there is a
unique “ancestral” path w(m, x) = (wk(m, x))k≤m of length m in the tree from o to

x . Moreover wk(m, x) ∈ Tk for all 0 ≤ k ≤ m. Define (k, y)
a→ (m, x) iff x ∈ Tm ,

0 ≤ k ≤ m, and wk(m, x) = y. Here we allow m = 0. AR(i) and AR(ii) are then
elementary to verify. It remains to verify AR(iv) which is deferred to Sect. 9 where
the definition of Ft is also given.

123



948 M. Holmes, E. Perkins

For the voter model there will be a unique ancestral pathw(t, x) for each (t, x) ∈ T
(see Lemma7.3), obtained by tracing back the opinion 1 at x at time t to its source at the
origin at time 0. Formally the ancestral paths are defined by reversing the dual system
of coalescing random walks, obtained from the graphical construction of the voter

model. We then define (s, y)
a→ (t, x) iff 0 ≤ s ≤ t , x ∈ Tt and ws(t, x) = y. This

standard construction is described in Sect. 7 where (AR) and (1.3) are then verified
(see Lemmas 7.1 and 7.2).

For oriented percolation (1.3) is immediate, and we write (n, x)
a→ (n′, x ′) if

(0, o) → (n, x) and (n, x) → (n′, x ′). Here ancestral paths are not unique, since there
maybemanyoccupied paths between (n, x) and (n′, x ′). LetFn denote theσ -field gen-
erated by the bond occupation status for all bonds

((m − 1, x), (m, x ′)) for 1 ≤ m ≤ n and x, x ′ ∈ Z
d . It is easy to see that

a→ is
an ancestral relation (i.e. (AR) holds).

For the contact process, the ancestral relation will be similar to that for oriented
percolation, but will be obtained from the graphical construction of the contact process
(see Sect. 10 below).

Survival probability and measure-valued processes

The survival time of our scaled model T (n) is

S(n) = inf{t ≥ 0 : T (n)

t = ∅},

so that by (1.13) and (1.3),

T (n)

t = ∅ for all t ≥ S(n). (1.18)

The unscaled survival time is S(1), and for t > 0, the unscaled survival probability is
defined as

θ(t) := P(S(1) > t).

Our main results require a number of conditions on T , the first of which concerns the
asymptotics of the survival probability.

Notation. Write f (t) ∼ g(t) as t ↑ ∞ iff limt→∞ f (t)/g(t) = 1. Similarly for
f (t) ∼ g(t) as t ↓ 0.

Condition 1 (Survival Probability) There is a constant sD > 0 and a non-decreasing
function m : [0,∞) → (0,∞) such that m(t) ↑ ∞, as t ↑ ∞

θ(t) ∼ sD
m(t)

as t ↑ ∞, (1.19)

for any s > 0, lim
t→∞m(st)/m(t) = s, (1.20)

and a constant c1.21 ≥ 1 such that

m(sn)

m(n)
≤ c1.21s, ∀s, n ≥ 1,

m(n)

m(sn)
≤ c1.21

1

s
, for 1 ≤ s ≤ n. (1.21)
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On the range of lattice models in high dimensions 949

The monotonicity properties of m and θ and (1.19) easily show that

0 < sD = inf
t≥0m(t)θ(t) ≤ sup

t≥0
m(t)θ(t) = sD <∞, (1.22)

Note also that the first inequality in (1.21) with n = 1 implies that

m(s) ≤ c1.23s, for all s ≥ 1. (1.23)

For oriented percolation with d > 4 we set

m(t) = mOP (t) = A2V (t ∨ 1), (1.24)

where A, V > 0 are constants that depend on D;

A = lim
t→∞E[|Tt |], (1.25)

and V is called the vertex factor (see [38] and in particular Condition 1.1 with r = 2
and k = 0 for the former). Similarly we have such an A and V for the contact process
with d > 4 and for lattice trees with d > 8 and we set

m(t) = mCP (t) = A2V (t ∨ 1), and (1.26)

m(t) = mLT (t) = A2V (t ∨ 1). (1.27)

For the voter model in two or more dimensions we set

m(t) = mVM (t) =
{
t ∨ 1 if d > 2

t∨e
log(t∨e) if d = 2,

and

0 < βD =
{
Po(Sn �= o ∀n ∈ N) if d > 2

2πσ 2
D if d = 2.

In the above under Po, (Sn)n∈Z+ is a discrete-time random walk with step distribution
D, started at o, and σ 2

D Id×d is the covariance matrix of D.

Proposition 1.6 (a) Condition 1 holds for critical sufficiently spread out oriented per-
colation in dimension d > 4 with sD = 2A.

(b) Condition 1 holds for critical sufficiently spread out lattice trees in dimension
d > 8 with sD = 2A.

(c) Condition 1 holds for critical sufficiently spread out contact processes in dimen-
sion d > 4 with sD = 2A.

(d) Condition 1 holds for the voter model in dimension d > 1 with sD = β−1D .

123



950 M. Holmes, E. Perkins

Proof Conditions (1.20) and (1.21) are obvious in all four cases.
(a),(b),(c) For all 3 models (1.19) is a special case of Theorem 1.4 of [38] (for oriented
percolation this was first proved in [36,37]).
(d) Theorem 1′ of [4] (or (1.5) of [3]) gives (1.19) for the voter model. ��

We can reinterpret the state of our rescaled models in terms of an empirical measure
given by

X (n)

t = 1

m(n)

∑

x∈T (n)
t

δx = 1

m(n)

∑

x∈Tnt
δx/

√
n .

So X (n)

t takes values in the Polish space MF (Rd) of finite measures on R
d equipped

with the topology of weak convergence. It follows from (1.3) that the measure-valued
process X (n) = (X (n)

t )t≥0 is in the Polish spaceD := D([0,∞),MF (Rd)). We define
the survival map S : D→ [0,∞) for ν = (νt )t≥0 ∈ D by

S(ν) = inf{t > 0 : νt (Rd) = 0},

so that our survival times satisfy S(n) = S(X (n)), and X (n)

t = 0 for all t ≥ S(n) by
(1.18).

Weak convergence and super-Brownian motion

An adapted a.s. continuousMF (Rd)-valued process, X = (Xs)s≥0, on a complete fil-
tered probability space (Ω,F ,Ft , PX0) is said to be a super-Brownian motion (SBM)
with branching rate γ > 0 and diffusion parameter σ 2

0 > 0 (or a (γ, σ 2
0 )-SBM) start-

ing at X0 ∈MF (Rd) iff it solves the following martingale problem (see [32, Section
II.5] for well-posedness of this martingale problem):

∀φ ∈ C2
b (R

d), Mt (φ) = Xt (φ)− X0(φ)−
∫ t

0
Xs(σ

2
0 Δφ/2) ds

is a continuous Ft −martingale starting at 0, and with square

function 〈M(φ)〉t =
∫ t

0
Xs(γ φ2)ds.

Let S = S(X). Associated with such a SBM is a σ -finite measure, No = N
γ,σ 2

0
o , on

the space of continuous measure-valued paths satisfying ν0 = 0, 0 < S < ∞ and
νs = 0 for all s ≥ S; letΩEx

C denote the space of such paths.No is called the canonical
measure for super-Brownianmotion. The connection betweenNo and super-Brownian
motion is that if Ξ is a Poisson point process on the space ΩEx

C with intensity No,
then

Xt =
∫

νt dΞ(ν), t > 0; X0 = δ0 (1.28)

defines a SBM starting at δ0. It is known that

No(S > s) = 2

γ s
<∞ for all s > 0. (1.29)
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On the range of lattice models in high dimensions 951

Intuitively No governs the evolution of the descendants of a single ancestor at time
zero, starting from the origin. For the above and more information on the canonical
measure of super-Brownian motion see, e.g., Section II.7 of [32]. We will sometimes
work with the unconditioned measures (n ∈ [1,∞))

μn(·) = m(n)P(·).

Note that (1.19) and (1.20) of Condition 1 together imply

for each s > 0, lim
n→∞

2

sD
μn(S

(n) > s) = 2

s
. (1.30)

Combining (1.22) with (1.21) and taking limits from the left, we arrive at

sD
c1.21(s ∨ 1)

≤ μn(S
(n) > s) ≤ μn(S

(n) ≥ s) ≤ c1.21sD
s ∧ n

, ∀s ≥ 0. (1.31)

Suppressing dependence on γ, σ 2
0 , for s > 0 we define probabilities by

P
s
n(·) = P

( · ∣∣S(n) > s) (1.32)

and
N
s
o(·) = No(· | S > s). (1.33)

We slightly abuse the above notation and will also denote super-Brownian motion
under No, or the probabilities N

s
o, by X = (Xt )t≥0. Then for φk(x) := eik·x we have

No[Xt (φk)] = e−σ 2
0 |k|2t/2. (1.34)

For LT,OP, andCP and d large as usual, wewill use the fact that our rescaledmodels
converge (at least in the sense of finite-dimensional distributions) to SBM with γ = 1
and

σ 2
0 = σ 2

Dv = σ 2

d
v, (1.35)

where σ 2(= dσ 2
D) and v are as in [22,42,44], and the model dependent constant v > 0

is non-trivial (it involves so-called lace expansion coefficients). v satisfies (see e.g.
[40, page 295] with p∗ = 2 for LT and p∗ = 1 for OP,CP)

v = 1+ O(L−d/p∗). (1.36)

For the VM and LT, the above convergence holds on path space:

Proposition 1.7 Consider either critical lattice trees with d > 8 and L sufficiently
large, or the voter model with d > 1. Then for any s > 0,

P
s
n(X

(n) ∈ ·) w−→ N
s
o, (weak convergence on D),
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where N
s
o has parameters (γ, σ 2

0 ) = (1, σ 2
Dv) for lattice trees, and (γ, σ 2

0 ) =
(2βD, σ 2

D) for the voter model.

Proof For the voter model this is Theorem 4(b) of [3]. For lattice trees this is an
immediate consequence of Theorem 1.2 of [39] (and an elementary rescaling) and
(1.30). The reader should note, however, that the definition of μn in [39] and that
given above differ by a constant factor of A. ��

Remark 1.8 The size of our random tree, |T |, is random. If we were to condition
on |T | = n then (since all trees with n edges have equal weight) our conditional
probability measure chooses a tree with n edges uniformly at random. If one rescales
the n+ 1 vertex locations by D−11 n−1/4 (where D1 is a constant depending on L) and
considers the random mass distribution obtained by assigning mass (n+ 1)−1 to each
vertex, Aldous (Section 4.2 of [1]) had conjectured, and Derbez and Slade [11,34] then
proved, that the resulting rescaled empirical measures converges weakly to Integrated
Super-Brownian Excursion (ISE). The latter is essentially super-Brownian motion
integrated over time and conditioned to have total mass one.

For oriented percolation and the contact process, convergence of the finite-
dimensional distributions (f.d.d.’s) to those of a (1, σ 2

Dv)-SBM, where v is as in
(1.36), is known [42,44] (see also [24,38]) but tightness (and convergence on path
space) remains open. The actual weak convergence result we will impose on our lat-
tice models (Condition 6 below) will in fact follow from convergence of the f.d.d.’s
and a moment bound on the total mass (see Lemma 2.2).

Our main objective is to give general conditions for the convergence of the rescaled
sets of occupied sites. This convergence follows neither from the notions of weak con-
vergence above, nor from the weak convergence of the so-called historical processes
(see e.g. [9,23]).

Range

The range of T is R(1) = ∪t∈ITt , which by (1.4) and (1.13) is a finite subset of Z
d

on {S(1) < ∞}, and hence under Condition 1 will be finite a.s. The range of T (n) is
R(n) = R(1)/

√
n = ∪t≥0T (n)

t . So by the above we see that

Condition 1 implies R(n) is a.s. a finite subset of R
d . (1.37)

Let R : D→ closed subsets of R
d be defined by

R(ν) = supp

(∫ ∞

0
νt dt

)
,

where supp(μ) is the closed support of a measure μ. Clearly R(n) = R(X (n)) for all
n ≥ 1. The radius mapping r0 : K→ [0,∞) on the space of compact subsets of R

d

is given by
r0(K ) = sup{|x | : x ∈ K }.
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On the range of lattice models in high dimensions 953

Of particular interest is the extrinsic one-arm probability

ηr = P
(
R(1) ∩ B(o, r)

c �= ∅
) = P(r0(R

(1)) > r).

In the setting of high-dimensional critical percolation, Kozma and Nachmias [28]
have proved that as r →∞, r2ηr is bounded above and below by positive constants.
It is believed (see e.g. [19, Open Problem 11.2] and [39, Conjecture 1.6]) that in fact
r2ηr → C > 0 for various critical models (percolation, voter, lattice trees, oriented
percolation, and the contact process) all above their respective critical dimensions.
To understand this r−2 behaviour in terms of the above weak convergence results,
consider the one-arm probabilities for the limiting super-Brownian motion.

The range of a (γ, σ 2
0 )-SBM X is denoted by

R = R(X).

The a.e. continuity of (Xt )t≥0 easily shows that

R = ∪t≥0 supp(Xt ) No − a.e.

We note that R is a compact subset No-a.e. This is well-known under Pδ0 (see, e.g.
Corollary III.1.4 of [32]) and then follows easily under No using (1.28). We now state
a quantitative version of this from [27]. For d ≥ 1, let vd : Bd(0, 1) → R+ be the
unique positive radial solution of

Δvd = v2d , with lim|x |↑1 vd(x) = +∞. (1.38)

(See Theorem 1 of [27] for existence and uniqueness of vd .)

Lemma 1.9 For all d ≥ 1 and r > 0, N
γ,σ 2

0
o (r0(R) > r) = vd (0)σ 2

0
γ

r−2.

Proof Theorem 1 of [27] and a simple scaling argument show that

Pδ0(r0(R) > r) = 1− exp
(
−vd(0)σ 2

0

γ
r−2

)
.

On the other hand, the left-hand side of the above is 1 − exp(−No(r0(R) > r)) by
(1.28). Combining these equalities completes the proof. ��

2 Statement of main results

We continue to state the general conditions which will imply our main results. Recall
our standing assumptions (1.3) and (AR), the function m from (1.21), and the uncon-
ditioned measures (n ≥ 1) μn(·) = m(n)P(·). Recall also that (Ft )t∈I is the filtration
introduced prior to (AR) which will contain the filtration generated by (Ts)s≤t or
equivalently by (X (1)

s )s≤t .
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2.1 Conditions

We now introduce additional conditions on (T ,
a→). Condition 2 is simple for the

voter model, and is one of the outputs of the inductive approach to the lace expansion
[40,43] for other models, while Condition 3 will usually follow from Condition 1 and
a form of the Markov property or Markov inequality.

Condition 2 (Total Mass) supt∈I E
[|Tt |

] = c2 <∞.

Condition 3 (Conditional Survival Probability) There exists c3 > 0 such that for all
s ≥ 0, t > 0, on the event {y ∈ Ts} we have (recall the function m(·) from (1.21))

P
(∃z : (s, y) a→ (s + t, z)

∣∣Fs
) ≤ c3

m(t)
a.s.

The next condition is the main input for our uniform modulus of continuity for
ancestral paths (e.g. Theorem 1 below).

Condition 4 (Spatial Increments) There exists a p > 4 and c4 = c4(p) > 0 such that
for every 0 < s ≤ t ,

E

⎡

⎣
∑

x∈Tt

∑

y∈Tt−s
1((t − s, y)

a→ (t, x))|x − y|p
⎤

⎦ ≤ c4(s ∨ 1)p/2. (2.1)

We will need an additional hypothesis to control the ancestral paths just before the
terminal value.

Condition 5 (Local Jumps) There are κ > 4 and c5 > 0 such that for all s ≥ 0,
y ∈ Z

d , and N > 0,

P(∃ (t, x) s.t. (s, y)
a→ (t, x), t ∈ [s, s + 2], |y − x | ≥ N |Fs)

≤ c5N
−κ on {y ∈ Ts}. (2.2)

Remark 2.1 In discrete time if for some L > 0,

∀k ∈ Z+, ∀x, y ∈ Z
d [(k, x) a→ (k + 1, y) ⇒ ‖x − y‖ ≤ L], (2.3)

then Condition 5 holds for any κ > 4. This is obvious since the conditional probability
on the left-hand side of (2.2) is then zero if N > 2

√
dL .

If ν = (νt )t≥0 ∈ D and r > 0, define ν̄r ∈ MF (Rd) by ν̄r (·) =
∫ r
0 νt (·)dt , and

ν̄∞ ∈ MF (Rd) by ν̄∞(·) = 1(S(ν) <∞)
∫∞
0 νt (·)dt .

Condition 6 (Measure Convergence) There are parameter values (γ, σ 2
0 ) for No so

that for every s > 0 and 0 ≤ t0 < t1 <∞, as n →∞,

P
s
n

(
X̄ (n)

t1 − X̄ (n)

t0 ∈ ·
) w−→ N

s
o

(
X̄t1 − X̄t0 ∈ ·

)
on MF (Rd).
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For critical lattice trees (d > 8) with L sufficiently large, and voter models (d ≥ 2)
the above is immediate from Proposition 1.7 with the parameter values therein. For
applications to other models (including oriented percolation and the contact process) it
is worth noting that convergence of finite-dimensional distributions and boundedness
of arbitrary moments of the total mass suffice. The hypotheses of the next lemma will
be verified for OP and CP in Sects. 8 and 10, respectively.

Lemma 2.2 Fix s > 0 and let P
s
n and N

s
o be as in (1.32) and (1.33), respectively.

Assume that for all p ∈ N:

for all 0 < u1, . . . , u p <∞, as n →∞,

P
s
n((X

(n)

u1 , . . . , X
(n)

u p
) ∈ ·) w−→ N

s
0((Xu1 , . . . , Xup ) ∈ ·) on MF (Rd)p, (2.4)

and for t∗ > 0, sup
n≥1

sup
t≤t∗

E
s
n

[
X (n)

t (1)p
] := C2.2(s, t∗, p) <∞. (2.5)

Then Condition 6 holds.

The proof is an easy Fubini argument and is given in Sect. 6.
The final condition is needed to ensure the rescaled ranges of T converge weakly

to the range of super-Brownian motion. Together with uniform control of the ancestral
paths, it will ensure that any occupied regions will be close to regions of positive
integrated mass of the limiting super-Brownian motion.

Condition 7 (Low Density Inequality) There exists c7 > 0 such that for any t ≥ 0,
M > 0, and Δ ≥ 4,

E

⎡

⎣
∑

x∈Tt
1
(
∃x ′ s.t. (t, x) a→ (t +Δ, x ′),

∫ t+2Δ

t+Δ

|{y : (t, x) a→ (s, y)}| ds ≤ M
)
⎤

⎦

≤ c7P

(
S(1) > Δ,

∫ 2Δ−2

Δ+2
|Ts |ds ≤ M

)
. (2.6)

Here is a condition which implies the above and is more user-friendly in discrete
time. The elementary proof is given in Sect. 6.

Lemma 2.3 Assume the discrete time setting and there is a c7 such that for all � ∈ Z+,
m ∈ N

≥4 and M > 0,

E

⎡

⎣
∑

x∈T�

1(∃x ′ s.t. (�, x) a→ (�+ m, x ′) and

|{(i, y) : (�, x) a→ (i, y), �+ m + 2 ≤ i ≤ �+ 2m − 1}| ≤ M)

⎤

⎦

≤ c7P

(
S(1) > m,

2m−1∑

i=m+2
|Ti | ≤ M

)
. (2.7)
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Then Condition 7 holds.

Note that Condition 4 for s = t gives bounds on the spatial moments
∑

x |x |pP(x ∈
Tt ). In fact a subset of the above conditions (including Condition 4) give exact asymp-
totics on these moments as t →∞:

Proposition 2.4 Assume Condition 1 and that the conclusion of Condition 4 holds for
s = t and all p > 4. Assume also that (2.4) holds for p = 1 and (2.5) holds for p = 2.
If Z denotes a d-dimensional standard normal random vector, then for all p > 0,

lim
t→∞

∑
x |x |pP(x ∈ Tt )

t p/2
= sDγ σ

p
0

2
E[|Z |p]. (2.8)

The easy proof will be given in Sect. 6. Such exact asymptotics were established
for OP (d > 4) in [6] under more general conditions on D.

2.2 Main results

We start with a uniform modulus of continuity for the system of ancestral paths in
either discrete or continuous time.Aswas noted beforeCondition 7, thismodulus plays
an important role in the convergence of the rescaled ranges but is also of independent
interest. For critical branching Brownian motion such a modulus was first given in
Theorem 4.7 of [10]. Although we assume Condition 1 for convenience, in fact the
proof only requires the existence of a non-decreasing functionm satisfying (1.21) and
Condition 3, as well as Conditions 2, 4, and 5 but not the exact asymptotics in (1.19)
or (1.20). We will often assume

α ∈ (0, 1/2), β ∈ (0, 1] satisfy 1− 2α

1+ β
≥ 4

p
, (2.9)

where p is as in Condition 4. We will also sometimes assume

0 < α <
1

2
− 2

κ
, (2.10)

where κ is as in Condition 5. Note that such α, β exist since κ, p > 4.

Theorem 1 Assume Conditions 1 to 5 for I = Z+ or R+, and α, β satisfy (2.9) and
(2.10). Set q = κ(1/2−α)−2

2 ∧1 ∈ (0, 1]. There is a constant C1 ≥ 1 and for all n ≥ 1,
a random variable δn ∈ [0, 1], such that if

|s2 − s1| ≤ δn and (s1, y1)
a,n→ (s2, y2), (2.11)

then
|y1 − y2| ≤ C1[|s2 − s1|α + n−α. (2.12)

Moreover, δn satisfies

μn(δn ≤ ρ) ≤ C1[ρβ + n−q ], ∀ρ ∈ [0, 1). (2.13)
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In the discrete time setting recall that Z+/n = { j/n : j ∈ Z+} is the natural time
line. In this setting we can get a cleaner statement if we also assume the stronger (2.3)
in place of Condition 5.

Theorem 1′ Assume Conditions 1 to 4 and (2.3), where I = Z+. Assume also that
α, β are as in (2.9). There is a constant C1′ and for all n ≥ 1 a random variable
δn ∈ (0, 1] such that if

s1, s2 ∈ Z+/n, |s2 − s1| ≤ δn, and (s1, y1)
a,n→ (s2, y2), (2.14)

then
|y1 − y2| ≤ C1′ |s2 − s1|α, (2.15)

and δn satisfies
μn(δn ≤ ρ) ≤ C1′ρ

β, ∀ρ ∈ [0, 1). (2.16)

Moreover if s1, s2, y1, y2 are as in (2.14) but with si ∈ R+, then (2.12) holds.

Theorems 1 and 1′ can be reinterpreted as (uniform) moduli of continuity for all
ancestral paths.

Definition 2.5 For α, β > 0, the system of ancestral paths W for (T ,
a→) is said to

satisfy an (α, β)-modulus of continuity if there exists a random function δ : [1,∞) →
[0, 1], a function ε : [1,∞) → [0,∞) such that limn→∞ ε(n) = 0 and a constant
c > 0 such that for any n ∈ [1,∞):
For every ancestral path w ∈W , and all 0 ≤ s1 < s2,

(1) |s2 − s1| ≤ δn ⇒ |w(n)

s2 − w(n)

s1 | ≤ c(|s2 − s1|α + n−α).

(2) m(n)P(δn ≤ ρ) ≤ cρβ + ε(n) for each ρ ∈ [0, 1).

Corollary 1 Assume Conditions 1 to 5 for I = Z+ or R+, then for α, β, q as in
Theorem 1, W satisfies an (α, β)-modulus of continuity with ε(n) = C1n

−q .

Proof If w is an ancestral path to (nt,
√
nx) and 0 ≤ s1 < s2, then for si ≤ t ,

(s1, w
(n)
s1 )

a,n→ (s2, w
(n)
s2 ). (1) and (2) of Definition 2.5 now follow immediately from

Theorem 1 with δn as in the theorem and ε(n) as claimed. In general the result follows
because w

(n)
s = w

(n)

s∧t . ��
Corollary 1′ Assume Conditions 1 to 4 and (2.3), where (Tt )t∈Z+ is in discrete time,
and let α, β and δn be as in Theorem 1′. Then for any n ≥ 1 and w ∈W ,

si ∈ Z+/n, |s2 − s1| ≤ δn implies |w(n)

s2 − w(n)

s1 | ≤ C1[|s2 − s1|α].

If si are as above but now in R+, then |w(n)
s2 − w

(n)
s1 | ≤ C1[|s2 − s1|α + n−α].

Proof As above but now use Theorem 1′ in place of Theorem 1. ��
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We will use this modulus of continuity as a tool for proving weak convergence
of the range, however the result is useful more generally. For example, it provides
a means to check tightness of the spatial component of the model in the extended
Gromov–Hausdorff–Prohorov toplogy, cf. [2, Lemma 4.3]. For LT in particular, this
has implications for random walk on LT (see e.g. [2]).

Our second main result is that, conditional on longterm survival, the rescaled range
converges weakly to the range of (conditioned) SBM.

Theorem 2 (Convergence of the range) Assume Conditions 1–7, and let No be the
canonical measure with parameters (γ, σ 2

0 ) from Condition 6. Then for every s > 0,

P(R(n) ∈ ·|S(n) > s)
w−→ No(R ∈ ·|S > s) as n →∞, n ∈ [1,∞),

as probability measures on K equipped with the Hausdorff metric.

With Lemma 2.2 inmind it is perhaps a bit surprising that such a result could be proved
without a formal tightness condition. It is Theorem 1 that effectively gives tightness
of the approximating ranges.

Recall that vd : Bd(0, 1) → R+ is the unique solution of (1.38). The next result
uses both Theorems 1 and 2 to give exact leading asymptotics for the extrinsic one-arm
probability.

Theorem 3 (One-arm asymptotics) Assume Conditions 1–7. Then

lim
r→∞

P(r0(R(1)) > r)

P(S(1) > r2)
= σ 2

0

2
vd(0), (2.17)

and so (Condition 1)

lim
r→∞m(r2)P(r0(R

(1)) > r) = σ 2
0

2
sDvd(0). (2.18)

Remark 2.6 The proof in Sect. 5 only uses Condition 1 and the conclusions of Theo-
rems 1 and 2.

We finally show that all of the above conditions are satisfied by the voter model
(d ≥ 2), OP (d > 4), LT (d > 8), and the contact process (d > 4).

Theorem 4 (Voter model) For the voter model, Conditions 1–7 hold in dimensions
d ≥ 2 for any p > 4 in Condition 4, any κ > 4 in Condition 5, and (γ, σ 2

0 ) =
(2βD, σ 2

D) in Condition 6. Hence for d ≥ 2, if No is the canonical measure of SBM
with parameters (2βD, σ 2

D), then

(v1) For any α ∈ (0, 1/2), the system of ancestral paths, W , satisfies an (α, 1)-
modulus of continuity with ε(n) = C1n−1 for some C1 ≥ 1,

(v2) P
s
n(R

(n) ∈ ·) w−→ N
s
o(R ∈ ·) in K, as n →∞, for every s > 0,

(v3) (i) limr→∞ r2P(r0(R(1)) > r) = σ 2
Dvd (0)
2βD

if d > 2,

(ii) limr→∞ r2
log r P(r0(R(1)) > r) = v2(0)(2π)−1 if d = 2.
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Part (v1) will give a uniform modulus of continuity for all of the rescaled dual coa-
lescing random walks between 1’s in a voter model conditioned on longterm survival.
This is stated and proved in Sect. 7 (Corollary 7.4).

In the next three results v is the model-dependent constant satisfying (1.36).

Theorem 5 (Oriented percolation) For critical OPwith d > 4 and L sufficiently large,
Conditions 1–7 hold for any p > 4 in Condition 4, any κ > 4 in Condition 5, and
(γ, σ 2

0 ) = (1, σ 2
Dv) in Condition 6. Hence for d > 4, if No is the canonical measure

of SBM with parameters (1, σ 2
Dv), then

(op1) For α ∈ (0, 1/2) the system of ancestral paths,W , satisfies an (α, 1)-modulus
of continuity with ε(n) ≡ 0,

(op2) P
s
n(R

(n) ∈ ·) w−→ N
s
o(R ∈ ·) in K, as n →∞, for every s > 0,

(op3) limr→∞ r2P(r0(R(1)) > r) = σ 2
Dvvd (0)
AV .

Theorem 6 (Lattice trees) For critical lattice trees with d > 8 and L sufficiently large,
Conditions 1–7 hold for any p > 4 in Condition 4, any κ > 4 in Condition 5, and
(γ, σ 2

0 ) = (1, σ 2
Dv) in Condition 6. Hence for d > 8, if No is the canonical measure

of SBM with parameters (1, σ 2
Dv), then

(t1) For α ∈ (0, 1/2) the system of ancestral paths, W , satisfies an (α, 1)-modulus
of continuity with ε(n) ≡ 0,

(t2) P
s
n(R

(n) ∈ ·) w−→ N
s
o(R ∈ ·) in K, as n →∞, for every s > 0,

(t3) limr→∞ r2P(r0(R(1)) > r) = σ 2
Dvvd (0)
AV .

Theorem 7 (Contact process) For the critical contact process with d > 4 and L large
enough, Conditions 1–7 hold for any p > 4 in Condition 4, any κ > 4 in Condition 5,
and (γ, σ 2

0 ) = (1, σ 2
Dv) in Condition 6. Hence for d > 4, if No is the canonical

measure of SBM with parameters (1, σ 2
Dv), then

(cp1) For any α ∈ (0, 1/2), the system of ancestral paths, W , satisfies an (α, 1)-
modulus of continuity with ε(n) = C1n−1 for some C1 ≥ 1,

(cp2) P
s
n(R

(n) ∈ ·) w−→ N
s
o(R ∈ ·) in K, as n →∞, for every s > 0,

(cp3) limr→∞ r2P(r0(R(1)) > r) = σ 2
Dvvd (0)
AV .

Remark 2.7 Although we have assumed D is uniform on [−L, L]d\{o} for OP, LT
and CP, the results (and proofs) for these models also hold for more general kernels.
Namely, if h : R

d → [0,∞) is bounded, continuous almost everywhere, supported
on [−1, 1]d , invariant under the symmetries of Z

d and such that
∫
h(x)dx = 1, then

for L ≥ 1 we may define D by

D(x) =
{ h(x/L)∑

y∈Zd \{0} h(y/L)
if x �= 0,

0 if x = 0.

The case h = 2−d1[−1,1]d gives the uniform distribution. This is simply a matter of
noting that the references we provide for checking these conditions hold for this class
of more general D’s, and that our own arguments never make use of the uniform nature
of D.
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Remark 2.8 In Sects. 8–10 the hypotheses of Lemma 2.2 will be verified for LT, OP
and the CP (for the dimensions noted in the above theorems). As Conditions 1-7 also
hold by the above, we see in particular that Proposition 2.4 applies for all of these
models. Recalling from the above that sD = 2A, γ = 1 and σ 2

0 = σ 2
Dv for all of these

models, Proposition 2.4 gives

lim
t→∞

∑
x |x |pP(x ∈ Tt )

t p/2
= A(σ 2

Dv)p/2E[|Z |p]. (2.19)

Recall that for lattice trees wk(m, x) is the location of the ancestor of x ∈ Tm in
generation k ≤ m of the tree. We can also apply Corollary 1′ to obtain a modulus of
continuity for the large scale behaviour of k �→ wk(m, x) conditional on longterm
survival; see Corollary 9.1 in Sect. 9.

Note that the lower bounds on P(r0(R(1)) > r) in (v3) and (t3) above follow easily
from Proposition 1.7 and the lower semi-continuity of the support map on MF (Rd)

(see Lemma 4.3 below). So the importance of (v3) and (t3) in these cases are the
matching upper bounds.

For the voter model, in an interesting article Merle [31] has studied the probability
that a distant site x ever holds the opinion 1 (i.e. P(ξt (x) = 1 for some t ≥ 0) in the
limit as |x | → ∞). Although clearly related to the behaviour of the range of the voter
model, and in particular (v3) above, neither result implies the other.

2.3 Discussion on conditions and extensions

Note that, although the above list of conditions may appear lengthy, we shall see
that for our prototype models, all of the conditions are either already proved in the
literature, or are fairly easy to establish from known results, although Condition 4 was
in some cases proved very recently in response to this work. For the voter model this
Condition is elementary for any d ≥ 2 and any p > 4; see Sect. 7. For our prototype
models, a Markov (or sub-Markov) argument reduces Condition 4 to the s = t case,
which is a bound of the form

∑

x

|x |pP(x ∈ Tt ) ≤ Cp(t ∨ 1)(p/2), ∀t > 0. (2.20)

For the voter model such a reduction is implicit in (7.18), while for OP, the CP, and LT
the reductions are given by Lemma 8.2, Lemma 10.2 and Lemma 9.5 respectively, with
f (x) = |x |p. For OP, (2.20) was established by Chen and Sakai [6] (see Theorem 1.2
of [6] and the ensuing comment there to allow α = ∞) where in fact exact asymptotics
are given for large t . In response to our main results, Sakai and Slade [33] established
(2.20) for sufficiently spread-out critical CP (d > 4) and LT (d > 8) for any p > 4
(their method also applies to OP). For LT, their result extends the result for p = 6 that
appeared in an earlier version of this paper [25] (and their method is simpler). Thus
the earlier version [25] has been superseded by this paper and [33]. Note that (2.19)
shows that their upper bounds then immediately give exact asymptotics as t →∞.
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Recent work [20] suggests that it may be of interest to consider these results in
the setting of critical sufficiently spread out percolation (d > 6). In this setting, for
example, Theorem 3 would refine a result of Kozma and Nachmias [28], by giving a
bona fide limit for the one-arm probability. However we quickly point out that there
is much work still to be done here. For example, the important Condition 6 has yet
to be verified in this setting (see [18] for partial results). In a very interesting paper
Tim Hulshof [26] has shown that there is a phase transition in the one-arm exponents
which corresponds to the condition p > 4 in Condition 4, both for critical percolation
(d > 6) and critical branching random walk (BRW) (d > 2). He works with infinite
range kernels D satisfying D(x) ≈ |x |−d−α as |x | becomes large (where f (x) ≈ g(x)
means cg ≤ f ≤ Cg for some 0 < c ≤ C < ∞) and shows that if R(1) is the open
cluster of the origin (resp. set of vertices visited by BRW), then

P(r0(R
(1)) > r) ≈ r−min(4,α)/2 as r →∞.

For α ≥ 4 this gives the one-arm exponent 2, found for the finite-range setting in [28],
but for α < 4 the one-arm exponent is no longer 2. It is easy to check that α > 4
implies that

∑
z |z|pD(z) < ∞ for some p > 4. Although we have assumed single

occupancy, our proof is modelled after the proof for branching Brownian motion,
which is implicit in [10], and minor modifications to our arguments will give similar
results for branching random walk. (One needs to define (AR) for individual particles
at each site, for example by using the arboreal labelling in [10]). Hulshof’s results,
described above, strongly suggest that the restriction p > 4 in Condition 4 is sharp.
In fact we conjecture that Theorems 1–3 will continue to hold without the finite range
assumption on D, but will all fail if we then allow p < 4 in Condition 4 for our four
prototype models with such “long-range” kernels.

The remainder of this paper is organised as follows. In Sect. 3 we establish the
moduli of continuity, i.e., Theorems 1 and 1′. In Sect. 4 we prove our general result on
convergence of the rescaled ranges, Theorem2. In Sect. 5 both of the above ingredients
are used to prove the one-arm result, Theorem 3. Lemmas 2.2 and 2.3 (dealing with
checking Conditions 6 and 7, respectively) and Proposition 1.5 (existence of ancestral
paths) are proved in Sect. 6. In Sects. 7–10, respectively, we verify our conditions for
the voter model, OP, LT’s and CP, and so establish Theorems 4, 5, 6 and 7.

3 Modulus of continuity

In this section we prove Theorems 1 and 1′.

Proposition 3.1 Assume Conditions 1, 3, 4, and let α, β satisfy (2.9). There is a con-
stant C3.1, and for all n ≥ 1 a random variable δn ∈ (0, 1] such that if

t ∈ Z+/n, x ∈ T (n)

t , 0 ≤ s1 < s2 ≤ t−n−1, si ∈ Z+/n, and |s2− s1| ≤ δn, (3.1)

then
(s1, y1)

a,n→ (s2, y2)
a,n→ (t, x) (3.2)
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implies
|y2 − y1| ≤ C3.1|s2 − s1|α. (3.3)

Moreover δn satisfies

μn(δn ≤ ρ) ≤ C3.1ρβ, for every ρ ∈ [0, 1). (3.4)

Proof We first note that it suffices to consider n = 2n0 for some n0 ∈ N.
Assuming the result for this case, for n ≥ 1, choose n0 ∈ N so that
2n0−1 ≤ n < 2n0 and set δn(ω) = δ2n0 (ω) ∈ (0, 1]. The monotonicity of m(n)

from Condition 1 (survival probability) shows that

μn(δn ≤ ρ) ≤ μ2n0 (δ2n0 ≤ ρ) ≤ C3.1ρβ, for every ρ ∈ [0, 1).

Assume now that the conditions in (3.1) are satisfied by t = k/n, x = z/
√
n

and si = ki/n where k, ki ∈ Z+ and z ∈ Z
d , and that (3.2) is satisfied by

yi = xi√
n
, where xi ∈ Z

d for i = 1, 2. Then k2 ≤ k − 1, which implies

k22−n0 ≤ k2−n0 − 2−n0 , and 0 < (k2 − k1)2−n0 < (k2 − k1)n−1 ≤ δ2n0 . By

scaling this implies ( k1
2n0 , x1

2n0/2 )
a,2n0→ ( k2

2n0 , x2
2n0/2 )

a,2n0→ ( k
2n0 , z

2n0/2 ). So the result for
2n0 implies that

|y2 − y1| = 2n0/2√
n

∣∣∣
x2

2n0/2
− x1

2n0/2

∣∣∣ ≤
√
2C3.1

(k2 − k1
2n0

)α ≤ √2C3.1|s2 − s1|α.

So the result follows for general n ≥ 1 by increasing C3.1 to
√
2C3.1.

We set n = 2n0 for n0 ∈ N. For a natural number m define

I (n0,m) = {k ∈ Z+ : k ≤ n0, 2
n0−k+1 ≤ m},

and for k ∈ I (n0,m) define

Ak(n0,m) =
{
ω : max{|y2 − y1| :(m − 2n0−k+1, y1)

a→ (m − 2n0−k , y2)
a→ (m, x) ∃ x ∈ Tm} ≥ 2n0/22−kα

}
.

Note that the max exists by (1.3). For � ∈ Z+, let

B�(n0,m) =

⎧
⎪⎪⎨

⎪⎪⎩

[ ⋃

k>�:
k∈I (n0,m)

Ak(n0,m)

]
∪ An0(n0,m + 1), if � ≤ n0,

∅, if � > n0.

Lemma 3.2 Assume (2.9). There is a constant C3.2 so that for all m ∈ N,

123
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(a) for all k ∈ I (n0,m), μ2n0 (Ak(n0,m)) ≤ c3.22
−k(p/2−pα−1),

(b)

μ2n0 (B�(n0,m)) ≤
{
c3.22

−�(p/2−pα−1), if 0 ≤ � ≤ n0,

0, if � > n0.

Proof (a) Clearly we have

μ2n0 (Ak(n0,m))

≤ m(2n0)E

[ ∑

y2∈Tm−2n0−k

∑

y1∈Tm−2n0−k+1
1
(
(m − 2n0−k+1, y1)

a→ (m − 2n0−k, y2),

|y2 − y1| ≥ 2n0/22−kα
)

× 1
(∃x ∈ Tm s.t. (m − 2n0−k, y2)

a→ (m, x)
)]

.

(3.5)

By Condition 3 (conditional survival probability),

P
(∃x ∈ Tm s.t. (m − 2n0−k, y2)

a→ (m, x)
∣∣Fm−2n0−k

) ≤ c3
m(2n0−k)

. (3.6)

Recall that Tm−2n0−k is Fm−2n0−k -measurable, and by AR(iv),

1
(
(m − 2n0−k+1, y1)

a→ (m − 2n0−k, y2)
) = em−2n0−k+1,m−2n0−k (y1, y2),

is also Fm−2n0−k -measurable. We therefore can use (3.6) in (3.5) to conclude

μ2n0 (Ak(n0,m))

≤ c3m(2n0)

m(2n0−k)
E

[ ∑

y2∈Tm−2n0−k

∑

y1∈Tm−2n0−k+1
1
(
(m − 2n0−k+1, y1)

a→ (m − 2n0−k, y2)
)

× |y2 − y1|p
2pn0/22−pkα

]

≤ c3c1.212
kc4

2(n0−k)p/2

2pn0/22−pαk
=: c2−k(p/2−pα−1),

where Condition 4 (spatial increments) and (1.21) are used in the last.
(b) Note first that (2.9) implies p/2− pα > 2. Sum the bound in (a) over k > �, note
that n0 ∈ I (n0,m + 1) (to apply (a) to An0(n0,m + 1)), and use B�(n0,m) = ∅ if
� > n0 to derive (b) (where we can adjust the constants after the fact). ��
Lemma 3.3 Assume (2.9). There is a c3.3 = c3.3(α, L) such that if m ∈ N and
� ∈ {0, . . . , n0} satisfies 2n0−� ≤ m, then
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B�(n0,m)c ⊂
{
ω : max{|x ′ − y| : (m − 2n0−�, y)

a→ (m, x ′) a→ (m + 1, x)

for some x ∈ Tm+1} ≤ c3.32
(n0/2)−�α

}
.

Proof The conditions on � and m show that {�+ 1, . . . , n0} ⊂ I (n0,m). This implies
that

B�(n0,m)c ⊂ ∩n0k=�+1Ak(n0,m)c ∩ An0(n0,m + 1)c.

Choose ω ∈ B�(n0,m)c and assume (m − 2n0−�, y)
a→ (m, x ′) a→ (m + 1, x) for

some x ∈ Tm+1. By (1.10) wemay choose x ′′ so that (m−2n0−�, y)
a→ (m−1, x ′′) a→

(m, x ′) (set x ′′ = y if � = n0). Then since ω /∈ An0(n0,m + 1),

|x ′ − x ′′| < 2n0/2−n0α. (3.7)

Let y� = y. By (1.10) for k = �+ 1, . . . , n0 we may choose yk ∈ Tm−2n0−k such that
yn0 = x ′′, and

(m − 2n0−k+1, yk−1)
a→ (m − 2n0−k, yk) for k = �+ 1, . . . , n0.

By ω /∈ Ak(n0,m) and the triangle inequality, we have

|x ′′ − y| = |yn0 − y�| ≤
n0∑

k=�+1
|yk − yk−1| ≤ 2n0/2

n0∑

k=�+1
2−kα ≤ C2n0/22−�α.

This and (3.7) imply |x ′ − y| ≤ C2(n0/2)−�α and so completes the proof. ��
Returning now to the proof of Proposition 3.1, we define

Cr (n0) = ∪n0�=r ∪!2
�(1+β)"

i=1 B�(n0, i2
n0−�) for r ∈ Z+ (Cr (n0) = ∅ if r > n0),

K 1
n0 = min{r ∈ {0, . . . , n0 + 1} : ω /∈ Cr (n0)} ≤ n0 + 1,

K 2
n0 = min{r ∈ Z+ : 2rβ+n0 ≥ S(1)},

Kn0 = (K 1
n0 ∨ K 2

n0) ∧ (n0 + 1) ∈ Z+.

Note that Cr (n0) is non-increasing in r . Set δ2n0 (ω) = 2−Kn0 (ω) ∈ (0, 1]. Then for
r ∈ {0, . . . , n0},

μ2n0 (Kn0 > r) ≤ μ2n0 (Cr (n0))+ μ2n0 (S
(1) > 2rβ+n0)

≤
⎡

⎣
n0∑

�=r

!2�(1+β)"∑

i=1
c3.22

−�(p/2−pα−1)
⎤

⎦+ m(2n0)c3
m(2rβ2n0)

,
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where we have used Lemma 3.2(b) and Condition 3 with (s, y)) = (0, o) and t =
2rβ2n0 . Since 2rβ ≤ 2n0 (recall β ≤ 1) we may use (1.21) to see that

m(2n0)

m(2rβ2n0)
≤ c1.212

−rβ,

and so from the above,

μ2n0 (Kn0 > r) ≤ c3.2

n0∑

�=r
21−�(p/2−2−pα−β) + c3c1.212

−rβ ≤ C2−rβ, (3.8)

where (2.9) is used in the last inequality. If r ∈ {n0+1, n0+2, . . . } then (3.8) is trivial
since the left-hand side is zero. If ρ ∈ (0, 1] choose r ∈ Z+ so that 2−r−1 < ρ ≤ 2−r .
Then by (3.8),

μ2n0 (δ2n0 < ρ) ≤ μ2n0 (Kn0 > r) ≤ C2−rβ ≤ C2βρβ.

Take limits from the right in ρ < 1 in the above to derive (3.4).
Turning now to (3.3), we can rescale and restate our objective as (note that t =

(m + 1)/n for some m ∈ N or the conclusion is vacuously true):
If

k1, k2 ∈ Z+,m ∈ N, x ∈ Tm+1, 0 ≤ k1 < k2 ≤ m satisfies

|k2 − k1| ≤ 2n0−Kn0 , and (k1, y1)
a→ (k2, y2)

a→ (m + 1, x),

then
|y2 − y1| ≤ C3.1|k2 − k1|α2(n0/2)−(n0α).

It suffices to consider k2 = m in the above because if we choose (by (1.10)) x ′ s.t.
(k2, y2)

a→ (k2+ 1, x ′) a→ (m+ 1, x), then we can work with (k2+ 1, x ′) in place of
(m + 1, x). So let us assume

k ∈ Z+, m ∈ N, x ∈ Tm+1, 0 ≤ k < m, |m − k| ≤ 2n0−Kn0 ,

and (k, y)
a→ (m, x ′) a→ (m + 1, x). (3.9)

We must show that
|x ′ − y| ≤ C3.1|m − k|α2(n0/2)−(n0α). (3.10)

If Kn0 = n0 + 1, then (3.9) leads to a contradiction and so we have

Kn0 ≤ n0, and so Kn0 = K 1
n0 ∨ K 2

n0 ≤ n0. (3.11)

By (3.9), 2−n0 ≤ (m − k)2−n0 ≤ 2−Kn0 , and so we may choose r ∈ Z+ so that

2−r−1 <
m − k

2n0
≤ 2−r , Kn0 ≤ r ≤ n0. (3.12)
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Using the fact that 0 < (m − k)2−n0 ≤ 2−r , we can choose ir , jr ∈ Z+ with
jr − ir ∈ {0, 1} and i�, j� ∈ {0, 1} for � ∈ (r , n0] ∩ N so that

m2−n0 = jr2
−r +

n0∑

�=r+1
j�2
−�, k2−n0 = ir2

−r +
n0∑

�=r+1
i�2

−�.

For q ∈ (r , n0] ∩ N define

mr = jr2
n0−r , mq = mr +

q∑

�=r+1
j�2

n0−�,

kr = ir2
n0−r , kq = kr +

q∑

�=r+1
i�2

n0−�,

so that kn0 = k and mn0 = m. By Lemma 1.2 there are (yq)
n0
q=r and (zq)

n0
q=r s.t.

yn0 = y, zn0 = x ′ and

(kq−1, yq−1)
a→ (kq , yq), (mq−1, zq−1)

a→ (mq , zq) for q ∈ (r , n0] ∩ N (3.13)

(if kq−1 = kq set yq = yq−1 and similarly if mq−1 = mq ). In addition if ir = jr so
that kr = mr we may assume

yr = zr if ir = jr . (3.14)

On the other hand if jr = ir + 1, then

kn0 ≤ kr +
n0∑

�=r+1
2n0−� < kr + 2n0−r = (ir + 1)2n0−r = mr ,

and so (by Lemma 1.2) we may choose zr in the above s.t. (kn0 , yn0)
a→ (mr , zr ).

Hence we have

if jr = ir + 1, then (kr , yr )
a→ · · · a→ (kn0 , yn0)

a→ (mr , zr )
a→ (m, x ′) a→ (m + 1, x). (3.15)

Recalling from (3.11), and (3.12) that r ≥ Kn0 ≥ K 1
n0 , we have from the definition

of K 1
n0 that ω /∈ Cr (n0) and so for all � ∈ [r , n0] ∩ Z+,

ω ∈ ∩!2�(1+β)"
i=1 B�(n0, i2

n0−�)c,

which by Lemma 3.3 (and 2n0−� ≤ i2n0−�) implies

∀ 1 ≤ i ≤ !2�(1+β)" if ((i − 1)2n0−�, y)
a→ (i2n0−�, y′) a→ (i2n0−� + 1, z)

for some z ∈ Ti2n0−�+1, then |y − y′| ≤ c3.32
n0/22−�α. (3.16)
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As r ≥ Kn0 ≥ K 2
n0 , we also have S(1) ≤ 2rβ+n0 ≤ 2�β+n0 for all � ≥ r and so if

i > !2�(1+β)", then

i2n0−� > 2�(1+β)2n0−� = 2�β+n0 ≥ S(1),

and so Ti2n0−�+1 = ∅. This implies (3.16) holds vacuously and we may conclude

∀ i ∈ N if ((i − 1)2n0−�, y)
a→ (i2n0−�, y′) a→ (i2n0−� + 1, z)

for some z ∈ Ti2n0−�+1, then |y − y′| ≤ c3.32
n0/22−�α. (3.17)

By yn0 = y, zn0 = x ′ and the triangle inequality, we have

|x ′ − y| = |zn0 − yn0 | ≤
n0∑

q=r+1

[
|zq − zq−1| + |yq − yq−1|

]
+ |zr − yr |. (3.18)

Note that for q ∈ (r , n0] ∩ N, mq = j̄q2n0−q for some j̄q ∈ Z+ and also mq−1 =
( j̄q − jq)2n0−q , where jq = 0 or 1. Therefore (3.13) implies

(( j̄q − jq)2
n0−q , zq−1)

a→ ( j̄q2
n0−q , zq)

a→ (m + 1, x),

and so by (1.10) there is a z ∈ T j̄q2n0−q+1 s.t.

(( j̄q − jq)2
n0−q , zq−1)

a→ ( j̄q2
n0−q , zq)

a→ ( j̄q2
n0−q + 1, z).

Therefore (3.17) implies

|zq − zq−1| ≤ c3.32
n0/22−qα for q ∈ (r , n0] ∩ N (3.19)

(note here that if j̄q = 0, then jq = 0 and so zq = zq−1 and the above inequality is
trivial). Similar reasoning shows

|yq − yq−1| ≤ c3.32
n0/22−qα for (r , n0] ∩ N.

To handle the last term in (3.18), first observe that if jr − ir = 1, then kr =
( jr − 1)2n0−r and so (by (3.15)) (kr , yr )

a→ (mr , zr )
a→ (m + 1, x) implies

(( jr − 1)2n0−r , yr )
a→ ( jr2

n0−r , zr )
a→ (( jr2

n0−r + 1, z)

for some z ∈ T jr2n0−r+1 (by (1.10)). It follows from (3.17) with � = r that

if jr − ir = 1, then |zr − yr | ≤ c3.32
n0/22−rα. (3.20)
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Use (3.19)–(3.20) and (3.14) in (3.18) and so conclude that

|x ′ − y| ≤
[
2c3.32

n0/2
n0∑

q=r+1
2−qα

]
+ c3.32

n0/22−rα

≤ C2n0/22−rα ≤ C2α
(m − k

2n0

)α

2n0/2 (by (3.12)),

which gives (3.10), as required. ��
Proof of Theorem 1′. Let n ∈ [1,∞) and take δn as in Proposition 3.1, so that (2.16)
and δn ∈ (0, 1] are immediate from that proposition. Assume s1, s2, y1, y2 are as in
(2.14). If s1 = s2 then y1 = y2 by (AR)(i), and the result is trivial. Otherwise s1 < s2,
and by (1.10) we may choose x ′ s.t.

(s1, y1)
a,n→ (s2 − n−1, x ′) a,n→ (s2, y2).

We also have |s2 − n−1 − s1| ≤ |s2 − s1| ≤ δn . Proposition 3.1 and (2.3) imply

|y2 − y1| ≤ |y2 − x ′| + |x ′ − y1|

≤
√
dL√
n
+ C3.1|s2 − n−1 − s1|α

≤ (
√
dL + C3.1)|s2 − s1|α,

the last since |s2 − s1| ≥ 1/n and α < 1/2. This proves (2.15) where
C1′ =

√
dL + C3.1.

Now suppose instead that s1, s2 ∈ R+ (otherwise as above). The validity of (2.12)
now follows by an elementary argument using (2.3) and the fact that for 0 ≤ s1 < s2,

(s1, y1)
a,n→ (s2, y2) iff (�s1n�/n, y1)

a,n→ (�s2n�/n, y2). ��
Consider next the proof of Theorem 1 and assume the hypotheses of that theorem.

Wefirst useConditions 5 (local jumps) and2 (totalmass) to handle the small increments
of w(n)(t, x) near t .

Lemma 3.4 There is a C3.4 such that for any α ∈ (0, 1/2), t∗ ≥ 1 and n ≥ 1,

μn

(
max{|y − x | : (s, y) a,n→ (t, x), t ∈ [s, s + (2/n)], s ∈ Z+/n, s ≤ t∗} > n−α

)

≤ C3.4t
∗n2−κ((1/2)−α).

Proof If s = j/n ∈ Z+/n is fixed, then by scaling,

μn

(
max{|y − x | : (s, y) a,n→ (t, x), t ∈ [s, s + (2/n)]} > n−α

)

= μn

(
max{|y − x | : ( j, y) a→ (t, x), t ∈ [ j, j + 2]} > n(1/2)−α

)
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≤ m(n)
∑

y∈Zd

E

[
1(y ∈ T j )P(∃ t ∈ [ j, j + 2] and x ∈ Tt s.t.

|x − y| > n(1/2)−α and ( j, y)
a→ (t, x)|F j )

]
.

Now use Conditions 5 and 2, and (1.23) to see the above is at most

c1.23nc2c5n
−κ((1/2)−α).

Finally sum over s ∈ (Z+/n) ∩ [0, t∗] to obtain the desired upper bound. ��
Proof of Theorem 1 Fix n ≥ 1 and q ∈ (0, 1] as in the Theorem and define

Ωn ={S(n) ≤ nq}
∩
{
max{|y − x | : (s, y) a,n→ (t, x), t ∈ [s, s + 2], s ∈ Z+/n, s ≤ nq} ≤ n−α

}
.

By Lemma 3.4 and (1.31) and the fact that nq ≤ n,

μn(Ω
c
n) ≤

C

nq
+ C3.4n

q+2−κ((1/2)−α) ≤ C

nq
, (3.21)

where the definition of q is used in the last line. To avoid confusion we denote the δn

arising in Proposition 3.1 by δ3.1n and then define

δn(ω) =
{

δ3.1n (ω), if ω ∈ Ωn,

0, if ω ∈ Ωc
n .

Then for ρ ∈ [0, 1),

μn(δn ≤ ρ) ≤ μn(Ω
c
n)+ μn(δ

3.1
n ≤ ρ) ≤ C

nq
+ C3.1ρβ,

the last by (3.21) and Proposition 3.1. This proves (2.13).
In proving (2.11) implies (2.12) to reduce subscripts we assume

0 ≤ s < t, |t − s| ≤ δn, and (s, y)
a,n→ (t, x).

This implies δn > 0 and so ω ∈ Ωn , which in turn implies S(n) ≤ nq and so (as T (n)

t
is non-empty),

t ≤ S(n) ≤ nq . (3.22)

We must show that, for an appropriate C1,

|x − y| ≤ C1[|t − s|α + n−α]. (3.23)
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If t ≤ 2/n this follows easily from ω ∈ Ωn and the triangle inequality, so
assume without loss of generality that t > 2/n. Write [u]n = �nu�/n, and set
tn = [t − n−1]n, t ′n = tn + n−1, sn = [s]n ∧ tn ≤ t ′n , all in ∈ Z+/n. Therefore

0 ≤ tn − sn ≤ t − n−1 − (s − n−1) = t − s ≤ δn (3.24)

(we can assume sn = [s]n in the above derivation, since otherwise sn = tn and the
desired upper bound in (3.24) is trivial), and

0 ≤ t − tn ≤ 2/n, 0 ≤ s − sn ≤ 2/n. (3.25)

Since sn ≤ s and y ∈ T (n)
s by Lemma 1.2 there exists yn s.t.

(sn, yn)
a,n→ (s, y).

We also have sn ≤ tn < tn+n−1 ≤ t ≤ nq (by (3.22)) and x ∈ T (n)

t , so by Lemma 1.2
there are xn, x ′n s.t.

(sn, yn)
a,n→ (tn, xn)

a,n→ (tn + n−1, x ′n)
a,n→ (t, x). (3.26)

Therefore by ω ∈ Ωn and (3.25) we may conclude,

|x − y| ≤ |x − xn| + |xn − yn| + |yn − y|
≤ n−α + |xn − yn| + n−α

≤ 2n−α + C3.1|tn − sn|α ( by (3.24), (3.26) and Proposition 3.1)

≤ 2n−α + C3.1|t − s|α,

the last by (3.24). This proves (3.23) and the proof is complete. ��

4 Convergence of the range

In this section we prove Theorem 2. Recall that N
s
o(·) = No(· |S > s).

Lemma 4.1

N
1
o

(∫ 2

1
Xs(1)ds ≤ a

)
∼ 4√

2πγ

√
a, as a ↓ 0

N
1
o

(∫ 2

1
Xs(1)ds ≤ a

)
≤ 2

√
2

γ
e
√
a, for every a > 0. (4.1)

Proof First recall from (1.29) that No(S > 1) = 2/γ , and by Theorem II.7.2(iii) of
[32]

N
1
o

(
X1(1) ∈ dx

) = (2/γ )e−(2/γ )xdx . (4.2)
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On the range of lattice models in high dimensions 971

Let v(λ)
t =

√
2λ
γ
[et
√
2γ λ−1]

[et√2γ λ+1] be the unique solution of

dv

dt
= −γ v2t

2
+ λ, v(0) = 0.

Then the Markov property under No and exponential duality (see Theorem II.5.11(c)
of [32]), together with (4.2) gives

N
1
o

[
exp

{
− λ

∫ 2

1
Xs(1)ds

}]

= No

[
EX1

[
exp

{
− λ

∫ 1

0
Xs(1)ds

}
1{S>1}

]]
/No(S > 1)

=
∫ ∞

0
exp{−xv(λ)

1 } 2
γ
e−2x/γ dx = 2

2+ γ v
(λ)
1

.

Since v
(λ)
1

√
γ /(2λ)→ 1 as λ→∞,

N
1
o

[
exp

{
− λ

∫ 2

1
Xs(1)ds

}]
∼

√
2

γ λ
, as λ→∞.

A Tauberian theorem (e.g. Theorems 2,3 in Section XIII.5 of [15]) now gives

N
1
o

(∫ 2

1
Xs(1)ds ≤ a

)
∼ 4√

2πγ

√
a, as a ↓ 0.

Now

v
(λ)
1 =

√
2λ

γ

[e√2γ λ − 1]
[e√2γ λ + 1] =

√
2λ

γ

[
1− 2

e
√
2γ λ + 1

]
≥ 1

2

√
2λ

γ
, if λ ≥ γ−1.

If a ≤ γ and so λ := 1/a ≥ γ−1, then using 1Y≤a ≤ eλ(a−Y ) we have

N
1
o

(∫ 2

1
Xs(1)ds ≤ a

)
≤ eλa

N
1
o

[
exp

{
− λ

∫ 2

1
Xs(1)ds

}]

≤ eλa 2

2+ γ v
(λ)
1

≤ 2e

2+
√

λγ
2

≤ 2
√
2e√
γ

√
a.

For a > γ the bound is trivial. ��
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972 M. Holmes, E. Perkins

Lemma 4.2 0 ∈ R No − a.e.

Proof This is immediate from the description of the integral of SBM in terms of the
Brownian snake, and the continuity of the snake under No. See Proposition 5 and
Section 5 of Chapter IV of [29]. ��

Recall that K is the Polish space of compact subsets of R
d , equipped with the

Hausdorff metric d0 and Δ1 is as in (1.2).

Lemma 4.3 If νn → ν in MF (Rd), and supp(ν) ∈ K, then

Δ1(supp(ν), supp(νn))→ 0.

Proof Fix ε > 0. We must show that supp(ν) ⊂ supp(νn)ε for all n sufficiently large.
Let x ∈ supp(ν). Then lim infn→∞ νn(B(x, ε/2)) ≥ ν(B(x, ε/2)) > 0. Therefore
there exists n(x) such that for every n ≥ n(x),

νn(B(x, ε/2)) ≥ 1

2
ν(B(x, ε/2)) > 0,

and therefore x ∈ supp(νn)ε/2.As supp(ν) is compact there exist x1, . . . , xk ∈ supp(ν)

such that supp(ν) ⊂ ∪ki=1B(xi , ε/2). Thus if n ≥ n0 = maxi≤k n(xi ) then

supp(ν) ⊂ ∪ki=1B(xi , ε/2) ⊂ supp(νn)
ε,

as required. ��
In the rest of the Section we will assume Conditions 1–7, let α, β satisfy (2.9) and

(2.10), and assume (γ, σ 2
0 ) are as inCondition 6 (measure convergence). The parameter

q is as in Theorem 1. We start with some simple consequences of Theorem 1. Recall
from (1.37) that R(n) is a.s. finite. For t ≥ 0, define

R(n)

t = ∪s≤tT (n)

s ⊂ R(n).

Lemma 4.4 (a) There is a c4.4 > 0 such that on {δn ≥ n−1} we have

r0(R
(n)) ≤ c4.4(S(n)δα−1

n + 1). (4.3)

(b) η4.4(u) := supn≥1 μn(r0(R(n)) ≥ u) → 0 as u →∞.
(c) For any τ0, ε, s > 0 there is a τ = τ(τ0, ε, s) > 0 and n0(τ0, ε, s) ≥ 1 so that

P(R(n)

τ �⊂ B(0, τ0)|S(n) > s) ≤ ε ∀n ≥ n0.

Proof (a) Assume δn(ω) ≥ 1/n. Assume also x ∈ T (n)
s for some s > 0. Choose

M ∈ N so that (M − 1)δn < s ≤ Mδn , and set si = iδn for 0 ≤ i < M and sM = s.
Clearly s < S(n) (since T (n)

s is non-empty) and so

M ≤ sδ−1n + 1 ≤ S(n)δ−1n + 1. (4.4)
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On the range of lattice models in high dimensions 973

By Lemma 1.2 there are yi ∈ Tsi for 0 ≤ i ≤ M s.t. y0 = o, yM = x and

(si−1, yi−1)
a,n→ (si , yi ) for 1 ≤ i ≤ M . Theorem 1 implies for all 1 ≤ i ≤ M ,

|yi − yi−1| ≤ 2C1δα
n , and so by the triangle inequality, (4.4), and δn ≤ 1,

|x | = |yM | ≤ M2C1δα
n ≤ 2C1[S(n)δα−1

n + 1].

This gives (a) with c4.4 = 2C1.
(b) Use (a) to see that for u, n ≥ 1 and u > 2c4.4,

μn(r0(R
(n)) ≥ u)

≤ μn(δn ≤ u−1 ∨ n−1)+ μn(S
(n)δα−1

n ≥ (u/c4.4)− 1, δn ≥ 1/u)

≤ C1(u−β + n−β + n−q)+ μn(S
(n) ≥ uα−1[(u/c4.4)− 1] > uα/(2c4.4)),

(4.5)

where in the last line we have used Theorem 1 and the lower bound on u. Now (1.31)
implies that

μn(S
(n) > uα/(2c4.4)) ≤ sDc1.21/((uα/2c4.4) ∧ n).

Using this in the bound (4.5) we see that for any ε > 0 there is an n0 ≥ 1 such that

μn(r0(R
(n)) ≥ u) < ε for all n, u ≥ n0. (4.6)

But for n ∈ [1, n0) ∩ N we have

μn(r0(R
(n)) ≥ u) ≤ m(n0)P(r0(R

(1)) ≥ u) < ε,

for u > u0(ε). The result follows from this last inequality and (4.6).
(c) Fix τ0, ε, s > 0 and then choose n1(τ0) ≥ 1 and τ1(τ0) > 0 so that

n > n1(τ0) and τ ∈ [0, τ1(τ0)) imply C1(τα + n−α) < τ0.

So for n > n1 and τ ∈ (0, τ1), by Theorem 1 (and the fact that y ∈ T (n)
s for some

s ≤ τ implies (0, o)
a,n→ (s, y)) we have

τ ∈ (0, δn] implies R(n)

τ ⊂ B(o,C1(τα + n−α)) ⊂ B(o, τ0).

Therefore using (1.31) and (2.13) we see that for n > n1 and τ ∈ (0, τ1),

P(R(n)

τ �⊂ B(o, τ0)|S(n) > s) ≤ P(δn < τ, S(n) > s)/P(S(n) > s)

≤ μn(δn < τ)/μn(S
(n) > s)

≤ C1(τβ + n−q)c1.21(s ∨ 1)(sD)−1

< ε,
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974 M. Holmes, E. Perkins

where the last inequality holds for τ sufficiently small and n sufficiently large, depend-
ing only on ε and s. The result follows. ��
Lemma 4.5 For every s > 0,

P
s
n

(
X̄ (n)∞ ∈ ·) w−→ N

s
o

(
X̄∞ ∈ ·

)
onMF (Rd).

Proof Fix s > 0 and ε > 0. Choose tε > max{1/ε, s} and let ϕ ∈ Cb(MF (Rd)). Then∣∣Ps
n[ϕ(X̄ (n)∞)] − N

s
o[ϕ(X̄∞)]∣∣ is at most

∣∣Ps
n[ϕ(X̄ (n)∞)1{S(n)≤tε}] − N

s
o[ϕ(X̄∞)1{S≤tε}]

∣∣

+ ∣∣Ps
n[ϕ(X̄ (n)∞)1{S(n)>tε}] − N

s
o[ϕ(X̄∞)1{S>tε}]

∣∣

≤ ∣∣Ps
n[ϕ(X̄ (n)

tε )] − N
s
o[ϕ(X̄tε )]

∣∣ (4.7)

+ ∣∣Ps
n[ϕ(X̄ (n)

tε )1{S(n)>tε}] − N
s
o[ϕ(X̄tε )1{S>tε}]

∣∣ (4.8)

+ ‖ϕ‖∞(Ps
n(S

(n) > tε)+ N
s
o(S > tε)). (4.9)

For n sufficiently large (depending on s, tε, ε) the term (4.7) is less than ε by Condition
6 (measure convergence). The quantity (4.8) is equal to

∣∣∣∣P
tε
n [ϕ(X̄ (n)

tε )]P(S(n) > tε)

P(S(n) > s)
− N

tε
o [ϕ(X̄tε )]

N0(S > tε)

No(S > s)

∣∣∣∣ .

This is less than ε for n sufficiently large depending on s, tε, ε by Condition 6 and
Condition 1 (survival probability).

Similarly, (4.9) is equal to

‖ϕ‖∞
(

P(S(n) > tε)

P(S(n) > s)
+ No(S > tε)

No(S > s)

)
,

which is less than or equal to cε for n sufficiently large (where c depends on s and
‖ϕ‖∞) due to Condition 1 and (1.29). ��

Recalling Condition 7 (low density inequality), we set K = 1024 and for i ∈ Z+,
� ∈ N and n ∈ [1,∞), define

Ωn
i,� =

{
ω : ∃x ∈ T (n)

i2−� , ∃x ′ s.t. (i2−�, x)
a,n→ ((i + 1)2−�, x ′) and

∫ (i+2)2−�

(i+1)2−�

|{y : (i2−�, x)
a,n→ (s, y)}|ds/m(n) ≤ K−�

}
,

and Ω̂n
� = ∪2

2�−1
i=0 Ωn

i,�. The following result together with the modulus of continuity
will ensure that, with high probability, points in the discrete range are near areas of
significant integrated mass.
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On the range of lattice models in high dimensions 975

Lemma 4.6 There is a c4.6 > 0 and for any n ≥ 1 there is an Mn ∈ N so that Mn ↑ ∞
as n →∞, and if Ωn

m = ∪Mn
�=mΩ̂n

� for m ∈ N, then

μn(Ω
n
m) ≤ c4.62

−m for all n ∈ [1,∞), m ∈ N.

Proof Let � ∈ N, i ∈ {0, 1, . . . , 22� − 1} and assume

n ≥ K 3�/2. (4.10)

A simple change of variables (u = ns) in the time integral in the definition of Ωn
i,�

shows that

μn(Ω
n
i,�) ≤ m(n)E

[ ∑

x∈Tni2−�

1(∃ x ′ s.t. (ni2−�, x)
a→ (n(i + 1)2−�, x ′))

× 1

(∫ ni2−�+2n2−�

ni2−�+n2−�
|{y : (ni2−�, x)

a→ (u, y)}|du ≤ nm(n)K−�

)]
.

So using Condition 7 with Δ = n2−� ≥ 4 (by (4.10)) and t = ni2−� yields

μn(Ω
n
i,�)

≤ c7m(n)P

(
S(1) > n2−�,

∫ 2n2−�−2

n2−�+2
|Ts |

m(n2−�)n2−�
ds ≤ m(n)K−�

m(n2−�)2−�

)

≤ c7m(n)P

(
S(n2−�) > 1,

∫ 2−(2/(n2−�))

1+(2/(n2−�))

X (n2−�)
u (1)du ≤ (K/2)−�c1.212

�

)
,

(4.11)

where in the last inequality we used (1.21), which applies because n2−� ≥ 1 by (4.10).

If In,� = [1, 1+ 2�+1
n ] ∪ [2− 2�+1

n , 2], then

E

[ ∫
1(u ∈ In,�)X

(n2−�)
u (1)du

∣∣∣ S(n2−�) > 1

]

=
∫

In,�

E
[
X (n2−�)
u (1)

]
du/P(S(1) > n2−�)

=
∫

In,�

E[|Tun2−� |]
m(n2−�)P(S(1) > n2−�)

du ≤ C4.12
2�

n
, (4.12)

where Condition 2 (total mass) and (1.22) are used in the last inequality.
Use the upper bound from (4.11), (1.21), and then (1.22) to conclude that
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976 M. Holmes, E. Perkins

μn(Ω
n
i,�)

≤ c7
m(n)

m(n2−�)
m(n2−�)P(S(1) > n2−�)

× P

(∫ 2−(2/(n2−�))

1+(2/(n2−�))

X (n2−�)
u (1)du ≤ c1.21(K/4)−�

∣∣∣S(n2−�) > 1

)

≤ c7c1.212
�s̄DP

(∫ 2−(2�+1/n)

1+(2�+1/n)

X (n2−�)
u (1)du ≤ c1.21(K/4)−�

∣∣∣S(n2−�) > 1

)

≤ C

[
2�

P

(∫ 2

1
X (n2−�)
u (1) du ≤ 2c1.21(K/4)−�

∣∣∣S(n2−�) > 1

)

+ 2�
P

(∫

In,�

X (n2−�)
u (1)du > c1.21(K/4)−�

∣∣∣S(n2−�) > 1

)]

:= C[T1(�, n)+ T2(�, n)]. (4.13)

Markov’s inequality and (4.12) imply that

T2(�, n) ≤ C4.122
2�

n
c−11.21(K/4)� := C

K �

n
≤ C K−�/2, ∀n ≥ K 3�/2. (4.14)

By Condition 6 (measure convergence) and the upper bound in (4.1),

lim sup
n→∞

2�
P

(∫ 2

1
X (n2−�)
u (1)du ≤ 2c1.21(K/4)−�

∣∣∣S(n2−�) > 1
)

≤ 2�
No

(∫ 2

1
Xu(1)du ≤ 2c1.21(K/4)−�

∣∣∣S > 1

)

≤ (C/2)(
√
K/4)−�.

Therefore there is an increasing sequence {n(�) : � ∈ N} such that n(�) ≥ K 3�/2 and

T1(�, n) ≤ C(
√
K/4)−� for all n ≥ n(�). (4.15)

Use (4.14) and (4.15) in (4.13) and sum over i = 0, . . . , 22� − 1 to deduce that

μn(Ω̂
n
� ) ≤ C(

√
K/16)−� = C2−� for all n ≥ n(�). (4.16)

For n ≥ 1, define Mn = max{� : n(�) ≤ n} ↑ ∞ as n →∞ (max∅ = 0). Then by
(4.16) for any m ∈ N,

μn(Ω
n
m) ≤

Mn∑

�=m
μn(Ω̂

n
� ) ≤

Mn∑

�=m
C2−� ≤ 2C2−m,

because � ≤ Mn implies that n(�) ≤ n. ��
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Proof of Theorem 2. Recall (1.5). Let

ẽ(n) = (
(ê(n)

t (y/
√
n, x/

√
n))t≥0 : y, x ∈ Z

d) ∈ (
D([0,∞),DR)

)Z
d×Z

d := D̃,

where (1.11) is used to show that, using the usual countable product metric,

ẽ(n) belongs to the complete separable metric space D̃.

For s > 0, the joint probability law of (X (n), ẽ(n)) (on D× D̃) conditional on S(n) > s
is written as

μs
n((X

(n), ẽ(n)) ∈ ·)
= μn((X (n), ẽ(n)) ∈ ·|S(n) > s).

Although μs
n = P

s
n , we will soon be trading in our familiar P to apply Skorokhod’s

Theorem and so to avoid confusion it will be useful to work with μs
n on our original

probability space.
Fix s > 0. It suffices to show weak convergence along any sequence nk →∞ and

to ease the notation we will simply assume n ∈ N (the proof being the same in the
general case). By Lemma 4.5 and the Skorokhod Representation Theorem we may
work on some (Ω,F , P

{s}) on which there are random measures (X̄ (n)∞)n∈N and X̄∞
such that X̄ (n)∞ has law μs

n(X̄
(n)∞ ∈ ·) for each n, X̄∞ has law N

s
o(X̄∞ ∈ ·), and

X̄ (n)∞
a.s.−→ X̄∞ as n →∞. (4.17)

For now we may assume F = σ((X̄ (n)∞)n∈N, X̄∞). We claim that we may assume that
for all n ∈ N there are processes (X (n), ẽ(n)) ∈ D × D̃ defined on (Ω,F , P

{s}) such
that

∀n ∈ N the law of (X (n), ẽ(n)) on D × D̃ is μs
n((X

(n), ẽ(n)) ∈ ·)
and X̄ (n)∞ =

∫ ∞

0
X (n)

u du a.s.

To see this, work on Ω̄ = Ω ×D× D̃ with the product σ -field F̄ , and define P̄
{s} on

F̄ by

P̄
{s}

(
(X̄∞, (X̄ (n)∞)n∈N) ∈ A, (X (n), ẽ(n))n≤N ∈

N∏

n=1
Bn

)

=
∫

1A(X̄∞, (X̄ (n)∞)n∈N)

N∏

n=1
μs
n((X

(n), ẽ(n)) ∈ Bn|X̄ (n)∞)dP
{s},

where the above conditional probabilities are taken to be a regular conditional prob-
abilities. In short, given (X̄∞, (X̄ (n)∞)n∈N), we take (X (n), ẽ(n))n∈N to be conditionally
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independent and with laws μs
n((X

(n), ẽ(n)) ∈ ·|X̄ (n)∞). Clearly the resulting enlarged
space satisfies the above claim. We now relabel the enlarged space as (Ω,F , P

{s}) to
ease the notation.

Note that for each fixed n, T (n) = (T (n)

t )t≥0 := (supp(X (n)

t ))t≥0 is a copy of our

rescaled set-valued process so we can define S(n), R(n) and
a,n→ just as before using ẽ(n)

and T (n). For the latter, set e(n)

s,t (y, x) = ẽ(n)

t (y, x)(s) and write (s, u)
a,n→ (t, x) iff

s ≤ t and e(n)

s,t (x, y) = 1 (recall (1.5) and (1.17)). In particular Ωn
i,� and Ωn

m , as in
Lemma 4.6 can be defined as subsets of Ω , and that result and (1.31) imply

P
{s}(Ωn

m) = μs
n(Ω

n
m) ≤ μn(Ω

n
m)

μn(S(n) > s)
≤ c4.62

−m/μn(S
(n) > s)

≤ c4.6c1.21
sD

(s ∨ 1)2−m := c4.18(s)2−m .

(4.18)

To reinterpret Theorem 1 we introduce

Δ(n)(ρ) = sup{|y2 − y1| : |s2 − s1| ≤ ρ, (s1, y1)
a,n→ (s2, y2)}, (4.19)

and note that the law of Δ(n)(ρ) is the same under P
{s} and μs

n . Therefore

P
{s}(Δ(n)(ρ) > C1(ρα + n−α)) ≤ μs

n(Δ
(n)(ρ) > C1(ρα + n−α))

μn(S(n) > s)
.

On the original space Δ(n)(ρ) > C1(ρα + n−α) implies δn < ρ and so by Theorem 1
and (1.31) (as used in (4.18))

∀ρ ∈ [0, 1], P
{s}(Δ(n)(ρ) > C1(ρα + n−α)) ≤ μn(δn < ρ)/μn(S

(n) > s)

≤ c4.20(s)[ρβ + n−q ]. (4.20)

Next note that (1.31) implies for m ∈ N,

P
{s}(S(n) > 2m−1) ≤ μn(S(n) > 2m−1)

μn(S(n) > s)
≤ c4.21(s)

2m−1 ∧ n
. (4.21)

Finally use (1.31) and recall Lemma 4.4(b) to see that for m ∈ N,

P
{s}(r0(R

(n)) ≥ 2m−1) ≤ μn(r0(R(n)) ≥ 2m−1)
μn(S(n) > s)

≤ c4.22(s)η4.4(2m−1). (4.22)

We have R(n) = R(X (n)) = supp(X̄ (n)∞), and R = supp(X̄∞) defines the range of a
SBM. It suffices to show

d0(R
(n), R)

P
{s}−→ 0 as n →∞.
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Lemma 4.3 and (4.17) show that Δ1(R, R(n))
a.s.−→ 0, and therefore if we set Rδ :=

{x : d(x, R) ≤ δ} it suffices to fix τ0 > 0 and prove

lim
n→∞P

{s}(R(n) �⊂ Rτ0) = 0. (4.23)

Fix ε > 0 and let τ(τ0, ε, s), n0(τ0, ε, s) be as in Lemma 4.4(c), and choose 0 < τ <

τ(τ0, ε, s). Recalling R(n)
τ = ∪s≤τT (n)

s , we see from Lemmas 4.2 and 4.4(c) that

P
{s}(R(n)

τ �⊂ Rτ0) ≤ P
{s}(R(n)

τ �⊂ B(0, τ0)) =μs
n(R

(n)

τ �⊂ B(0, τ0)) ≤ ε

for n ≥ n0(τ0, ε, s). (4.24)

For m ∈ N, define the finite grid of points

Gm =
{ i2−m

K0
: i ∈ Z

d
}
∩ [−2m, 2m]d ,

where K0 ∈ N is chosen so that

∀x ∈ B(o, 2−m) ∃q ∈ Gm so that |q − x | ≤ 2−m . (4.25)

Define the finite collection

Bm = {B(x, τ0/2) : x ∈ Gm}.

Fix m ∈ N sufficiently large so that

(i) 2−m + 2C12
(1−m)α < τ0/10, (4.26)

(i i) 21−m < τ, (4.27)

(i i i) c4.18(s)2−m + c4.20(s)2(1−m)β + c4.21(s)

2m−1
+ c4.22(s)η4.3(2m−1) < ε. (4.28)

If (Wu, u ≥ 0) denotes a d-dimensional Brownian motion with variance parameter
σ 2
0 starting at o under a probability measure Po, then for any open ball B,

E
{s}[X̄∞(∂B)] = N

s
o[X̄∞(∂B)] ≤

∫ ∞

0
No[Xu(∂B)] du/No(S > s)

=
∫ ∞

0
Po(Wu ∈ ∂B) du/No(S > s)

= 0,

where the second line is standard (e.g. Theorem II.7.2(iii) of [32]). Therefore by
(4.17), the above equality, and standard properties of the weak topology we have
(recall K = 1024)
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lim
n→∞P

{s}
(

sup
B∈Bm

|X̄ (n)∞(B)− X̄∞(B)| ≥ 1

2
K−m

)
= 0.

So there is an n1 = n1(m, ε, τ0, s) so that for n ≥ n1 we have

P
{s}
(

sup
B∈Bm

|X̄ (n)∞(B)− X̄∞(B)| ≥ 1

2
K−m

)
< ε, (4.29)

and, if Mn is as in Lemma 4.6, then for n ≥ n1

(i) m ≤ Mn, (4.30)

(i i) 2C1n
−α < τ0/10, (4.31)

(i i i) n > 2m−1 and [c4.20(s)+ c4.21(s)]n−q < ε. (4.32)

Assume n ≥ n1, and then choose ω so that (Δ(n) is as in (4.19))

(i) ω ∈ (Ωn
m)c, (i i) Δ(n)(21−m) ≤ C1(2(1−m)α + n−α), (4.33)

(i i i) S(n) ≤ 2m−1, (iv) r0(R
(n)) < 2m−1, (4.34)

(v) sup
B∈Bm

|X̄ (n)∞(B)− X̄∞(B)| < 1

2
K−m . (4.35)

Let x ∈ R(n)\R(n)
τ , and then choose s > τ so that x ∈ T (n)

s . By (4.27), (iii) in (4.34),
and s < S(n) (since T (n)

s is non-empty), we have

21−m < τ < s < S(n) ≤ 2m−1,

and so we can choose i ∈ {0, . . . , 22m−1} so that s ∈ [(i + 1)2−m, (i + 2)2−m). Since
|x | ≤ r0(R(n)) < 2m−1 (by (iv) of (4.34)), (4.25) shows there is a q ∈ Gm so that

|x − q| ≤ 2−m < τ0/10, (4.36)

the last by (4.26). By (1.10) ∃ x0 ∈ T (n)

i2−m such that (i2−m, x0)
a,n→ (s, x). Assume

u ∈ [(i + 1)2−m, (i + 2)2−m] and (i2−m, x0)
a,n→ (u, y) for some y ∈ T (n)

u . Then use
(4.36), (4.19), and (ii) in (4.33) to see that

|y − q| ≤ |y − x0| + |x0 − x | + |x − q|
≤ 2Δ(n)(21−m)+ τ0/10

≤ 2C1(2(1−m)α + n−α)+ τ0/10

≤ 3τ0/10 < τ0/2,

where we have used (4.26) and (4.31) in the last line. This implies that
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X̄ (n)∞(B(q, τ0/2)) ≥
∫ (i+2)2−m

(i+1)2−m
X (n)

u (B(q, τ0/2)) du

≥
∫ (i+2)2−m

(i+1)2−m
X (n)

u ({y ∈ T (n)

u : (i2−m, x0)
a,n→ (u, y)}) du. (4.37)

By (1.10) and (i2−m, x0)
a,n→ (u, y), there is an x ′ ∈ T(i+1)2−m s.t.

(i2−m, x0)
a,n→ ((i + 1)2−m, x ′) a,n→ (u, y).

The fact that ω /∈ Ωn
m (by (i) of (4.33)), m ≤ Mn (by (4.30)), i ∈ {0 . . . , 22m−1},

x0 ∈ T (n)

i2−m , and (i2−m, x0)
a,n→ ((i + 1)2−m, x ′) shows that the right-hand side of

(4.37) is at least K−m . This inequality and (4.35) imply

X̄∞(B(q, τ0/2)) > K−m/2.

Use this and (4.36) to conclude X̄∞(B(x, τ0)) > K−m/2 and therefore that x ∈ Rτ0 .
We have shown that

For n ≥ n1, conditions(4.33)− (4.35) imply that (R(n)\R(n)

τ ) ⊂ Rτ0 . (4.38)

Now use (4.18), (4.20), (4.21), (4.22), and (4.29) to see that the probability, P(m, n)

that one of the 5 conditions listed in (4.33)-(4.35) fails is at most

P
{s}(Ωn

m)+ P
{s}(Δ(n)(21−m) > C1(2(1−m)α + n−α))

+ P
{s}(S(n) > 2m−1)+ P

{s}(r0(R
(n)) ≥ 2m−1)+ ε

≤ c4.18(s)2−m + c4.20(s)[2(1−m)β + n−q ] + c4.21(s)

2m−1 ∧ n
+ c4.22(s)η4.4(2m−1)+ ε.

Our lower bounds onm and n (in particular use (4.28) and (4.32)) shows that the above
is at most 3ε, and so we have shown

P(m, n) < 3ε for n > n1(m, ε, τ0) and where m is chosen as above.

Recalling (4.38) we conclude that

P
{s}((R(n)\R(n)

τ ) �⊂ Rτ0) < 3ε for n > n1.

This, together with (4.24), proves (4.23) and so completes the proof. ��
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5 The extrinsic one-arm probability

In this section we prove Theorem 3. Recall that r0(G) = sup{|x | : x ∈ G}.
Lemma 5.1 The map r0 : K→ [0,∞) is continuous.

Proof Let Kn → K , and let ε > 0. Choose n0 sufficiently large so that Kn ⊂ K ε and
K ⊂ K ε

n for all n ≥ n0. Then for such n, r0(Kn) ≤ r0(K )+ε and r0(K ) ≤ r0(Kn)+ε.
��

Proof of Theorem 3 Let ε ∈ (0, 1), α, β be as in (2.9) and (2.10), and let δn , C1 be as
in Theorem 1. No is the canonical measure for the (γ, σ 2

0 )-SBM arising in Theorem 2.
By Lemma 1.9 we have No(r0(R) > 1) < ∞, and as S > 0 No-a.e., we may choose
s ∈ (0, 1) small enough so that

No(r0(R) > 1, S ≤ s) < ε, (5.1)

and
C1(sα + sβ) < ε/2. (5.2)

Assume n1 ≥ 1 is large enough so that

C1(n−α
1 + n−q1 ) < ε/2, (5.3)

and
|μn(S

(n) > s)− (sD/s)| < ε ∀n ≥ n1, (5.4)

where (1.30) is used for the last.
Assume that n ≥ n1 and S(n) ≤ s ≤ δn . Then for any x ∈ T (n)

t we must have

t ≤ S(n) ≤ s ≤ δn , and so by Theorem 1 and (0, o)
a,n→ (t, x),

|x | = |x − o| ≤ C1(tα + n−α) ≤ C1(sα + n−α) < ε,

the last inequality by (5.2) and (5.3). This proves that for all n ≥ n1,

S(n) ≤ s ≤ δn ⇒ r0(R
(n)) ≤ ε < 1.

Therefore for n ≥ n1, we have by Theorem 1,

μn(r0(R
(n)) > 1, S(n) ≤ s) ≤ μn(δn < s) ≤ C1(sβ + n−q) < ε, (5.5)

the last by (5.2) and (5.3) again.
If Dc(h) denotes the set of discontinuity points of h : K→ R, then by Lemma 5.1,

No(R ∈ Dc(1{r0>1})) ≤ No(r0(R) = 1) = 0,
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where we have used Lemma 1.9 in the last equality. So Theorem 2 shows that we may
also assume that n1 is large enough so that

|Ps
n(r0(R

(n)) > 1)− N
s
o(r0(R) > 1)| < ε for n ≥ n1. (5.6)

Write O(ε) for any quantity bounded in absolute value by Cε for some constant C
independent of n. Then for n ≥ n1 we have

m(n)P(r0(R
(1)) >

√
n) = μn(r0(R

(n)) > 1)

= μn(r0(R
(n)) > 1, S(n) > s)+ O(ε) (by (5.5))

= P
s
n(r0(R

(n)) > 1)μn(S
(n) > s)+ O(ε)

= N
s
o(r0(R) > 1)μn(S

(n) > s)+ O(ε) (by (5.6), (1.31))

= N
s
o(r0(R) > 1)

sD
s
+ O(ε) (by (5.4)). (5.7)

Next use (5.1) and No(S > s) = 2
γ s to see that

N
s
o(r0(R) > 1)

sD
s
= No(r0(R) > 1, S > s)

2/(γ s)

sD
s

= No(r0(R) > 1)
γ sD
2
+ O(ε)

= σ 2
0

2
sDvd(0)+ O(ε), (5.8)

where Lemma 1.9 is used in the final equality. Combining (5.7) with (5.8), we see that

lim
n→∞m(n)P(r0(R

(1)) >
√
n) = σ 2

0

2
sDvd(0),

which gives (2.18) in Theorem 3. (2.17) then follows from this and (1.30). ��

6 On checking conditions 6–7 and the existence of ancestral paths

Here we prove Lemmas 2.2 and 2.3 as well as Propositions 1.5 and 2.4.

Proof of Lemma 2.2 To prove Condition 6 (measure convergence), it suffices to prove
convergence along any sequence. To simplify notation we assume n ∈ N and that the
branching and diffusion parameters of the limiting super-Brownian motion are both
one. Fix 0 ≤ t0 < t1. Let p ∈ N and u1, . . . , u p ∈ [t0, t1]. Let φ ≥ 0 be in Cb(R

d).
Then by (2.5),

P
s
n

[( p∏

i=1
X (n)

ui (φ)
)2

]
≤ ‖φ‖2p∞C(s, t1, p) ∀n ∈ N. (6.1)
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It follows easily from the finite-dimensional convergence (2.4) and the above L2 bound
(e.g. use Skorokhod’s representation to get a.s. convergence in (2.4)) that

lim
n→∞P

s
n

[ p∏

i=1
X (n)

ui (φ)

]
= N

s
o

[ p∏

i=1
Xui (φ)

]
. (6.2)

Using Fubini’s theorem we have

lim
n→∞P

s
n

[(∫ t1

t0
X (n)

u (φ)du

)p
]

= lim
n→∞

∫ t1

t0
. . .

∫ t1

t0
P
s
n

[ p∏

i=1
X (n)

ui (φ)

]
du1 . . . du p

=
∫ t1

t0
. . .

∫ t1

t0
N
s
o

[ p∏

i=1
Xui (φ)

]
du1 . . . du p

= N
s
o

[(∫ t1

t0
Xu(φ)du

)p
]

<∞, (6.3)

where (6.2), (6.1) and dominated convergence are used in the second equality. If W
denotes a standard Brownian motion starting at o under Po, then take p = 1 in the
above to see that

lim
n→∞P

s
n

[
(X̄ (n)

t1 − X̄ (n)

t0 )(φ)

]
= N

s
o

[ ∫ t1

t0
Xu(φ)du

]

≤ Eo

[ ∫ t1

t0
φ(Wu)du

]
/No(S > s),

where the last is because the mean measure of Xt under No is Po(Bt ∈ ·) (e.g.
Theorem II.7.2(iii) in [32]). It now follows easily from the above that sequence of
laws {Ps

n(X̄
(n)

t1 − X̄ (n)

t0 ∈ ·) : n ∈ N} on MF (Rd) are tight.
To show the limit points are unique, assume

X̄
(nk )

t1 − X̄
(nk )

t0
w−→ X̃t0,t1 inMF (Rd). (6.4)

It remains to show that

P(X̃t0,t1 ∈ ·) = N
s
o

(∫ t1

t0
Xudu ∈ ·

)
. (6.5)

(6.4) and the convergence, hence boundedness, in (6.3) with 2p in place of p, imply
that (again one can use Skorokhod’s representation theorem)
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E[X̃t0,t1(φ)p] = lim
k→∞E

s
nk

[[ ∫ t1

t0
X (nk)
u (φ)du

]p
]

.

This together with (6.3), implies that

E[X̃t0,t1(φ)p] = N
s
o

[(∫ t1

t0
Xu(φ)du

)p
]

for all φ ∈ Cb(R
d) and p ∈ N. (6.6)

So to conclude (6.5) we must show the moment problem is well-posed. Assume
‖φ‖∞ ≤ 1. Recall that Pδo is the probability law of a SBM started from a unit mass
at the origin (with (γ, σ 2

0 ) = (1, 1)). Then for 0 ≤ θ < 2/t21 ,

Eδ0

[
exp

(
θ

∫ t1

t0
Xu(φ)du

)]

≤ Eδ0

[
exp

(
θ

∫ t1

0
Xu(1)du

)]

≤ Eδ0

[∫ t1

0
eθ t1Xu(1)du/t1

]
(Jensen applied to the integrand)

≤ exp(t1θ [1− (t21 θ/2)]−1) <∞,

where the last line uses the exponential bound in Lemma III.3.6 of [32]. By (1.28),
the left-hand side of the above equals

exp

[∫ (
exp

(
θ

∫ t1

t0
νu(φ)du

)
− 1

)
dNo(ν)

]

≥ exp

(∫ (
exp

(
θ

∫ t1

t0
νu(φ)du

)
− 1

)
1(S > s) dNo(ν)

)
.

Noting that No(S > s) <∞, the above implies that

∫
exp

(
θ

∫ t1

t0
Xu(φ)du

)
dN

s
o <∞ for 0 ≤ θ < 2t−21 ,

which in turn implies that the moment problem for the random variable
∫ t1
t0

Xu(φ)du
under N

s
o is well-posed (see, e.g. Theorem 3.3.11 in [12]). Therefore (6.6) implies that

for non-negative φ ∈ Cb(R
d) satisfying ‖φ‖∞ ≤ 1,

P(X̃t0,t1(φ) ∈ ·) = N
s
o

(∫ t1

t0
Xu(φ)du ∈ ·

)
.

This clearly then follows for all non-negative φ ∈ Cb(R
d) by linearity. This shows the

Laplace functionals of the above two measures are identical and so (6.5) holds (e.g.
by Lemma II.5.9 of [32]) and the proof is complete. ��
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Proof of Lemma 2.3 Let t, M,Δ be as in Condition 7 and set � = �t� ∈ Z+, m =
�Δ� ∈ N

≥4. Assume x ∈ Tt , ∃x ′ s.t. (t, x) a→ (t +Δ, x ′) and

∫ t+2Δ

t+Δ

|{y : (t, x) a→ (s, y)}| ds ≤ M . (6.7)

Clearly x ∈ T�, and (�, x)
a→ (t, x)

a→ (t+Δ, x ′). So by (1.9) and (1.10) ∃x ′′ ∈ T�+m
s.t.

(�, x)
a→ (�+ m, x ′′) a→ (t +Δ, x ′). (6.8)

Next by (6.7) and (1.16),

M ≥
∫ t+2Δ

t+Δ

|{y : (t, x) a→ (s, y)}| ds

≥
∫ �+2m

�+m+2
|{y : (t, x) a→ (s, y)}| ds

= |{(i, y) : (�, x) a→ (i, y), �+ m + 2 ≤ i ≤ �+ 2m − 1, i ∈ N}|. (6.9)

From (6.8) and (6.9) we see that the left-hand side of (2.6) (in Condition 7) is at most

E

[ ∑

x∈T�

1
(
∃x ′′ s.t. (�, x) a→ (�+ m, x ′′),

|{(i, y) : (�, x) a→ (i, y), �+ m + 2 ≤ i ≤ �+ 2m − 1}| ≤ M
)]

≤ c7P

(
S(1) > m,

2m−1∑

i=m+2
|Ti | ≤ M

)
(by (2.7))

= c7P

(
S(1) > Δ,

∫ 2m

m+2
|Ts |ds ≤ M

)

≤ c7P

(
S(1) > Δ,

∫ 2Δ−2

Δ+2
|Ts |ds ≤ M

)
.

This proves (2.6), as required. ��

Proof of Proposition 2.4 If φp(x) = |x |p, the expression inside the limit on the left
side of (2.8) is

E

⎡

⎣
∑

x∈Tt

( |x |√
t

)p
⎤

⎦ = m(t)P(S > t)E1
t [X (t)

1 (φp)]. (6.10)
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By the above, (1.22), and Condition 4 (spatial increments) for s = t , we see that for
all p > 4 and t ≥ 1,

E
1
t [X (t)

1 (φp)] ≤
E

[∑
x 1((0, 0)

a→ (t, x))|x |p
]

t p/2sD
≤ c4(p)

sD
. (6.11)

The assumedweak convergence of the one-dimensional distributions and boundedness
in (2.5) for p = 2 imply weak convergence of the mean measures on R

d , i.e.

E
1
t [X (t)

1 (·)] w−→ N
1
o[X1(·)], as t →∞. (6.12)

This weak convergence, the bound in (6.11), and a uniform integrability argument
imply that

lim
t→∞E

1
t [X (t)

1 (φp)] = N
1
o[X1(φp)], ∀p ≥ 0.

So we may now let t →∞ in (6.10) and use the above and Condition 1 (survival
probability) to see that the limit in (2.8) is

sD

∫
X1(φp)dNo

No(S > 1)
= γ sDσ

p
0

2
E[|B1|p],

where B is a standard Brownian motion starting at 0. We have also used (1.29) and
the fact that the mean measure of X1 under No is the law of σ0B1 (e.g. by Theorem
II.7.2 (iii) of [32]). ��
Lemma 6.1 W.p.1 there is a random variable M ∈ N and (Ft )-stopping times 0 =
τ0 < τ1 < · · · < τM = S(1) such that

Tt =
{
Tτi−1 on [τi−1, τi ) for 1 ≤ i ≤ M

∅ on [τM ,∞) = [S(1),∞).

Proof Choose ω so that S(1) <∞ and (AR)(i)–(iii) hold. In the discrete case the result
is clear. Just set M = S(1) and τi = i , and recall (1.13).

Consider next I = [0,∞). Recall ((1.3), (1.4)) that (Tt , t ≥ 0) is a cadlagK-valued
process taking values in the finite subsets of Z

d , PF . It follows that d0(Tt−, Tt ) ≥ 1
whenever Tt− �= Tt and T is constant between jumps (distinct points in PF are
distance 1 apart). Therefore the jump times cannot accumulate and so can be listed as
an increasing sequence of stopping times 0 < τ1 < τ2 < . . . , where τm is the mth
jump time and τm = ∞ if there are fewer than m jumps. By (1.13) Tt = ∅ for all
t ≥ S(1) < ∞ and as S(1) is a jump time, clearly S(1) is the last jump time. Moreover
the above implies that the number of jumps M is an N-valued random variable and
τM = S(1). The proof is complete. ��
Proof of Proposition 1.5 Consider first I = Z+. Choose ω s.t. (AR)(i)–(iii) hold. Let
(t, x) ∈ T . If t < 1, then x = o, and w ≡ o is the required ancestral path, so assume
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j = �t� ∈ N. We have (0, o)
a→ ( j, x) and so applying (1.10) j − 1 times we can

find y0, y1, . . . , y j such that (i − 1, yi−1)
a→ (i, yi ) for all 1 ≤ i ≤ j , y0 = o and

y j = x . Now define

ws =
{
yi−1 if s ∈ [i − 1, i) for 1 ≤ i ≤ j

x if s ≥ j .

Then clearly w is an ancestral path to (t, x).
If I = [0,∞) one proceeds as above, choosing ω so that the conclusion of the

previous lemma also holds, and now working with {τ0, τ1, . . . , τM } ∩ [0, t] in place
of {0, 1, . . . , j}. ��

7 Verifying the conditions for the voter model

Here we verify that (1.3), (AR) and Conditions 1–7 hold for the voter model in
dimensions d ≥ 2 (and hence prove Theorem 4). We first briefly describe the
graphical construction of the voter model. This is a standard construction so we
refer the reader to Section 2 of [3] for most justifications and further details (or
alternatively Example 3.2 of [13]). Let {Λ(x, y) : x, y ∈ Z

d} be a collection of
independent Poisson point processes (ppp’s) on R+ where Λ(x, y) has intensity
D(x − y). The points in Λ(x, y)([t1, t2]) are the times in [t1, t2] when a voter at
y imposes its opinion at site x . At such times an arrow is drawn from y to x . Let
F0
t = σ({Λ(x, y)([0, s]) : s ≤ t, x, y ∈ Z

d}) and Ft = F0
t+. We assume below that

the points in these point processes are all mutually disjoint and strictly positive, thus
omitting a set of measure 0.

Recall that the voter model (ξt )t≥0 is a {0, 1}Zd
-valued Feller process. For each

t ≥ 0 and x ∈ Z
d we use the above ppp’s to trace the opinion ξt (x) back to its source

at time 0 by defining a “dual” random walk (Wt,x
s , 0 ≤ s ≤ t). For this, set s0 = 0,

Wt,x
0 = x = y0 and from here we assume t > 0. Let t − s1 be the largest time in

(0, t] when there is an arrow from some y1 to y0 if such a time exists (so s1 = 0 is
possible if there is an arrow at t). If no such time exists, set s1 = t and n = 0. In
general assume we are given 0 < t − sk < t − sk−1 < · · · < t − s1 ≤ t and points
y0, . . . , yk so that there is an arrow from yi to yi−1 at time t − si for i = 1, . . . , k. Let
t − sk+1 ∈ (0, t − sk) be the largest time in this interval when there is an arrow from
some yk+1 to yk . If no such time exists set sk+1 = t and n = k. It is easy to see this
process stops after a finite number of steps for all t > 0, x ∈ Z

d a.s. (for fixed (t, x)
it is clear as the arrows are arising with rate 1, and if it is finite for all rational t > 0
and x ∈ Z

d , it will be finite for all (t, x) because for some rational q > t there will
be no arrows into x in (t, q]). Note that n ∈ Z+ gives the number of steps in the walk
and sn+1 = t . Define Wt,x

s for 0 < s ≤ t by

Wt,x
s = yk if sk < s ≤ sk+1 for 0 ≤ k ≤ n.
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Then

{Wt,x
s : s ≤ t}x∈Zd is a system of left-continuous, right-limited,

rate one coalescing random walks with step distribution D. (7.1)

The above definition easily implies

Wx,t is Ft − measurable, (7.2)

∀ 0 ≤ s ≤ t W t,x
t−s is σ

(
Λ(x ′, y′)([s, t ′]) : t ′ ≥ s, x ′, y′ ∈ Z

d
)
−measurable

(7.3)

and, in particular, is independent of Fs,

Wt ′,x ′
t ′−s = Wt,x

t−s for some s ∈ [0, t ∧ t ′) ⇒ Wt ′,x ′
t ′−u = Wt,x

t−u ∀u ∈ [s, t ∧ t ′],

and

Wt,x
t−u = W

s,Wt,x
t−s

s−u for 0 ≤ u ≤ s ≤ t, x ∈ Z
d . (7.4)

If ξ0 ∈ {0, 1}Zd
, then

ξt (x) = ξ0(W
t,x
t ) for x ∈ Z

d , t ≥ 0 (7.5)

defines an Ft -adapted voter model starting at ξ0 with cadlag paths in {0, 1}Zd
and law

Pξ0 on D([0,∞), {0, 1}Zd
). Right-continuity follows from the fact that we include

arrows at t in our definition of Wt,x so for some δ > 0, there are no arrows to x in
(t, t + δ] and so Wt+δ,x

t+δ = Wt,x
t . Note that (7.4) with u = 0 and (7.5) imply

ξt (x) = ξs(W
t,x
t−s) ∀ 0 ≤ s ≤ t, x ∈ Z

d . (7.6)

If ξ0 = 1{o} we write ξot (x) = 1(Wt,x
t = o) and define

Tt = {x ∈ Z
d : ξot (x) = 1} = {x : Wt,x

t = o}. (7.7)

Lemma 7.1 (a) If ξ0 ∈ {0, 1}Zd
and A is a Borel subset of {0, 1}Zd

, then

P(ξt ∈ A|Fs) = Pξs (ξt−s ∈ A) a.s. for all 0 ≤ s ≤ t . (7.8)

(b) t → |Tt | is a cadlag (Ft )-martingale s.t. S(1) < ∞ a.s. and in particular
supt≥0 |Tt | <∞ a.s.

(c) (Tt )t≥0 satisfies (1.3).

Proof (a) Use (7.6) to see that the left-hand side of (7.8) is

P(ξs(W
t,·
t−s) ∈ A|Fs) = Pξs (ξt−s ∈ A) a.s..
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In the above equality we used the fact that

Λs(x, y)([0, u]) = Λ(x, y)([s, s + u])

defines a collection of ppp’s equal in law to {Λ(x, y) : x, y ∈ Z
d} and independent

of Fs , which implies that {Wt,x
t−s : x ∈ Z

d} are equal in law to {Wt−s,x
t−s : x ∈ Z

d} and
are independent of Fs . We also used the fact that ξs is Fs-measurable.
(b) See Proposition V.4.1 of [30] and its proof for this, except for the martingale prop-
erty with respect to the larger filtration (Ft ). This, however, then follows immediately
from (a) and Proposition V.4.1(a) of [30].
(c) The fact that ξt is cadlag in {0, 1}Zd

and |Tt | <∞ for all t ≥ 0 a.s. (by (b)) shows
t → Tt is cadlag in K. This establishes (1.3). ��

Define (s, y)
a→ (t, x) iff s ≤ t , x ∈ Tt and y = Wt,x

t−s . It follows that

es,t (y, x) = 1(Wt,x
(t−s)+ = y, x ∈ Tt ) for all s, t ≥ 0, x, y ∈ Z

d , (7.9)

where (t − s)+ is the positive part of t − s.

Lemma 7.2
a→ defines an ancestral relation for the voter model.

Proof Starting with AR(i), note (1.6) is immediate. Assume (s, y)
a→ (t, x). By

definition x ∈ Tt and s ≤ t . (7.6) and (7.7) imply that ξs(W
t,x
t−s) = ξt (x) = 1 and so

y = Wt,x
t−s ∈ Ts , proving (1.7). (1.8) follows from (7.7).

Turning to (ii), (1.9) is a consequence of (7.4). Assume (s1, y1)
a→ (s3, y3). Then

y1 = Ws3,y3
s3−s1 and if y2 = Ws3,y3

s3−s2 , then (s2, y2)
a→ (s3, y3) by definition. By (7.4) we

have Ws2,y2
s2−s1 = Ws3,y3

s3−s1 = y1 and so (s1, y1)
a→ (s2, y2). This gives (ii).

We will use Remark 1.1(2) to verify (iii). The fact that s → es(t, x) is cadlag on
[0,∞) is immediate from (7.9) and the fact that s → Wt,x

s ∈ Z
d is left-continuous

with right limits on [0, t] (by (7.1)). There is a δ > 0 such that there is no arrow
towards x in (t, t + δ]. Let r ∈ (t, t + δ]. Then by definition

Wr ,x
s = x ∀s ∈ [0, r − t], (7.10)

which by (7.6) implies

ξr (x) = ξt (W
r ,x
r−t ) = ξt (x),

and therefore
x ∈ Tt iff x ∈ Tr . (7.11)

Next, use (7.4) with (u, s, t) replaced by (s, t, r) to see that,

Wr ,x
r−s = W

t,Wr ,x
r−t

t−s = Wt,x
t−s for all s ≤ t, (7.12)
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On the range of lattice models in high dimensions 991

where (7.10) is used in the last equality. We also have

Wr ,x
(r−s)+ = x = Wt,x

(t−s)+ for all s ≥ t, (7.13)

where we use (7.10) for the first equality when r ≥ s ≥ t . Now use (7.11), (7.12) and
(7.13) in (7.9) to conclude that êt (y, x) = êr (y, x) for all r ∈ [t, t+δ]. This proves the
first condition in Remark 1.1(2). For the second condition, (1.15), if x ∈ Tt− choose
δ > 0 such that there are no arrows to x in [t − δ, t) and proceed in a similar manner.
This completes the proof of AR(iii).

If s < t , (7.9) shows that es,t (y, x) is Ft -measurable by (7.2) and the Ft -
adaptedness of T . This gives (AR)(iv) and the proof is complete. ��

For t ≥ 0 and x ∈ Z
d we define our candidate for an ancestral path to (t, x) ∈ T

by

ws(t, x) = Wt,x
(t−s)+ . (7.14)

Lemma 7.3 For any (t, x) ∈ T , w(t, x) is the unique ancestral path to (t, x), and
therefore W = {w(t, x) : (t, x) ∈ T }.
Proof Assume that (t, x) ∈ T . Then s �→ ws(t, x) is cadlag by definition and the fact
that Wt,x

s is left-continuous with right limits in s. (7.6) implies that if 0 ≤ s ≤ t , then
1 = ξt (x) = ξs(ws(t, x)) and so

ws(t, x) ∈ Ts for all s ≤ t . (7.15)

Let 0 ≤ s ≤ s′ ≤ t . Then, using (7.15), we see that (s,Wt,x
t−s)

a→ (s′,Wt,x
t−s′) iff

Wt,x
t−s = W

s′,Wt,x
t−s′

s′−s , which holds by (7.4). As ws(t, x) = Wt,x
0 = x for all s ≥ t , we

see that w(t, x) is an ancestral path to (t, x).

Turning to uniqueness, let w̃s(t, x) be any ancestral path to (t, x). Then (0, o)
a→

(s, w̃s(t, x)) implies w̃s(t, x) = Wt,x
t−s , and so w̃(t, x) = w(t, x) is unique. The last

assertion is then immediate. ��
Before proving Theorem 4we note that the above definition ofw(t, x) and part (v1)

of the Theorem give a uniform modulus of continuity for the rescaled dual coalescing
randomwalks connecting one-valued sites in the voter model conditioned on longterm
survival.

Corollary 7.4 Assume {Wt,x
s : 0 ≤ s ≤ t, x ∈ Z

d} (d ≥ 2) is the coalescing dual
of a voter model (Tt )t≥0 starting with a single one at the origin, with bounded range
kernel D and survival time S(1). Let α ∈ (0, 1/2). There is a constant C7.4 and for all
n ≥ 1 a random variable δn ∈ [0, 1] so that

P(δn ≤ ρ|S(1) > nt∗) ≤ C7.4(t∗ ∨ 1)[ρ + n−1], ∀ρ ∈ [0, 1), t∗ > 0, (7.16)

and if (t, x) ∈ T , 0 ≤ s1 < s2 ≤ t , and |s2 − s1| ≤ nδn,

|Wt,x
s1 −Wt,x

s2 | ≤ C7.4n
(1/2)−α[|s2 − s1|α + 1]. (7.17)
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Proof Let δn be as in Theorem 4(v1) (see Definition 2.5). Then for n ≥ 1, t∗ > 0, and
ρ ∈ [0, 1), that Theorem gives

P(δn ≤ ρ|S(1) > nt∗) ≤ m(n)P(δn ≤ ρ)/(m(n)P(S(1) > nt∗))
≤ C1[ρ + n−1]s−1D c1.21(t∗ ∨ 1),

where (1.31) is used in the last line. This gives (7.16), and (7.17) is then immediate
from Corollary 1, (7.14) and Lemma 7.3. ��

Proof of Theorem 4 Parts (v1), (v2) and (v3) will follow from Theorems 1, 2 and 3,
respectively, once we verify Conditions 1–7 for the parameter values given in Theo-
rem 4. Here we need to recall that sD = β−1D for the voter model (Proposition 1.6),
and carry out a bit of arithmetic (especially for (v3)). We have already noted that
Conditions 1 and 6 follow from Propositions 1.6(b) and 1.7, respectively. Condition 2
follows immediately from Lemma 7.1(b). So it remains to check Conditions 3, 4, 5
and 7 for the voter model. ��

Condition 3. On {y ∈ Ts} we have

P(∃z s.t. (s, y) a→ (s + t, z)|Fs) = P(∃z s.t. Ws+t,z
t = y|Fs)

= P(∃z s.t. Ws+t,z
t = y) (by (7.3))

= P(∃z s.t. Ws,z
s = 0),

where in the last line we used translation invariance in both space and time of the
system of Poisson point processes {Λ(x, y)}. More specifically we use the fact that
{Λ(x ′ − y, y′ − y)([t, t + u]) : x ′, y′ ∈ Z

d , u ≥ 0} has the same law as
{Λ(x ′, y′)([0, u]) : x ′, y′ ∈ Z

d , u ≥ 0}. Recalling (7.7) we see that the right-hand
side of the above equals

P(Ts is non-empty) ≤ sD
m(s)

,

by (1.22) (which applies because Condition 1 holds).

Condition 7. On {x ∈ Tt } we can argue as above to see that

P

(
∃x ′ s.t. (t, x) a→ (t +Δ, x ′),

∫ t+2Δ

t+Δ

|{y : (t, x) a→ (s, y)}|ds ≤ M
∣∣∣Ft

)

= P

(
∃x ′ s.t. Wt+Δ,x ′

Δ = x,
∫ t+2Δ

t+Δ

|{y : Ws,y
s−t = x}|ds ≤ M

∣∣∣Ft

)

= P

(
∃x ′ s.t. Wt+Δ,x ′

Δ = x,
∫ t+2Δ

t+Δ

|{y : Ws,y
s−t = x}|ds ≤ M

)
(by (7.3))
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= P

(
∃x ′ s.t. Wt+Δ,x ′

Δ = x,
∫ 2Δ

Δ

|{y : Ws′+t,y
s′ = x}|ds′ ≤ M

)
(s′ = s − t)

= P

(
∃x ′ s.t. WΔ,x ′

Δ = o,
∫ 2Δ

Δ

|{y : Ws,y
s = o}|ds ≤ M

)
,

where in the last line we use the the translation invariance in space and time of the
system of ppp’s as above. Now use (7.7) to see that the above equals

P

(
S(1) > Δ,

∫ 2Δ

Δ

|Ts | ds ≤ M

)
.

Using this equality, the left-hand side of (2.6) (in Condition 7) is equal to

E

⎡

⎣
∑

x∈Tt
P

(
S(1) > Δ,

∫ 2Δ

Δ

|Ts | ds ≤ M

)⎤

⎦

= E[|Tt |]P
(
S(1) > Δ,

∫ 2Δ

Δ

|Ts | ds ≤ M
)
.

Recall that E[|Tt |] = 1 by Lemma 7.1(b), and so if Δ ≥ 4 the above is trivially
bounded above by the right-hand side of (2.6) with c7 = 1, and so Condition 7 is
established.

Condition 4 Recall that for 0 ≤ s ≤ t , (t − s, y)
a→ (t, x) iff x ∈ Tt and y = Wt,x

s .
Therefore by translation invariance of Wt,x

s , we have for any p > 4,

E

[ ∑

x∈Tt

∑

y∈Tt−s
1((t − s, y)

a→ (t, x))|x − y|p
]

= E

[ ∑

x∈Tt

∑

y∈Zd

1(Wt,x
s = y)|x −Wt,x

s |p
]

= E

[ ∑

x∈Zd

1(Wt,x
t = o)|x −Wt,x

s |p
]

(by (7.7))

= E

[ ∑

x∈Zd

1(Wt,o
t = −x)|Wt,o

s |p
]

= E[|Wt,o
s |p]. (7.18)

Recall (see (7.1)) s �→ Wt,o
s is a rate one continuous time rw with step distribution

D and so has steps bounded in Euclidean norm by L . If Sn = ∑n
i=1 Zi denotes the

corresponding discrete time rw and Ns is an independent rate one Poisson process,
then we can use Burkholder’s predictable square function inequality (Theorem 21.1
in [5]) to see that
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E[|Wt,o
s |p] = E[|SNs |p]

≤ cpE[N p/2
s +max

i≤Ns
|Zi |p]

≤ cpE

[
N p/2
s + Ns

[∑

x

|x |pD(x)

]]

≤ c(p, L)(s ∨ 1)p/2,

and we arrive at Condition 4 for any p > 4.

Condition 5 To verifyCondition 5 for all κ > 4wewill dominate the range of the voter
model by a pure birth process. The following result is standard (e.g. see Theorem 11
in Sec. 6.11 of [16] and use a stopping time argument to add values of s = eλ > 1 to
those considered there).

Lemma 7.5 Let Mt denote a rate one pure birth process with M0 = 1. Then for all
t, λ ≥ 0 satisfying λ < − ln(1− e−t ),

E[eλMt ] = (1+ et−λ − et )−1,

and so if λ7.5 = − ln(1− e−2)/2, there is a C7.5 such that

P(M2 ≥ N ) ≤ C7.5e
−λ7.5N ∀N > 0. (7.19)

To verify Condition 5 we couple the voter model ξt (x) = 1(x ∈ Tt ) with a rate one
branching random walk Zt (x) ∈ Z+, t ≥ 0, x ∈ Z

d , so that Z0(x) = ξ0(x) = 1(x =
o) and ξt (x) ≤ Zt (x) for all t, x . This is standard so we only sketch the construction.

We extend the system of Poisson point processes used to construct the dual coa-
lescing rw’s {Wt,x

s } by considering an i.i.d. system of such processesΛi , i ≥ 1, where
Λ1 = Λ. Then every time Λi (x, y) jumps at time t , and Zt (y) ≥ i , particle i at y
will produce an offspring at x . In this way one can easily check that Zt is a rate one
branching random walk with offspring law D. Moreover since Mt = ∑

x Zt (x) is a
rate one pure birth process, and so is finite for all times, we can order the jumps of Z
and ξ as 0 < T1 < T2 < · · · (recall that the range of the voter model is finite a.s.). It
is then easy to induct on n to check that ξTn ≤ ZTn (coordinatewise). (Here one really
only needs check times at which a new one appears in ξTn at location x .) Since Zt is
monotone increasing, this implies that

|R(1)
t | ≤ Mt for all t ≥ 0, (7.20)

where we recall that R(1)
t is the range of the voter model up to time t .

Recall thatws(t, x) = Wt,x
(t−s)+ is the unique ancestral path to (t, x) ∈ T . The inde-

pendence in (7.3) and translation invariance of the system of Poisson point processes
in the graphical construction of ξ , imply that for s ≥ 0, y ∈ Z

d fixed, and on {y ∈ Ts},
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P(∃ (t, x) s.t. (s, y)
a→ (t, x), t ∈ [s, s + 2], |y − x | ≥ N |Fs)

= P(∃ (t, x) s.t. (0, o)
a→ (t, x), t ∈ [0, 2], |x | ≥ N )

≤ P(|{ws(t, x) : s ∈ [0, t]}| ≥ N/(
√
dL) for some t ∈ [0, 2] and x ∈ Tt )

≤ P(|R(1)
2 | ≥ N/(

√
dL)).

The first inequality holds since s → ws(t, x) = Wt,x
t−s is a step function from o to x

taking steps of (Euclidean) length at most
√
dL , and the second holds since for x ∈ Tt ,

the range of w·(t, x) is in R(1)
t ⊂ R(1)

2 for t ≤ 2.
Now use (7.19) and (7.20) to see the above upper bound is at most

P(M2 ≥ N/(
√
dL)) ≤ C7.5 exp

(
− λ7.5√

dL
N
)
.

This implies Condition 5 for each κ > 4, and so completes the proof of Theorem 4. ��

8 Verifying the conditions for oriented percolation

Recall the discussion after Proposition 1.5, and that in particular
a→ defined therein

for oriented percolation is an ancestral relation.
Here we verify that Conditions 1-7 hold for sufficiently spread out critical oriented

percolation in dimensions d > 4 (and hence prove Theorem 5).

Condition 1 This was verified in Proposition 1.6 with m(t) = A2V (t ∨ 1) and sD =
2A. ��
Condition 2 This is immediate from [44, Theorem 1.11(a)] with k = 0. ��
Condition 3 This is a trivial consequence of Condition 1, since the event that there is
an occupied path from (s, y) to (s + t, z) (for some z) is independent of Fs , and has
probability θ(t) = P(Tt �= ∅), by the translation invariance of the model.

Wewill show below that Condition 4 is a consequence of the following two lemmas,
the first of which is Theorem 1.1 of [33] (it also is a special case of Theorem 1.2 of
[6] with α = ∞; see the comment in [6] after Theorem 1.2).

Lemma 8.1 For d > 4 if L is sufficiently large, then for all p > 4 there exists CL(p)
such that for all n ∈ Z+,

∑

x

|x |pP(x ∈ Tn) ≤ CL(p)n p/2.

Lemma 8.2 Let f : Zd → R+. Then for oriented percolation (critical, spread out, in
dimensions d > 4), and m < n ∈ Z+
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E

⎡

⎣
∑

x∈Tn

∑

y∈Tm
1((m, y) → (n, x)) f (x − y)

⎤

⎦ = E[Tm]
∑

z∈Zd

f (z)P(z ∈ Tn−m)

≤ c2
∑

z∈Zd

f (z)P(z ∈ Tn−m) (8.1)

Proof Let C(n, (m, z)) = {x : (m, z)→ (n +m, x)}. Then the left hand side is equal
to

∑

x,y∈Zd

f (x − y)P(y ∈ Tm, x ∈ C(n − m, (m, y)))

=
∑

x,y∈Zd

f (x − y)P
(
y ∈ Tm)P

(
x ∈ C(n − m, (m, y))

)

=
∑

x,y∈Zd

f (x − y)P
(
y ∈ Tm)P

(
x − y ∈ C(n − m, (0, o))

)

=
∑

y

P
(
y ∈ Tm

)∑

z

f (z)P
(
z ∈ C(n − m, (0, o))

)

= E[Tm]
∑

z

f (z)P
(
z ∈ Tn−m

)
,

giving the equality. The inequality is then immediate from Condition 2. ��

Condition 4 Assume L is sufficiently large so that the above two lemmas hold. Let
p > 4 and f (x) = |x |p, n = �t�, and m = �t − s�. Then the left hand sides of (2.1)
and (8.1) are identical. Therefore Lemma 8.2 shows that the left hand side of (2.1) is
at most

c2
∑

z∈Zd

|z|pP(z ∈ Tn−m).

By Lemma 8.1 this is at most CL(n − m)p/2 ≤ C ′L(s ∨ 1)p/2 and so Condition 4 is
verified for any p > 4. ��

Condition 5 This is immediate for any κ > 4 when our steps are within a box of
size L (see Remark 2.1). Note that, more generally, the left hand side of (2.2) is (by
independence and translation invariance),

P(∃(t, x) s.t. t ∈ [0, 2], x ∈ Tt , |x | ≥ N ) ≤
∑

|x |≥N

P(x ∈ T1)+
∑

|x |≥N

P(x ′ ∈ T2)

≤ pc
∑

|x |≥N

D(x)+ p2c
∑

|x |≥N

D(∗2)(x)
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≤ C
∑

|x |≥N/2

D(x)

≤ C

∑
x |x |4+εD(x)

N 4+ε
,

which satisfies the required bound with κ = 4 + ε provided that D has 4 + ε finite
moments for some ε > 0. ��
Condition 6 We verify the conditions of Lemma 2.2 with (γ, σ 2

0 ) = (1, σ 2
Dv). The

first condition holds by [44, Theorem 1.2] together with the survival asymptotics
[38, Theorem 1.5] and [24, Proposition 2.4]. The second condition holds since (by
Condition 1)

E
s
n[X (n)

t (1)p] ≤ Cs
n

n p

∑

x1,...,xp

P
(∩p

i=1{xi ∈ T�nt�}
)
,

and by [44, Theorem 1.2] (with k = 0) the sum is at most Cs,t∗,pn p−1 for all t ≤ t∗.
��

Condition 7 We use Lemma 2.3. By independence of bond occupation status before
time � and after time �, and translation invariance, the left hand side of (2.7) is equal
to

∑

x

P
(
x ∈ T�, ∃x ′ ∈ Z

d s.t. (�, x) → (�+ m, x ′),

|{(i, y) : (�, x) → (i, y),m + 2 ≤ i − � ≤ 2m − 1}| ≤ M
)

=
∑

x

P
(
x ∈ T�

)

× P(∃z ∈ Tm, |{(i, y) : (0, o) → (i, y),m + 2 ≤ i ≤ 2m − 1}| ≤ M
)

=
[
∑

x

P
(
x ∈ T�

)
]

P

(
S(1) > m,

2m−1∑

i=m+2
|Ti | ≤ M

)
.

From Condition 2 we see that the first term is bounded by a constant as required. ��
Proof of Theorem 5 Conditions 1–7 all hold, with sD = 2A in Condition 1, any p > 4
in Condition 4, any κ > 4 in Condition 5 and (γ, σ 2

0 ) = (1, σ 2
Dv) in Condition 6.

Hence, with a bit of elementary arithmetic, Theorem 1′ implies (op1), Theorem 2
implies (op2), and Theorem 3 implies (op3). ��

We end with a more explicit interpretation of the modulus of continuity in Theo-
rem 5.

Corollary 8.3 LetT be critical oriented percolation with d > 4, survival time S(1), and
L sufficiently large so that the hypotheses of Theorem 5 hold. Assume α ∈ (0, 1/2).
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Then there is a constant C8.3, and for any n ≥ 1 a random variable δn ∈ (0, 1] so
that

P(δn ≤ ρ|S(1) > nt∗) ≤ C8.3(t∗ ∨ 1)ρ ∀ρ ∈ [0, 1), t∗ > 0, (8.2)

and if (0, o) → (k1, x1)→ (k2, x2), k1, k2 ∈ Z+, and |k2 − k1| ≤ nδn, then

|x2 − x1| ≤ C8.3|k2 − k1|αn(1/2)−α.

Proof This follows immediately from Corollary 1′, and a short calculation to derive
(8.2). The latter is similar to the derivation of (7.16) in the proof of Corollary 7.4. ��

9 Verifying the conditions for lattice trees

Recall that in Sect. 1 (following Proposition 1.5) we saw that (1.3) and (AR), except
for (AR)(iv), were elementary. Here we verify that (AR)(iv) and Conditions 1–7 hold
for sufficiently spread out critical lattice trees in dimensions d > 8, and hence prove
Theorem 6.

Recall that we defined
a→ by

(k, y)
a→ (m, x) ⇐⇒ x ∈ Tm, 0 ≤ k ≤ m, and wk(m, x) = y,

where w(m, x) = (wk(m, x))k≤m is the unique path in the tree T from o to x . Given
T ∈ TL(o) =: T, we let T≤n denote the subtree consisting of vertices in ∪m≤nTm and
all the bonds in E(T ) between these vertices. Clearly T≤n is connected because for
any n′ ≤ n and x ∈ Tn′ , (wm(n′, x))m≤n′ is a path in T≤n from o to x . It follows that
T≤n is a tree and clearly the set T≤n = {T≤n : T ∈ T} ⊂ T is a finite set of trees. It
also follows that for any x ∈ Z

d

1(x ∈ Tn)1(w(n, x) ∈ A) is a function of T≤n for anyA ⊂ T≤n . (9.1)

Choosing a random tree T according to P, we see that T≤n is a random tree. We define

Fn = {{T≤n ∈ A} : A is a subset of T≤n}, n ∈ Z+, (9.2)

that is, Fn is just the σ -field generated by T≤n . Since T≤n is a function of T≤n+1,
(Fn)n∈Z+ is a filtration and clearly

Tn = V (T≤n)\V (T≤n−1) is Fn-measurable.

We can now verify (AR)(iv). Let m, n ∈ Z+ and x, y ∈ Z
d . If m < n then

em,n(y, x) = 1((m, y)
a→ (n, x)) = 1(x ∈ Tn, wm(n, x) = y), which is Fn-

measurable by (9.1). If m ≥ n then em,n(y, x) = 1(x = y ∈ Tn), which is also
Fn-measurable by(9.2). This verifies (AR)(iv) as required.

For x ∈ Tn define the extended path w′(n, x) by

w′m(n, x) = wm(n, x)1(m < n)+ x1(m ≥ n).
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On the range of lattice models in high dimensions 999

It is then immediate from the definition of w(n, x) that wm1(n, x) ∈ Tm1 for m1 ≤ n
and that wm0(m1, wm1(n, x)) = wm0(n, x) for m0 ≤ m1 ≤ n. Thus w′(n, x) is an
ancestral path to (n, x) ∈ T . Moreover it is easy to see w′(n, x) is the only ancestral
path to (n, x) and hence

W := {w′(n, x) : (n, x) ∈ T } (9.3)

is the system of ancestral paths for (T ,
a→). Before verifying Conditions 1–7 with

parameters as in Theorem 6, and hence verifying the conclusion of Corollary 1′, we
can use the above characterization of W in (9.3) to give an explicit interpretation of
this corollary. It is a large scalemodulus of continuity forwk(m, x), k ≤ m conditional
on longterm survival of the tree.

Corollary 9.1 Let T be the critical lattice tree with d > 8, L sufficiently large so that
the hypotheses of Theorem 6 hold, and survival time S(1). Assume α ∈ (0, 1/2). Then
there is a constant C9.1, and for any n ≥ 1 a random variable δn ∈ (0, 1] so that

P(δn ≤ ρ|S(1) > nt∗) ≤ C9.1(t∗ ∨ 1)ρ ∀ρ ∈ [0, 1), t∗ > 0, (9.4)

and if (m, x) ∈ T , k1, k2 ∈ Z+, ki ≤ m, and |k2 − k1| ≤ nδn, then

|wk2(m, x)− wk1(m, x)| ≤ C9.1|k2 − k1|αn(1/2)−α.

Proof This follows immediately from Corollary 1′, (9.3), and a short calculation to
derive (9.4), as in Corollary 8.3. ��

In the remainder of this section we verify Conditions 1–7 for critical sufficiently
spread-out lattice trees in dimensions d > 8. Condition 4 will be verified below as a
consequence of the following bound on the moments of the two-point function from
[33] (Theorem 1.3). (It was first proved in [25], for p = 6.)

Lemma 9.2 ([33]) For d > 8, L sufficiently large and p > 4 there exists C =
C(d, L, p) > 0 such that for all n ∈ Z+,

∑

x

|x |pP(x ∈ Tn) ≤ Cnp/2.

Condition 1 This was checked in Proposition 1.6 with m(t) = A2V (t ∨ 1) and sD =
2A. ��
Condition 2 This is immediate from [22, Theorem 1.12] with k = 0. ��
Condition 5 For lattice trees (2.3) holds and hence so does Condition 5 for any κ > 4
(Remark 2.1). ��
Condition 6 This is immediate with (γ, σ 2

0 ) = (1, σ 2
Dv) by Proposition 1.7. ��
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It is worth noting however that we can also invoke Lemma 2.2 by checking its simpler
hypotheses. The first hypothesis of Lemma 2.2 was verified for lattice trees with d > 8
in [38, Theorem 1.5] as a consequence of the survival asymptotics proved therein and
[22, Theorem 1.15] and [24, Proposition 2.4]. The second hypothesis of Lemma 2.2
is easily obtained from the identity

E
s
n[X (n)

t (1)p] = Csn

n p

∑

x1,...,xp

∑

T∈TL (o):
x1,...,xp∈T�nt�

W (T ).

This identity gives rise to the bound

sup
t≤t∗

E
s
n[X (n)

t (1)p] ≤ sup
t≤t∗

Cs,pn

n p
�nt�p−1 ≤ Cs,pt

∗ p,

where the factor �nt�p−1 comes from the possible temporal locations of p− 1 branch
points in the minimal subtree connecting o to the points x1, . . . , xp ∈ T�nt� (see e.g.
[22, (4.4)–(4.5)]).

In preparation for proving the remaining conditions, we introduce a bit of notation:
For any tree T ∈ TL and any x ∈ T , let Rx (T ) denote the lattice tree consisting of x
and the descendants of x in T , together with the edges in T connecting them. So in
particular if x ∈ Tn , then

V (Rx (T )) = {y ∈ Z
d : ∃m ≥ n s.t. x = wn(m, y)}.

Let T≯x = (T \Rx (T ))∪ {x} denote the tree consisting of all vertices in T that are
not descendants of x . It is connected, and hence a tree, since for any such vertex y,
the path from o to y cannot contain any descendants of x or else y would also be a
descendant. For any B ⊂ TL , let Bx denote the event B shifted by x (i.e. for T % o,
T ∈ B ⇐⇒ T + x ∈ Bx , where + is addition in Z

d ).

Notation.Wewill writeωn = (ω0, ω1, . . . , ωn) to denote an n-step randomwalk path,
that is, a sequence of points ωi ∈ Z

d so that ‖ωi −ωi−1‖∞ ≤ L for all 1 ≤ i ≤ n. We
write ωn : y → z if, in addition, ω0 = y and ωn = z, in which case ωn is a random
walk path from y to z. If ω is an n-step random walk path we write ω ∈ TL(ω0) iff
ω is also self-avoiding (i.e., ω0, . . . , ωn are distinct), where it is understood that the
edge set is precisely the set of n edges {{ωi−1, ωi }}ni=1.

If (Ti )i∈I are lattice trees, we define the union of these trees as the lattice subgraph
with vertex set equal to the union of the vertex sets of the Ti , and edge set equal to the
union of the edge sets of the Ti .

If ωn is an n-step random walk path and Rn = (R0, . . . , Rn), where Ri ∈ TL(ωi )

for each i = 0, . . . , n, then we write Rn % ωn .

Remark 9.3 Here we describe a bijection between T ∈ TL(o) such that x ∈ Tn and
collections (ωn,Rn), where Rn % ωn , ω0 = o and ωn = x , and the (Ri )

n
i=0 are

mutually avoiding (i.e. vertex disjoint, which implies that ωn ∈ TL(o)).
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Firstly note that any lattice tree T ∈ TL(o) such that x ∈ Tn has a unique n-step
random walk path ωn := w(n, x) ∈ TL(o) of vertices and edges in T from o to x .
Define Ri to be the connected component of ωi in the tree after removing the edges
of ωn (but not the vertices) from T . Then trivially each Ri ∈ TL(ωi ), and the (Ri )

n
i=0

are mutually avoiding (i.e. vertex disjoint). Moreover T is the union of the trees ωn

and (Ri )
n
i=0.

On the other hand, given an n-step random walk path ωn ∈ TL(o) from o to x ,
and Rn % ωn , the (edge and vertex) union of these trees is a tree if (and only if) the
(Ri )

n
i=0 are mutually avoiding.

It is immediate fromRemark 9.3 (and the product form ofW (T )) that the two-point
function, P(x ∈ Tn), can be written as

P(x ∈ Tn) := ρ−1
∑

T∈TL (o)

W (T )1{x∈Tn}

= ρ−1
∑

ωn :o→x

W (ωn)
∑

Rn%ωn

(
n∏

i=0
W (Ri )

)
1{R0,...,Rn avoid each other}.

(9.5)

We henceforth write W (Rn) :=∏n
i=0 W (Ri ) when Rn = (R0, . . . , Rn).

Obviously we obtain an upper bound for (9.5) by replacing the indicator therein
with a less restrictive one. This observation and generalisations of it will play a crucial
role in our verification of the conditions for lattice trees.

Conditions 3 and 7 will be simple consequences of the following Lemma.

Lemma 9.4 For all A, B ⊂ TL , and every n ∈ N,

P(x ∈ Tn, T≯x ∈ A, Rx (T ) ∈ Bx ) ≤ ρP(x ∈ Tn, T≯x ∈ A)P(T ∈ B). (9.6)

Proof Using Remark 9.3 we see that the left hand side of (9.6) is equal to

1

ρ

∑

T∈TL

W (T )1{x∈Tn}1{T≯x∈A}1{Rx (T )∈Bx }

= 1

ρ

∑

ωn :o→x

W (ωn)
∑

Rn%ωn

W (Rn)1{R0,...,Rn avoid each other}

× 1{Rn−1∪ωn∈A}1{Rn∈Bx }, (9.7)

where Rn ∪ ωn =: T ′ is a lattice tree (containing o, and x at generation n) due to the
indicator of avoidance, and Rn−1 ∪ ωn = (T ′\Rn) ∪ {x} is a tree as well.

Now Rn is a tree containing x = ωn , so by weakening the avoidance constraint this
is at most
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1002 M. Holmes, E. Perkins

1

ρ

∑

ωn :o→x

W (ωn)
∑

Rn%ωn

W (Rn)1{R0,...,Rn−1 avoid each other and x}

× 1{Rn−1∪ωn∈A}1{Rn∈Bx }

= 1

ρ

∑

ωn :o→x

W (ωn)
∑

Rn−1%ωn−1
W (Rn−1)1{R0,...,Rn−1 avoid each other and x}

× 1{Rn−1∪ωn∈A} (9.8)

×
∑

Rn∈TL (x)

W (Rn)1{Rn∈Bx }, (9.9)

where we have used the fact that 1{Rn−1∪ωn∈A} does not depend on Rn\{x}. Now note
that (9.9) is equal to

ρ
1

ρ

∑

R∈TL (x)

W (R)1{R∈Bx } = ρP(T + x ∈ Bx ) = ρP(T ∈ B).

Next note that the weight of a lattice tree consisting of a single vertex {x} is 1, so (9.8)
is at most

1

ρ

∑

ωn :o→x

W (ωn)
∑

Rn%ωn

W (Rn)1{R0,...,Rn avoid each other}1{Rn−1∪ωn∈A}, (9.10)

since (9.10) contains the case where Rn = {x}. But (9.10) is equal to

P(x ∈ Tn, T≯x ∈ A),

and the result follows. ��
Condition 3 By (9.2), to verify Condition 3 for lattice trees, it is sufficient to show
that there exists c3 > 0 such that for all n ∈ Z+, k ∈ N, any T ′ ∈ T≤n such that
P(T≤n = T ′) > 0 and any x ∈ T ′n ,

P(∃z : (n, x)
a→ (n + k, z)

∣∣T≤n = T ′) ≤ c3
k

. (9.11)

Let B denote the set of lattice trees containing o that survive until at least generation
k, so Bx is the set of lattice trees rooted at x for which there is at least one vertex in
the tree of tree distance k from x . Then

P(∃z : (n, x)
a→ (n + k, z)

∣∣T≤n = T ′) = P(∃z : (n, x)
a→ (n + k, z) , T≤n = T ′)

P(T≤n = T ′)

= P(Rx (T ) ∈ Bx , T≤n = T ′)
P(T≤n = T ′)

. (9.12)
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Note that for any T ∈ TL , if x ∈ Tn then T≤n = (T≯x )≤n . Therefore the numerator
in (9.12) can be written as

P
(
x ∈ Tn, (T≯x )≤n = T ′, Rx (T ) ∈ Bx

) ≤ ρP
(
x ∈ Tn, (T≯x )≤n = T ′

)
P(T ∈ B

)
,

where we have used Lemma 9.4. But (since x ∈ T ′n),

P
(
x ∈ Tn, (T≯x )≤n = T ′

) = P(T≤n = T ′),

so for all k ∈ N, (9.12) is bounded above by ρP(T ∈ B
) = ρθ(k) ≤ cρ/k, by (1.22)

and Condition 1. By (1.27) we have proved (9.11), as needed. ��
Condition 7 Let (Rx (T ))m denote the set of vertices in the tree Rx (T ) of tree distance
m from x (e.g. (Rx (T ))0 = {x}). By Lemma 2.3 we need to show that there exists
c7 > 0 such that for any � ∈ Z+,m ∈ N

≥4, and M > 0,

E

⎡

⎣
∑

x∈T�

1
(
∃y ∈ (Rx (T ))m ,

2m−1∑

j=m+2
|(Rx (T )) j | ≤ M

)
⎤

⎦

≤ c7P

(
S(1) ≥ m ,

2m−1∑

j=m+2
|T j | ≤ M

)
. (9.13)

The left hand side can be written as

∑

x∈Zd

P

(
x ∈ T� , ∃y ∈ (Rx (T ))m ,

2m−1∑

j=m+2
|(Rx (T )) j | ≤ M

)
. (9.14)

Let Bx denote the set of lattice trees T rooted at x (i.e. the unique particle of generation
0 is x) that survive until time m such that the total number of particles of generation
between m + 2 and 2m − 1 is at most M , and let B = Bo. Then (9.14) is

∑

x∈Zd

P

(
x ∈ T�, Rx (T ) ∈ Bx

)
.

Applying Lemma 9.4 this is at most

ρ
∑

x∈Zd

P(x ∈ T�)P(T ∈ B) = ρE

⎡

⎣
∑

x∈T�

1

⎤

⎦P

(
∃y ∈ Tm,

2m−1∑

j=m+2
|T j | ≤ M

)
,

which, by Condition 2, verifies (9.13) with c7 = ρc2. ��
For T ∈ TL(o), 0 ≤ m ≤ n, and x ∈ Tn , let xm(T ) = wm(n, x) denote the unique

ancestor of x in T of generation m. In preparation for verifying Condition 4 subject
to Lemma 9.2 we prove the following Lemma.
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Lemma 9.5 If c2 is the constant in Condition 2 for lattice trees, then for any
f : Zd → R+ such that f (−x) = f (x) and any m, n ∈ Z+, s.t. m ≤ n,

E

⎡

⎣
∑

x∈Tn
f (x − xm(T ))

⎤

⎦ ≤ c2
∑

y∈Zd

f (y)P(y ∈ Tn−m).

Proof Assume without loss of generality that m < n. The left hand side is equal to

ρ−1
∑

x,y∈Zd

∑

T∈TL

W (T )1{x∈Tn}1{xm (T )=y} f (x − y). (9.15)

Now every
tree T rooted at o and containing x at tree distance n from o, such that the unique

path in the tree from o to x passes through y at tree distance m from o
is also
a tree (with the same weight) rooted at x containing o at tree distance n from o such

that the unique path in the tree from x to o passes through y at tree distance n − m
from x ,

and vice versa. The above are actually the same tree, but sincewe are also specifying
the root, we will refer to the latter as Tx .

Translating this tree by−x , we obtain a tree T ′ = Tx − x (with the same weight as
T ) rooted at o = x − x , containing x ′ := −x at tree distance n from o and such that
the unique path in T ′ from o to x ′ passes through y′ := y − x at tree distance n − m
from o. Since x − y = −y′, and f (−y′) = f (y′), (9.15) is equal to

ρ−1
∑

x ′,y′∈Zd

∑

T ′∈TL

W (T ′)1{x ′∈T ′n}1{x ′n−m (T ′)=y′} f (y′).

Now we can simply drop the ′ to get that (9.15) is equal to

ρ−1
∑

x,y∈Zd

∑

T∈TL

W (T )1{x∈Tn}1{xn−m (T )=y} f (y).

Now as in (9.7) we can write this as

ρ−1
∑

x,y∈Zd

∑

ωn :on−m→ y
m→x

W (ωn)
∑

Rn%ωn

W (Rn)1{(Ri )0≤i≤n avoid each other} f (y), (9.16)

where the sum over ωn is a sum over random walk paths of length n from o to x that
are at y at time n − m.
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Now since Rn−m % y, we have that

1{(Ri )0≤i≤n avoid each other}
≤ 1{(Ri )0≤i≤n−m avoid each other}1{(Ri )n−m+1≤i≤n avoid each other and y}.

Thus, using the fact that also the weight of a tree containing a single vertex y is 1, we
see that (9.16) is at most

ρ−1
∑

x,y∈Zd

∑

ω
(1)
n−m :o→y

∑

ω
(2)
m :y→x

W (ω
(1)
n−m)W (ω(2)

m )

×
∑

R(1)
n−m%ω

(1)
n−m

W (R(1)
n−m)1{(R(2)

i )0≤i≤n−m avoid each other} f (y)

×
∑

R(2)
m %ω

(2)
m

W (R(2)
m )1{(R(2)

i ′ )0≤i ′≤m avoid each other}.

Collecting terms, this is equal to

ρ−1
∑

y∈Zd

∑

ω
(1)
n−m :o→y

W (ω
(1)
n−m)

∑

R(1)
n−m%ω

(1)
n−m

W (R(1)
n−m)

× 1{(R(1)
i )0≤i≤n−m avoid each other} f (y)

×
⎛

⎜⎝
∑

x∈Zd

∑

ω
(2)
m :y→x

W (ω(2)
m )

∑

R(2)
m %ω

(2)
m

W (R(2)
m )1{(R(2)

i ′ )0≤i≤m avoid each other}

⎞

⎟⎠ .

Changing variables from x to u = x − y in the last summation, we see the above is
equal to

∑

y∈Zd

f (y)P(y ∈ Tn−m)
∑

u∈Zd

P(u ∈ Tm) ≤ c2
∑

y∈Zd

f (y)P(y ∈ Tn−m),

by Condition 2 for lattice trees, as required. ��
Condition 4 Use Lemma 9.5 with f (x) = |x |p (p > 4), n = �t�, m = �t − s�, and
apply the tree structure to see that the left side of (2.1) is at most

c2
∑

y∈Zd

|y|pP(y ∈ T�t�−�t−s�) ≤ c(p, L)(s ∨ 1)p/2,

the above inequality by Lemma 9.2. This verifies Condition 4. ��
We can now prove Theorem 6.

Proof Identical to the proof of Theorem 5. ��
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10 Verifying the conditions for the contact process

In this section we quickly verify all of our Conditions for the critical contact process
with d > 4, and hence establish Theorem 7.

Let Pλ denote a probability measure on a space under which we have a collection
of independent Poisson point processes on R+, {Λ(x)(dt),Λ(x, y)(dt) : x, y ∈ Z

d}
where Λ(x) has rate one and Λ(x, y) has rate λD(x − y). Points of Λ(x, y) are times
where an infected site y will infect a non-infected site x , and points of Λ(x) are times
where an infected site x will recover. As for the voter model we may assume these
point processes are mutually disjoint and do not contain 0. Let

F0
t = σ({Λ(x, y)([0, s]),Λ(x)([0, s]) : s ≤ t, x, y ∈ Z

d}), and Ft = F0
t+.

The construction below is a minor modification (to ensure right-continuity) of that
described in Section 3 of [13]. For each point s in Λ(x) we put a δ at (s, x), and for
each point t inΛ(x, y)we draw an arrow from (t, y) to (t, x).Wewrite (s, y) → (t, x)
iff s = t and x = y or s < t and there is an oriented path from (s, y) to (t, x) which
does not contain a δ. The latter means that there are s = s0 < s1 < · · · sk ≤ sk+1 = t
(k ∈ Z+) and points y = y0, y1, . . . , yk, yk+1 = x in Z

d s.t.

(i) ∀i = 1, . . . , k there is an arrow from (si , yi−1) to (si , yi ), (10.1)

(i i) ∀i = 0, . . . , k, {yi } × (si , si+1] contains no δ. (10.2)

It follows (see Section 3 of [13]) that

ξt (x) = 1 iff ∃y s.t. ξ0(y) = 1 and (0, y) → (t, x) (10.3)

defines a (cadlag) (Ft )-adapted contact process with initial state ξ0 under Pλ. Let
Pλ,ξ0 denote the law of the process (ξt )t≥0 with initial condition ξ0. Define Tt =
{x : ξt (x) = 1}. By Theorem 1.1 of [41] (see also (1.16) of that reference) there is a
λc = 1+ O(L−2d) > 0 as L →∞ such that limt→∞ Pλ,δo(Tt �= ∅) = 0 iff λ ≤ λc.
Henceforth we will consider only the critical contact process and set Pξ0 = Pλc,ξ0 and
P = Pλc . Note that allowing sk = sk+1 = t and taking yk = yk+1 = x allows us to
include arrows arising at time t and helps ensure right continuity. More generally by
translation invariance and independence properties of our Poisson point processes, if
for s ≥ 0 and ξ ′ ∈ {0, 1}Zd

we define

ξ
s,ξ ′
t (x) = 1 iff ∃y s.t. ξ ′(y) = 1 and (s, y) → (s + t, x),

then
conditional on Fs, (ξ

s,ξ ′
t )t≥0 has law Pξ ′ . (10.4)

As was done for the voter model in verifying Condition 5, it is easy to define a
supercritical binary branching random walk ξ̂ on the same space, starting at ξ0, s.t.

ξt (x) ≤ ξ̂t (x) for all t ≥ 0, x ∈ Z
d . (10.5)
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One essentially ignores recoveries; see (2.8) in [14] for a similar domination. In par-
ticular this shows that if T0 is almost surely finite then Tt is a cadlag (as for the voter
model) K-valued process taking values in the finite subsets of Z

d . Setting T0 = {o}
(equivalently ξ0 = δo) we see that (1.3) holds under P. It is easy to check that

ξt (x) = ξ
s,ξs
t−s (x) for all 0 ≤ s ≤ t, x ∈ Z

d . (10.6)

This and (10.4) readily give the (Ft )-Markov property:

Lemma 10.1 For any 0 ≤ s < t and Borel A in {0, 1}Zd ,

P(ξt ∈ A|Fs) = Pξs (ξt−s ∈ A).

We define (s, y)
a→ (t, x) iff (0, o) → (s, y) → (t, x). It is straightforward to

check this defines an ancestral relation for the CP. Only AR(iii) takes a bit of work
and it is established using Remark 1.1(2).

Condition 1 holds by Theorem 1.5 of [38] with m(t) = A2V (t ∧ 1) and sD = 2A,
where A, V > 0 are the L-dependent constants introduced in [38].

Lemma 10.2 Let f : Z
d → R+. Then for the critical contact process (sufficiently

spread out, in dimensions d > 4), and 0 ≤ s < t ,

E

⎡

⎣
∑

x∈Tt

∑

y∈Ts
1((s, y) → (t, x)) f (x − y)

⎤

⎦ = E[Ts]
∑

z∈Zd

f (z)P(z ∈ Tt−s)

≤ c2
∑

z∈Zd

f (z)P(z ∈ Tt−s).

Proof This follows just as for the corresponding result for OP (Lemma 8.2). ��
Proof of Theorem 7 To apply Corollary 1, Theorem 2 and Theorem 3 to derive these
results it remains to checkConditions 2-7 for the claimedparameter values.Condition 2
is immediate from (1.9) in [42] with k = 0. Condition 3 follows easily from (10.4)
and Condition 1. Condition 4, for any p > 4, is a consequence of Theorem 1.2
of [33] and Lemma 10.2. Condition 5 for any κ > 4 is established by making minor
modifications in the corresponding argument for the voter model using the domination
(10.5). Condition 7 follows from a straightforward calculation using Lemma 10.1,
(10.4) and Condition 2. Again it is similar to the corresponding verification for the
voter model.

To check Condition 6 we verify the hypotheses of Lemma 2.2 with (γ, σ 2
0 ) =

(1, σ 2
Dv). The convergence of the finite-dimensional distributions follows from con-

vergence of the Fourier transforms of the r -point functions in Theorem 1.2 of [42],
Proposition 2.5 of [24], and the already checked survival asymptotics in Condition 1
(as for OP). The higher moment bound follows from Theorem 1.2(i) in [42] with
k = 0. ��
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