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Abstract
We prove that the wired uniform spanning forest exhibits mean-field behaviour on a
very large class of graphs, including every transitive graph of at least quintic volume
growth and every bounded degree nonamenable graph. Several of our results are new
even in the case of Zd , d ≥ 5. In particular, we prove that every tree in the forest
has spectral dimension 4/3 and walk dimension 3 almost surely, and that the critical
exponents governing the intrinsic diameter and volume of the past of a vertex in
the forest are 1 and 1/2 respectively. (The past of a vertex in the uniform spanning
forest is the union of the vertex and the finite components that are disconnected from
infinity when that vertex is deleted from the forest.) We obtain as a corollary that the
critical exponent governing the extrinsic diameter of the past is 2 on any transitive
graph of at least five dimensional polynomial growth, and is 1 on any bounded degree
nonamenable graph.We deduce that the critical exponents describing the diameter and
total number of topplings in an avalanche in the Abelian sandpile model are 2 and 1/2
respectively for any transitive graphwith polynomial growth of dimension at least five,
and are 1 and 1/2 respectively for any bounded degree nonamenable graph. In the case
of Zd , d ≥ 5, some of our results regarding critical exponents recover earlier results
of Bhupatiraju et al. (Electron J Probab 22(85):51, 2017). In this case, we improve
upon their results by showing that the tail probabilities in question are described by
the appropriate power laws to within constant-order multiplicative errors, rather than
the polylogarithmic-order multiplicative errors present in that work.
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1 Introduction

The uniform spanning forests (USFs) of an infinite graph G are defined as weak
limits of the uniform spanning trees of finite subgraphs of G. These limits can be
taken with respect to two extremal boundary conditions, yielding the free uniform
spanning forest (FUSF) and wired uniform spanning forest (WUSF). For transitive
amenable graphs such as the hypercubic lattice Zd , the free and wired forests coincide
and we speak simply of the USF. In this paper we shall be concerned exclusively
with the wired forest. Uniform spanning forests have played a central role in the
development of probability theory over the last twenty years, and are closely related
to several other topics in probability and statistical mechanics including electrical
networks [20,23,44], loop-erased random walk [20,49,71], the random cluster model
[25,28], domino tiling [23,42], random interlacements [34,67], conformally invariant
scaling limits [52,59,63], and the Abelian sandpile model [24,39,40,56]. Indeed, our
results have important implications for the Abelian sandpile model, which we discuss
in Sect. 1.6.

Following the work of many authors, the basic qualitative features of theWUSF are
firmly understood on a wide variety of graphs. In particular, it is known that every tree
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in theWUSF is recurrent almost surely on any graph [60], that theWUSF is connected
a.s. if and only if two independent random walks on G intersect almost surely [20,61],
and that every tree in the WUSF is one-ended almost surely whenever G is in one
of several large classes of graphs [2,20,33,35,53,61] including all transient transitive
graphs. (An infinite tree is one-ended if it does not contain a simple bi-infinite path.)

The goal of this paper is to understand the geometry of trees in the WUSF at
a more detailed, quantitative level, under the assumption that the underlying graph
is high-dimensional in a certain sense. Our results can be summarized informally
as follows. Let G be a connected graph with bounded degrees, and suppose that
the n-step return probabilities pn(v, v) for (discrete-time) random walk on G satisfy∑

n≥1 n supv∈V pn(v, v) < ∞. In particular, this holds for Zd if and only if d ≥ 5,
and more generally for any transitive graph of at least quintic volume growth. Let F
be the WUSF of G, and let v be a vertex of G. The past1 of v in F is the union of v

with the finite connected components of F\{v}. The following hold:

1. The intrinsic geometry of each tree in F is similar at large scales to that of a critical
Galton–Watson tree with finite variance offspring distribution, conditioned to sur-
vive forever. In particular, every tree has volume growth dimension 2 (with respect
to its intrinsic graph metric), spectral dimension 4/3, and walk dimension 3 almost
surely. The latter two statementsmean that the n-step return probabilities for simple
random walk on the tree decay like n−2/3+o(1), and that the typical displacement
of the walk (as measured by the intrinsic graph distance in the tree) is n1/3+o(1).
These are known as the Alexander–Orbach values of these dimensions [4,45].

2. The intrinsic geometry of the past of v in F is similar in law to that of an uncon-
ditioned critical Galton–Watson tree with finite variance offspring distribution. In
particular, the probability that the past contains a path of length at least n is of
order n−1, and the probability that the past contains more than n points is of order
n−1/2. That is, the intrinsic diameter exponent and volume exponent are 1 and 1/2
respectively.

3. The extrinsic geometry of the past of v in F is similar in law to that of an
unconditioned critical branching random walk on G with finite variance offspring
distribution. In particular, the probability that the past of v includes a vertex at
extrinsic distance at least n from v depends on the rate of escape of the random
walk on G. For example, it is of order n−2 for G = Z

d for d ≥ 5 and is of
order n−1 for G a transitive nonamenable graph. This is related to the fact that the
random walk on the ambient graph G is diffusive in the former case and ballistic
in the latter case.

All of these results apply more generally to networks (a.k.a. weighted graphs); see
the remainder of the introduction for details.

In light of the connections between the WUSF and the Abelian sandpile model,
these results imply related results for that model, to the effect that an avalanche in the
Abelian sandpile model has a similar distribution to a critical branching random walk
(see Sect. 1.6). Precise statements of our results and further background are given in
the remainder of the introduction.

1 This terminology arises from the definition of the past in terms of an oriented version of F, see Sect. 1.3.
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The fact that our results apply at such a high level of generality is a strong vindication
of universality for high-dimensional spanning trees and sandpiles, which predicts that
the large-scale behaviour of these models should depend only on the dimension, and in
particular should be insensitive to themicroscopic structure of the lattice. In particular,
our results apply not only to Z

d for d ≥ 5, but also to non-transitive networks that
are similar to Z

d such as the half-space Z
d−1 × N or, say, Zd with variable edge

conductances bounded between two positive constants. Many of our results also apply
to long-range spanning forestmodels onZd such as those associatedwith the fractional
Laplacian −(−�)β of Zd for d ≥ 1, β ∈ (0, d/4 ∧ 1). Long-range models such
as these are motivated physically as a route towards understanding low-dimensional
models via the ε-expansion [72], for which it is desirable to think of the dimension as a
continuous parameter. (See the introduction of [66] for an account of the ε-expansion
for mathematicians.)

About the proofs. Our proof relies on the interplay between two different ways of
sampling the WUSF. The first of these is Wilson’s algorithm, a method of sampling
the WUSF by joining together loop-erased random walks which was introduced by
David Wilson [71] and extended to infinite transient graphs by Benjamini et al. [20].
The second is the interlacement Aldous–Broder algorithm, a method of sampling the
WUSF as the set of first-entry edges of Sznitman’s random interlacement process [67].
This algorithmwas introduced in the author’s recentwork [34] and extends the classical
Aldous–Broder algorithm [3,22] to infinite transient graphs. Generally speaking, it
seems that Wilson’s algorithm is the better tool for estimating the moments of random
variables associatedwith theWUSF,while the interlacementAldous–Broder algorithm
is the better tool for estimating tail probabilities.

A key feature of the interlacement Aldous–Broder algorithm is that it enables us
to think of the WUSF as the stationary measure of a natural continuous-time Markov
chain. Moreover, the past of the origin evolves in an easily-understood way under
these Markovian dynamics. In particular, as we run time backwards, the past of the
origin gets monotonically smaller except possibly for those times at which the origin
is visited by an interlacement trajectory. Indeed, the central insight in the proof of our
results is that static tail events (on which the past of the origin is large) can be related
to to dynamic tail events (on which the origin is hit by an interlacement trajectory
at a small time). Roughly speaking, we show that these two types of tail event tend
to occur together, and consequently have comparable probabilities. We make this
intuition precise using inductive inequalities similar to those used to analyze one-arm
probabilities in high-dimensional percolation [32,45,46].

Once the critical exponent results are in place, the results concerning the simple
random walk on the trees can be proven rather straightforwardly using the results and
techniques of Barlow et al. [12].

1.1 Relation to other work

• When G is a regular tree of degree k ≥ 3, the components of the WUSF are dis-
tributed exactly as augmented critical binomial Galton–Watson trees conditioned
to survive forever, and in this case all of our results are classical [13,43,54].
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• In the case of Zd for d ≥ 5, Barlow and Járai [11] established that the trees in
the WUSF have quadratic volume growth almost surely. Our proof of quadratic
volume growth uses similar methods to theirs, which were in turn inspired by
related methods in percolation due to Aizenman and Newman [1].

• Also in the case of Zd for d ≥ 5, Bhupatiraju et al. [21] followed the strategy of
an unpublished proof of Lyons et al. [53] to prove that the probability that the past
reaches extrinsic distance n is n−2 logO(1) n and that the probability that the past
has volume n is n−1/2 logO(1) n. Our results improve upon theirs in this case by
reducing the error from polylogarithmic to constant order. Moreover, their proof
relies heavily on transitivity and cannot be used to derive universal results of the
kind we prove here.

• Peres and Revelle [62] proved that the USTs of large d-dimensional tori converge
under rescaling (with respect to the Gromov-weak topology) to Aldous’s contin-
uum random tree when d ≥ 5. They also proved that their result extends to other
sequences of finite transitive graphs satisfying a heat-kernel upper bound similar
to the one we assume here. Later, Schweinsberg [64] established a similar result
for four-dimensional tori. Related results concerning loop-erased random walk on
high-dimensional tori had previosuly been proven by Benjamini and Kozma [19].
While these results are closely related in spirit to those that we prove here, it does
not seem that either can be deduced from the other.

• For planar Euclidean lattices such as Z2, the UST is very well understood thanks
in part to its connections to conformally invariant processes in the continuum
[42,52,57,59,63]. In particular, Barlow and Masson [14,15] proved that the UST
of Z2 has volume growth dimension 8/5 and spectral dimension 16/13 almost
surely. See also [9] for more refined results.

• In [35], the author and Nachmias established that the WUSF of any transient
proper plane graph with bounded degrees and codegrees has mean-field critical
exponents provided that measurements are made using the hyperbolic geometry
of the graph’s circle packing rather than its usual combinatorial geometry. Our
results recover those of [35] in the case that the graph in question is also uniformly
transient, in which case it is nonamenable and the graph distances and hyperbolic
distances are comparable.

• A consequence of this paper is that several properties of the WUSF are insensitive
to the geometry of the graph once the dimension is sufficiently large. In contrast,
the theory developed in [18,36] shows that some other properties describing the
adjacency structure of the trees in the forest continue to undergo qualitative changes
every time the dimension increases.

• In forthcomingworkwith Sousi,we build upon themethods of this paper to analyze
related problems concerning the uniform spanning tree in Z3 and Z

4.

1.2 Basic definitions

In this paper, a network will be a connected graph G = (V , E) (possibly containing
loops and multiple edges) together with a function c : E → (0,∞) assigning a
positive conductance c(e) to each edge e ∈ E such that for each vertex v ∈ V ,
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the vertex conductance c(v) := ∑
c(e) < ∞, taken over edges incident to v, is

finite. We say that the network G has controlled stationary measure if there exists
a positive constant C such that C−1 ≤ c(v) ≤ C for every vertex v of G. Locally
finite graphs can always be considered as networks by setting c(e) ≡ 1, and in this
case have controlled stationary measure if and only if they have bounded degrees. We
write E→ for the set of oriented edges of a network. An oriented edge e is oriented
from its tail e− to its head e+ and has reversal −e.

The random walk on a network G is the process that, at each time step, chooses
an edge emanating from its current position with probability proportional to its con-
ductance, independently of everything it has done so far to reach its current position,
and then traverses that edge. We use Pv to denote the law of the random walk started
at a vertex v, Ev to denote the associated expectation operator, and P to denote the
Markov operator P : �2(V , c)→ �2(V , c), defined by

(P f )(v) = Ev f (X1) =
∑

e−=v

c(e)

c(v)
f (e+),

where �2(V , c) is the space of functions f : V → R such that
∑

v f (v)2c(v) < ∞.
Finally, for each two vertices u and v ofG and n ≥ 0,wewrite pn(u, v) = Pu(Xn = v)

for the probability that a random walk started at u is at v at time n.
Given a graph or networkG, a spanning tree ofG is a connected subgraph ofG that

contains every vertex of G and does not contain any cycles. The uniform spanning
treemeasureUSTG on a finite connected graph G = (V , E) is the probability measure
on subgraphs of G (considered as elements of E {0,1}) that assigns equal mass to each
spanning tree of G. If G is a finite connected network, then the uniform spanning tree
measure USTG of G is defined so that the mass of each tree is proportional to the
product of the conductances of the edges it contains. That is,

USTG ({ω}) = Z−1G

∏

e∈ω

c(e)1 (ω is a spanning tree of G)

for every ω ∈ {0, 1}E , where ZG is a normalizing constant.
Let G be an infinite network and let 〈Vn〉n≥1 be an exhaustion of G, that is, an

increasing sequence of finite sets Vn ⊂ V such that
⋃

n≥1 Vn = V . For each n ≥ 1,
let G∗n be the network obtained from Gn by contracting every vertex in V \Vn into a
single vertex, denoted ∂n , and deleting all the resulting self-loops from ∂n . The wired
uniform spanning forest measure on G, denoted WUSFG , is defined to be the weak
limit of the uniform spanning tree measures on the finite networks G∗n . That is,

WUSFG ({ω : S ⊂ ω}) = lim
n→∞USTG∗n ({ω : S ⊂ ω})

for every finite set S ⊆ E . It follows from the work of Pemantle [61] that this limit
exists and does not depend on the choice of exhaustion; See also [55, Chapter 10].

In the limiting construction above, one can also orient the uniform spanning tree
of G∗n towards the boundary vertex ∂n , so that every vertex other than ∂n has exactly
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one oriented edge emanating from it in the spanning tree. If G is transient, then the
sequence of laws of these random oriented spanning trees converge weakly to the law
of a random oriented spanning forest of G, which is known as the oriented wired
uniform spanning forest, and from which we can recover the usual (unoriented)
WUSF by forgetting the orientation. (This assertion follows from the proof of [20,
Theorem 5.1].) It is easily seen that the oriented wired uniform spanning forest of G is
almost surely an oriented essential spanning forest ofG, that is, an oriented spanning
forest of G such that every vertex of G has exactly one oriented edge emanating from
it in the forest (from which it follows that every tree is infinite).

1.3 Intrinsic exponents

Let F be an oriented essential spanning forest of an infinite graph G. We define the
past of a vertex v in F, denoted P(v), to be the subgraph of F induced by the set
of vertices u of F such that every edge in the geodesic from u to v in F is oriented
in the direction of v, where we also consider v to be included in this set. (By abuse
of notation, we will also use P(v) to mean the vertex set of this subgraph.) Thus, a
component of F is one-ended if and only if the past of each of its vertices is finite. The
future of a vertex v is denoted by �(v,∞) and is defined to be the set of vertices u
such that v is in the past of u.

In order to quantify the one-endedness of the WUSF, it is interesting to estimate
the probability that the past of a vertex is large in various senses. Perhaps the three
most natural such measures of largeness are given by the intrinsic diameter, extrinsic
diameter, and volume of the past. Here, given a subgraph K of a graph G, we define the
extrinsic diameter of K , denoted diamext(K ), to be the supremal graph distance in G
between two points in K , and define the intrinsic diameter of K , denoted diamint(K ),
to be the diameter of K . The volume of K , denoted |K |, is defined to be the number
of vertices in K .

Generally speaking, for critical statistical mechanics models defined on Euclidean
lattices such as Zd , many natural random variables arising geometrically from the
model are expected to have power law tails. The exponents governing these tails are
referred to as critical exponents. For example, if F is the USF of Zd , we expect that
for each d ≥ 2 there exists αd such that

P (diamext (P (0)) ≥ R) = R−αd+o(1),

inwhich casewe callαd the extrinsic diameter exponent for theUSFofZd . Calculating
and proving the existence of critical exponents is considered a central problem in
probability theory and mathematical statistical mechanics.

It is also expected that each model has an upper-critical dimension, denoted dc,
above which the critical exponents of the model stabilize at their so-called mean-field
values. For the uniform spanning forest, the upper critical dimension is believed to be
four. Intuitively, above the upper critical dimension the lattice is spacious enough that
different parts of the model do not interact with each other very much. This causes the
model to behave similarly to how it behaves on, say, the 3-regular tree or the complete
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graph, both of which have a rather trivial geometric structure. Below the upper critical
dimension, the geometry of the lattice affects the model in a non-trivial way, and the
critical exponents are expected to differ from theirmean-field values. The upper critical
dimension itself (which need not necessarily be an integer) is often characterised by
the mean-field exponents holding up to a polylogarithmic multiplicative correction,
which is not expected to be present in other dimensions.

For example, we expect that there exist constants γ2, γ3, γmf and δ such that

P (|P(0)| ≥ R) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R−γ2 d = 2

R−γ3 d = 3

R−γmf log−δ R d = 4

R−γmf d ≥ 5,

where F is the uniform spanning forest of Zd and� denotes an equality that holds up
to positive multiplicative constants. Moreover, the values of the exponents γ2, γ3, γmf ,
and δ should depend only on the dimension d, and not on the choice of lattice; this
predicted insensitivity to the microscopic structure of the lattice is an instance of the
phenomenon of universality.

Our first main result verifies the high-dimensional part of this picture for the intrin-
sic exponents. The corresponding results for the extrinsic diameter exponent are given
in Sect. 1.5. Before stating our results, let us give some further definitions and motiva-
tion. For many models, an important signifier of mean-field behaviour is that certain
diagrammatic sums associated with the model are convergent. Examples include the
bubble diagram for self-avoiding walk and the Ising model, the triangle diagram for
percolation, and the square diagram for lattices trees and animals; see e.g. [65] for an
overview. For the WUSF, the relevant signifier of mean-field behaviour on a network
G is the convergence of the random walk bubble diagram

∑

x

(∑

n≥0
pn(v, x)

)2

,

where pn(·, ·) denotes the n-step transition probabilities for simple random walk on
G and v is a fixed root vertex. Note that the value of the bubble diagram is exactly
the expected number of times that two independent simple random walks started at
the origin intersect. Using time-reversal, the convergence of the bubble diagram of a
networkwith controlled stationarymeasure is equivalent to the convergence of the sum

∑

n≥0
(n + 1)pn(v, v).

It is characteristic of the upper-critical dimension dc that the bubble diagram con-
verges for all d > dc, while at the upper-critical dimension itself we expect that the
bubble diagram diverges logarithmically, as indeed is the case in our setting.

Our condition formean-field behaviour of theWUSFwill be that the bubble diagram
converges uniformly in a certain sense. Let G = (V , E) be a network, let P be the
Markov operator of G, and let ‖Pn‖1→∞ be the 1→∞ norm of Pn , defined by
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‖Pn‖1→∞ = sup
u,v∈V

pn(u, v).

We define the bubble norm of P to be

‖P‖bub :=
∞∑

n=0
(n + 1)‖Pn‖1→∞.

Thus, for transitive networks, ‖P‖bub <∞ is equivalent to convergence of the random
walk bubble diagram. Here, a network is said to be transitive if for every two vertices
u, v ∈ V there exists a conductance-preserving graph automorphism mapping u to v.
Throughout the paper, we use �,� and � to denote equalities and inequalities that
hold to within multiplication by two positive constants depending only on the choice
of network.

Theorem 1.1 (Mean-field intrinsic exponents) Let G be a transitive network such that
‖P‖bub <∞, and let F be the wired uniform spanning forest of G. Then

P (diamint(P(v)) ≥ R) � R−1 and P (|P(v)| ≥ R) � R−1/2

for every vertex v and every R ≥ 1. In particular, the critical exponents governing the
intrinsic diameter and volume of the past are 1 and 1/2 respectively.

For transitive graphs, it follows from work of Hebisch and Saloff-Coste [30] that
‖P‖bub <∞ if and only if the graph has at least quintic volume growth, i.e., if and only
if there exists a constant c such that the number of points in every graph distance ball of
radius n is at least cn5 for every n ≥ 1. Thus, by Gromov’s theorem [26], Trofimov’s
theorem [69], and the Bass-Guivarc’h formula [16,27], the class of graphs treated
by Theorem 1.1 includes all transitive graphs not rough-isometric to Z,Z2,Z3,Z4,
or the discrete Heisenberg group. As mentioned above, the theorem also applies for
example to long-ranged transitive networks with vertex set Zd , a single edge between
every two vertices, and with translation-invariant conductances given up to positive
multiplicative constants by

c ({x, y}) = c (x − y) � ‖x − y‖−d−α

provided that either 1 ≤ d ≤ 4 and α ∈ (0, d/2) or d ≥ 5 and α > 0. The canonical
example of such a network is that associated with the fractional Laplacian −(−�)β

of Zd for β ∈ (0, d/4 ∧ 1). (See [66, Section 2].)
Thegeneral formof our result is similar, but has an additional technical complication

owing to the need to avoid trivialities that may arise from the local geometry of the
network. Let G be a network, let v be a vertex of G, let X and Y be independent
random walks started at v, and let q(v) be the probability that X and Y never return
to v or intersect each other after time zero.
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Theorem 1.2 Let G be a network with controlled stationary measure such that
‖P‖bub <∞, and let F be the wired uniform spanning forest of G. Then

q(v)R−1 � P

(
diamint

(
P(v)

) ≥ R
)
� R−1

and

q(v)5/2R−1/2 � P

(∣
∣P(v)

∣
∣ ≥ R

)
� R−1/2

for all v ∈ V and R ≥ 1.

The presence of q(v) in the theorem is required, for example, in the case that we
attach a vertex by a single edge to the origin of Zd , so that the past of this vertex in
the USF is necessarily trivial. (The precise nature of the dependence on q(v) has not
been optimized.) However, in any network G with controlled stationary measure and
with ‖P‖bub < ∞, there exist positive constants ε and r such that for every vertex v

in G, there exists a vertex u within distance r of G such that q(u) > ε (Lemma 4.2).
In particular, if G is a transitive network with ‖P‖bub < ∞ then q(v) is a positive
constant, so that Theorem 1.1 follows from Theorem 1.2.

Let us note that Theorem 1.2 applies in particular to any bounded degree nona-
menable graph, or more generally to any network with controlled stationary measures
satisfying a d-dimensional isoperimetric inequality for some d > 4, see [47, Theorem
3.2.7]. In particular, it applies to Z

d , d ≥ 5, with any specification of edge conduc-
tances bounded above and below by two positive constants (in which case it can also
be shown that q(v) is bounded below by a positive constant). A further example to
which our results are applicable is given by taking G = Hd where d ≥ 5 and H is
any infinite, bounded degree graph.

1.4 Volume growth, spectral dimension, and anomalous diffusion

The theorems concerning intrinsic exponents stated in the previous subsection also
allow us to determine exponents describing the almost sure asymptotic geometry of
the trees in the WUSF, and in particular allow us to compute the almost sure spectral
dimension and walk dimension of the trees in the forest. See e.g. [47] for background
on these and related concepts. Here, we always consider the trees of the WUSF as
graphs. One could instead consider the trees as networks with conductances inherited
from G, and the same results would apply with minor modifications to the proofs.

Let G be an infinite, connected network and let v be a vertex of G. We define the
volume growth dimension (a.k.a. fractal dimension) of G to be

d f (G) := lim
n→∞

log |B(v, n)|
log n

when this limit exists,
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define the spectral dimension of G to be

ds(G) := lim
n→∞

−2 log p2n(v, v)

log n
when this limit exists,

and define the walk dimension of G to be

dw(G) := lim
n→∞

log n

logEv max1≤m≤n d(v, Xn)
when this limit exists.

In each case, the limit used to define the dimension does not depend on the choice of
root vertex v. Our next theorem establishes the values of d f , ds , and dw for the trees
in the WUSF under the assumption that ‖P‖bub <∞. The results concerning ds and
dw are new even in the case of Zd , d ≥ 5, while the result concerning the volume
growth was established for Zd , d ≥ 5, by Barlow and Járai [11].

Theorem 1.3 Let G be a network with controlled stationary measure and with
‖P‖bub < ∞, and let F be the wired uniform spanning forest of G. Then almost
surely, for every component T of F, the volume growth dimension, spectral dimension,
and walk dimension of T satisfy

d f (T ) = 2, ds(T ) = 4

3
, and dw(T ) = 3.

In particular, the limits defining these quantities are well-defined almost surely.

The values d f = 2, ds = 4/3, and dw = 3 are known as the Alexander–Orbach
values of these exponents, following the conjecture due to Alexander and Orbach
[4] that they held for high-dimensional incipient infinite percolation clusters. The
first rigorous proof of Alexander–Orbach behaviour was due to Kesten [43], who
established it for critical Galton–Watson trees conditioned to survive (see also [13]).
The first proof for a model in Euclidean space was due to Barlow et al. [12], who
established it for high-dimensional incipient infinite clusters in oriented percolation.
Later, Kozma and Nachmias [45] established the Alexander–Orbach conjecture for
high-dimensional unoriented percolation. See [31] for an extension to long-range
percolation, [47] for an overview, and [17] for results regarding scaling limits of a
related model.

As previously mentioned, Barlow and Masson [15] have shown that in the two-
dimensional uniform spanning tree, d f = 8/5, ds = 16/13, and dw = 13/5.

1.5 Extrinsic exponents

We now describe our results concerning the extrinsic diameter of the past. In compar-
ison to the intrinsic diameter, our methods to study the extrinsic diameter are more
delicate and require stronger assumptions on the graph in order to derive sharp esti-
mates. Our first result on the extrinsic diameter concerns Zd , and improves upon the
results of Bhupatiraju et al. [21] by removing the polylogarithmic errors present in
their results.
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Theorem 1.4 (Mean-field Euclidean extrinsic diameter) Let d ≥ 5, and let F be the
wired uniform spanning forest of Zd . Then

P (diamext(P(0)) ≥ R) � R−2

for every R ≥ 1.

We expect that it should be possible to generalize the proof of Theorem 1.4 to other
similar graphs, and to long-range models, but we do not pursue this here.

On the other hand, if we are unconcerned about polylogarithmic errors, it is rather
straightforward to deduce various estimates on the extrinsic diameter from the analo-
gous estimates on the intrinsic diameter, Theorems 1.1 and 1.2. The following is one
such estimate of particular interest. For notational simplicity we will always work
with the graph metric, although our methods easily adapt to various other metrics. We
say that a network G with controlled stationary measure is d-Ahlfors regular if there
exist positive constants c and C such that cnd ≤ B(v, n) ≤ Cnd for every vertex
v and n ≥ 1. We say that G satisfies Gaussian heat kernel estimates if there exist
positive constants c, c′ such that

c

|B(x, n1/2)|e
−d(x,y)2/(cn) ≤ pn(x, y)+ pn+1(x, y) ≤ c′

|B(x, n1/2)|e
−d(x,y)2/(c′n)

(1.1)

for every n ≥ 0 and every pair of vertices x, y in G with d(x, y) ≤ n. It follows from
the work of Hebisch and Saloff-Coste [30] that every transitive graph of polynomial
volume growth satisfies Gaussian heat-kernel estimates, as does every bounded degree
networkwith edge conductances boundedbetween twopositive constants that is rough-
isometric to a transitive graph of polynomial growth.

Theorem 1.5 Let G be a network with controlled stationary measure that is d-Ahlfors
regular for some d > 4 and that satisfies Gaussian heat kernel estimates. Then

q2(v)R−2 � P (diamext(P(v)) ≥ R) � R−2 log R

for every vertex v and every R ≥ 1.

Note that the hypotheses of this theorem imply that ‖P‖bub <∞.
Finally, we consider networks in which the random walk is ballistic rather than

diffusive. We say that a network G is uniformly ballistic if there exists a constant C
such that

sup
v∈V

Ev

[
sup {n ≥ 0 : d(v, Xn) ≤ r}] ≤ Cr (1.2)

for every r ≥ 1. Every nonamenable network with bounded degrees and edge con-
ductances bounded above is uniformly ballistic, as can be seen from the proof of [55,
Proposition 6.9].
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Theorem 1.6 (Extrinsic diameter in the positive speed case) Let G be a uniformly
ballistic network with controlled stationary measure and ‖P‖bub < ∞, and let F be
the wired uniform spanning forest of G. Then

q2(v)R−1 � P (diamext(P(v)) ≥ R) � R−1

for every vertex v and every R ≥ 1.

Note that the upper bound of Theorem 1.6 is a trivial consequence of Theorem 1.2.

1.6 Applications to the Abelian sandpile model

TheAbelian sandpile modelwas introduced by Dhar [24] as an analytically tractable
example of a system exhibiting self-organized criticality. This is the phenomenon by
which certain randomized dynamical systems tend to exhibit critical-like behaviour at
equilibrium despite being definedwithout any parameters that can be varied to produce
a phase transition in the traditional sense. The concept of self-organized criticality was
first posited in the highly influential work of Bak, Tang, and Wiesenfeld [7,8], who
proposed (somewhat controversially [70]) that it may account for the occurrence of
complexity, fractals, and power laws in nature. See [38] for a detailed introduction to
the Abelian sandpile model, and [41] for a discussion of self-organized criticality in
applications.

We now define the Abelian sandpile model. Let G = (V , E) be a connected,
locally finite graph and let K ⊆ V be a set of vertices. A sandpile on K is a function
η : K → {0, 1, . . .}, which we think of as a collection of indistinguishable particles
(grains of sand) located on the vertices of K . We say that η is stable at a vertex x if
η(x) < deg(x), and otherwise that η is unstable at x . We say that η is stable if it is
stable at every x , and that it is unstable otherwise. If η is unstable at x , we can topple
η at x to obtain the sandpile η′ defined by

η′(y) =
{

η(x)− deg(x) y = x

η(y)+ #{edges between x and y} y �= x

for all y ∈ K . That is, when x topples, deg(x) of the grains of sand at x are redistributed
to its neighbours, and grains of sand redistributed to neighbours of x in V \K are lost.
Dhar [24] observed that if K is finite and not equal to V then carrying out successive
topplings will eventually result in a stable configuration and, moreover, that the stable
configuration obtained in this manner does not depend on the order in which the
topplings are carried out. (This property justifies the model’s description as Abelian.)

We define a Markov chain on the set of stable sandpile configurations on K as
follows: At each time step, a vertex of K is chosen uniformly at random, an additional
grain of sand is placed at that vertex, and the resulting configuration is stabilized.
Although this Markov chain is not irreducible, it can be shown that chain has a unique
closed communicating class, consisting of the recurrent configurations, and that the
stationary measure of the Markov chain is simply the uniform measure on the set of
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recurrent configurations. In particular, the stationary measure for the Markov chain
is also stationary if we add a grain of sand to a fixed vertex and then stabilize [38,
Exercise 2.17].

The connection between sandpiles and spanning trees was first discovered by
Majumdar and Dhar [56], who described a bijection, known as the burning bijec-
tion, between recurrent sandpile configurations and spanning trees. Using the burning
bijection, Athreya and Járai [6] showed that if d ≥ 2 and 〈Vn〉n≥1 is an exhaustion
of Zd by finite sets, then the uniform measure on recurrent sandpile configurations
on Vn converges weakly as n →∞ to a limiting measure on sandpile configurations
on Z

d . Járai and Werning [40] later extended this result to any infinite, connected,
locally finite graph G for which every component of the WUSF of G is one-ended
almost surely. We call a random sandpile configuration on G drawn from this measure
a uniform recurrent sandpile on G, and typically denote such a random variable by
H (capital η).

We are particularly interested in what happens during one step of the dynamics at
equilibrium, in which one grain of sand is added to a vertex v in a uniformly random
recurrent configuration H, and then topplings are performed in order to stabilize the
resulting configuration. The multi-set of vertices counted according to the number of
times they topple is called the Avalanche, and is denoted Avv(H). The set of vertices
that topple at all is called the Avalanche cluster and is denoted by AvCv(H).

Járai and Redig [39] showed that the burning bijection allows one to relate
avalanches to the past of the WUSF, which allowed them to prove that avalanches
in Z

d satisfy P(v ∈ AvC0(H)) � ‖v‖−d+2 for d ≥ 5. (The fact that the expected
number of times v topples scales this way is an immediate consequence of Dhar’s
formula, see [38, Section 3.3.1].) Bhupatiraju et al. [21] built upon these methods to
prove that, when d ≥ 5, the probability that the diameter of the avalanche is at least
n scales as n−2 logO(1) n and the probability that the total number of topplings in the
avalanche is at least n is between cn−1/2 and n−2/5+o(1). Using the combinatorial
tools that they developed, the following theorem, which improves upon theirs, follows
straightforwardly from our results concerning the WUSF. (Strictly speaking, it also
requires our results on the v-WUSF, see Sect. 2.2.)

Theorem 1.7 Let d ≥ 5 and let H be a uniform recurrent sandpile on Z
d . Then

P
(
diamext (AvC0(H)) ≥ n

) � n−2 and

P
(|AvC0(H)| ≥ n

) � P
(|Av0(H)| ≥ n

) � n−1/2

for all n ≥ 1.

As with the WUSF, our methods also yield several variations on this theorem
for other classes of graphs, the following of which are particularly notable. See
Sect. 1.5 for the relevant definitions. With a little further work, it should be possi-
ble to remove the dependency on v in the lower bounds of Theorems 1.8 and 1.9.
The upper bounds of Theorem 1.8 only require that G has polynomial growth, see
Proposition 7.8.
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Theorem 1.8 Let G be a bounded degree graph that is d-Ahlfors regular for some
d > 4 and that satisfies Gaussian heat kernel estimates, and let H be a uniform
recurrent sandpile on G. Then

q(v)2n−2 � P

(
diamext (AvCv(H)) ≥ n

)
� n−2 log n,

q(v)5/2n−1/2 � P

(
|AvCv(H)| ≥ n

)
� n−1/2 log1/2 n,

q(v)5/2n−1/2 � P

(
|Avv(H)| ≥ n

)
� n−1/2 log1/2 n

for all n ≥ 1.

Similarly, the following theorem concerning uniformly ballistic graphs can be
deduced from Theorems 7.4 and 1.6. Again, we stress that this result applies in par-
ticular to any bounded degree nonamenable graph.

Theorem 1.9 Let G be a bounded degree, uniformly ballistic graph such that‖P‖bub <

∞, and let H be a uniform recurrent sandpile on G. Then

q(v)2n−1 � P

(
diamext (AvCv(H)) ≥ n

)
� n−1,

q(v)5/2n−1/2 � P

(
|AvCv(H)| ≥ n

)
� n−1/2,

q(v)5/2n−1/2 � P

(
|Avv(H)| ≥ n

)
� n−1/2

for all n ≥ 1.

Notation

As previously discussed, we use �,� and � to denote equalities and inequalities
that hold to within multiplication by two positive constants depending only on the
choice of network. Typically, but not always, these constants will only depend on a
few important parameters such as infv∈V c(v), supv∈V c(v), and ‖P‖bub.

For the reader’s convenience, we gather here several pieces of notation that will be
used throughout the paper. Each such piece of notation is also defined whenever it first
appears within the body of the paper. In particular, the v-wired uniform spanning forest
is defined in Sect. 2.2 and the interlacement and v-wired interlacement processes are
defined in Sect. 3.

F,Fv Asample of thewired uniform spanning forest and v-wired uniform spanning
forest respectively.
Tv The tree containing v in Fv .
B(u, n),Bv(u, n) The intrinsic ball of radius n around u in F and Fv respectively.
∂B(u, n), ∂Bv(u, n) The set of vertices at distance exactly n from u in F and Fv

respectively.
P(u),Pv(u) The past of u in F and Fv respectively.
pastF (u) The past of u in the oriented forest F (which need not be spanning).
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P(u, n),Pv(u, n) The intrinsic ball of radius n around u in the past of u in F and
Fv respectively.
�(u, w), �v(u, w) The path from u to w in F and Fv respectively, should these
vertices be in the same component.
�(u,∞), �v(u,∞) The future of u in F and Fv respectively.
∂P(u, n), ∂Pv(u, n) The set of vertices with intrinsic distance exactly n from u
in the past of u in F and Fv respectively.
I ,Iv The interlacement process and v-wired interlacement process respectively.
I[a,b], Iv,[a,b] The set of vertices visited by the interlacement process and the
v-wired interlacement process in the time interval [a, b] respectively.

2 Background

2.1 Loop-erased randomwalk andWilson’s algorithm

Let G be a network. For each −∞ ≤ n ≤ m ≤ ∞ we define L(n, m) to be the line
graph with vertex set {i ∈ Z : n ≤ i ≤ m} and with edge set {{i, i + 1} : n ≤ i ≤
m − 1}. A path in G is a multigraph homomorphism from L(n, m) to G for some
−∞ ≤ n ≤ m ≤ ∞.We can consider the randomwalk onG as a path by keeping track
of the edges it traverses as well as the vertices it visits. Given a pathw : L(n, m)→ G
we will use w(i) and wi interchangeably to denote the vertex visited by w at time i ,
and use w(i, i + 1) and wi,i+1 interchangeably to denote the oriented edge crossed
by w between times i and i + 1.

Given a path in w : L(0, m) → G for some m ∈ [0,∞] that is transient in the
sense that it visits each vertex at most finitely many times, we define the sequence of
times �n(w) by �0(w) = 0 and �n+1(w) = 1 + max{k : wk = w�n }, terminating the
sequence when max{k : wk = w�n } = m in the case that m < ∞. The loop-erasure
LE(w) of w is the path defined by

LE(w)i = w�i (w) LE(w)i,i+1 = w�i+1−1,�i+1 .

In other words, LE(w) is the path formed by erasing cycles from w chronologically as
they are created. The loop-erasure of simple random walk is known as loop-erased
random walk and was first studied by Lawler [49].

Wilson’s algorithm [71] is a method of sampling the UST of a finite graph by recur-
sively joining together loop-erased random walk paths. It was extended to sample the
WUSF of infinite transient graphs by Benjamini et al. [20]. See also [55, Chapters 4
and 10] for an overview of the algorithm and its applications.

Wilson’s algorithm can be described in the infinite transient case as follows. Let G
be an infinite transient network, and let v1, v2, . . . be an enumeration of the vertices of
G. LetF0 be the empty forest, which has no vertices or edges.GivenFn for some n ≥ 0,
start a randomwalk at vn+1. Stop the randomwalk if and when it hits the set of vertices
already included in Fn , running it forever otherwise. Let Fn+1 be the union of Fn with
the set of edges traversed by the loop-erasure of this stopped path. Let F =⋃n≥0 Fn .
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Then the random forest F has the law of the wired uniform spanning forest of G. If we
keep track of direction in which edges are crossed by the loop-erased random walks
when performing Wilson’s algorithm, we obtain the oriented wired uniform spanning
forest. The algorithm works similarly in the finite and recurrent cases, except that we
start by taking F0 to contain one vertex and no edges.

2.2 The v-wired uniform spanning forest and stochastic domination

In this section we introduce the v-wired uniform spanning forest (v-WUSF), which
was originally defined by Járai and Redig [39] in the context of their work on the
sandpile model (where it was called the WSFo). The v-WUSF is a variation of the
WUSF of G in which, roughly speaking, we consider v to be ‘wired to infinity’. The
v-WUSF serves two useful purposes in this paper: its stochastic domination properties
allow us to ignore interactions between different parts of the WUSF, and the control
of the v-WUSF that we obtain will be applied to prove our results concerning the
Abelian sandpile model in Sect. 9.

Let G be an infinite network and let v be a vertex of G. Let 〈Vn〉n≥1 be an exhaustion
of G and, for each n ≥ 1, let G∗vn be the graph obtained by identifying v with ∂n in
the graph G∗n . The measure WUSFv is defined to be the weak limit

WUSFv(S ⊂ F;G) = lim
n→∞UST(S ⊂ T ;G∗vn ).

The fact that this limit exists and does not depend on the choice of exhaustion of G
is proved similarly to the corresponding statement for the WUSF, see [53]. As with
the WUSF, we can also define the oriented v-wired uniform spanning forest by
orienting the uniform spanning tree of G∗vn towards ∂n (which is identified with v)
at each step of the exhaustion before taking the weak limit. It is possible to sample
the v-WUSF by running Wilson’s algorithm rooted at infinity, but starting with F0

v

as the forest that has vertex set {v} and no edges (as we usually would in the finite
and recurrent cases). Moreover, if we orient each edge in the direction in which it is
crossed by the loop-erased random walk when running Wilson’s algorithm, we obtain
a sample of the oriented v-WUSF.

The following lemma makes the v-WUSF extremely useful for studying the usual
WUSF, particularly in the mean-field setting. It will be the primary means by which
we ignore the interactions between different parts of the forest. (Indeed, it plays a role
analogous to that played by the BK inequality in Bernoulli percolation.) We denote by
pastF (v) the past of v in the oriented forest F , which need not be spanning. We write
Tv for the tree containing v in Fv , and write �(u,∞) and �v(u,∞) for the future of
u in F and Fv respectively, as defined in Sect. 1.3.

Lemma 2.1 (Stochastic domination) Let G be an infinite network, let F be an oriented
wired uniform spanning forest of G, and for each vertex v of G let Fv be an oriented
v-wired uniform spanning forest of G. Let K be a finite set of vertices of G, and define
F(K ) = ⋃u∈K �(u,∞) and Fv(K ) = ⋃u∈K �v(u,∞). Then for every u ∈ K and
every increasing event A ⊆ {0, 1}E we have that
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P

(
pastF\F(K )(u) ∈ A | F(K )

)
≤ P

(
Tu ∈ A

)
, (2.1)

and similarly

P

(
pastFv\Fv(K )(u) ∈ A | Fv(K )

)
≤ P

(
Tu ∈ A

)
. (2.2)

Note that when K is a singleton, (2.1) follows implicitly from [53, Lemma 2.3].
The proof in the general case is also very similar to theirs, but we include it for
completeness. Given a network G and a finite set of vertices K , we write G/K for the
network formed from G by identifying all the vertices of K .

Lemma 2.2 Let G be a finite network, let K1 ⊆ K2 be sets of vertices of G. For each
spanning tree T of G, let S(T , K2) be the smallest subtree of T containing all of K2.
Then the uniform spanning tree of G/K1 stochastically dominates T \S(T , K2), where
T is a uniform spanning tree of G.

Proof It follows from the spatial Markov property of the UST that, conditional on
S(T , K2), the complement T \S(T , K2) is distributed as the UST of the network
G/S(T , K2) constructed from G by identifying all the vertices in the tree S(T , K2),
see [35, Section 2.2.1]. On the other hand, it follows from the negative association
property of the UST [55, Theorem 4.6] that if A ⊆ B are two sets of vertices, then the
UST of G/A stochastically dominates the UST of G/B. This implies that the claim
holdswhenwe condition on S(T , K2), andwe conclude by averaging over the possible
choices of S(T , K2). ��
Proof of Lemma 2.1 The claim (2.1) follows from Lemma 2.2 by considering the finite
networks G∗n used in the definition of the WUSF, taking K1 = {u, ∂n} and K2 =
K ∪ {∂n}, and taking the limit as n →∞.

We now prove (2.2). If u = v then the claim follows by applying Lemma 2.2 to
the finite networks G∗vn , taking K1 = ∅ and K2 = K , and taking the limit as n →∞.
Now suppose that u �= v. Let G/{u, v} be the network obtained from G by identifying
u and v into a single vertex x , and let F′ be the x-wired uniform spanning forest of
G/{u, v}. We consider F′ as a subgraph of G, and let T′ be the component of u in F′.
It follows from the negative association property of the UST and an obvious limiting
argument that F′ is stochastically dominated by Fu , and hence that T′ is stochastically
dominated by Tu . On the other hand, applying Lemma 2.2 to the finite networks G∗vn ,
taking K1 = {u, v} and K2 = K ∪ {v}, and taking the limit as n →∞ yields that the
conditional distribution of pastFv\Fv(K )(u) given Fv(K ) is stochastically dominated
by T′ and hence by Tu . ��

3 Interlacements and the Aldous–Broder algorithm

The random interlacement process is a Poissonian soup of doubly-infinite random
walks that was introduced by Sznitman [67] and generalized to arbitrary transient
graphs by Texeira [68]. Formally, the interlacement processI on the transient graph
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G is a Poisson point process onW∗×R, whereW∗ is the space of bi-infinite paths in G
modulo time-shift, andR is thought of as a time coordinate. In [34], we showed that the
random interlacement process can be used to generate the WUSF via a generalization
of the Aldous–Broder algorithm. By shifting the time coordinate of the interlacement
process, this sampling algorithm also allows us to view the WUSF as the stationary
measure of a Markov process; this dynamical picture of the WUSF, or more precisely
its generalization to the v-WUSF, is of central importance to the proofs of the main
theorems of this paper.

We now begin to define these notions formally. We must first define the space of
trajectories W∗. Recall that for each −∞ ≤ n ≤ m ≤ ∞ we define L(n, m) to be
the line graph with vertex set {i ∈ Z : n ≤ i ≤ m} and with edge set {{i, i + 1} :
n ≤ i ≤ m − 1}. Given a graph G, we define W(n, m) to be the set of multigraph
homomorphisms from L(n, m) to G that are transient in the sense that the preimage
of each vertex of G is finite. We define the setW to be the union

W :=
⋃
{W(n, m) : −∞ ≤ n ≤ m ≤ ∞} .

The set W can be made into a Polish space in such a way that local times at vertices
and first and last hitting times of finite sets are continuous, see [34, Section 3.2]. We
define the time shift θk :W→W by θk :W(n, m) −→W(n − k, m − k),

θk(w)(i) = w(i + k), θk(w)(i, i + 1) = w(i + k, i + k + 1),

and define the space W∗ to be the quotient

W∗ =W/ ∼ , where w1 ∼ w2 if and only if w1 = θk(w2) for some k.

Let π :W→W∗ denote the associated quotient function. We equip the setW∗ with
the quotient topology (which is Polish) and associated Borel σ -algebra. An element
of W∗ is called a trajectory.

We now define the intensity measure of the interlacement process. Let G be a
transient network. Given w ∈ W(n, m), let w← ∈ W(−m,−n) be the reversal of
w, which is defined by setting w←(i) = w(−i) for all −m ≤ i ≤ −n and setting
w←(i, i + 1) = w(−i,−i − 1) for all −m ≤ i ≤ −n − 1. For each subset A ⊆W,
let A← denote the set

A← := {w ∈W : w← ∈ A }.

For each set K ⊆ V , we let WK (n, m) be the set of w ∈ W(n, m) such that there
exists n ≤ i ≤ m such that w(i) ∈ K , and similarly define WK to be the union
WK = ⋃{WK (n, m) : −∞ ≤ n ≤ m ≤ ∞}. Let τ+K be the first positive time that
the walk visits K , where we set τ+K = ∞ if the walk does not visit K at any positive
time. We define a measure QK on WK by setting

QK ({w ∈W : w(0) /∈ K }) = 0
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and, for each u ∈ K and each two Borel subsets A ,B ⊆W,

QK
({w ∈W : w|(−∞,0] ∈ A , w(0) = u and w|[0,∞) ∈ B})

= c(u)Pu
(
X ∈ A← and τ+K = ∞

)
Pu
(
X ∈ B

)
.

For each set K ⊆ V , letW∗
K = π(WK ) be the set of trajectories that visit K . It follows

from the work of Sznitman [67] and Teixeira [68] that there exists a unique σ -finite
measure Q∗ on W∗ such that for every Borel set A ⊆W∗ and every finite K ⊂ V ,

Q∗(A ∩W∗
K ) = QK

(
π−1(A )

)
. (3.1)

We refer to the unique such measure Q∗ as the interlacement intensity measure,
and define the random interlacement process I to be the Poisson point process on
W∗ ×R with intensity measure Q∗ ⊗�, where � is the Lebesgue measure on R. For
each t ∈ R and A ⊆ R, we writeIt for the set of w ∈W∗ such that (w, t) ∈ I , and
write IA for the intersection of I withW∗ × A.

See [34, Proposition 3.3] for a limiting construction of the interlacement process
from the random walk on an exhaustion with wired boundary conditions.

In [34], we proved that theWUSF can be generated from the random interlacement
process in the following manner. Let G be a transient network, and let t ∈ R. For
each vertex v of G, let σt (v) be the smallest time greater than t such that there exists
a trajectory Wσt (v) ∈ Iσt (v) that hits v, and note that the trajectory Wσt (v) is unique
for every t ∈ R and v ∈ V almost surely. We define et (v) to be the oriented edge of
G that is traversed by the trajectory Wσt (v) as it enters v for the first time, and define

ABt (I ) :=
{
−et (v) : v ∈ V

}
.

[34, Theorem 1.1] states that ABt (I ) has the law of the oriented wired uniform
spanning forest of G for every t ∈ R. Moreover, [34, Proposition 4.2] states that
〈ABt (I )〉t∈R is a stationary, ergodic, mixing, stochastically continuous Markov pro-
cess.

3.1 v-wired variants

In this section, we introduce a variation on the interlacement process in which a vertex
v is wired to infinity, which we call the v-wired interlacement process. We then show
how the v-wired interlacement process can be used to generate the v-WUSF in the
same way that the usual interlacement process generates the usual WUSF.

Let G be a (not necessarily transient) network and let v be a vertex of G. We denote
by τv the first time that the randomwalk visits v, and denote by τ+K the first positive time
that the randomwalk visits K .Wewrite X T for the randomwalk ran up to the (possibly
random and/or infinite) time T , which is considered to be an element of W(0, T ). In
particular, if X is started at v then X τv is the path of length zero at v. For each finite
set K ⊂ V we define a measure Qv,K on W by Qv,K ({w ∈W : w(0) /∈ K }) = 0,
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Qv,K
({w ∈W : w|(−∞,0] ∈ A , w(0) = u and w|[0,∞) ∈ B})

= c(u)Pu
(
X τv ∈ A← and τ+K > τv

)
Pu
(
X τv ∈ B

)

(with the convention that τ+K > τv in the case that both hitting times are equal to∞)
for every u ∈ K\{v} and every two Borel sets A ,B ⊆W, and

Qv,K
({w ∈W : w|(−∞,0] ∈ A , w(0) = v and w|[0,∞) ∈ B})

= c(v)1(w0 ∈ A←)Pv

(
X τv ∈ B

)

+ c(v)Pv

(
X τv ∈ A← and τ+K = ∞

)
1(w0 ∈ B)

for every two Borel sets A ,B ⊆W if v ∈ K , where we write w0 ∈W(0, 0) for the
path of length zero at v.

As with the usual interlacement intensity measure, we wish to define a measure Q∗v
onW∗ via the consistency condition

Q∗v(A ∩W∗
K ) = Qv,K (π−1(A )) (3.2)

for every finite set K ⊂ V and every Borel set A ⊆ W∗, and define the v-rooted
interlacement process to be thePoisson point process onW∗×Rwith intensitymeasure
Q∗v ⊗�, where � is the Lebesgue measure on R.

We will deduce that such a measure exists via the following limiting procedure,
which also gives a direct construction of the v-rooted interlacement process. Let N be
a Poisson point process on R with intensity measure (c(∂n)+ c(v))�. Conditional on
N , for each t ∈ N , let Wt be a random walk on G∗vn started at ∂n (which is identified
with v) and stopped when it first returns to ∂n , where we consider each Wt to be an
element of W∗. We define I n

v to be the point process I n
v := {(Wt , t) : t ∈ N }.

Proposition 3.1 Let G be an infinite network, let v be a vertex of G, and let 〈Vn〉n≥0
be an exhaustion of G. Then the Poisson point processes I n

v converge in distribution
as n → ∞ to a Poisson point process Iv on W∗ × R with intensity measure of the
form Q∗v⊗�, where � is the Lebesgue measure on R and Q∗v is a σ -finite measure on
W∗ such that (3.2) is satisfied for every finite set K ⊂ V and every event A ⊆W∗.

The proof is very similar to that of [34, Proposition 3.3], and is omitted.

Corollary 3.2 Let G be an infinite network and let v be a vertex of G. Then there exists
a unique σ -finite measure Q∗v on W∗ such that (3.2) is satisfied for every finite set
K ⊂ V and every event A ⊆W∗.
Proof The existence statement follows immediately fromProposition 3.1. The unique-
ness statement is immediate since sets of the formA ∩W∗

K are a π -system generating
the Borel σ -algebra on W∗. ��

WecallIv the v-wired interlacement process. Note that itmay include trajectories
that are either doubly infinite, singly infinite and ending at v, singly infinite and starting
at v, or finite and both starting and ending at v.

We have the following v-rooted analogue of [34, Theorem 1.1 and Proposition 4.2],
whose proof is identical to those in that paper.
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Proposition 3.3 Let G be an infinite network, let v be a vertex of G, and let Iv be the
v-rooted interlacement process on G. Then

ABv,t (Iv) :=
{−et (u) : u ∈ V \{v}}

has the law of the oriented v-wired uniform spanning forest of G for every t ∈ R. More-
over, the process 〈ABv,t (Iv)〉t∈R is a stationary, ergodic, stochastically continuous
Markov process.

3.2 Relation to capacity

In this section,we record thewell-known relationship between the interlacement inten-
sity measure Q∗ and the capacity of a set, and extend this relationship to the v-rooted
interlacement intensity measure Q∗v . Recall that the capacity (a.k.a. conductance to
infinity [55, Chapter 2]) of a finite set of vertices K in a network G is defined to be

Cap(K ) := Q∗(W∗
K ) =

∑

v∈K

c(v)Pv(τ
+
K = ∞),

where τ+K is the first positive time that the random walk visits K and the second
equality follows by definition of Q∗. Similarly, we define the v-wired capacity of a
finite set K to be

Capv(K ) := Q∗v(W∗
K ) =

∑

u∈K\v
c(u)Pu(τ+K > τv)

+c(v)1(v ∈ K )
[
1+ Pv(τ

+
K = ∞)

]
,

with the convention that τ+K > τv in the case that both hitting times are equal to∞.
Note that if v /∈ K then Capv(K ) is the effective conductance between K and {∞, v}
(see Sect. 8 or [55, Chapter 2] for background on effective conductances). Thus, the
number of trajectories inI[a,b] that hit K is a Poisson random variable with parameter
|a − b|Cap(K ), while the number of trajectories in Iv,[a,b] that hit K is a Poisson
random variable with parameter |a − b|Capv(K ).

In our setting the capacity and v-rooted capacity of a set will always be of the same
order: The inequality Cap(K ) ≤ Capv(K ) is immediate, while on the other hand we
have that

Capv(K ) ≤ Cap(K )+ 2c(v)+
∑

u∈K\{v}
c(u)Pu(τv < τ+K <∞).

By time-reversal we have that

c(u)Pu(τv < τ+K <∞) ≤ c(u)Pu
({τv < τ+K <∞} ∪ {τv <∞, τ+K = ∞}

)

= c(v)Pv(τ
+
K <∞, Xτ+K

= u)
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for each u ∈ K\{v}, and summing over u ∈ K\{v} we obtain that

Capv(K ) ≤ Cap(K )+ c(v)Pv(τ
+
K <∞)+ 2c(v) ≤ Cap(K )+ 3c(v). (3.3)

Thus, in networks with bounded vertex conductances, the capacity and and v-rooted
capacity agree to within an additive constant. Furthermore, the assumption that
‖P‖bub <∞ implies that G is uniformly transient and hence that Cap(K ) is bounded
below by a positive constant for every non-empty set K .

3.3 Evolution of the past under the dynamics

The reason that the dynamics induced by the interlacement Aldous–Broder algorithm
are so useful for studying the past of the origin in the WUSF is that the past itself
evolves in a very natural way under the dynamics. Indeed, if we run time backwards
and compare the pasts P0(v) and P−t (v) of v in F0 and F−t , we find that the past
can become larger only at those times when a trajectory visits v. At all other times,
P−t (v) decreases monotonically in t as it is ‘sliced into pieces’ by newly arriving
trajectories. This behaviour is summarised in the following lemma, which is adapted
from [34, Lemma 5.1]. Given a set A ⊆ R, we write IA for the set of vertices that are
hit by some trajectory in IA, and write Pt (v) for the past of v in the forest Ft .

Lemma 3.4 Let G be a transient network, let I be the interlacement process on G,
and let 〈Ft 〉t∈R = 〈ABt (I )〉t∈R. Let v be a vertex of G, and let s < t . If v /∈ I[s,t), then
Ps(v) is equal to the component of v in the subgraph of Pt (v) induced by V \I[s,t).
Proof Suppose that u is a vertex of V , and let �s(u,∞) and �t (u,∞) be the futures
of u in Fs and Ft respectively. Let u = u0,s, u1,s, . . . and u = u0,t , u1,t , . . . be,
respectively, the vertices visited by �s(u,∞) and �t (u,∞) in order. Let i0 be the
smallest i such that σs(ui,s) < t . Then it follows from the definitions that �s(u,∞)

and �t (u,∞) coincide up until step i0, and that σs(ui,s) < t for every i ≥ i0. (Indeed,
σs(ui,s) is decreasing in i .) On the other hand, if v /∈ I[s,t) then σs(v) > t , and the
claim follows readily. ��

Similarly,we have the following lemma in the v-wired case,whose proof is identical
to that of Lemma 3.4 above. Given A ⊆ R, we write Iv,A for the set of vertices that
are hit by some trajectory in Iv,A, and write Pv,t (u) for the past of u in the forest
Fv,t .

Lemma 3.5 Let G be a network, let v be a vertex of G, let Iv be the v-wired interlace-
ment process on G, and let 〈Fv,t 〉t∈R = 〈ABv,t (Iv)〉t∈R. Let u be a vertex of G, and
let s < t . If u /∈ Iv,[s,t), then Pv,s(u) is equal to the component of u in the subgraph
of Pv,t (u) induced by V \Iv,[s,t).

4 Lower bounds for the diameter

In this section, we use the interlacement Aldous–Broder algorithm to derive the lower
bounds on the tail of the intrinsic and extrinsic diameter of Theorems 1.1–1.4.
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4.1 Lower bounds for the intrinsic diameter

Recall thatP(v) denotes the past of v in the WUSF, that Tv denotes the component of
v in the v-WUSF, and that q(v) is the probability that two independent random walks
started at v do not return to v or intersect each other at any positive time.

Proposition 4.1 Let G be a transient network. Then for each vertex v of G we have
that

P

(
diamint

(
P(v)

) ≥ r
)
≥
(

q(v)Cap(v)

e supu∈V Cap(u)

)
1

r + 1
(4.1)

and similarly

P

(
diamint

(
Tv

) ≥ r
)
≥
(

Cap(v)

e supu∈V Cap(u)

)
1

r + 1
(4.2)

for every r ≥ 0.

Note that (4.2) gives a non-trivial lower bound for every transitive network, and
can be thought of as a mean-field lower bound. (For recurrent networks, the tree
Tv contains every vertex of the network almost surely, so that the bound also holds
degenerately in that case.)

Proof We prove (4.1), the proof of (4.2) being similar. Let I be the interlacement
process on G and let F = AB0(I ). Given a path X ∈ W(0,∞) and a vertex u of G
visited by the path after time zero, we define e(X , u) to be the oriented edge pointing
into u that is traversed by X as it enters u for the first time, and define

AB(X) = {−e(X , u) : u is visited by X after time zero}.

Note that, by definition ofW(0,∞), X visits infinitely many vertices and AB(X) is an
infinite tree oriented towards X0. In particular, AB(X) contains an infinite path starting
at X0, whose edges are oriented towards X0. (If X is a random walk then this infinite
path is unique and can be interpreted to be the loop-erasure of the time-reversal of X .
We will not need to use these properties here.)

For each ε > 0, let Aε be the event that v is hit by exactly one trajectory inI[0,ε],
that this trajectory hits v exactly once, and that the parts of the trajectory before and
after hitting v do not intersect each other. (In the v-wired case, in the proof of (4.2),
one would instead take Aε to be the event that v is hit by exactly one trajectory in
Iv,[0,ε], and that this trajectory is half-infinite and begins at v.) It follows from the
definition of the interlacement intensity measure that

P(Aε) = εq(v)Cap(v)e−εCap(v). (4.3)

GivenAε, let 〈Wn〉n∈Z be the unique representative of this trajectory that has W0 = v,
let X = W |[0,∞), let Z be an infinite path starting at v in AB(X) (chosen in some
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measurable way if there are multiple such paths), and let η be the set of vertices
visited by the first r steps of Z , not including v itself. LetBr ,ε ⊆ Aε be the event that
Aε occurs and that η is not hit by any trajectories inI[0,ε] other than W . On the event
Br ,ε we have by definition of AB0(I ) that the reversals of the first r edges traversed
by Z are all contained in F and oriented towards v, and it follows that

P (diamint(P(v)) ≥ r) ≥ P(Br ,ε)

for every r ≥ 1 and ε > 0. On the other hand, by the splitting property of Poisson
processes, for every set K ⊂ V , the number of trajectories ofI[0,ε] that hit K but not
v is independent of the set of trajectories of I[0,ε] that hit v. We deduce that

P(Br ,ε | Aε) ≥ E

[
e−εCap(η) | Aε

]
. (4.4)

Let M = supu∈V Cap(u). We may assume that M < ∞, since the claim is trivial
otherwise. By the subadditivity of the capacity we have that Cap(η) ≤ Mr , so that
P(Br ,ε | Aε) ≥ e−εMr and hence that

P(Br ,ε) ≥ q(v)Cap(v) εe−εCap(v)e−εMr ≥ q(v)Cap(v)εe−εM(r+1). (4.5)

The claimed inequality now follows by taking ε = 1/(M(r + 1)). ��
The following lemma shows that the lower bound of (4.1) is always meaningful

provided that ‖P‖bub < ∞. We write G(u, v) = Eu
[∑

n≥0 1(Xn = v)
]
for the

Greens function.

Lemma 4.2 Let G be a network with controlled stationary measure and with ‖P‖bub <

∞. Then there exists a positive constant ε such that for every v ∈ V there exists u ∈ V
with G(v, u) ≥ ε, d(v, u) ≤ ε−1, and q(u) > ε. In particular, if G is transitive then
q(v) is a positive constant.

Note that the statement concerning the graph distance may hold degenerately on
networks that are not locally finite, but that the Greens function lower bound remains
meaningful in this setting.

Proof Let X and Y be independent random walks started at v, and observe that

Ev

∣
∣{(i, j) : i ≥ n, j ≥ m, Xi = Y j }

∣
∣ =

∞∑

i=n

∞∑

j=m

∑

w∈V

pi (v,w)p j (v,w)

�
∞∑

i=n

∞∑

j=m

pi+ j (v, v) �
∞∑

�=n+m

(�+ 1)‖P�‖1→∞ (4.6)

for every n, m ≥ 0.
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Let I = {(i, j) : i ≥ 0, j ≥ 0, Xi = Y j } be the set of intersection times, which
is almost surely finite by (4.6), and let (τ1, τ2) be the unique element of I that is
lexicographically maximal in the sense that every (i, j) ∈ I either has i < τ1 or
i = τ1 and j ≤ τ2. Since ‖P‖bub < ∞ the right hand side of (4.6) tends to zero as
n + m → ∞, and it follows by Markov’s inequality that there exists k0 < ∞ such
that Pv(τ1, τ2 ≤ k0) ≥ 1/2 for every v ∈ V . Thus, we deduce that

1

2
≤
∑

u∈V

k0∑

i=0

k0∑

j=0
Pv(τ1 = i, τ2 = j, Xi = Y j = u)

≤
∑

u∈V

k0∑

i=0

k0∑

j=0
Pv(Xi =Y j =u, {X� : �> i}, {Yr : r > j},

and {u} pairwise disjoint)

=
∑

u∈V

k0∑

i=0

k0∑

j=0
Pv(Xi =Y j =u)q(u)≤(k0+1)2 sup

u∈V
G(v, u)q(u)1(d(u, v)≤k0).

On the other hand, it follows from the definitions that supu,v∈V G(u, v) ≤ ‖P‖bub,
and the claim follows. ��

4.2 Lower bounds for the extrinsic diameter

In this section we apply a similar method to that used in the previous subsection to
prove a lower bound on the tail of the extrinsic diameter. The method we use is very
general and, as well as being used in the proof of Theorems 1.4–1.6 and 7.3, can also
be used to deduce similar lower bounds for e.g. long-ranged models.

Let G be a network. For each r ≥ 0, we define

L(r) = sup
v∈V

Ev

[
sup {n ≥ 0 : Xn ∈ B(v, r)}]

to be the maximum expected final visit time to a ball of radius r . It is easily seen that
every transitive graph of polynomial growth of dimension d > 2 has L(r) � r2, and
the same holds for any Ahlfors regular network with controlled stationary measure
satisfying Gaussian heat kernel estimates, see Lemma 4.4 below. On the other hand,
uniformly ballistic networks have by definition that L(r) � r .

Proposition 4.3 Let G be a transient network. Then for each vertex v of G we have
that

P

(
diamext

(
P(v)

) ≥ r
)
≥
(

q(v)2Cap(v)

4e supu∈V Cap(u)

)
1

L(r)+ 1
(4.7)
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for every r ≥ 1, and similarly

P

(
diamext

(
Tv

) ≥ r
)
≥
(

Cap(v)

4e supu∈V Cap(u)

)
1

L(r)+ 1
(4.8)

for every r ≥ 1.

Proof of Proposition 4.3 We prove (4.7), the proof of (4.8) being similar. We continue
to use the notationAε,BR,ε, W , X , Z , η, and M defined in the proof of Proposition 4.1
but with the variable R replacing the variable r there, so that η is the set of vertices
visited by the first R steps of Z . We also define Cr ,R,ε ⊆ Aε to be the event in which
Aε occurs and the distance in G between v and the endpoint of η is at least r , and
define Dr ,R,ε = Cr ,R,ε ∩ BR,ε. Note that, since the path Z is oriented towards v

in AB(X), it follows from the definition of AB(X) that the Rth point visited by Z is
visited by X at a time greater than or equal to R. Thus, we have by the definition
of the interlacement intensity measure, the union bound (in the form P(A\B) ≥
P(A)−P(B)), andMarkov’s inequality that, letting Y 1 and Y 2 be independent random
walks started at v,

P(Cr ,R,ε)

≥ εCap(v)e−εCap(v)

× Pv

( {Y 1
i : i > 0}, {Y 2

i : i > 0}, and {v} are mutually
disjoint and sup{n ≥ 0 : Y 1

n ∈ B(v, r)} < R

∣
∣
∣
∣ v /∈ {Y 2

i : i > 0}
)

≥ εCap(v)e−εCap(v)

× Pv

( {Y 1
i : i > 0}, {Y 2

i : i > 0}, and {v} are mutually
disjoint and sup{n ≥ 0 : Y 1

n ∈ B(v, r)} < R

)

≥ εCap(v)e−εCap(v)

[

q(v)− L(r)

R

]

.

Thus, it follows by the same reasoning as in the proof of Proposition 4.1 that

P(diamext(P(v)) ≥ r) ≥ P(Dr ,R,ε) ≥ e−εM R
P(Cr ,R,ε)

≥ εCap(v)e−εM(R+1)
[

q(v)− L(r)

R

]

for every R, r ≥ 1 and ε > 0. We conclude by taking ε = 1/M(R + 1) and R =
�2L(r)/q(v)�. ��

Lemma 4.4 Let G = (V , E) be a network with controlled stationary measure that is
d-Ahlfors regular for some d > 2 and satisfies Gaussian heat kernel estimates. Then
L(r) � r2.
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Proof Let v be a vertex of G and let Tr = sup{n ≥ 0 : Xn ∈ B(v, r)}. It follows from
the definitions that

Pv

(
Xn ∈ B(v, r)

) �
∑

u∈B(v,r)

|B(v, n1/2)|−1 � n−d/2rd

for every n ≥ 1 and r ≥ 1, and also that there exists a positive constant c such that

Pv

(
Xn ∈ B(v, r)

) �
∑

u∈B(v,r)

e−d(v,u)2/(cn)

|B(v, n1/2)|

�
∑

u∈B(v,r∧n1/2)

1

|B(v, n1/2)| � 1 ∧ rdn−d/2

for every n ≥ 1 and r ≥ 1. We deduce that

Pv

(
Xn ∈ B(v, r)

) �
{
1 n ≤ r2

n−d/2rd n > r2.
(4.9)

for every n ≥ 1 and r ≥ 1, and hence that, since d > 2,

Ev

[
∑

m≥n

1
(
Xm ∈ B(v, 2r)

)
]

�
{

r2 n ≤ r2

rdn−d/2+1 n > r2.
(4.10)

On the other hand, it follows by the strong Markov property that

Ev

[
∑

m≥n

1
(
Xm ∈ B(v, 2r)

)
∣
∣
∣
∣ Tr ≥ n

]

≥ inf
u∈V

Eu

⎡

⎣
∑

m≥0
1
(
Xm ∈ B(u, r)

)
⎤

⎦ � r2,

where the final inequality follows from (4.9), and we deduce that

Pv(Tr ≥ n) � rd−2n−d/2+1

for every n ≥ r2. The claim follows by summing over n. ��

5 The length and capacity of the loop-erased randomwalk

In this section, we study the length and capacity of loop-erased random walk. In
particular, we prove that in a networkwith controlled stationarymeasure and ‖P‖bub <

∞, an n-step loop-erased random walk has capacity of order n with high probability.
The estimates we derive are used extensively throughout the remainder of the paper.
In the case of Zd , these estimates are closely related to classical estimates of Lawler,
see [51] and references therein.
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5.1 The number of points erased

Recall that when X is a path in a network G, the times 〈�n(X) : 0 ≤ n ≤ |LE(X)|〉
are defined to be the times contributing to the loop-erasure of X , defined recursively
by �0(X) = 0 and �n+1(X) = 1+max{m : Xm = X�n(X)}. We also define

ρn(X) = max{k : �k ≤ n}

for each 0 ≤ n ≤ |X |, so that ρn(X) is the number of times between 1 and n that
contribute to the loop-erasure of X . The purpose of this section is to study the growth
of � and ρ when X is a random walk on a network with controlled stationary measure
satisfying ‖P‖bub <∞.

Recall that we write X T for the random walk ran up to the (possibly random) time
T , and use similar notation for other paths such as LE(X).

Lemma 5.1 Let G be a transient network, let v be a vertex of G, and let X be a random
walk on G started at v. Then the following hold.

1. The random variables 〈�n+1(X) − �n(X)〉n≥0 are independent conditional on
LE(X), and the estimate

Pv

[
�n+1(X)− �n(X)− 1 = m | LE(X)

] ≤ ‖Pm‖1→∞ (5.1)

holds for every n ≥ 0 and m ≥ 0.
2. If ‖P‖bub <∞, then

Ev [�n(X) | LE (X)] ≤ ‖P‖bub n (5.2)

and
Pv

[
ρn(X) ≤ λ−1n | LE(X)

]
≤ ‖P‖bub λ−1 (5.3)

for every n ≥ 1 and λ > 0.

Note that, in the other direction, we have the trivial inequalities �n ≥ n and ρn ≤ n.

Proof Wefirst prove item 1. Observe that the conditional distribution of 〈Xi 〉i≥�n given
X�n is equal to the distribution of a random walk started at X�n and conditioned never
to return to the set of vertices visited by LE(X)n−1. (This is the same observation that is
used to derive the Laplacian random walk representation of loop-erased randomwalk,
see [50].) Thus, the conditional distribution of X given LE(X) = γ can be described
as follows. For each finite path η in G, let w(η) be its random walk weight

w(η) = Px0(X |η| = η) =
|η|−1∏

i=0

c(ηi,i+1)
c(ηi )

.

For each time n ≥ 0, let Ln = Ln(LE(X)) be the set of finite loops in G that start and
end at LE(X)n and do not hit the trace of LE(X)n−1 (which we consider to be the empty
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set if n = 0). In particular, Ln includes the loop of length zero at LE(X)n for each
n ≥ 0. Then the random walk segments 〈Xi 〉�n+1−1

i=�n
are conditionally independent

given LE(X), and have law given by

Pv(〈Xi 〉�n+1−1
i=�n

= η | LE(X)) = w(η)
∑

η′∈Ln
w(η′)

1(η ∈ Ln). (5.4)

The contribution of the loop of length zero ensures that the denominator in (5.4) is at
least one, so that

Pv

(
〈Xi 〉�n+1−1

i=�n
= η | LE(X)

)
≤ w(η)1(η ∈ Ln)

and hence, summing over η ∈ Ln of length m,

Pv (�n+1 − �n − 1 = m | LE(X)) ≤ pm (LE(X)n, LE(X)n) ≤ ‖Pm‖1→∞ (5.5)

for all m ≥ 0, establishing item 1.
For item 2, (5.2) follows immediately from (5.1). Furthermore, ρn ≤ λ−1n if and

only if ��λ−1n� ≥ n, so that (5.3) follows from (5.2) and Markov’s inequality. ��
We remark that Lemma 5.1 together with the strong law of large numbers for inde-

pendent, uniformly integrable random variables [29, Theorem 2.19] has the following
easy corollary. Since we do not require the result for the remainder of the paper, the
proof is omitted.

Corollary 5.2 Let G be a transient network, and let X be a random walk on G. If
‖P‖bub <∞, then

lim sup
n→∞

1

n
�n(X) ≤ lim sup

n→∞
1

n
E�n(X) ≤ ‖P‖bub

almost surely.

The following variation of Lemma 5.1, applying to the loop-erasure of a random
walk stopped upon hitting a vertex v, is proved similarly.

Lemma 5.3 Let G be a network. Let u and v be distinct vertices of G, let X be a
random walk started at u, and let γ be a simple path connecting u to v. Then the
following hold.

1. The random variables 〈�n+1(X τv ) − �n(X τv )〉|γ |−1n=0 are independent conditional
on the event that τv <∞ and LE(X τv ) = γ , and the estimate

Pu
(
�n+1(X τv )− �n(X τv )− 1 = m | τv <∞, LE(X τv ) = γ

) ≤ ‖Pm‖1→∞
(5.6)

holds for every vertex 1 ≤ n ≤ |γ | − 1 and every m ≥ 0.
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2. If ‖P‖bub <∞, then

Eu
[
τv | τv <∞, LE(X τv ) = γ

] ≤ ‖P‖bub|γ |. (5.7)

Proof Write �n = �n(X τv ). Observe that the conditional distribution of 〈Xi 〉τv

i=�n
given

the random variable X�n and the event �n < τv < ∞ is equal to the distribution of a
simple random walk started at X�n and conditioned to hit v before hitting the set of
vertices visited by LE(X)n−1. The rest of the proof is very similar to that of Lemma 5.1.

��

5.2 The capacity of loop-erased randomwalk

Given a transient path X in a network, we define ηn(X) = max{�k(X) : k ≥
0, �k(X) ≤ n} for each n ≥ 0. The time ηn(X) is defined so that LE(Xηn ) =
LE(Xn)ρn = LE(X)ρn , and in particular, every edge traversed by LE(Xηn ) is also tra-
versed by both LE(X) and LE(Xn). The goal of this subsection is to prove the following
estimate, which will play a fundamental role in the remainder of our analysis.

Proposition 5.4 Let G be a network with controlled stationary measure. If ‖P‖bub <

∞, then

Pv

(
Cap

(
LE(Xn)

) ≤ λ−1n
)
≤ Pv

(
Cap

(
LE(Xηn )

) ≤ λ−1n
)
� λ−1/3 (5.8)

and similarly

Pv

(
Cap

(
LE(X�n )

)
≤ λ−1n

)
� λ−1/2 (5.9)

for every vertex v of G, every n ≥ 1, and every λ ≥ 1.

We do not expect these bounds to be optimal.
Our primary means of estimating capacity will be the following lemma. Given a

network G, we write |A|c =∑v∈A c(v) for the total conductance of a set of vertices
A, write

G(u, v) = Eu

⎡

⎣
∑

n≥0
1(Xn = v)

⎤

⎦

for the Greens function on G, and define for each finite set of vertices A of G the
quantity

I(A) =
∑

u,v∈A

c(u)G(u, v) =
∑

u∈A

c(u)Eu

[∑

n≥0
1 (Xn ∈ A)

]

.
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Note that for any two sets of vertices A ⊆ B, we have I(A) ≤ I(B). When G
has controlled stationary measure, the ratio I(A)/|A|c is comparable to the expected
number of steps a random walk spends in A when started from a uniform point of A.

Lemma 5.5 Let G be a transient network. Then

Cap(A) ≥ |A|
2
c

I(A)

for every finite set of vertices A in G.

Proof Recall the following variational formula for the capacity of a finite set A [37,
Lemma 2.3]:

Cap(A)−1 = inf

⎧
⎨

⎩

∑

u,v∈A

G(u, v)

c(v)
μ(u)μ(v) : μ is a probability measure on A

⎫
⎬

⎭
.

The claim follows by taking μ to be the measure μ(v) = c(v)/|A|c. ��
A useful feature of Lemma 5.5 is that once one has an upper bound on I(A) for

some set A, one also obtains lower bounds on the capacity of all subsets of A in terms
of their size. In particular, Lemma 5.5 yields that

Cap
(
LE(Xηn )

) ≥
[

inf
u∈V

c(u)

]2
(ρn + 1)2

I(LE(Xηn ))
≥
[

inf
u∈V

c(u)

]2
(ρn + 1)2

I(Xn)
,

so that to lower bound Cap(LE(Xηn )) it will suffice to lower bound ρn and upper bound
I(Xn). Moreover, for our purposes, it will suffice to control the expectation of I(Xn).

Lemma 5.6 Let G be a network. Then

Ev

[
I(Xn)

] ≤ 2(n + 1)

[

sup
u∈V

c(u)

]

·
[

n∑

m=0
(m + 1)‖Pm‖1→∞ + (n + 1)

∞∑

m=n+1
‖Pm‖1→∞

]

for every v ∈ V and n ≥ 0.

Remark 5.7 Lemmas 5.5 and 5.6 give the correct order of magnitude for the capacity
of the randomwalk onZd for all d ≥ 3, which is order

√
n when d = 3, order n/ log n

when d = 4, and order n when d ≥ 5. See [5] and references therein for more detailed
results.

Lemma 5.6 has the following immediate corollary.
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Corollary 5.8 Let G be a network with controlled stationary measure. If ‖P‖bub <∞
then

Ev

[
I(Xn)

] � n

for every vertex v of G and every n ≥ 1.

Before proving Lemma 5.6, let us use it, together with Lemma 5.1, to deduce
Proposition 5.4.

Proof of Proposition 5.4 given Corollary 5.8 It follows from Lemma 5.5 and a union
bound that

Pv

(
Cap(LE(Xηn )) ≤ λ−1n

)
≤ Pv

(

(ρn + 1) ≤
[

inf
u∈V

c(u)

]−1
λ−1/3n

)

+Pv

(
I(Xn) ≥ λ1/3n

)
(5.10)

and similarly

Pv

(
Cap(LE(X�n )) ≤ λ−1n

)
≤ Pv

(
�n ≥ λ1/2n

)

+Pv

(

I
(

X �λ1/2n�) ≥
[

inf
u∈V

c(u)

]−2
λn

)

. (5.11)

The claim now follows immediately from Lemma 5.1, Corollary 5.8 and Markov’s
inequality. ��
Proof of Lemma 5.6 Conditional on X , let Y i be a random walk started at Xi for each
i ≥ 0, writing P for the joint law of X and the walks 〈Y i 〉i≥0. Then we have

Ev

[
I(Xn)

] ≤
n∑

j=0

n∑

i=0

∑

k≥0
E

[
c(Xi )1(Y i

k = X j )
]
.

(This is an inequality rather than an equality because the right-hand side counts vertices
with multiplicity according to how often they are visited by X .) We split this sum into
two parts according to whether i ≤ j or i > j . For the first sum, we have that

n∑

i=0

n∑

j=i

∑

k≥0
E

[
c(Xi )1(Y i

k = X j )
]

=
n∑

i=0

n∑

j=i

∑

k≥0

∑

u,w∈V

pi (v, u)pk(u, w)c(u)p j−i (u, w).
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Reversing time and rearranging yields that

n∑

i=0

n∑

j=i

∑

k≥0
E

[
c(Xi )1(Y i

k = X j )
]

=
n∑

i=0

n∑

j=i

∑

k≥0

∑

u,w∈V

pi (v, u)pk(u, w)p j−i (w, u)c(w)

≤
[

sup
u∈V

c(u)

] n∑

i=0

n∑

j=i

∑

k≥0
‖Pk+ j−i‖1→∞.

Similarly, for the second sum, we have that

n∑

i=0

i−1∑

j=0

∑

k≥0
E

[
c(Xi )1(Y i

k = X j )
]
≤
[

sup
u∈V

c(u)

] n∑

i=0

i−1∑

j=0

∑

k≥0
‖Pi− j+k‖1→∞,

and summing these two bounds we obtain that

Ev

[
I(Xn)

] ≤
[

sup
u∈V

c(u)

] n∑

i=0

n∑

j=0

∑

k≥0
‖P |i− j |+k‖1→∞.

Using the substitutions � = |i − j | and m = k + � and noting that there at most
2(n + 1) choices of i , j and k corresponding to each � and m with � ≤ m, we deduce
that

1

2

[

sup
u∈V

c(u)

]−1
Ev

[
I(Xn)

] ≤ (n + 1)
∞∑

m=0

m∧n∑

�=0
‖Pm‖1→∞

= (n + 1)
n∑

m=0
(m + 1)‖Pm‖1→∞ + (n + 1)2

∞∑

m=n+1
‖Pm‖1→∞

as claimed. ��

6 Volume bounds

In this section, we study the volume of balls in both the WUSF and v-WUSF. In
Sect. 6.1 we prove upper bounds on the moments of the volumes of balls, while in
Sect. 6.2 we prove lower bounds on moments and upper bounds on the probability that
the volume is atypically small. Together, these estimates will imply that d f (T ) = 2
for every component T of F almost surely. The estimates in this section will also be
important in Sects. 7 and 8.
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6.1 Upper bounds

The goal of this subsection is to obtain tail bounds on the probability that an intrin-
sic ball in the WUSF contains more than n2 vertices. The upper bounds we obtain
are summarized by the following two propositions, which are generalisations of [11,
Theorem 4.1].

Recall thatB(v, n) denotes the intrinsic ball of radius n around v in the WUSF F,
and Bv(v, n) denotes the intrinsic ball of radius n around v in the v-WUSF Fv . We
define the constant

α = α(G) = 4
supu∈V c(u)

infu∈V c(u)
‖P‖bub. (6.1)

Proposition 6.1 Let G be a network with controlled stationary measure such that
‖P‖bub <∞, and let F be a wired uniform spanning forest of G. Then the estimates

E

[
|B(v, n)|k

]
≤ e (k + 1)!αk (n + 1)2k (6.2)

and

E

[

exp

(
t

α(n + 1)2
|B(v, n)|

)]

≤ 1

1− t
(6.3)

hold for every v ∈ V , n ≥ 0, k ≥ 1 and 0 ≤ t < 1.

We also obtain the following variation of this proposition applying to the v-WUSF.

Proposition 6.2 Let G be a network with controlled stationary measure such that
‖P‖bub <∞, let v be a vertex of G and let Fv be a v-wired uniform spanning forest
of G. Then the estimates

E

[
|Bv(v, n)|k

]
≤ (k − 1)!αk (n + 1)2k−1 (6.4)

and

E

[

exp

(
t

α(n + 1)2
|Bv(v, n)|

)]

≤ 1− log(1− t)

n + 1
(6.5)

hold for every v ∈ V , n ≥ 0, k ≥ 1 and 0 ≤ t < 1.

(To prove our main theorems it suffices to have just the first and second moment
bounds of Propositions 6.1 and 6.2. We include the exponential moment bounds for
future application since they are not much more work to derive.)

Before proving Propositions 6.1 and 6.2, we note the following important corollar-
ies.

Corollary 6.3 Let G be a network with controlled stationary measure and with
‖P‖bub <∞, and let F be a wired uniform spanning forest of G. Then
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P

(
|B(v, n)| ≥ λα(n + 1)2

)
≤ λe−λ+1

for all v ∈ V , n ≥ 0, and λ ≥ 1.

Proof By Markov’s inequality, we have that

P

(
|B(v, n)| ≥ λα(n + 1)2

)
≤ e−tλ

E

[

exp

(
t

α(n + 1)2
|B(v, n)|

)]

≤ e−tλ

1− t

for every v ∈ V , n ≥ 0, and 0 ≤ t < 1. The claim follows by taking t = 1− λ−1. ��
Corollary 6.4 Let G be a network with controlled stationary measure and with
‖P‖bub <∞, and let F be a wired uniform spanning forest of G. Then

lim sup
n→∞

|B(v, n)|
n2 log log n

≤ α

almost surely for every vertex v of G.

Proof Let a > 1 and let nk = �ak�. Then for every ε > 0, v ∈ V and all k sufficiently
large we have that, by Corollary 6.3,

P

(
|B(v, nk)| ≥ (1+ ε)α(nk + 1)2 log log nk

)
≤ e(1+ ε) log(k log a)

(k log a)1+ε
.

The right hand side is summable in k whenever ε > 0, and it follows by Borel-Cantelli
that

lim sup
k→∞

|B(v, nk)|
α(nk + 1)2 log log nk

≤ 1

almost surely. Since |B(v, n)| is increasing and for every n there exists k such that
nk ≤ n ≤ ank , it follows that

lim sup
k→∞

|B(v, n)|
α(n + 1)2 log log n

≤ a2 lim sup
k→∞

|B(v, nk)|
α(nk + 1)2 log log nk

≤ a2

almost surely, and the claim follows since a > 1 was arbitrary. ��
Remark 6.5 [13, Proposition 2.8]2 shows that Corollary 6.4 is sharp in the sense that,
when G is a 3-regular tree, log log n cannot be replaced with (log log n)1−ε for any
ε > 0.

We now begin working towards the proof of Propositions 6.1 and 6.2. We begin
with a first moment estimate.

2 That work studies the IIC on the 3-regular tree, rather than the WUSF. We recall however that the IIC
and the component of the origin in the WUSF have the same distribution on a k-regular tree, namely that
of (the unimodular version of) a critical Binomial Galton–Watson tree conditioned to survive forever.

123



Universality of high-dimensional spanning forests… 569

Lemma 6.6 Let G be a network with controlled stationary measure and with ‖P‖bub <

∞. Then

E|Bv(v, n)| ≤ α(n + 1)

for every v ∈ V and n ≥ 0.

Proof Let u ∈ V , and consider sampling the v-rooted uniform spanning forest Fv

using Wilson’s algorithm rooted at v, starting with a random walk X with X0 = u.
Then u ∈ B(v, n) if and only if the randomwalk started at u hits v and the loop-erasure
of the random walk path stopped when it first hits v has length at most n. Denote this
event An(u, v), so that

E|Bv(v, n)| =
∑

u∈V

Pu(An(u, v)).

If ‖P‖bub <∞, then for every two vertices u and v in G and every simple path γ

from u to v we have that, by the estimate (5.7) of Lemma 5.3 andMarkov’s inequality,

Pu
(
τv ≥ 2‖P‖bub · |γ | | τv <∞, LE(X τv ) = γ

) ≤ 1

2
.

Taking expectations over LE(X) conditional on the event An(u, v) yields that

Pu (τv ≤ 2‖P‖bub n | An(u, v)) ≥ 1/2

and hence, by Bayes’ rule

Pu (An(u, v)) ≤ 2Pu (τv ≤ 2‖P‖bub n) ≤ 2
�2‖P‖bub n�∑

k=0
pk(u, v).

Reversing time we have

Pu(An(u, v)) ≤ 2c(v)

c(u)

�2‖P‖bub n�∑

k=0
pk(v, u),

from which the claim may immediately be derived by summing over u ∈ V . ��
We next use an inductive argument to control the higher moments of |Bv(v, n)|.

Lemma 6.7 Let G be a network. Then

sup
v∈V

E

[
|Bv(v, n)|k

]
≤ (k − 1)! (n + 1)k−1 sup

v∈V
E

[
|Bv(v, n)|

]k

for every n ≥ 0 and k ≥ 1.
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Proof By induction, it suffices to prove that the inequality

E

[
|Bv(v, n)|k

]
≤ (k − 1)(n + 1)E

[
|Bv(v, n)|k−1

]
sup
w∈V

E [|Bw(w, n)|] (6.6)

holds for every vertex v of G and every k ≥ 1. To this end, let v be a vertex of G and let
u1, . . . , uk−1 be vertices of G such that P(u1, . . . , uk−1 ∈ Bv(v, n)) > 0. It follows
from Wilson’s algorithm that, conditional on the event that u1, . . . , uk−1 ∈ Bv(v, n)

and on the paths �v(u1, v), . . . , �v(uk−1, v) connecting each of the vertices ui to v in
Fv , the probability that a vertex w is contained in Bv(v, n) is at most the probability
that a randomwalk started atw hits one of the paths�v(ui , v) and that the loop-erasure
of this stopped path has length at most n. Thus, we obtain

P

(
uk ∈ Bv(v, n) | u1, . . . , uk−1 ∈ Bv(v, n), 〈�v(ui , v)〉k−1i=1

)

≤
k−1∑

i=1

∑

u∈�v(ui ,v)

Puk (τu <∞, |LE(X τu )| ≤ n) =
k−1∑

i=1

∑

u∈�v(ui ,v)

P(uk ∈ Bu(u, n))

and hence, summing over uk and taking expectations over 〈�(ui , v)〉k−1i=1 we obtain
that

E
[|Bv(v, n)| | u1, . . . , uk−1 ∈ Bv(v, n)

]

≤ (k − 1)(n + 1) sup
u∈V

E [|Bu(u, n)|] .

(This inequality can also be deduced using Lemma 2.1.) The inequality (6.6) now
follows from this together with the inequality

E

[
|Bv(v, n)|k

]

=
∑

u1,...,uk∈V

P
(
uk ∈Bv(v, n) | u1, . . . , uk ∈Bv(v, n)

)
P
(
u1, . . . , uk−1∈Bv(v, n)

)

≤ E

[
|Bv(v, n)|k−1

]
sup

u1,...,uk−1
E

[
|Bv(v, n)| | u1, . . . , uk−1 ∈ Bv(v, n)

]
,

where the supremum is taken over all collections of vertices u1, . . . , uk−1 ∈ V such
that the probability P(u1, . . . , uk−1 ∈ Bv(v, n)) is positive. ��

Next, we control the moments of the volume of balls in the WUSF in terms of the
moments in the v-WUSF.

Lemma 6.8 Let G be a transient network. Then

sup
v∈V

E

[
|B(v, n)|k

]
≤

∑

k0, ..., kn≥0:
k0+···+kn=k

n∏

i=0
sup
v∈V

E

[
|Bv(v, n)|ki

]
(6.7)

for every n ≥ 0 and k ≥ 1.
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Proof Let v ∈ V and let �(v,∞) be the future of v in F. Let v = u0, . . . , un be the
first n+1 vertices in the path�(v,∞). For each 0 ≤ i ≤ n, let Wi = {wi,1, . . . , wi,mi }
be a finite (possibly empty) collection of vertices of G, and letAi be the event that for
every vertex w ∈ Wi , w is in B(v, n) and that the path connecting w to v first meets
�(v,∞) at ui .

Let {Xi, j : 0 ≤ i ≤ n, mi �= 0, 1 ≤ j ≤ n} be a collection of independent random
walks, independent of �(v,∞), such that Xi, j

0 = wi, j for each 0 ≤ i ≤ n such that
mi �= 0 and each 1 ≤ j ≤ mi . For each 0 ≤ i ≤ n such that mi �= 0, let Bi be
the event that, if we sample Fui using Wilson’s algorithm, starting with the random
walks Xi,1, . . . , Xi,mi , then every vertex in Wi is connected to ui in Fui by a path of
length at most n. Observe that if we sample F conditional on �(v,∞) using Wilson’s
algorithm starting with X0,1, . . . , X0,m0 , then X1,1, . . . , X1,m1 , and so on, then we
have the containment Ai ⊆ Bi . We deduce that

P
( ∩n

i=0 Ai | �(v,∞)
) ≤ P

( ∩n
i=1 Bi | �(v,∞)

) =
n∏

i=0
P(Bi | �(v,∞)).

Summing over the possible choices of the sets Wi such that
∑n

i=0 |Wi | = k, we obtain
that

E

[
|B(v, n)|k | �(v,∞)

]
≤

∑

k0, ..., kn≥0:
k0+···+kn=k

n∏

i=0
E

[
|Bui (ui , n)|ki

]
,

and the claim follows. ��
We now prove Proposition 6.1.

Proof of Propositions 6.1 and 6.2 The moment estimate (6.4) follows immediately
from Lemmas 6.6 and 6.7. In order to prove the moment generating function esti-
mates (6.5) and (6.3), define

�(n, t) =
∞∑

k=0

1

k!
(

t

α(n + 1)2

)k

sup
v∈V

E |B(v, n)|k

and

�(n, t) =
∞∑

k=0

1

k!
(

t

α(n + 1)2

)k

sup
v∈V

E |Bv(v, n)|k .

The moment estimate (6.4) implies that

�(n, t) ≤ 1+ 1

n + 1

∞∑

k=1

tk

k
= 1− log(1− t)

n + 1
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for every n ≥ 0 and t ∈ [0, 1). The moment generating function estimate (6.5) follows
immediately. Next, Lemma 6.8 implies that

�(n, t) ≤
∞∑

k=0

1

k!
(

t

α(n + 1)2

)k ∑

k0, ..., kn≥0:
k0+···+kn=k

n∏

i=0
sup
v∈V

E

[
|Bv(v, n)|ki

]
.

On the other hand, we have that

�(n, t)n+1 =
∞∑

k=0

∑

k0,...,kn≥0
k0+···+kn=k

n∏

i=0

1

ki !
(

t

α(n + 1)2

)ki

sup
v∈V

E

[
|Bv(v, n)|ki

]
,

and since
∏n

i=0(ki )! ≤ k! whenever k0, . . . , kn are non-negative integers summing to
k, we deduce that

�(n, t) ≤ �(n, t)n+1

for every n ≥ 0 and t ≥ 0. Thus, it follows that

�(n, t) ≤
(

1− log(1− t)

n + 1

)n+1
≤ 1

1− t

for every n ≥ 0 and t ∈ [0, 1), where the final inequality follows from the elementary
inequality 1− x ≤ e−x . This yields the moment generating function estimate (6.3).

Finally, to deduce (6.2), we use the fact that, since |B(v, n)| is non-negative,

E

[

exp

(
t

α(n + 1)2
|B(v, n)|

)]

≥ tk
E
[|B(v, n)|k]

αk(n + 1)2kk!
and hence

E

[
|B(v, n)|k

]
≤ k!αk(n + 1)2k

tk(1− t)

for all k ≥ 1 and t ∈ [0, 1). Optimizing by taking t = k/(k + 1) and using that
(1+ x−1)x ≤ e for every x ≥ 0 yields (6.2). ��

6.2 Lower bounds

In this section, we give lower bounds on the first moment of the volume of the past, and
derive upper bounds on the probability that the volume of an intrinsic ball is atypically
small.

We begin with the following simple lower bounds on the first moments. We write
P(v, n) for the ball of radius n around v in the past of v in F, and write ∂P(v, n) for
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the set of points that are in the past of v in F and have intrinsic distance exactly n from
v.

Lemma 6.9 Let G be a transient network, and let F be the wired uniform spanning
forest of G. Then

E|∂P(v, n)| ≥ q(v)c(v)

supu∈V c(u)

for every v ∈ V and n ≥ 0. Similarly, if Fv is the v-wired uniform spanning forest of
G then

E|∂Bv(v, n)| ≥ c(v)

supu∈V c(u)
.

Remark 6.10 If G is a transitive unimodular graph, the mass-transport principle yields
the exact equality E|∂P(v, n)| = 1 for every n ≥ 1.

Proof We prove the first claim, the proof of the second being similar. Let u ∈ V , and
let X be a random walk started at u. Consider sampling F using Wilson’s algorithm,
starting with the walk X . Let An(u, v) be the event that X hits v, that the sets {Xm :
0 ≤ m < τv} and {Xm : m ≥ τv} are disjoint, and that |LE(X τv )| = n, so that
u ∈ ∂P(v, n) on the event An(u, v) and hence

E

[
|∂P(v, n)|

]
≥
∑

u∈V

P (An(u, v)) .

Let Y be an independent random walk started at v. By time-reversal, we have that

Pu(An(u, v))

≥ c(v)

c(u)
Ev

[
#{k : Xk = u, |LE(Xk)| = n}1({Xi : i > 0} ∩ {Yi : i ≥ 0} = ∅)

]

and hence, summing over u ∈ V ,

E|∂P(v, n)|
≥ c(v)q(v)

supu∈V c(u)
Ev

[
#{k : |LE(Xk)| = n} | {Xi : i > 0} ∩ {Yi : i ≥ 0} = ∅

]

≥ c(v)q(v)

supu∈V c(u)

as claimed, where the second inequality follows since there must be at least one time
k such that |LE(Xk)| = n, namely the time �n . ��

Our next goal is to prove the following lemma.
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Lemma 6.11 Let G be a network with controlled stationary measure and‖P‖bub <∞,
and let F be the wired uniform spanning forest of G. Then

P
(|B(v, n)| ≤ λ−1n2) � λ−1/8

for every vertex v, every n ≥ 0 and every λ ≥ 1.

Lemma 6.11 has the following immediate corollary, which is proved similarly to
Corollary 6.4 and which together with Corollary 6.4 establishes that d f (T ) = 2
for every component of F almost surely (as claimed in Theorem 1.3). We remark
that Barlow and Járai [11] established much stronger versions of Lemma 6.11 and
Corollary 6.12 in the case of Zd , d ≥ 5.

Corollary 6.12 Let G be a network with controlled stationary measure with ‖P‖bub <

∞, and let F be the wired uniform spanning forest of G. Then

lim inf
n→∞

log8+ε n

n2 |B(v, n)| > 0

almost surely for every v ∈ V and ε > 0.

In order to prove Lemma 6.11, we first show that the volume of the tree can be
lower bounded with high probability in terms of quantities related to the capacity of
the spine, and then show that these quantities are large with high probability.

Given two sets of vertices A ⊆ B in a transient graph and k ∈ [0,∞], we define

Capk(A, B) :=
∑

v∈A

c(v)Pv(τ
+
B ≥ k),

so that Cap(A) = Cap∞(A, A).

Lemma 6.13 Let G be a network with controlled stationary measure. Let v be a vertex
of G and let � = �(v,∞) be the future of v in F.

1. The estimate
E

[
|B(v, 2n)|

∣
∣
∣ �
]
� (k + 1)Capk

(
�n, �

)
(6.8)

holds for every n ≥ 0 and 0 ≤ k ≤ n.
2. If ‖P‖bub <∞, then

P

(

|B(v, 2n)| ≤ kCapk(�
n, �)

2 supu∈V c(u)

∣
∣
∣
∣ �

)

� (k + 1)(n + 1)

Capk(�
n, �)2

(6.9)

for every 1 ≤ k ≤ n.

Proof Let v = v0, v1, . . . be the vertices visited by the path �. Let Ti (k) be the set of
vertices that are connected to v in F by a path that first meets � at vi , and such that
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the path connecting them to � has length at most k. Clearly

|B(v, 2n)| ≥
n∑

i=0
|Ti (k)|

for every n ≥ 0 and every 0 ≤ k ≤ n. Let u be a vertex of G, and suppose that we
sample F using Wilson’s algorithm, starting with the vertices v and u. For u to be
included in Ti (k), it suffices for the random walk started at u to hit � for the first time
at vi , and to do so within time k. By a time-reversal argument similar to that used in
the proof of Lemma 6.6, it follows that

E

[ n∑

i=0
|Ti (k)|

∣
∣
∣
∣ �

]

≥
∑n

i=0 c(vi )(k + 1)Pvi (τ
+
� ≥ k + 1)

supu∈V c(u)

≥ (k + 1)Capk+1(�n, �)

supu∈V c(u)
. (6.10)

The estimate (6.8) follows immediately.
Let u1, u2 ∈ V and 0 ≤ i < j ≤ n. By running Wilson’s algorithm starting first

with v and then with u1, we see that the probability that u1 ∈ Ti (m) given � is equal
to the probability that a random walk started at u1 hits � for the first time at vi , and
that the loop-erasure of the walk stopped at this time has length at most k. On the
other hand, by running Wilson’s algorithm starting with v, u2, and u1 (in that order),
we see that the conditional probability that u1 ∈ Ti (k) given �, �(u2,∞), and the
event that u2 ∈ T j (k) is equal to the probability that a random walk started at u1 hits
the union of � and �(u2,∞) for the first time at vi and that the loop-erasure of the
walk stopped at this time has length at most k. This second conditional probability is
clearly smaller than the first, and we deduce that

P
(
u1 ∈ Ti (k) | �, u2 ∈ T j (k)

) ≤ P (u1 ∈ Ti (k) | �) .

It follows that

E
[|Ti (k)| · |T j (k)| | �] ≤ E [|Ti (k)| | �]E [|T j (k)| | �]

for every 0 ≤ i < j ≤ n, and hence that

Var

[ n∑

i=0
|Ti (k)|

∣
∣
∣
∣ �

]

≤
n∑

i=0
E

[
|Ti (k)|2 | �

]

≤
∑

u∈V

1(u ∈ {v0, v1, . . . , vn})E
[
|pastF\�(u, k)|2 | �

]
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≤
∑

u∈V

1(u ∈ {v0, v1, . . . , vn}) sup
w∈V

E

[
|Bw(w, k)|2

]

= (n + 1) · sup
w∈V

E

[
|Bw(w, k)|2

]
,

where we have applied Lemma 2.1 (more specifically, (2.1) with K = {v, u}) in the
third inequality. If ‖P‖bub <∞, we deduce from Proposition 6.2 that

Var

[ n∑

i=0
|Ti (k)|

∣
∣
∣
∣ �

]

� (k + 1)3(n + 1),

and applying Chebyshev’s inequality yields that

P

(
n∑

i=0
|Ti (k)| ≤ (k + 1)Capk(�

n, �)

2 supu∈V c(u)

∣
∣
∣
∣ �

)

≤
4Var

[∑n
i=0 |Ti (k)| | �

]

E

[∑n
i=0 |Ti (k)| | �

]2

� (k + 1)(n + 1)

Capk(�
n, �)2

.

for all 1 ≤ k ≤ n as claimed. ��
Lemma 6.14 Let G be a network with controlled stationary measure and with
‖P‖bub < ∞. Let v be a vertex of G, let X be a random walk started at v and
let � = LE(X). Then for every 1 ≤ k ≤ n we have that

E

[
Capk

(
�n)− Capk

(
�n, �

)] � k1/2n1/2 (6.11)

and that
P

(
Capk

(
�n, �

) ≤ λ−1n
)
� λ−1/2 + λk1/2n−1/2. (6.12)

for every 1 ≤ k ≤ n and λ ≥ 1.

Proof Let m ≤ n, and let A = {�i : 0 ≤ i ≤ n}, B = {�i : 0 ≤ i ≤ n − m}, and
C = {�i : i ≥ n + 1}. Considering the contribution to Capk

(
�n
) − Capk

(
�n, �) of

the last m steps and the first n − m steps of �n separately, we obtain that

Capk

(
�n)− Capk

(
�n, �) =

∑

u∈A

c(u)Pu(τC < k)

≤
∑

u∈A\B

c(u)+
∑

u∈B

c(u)Pu(τC < k)

� m +
∑

u∈B

∑

w∈C

k∑

�=0
p�(u, w).
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Taking expectations over �, we obtain that

E
[
Capk(�

n)− Capk(�
n, �)

] � m +
∑

u,w∈V

P(u ∈ B, w ∈ C)

k∑

�=0
p�(u, w).

On the event u ∈ B we have that E[ τu | � ] ≤ E[ �n | � ], and hence by Lemma 5.3
that E[ τu | � ] ≤ ‖P‖bubn on the event that u ∈ B. It follows by Markov’s inequality
that τu ≤ 2‖P‖bubn with probability at least 1/2 conditional on � and the event that
u ∈ B, and in particular that τu ≤ 2‖P‖bubn with probability at least 1/2 conditional
on the event that u ∈ B and w ∈ C . Moreover, on this event we must have that w is
visited (not necessarily for the first time) by X some time at least m steps after τu .
Thus, we obtain that

E
[
Capk(�

n)− Capk(�
n, �)

]

� m +
∑

u∈V

P

(
τu ≤ 2‖P‖bubn

)∑

w∈V

∑

r≥m

k∑

�=0
pr (u, w)p�(u, w)

= m +
∑

u∈V

P

(
τu ≤ 2‖P‖bubn

)∑

r≥m

k∑

�=0
‖Pr+�‖1→∞

� m + kn
∑

j≥m

‖P j‖1→∞ � m + knm−1.

Taking m = �k1/2n1/2� concludes the proof of (6.11).
To obtain (6.12), simply take a union bound and apply (6.11) and (5.9) to get that,

since Capk(�
n) ≥ Cap(�n),

P

(
Capk

(
�n, �

) ≤ λ−1n
)
≤ P

(
Cap(�n) ≤ 2λ−1n

)

+ P

(
Capk(�

n)− Capk(�
n, �) ≥ λ−1n

)

� λ−1/2 + λk1/2n−1/2.

��

Proof of Lemma 6.11 Take k = �λ−3/4n� and

ε = 2n supu∈V c(u)

λk
� λ−1/4, so that

kεn

2 supu∈V c(u)
= λ−1n2.

Then it follows from Lemmas 6.13 and 6.14 that if λ is sufficiently large that ε ≤ 1
then
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P

(
|B(v, 2n)| ≤ λ−1n2

)
≤ P

(
Capk(�

n, �) ≤ εn
)

+ P

(
|B(v, 2n)| ≤ λ−1n2,Capk(�

n, �) ≥ εn
)

� ε1/2 + ε−1k1/2n−1/2 + ε−2kn−1 � λ−1/8,

and the claim follows easily. ��

7 Critical exponents

In this section we apply the estimates obtained in Sects. 5 and 6 to complete the proofs
of Theorems 1.2 and 1.4–1.6.

We will also prove the following extensions of these theorems to the v-wired case.

Theorem 7.1 Let G be a network with controlled stationary measure such that
‖P‖bub < ∞, let v be a vertex of G and let Fv be the v-wired uniform spanning
forest of G. Then

P

(
diamint

(
Tv

) ≥ R
)
� R−1 and P

(∣
∣Tv

∣
∣ ≥ R

)
� R−1/2

for all v ∈ V and R ≥ 1.

Theorem 7.2 Let d ≥ 5, and let F0 be the 0-wired uniform spanning forest of Zd .
Then

P (diamext(T0) ≥ R) � R−2

for every R ≥ 1.

Theorem 7.3 Let G be a network with controlled stationary measure that is d-Ahlfors
regular for some d > 4 and that satisfies Gaussian heat kernel estimates. Let v ∈ V
and let Fv be the wired uniform spanning forest of G. Then

R−2 � P (diamext(Tv) ≥ R) � R−2 log R

for every vertex v and every R ≥ 1.

Theorem 7.4 Let G be a uniformly ballistic network with controlled stationary mea-
sure and ‖P‖bub < ∞, let v ∈ V and let Fv be the wired uniform spanning forest of
G. Then

P (diamext(Tv) ≥ R) � R−1

for every vertex v and every R ≥ 1.
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7.1 The intrinsic diameter: upper bounds

The key estimate is provided by the following lemma, which will allow us to prove the
upper bound on the probability of a large intrinsic diameter by an inductive argument.
For non-negative integers n, we define

Q(n) = sup
v∈V

P (|∂Bv(v, n)| �= ∅) ,

to be the supremal probability that the component of v in the v-WUSF survives to
intrinsic distance n.

Lemma 7.5 Let G be a network with controlled stationary measure satisfying
‖P‖bub <∞. Then there exist positive constants N and C such that

Q(3n) ≤ C

n
+ 1

6
Q(n). (7.1)

for all n ≥ N.

Before proving this lemma, let us establish the following corollary of it.

Corollary 7.6 Let G be a network with controlled stationary measure satisfying
‖P‖bub <∞, and let Q(n) be as above. Then Q(n) � n−1 for all n ≥ 1.

Proof Let N = N (G) and C = C(G) be as in Lemma 7.5. We may assume that
C, N ≥ 1. Since Q(n) is a decreasing function of n, it suffices to prove that

Q(3k) ≤ 6C N3−k (7.2)

for every k ≥ 1. We do this by induction on k. When 3k ≤ N the claim holds trivially.
If 3k > N and the claim holds for all � < k, then we have by (7.1) and the induction
hypothesis that

Q(3k) ≤ C3−k+1 + C N3−k+1 ≤ 6C N3−k,

completing the induction. ��
We now turn to the proof of Lemma 7.5. We will require the following estimate.

Recall that �v(u,∞) denotes the future of u in Fv , which is equal to the path from u
to v if u ∈ Tv .

Lemma 7.7 Let G be a network with controlled stationary measure such that‖P‖bub <

∞. Then

E(n, δ) := sup
v∈V

E

∣
∣
∣
{

u ∈ Bv(v, 2n)\Bv(v, n) : Cap(�v(u,∞)) ≤ δn
}∣
∣
∣ � δn

for every n ≥ 1.
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Proof By Wilson’s algorithm we have that, for each two vertices u and v of G,

P (u ∈ Bv(v, 2n)\Bv(v, n) and Cap(�v(u,∞)) ≤ δn)

= Pu
(
τv <∞, n ≤ |LE(X τv )| ≤ 2n, and Cap

(
LE(X τv )

) ≤ δn
)
,

and applying Lemmas 5.3 and 5.5 we deduce that, letting r = �4‖P‖bubn�,

P (u ∈ Bv(v, 2n)\Bv(v, n) and Cap(�v(u,∞)) ≤ δn)

≤ 2Pu
(
τv ≤ r , n ≤ |LE(X τv )| ≤ 2n, and Cap

(
LE(X τv )

) ≤ δn
)
,

≤ 2Pu

(

τv ≤ r and I(X τv ) ≥
[

inf
w∈V

c(w)

]2 n

δ

)

≤ 2
r∑

�=0
Pu

(

X� = v and I(X�) ≥
[

inf
w∈V

c(w)

]2 n

δ

)

.

Reversing time then yields that

P (u ∈ Bv(v, 2n)\Bv(v, n) and Cap(�v(u,∞)) ≤ δn)

≤ 2
c(v)

c(u)

r∑

�=0
Pv

(

X� = u and I(X�) ≥
[

inf
w∈V

c(w)

]2 n

δ

)

,

and summing over u ∈ V and applying Corollary 5.8 and Markov’s inequality we
obtain that

E

∣
∣
∣
{

u ∈ Bv(v, 2n)\Bv(v, n) : Cap(�v(u,∞)) ≤ δn
}∣
∣
∣

�
r∑

�=0
Pv

(

I(X�) ≥
[

inf
w∈V

c(w)

]2 n

δ

)

�
r∑

�=0

δ(�+ 1)

n
� δn

as claimed. ��
Proof of Lemma 7.5 Fix v ∈ V . LetIv be the v-wired interlacement process on G, let
Fv,t = 〈ABv,t (Iv)〉t∈R, and let Bv,t (v, n) denote the ball of radius n about v in Fv,t

for each t ∈ R and n ≥ 0. Recall that for each t ∈ R, σt (v) = σt (v,Iv) is the first
time greater than or equal to t such that v is hit by a trajectory of Iv at time σt (v).

For each two vertices u and v of G, every t ∈ R and n ≥ 0, let Bt,n(u, v) be the
event that u ∈ Bv,t (v, 2n)\Bv,t (v, n), and let Ct,n(u, v) ⊆ Bt,n(u, v) be the event
that Bt,n(u, v) occurs and that v is connected to ∂Bv,t (v, 3n) by a simple path that
passes through u.

Let ε, δ > 0. If ∂Bv,0 (v, 3n) �= ∅ then we must have that C0,n(u, v) occurs for at
least n vertices u, namely those vertices on the middle third of some path connecting v

to ∂Bv,0(v, 3n) in Fv,0. Thus, it follows by the union bound and Markov’s inequality
that
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Q(3n) ≤ P(σ0(v) ≤ ε)+ 1

n

∑

u∈V

P
(
C0,n(u, v) ∩ {σ0(v) > ε}) .

Let �v,0(u,∞) be the future of u in Fv,0. By stationarity and Lemma 3.5, we have
that

P

(
C0,n(u, v) ∩ {σ0(v) > ε}

)
≤ P

(
C0,n(u, v) ∩ {�v,0(u,∞) ∩ Iv,[−ε,0] = ∅

})
.

(This is an inequality rather than an equality because it is possible for the path con-
necting u to ∂Bv,0(v, 3n) to be hit without �v,0(u,∞) being hit.) Next, observe that

P

(
C0,n(u, v) | u ∈ Tv, �v,0(u,∞) = γ

)

≤ P

(
∂Pv,0 (u, n) �= ∅ | u ∈ Tv, �v,0(u,∞) = γ

)

≤ P

(
∂Bu,0(u, n) �= ∅

)
≤ Q(n)

for every simple path γ from u to v, where we have used Lemma 2.1 (more specif-
ically, (2.2) with K = {u}) in the second inequality. Since the events C0,n(u, v) and
{�v,0(u,∞) ∩ Iv,[−ε,0] = ∅} are conditionally independent conditional on the event
B0,n(u, v) and the random variable �v,0(u,∞), we deduce that

P
(
C0,n(u, v) ∩ {�v,0(u,∞) ∩ Iv,[−ε,0] = ∅

} | B0,n(u, v), �v,0(u,∞)
)

≤ Q(n)P
(
�v,0(u,∞) ∩ Iv,[−ε,0] = ∅ | B0,n(u, v), �v,0(u,∞)

)
.

Taking expectations over �v,0(u,∞) and applying a union bound, we deduce that

P
(
C0,n(u, v) ∩ {�v,0(u,∞) ∩ Iv,[−ε,0] = ∅

})

≤ Q(n)P
(
B0,n(u, v) ∩ {Cap(�v,0(u,∞)) ≥ δn

}

∩ {�v,0(u,∞) ∩ Iv,[−ε,0] = ∅
})

+ Q(n)P
(
B0,n(u, v) ∩ {Cap(�v,0(u,∞)) ≤ δn

})
.

Summing the second term over u ∈ V yields Q(n)E(n, δ), where E(n, δ) is the
quantity from Lemma 7.7. To control the first term, we apply (3.3) to deduce that

P
(
B0,n(u, v) ∩ {Cap(�v,0(u,∞)) ≥ δn

} ∩ {�v,0(u,∞) ∩ Iv,[−ε,0] = ∅
})

� e−δεn
P

(
B0,n(u, v) ∩ {Cap(�v,0(u,∞)) ≥ δn)}

)
� e−εδn

P

(
B0,n(u, v)

)
.

Thus, summing over u we obtain that

Q(3n) ≤ P(σ0(v) ≤ ε)+ 1

n
Q(n)e−εδn

E|Bv,0(0, 2n)|

+1

n
Q(n)E(n, δ) � ε + [e−εδn + δ

]
Q(n),
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where we have used Lemma 6.6 to bound the second term and Lemma 7.7 to bound
the third. The claim now follows by taking δ to be a small constant and taking ε to be
C/n, where C is a large constant. ��

7.2 The volume

Proof of Theorems 7.1 and 1.2 Due to the stochastic domination between the v-WUSF
and the past of v in theWUSF (Lemma 2.1), the desired upper and lower bounds on the
probability of a large intrinsic radius follow from Proposition 4.1 and Corollary 7.6.
Thus, it remains to prove only the desired upper and lower bounds on the probability
of a large volume. We begin with the upper bound. Using stochastic domination and
taking a union bound, we have that

P
(|P(v)| ≥ n2) ≤ P

(|Tv| ≥ n2) ≤ P

(
∂Bv(v, n) �= ∅

)
+ P

(∣
∣Bv(v, n)

∣
∣ ≥ n2

)
.

Applying the upper bound on the probability of a large intrinsic diameter from Corol-
lary 7.6 to control the first term, and Lemma 6.6 together with Markov’s inequality to
control the second term, we obtain that

P
(|P(v)| ≥ n2) ≤ P

(|Tv| ≥ n2) � n−1,

for every n ≥ 1, from which the claimed upper bounds follow immediately.
We now turn to the lower bounds. For this, we recall the Paley–Zigmund inequality,

which states that

P(Z ≥ εE[Z ]) ≥ (1− ε)2
E[Z ]2
E[Z2]

for every non-negative random variable Z such that P(Z > 0) > 0 and every ε ∈
(0, 1). Applying the Paley–Zigmund inequality to the conditional distribution of the
non-negative random variable Z on the event that Z > 0 readily yields that

P

(
Z ≥ εE[Z | Z > 0]

)
≥ (1− ε)2

E[Z ]2
E[Z2] (7.3)

for every real-valued random variable Z such that P(Z > 0) > 0 and every ε ∈ (0, 1).
To apply the Paley–Zigmund inequality in our setting, we define random variables

Z(v, n) = |P(v, 2n)\P(v, n)| and Zv(v, n) = |Bv(v, 2n)\Bv(v, n)|

for each v ∈ V and n ≥ 1. Proposition 6.2 and Lemma 6.9 yield the estimates

E [Zv(v, n)] � n, and E

[
Zv(v, n)2

]
� n3. (7.4)
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Similarly, we have that

q(v)n � E [Z(v, n)] � n, and E

[
Z(v, n)2

]
� n3, (7.5)

where the lower bound follows from Lemma 6.9 and the upper bounds follow from
Proposition 6.2 and Lemma 2.1. Thus, the Paley-Zygmund inequality (7.3) implies
that

P
(
Z(v, n) ≥ cq(v)n2) ≥ 1

4

E[Z(v, n)]2
E[Z(v, n)2] � q(v)2n−1

and similarly that

P(Zv(v, n) ≥ cn2) ≥ 1

4

E[Zv(v, n)]2
E[Zv(v, n)2] � n−1.

Since |P(v)| ≥ Z(v, n) and |Tv| ≥ Zv(v, n), it follows easily that

P(|P(v)| ≥ n) � q(v)5/2n−1/2 and P(|Tv| ≥ n) � n−1/2

for all n ≥ 1 as claimed. ��

7.3 The extrinsic diameter: upper bounds

In this section we prove our results concerning the tail of the extrinsic diameter of the
past.

We begin with the proofs of Theorems 1.6 and 7.4, which are straightforward.

Proof of Theorems Theorems 1.6 and 7.4 The lower bounds follow immediately from
Proposition 4.3. Since the extrinsic diameter is bounded from above by the intrinsic
diameter, the upper bounds are immediate from Theorems 7.1 and 1.2. ��

Next, we deduce the upper bounds of Theorems 1.5 and 7.3 from the following
more general bound.

Proposition 7.8 Let G be a network with controlled stationary measure and ‖P‖bub <

∞, and suppose that there exist C and d such that |B(v, r)| ≤ Crd for every r ≥ 1
and v ∈ V . Then

P
(
diamext(P(v)) ≥ n

) ≤ P
(
diamext(Tv) ≥ n

) � n−2 log n

for every n ≥ 1.
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Proof The first inequality is immediate from Lemma 2.1, so it suffices to prove the
second. By the union bound we have that

P
(
diamext(Tv) ≥ n

)

≤ P
(
diamint(Tv) ≥ m

)+ P (max {d(v, u) : u ∈ Bv(v, m)} ≥ n)

� m−1 + P (max {d(v, u) : u ∈ Bv(v, m)} ≥ n)

≤ m−1 + E|{u ∈ Bv(v, m) : d(v, u) ≥ n}|.

Recall that the Varopoulos–Carne bound [55, Theorem 13.4] states that in any net-
work,

pn(u, v) ≤ 2

√
c(v)

c(u)
e−d(u,v)2/(2n).

Write An = {u ∈ V : d(u, v) ≥ n} = V \B(v, n − 1) and m′ = �2‖P‖bubm�.
Using Lemma 5.3 and the Varopoulos–Carne bound, one can easily derive that, using
a time-reversal argument similar to that of Lemma 6.6,

E|{u ∈ Bv(v, m) : d(v, u) ≥ n}|
=
∑

u∈An

Pu(τv <∞, |LE(X τv )| ≤ m) ≤
∑

u∈An

2Pu(τv ≤ m′)

≤
∑

u∈An

m′∑

i=0
2Pu(Xi = v) �

m′∑

i=0
Pv (d(v, Xi ) ≥ n)

≤
m′∑

i=0

∑

k≥n

|∂ B(v, k)| sup
u∈∂ B(v,k)

pi (v, u) � m
∑

k≥n

kde−k2/2m,

so that taking m = εn2 log−1 n for a suitably small constant ε > 0 yields that

P
(
diamext(Tv) ≥ n

) � n−2 log n.

��
Proof of Theorems 7.3 and 1.5 The lower bounds both follow immediately fromPropo-
sition 4.3 and Lemma 4.4, while the upper bounds are immediate from Proposition 7.8.

��
Wenowwish to improve this argument and remove the logarithmic correction in the

case ofZd , d ≥ 5. To this end, letF0 be the 0-wired uniform spanning forest ofZd , and
letT0 be the component of 0 inF0. (We do not consider any time parameterised forests
in this section, so this notation should not cause confusion.)Wewrite�m = [−m, m]d
and ∂�m = �m\�m−1. We say that a vertex v ∈ ∂�m is a pioneer if it is in T0 and
the future of v (i.e. the unique path connecting v to 0 in T0) is contained in �m .
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Lemma 7.9 Let d ≥ 5, and let F0 be the 0-wired uniform spanning forest of Zd . Then
there exists positive constants cd and Cd such that

E
[
# {pioneers in ∂�m ∩B0(0, n)}] ≤ Cd exp

[

−cd
m2

n

]

(7.6)

for every m, n ≥ 1.

Note that the expectation of |∂�m ∩B0(0, n)| is of order me−�(m2/n). The point
of the lemma is that by considering only pioneers we can reduce the expectation by
at least a factor of m.

Before proving Lemma 7.9, let us see how it can be applied to deduce Theorems 7.2
and 1.4.

Proof of Theorems 7.2 and 1.4 The lower bounds follow from Proposition 4.3, and so
by stochastic domination (Lemma 2.1) it suffices to prove the upper bound on the
probability that Tv has a large extrinsic diameter. Let Q(n) = P(∂B0(0, n) �= ∅) and
let Q̃(m) = P(T0 ∩ ∂�m �= ∅). By the union bound we have that

Q̃(2m) ≤ Q(n)+ P(B0(0, n) ∩ ∂�2m �= ∅).

Suppose thatB0(0, n)∩ ∂�2m �= ∅, and consider a geodesic γ in T0 from 0 to ∂�2m .
If γ visits ∂�m for the first time at v, then we necessarily have that v is a pioneer in
∂�m ∩B0(0, n) and that there is a path from v to v + ∂�m that is disjoint from the
future of v. Thus, counting the expected number of such v and applying the stochastic
domination property, we have that, by Markov’s inequality,

P (B0(0, n) ∩ ∂�2m �= ∅) ≤ Q̃(m)E
[
# {pioneers in ∂�m ∩B0(0, n)}] .

Thus, if we take n = �εm2� for some sufficiently small constant ε, it follows from
Theorem 7.1 and Lemma 7.9 that

Q̃(2m) ≤ C

m2 +
1

8
Q̃(m).

for all sufficiently large m. The proof can now be concluded via an induction similar
to that used in the proof of Corollary 7.6. (The 1/8 here could be replaced with any
number strictly smaller than 1/4.) ��

The proof of Lemma 7.9 will come down to a few somewhat involved estimates
of diagrammatic sums involving random walks on boxes with Dirichlet boundary
conditions. We write � for upper bounds depending only on the dimension d, and,
to simplify notation, use the convention that 0α = 1 for every α ∈ R. We also use
� asymptotic notation ( f = �(g) is equivalent to f � g), where again the implicit
constants depend only on d.

Let us first record some basic estimates concerning the random walk on Z
d . Let

Gm
i (v, u) be the expected number of times that a walk started at v visits u when it is
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stopped either at time i or when it first leaves �m , whichever is sooner. It follows by
Gambler’s ruin applied to each coordinate that

∑

u∈∂�m

Gm+r∞ (v, u) ≤ 2d(r + 1) (7.7)

for every vertex v ∈ Z
d and every m, r ≥ 0. Furthermore, the maximal version of

Azuma’s inequality [58, Section 2] implies that there exists a constant C such that

P0(τ∂�m ≤ n) ≤ C exp

[

−m2

Cn

]

(7.8)

for every m, n ≥ 1.
We will also use the following estimate.

Lemma 7.10 maxw∈∂�m Gm∞(v,w) � (m + 1− ‖v‖∞)−d+1 for every v ∈ �m.

Proof Let H(u, w) be the Green’s function of the simple random walk on Z
d killed

upon exiting the half-spaceH− := {x ∈ Z
d : xd < 0}. The elliptic Harnack inequality

(see e.g. [10, Chapter 7]) implies that there exists a positive constant C such that if u
and v are such that ‖u − v‖∞ ≤ min{ud , vd}/2 then

C−1H(v,w) ≤ H(u, w) ≤ CH(v,w) (7.9)

for every w ∈ ∂H− := {x ∈ Z
d : xd = 0}. Let k ≥ 0, let ek = (0, 0, . . . , 0, k),

and let wk ∈ ∂H− be such that H(ek, wk) = maxw∈∂H− H(ek, w). Then it follows by
(7.9) and translation symmetry that

H(ek, w) = H(ek + wk − w,wk) ≥ C−1H(ek, wk)

for every w ∈ ∂H− such that ‖w − wk‖∞ ≤ k/2. On the other hand, the expected
total time spent in ∂H− before enteringH− is clearly of constant order, and we deduce
that

H(ek, wk) ≤ C
∣
∣
{
w ∈ ∂H− : ‖w − wk‖∞ ≤ k/2

}∣
∣−1 ∑

v∈∂H−
H(ek, v) � (k + 1)−d+1.

This immediately implies the claim by translation symmetry. ��
Now, since the expected number of times the walk spends in ∂�m before leaving

�m is order 1, we deduce that

∑

w∈∂�m

Gm∞(v,w)2 ≤ max
w∈∂�m

Gm∞(v,w)
∑

w∈∂�m

Gm∞(v,w) � (m + 1− ‖v‖∞)−d+1

(7.10)

123



Universality of high-dimensional spanning forests… 587

for every m ≥ 0 and v ∈ �m , and similarly that

∑

w∈∂�m

Gm∞(v,w)Gm∞(u, w) � (m + 1− ‖v‖∞ ∧ ‖u‖∞)−d+1 (7.11)

for every m ≥ 0 and u, v ∈ �m .
We now turn to the proof of Lemma 7.9.

Proof of Lemma 7.9 We begin with a proof that works only for d > 5, and then show
how it can be modified to obtain a proof for d ≥ 5. (In fact, the modified proof works
for all d > 9/2.) The variable names we use will be somewhat idiosyncratic; this is
to avoid renaming them in the proof for d = 5. Let v ∈ ∂�m , let X be a random walk
started at v, and consider sampling F0 usingWilson’s algorithm, starting with the walk
X . Write τ5 for the first time that X hits the origin. In order for v to be a pioneer and
be inB0(0, n), X must hit 0, and the loop-erasure LE(X τ5) must be contained in �m .
Applying Lemma 5.3, we have furthermore that τ5 ≤ 2‖P‖bubn with probability at
least 1/2 conditional on this event. Let n′ = �2‖P‖bubn�, and letAn,m(v) be the event
that X hits 0, that LE(X τ5) is contained in �m and that τ5 ≤ n′. Thus, we have that

∑

v∈∂�m

P (v a pioneer in ∂�m ∩B0(0, n)) ≤ 2
∑

v∈∂�m

Pv

(
An,m(v)

)
.

Let R2 ≥ 0 be maximal such that X visits ∂�m+R2 before it first visits the origin, let
0 ≤ τ4 ≤ τ5 be the first time that X visits ∂�m+R2 , and let τ3 be the first time i such
that Xi ∈ �m and Xi = X j for some j ≥ τ4, and let τ̃3 be the first time after τ4 that X
visits Xτ3 . Clearly the times τ3 and τ̃3 must exist and satisfy 0 ≤ τ3 ≤ τ4 ≤ τ̃3 ≤ τ5 on
the eventAn,m(v). (Note that it is possible that R2 = τ3 = τ4 = τ̃3 = 0.) Considering
the possible choices for r2 = R2 and for the vertices u = Xτ3 and w = Xτ4 yields
that

P
(
An,m(v)

)

≤
∑

u∈�m

∑

r2≥0

∑

w∈∂�m+r2

Pv

(
R2 = r2, Xτ3 = w, Xτ4 = v, and |τ3|, |τ4 − τ3|, |τ̃3 − τ4|, |τ5 − τ̃3| ≤ n′

)

≤
m∑

k2=0

∑

u∈∂�m−k2

∑

r2≥0

∑

w∈∂�m+r2

Gm+r2
n′ (v, u)Gm+r2

n′ (u, w)2Gm+r2
n′ (u, 0).

Applying (7.10) and reversing time yields that

∑

v∈∂�m

P
(
An,m(v)

) �
m∑

k2=0

∑

r2≥0
(r2 + k2 + 1)−d+1 ∑

u∈∂�m−k2

Gm+r2
n′ (0, u)

∑

v∈∂�m

Gm+r2
n′ (u, v).
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Applying (7.7) and (7.8) we have that

∑

v∈∂�m

Gm+r2
n′ (u, v) ≤ Pu

(
τ∂�m ≤ n′

)
max

w∈∂�m

∑

v∈∂�m

Gm+r2∞ (w, v) � (r2 + 1) exp
[
−�(k22/n)

]
,

for every u ∈ ∂�m−k2 , and similarly that

∑

u∈∂�m−k2

Gm+r2
n′ (0, u) ≤ P0

(
τ∂�m−k2

≤ n′
)

max
w∈∂�m−k2

∑

u∈∂�m−k2

Gm+r2∞ (w, u)

� (r2 + k2 + 1) exp
[
−�((m − k2)

2/n)
]
.

Thus, we deduce that

∑

v∈∂�m

P
(
An,m(v)

) �
m∑

k2=0

∑

r2≥0
(r2 + 1)(r2 + k2 + 1)−d+2

exp

[

−�

(
(m − k2)2 + k22

n

)]

� exp
[
−�(m2/n)

] m∑

k2=0
(k2 + 1)−d+4 � exp

[
−�(m2/n)

]

as claimed. (In five dimensions we would obtain an unwanted logarithmic correction
to this bound since

∑
k2≥0(k2 + 1)−d+4 diverges.)

To obtain a corresponding bound in d = 5 dimensions, we sum over two loops
instead of one. We will be somewhat brief, as a fully detailed treatment of the cal-
culations involved would be quite long. Let R2, τ3, τ̃3, τ4, τ5 be as above. Let R1 be
maximal such that X visits ∂�m+R1 before time τ3, let τ2 be the first time that X visits
∂�m+R1 , and let τ1 be the first time i such that Xi ∈ �m and Xi = X j for some
j ≥ τ2. On the event An,m , we must have that τ1 exists and that 0 ≤ τ1 ≤ τ2. Let τ̃1
be the first time X visits Xτ1 after time τ2. It follows from the definitions that

0 ≤ τ1 ≤ τ2 ≤ τ̃1, τ3 ≤ τ4 ≤ τ̃3 ≤ τ5

on the eventAn,m(v), but it is possible for τ̃1 and τ3 to occur in either order. See Fig. 1
for an illustration. We bound the contribution of the two possibilities separately. In the
first case, we have that
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Fig. 1 Schematic illustration of the two types of paths contributing to the sums estimated in the five
dimensional case. In each case, the numbers 1, . . . , 7 indicate the order in which different segments are
traversed by the path. The left figure corresponds to the case τ̃1 ≤ τ3, while the right figure corresponds to
the case τ̃1 ≥ τ3

∑

v∈∂�m

P
(
An,m(v), τ̃1 ≤ τ3

)

�
∑

0≤k1,k2≤m

∑

r2≥r1≥0

∑

v∈∂�m

∑

u∈∂�m−k1

∑

x∈∂�m−k2

∑

y∈∂�m+r2

∑

w∈∂�m+r1

Gm+r1
n′ (v, u)Gm+r1

n′ (u, w)2Gm+r1
n′ (u, x)Gm+r2

n′ (x, y)2Gm+r2
n′ (x, 0),

where we have written the terms in the same order as the corresponding path segments
are traversed on the left of Fig. 1. Performing a similar calculation to that done in the
case d > 5, above, we obtain that

∑

v∈∂�m

P
(
An,m(v), τ̃1 ≤ τ3

)

� e−�(m2/n)
∑

k1≥0

∑

k2≥0
∑

r2≥r1≥0
(k2 + r2 + 1)(k2 + r2 + 1)−d+1

(k1 + r1 + 1)(k1 + r1 + 1)−d+1(r1 + 1).

We may then show that this sum is finite by computing that

∑

k1≥0

∑

k2≥0

∑

r2≥r1≥0
(k2 + r2 + 1)−d+2(k1 + r1 + 1)−d+2(r1 + 1)

�
∑

r2≥r1≥0
(r2 + 1)−d+3(r1 + 1)−d+4

�
∑

r1≥0
(r1 + 1)−2d+8 � 1
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as desired. Similarly, in the second case, we have that

∑

v∈∂�m

P
(
An,m(v), τ3 ≤ τ̃1

) �
∑

0≤k1,k2≤m

∑

r2≥r1≥0

∑

v∈∂�m

∑

u∈∂�m−k1
∑

x∈∂�m−k2

∑

y∈∂�m+r2

∑

w∈∂�m+r1

Gm+r1
n′ (v, u)Gm+r1

n′ (u, w)Gm+r1
n′ (w, x)Gm+r2

n′ (x, u)Gm+r2
n′ (u, y)

Gm+r2
n′ (y, x)Gm+r2

n′ (x, 0),

where we have written the terms in the same order as the corresponding path segments
are traversed on the right of Fig. 1. A similar calculation to above but using (7.11)
instead of (7.10) yields that

∑

v∈∂�m

P
(
An,m(v), τ3 ≤ τ̃1

)

� e−�(m2/n)
∑

k1≥0

∑

k2≥0
∑

r2≥r1≥0
(k2 + r2 + 1)(k1 ∨ k2 + r2 + 1)−d+1

(k1 + r2 + 1)(k1 ∨ k2 + r1 + 1)−d+1(r1 + 1).

As before, we need to show that this sum is finite. To do this, we rewrite the sum in
terms of a = k1 ∧ k2 and b = k1 ∨ k2 to obtain that

∑

k1≥0

∑

k2≥0

∑

r2≥r1≥0
(k2 + r2 + 1)(k1 ∨ k2 + r2 + 1)−d+1

(k1 + r2 + 1)(k1 ∨ k2 + r1 + 1)−d+1(r1 + 1)

=
∑

b≥a≥0

∑

r2≥r1≥0
(a + r2 + 1)(b + r2 + 1)−d+2(b + r1 + 1)−d+1(r1 + 1)

�
∑

b≥0

∑

r2≥r1≥0
(b + 1)(b + r2 + 1)−d+3(b + r1 + 1)−d+1(r1 + 1).

Considering the contribution to this sum from the three cases b ≤ r1, r1 < b < r2,
and b ≥ r2 yields that

∑

b≥0

∑

r2≥r1≥0
(b + 1)(b + r2 + 1)−d+3(b + r1 + 1)−d+1(r1 + 1)

�
∑

r2≥r1≥0

[ r1∑

b=0
(b + 1)(r2 + 1)−d+3(r1 + 1)−d+2

123



Universality of high-dimensional spanning forests… 591

+
r2∑

b=r1

(r2 + 1)−d+3(b + 1)−d+2(r1 + 1)

+
∑

b≥r2

(b + 1)−2d+5(r1 + 1)

]

�
∑

r2≥r1≥0

[
(r2 + 1)−d+3(r1 + 1)−d+4

+(r2 + 1)−d+3(r1 + 1)−d+4 + (r2 + 1)−2d+6(r1 + 1)
]

�
∑

r1≥0
(r1 + 1)−2d+8 � 1

as desired. This concludes the proof. ��

8 Spectral dimension, anomalous diffusion

In this section, we apply the estimates of Sect. 6 together with the intrinsic diameter
exponent Theorem 7.1 to deduce Theorem 1.3. This will be done via an appeal to the
following theorem of Barlow, Járai, Kumagai, and Slade [12], which gives a sufficient
condition for Alexander–Orbach behaviour. See [12] for quantitative versions of the
theorem, and [48] for generalizations.

We recall that the effective conductance between two disjoint finite sets A, B in a
finite network G is defined to be

Ceff(A ↔ B; G) =
∑

v∈A

c(v)Pv

(
τB < τ+A

)
.

The effective resistance Reff(A ↔ B; G) := Ceff(A ↔ B; G)−1 is defined to be
the reciprocal of the effective conductance. We also define the effective resistance
and conductance by the same formulas when A and B are finite subsets of an infinite
network G that are such that every transient path from A must pass through B. For
further background on effective conductances and resistances see e.g. [55, Chapters 2
and 9].

Theorem 8.1 (Barlow et al. [12]) Let (G, ρ) be a random rooted graph, and suppose
that there exist positive constants C, γ and N such that

P

(
λ−1n2 ≤ |B(ρ, n)| ≤ λn2

)
≥ 1− Cλ−γ (8.1)

and
P

(
Reff (v ↔ ∂ B(ρ, n); G) ≥ λ−1n

)
≥ 1− Cλ−γ (8.2)

for all n ≥ N. Then ds(G) = 4/3 and dw(G) = 3 almost surely. In particular, the
limits defining both dimensions exist almost surely.
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The estimate (8.1) has already been established in Corollary 6.3 and Lemma 6.11.
Thus, to apply Theorem 8.1, it remains only to prove an upper bound on the probability
that the effective conductance is large. The following lemma will suffice.

Lemma 8.2 Let G be a network with controlled stationary measure such that‖P‖bub <

∞. Then

E

[
Ceff(v ↔ ∂B(v, n); F)

]
� n−1

for all n ≥ 1.

We begin with the following deterministic lemma. Arguments of the form used to
derive this lemma are well known, and a similar bound has appeared in [13, Lemma
4.5].

Lemma 8.3 Let T be a tree, let v be a vertex of T , and let Nv(n, k) be the number of
vertices u ∈ ∂ B(v, k) such that u lies on a geodesic in T from v to ∂ B(v, n). Then

Ceff (v ↔ ∂ B(v, n); T ) ≤ 1

k
Nv(n, k)

for every 1 ≤ k ≤ n.

Proof We use the extremal length characterisation of the effective resistance [55,
Exercise 2.78]. Given a graph G and a function m : E → [0,∞), we define the
m-length of a path in G by summing m over the edges in the path, and define the m-
distance dm(A, Z) between two sets of vertices A and Z to be the minimal m-length
of a path connecting A and Z . If G is finite, then we have that

Ceff(A ↔ B) = inf

{
∑

e

m(e)2 : dm(A, Z) ≥ 1

}

.

We now apply this bound with G equal to the (subgraph of T induced by the) ball
B(v, n) in T . If we set m(e) = 1/k if e lies on the first k steps of some geodesic from v

to ∂ B(v, n) and setm(e) = 0 otherwise, thenwe clearly have that dm(v, ∂ B(v, n)) = 1
and, since Nv(n, k) is increasing in k,

∑

e

m(e)2 = 1

k2

k∑

r=1
Nv(n, r) ≤ 1

k
Nv(n, k)

as claimed. ��
Proof of Lemma 8.2 For each 0 ≤ m ≤ n, let K (n, m) be the set of vertices u ∈
∂B(v, m) such that u lies on a geodesic inF from v to ∂B(v, n), and let K ′(n, m) be the
set of vertices u in ∂B(v, m) such thatP(u, n−m) �= ∅. Note that K (n, m)\K ′(n, m)
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contains atmost one vertex, namely the unique vertex in ∂B(v, m) that lies in the future
of v. Thus, by Lemma 8.3, we have that

Ceff (v ↔ ∂B(v, n);F) ≤ 1

m
|K (n, m)| ≤ 1

m
(|K ′(n, m)| + 1)

for every 1 ≤ m ≤ n, and hence that

Ceff(v ↔ ∂B(v, 3n);F) � 1

n2

2n∑

m=n

(|K ′(3n, m)| + 1) � 1

n
+ 1

n2

2n∑

m=n

|K ′(3n, m)|
(8.3)

for each n ≥ 1. Now, for each vertex u of G and 1 ≤ m ≤ n, let An,m(v, u) be
the event that u ∈ K ′(n, m). By Lemma 2.1 (more specifically, (2.1) applied with
K = {u, v}) and Theorem 7.1, we have that

P(An,m(v, u)) � 1

n + 1− m
P (u ∈ ∂B(v, m)) ,

for n ≥ m + 1. Summing over u, we obtain that

E

[
Ceff(v ↔ ∂B(v, 3n);F)

]
� 1

n
+ 1

n2

2n∑

m=n

E|K ′(3n, m)|

� 1

n
+ 1

n2

2n∑

m=n

∑

u∈V

P(A3n,m(v, u))

� 1

n
+ 1

n3

2n∑

m=n

∑

u∈V

P(u ∈ ∂B(v, m))

≤ 1

n
+ 1

n3E|B(v, 2n)| � 1

n
,

where we have used Proposition 6.1 in the final inequality. This establishes the claim.
��

Proof of Theorem 1.3 The claim that d f (T ) = 2 follows fromCorollaries 6.4 and 6.12.
The remaining claims follow immediately by applying Theorem 8.1, the hypotheses
of which are met by Corollary 6.3 and Lemmas 8.2 and 6.11. ��

9 Applications to the Abelian sandpile model

Let G be a transient graph and let H be a uniform infinite recurrent sandpile on G, as
defined in Sect. 1.6. Let F be the wired uniform spanning forest of G, let Fv be the
v-wired uniform spanning forest of G for each vertex v of G, let Tv be the component
of v in Fv , and let G be the Greens function on G.
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Given a recurrent sandpile configuration η and a vertex v of G, we write Avv(η, u)

for number of times u topples if we add a grain of sand to η at v and then stabilize,
so that |Avv(η)| = ∑

u∈V Avv(η, u). We recall the following relationships between
these objects:

1. Dhar’s formula [24] states that the expected number of times u topples when we
add a grain of sand at v is given by the Greens function. That is,

E [Avv(H, u)] = G(v, u)

c(u)
. (9.1)

See also [38, Section 2.3]. (Note that the right hand side is also theGreen’s function
for continuous time random walk.)

2. The avalanche cluster at v approximately stochastically dominates the past of v

in the WUSF. More precisely, for any increasing Borel setA ⊆ {0, 1}V , we have
that

P (AvCv(H) ∈ A ) ≥ 1

deg(v)
P (P(v) ∈ A ) . (9.2)

This follows from the discussion in [21, Section 2.5], see also equation (3.2) of
that paper.

3. The diameter of the avalanche cluster at v is approximately stochastically domi-
nated by the diameter of the component of v in the v-WUSF. More precisely, we
have that

P (diamext [AvCv(H)] ≥ r) ≤ G(v, v)

c(v)
P (diamext [Tv] ≥ r) . (9.3)

This follows from [21, Lemma 2.6].

See [21,38] for detailed discussions of these properties.
We now apply these relations to deduce Theorems 1.7–1.9 from the analogous

results concerning the WUSF and v-WUSF.

Proof The lower bounds all follow immediately from (9.2) together with the corre-
sponding statements for the WUSF, which are given in Theorems 1.2 and 1.4–1.6.
Similarly, the upper bounds on the extrinsic radius of the avalanche follow from
Eq. (9.3) and the corresponding statements for the v-WUSF. Thus, it remains only
to prove the upper bound on the probability of a large number of topplings. For this,
we apply a union bound and Dhar’s formula to obtain that

P

(
|Avv(H)| ≥ n

)
≤ P (diamext [AvCv(H)] ≥ m)+ 1

n

∑

u∈B(v,m)

G(v, u)

c(u)
.

Under the hypotheses of Theorems 1.7 and 1.8, the second term on the right is O(m2)

by (4.10), while under the hypotheses of Theorem 1.9 it is O(m) by definition of
uniformballisticity. Thus, the claimedupper bounds followby applyingTheorems7.2–
7.4 as appropriate to bound the first term on the right, taking m = �n1/4� in the case of
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Z
d (where d ≥ 5), taking m = �n1/4 log1/4 n� in the case of Theorem 1.8, and taking

m = �n1/2� in the uniformly ballistic case. ��
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