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Abstract
We establish the first polynomial upper bound for themixing time of random edge flips
on rooted quadrangulations:we show that the spectral gap of the edgeflipMarkov chain
on quadrangulations with n faces admits, up to constants, an upper bound of n−5/4 and
a lower bound of n−11/2. In order to obtain the lower bound, we also consider a very
natural Markov chain on plane trees—or, equivalently, on Dyck paths—and improve
the previous lower bound for its spectral gap by Shor and Movassagh.

Mathematics Subject Classification 60J10 · 60C05

1 Introduction

Our work on quadrangulation edge flips places itself in the midst of a developing area
of research whose origin can be partly traced back to a question of Aldous about tri-
angulations of the n-gon [2]. The question concerns a discrete time edge flip Markov
chain analogous to the one we will introduce, defined on the state space of triangu-
lations of the regular n-gon (i.e. on the possible sets of diagonals which partition the
n-gon into triangular regions). A single step of theMarkov chain, given a triangulation,
consists of picking a diagonal at random, deleting it and replacing it with the opposite
diagonal in the quadrilateral created by its absence. One would wish to analyse the
growth of the mixing time of this chain (which is sometimes referred to as the triangu-
lation walk) as a function of the size n of the triangulation (or, equivalently, of the size
of the state space, which is exponential in n). Aldous conjectures an upper bound of
n3/2 (up to logarithmic factors in n) for the order of the relaxation time of this chain. In
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connection to this problem, he conjectures the same upper bound for a chain defined
on n-cladograms, a type of binary tree structure with labelled leaves whose relevance
also lies in its role as a formalisation of phylogenetic trees from systematic biology,
which model evolutionary relationships between species [3].

An important feature of triangulations of the n-gon is the fact that they are counted
by Catalan numbers: more precisely, there areCn−2 triangulations of the n-gon, where
Cn = 1

n+1

(2n
n

)
. In fact, there is an extreme abundance of combinatorial structures

which are counted by Catalan numbers, from Dyck paths to strings of matched paren-
theses to plane trees and beyond, with a thriving net of explicit bijections weaved
between them, which often highlight surprising connections between the geometric
features of different objects.

It seems therefore natural to attempt a systematic study of Markov chains defined
on Catalan structures, but this task has proved very hard. For one thing, the natural
notion of adjacency for different Catalan structures does not always translate well via
sensible bijections, which gives rise to a rich panorama of different chains one might
consider. But even concentrating on a single Markov chain has proved challenging
so far, as attested by the relative scarceness of tight bounds for their mixing times,
one notable exception being Wilson’s result [29] for adjacent transpositions on Dyck
paths.

Twenty years after a serious effort was started problems of this kind, we still do
not have tight bounds for the mixing of the triangulation walk proposed by Aldous.

Molloy, Reed and Steiger showed an �(n
3
2 ) lower bound for its mixing time [24],

while the best upper bound to date is McShine and Tetali’s O(n5 log n) obtained in
[21], where they analyseMarkov chains on a number of other Catalan structures. As for
n-cladograms, while the conjecture Aldous made in conjunction to the triangulation
walk remains open, some chains have proved easier to analyse: Aldous himself showed
an upper bound of O(n3) for the relaxation time of a particular chain [3], improved
to O(n2), which is tight, by Schweinsberg [27]; also note Löhr, Mytnik and Winter’s
work on the chain in the diffusion limit [20] as well as Forman, Pal, Rizzolo and
Winkel’s in a similar vein [17]. Furthermore, recent results for the mixing of a very
natural chain on Dyck paths were obtained by Cohen, Tetali and Yeliussizov [12] by
rephrasing it as a basis exchange walk on a balanced matroid.

On the other hand, for many natural chains on Catalan structures, triangulations and
related objects not even a polynomial upper bound for the mixing time is known. One
such example is that of lattice triangulations,where polynomial bounds are only known
for biased versions of the chain [9,10,28]; see also works on rectangular dissections,
for which polynomial bounds were obtained very recently [7,8].

One may also consider edge flip Markov chains on planar maps, and in particular
on the set of p-angulations of the sphere of size n (with p ≥ 3), that is the set of
spherically embedded connected planar multigraphs with n faces of degree p (con-
sidered equivalent under orientation-preserving homeomorphisms of the sphere). An
edge flip Markov chain on this state space can be defined as follows: at each step, an
edge is selected uniformly at random, erased and replaced with one of the edges that
can be drawn within the face of perimeter 2p − 2 left behind in order to form two
faces of degree p. The only result shown so far for this chain pertains to the case of
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Polynomial mixing time of edge flips on quadrangulations 37

triangulations of the sphere (p = 3), where the mixing time is known to be of order

at least n
5
4 [6]. No polynomial upper bound on the mixing time was known, prior to

this work, for any p ≥ 3.
In this paper we consider the case of rooted quadrangulations with n faces (i.e. the

case p = 4, where maps are endowed with a distinguished oriented edge) and derive
the first polynomial upper bound on the mixing time.

Note that quadrangulations in particular occupy a privileged position within the
panorama of planar maps, mainly thanks to the famous bijections first developed by
Cori, Vanquelin and Schaeffer [11,13], which encode them with (different classes of)
labelled plane trees, thus placing them within the framework of (generalised) Catalan
structures.

The relation with trees has been exploited to obtain both scaling and local limit
results which have led to the definition and subsequent investigation of objects such
as the Brownian map [18,23] and the UIPQ [14,22], providing very rich insights
into the geometric structure of uniform random large quadrangulations. In fact, it has
been shown that a number of classes of uniform random planar maps converge to the
Brownianmap, whose universality makes quadrangulations of the sphere a very useful
model for a random surface. Quadrangulations and, in general, planar maps are also
very much studied in physics, in the context of quantum gravity, where the edge flip
Markov chain is extensively applied in simulations.

Our contribution within this paper will consist in estimating the mixing time of the
edge flip Markov chain Fn on the set of rooted quadrangulation of the sphere with n
faces, as described above and much more thoroughly in Sect. 2. In particular, we shall
prove the following.

Theorem 1 Let νn be the spectral gap of the edge flipMarkov chainFn on the setQn of
rooted quadrangulationswith n faces. There are positive constantsC1,C2 independent
of n such that

C1n
− 11

2 ≤ νn ≤ C2n
− 5

4 .

Consequently, the mixing time for Fn is O(n13/2).

The upper bound for the spectral gap is the same as Budzinski’s lower bound for
the mixing time of flips on triangulations (which indeed it implies for our case p = 4);
the strategy by which we obtain it is quite general and would apply in a much broader
context (cf. Remark 4.1).

As for the lower bound,weobtain it through a comparison (achievedwith techniques
developed by Diaconis and Saloff-Coste [16]) to a chain on labelled trees which
arises via the aforementioned Schaeffer bijection. This chain, which has very natural
interpretations on a number of Catalan structures, is a coloured generalisation of a
chain on plane trees with n edges whose steps are as follows. Given a tree, pick an
edge uniformly at random, and if it is a leaf, then choose one among the following three
options with equal probabilities: leave the leaf intact, slide it one step to the left or slide
it one step to the right (see Fig. 6). If the chosen edge is not a leaf, then do nothing.
This chain is also natural in the context of Dyck paths: it is essentially equivalent to
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picking a vertex of the path uniformly at random and, if the vertex is a peak, translating
the peak one position to the right or to the left, with equal probabilities (Fig. 7).

Though apparently not yet analysed within the scope of existing mathematical
research about chains on Catalan structures, this ‘leaf translation’ chain is mentioned
in the physics literature under the name of Fredkin spin chain, and a first lower bound

of order n− 11
2 for its spectral gap is given by Movassagh [25], based on work by

himself and Shor [26]. We shall partially follow their argument, which is based on
the method of building canonical paths to estimate the conductance, to produce an

improved lower bound of order n− 9
2 (see Theorem 4), which will be instrumental to

obtain our result for flips on quadrangulations.
The paper is organised as follows. Sections 2 and 3 will provide the reader with

all relevant definitions and recall some details of the Schaeffer bijection, since they
will be relevant to our subsequent constructions. In Sect. 4 we give an upper bound

of order n− 5
4 for the spectral gap of Fn by considering the Dirichlet form evaluated

at the function that gives the radius of a quadrangulation. Section 5 will acquaint the
reader with the leaf translation Markov chain on plane trees (and a “leaf replanting”
variant) and prove our lower bound for its spectral gap. Finally, a large portion of the
paper—namely, Sect. 6—will be devoted to showing our lower bound for the spectral
gap of Fn via a comparison with a chain on pointed rooted quadrangulations, which
bridges the gap between Fn and the leaf translation Markov chain on labelled plane
trees.

2 Edge flips on quadrangulations

Throughout this paper we shall be dealing with certain Markov chains whose config-
uration space is the set of quadrangulations with a fixed number of faces; in order to
introduce them, let us first discuss some notation.

First and foremost, we shall be adopting some of the language of planar maps, with
which we assume some familiarity: we will be referring to maps and their vertices,
edges, faces, as well as corners and face contours; we shall not review any definitions
but the basic one, that is:

Definition 2.1 A planar map is a connected, locally finite planar multigraph endowed
with a cellular embedding in the sphere S2, considered up to orientation-preserving
homeomorphisms of the sphere itself. We will call a rooted planar map of size n a
planar map with n faces, endowed with one distinguished oriented edge.

One can now define a quadrangulation of size n, or of area n, as a rooted planar
map of size n all of whose faces have four corners (see Fig. 1); we shall denote the set
of all quadrangulations of size n by Qn . It follows from Euler’s polyhedral formula
that a quadrangulation q ∈ Qn has 2n edges and n + 2 vertices; it is also worth noting
that a quadrangulation is automatically bipartite, which implies that it has no loops
(that is, it has no edges with only one endpoint). It may, however, have multiple edges
between the same two endpoints, and edges which are adjacent to a single face; we
call the latter double edges of the face they belong to, and the face which contains
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Polynomial mixing time of edge flips on quadrangulations 39

Fig. 1 On the left, a quadrangulation q in Q8; notice that we may choose to embed it in the plane (rather
than the sphere) in a canonical way by having the external face be the one lying directly to the right of the
root edge. The origin of q is marked in red. To the right, the two kinds of faces in a quadrangulation—non-
degenerate and degenerate—with marked corners in clockwise order. The double edge in the degenerate
face is the one adjacent to c3, which is drawn with a thicker line (color figure online)

Fig. 2 Clockwise and counterclockwise flips for a simple and a double edge in a quadrangulation; if the
edge is the root, its orientation is “preserved” as in the figure

them a degenerate face. We shall often refer to the vertex that the root edge is issued
from as the origin of the quadrangulation.

Given a quadrangulation q ∈ Qn and an edge e of q, we will denote by qe,+
(resp. qe,−), the quadrangulation obtained from q by flipping edge e clockwise
(resp. counterclockwise); more formally, we mean the quadrangulation given by the
following procedure:

• if e is adjacent to two distinct faces of q, erase e from q (thus obtaining a new
face with exactly 6 corners) and replace it with the edge obtained by rotating e
clockwise (resp. counterclockwise) by one corner (see Fig. 2).

• if e is a double edge within a degenerate face, let v be the vertex of that face that
is not an endpoint of e and let w be the endpoint of e having degree 1; erase e and
replace it with an edge within the same face having endpoints v,w. If e is the root
edge of q, let the newly drawn edge be the root of qe,+ (resp. qe,−), oriented in
the same way as before (with respect to w).
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40 A. Caraceni, A. Stauffer

Throughout this paper, we will consider the Markov chain Fn of quadrangulation
edge flips on the state space Qn , whose transition probabilities are of the form

p(q, q ′) = 1

6n

∑

e∈E(q)

(
1q ′=qe,+ + 1q ′=qe,− + 1q=q ′

);

in other words, conditionally on Fn
k = q, Fn

k+1 can be determined by choosing an
edge e of q uniformly at random and setting either Fn

k+1 = q, or Fn
k+1 = qe,+, or

Fn
k+1 = qe,−, with equal probabilities.
Notice that, given a pair (q, q ′) of distinct quadrangulations inQn , there are at most

four distinct pairs (e, s) in E(q) × {+,−} such that q ′ = qe,s . In fact, assuming e is
not the root edge of q then e is uniquely determined by the pair (q, q ′), and either s is
determined as well or, in the case where e is a double edge, we have q ′ = qe,+ = qe,−.
In addition, if e is not the root edge, it is possible that flipping the root edge might
transform q into q ′; in other words, that q ′ = qη,+ or q ′ = qη,−, where η �= e is the
root edge of q. Consequently, we have

1

3|E(q)| = 1

6n
≤ p(q, q ′) ≤ 2

3n

for all q, q ′ ∈ Qn such that p(q, q ′) �= 0 and q �= q ′.
Notice that, given q ∈ Qn , e ∈ E(q), s ∈ {+,−}, we can naturally identify vertices

of q with vertices of qe,s , and edges of q with edges of qe,s (where the edge e corre-
sponds to the edge redrawn by the flip procedure in qe,s); we will therefore often refer
to vertices or edges using the same notation in q and qe,s , when we wish to implicitly
exploit such a correspondence. This, of course, will need to be done with some care,
since the correspondence is not necessarily unique when the quadrangulations q and
qe,s are given, but e and s are not known.

Remark 2.1 The Markov chain Fn is reversible and aperiodic: indeed, we have q ′ =
qe,+ if and only if q = (q ′)e,−, so p(q, q ′) = p(q ′, q); furthermore, we have trivially
that p(q, q) ≥ 1

3 .

Lemma 2.1 The Markov chain Fn is irreducible.

Proof Let q0 be the quadrangulation with n degenerate faces and such that the origin
has themaximumpossible degree (that is 2n, all edges being incident to it)—see Fig. 3.
We show that, given any quadrangulation q ∈ Qn , one can obtain q0 from q with a
sequence of edge flips.

Indeed, given any quadrangulation q, unless the degree of the origin ρ is 2n, one
can increase it via an edge flip. Suppose not all edges have ρ as an endpoint and let
v be a neighbour of ρ that has at least one neighbour different from ρ; then, if you
consider edges issued from v in clockwise order around v, there must be an edge e
with second endpoint w �= ρ, followed by one with endpoints v and ρ. Remark that
qe,− has an origin with degree increased by one with respect to q.
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Fig. 3 The quadrangulation q0 in Q6, with 6 degenerate faces arranged so that the degree of the origin is
12; to the right, the pointed version from Lemma 2.2

We may therefore suppose that q is a quadrangulation in Qn whose origin ρ has
degree 2n. Let v be the second endpoint of the root edge in q; we will show that, unless
deg v = n, there is an edge flip of q increasing the degree of v and not decreasing the
degree of ρ. Indeed, notice that flipping any edge which is not a double edge inside a
degenerate face does not change the degree of ρ; this is because every quadrangulation
is bipartite, and in particular the bipartition of q’s vertices has one class consisting of
ρ only, and one consisting of V (q)\{ρ}. The bipartition can be changed only by flips
of degenerate edges, so any other flip will transform an edge having ρ as an endpoint
to another edge having ρ as an endpoint. Consider now all edges adjacent to v; if v has
strictly less than n adjacent edges, then it must be part of a face that is not degenerate
(if it is only adjacent to degenerate faces, then the fact that all edges have ρ as an
endpoint implies q = q0). Consider any edge e of such a face not having v as an
endpoint: then either qe,− or qe,+ has the degree of v increased by one, and the degree
of ρ unchanged.

Now, if q ∈ Qn has root edge (ρ, v) with deg ρ = 2n and deg v = n, then q = q0,
as desired. Then reversibility (cf. Remark 2.1) implies that Fn is irreducible. ��

As a consequence of Lemma 2.1 and Remark 2.1, Fn admits the uniform measure
on Qn as its (unique) stationary distribution.

We will see later how, rather than the setQn , it will be convenient to consider the set
Q•
n of all pointed quadrangulations with n faces, that is the set {(q, v) : q ∈ Qn, v ∈

V (q)}. The Markov chain Fn can be easily extended to a Markov chain F•,n with
state space Q•

n , by redefining the (clockwise and counterclockwise) flips so that the
distinguished vertex is preserved, thanks to the natural identification between V (qe,s)
and V (q). Notice that, if F : Q•

n → Qn is the forgetful map that rids quadrangulations
of the pointing, for a quadrangulation q• in Q•

n we have F(qe,s• ) = F(q•)e,s , where
we are treating e both as an edge of q• and as an edge of F(q•), since F does induce
a natural identification for both vertices and edges.

Reversibility is of course still true, but one has to go a little further to prove irre-
ducibility of F•,n .

Lemma 2.2 Let q0 ∈ Q•
n be the quadrangulation with n degenerate faces, rooted in

an oriented edge (ρ, v) such that ρ has degree 2n and v has degree n, pointed in ρ
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42 A. Caraceni, A. Stauffer

(see Fig. 3). Then any quadrangulation q ∈ Q•
n can be turned into q0 with a sequence

of flips. In particular, F•,n is irreducible.

Proof Turning q into q0 can be done with a very similar procedure to Lemma 2.1.
First, if δ is the one distinguished vertex of q, one can apply flips until they obtain a
quadrangulation q ′, similar to q0 but where δ has degree 2n. If δ turns out to be the
origin, thenwe are done. Otherwise, if the root edge e of q ′ is not a double edgewithin a
degenerate face, all we need to do is reverse its orientation by taking (((q ′)e,+)e,+)e,+:
this will make δ the origin and preserve its degree deg δ = 2n. However, if e is a double
edge of q ′, one only needs to flip clockwise the edge e′ that comes before e in the
clockwise contour of the degenerate face containing e. Then one can flip e clockwise
three times, then e′ counterclockwise, to have δ as the origin and preserve its degree.
Note that, at this point, the root edge is a double edge. We can then proceed as in
Lemma 2.1 to increase the degree of the second endpoint v �= δ of the root edge until
it is n. Notice that this only entails flipping edges that do not already have v as an
endpoint, so the root edge will not be flipped and the final quadrangulation will be
correctly rooted in an edge issued from δ. ��

As a consequence of the lemma above, the stationary distribution for F•,n is the
uniform measure on Q•

n .
Our aim in this paper will be to prove upper and lower bounds for the spectral gap

νn of the Markov chain Fn ; we will rely on the Markov chain F•,n for the known
bijections available between the setQ•

n and certain sets of labelled trees, which we will
briefly discuss in the next section. Dealing with F•,n will still provide information
about Fn : any lower bound for ν•

n will serve as a lower bound for νn , as per the
following lemma.

Lemma 2.3 For the spectral gap ν•
n of F•,n and the spectral gap νn of Fn, we have

ν•
n ≤ νn.

Proof The proof is quite immediate, since we can write

νn = EFn ( f , f ) = 1

2

∑

q∈Qn
e∈E(q)
s∈{+,−}

( f (q) − f (qe,s))2
1

|Qn|6n

for some function f : Qn → R such that Eπ ( f ) = 0 and Vπ ( f ) = 1 (where π is the
uniform measure on Qn).

Now, setting F : Q•
n → Qn to be the forgetful functionwhich rids a quadrangulation

of its distinguished vertex, consider the function f ◦ F : Q•
n → R. We have Eπ•( f ◦

F) = 0 andVπ•( f ◦ F) = 1, where π• is the uniformmeasure onQ•
n . For the spectral

gap ν•
n of Fn,•, we have
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ν•
n ≤ EFn,•( f ◦ F, f ◦ F) = 1

2

∑

q∈Q•
n

e∈E(q)
s∈{+,−}

(
f (F(q)) − f (F(qe,s))

)2 · 1

(n + 2)|Qn| · 1

6n

= 1

2

∑

q∈Q•
n

e∈E(F(q))
s∈{+,−}

(
f (F(q)) − f (F(q)e,s)

)2 · 1

(n + 2)|Qn| · 1

6n
= EFn ( f , f ) = νn,

as claimed. ��

3 The Schaeffer bijection

In order to obtain lower bounds for the spectral gap ofFn , we will find it convenient to
compare it to the spectral gap of a certainMarkov chain on the state space of (labelled)
trees. A key ingredient to set up this comparison will be a well-known bijection often
referred to as the Schaeffer correspondence [11,13].

Although this bijection and its variants have been described in a number of papers,
we shall still give a very brief presentation of the construction of labelled trees from
rooted, pointed quadrangulations and vice-versa, since part of it will be heavily relied
upon in the rest of the paper.

Definition 3.1 A plane tree is a rooted planar map with a single face.

We will often find it convenient to see the root of a plane tree as a distinguished
corner rather than a distinguished oriented edge; in what follows, we shall refer to the
clockwise contour of a tree (see Fig. 4) as the cyclic sequence (ci )2ni=1 of its corners
(where n is the number of its edges); we number the corner in such a way that c1 is
the root corner, that is the corner of the origin lying immediately to the left of the root

Fig. 4 A plane tree with 9
edges, whose 18 corners are
labelled according to their order
in the clockwise contour; the
tree is rooted in the marked
oriented edge, or equivalently
has the corner labelled 1 as a
distinguished corner. Leaves are
marked in green and are defined
as vertices other than the origin
having degree 1, i.e. only one
corner (color figure online)
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edge. Given a vertex v of a plane tree other than the origin, we shall write p(v) for its
parent; notice that each edge of a tree may be univocally written in the form (v, p(v)),
where v is a vertex of the tree other than the origin. Vertices of degree 1, with the
exception of the origin, will be called leaves.

We shall call Tn the set of all plane trees with n edges; trees with zero edges do not
conform to the definition above, but we will still find it convenient to define T0 to be
{•} by convention, where “•” is the graph with one vertex and no edges.

Definition 3.2 A labelled tree is a plane tree t endowed with a labelling l : V (t) → Z

such that

• if ρ is the origin of t , l(ρ) = 0;
• for any vertex v ∈ V (t)\{ρ}, |l(v) − l(p(v))| ∈ {1,−1, 0}.

We shall call LTn the set of all labelled trees with n edges, and set LT0 = {•}.
Notice that, equivalently, a labelled tree could simply be presented as a plane tree

whose edges are three-coloured (the colours being {1,−1, 0}); if c(e) is the colour
of the edge e, labels of vertices could be recovered by setting l(v) = ∑

e∈P(v) c(e),
where P(v) is the one simple path leading from v to the origin (or the empty path if
v is the origin itself). Throughout the paper, we will use both points of view; it will
therefore be useful to introduce a more general notation for plane trees whose edges
are r -coloured (r being some fixed positive integer); we will write T(r)

n for the set

{
(t,C) : t ∈ Tn,C ∈ {1, . . . , r}E(t)

}
.

For convenience, we will often refer to a labelled or r -coloured tree with a single
symbol such as t , and consider the labelling or colouring to be implicit; in the case
of labelled trees, we will usually call the labelling l without further comment, and
sometimes naturally extend it to corners, thus writing l(c) when we mean l(v), where
v is the vertex of t that c is adjacent to.

The reason for our definition of LTn is the fact that the setsQ•
n and LTn×{−1, 1} have

the same cardinality; moreover, pointed quadrangulations can be interpreted as pairs
(t, ε), where t is a labelled tree and ε ∈ {−1, 1}, in a rather natural way. As promised,
we give here a description of how to construct an element of Q•

n from an element
of LTn and a sign ε ∈ {−1, 1} via the (unconstrained) Schaeffer correspondence; we
include a brief description of the inverse construction for completeness and clarity,
but this will not be explicitly used in the proofs to come.

Construction of a mapping φ from LTn to Q•
n (φ : (τ, ε) �→ q)

• consider the clockwise (cyclic) contour (ci )2ni=1 of τ , started at the distinguished
corner, and let � be the minimal label appearing on vertices of τ ;

• for each corner ci labelled at least �+1, set k = min{ j > 0 : l(ci+ j ) = l(ci )−1};
join ci to ci+k with an edge (so that edges being drawn do not cross, see Fig. 5);

• draw a new vertex δ within the unbounded face of the tree and join each corner
labelled � to δ with a new edge (again, so as not to cross any previously drawn
edges);
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Polynomial mixing time of edge flips on quadrangulations 45

Fig. 5 The (unconstrained) Schaeffer bijection. On the left, the map from the labelled tree (in red) to the
pointed quadrangulation (in black); the distinguished vertex is marked in red, and the numbers represent
the labels on the tree. On the right, the map from the pointed quadrangulation (in black) to the labelled tree
(in red); the distinguished vertex is marked in red, and numbers represent distances to the distinguished
vertex in the quadrangulation. The two quadrangulations above are the same, although the unbounded face
in the embedding on the right corresponds to the white inner face on the left (color figure online)

• root the map thus obtained in the newly drawn edge issued from the distinguished
corner of τ , oriented away from the origin of τ if ε = −1, towards it if ε = 1;
make δ the distinguished vertex;

• erase all edges of τ and forget all labels.

Construction of a mapping φ−1 from Q•
n to LTn (φ

−1 : q �→ (τ, ε))

• label all vertices in q with their graph distance to the distinguished vertex δ, thus
defining a labelling l : V (q) → N; for each face of q, read the labels of the vertices
adjacent to its four corners cyclically according to a clockwise contour. Given two
successive corners ci and ci+1 in a clockwise contour of a face f , we say ci is a
down-step corner of f if the label of ci+1 is strictly smaller than that of ci (notice
that, since the map is bipartite, the label of ci+1 is either one more or one less than
that of ci , hence each face has exactly 2 down-step corners);

• draw a new edge within each face of q, joining its two down-step corners;
• consider the root edge (e−, e+) of q, and let fl and fr be the faces lying left and
right of (e−, e+) respectively (of course, the two may coincide); if l(e−) < l(e+),
set ε = 1 and choose as new root the edge being drawn between a corner adjacent to
e+ and the other down-step corner of fl , oriented away from e+; if l(e−) > l(e+),
set ε = −1 and root in the edge drawn between a corner of e− and a down-step
corner of fr , oriented away from e−;

• subtract l(e−) (if ε = −1) or l(e+) (if ε = 1) from all labels: this way the label of
the new origin is 0;

• erase all original edges and the distinguished vertex δ.
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Theorem 2 (Schaeffer correspondence) The construction φ : LTn × {−1, 1} → Q•
n

described above is a bijection and φ−1 is its inverse; given t ∈ LTn and ε ∈ {−1, 1},
the mapping φ naturally induces an identification between vertices of t and vertices of
φ(t, ε) such that, if l is the labelling of t , we have l(v) = dgr(v, δ) − dgr(δ, ρ), where
v is interpreted as a vertex of t in the left hand side of the equation and as a vertex of
φ(t, ε) in the right hand side, ρ is the origin of φ(t, ε) and δ its distinguished vertex.

4 An upper bound for the spectral gap ofFn

We will first show our upper bound for the spectral gap of Fn , which will be achieved
by evaluating the Dirichlet form forFn in a function related to the radius of a quadran-
gulation. The same bound arises by considering many other natural functions relating
to themetric structure of quadrangulations, constructed from graph distances, volumes
of balls, lengths of separating cycles, etc.

Note that our proof will essentially rely on the fact that edge flips change distances
by atmost a constant and that the scaling limit of the radius of randomquadrangulations
is a known random variable (i.e. the radius of the Brownian map). The same upper
bound would thus extend to analogous edge flip chains for other classes of random
planarmapswhich converge to the BrownianMapwhen rescaled by n1/4; in particular,
it implies the lower bound given by Budzinski in [6] for the mixing time of random
triangulations.

Proposition 4.1 For the spectral gap νn of the Markov chain Fn of flips on quadran-
gulations of size n we have

νn ≤ Cn− 5
4 ,

where C is some positive constant independent of n.

Proof Let r : Qn → N be the mapping sending a quadrangulation q to its radius, that
is the maximum possible distance of a vertex of q to the origin. Consider the function
fn : Qn → R defined as

fn(q) = r(q)

n
1
4

.

Notice that, given q ∈ Qn , e ∈ E(q), v ∈ V (q) and s ∈ {+,−}, we have
∣∣∣dqgr(v, ρq) − dq

e,s

gr (v, ρqe,s )

∣∣∣ ≤ 3, (1)

where dqgr(v, ρ) is the distance of v to the origin of q and dq
e,s

gr (v, ρqe,s ) is the distance
to the origin of qe,s of the vertex that corresponds to v via the natural identification
induced by flipping the edge e. Indeed, removing e can only increase the distance of v

to ρ by at most 2, while reintroducing a rotated edge can only decrease it by at most 2;
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if e is not the root edge of q, then ρ is still the origin in qe,s ; otherwise, ρqe,s is a vertex
adjacent to the previous origin ρ. As a consequence, we have | r(q) − r(qe,s)| ≤ 3.

Let us now evaluate the Dirichlet form EFn ( fn, fn); we have

EFn ( fn, fn) = 1

2

∑

q∈Qn
e∈E(q)
s∈{+,−}

( fn(q) − fn(q
e,s))2

1

6n|Qn|

=
∑

q∈Qn
e∈E(q), s∈{+,−}
fn(q)< fn(qe,s)

( fn(q) − fn(q
e,s))2

1

6n|Qn| ,

and therefore

EFn ( fn, fn) ≤ 3

2n
1
2+1

∑

q∈Qn
e∈E(q), s∈{+,−}
fn(q)< fn(qe,s )

1

|Qn| = 3

2n
5
4

Eπ (n− 1
4 2X),

where X : Qn → Nmaps q to the number of edges e in E(q) such that r(q) < r(qe,s)
for some s ∈ {+,−}, and π is the uniform probability measure on Qn .

We intend to show that Eπ (n− 1
4 X) is bounded above by a constant independent

of n.
Given q ∈ Qn , consider the set S(q) = (Br(q)−2)

c of all vertices v of q such that
dgr(v, ρ) ≥ r(q) − 1, where ρ is the origin of q. Also, for each v in S(q), consider a
simple path Pv in q with endpoints ρ and v and length dgr(ρ, v).

Flipping an edge e that is not the root of q and does not belong to
⋃

v∈S(q) Pv cannot
increase the radius of the quadrangulation; in fact, since all paths Pv and the origin are
preserved, the distance to the root of vertices in S(q) cannot increase, and the distance
to the root of any vertex outside of S(q) becomes at most r(q) − 2 + 2 = r(q). We
thus have, for all q ∈ Qn , X(q) ≤ |S(q)| r(q) + 1.

We shall now show that the lawof |S(q)| underπ is the same as the lawof |B2(q)|−1
under π , where |B2(q)| is the number of vertices having distance at most 2 from the
origin in q.

This can be shown by a rerooting argument on the labelled tree φ−1(P(q)), where
P(q) is the quadrangulation q, pointed in its origin ρ. The mapping φ−1 ◦ P is a well
known variant of the Schaeffer construction, and is a bijection between the set Qn and
the set LT+

n × {1}, where LT+
n is the set of all labelled trees with n edges such that no

negative labels appear on them. The quantity |S(q)| represents the number of vertices
labelled r(q)−1 or r(q)−2 (r(q)−1 being the maximum label appearing on vertices
of φ−1(P(q))).

Consider the following bijection of the set LT+
n to itself: given a tree t ∈ LT+

n
and, among the corners of vertices bearing the maximum appearing label (say, M =
maxv l(v)), consider the leftmost one according to the clockwise contour; reroot t in
that corner and relabel each vertex v of t with the labelM−l(v). This correspondence is
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Fig. 6 Left and right leaf translation

clearly a bijection, since its inverse consists in rerooting a tree from LT+
n in its rightmost

corner labelled with its maximum label and performing the same relabelling as the
one described.

Looking at vertices labelled M or M − 1, the above correspondence relabels them
with 0 or 1; since π corresponds to the uniform measure on LT+

n , the law of |S(q)|
under π is the same as the law of the number of vertices at distance 1 or 2 from the
origin in a uniform random quadrangulation from Qn , that is the law of |B2(q)| − 1
under π , which has exponential tails (see for example the proof of Proposition 9 in
[4]).

Thanks to the Cauchy–Schwarz inequality, we can write

E( fn, fn) ≤ 3

n
5
4

(
Eπ (|S(q)|2)Eπ ( fn(q)2)

)1/2 + 3

n
3
2

≤ C ′

n
5
4

(
Eπ (|B2(q)|2)Eπ ( fn(q)2)

)1/2
.

But now Eπ (|B2(q)|2) has a finite limit as n → ∞. Furthermore, the random vari-
able fn(q) (considered under π ) converges weakly to the range of a Brownian snake
driven by a Brownian excursion, whose variance is positive, and all of its moments
converge (see [11, Corollary 3]); thus the right hand side of

n
5
4 νn ≤ C ′

(
Eπ (|B2(q)|2)Eπ ( fn(q)2)

)1/2

Vπ [ fn(q)]
is bounded by a constant independent of n, which proves the proposition. ��
Remark 4.1 Note that the above proof essentially relies on the fact that each edge

flip changes the radius of the quadrangulation by a constant, as in (1), and that n− 1
4 X

converges to a non-trivial random variable (for which we needed both the convergence
properties of the radius in the scaling limit and some kind of control over the quantity
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S(q)). The proof above then yields a lower bound of n
5
4 on the mixing time of the

edge flip chains on any p-angulations provided the above two properties hold.

5 AMarkov chain on labelled trees

Our main results about the Markov chain Fn will be achieved via a comparison to a
very natural Markov chain on labelled plane trees, which we will introduce presently.

Given a plane tree t ∈ Tn with contour c1, . . . , c2n and a leaf v ∈ V (t), suppose
the corner of v is cl (i.e. cl is the one corner adjacent to the vertex v), with l < 2n;
build a new tree tv,→ ∈ Tn as follows: draw a new leaf v′ attached to the tree via the
corner cl+2 (the corner c1 if l = 2n − 1); then erase v; if (p(v), v) is the root edge of
t (i.e. if l = 2), then root tv,→ in (p(p(v′)), p(v′)). Notice that, given a pair of trees
t, t ′ ∈ Tn , there is at most one leaf v of t such that t ′ = tv,→; this induces (when there
is such a leaf) a natural identification between vertices of t and vertices of t ′ which
sends v to the “shifted” leaf v′ in t ′ and is a tree isomorphism between the trees τ and
τ ′ obtained from t and t ′ by erasing v and v′. This is why, given two trees of the form
t, tv,x , we will automatically identify their vertices and denote them in the same way,
including vertices v and v′, thus taking “vertex v in tv,x” to mean the newly drawn
leaf v′.

Given t ∈ Tn , we can define analogously a tree tv,← ∈ Tn as the one tree such that
(tv,←)v,→ is t , if it exists. Additionally, we set tv,← = t if (v, p(v)) is the root edge
of t (that is, in the one case where t is not of the form t ′v,→) and tv→ = t if the corner
of v is number 2n in the contour (so that now tv,→ is defined for all leaves v of t).

When tv,→ �= t , we say that the tree tv,→ has been constructed from t by translating
the leaf v to the right (and tv,← differs from t by a leaf translation to the left, see
Fig. 6); notice that, given two trees t, t ′ which differ by a leaf translation, there is
a unique leaf v of t and a unique direction d, either → or ←, such that t ′ can be
expressed as tv,d .

One could define a Markov chain X on the set of plane trees with n edges so that,
given Xk = t , Xk+1 is determined by selecting an edge (v, p(v)) of t uniformly at
random and, if v is a leaf of t , setting Xk+1 = t or Xk+1 = tv,→ or Xk+1 = tv,←
with equal probabilities, while Xk+1 = t if v is not a leaf. We shall need a coloured
variant of this chain, which can easily be defined on the set of plane trees with coloured
edges T(r)

n , where C = {1, . . . , r} is the set of possible edge colours. The trees tv,→
and tv,← are defined from t ∈ T(r)

n exactly as before, by additionally ensuring that all
edge colours are preserved. We can also introduce appropriate “recolouring” moves:
given x ∈ C and a leaf v in V (t), we set tv,x to be the tree t , where the edge (v, p(v))

is recoloured with colour x . One can now define Xk+1, given Xk = t , by selecting
an edge (v, p(v)) of t uniformly at random: if v is a leaf, we set Xk+1 to be one of
tv,→, tv,←, tv,1, tv,2, . . . , tv,r , each with probability 1

r+2 ; if v is not a leaf, Xk+1 = t .
In other words, given t �= tv,x , where v is a leaf of t and x ∈ {1, . . . , r ,→,←}, the
Markov chain X on T(r)

n has transition probability

pX (t, tv,x ) = 1

n(r + 2)
;
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Fig. 7 Some of the natural correspondences between the set Tn of plane trees with n edges and other
Catalan structures result in interesting alternative interpretations of the leaf translation Markov chain. For
example, given a Dyck path D : {0, . . . , 2n} → N of length 2n, say that i ∈ {1, . . . , 2n − 1} is an upward
point for D if D(i) = D(i − 1) + 1 and say that i is a peak if it is a local maximum for D. Then, the leaf
translation chain corresponds to selecting an upward point i uniformly at random (there are exactly n of
them), and, if i is a peak, then to either leaving it untouched or shifting it to the right (if possible) or shifting
it to the left (if possible), each with probability 1/3. Shifting a peak i of D to the right, for example, can be
done if i ≤ 2n − 2 and consists in constructing a Dyck path D′ such that D′(i) = D′(i + 2) = D(i + 2),
D′(i + 1) = D(i + 2) + 1 and D′( j) = D( j) for all j ∈ {1, . . . , 2n}\{i, i + 1, i + 2}; the above picture
shows an example with i = 5. An analogous interpretation for the leaf translations can be given on strings
of balanced parentheses, where one selects an open parenthesis at random and, if it is immediately followed
by a closed parenthesis, then the pair “()” may remain untouched or move one place to the right or to the
left

if t, t ′ do not differ by a leaf translation or recolouring we have pX (t, t ′) = 0, and
pX (t, t) ≥ 1

r+2 since for each leaf v, if c is the color of v in t we have that tv,c = t .
Notice that the case r = 3 corresponds to a Markov chain on the state space LTn of

labelled trees with n vertices. We shall call this the leaf translationMarkov chain and
will be estimating its spectral gap as well as comparing it to the spectral gap of F•,n .

The leaf translation Markov chain on T(r)
n (including the simpler variant introduced

at the beginning of this section for r = 1) is a very natural chain, worthy in fact of
study independently of our efforts with regards to Fn . We have chosen to present it
as a chain on T(r)

n , but its transitions appear very natural for a number of different
interpretations of the state space via classical bijections between Catalan structures
(see Fig. 7). Indeed, variants of this chain have been discussed in the physics literature
under the name of Fredkin spin models, and have been investigated byMovassagh and
Shor [25,26], relying on work by Bravyi et al. [5].

In particular, Movassagh and Shor prove a lower bound of Cn− 11
2 for the spectral

gap of a chain on T(r)
n closely related to X , from which a bound for the spectral gap of

X can be gleaned; we shall partially follow their argument for estimating the spectral
gap, but will improve their results and will therefore provide a complete proof of our
lower bounds in the next section. In order to do this, we will now introduce a variant
of the leaf translation Markov chain which is closer to the one originally considered

123



Polynomial mixing time of edge flips on quadrangulations 51

Fig. 8 The leaf replanting move of a leaf v performed on a tree t ∈ T(3)
4 : above, the tree t ′ ∈ T(3)

3 and its

contour; below, the trees tv,k,1 for k = 1, . . . , 7

by Movassagh and Shor in their proofs; even though bounding its spectral gap is not
strictly speaking necessary for achieving our results for X and thereforeFn , we believe
our improved bound to be of independent interest, and the proof—which is somewhat
simpler than the one for X—to provide a handy way to more naturally introduce some
of the necessary notation and showcase the basic argument.

We shall introduce this chain on the set T(r)
n and refer to [25] for a presentation

as a chain on the set of (coloured) Dyck paths. Given t ∈ T(r)
n , a leaf v ∈ V (t), an

integer k ∈ {1, . . . , 2n − 1} and a colour c ∈ {1, . . . , r}, we define tv,k,c ∈ T(r)
n by the

following procedure (Fig. 8):

• erase (v, p(v)) from t , thus obtaining t ′ ∈ T(r)
n−1;• consider the clockwise contour c1, . . . , c2n−2 of t ′. If 1 < k < 2n − 1, add a leaf

v′ to t ′ via its corner ck ; if k = 1 or k = 2n − 1, add a leaf v′ to t ′ via the root
corner c1: if k = 1, let the new root corner be the one right before the added leaf,
i.e. reroot t ′ so that the corner of v′ becomes the second corner of the contour; if
k = 2n − 1, let the root corner be the one right after v′, so that the corner of v′ is
the last one in the clockwise contour of the new tree;

• colour the edge (v′, p(v′)) with the colour c.
Notice that, if the corner of v is the k-th corner in the clockwise contour of t with

1 < k ≤ 2n − 1 and c is the colour of (v, p(v)) in t , then tv,→ = tv,k,c. Similarly, if
k > 2, we have tv,k−2,c = tv,←, and if 1 < k ≤ 2n we have tv,k−1,c = t .

We define the leaf replantingMarkov chain Y on the state space T(r)
n by choosing, if

Yk = t , a uniformly random edge (v, p(v)) of t ; if v is not a leaf, then we set Yk+1 = t ;
if v is a leaf, we set Yk+1 to be tv,k,c, where k and c are chosen independently and
uniformly at random in {1, . . . , 2n − 1} and {1, . . . , r} respectively.
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While we were able to identify the leaf being moved between two trees that differ
by a leaf translation, notice that this is not the case when we’re dealing with a leaf
replanting. In general, we have

pY (t, t ′) =
∑

v,k,c

1

n(2n − 1)r
1t ′=tv,k,c .

Remark 5.1 Notice that both X and Y are reversible, irreducible and aperiodic.
Reversibility and aperiodicity are clear from the definition; irreducibility is also clear:
given any tree in T(r)

n , one can turn it into the tree of height 1 whose edges are all
coloured 1 with at most n transitions from Y (indeed, it suffices to apply the replanting
· �→ ·v,1,1 on the rightmost leaf v of the tree several times). Since each leaf replanting
can actually be obtained by concatenating at most 2n − 1 transitions from X (2n − 2
translations and one recolouring), the same height one tree can be obtained with at
most n(2n − 1) transitions from X . The two Markov chains X and Y therefore both
admit the uniform measure on T(r)

n as their unique stationary distribution.

5.1 A lower bound for the spectral gaps of leaf replanting and leaf translation
Markov chains

In order to prove the desired lower bounds, we first need to set up some machinery;
the first part of this section will be devoted to constructing a family of probability
measures on sequences of transitions for the Markov chain Y . This will be done via
a family of functions fn : T(r)

n × T(r)
n−1 → R and a function F : (T(r)

n )2 → T(r)
n−1 with

some specific properties, which we now state. Throughout this section, we will make
extensive use of the fact that plane trees are counted by Catalan numbers, hence

∣∣∣T(r)
n

∣∣∣ = rn

n + 1

(
2n

n

)
∼ (4r)n

√
πn

3
2

(2)

and in particular |T(r)
n+1| < 4r · |T(r)

n |.

Proposition 5.1 For n ≥ 1, there exists a mapping fn : T(r)
n × T(r)

n−1 → R such that

(i) fn(t, t ′) = 0 if t ′ cannot be obtained from t by deleting a leaf;
(ii)

∑

t ′∈T(r)
n−1

fn(t, t
′) = 1 for all t in T(r)

n ;

(iii)
∑

t∈T(r)
n

fn(t, t
′) = |T(r)

n |
|T(r)

n−1|
for all t ′ in T(r)

n−1.

Proof We can recursively construct a mapping fn with the required properties.
Indeed, T(r)

1 × T(r)
0 = {P(1)

1 , . . . , P(r)
1 } × {•}, where P(i)

1 is the tree with one edge

which is coloured i and • is the single vertex, and we can set f1(P
(i)
1 , •) = 1.

Notice that, for n > 1, we can define two functions L, R : T(r)
n → ⋃n−1

k=0 T
(r)
k (see

Fig. 9) by setting L(t) to be the tree of descendants of u in t , where (ρ, u) is the root
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Fig. 9 The decomposition of a
tree t ∈ T13 into its left and right
components L(t) ∈ T5 and
R(t) ∈ T7

edge of t (including u and with the natural rooting induced by that of t , unless u is a
leaf, in which case L(t) = •) and R(t) to be the tree obtained from t by erasing L(t)
(and the edge (ρ, u)), rooted in the corner that contains the original root corner of t
(unless ρ has degree 1, in which case R(t) = •). We have 0 ≤ |L(t)| ≤ n − 1 and
|L(t)| + |R(t)| = n − 1, and t �→ (L(t), R(t), c), where c ∈ {1, . . . , r} is the colour
of the root edge in t , is a bijection between T(r)

n and
⋃n−1

k=0(T
(r)
k ×T(r)

n−1−k)×{1, . . . , r}.
Wewill now construct fn : T(r)

n ×T(r)
n−1, for n > 1, from themappings f1, . . . , fn−1,

by using the projections L, R and n constants C (n)
0 , . . . ,C (n)

n−1 which will be explicitly

worked out below. Consider (t, t ′) ∈ T(r)
n × T(r)

n−1. If |L(t)| > 0 and t ′ can be obtained
from t by deleting a leaf contained in L(t), set fn(t, t ′) = C (n)

|L(t)| f|L(t)|(L(t), L(t ′));
if t ′ can be obtained from t by deleting a leaf contained in R(t), set fn(t, t ′) =
C (n)

|R(t)| f|R(t)|(R(t), R(t ′)). Notice that the two conditions are mutually exclusive; if
neither is satisfied, set fn(t, t ′) = 0.

We now have, for all t in T(r)
n such that |L(t)| = k (where 1 ≤ k ≤ n − 2),

∑

t ′∈T(r)
n−1

fn(t, t
′) = C (n)

k

∑

tl∈T(r)
k−1

fk(L(t), tl) + C (n)
n−k−1

∑

tr∈T(r)
n−k−2

fn−k−1(R(t), tr )

= C (n)
k + C (n)

n−k−1,

as well as
∑

t ′∈T(r)
n−1

fn(t, t ′) = C (n)
n−1 if |L(t)| = 0 or |L(t)| = n − 1.

Furthermore, for all t ′ ∈ T(r)
n−1 such that |L(t ′)| = k (where 0 ≤ k ≤ n − 2),

∑

t∈T(r)
n

fn(t, t
′) = C (n)

k+1

∑

tl∈T(r)
k+1

fk+1(tl , L(t ′)) + C (n)
n−k−1

∑

tr∈T(r)
n−k−1

fn−k−1(tr , R(t ′))

= C (n)
k+1

|T(r)
k+1|

|T(r)
k |

+ C (n)
n−k−1

|T(r)
n−k−1|

|T(r)
n−k−2|

.
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Notice that fn has property (i) by construction; to enforce properties (ii) and (iii),
it is sufficient to choose

C (n)
i = i(i + 1)(3n − 2i − 1)

(n − 1)n(n + 1)

for i = 0, . . . , n − 1, since one then has C (n)
0 = 0 and C (n)

i + C (n)
n−i−1 = 1 for

0 ≤ i ≤ n − 1, as well as

C (n)
i

|T(r)
i |

|T(r)
i−1|

+ C (n)
n−i

|T(r)
n−i |

|T(r)
n−i−1|

= C (n)
i

r |2(2i − 1)|
i + 1

+ C (n)
n−i

2r(2n − 2i − 1)

n − i + 1

= 2r(2n − 1)

n + 1
= |T(r)

n |
|T(r)

n−1|

for all 1 ≤ i ≤ n − 1, by (2). ��
Lemma 5.2 There is a mapping F : (T(r)

n )2 → T(r)
n−1 such that for all t ∈ T(r)

n and

τ ∈ T(r)
n−1 we have |{t ′|F(t, t ′) = τ }| ≤ 8r and |{t ′|F(t ′, t) = τ }| ≤ 8r .

Proof Enumerate the elements of T(r)
n as t1, . . . , t|T(r)

n | and the elements of T(r)
n−1 as

τ1, . . . , τ|T(r)
n−1|, in some order. The function that sends (ta, tb) to τS , where S = (a+b)

mod |T(r)
n−1|, satisfies the requirements. Indeed, we have |T(r)

n | = 2r 2n−1
n+1 |T(r)

n−1| <

4r |T(r)
n−1| and therefore a + b ≤ 2|T(r)

n | < 8r |T(r)
n−1|. Given τ = τS and t = ta ,

there are then at most 8r possibilities for a + b and therefore at most 8r possibilities
for b. ��

We intend to prove lower bounds for the spectral gap of the leaf replanting Markov
chain Y by assigning each pair of trees x, y ∈ T(r)

n a canonical path of leaf replanting
moves turning x into y—or rather a probability measure on the set of possible paths
from x to y. Such a probability measure will be constructed by using a set of functions
fi : T(r)

i × T(r)
i−1 → R with the requirements of Proposition 5.1 and a function F :

(T(r)
n )2 → T(r)

n−1 as in Lemma 5.2.

Let L, R : T(r)
n → ⋃n−1

i=0 T(r)
i be the mappings defined within the proof of Proposi-

tion 5.1 and depicted in Fig. 9.
First, given a tree x ∈ T(r)

n and a tree x ′ ∈ T(r)
n such that L(x ′) ∈ T(r)

n−1, wewill define

a probability measure on paths from x to x ′. Then, given generic trees x, y ∈ T(r)
n , we

will construct random paths from x to y by concatenating paths from x to z ∈ T(r)
n ,

where L(z) = F(x, y) ∈ T(r)
n−1, and from z to y.
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Given t ∈ T(r)
n , consider the set�t of sequences t0, . . . , tn such that t0 = t , ti ∈ T(r)

n−i
and ti+1 is obtained from ti by erasing a leaf; define the probability measure Qt on �t

as

Qt (t0, . . . , tn) =
n−1∏

i=0

fn−i (ti , ti+1),

that is the law of a sequence of random trees θ0, . . . , θn such that θ0 = t and that,
given θi = ti ∈ T(r)

n−i , the tree θi+1 is chosen in T(r)
n−i−1 according to the probability

measure fn−i (ti , ·).
Given x, y ∈ T(r)

n , consider now the set �x→y of all paths (ti , ti+1)
2n−1
i=0 such that

• for all i between 0 and 2n, the tree ti belongs to T
(r)
n ;

• t0 = x , t2n = y and L(tn) = F(x, y) (which, since |F(x, y)| = n−1, determines
tn);

• the tree t1 is obtained by replanting a leaf of t0 onto corner 1; for 0 < i < n, the
tree ti+1 is obtained by removing a leaf from R(ti ) and replanting it onto a corner
of L(ti );

• similarly, the tree t2n−1 can be obtained by replanting a leaf of t2n onto corner 1;
for n < i < 2n, the tree ti−1 can be obtained by removing a leaf from R(ti ) and
replanting it onto a corner of L(ti ).

In other words, for γ = (ti , ti+1)
2n−1
i=0 ∈ �x→y , we have that the two sequences

L1(γ ) = (L(tn), . . . , L(t1)) and L2(γ ) = (L(tn), . . . , L(t2n−1)) belong to �F(x,y),
while R1(γ ) = (t0, R(t1), . . . , R(tn)) ∈ �x and R2(γ ) = (t2n, R(t2n−1), . . . , R(tn))
∈ �y (Fig. 10). Vice-versa, any quadruple of sequences L1, L2 ∈ �F(x,y), R1 ∈
�x , R2 ∈ �y can be assembled into a path γ ∈ �x→y .

We can thus construct a probability measure Px→y on �x→y by setting

Px→y(γ ) = Qx (R1(γ ))Qy(R2(γ ))QF(x,y)(L1(γ ))QF(x,y)(L2(γ )).

Before we prove a lower bound for the spectral gap of the leaf replanting Markov
chain, it is useful to establish the following estimate:

Lemma 5.3 For all t ∈ T(r)
n and i ∈ {0, . . . , 2n} we have

∑

x,y∈T(r)
n

Px→y({γ ∈ �x→y : γ (i) = t}) ≤ 2(4r)n+1,

where, if γ = (ti , ti+1)
2n
i=0, we write γ (i) to indicate ti .

Proof As above, given γ ∈ �x→y , let us define sequences Ri (γ ) = (R0
i , . . . , R

n
i ) and

Li (γ ) = (L1
i , . . . , L

n
i ), for i = 1, 2.
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Fig. 10 The form of a path in �t0→t10 , where t0, t10 ∈ T5; notice that |L(t5)| = 4

If 0 < i ≤ n, we have γ (i) = t if and only if Ri
1 = R(t) and Ln+1−i

1 = L(t);
therefore, we have

∑

x,y∈T(r)
n

Px→y({γ ∈ �x→y : γ (i) = t})

=
∑

x∈T(r)
n

Qx ({(R j )
n
j=0 ∈ �x : Ri = R(t)})

×
∑

z∈T(r)
n−1

Qz({(L j )
n
j=1 ∈ �z : Ln+1−i = L(t)})

∑

y∈T(r)
n

F(x,y)=z

1

Since we have chosen F as in Lemma 5.2, the internal sum (having fixed x and z) is
at most 8r ; as for the other sums, we wish to show that, for any given t ∈ T(r)

k and
i ∈ {0, . . . , n}, we have

∑

x∈T(r)
n

Qx ({(R j )
n
j=0 ∈ �x : Ri = t}) ≤ (4r)i ; (3)

but, indeed,

∑

x∈T(r)
n

Qx ({(R j )
n
j=0 ∈ �x : Ri = t}) =

∑

R0∈T(r)
n ,...,Ri−1∈T(r)

n−i+1
Ri=t

i−1∏

j=0

fn− j (R j , R j+1)

=
i−1∏

j=0

|T(r)
n− j |

|T(r)
n− j−1|

≤ (4r)i ,
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which we obtain by separating Ri−1, Ri−2, . . . , R0 from the sum, one after the other,
and using the fact that fn−i+1, . . . , fn satisfy requirement (iii) of Proposition 5.1.

Using (3) (where one needs to be weary of the fact that—in order to keep notation
consistent with previous definitions—R1 is indexed from 0 and L1 is indexed from 1)
we get

∑

x,y∈T(r)
n

Px→y({γ ∈ �x→y : γ (i) = t}) ≤ 8r · (4r)i · (4r)n−i ≤ 2(4r)n+1

for 0 < i ≤ n; the same estimate is true for i = 0, since we have

∑

y∈T(r)
n

Pt→y({γ ∈ �t→y}) =
∑

z∈T(r)
n−1

∑

y∈T(r)
n

F(x,y)=z

1 ≤ 8r · |T(r)
n−1| ≤ 8r · (4r)n .

The case of n < i ≤ 2n is perfectly symmetric. ��
All necessary notation is now in place to prove lower bounds for the spectral gap

of both the leaf replanting and leaf translation Markov chains.

Theorem 3 If γY is the spectral gap of the leaf replanting Markov chain Y on T(r)
n , we

have γY ≥ Crn− 9
2 for an appropriate constant Cr independent of n .

Proof By the canonical paths method (see for example [19, Section 13.4]), we have

1

γY
≤ max

t,t ′∈T(r)
n :pY (t,t ′)>0

1

π(t)pY (t, t ′)
∑

x,y∈T(r)
n

∑

γ∈�x→y :
(t,t ′)∈γ

|γ |Px→y(γ )π(x)π(y),

where, if γ = (ti , ti+1)
N−1
i=0 , we are writing |γ | to mean the length N of the sequence,

and we say that (t, t ′) ∈ γ if t = ti and t ′ = ti+1 for some i ∈ {0, . . . , N − 1}.
By the description of the leaf replantingMarkov chain, we know that (assuming t, t ′

differ by the replanting of a leaf) pY (t, t ′) ≥ 1
2rn2

; furthermore, every path γ ∈ �x→y

(for x, y ∈ T(r)
n ) has length exactly 2n. Using the fact that π is the uniformmeasure on

T(r)
n and setting (t, t ′) to be a pair of trees achieving the maximum above, one obtains

1

γY
≤ 2n · 2rn2

|T(r)
n |

∑

x,y∈T(r)
n

∑

(t,t ′)∈γ∈�x→y

Px→y(γ ).

All that is left to do is to estimate the sum of all probabilities Px→y(γ ), where γ

is a path in some �x→y involving the transition (t, t ′). Notice that, if (t, t ′) appears in
γ , then the fact that for 0 < i ≤ n we have |L(γ (i))| = i − 1 and for n ≤ i < 2n we
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have |L(γ (i))| = 2n − 1 − i implies that either t = γ (0), or t = γ (|L(t)| + 1), or
t = γ (2n−1−|L(t)|); we therefore have, if we set S = {0, |L(t)|+1, 2n−1−|L(t)|},

1

γY
≤ 2n · 2rn2

|T(r)
n |

∑

i∈S

∑

x,y∈T(r)
n

Px→y({γ ∈ �x→y : γ (i) = t});

by Lemma 5.3, this yields

1

γY
≤ 2n · 2rn2

|T(r)
n |

3 · 2(4r)n+1 ≤ Cr · n3+ 3
2 ≤ Cr · n 9

2 ,

as wanted. ��

The proof of a lower bound for the spectral gap of the leaf translationMarkov chain
is analogous, if a little more fiddly.

Theorem 4 If X is the leaf translation Markov chain on the state space of r-coloured
plane trees with n edges T(r)

n and γX is its spectral gap, we have

γX ≥ Crn
− 9

2

for some constant Cr independent of n.

Proof Suppose t, t ′ ∈ T(r)
n differ by the replanting and recolouring of a leaf (i.e. are

such that pY (t, t ′) > 0); the leaf being replanted and recoloured may not be uniquely
determined, but let v be the leftmost leaf and k be the minimum integer, given v, such
that t ′ = tv,k,c. If k is greater than or equal to the number of the corner of v in t ,
we construct a “leaf translation path” γ (t, t ′) = (ti , ti+1)

N−1
i=0 from t to t ′ by setting

t0 = t , ti+1 = tv,→
i and choosing N to be as small as possible and such that tN−1 is t ′

up to the recolouring of the replanted leaf; finally, we set tN = tv,c
N−1. Similarly, if the

corner of v in t is indexed by a number strictly greater than k, we construct γ (t, t ′) as
a (minimal) sequence of leftward translations of v, followed by a recolouring.

Given t0, t2n ∈ T(r)
n and γ = (ti , ti+1)

2n−1
i=0 ∈ �t0→t2n , we can now define a “leaf

translation” path γ X by concatenating γ0, . . . , γ2n−1, where γi = γ (ti , ti+1). We call
�X
t0→t2n the set {γ X : γ ∈ �t0→t2n }. Notice that γ �→ γ X is a bijection between

�t0→t2n and �X
t0→t2n , since the sequence γ can be reconstructed from γ X by setting

γ (0) = γ X (0) and γ (i + 1) = γ X (x), where

x = min{ j > i : γ X ( j) is of the form γ X ( j − 1)v,c with c /∈ {←,→}}.

We can therefore define a probability measure on �X
t0→t2n , which we still call Pt0→t2n ,

by simply setting Pt0→t2n (γ
X ) = Pt0→t2n (γ ).
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By the canonical paths method, we have

1

γX
≤ max

t,t ′∈T(r)
n :pX (t,t ′)>0

1

π(t)pX (t, t ′)
∑

x,y∈T(r)
n

∑

γ∈�x→y :
(t,t ′)∈γ X

|γ X |Px→y(γ )π(x)π(y).

Notice that for all γ we have |γ X | ≤ 4n2 (by Remark 5.1) and, for all t, t ′ ∈ T(r)
n

such that pX (t, t ′) > 0, we have pX (t, t ′) ≥ 1
n(r+2) . We therefore have, if we also

replace occurrences of π(·) with |T(r)
n |−1,

1

γX
≤ 4n3(r + 2)

|T(r)
n |

max
(t,tv,c)

∑

x,y∈T(r)
n

∑

γ∈�x→y :
(t,tv,c)∈γ X

Px→y(γ ).

Given a leaf translation or recolouring (t, tv,c), we now wish to determine which
paths γ = (ti , ti+1)

2n−1
i=0 ∈ �t0→t2n are such that (t, tv,c) appears in γ X .

If c /∈ {→,←}, then tv,c = ti for some i which is almost univocally determined by
|L(tv,c)|: we necessarily have i = 2n or i = |L(tv,c)| + 1 or i = 2n − |L(tv,c)| − 1.
We therefore find that

∑

x,y∈T(r)
n

∑

γ∈�x→y :
(t,tv,c)∈γ X

Px→y(γ ) ≤
∑

x,y∈T(r)
n

∑

i∈{2n,|L(t)|+1,
2n−1−|L(t)|}

Px→y({γ ∈ �x→y : γ (i) = t})

≤ 6 · (4r)n+1

If c =←, consider the tree τ obtained by removing v from tv,c. We must have
either τ = R(t1), or R(τ ) = R(ti ) and L(τ ) = L(ti−1), with i = |L(τ )| + 1.
Similarly for c =→: either τ = R(t2n−1), or R(τ ) = R(ti−1) and L(τ ) = L(ti ), with
i = 2n − 1 − |L(τ )|. The proof of Lemma 5.3 can be modified slightly to yield that,
for any fixed i ∈ {1, . . . , n} and a, b ∈ ⋃n

j=0 T
(r)
j , we have

∑

x,y∈T(r)
n

Px→y({γ ∈ �x→y : R(γ (i)) = a, L(γ (i − 1)) = b}) ≤ 2(4r)n+1.

Applying both the original inequality from Lemma 5.3 and this variant yields that,
when c ∈ {→,←},

∑

x,y∈T(r)
n

∑

γ∈�x→y :
(t,tv,c)∈γ X

Px→y(γ ) ≤ 6 · (4r)n+1.

Finally, this entails

1

γX
≤ 24n3(r + 2)

|T(r)
n |

(4r)n+1 ≤ Cr · n 9
2
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for some constant Cr independent of n. ��

Remark 5.2 In order to obtain results for the flip chain Fn , we are only interested in
lower bounds for the spectral gap of the chain X . It is not difficult, however, to obtain
upper bounds proportional to n−2 for the spectral gaps γX and γY of X and Y by an
argument even simpler than that of Sect. 4.

Indeed, let Hn : T(r)
n → Nbe the functiongiving the height of a tree, and consider the

Dirichlet forms EX (n− 1
2 Hn, n− 1

2 Hn) and EY (n− 1
2 Hn, n− 1

2 Hn). Both can be bounded
above by (a constant times) n−2, using the fact that Hn changes by at most 1 when a
leaf replanting/translation/recolouring is performed, and that moreover, given t ∈ T(r)

n ,
its height decreases with probability at most 1n when taking a step of either chain (since
one has to remove the “top leaf”, which even needs to be unique). The bound on the

spectral gap is then established thanks to the fact that the random variable n− 1
2 Hn(t),

where t is a uniform random element of T(r)
n , converges to a nontrivial random

variable as n → ∞, and in fact its variance converges to a positive constant (cf.
[1, Section 3.1]).

6 A lower bound for the spectral gap ofFn

6.1 Edge flips and the leaf translationMarkov chain

Wewill now set up a comparison à la Diaconis–Saloff-Coste [15] between theMarkov
chain Fn,• and a variant of the leaf translation Markov chain X on LTn ; as per Theo-
rem 2, we have an explicit bijection φ between the state space Q•

n of Fn,• and the set
LTn × {−1, 1}.

A (reversible, irreducible and aperiodic) variant X̃ of the leaf translation Markov
chain can be defined on LTn × {−1, 1} = T(3)

n × {−1, 1}, where we consider the set
of edge colours to be {+,−,=} rather than {1, 2, 3}, as follows: conditionally on
X̃k = (t, ε), where t ∈ LTn and ε ∈ {−1, 1}, we set

• X̃k+1 = (t,−ε) with probability 1
n+1• with probability n

n+1 , we select a random edge (v, p(v)) of t ; if v is not a leaf,
we set X̃k+1 = (t, ε); if v is a leaf, we set X̃k+1 to be one of (tv,→, ε), (tv,←, ε),
(tv,+, ε), (tv,−, ε), (tv,=, ε), each with probability 1

5 given the choice of v.

From Theorem 4 we can deduce the following analogous estimate for the spectral
gap of this chain.

Corollary 6.1 If γ̃ is the spectral gap of the Markov chain X̃ on the state space LTn ×
{−1, 1} as defined above, we have γ̃ ≥ Cn− 9

2 for some constant C.
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Proof Let f : LTn × {−1, 1} → R be a function such that Eπ ( f ) = 0, Vπ ( f ) = 1
and γ̃ = EX̃ ( f , f ), where π is the uniform measure on LTn × {−1, 1} and EX̃ is the
Dirichlet form for the Markov chain X̃ . Then

γ̃ = 1

2

∑

t∈LTn
v leaf of t

x∈{→,←,+,−,=}
ε∈{−1,1}

( f (t, ε) − f (tv,x , ε))2
1

2|LTn|
1

5(n + 1)

+1

2

∑

t∈LTn
ε∈{−1,1}

( f (t, ε) − f (t,−ε))2
1

2|LTn|
1

n + 1
.

Consider now the maps f1, f−1 : LTn → R defined so that fε(t) = f (t, ε) and the
leaf translation Markov chain X on LTn . We can immediately identify the first of the
two sums above as

n

2(n + 1)
(EX ( f1, f1) + EX ( f−1, f−1)) .

On the other hand, a lower bound for the second sum is given by 2
n+1V(E( f |ε)),

where ε : LT × {−1, 1} → {−1, 1} is the projection on the second component, since
a simple application of the Cauchy–Schwarz inequality gives

∑

t∈LTn
ε∈{−1,1}

( f (t, ε) − f (t,−ε))2
1

2|LTn|
1

n + 1

= 1

(n + 1)4|LTn|2

⎛

⎜
⎜
⎝

∑

t∈LTn
ε∈{−1,1}

( f (t, ε) − f (t,−ε))2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

∑

t∈LTn
ε∈{−1,1}

12

⎞

⎟
⎟
⎠

≥ 1

4(n + 1)

⎛

⎝ 2

|LTn|
∑

t∈LTn
f1(t) − 2

|LTn|
∑

t∈LTn
f−1(t)

⎞

⎠

2

= 4

n + 1
V(E( f |ε)).

We thus have

γ̃ ≥ n

2(n + 1)
(EX ( f1, f1) + EX ( f−1, f−1)) + 2

n + 1
V(E( f |ε))

≥ nγ

2(n + 1)
(V( f |ε = 1) + V( f |ε = −1)) + 2

n + 1
V(E( f |ε))

= nγ

n + 1
E(V( f |ε)) + 2

n + 1
V(E( f |ε)),
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where γ is the spectral gap of the leaf translation Markov chain X on LTn . Finally,
using Proposition 4, the variance decomposition formula and the fact thatVπ ( f ) = 1,
we obtain that, for some constants C ′ and C

γ̃ ≥ n

(n + 1)n
9
2

C ′(E(Vπ ( f |ε)) + Vπ (Eπ ( f |ε))) ≥ C

n
9
2

.

��
We are now ready to set up a comparison between the chains X̃ and Fn,•. In

order to do this, we will devote the next section to explicitly building sequences of
quadrangulation edge flips that turn φ(t, ε) into φ(t ′, ε′), where (t, ε) and (t ′, ε′) are
elements of LTn×{−1, 1} that are adjacent according to the graph of theMarkov chain
X̃ .

In particular, for each t, v, x, ε such that t ∈ LTn , v is a leaf of t , x ∈ {→,←,+,

=,−} and ε = ±1, we shall build a sequence of quadrangulation edge flips
Pε(t, tv,x ) = (qi , ei , si )Ni=1, such that

• qi ∈ Q•
n , ei ∈ E(qi ), si ∈ {+,−};

• q1 = φ(t, ε);
• qi+1 = qei ,sii , for i = 1, 2, . . . , N ;
• qN+1 = φ(tv,x , ε).

Notice that (as we remarked in Sect. 2) we can naturally identify vertices of qi with
vertices of qi+1 and edges of qi with edges of qi+1 by building qi+1 via the procedure
described for flipping ei . We will therefore often define edges ei , . . . , eN as edges of
q1, since edges in E(q1) have a natural interpretation in E(q2), . . . , E(qN ).

Similarly, we will also build sequences P(t) = (qi , ei , si )Ni=1 such that q1 =
φ(t, 1), qN+1 = φ(t,−1) and qi+1 = qei ,sii .

Having constructed these in an appropriate way, a comparison of theMarkov chains
Fn,• and X̃ (cf. [15]) will yield Theorem 1, provided that we can bound the maximum
length of a flip sequence with (a constant times) n and show that each triple (q, e, s)
(where q ∈ Q•

n , e ∈ E(q), s = ±1) only appears in at most a constant number of
sequences P(t) and Pε(t, tv,x ), independent of n. Constructing our flip sequences
and proving such bounds will be the aim of the next three subsections; Sect. 6.5 will
conclude by deriving Theorem 1.

6.2 The sequence P(t)

As a matter of fact, we have already discussed the sequence P(t) in Lemma 2.2.
From the Schaeffer construction within Sect. 3 one can immediately see that

φ(t,−1) can be obtained from φ(t, 1) by simply giving the root edge the opposite
orientation. If the root edge is not a double edge, this can be achieved via flips by just
flipping it three times in the same direction, so we can set P(t) = (qi , ei , si )3i=1, with
q1 = φ(t, 1), s1 = s2 = s3 = + and ei being the root edge of qi , for i = 1, 2, 3.

If the root edge of φ(t, 1) is a double edge within a degenerate face, one need
only perform an extra flip on one of the boundary edges of the degenerate face before
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Fig. 11 A sequence of flips P(t) = (qi , ei , si )
5
i=1, where the root edge of q1 = φ(t, 1) is a double edge

within a degenerate face. Notice that either the sequence (q2, e2, s2), (q3, e3, s3), (q4, e4, s4) is an example
of P(t ′), for some t ′ such that the root of φ(t ′, 1) is not a double edge within a degenerate face

and after flipping the root edge three times. Setting q1 = φ(t, 1) and assuming e′ is
the edge before the root edge in the clockwise contour of its degenerate face, we set
P(t) = (qi , ei , si )5i=1, with e1 = e′, s1 = s2 = s3 = s4 = +, ei is the root edge of qi
for i = 2, 3, 4, and e5 = e′, s5 = − (see Fig. 11).

Lemma 6.2 For all t ∈ LTn, we have |P(t)| ≤ 5. Moreover, given a triple (q, e, s)
where q ∈ Q•

n, e ∈ E(q), s ∈ {+,−}, we have

|{t : (q, e, s) appears in P(t)}| ≤ 9.

Proof The first part of the statement is clear by definition.
As for the second part, if t is a tree such that (q, e, s) appears in P(t) and the root

of φ(t, 1) is not a double edge, then φ(t,−1) is obtained by flipping the root edge of
q one, two or three times, so there are at most three possibilities for t .

If (q, e, s) appears in P(t), where e is the root edge of q and the root edge of
φ(t, 1) is a double edge, then one or more among q, qe,− and (qe,−)e,− have one or
both endpoints of the root edge of degree 2; setting e′ to be such that e, e′ share an
endpoint of degree 2 in q ′ ∈ {q, qe,−, (qe,−)e,−}, φ(t, 1) must be of the form q ′e′,−,
and therefore t must be one of at most 6 possible labelled trees.

If e is not the root edge of q and s = −, then φ(t,−1) = qe,s ; if s = +, φ(t, 1)
= q. ��

6.3 The colour change sequences P�(t, tv,−), P�(t, tv,=), P�(t, tv,+)

This section will be devoted to constructing the sequences Pε(t, tv,c), where t ∈ LTn ,
ε ∈ {−1, 1}, v is a leaf of t and c ∈ {−,=,+}, i.e. sequences of quadrangulation edge
flips whose aim is to achieve a “colour change”, or equivalently a “label change”, from
the leaf translation Markov chain X̃ on LTn × {−1, 1}.

Given a leaf label change (t, tv,c), where c ∈ {=,+,−}, we need to construct a
sequence Pε(t, tv,c) = (qi , ei , si )i=1,...,N such that q1 = φ(t, ε), qi+1 = qei ,sii and
qN+1 = φ(tv,c, ε). Our aim will then consist in estimating the maximum length N of
such sequences in terms of n, as well as the number of quadruples (t, v, c, ε), where
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t ∈ LTn , v is a leaf in t , c ∈ {=,+,−} and ε ∈ {−1, 1}, such that a fixed triple (q, e, s)
appears in the sequence Pε(t, tv,c).

We shall describe explicitly all sequences of the form Pε(t, tv,+), where l(v) =
l(p(v)) in t , and Pε(t, tv,−), where l(v) − l(p(v)) = 1 in t , that “is colour changes”
from = to + and from + to −. All other sequences will be built from these in the
natural way, by concatenating them and/or running them backwards. If tv,x = t , we
set Pε(t, tv,x ) to be empty.

Let us first consider the case of a colour change from = to +, which is easily dealt
with.

Lemma 6.3 Given (t, ε) ∈ LTn × {−1, 1} and a leaf v of t such that l(v) = l(p(v)),
the quadrangulations q = φ(t, ε) and q ′ = φ(tv,+, ε) differ by an edge flip.

Proof Consider all corners of t but the one corner around the leaf v; their target corners
as determined by the Schaeffer bijection are unaffected by increasing the label of v, by
definition. In particular, the two corners immediately before and after the corner of v

in the contour, which are corners of p(v), share the same target corner before and after
the label change, making the quadrangulation face which corresponds to the tree edge
(v, p(v)) a degenerate face. The only effect of the label increase is that of changing
the target of the v corner to the appropriate corner of p(v), i.e. flipping the double
edge e within the aforementioned degenerate face of φ(t, ε). Also notice that the edge
issued from the root corner of t (which cannot be the corner of the leaf v) is unaffected
both by the label change and by the flip, so we do have φ(tv,+, ε) = φ(t, ε)e,+. ��

It is therefore natural, when l(v) = l(p(v)), to set Pε(t, tv,+) to (q, e,+), where
e is the double edge of φ(t, ε) incident to the vertex v. Similarly, we will set
Pε(tv,+, (tv,+)v,=) = Pε(tv,+, t) = (qe,+, e,−), thus covering all the cases of a
colour change from + to = and vice-versa with flip sequences of length 1.

The construction of sequences of the type Pε(t, tv,−) is less immediate. First,
let us give a “static” description of how the label change affects the corresponding
quadrangulation. Recall the mapping φ sending (t, ε) ∈ LTn × {−1, 1} to q ∈ Q•

n as
described in Sect. 3. The quadrangulationq is constructed via themapφ by considering
each corner c of t and drawing an edge from c to another corner which we refer to
as the target corner of c, henceforth denoted by t(c). Recall also that δ denotes the
distinguished vertex of q.

Lemma 6.4 Consider a pair (t, ε) ∈ LTn × {−1, 1} and a leaf v of t such that l(v) =
l(p(v)) + 1; let c be the corner of p(v) right after the corner of v in the clockwise
contour of t . Suppose the target corner t(c) of c is adjacent to a vertex w ∈ V (t) and
consider the quadrangulation edges e and e′ drawn by the Schaeffer correspondence
between c and t(c), and between t(c) and t(t(c)), respectively. Let e1, . . . , ek be the
edges incident tow lying strictly between e and e′, in clockwise order aroundw. If t(c)
is instead the corner around δ, let e1, . . . , ek be all quadrangulation edges incident to
δ.

The quadrangulation q ′ = φ(tv,−, ε) can be obtained from q = φ(t, ε) by “rerout-
ing” the edges e1, . . . , ek to v—which is done by erasing their intersection with a
suitably small neighbourhood of w (or δ) and replacing it with paths to v drawn in
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Fig. 12 The quadrangulations φ(t, 1) and φ(tv,−, 1) for a tree t ∈ LT5 such that l(v) = l(p(v)) + 1

the natural planar way—then replacing the quadrangulation edge issued from v with
one joining v to t(t(c)) (or to δ, if t(c) is the corner around δ): see Fig. 12. Notice
that, if the root edge of q = φ(t, ε) is one of e1, . . . , ek , then it is “rerouted” to v and
maintains the same orientation in q ′ (and, if it is not, then it is “preserved”).

Proof Let c1, . . . , c2n be the corners in the clockwise contour of t , and suppose cl is
the corner around the leaf v. Let us first suppose that l(cl+1) is not the minimal label
in the tree (i.e. that its target is not the corner around δ). Notice that decreasing the
label of v (by 2) does not affect any edges drawn by the Schaeffer correspondence
other than

• the edge drawn from cl to cl+1, which is replaced by an edge between cl and
t(t(cl+1)), that is the first corner labelled l(p(v)) − 2 in the clockwise contour
after cl ;

• all edges drawn from ci to t(ci ), where t(ci ) = t(cl+1) and ci does not lie between
cl and t(cl+1), since the target of ci becomes cl if the label of cl is decreased by
2; indeed, those are replaced by edges joining ci to cl .

The fact that all other targets remain the same should be clear: if only the label of cl
is changed, the target of a corner c �= cl may change only by becoming cl or by no
longer being cl . Since cl is not the target of any other corner in t , the edges affected
are those for which cl lies between their origin corner and their target corner, labelled
l(cl+1) − 1, in the clockwise contour, as described above.

All that is left to show is that those edges are e1, . . . , ek ; indeed they are edges
whose target is a corner of w and whose origin corner comes after t(cl+1) and before
cl (or, equivalently, strictly before cl+1), in the (cyclic) clockwise contour; that is, they
lie strictly between e = (cl+1, t(cl+1)) and e′ = (t(cl+1), t(t(cl+1))).

If t(cl+1) is the corner around δ in t , then what happens when the label of v is
changed is even simpler, since v becomes the unique vertex with minimal label: all
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Fig. 13 The flip path P(q, q ′) = (qi , ei , si )
5
i=1 reroots q, rooted in e, in the edge η; above, the case where

the union of faces adjacent to e and η has 8 corners. Below, the case where η is a double edge within a
degenerate face; the case where e is a double edge is analogous

corners whose target in t is the corner around δ change their target to cl in tv,−,
including cl−1 and cl+1, while the edge (cl , cl+1) is replaced by one joining v to δ,
which will have degree 1 in φ(tv,−, ε). ��

Before we give an actual description of a sequence of quadrangulation flips that
achieves exactly the changes described by Lemma 6.4, we shall construct a sequence
of flips that will be useful in what follows and whose only aim is to change the root
edge of a quadrangulation by “exchanging” two edges.

Lemma 6.5 (Rerooting)Consider a quadrangulation q ∈ Q•
n; let e = (v,w)be its root

edge (with either v orw being the origin) and letη be the edge after e in clockwise order
around v, which we suppose distinct from e. Let q ′ be the same quadrangulation (with
the same distinguished vertex), rerooted in η andwith v as the origin if and only if vwas
the origin in q. Define the sequence of quadrangulation flips P(q, q ′) = (qi , ei , si )5i=1
so that qi+1 = qei ,sii , q1 = q, e1 = e3 = e5 = η, e2 = e4 = e, s1 = s2 = s3 = +,
s4 = s5 = − (see Fig. 13). Then q6 := qe5,s55 = q ′.

Proof Consider the union of the faces of q that are adjacent to e or to η; unless either
e or η is a double edge within a degenerate face, this is a (generalised) octagon, in
the sense that its boundary has an inner contour with exactly 8 corners, which we can
cyclically number as c0, . . . , c7. We can suppose η joins c0 to c5 and e joins c0 to c3;
it is then immediate to verify, as in Fig. 13, that the given sequence of flips ultimately
results in η joining c0 to c3 and e joining c0 to c5.

An analogous check can be performed for the case where e or η is a double edge,
where one deals with a hexagon rather than an octagon (lower part of Fig. 13). ��

We can now present the construction of the flip path corresponding to a colour
change from + to − on an edge (v, p(v)), where v is a leaf of a labelled tree t :
Lemma 6.6 (Construction of the path,+ to−)With the same notation as in Lemma 6.4,
consider t, v, ε and the edges e1, . . . , ek of φ(t, ε), all incident to a vertex w (pos-
sibly equal to δ). If the root edge of φ(t, ε) does not belong to {e1, . . . , ek}, then set
Pε(t, tv,−) = (qi , ei ,−)ki=1, where q1 = φ(t, ε) and qi+1 = qei ,−i . If some e j is the
root of φ(t, ε), then set Pε(t, tv,−) to be the path described above, with the sequence
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of flips described in Lemma 6.5 for the rotation of the root edge e j around its endpoint
that is not w, injected right before the flip (q j , e j ,−). For simplicity, we shall not
renumber the quadrangulations q1, . . . , qk in this case, but q j and q j+1 will be 6 flips
rather than one flip apart.

Then qek ,−k = φ(tv,−, ε).

Proof Consider the edges adjacent to v in the quadrangulation φ(tv,−, ε) and number
them as η0, . . . , ηk , in clockwise order around v, so that η0 is the (unique) edge of
φ(tv,−, ε) joining v to p(v).

We can show by induction that the quadrangulation qi is the quadrangulation q1,
where edges e1, . . . , ei−1 have been replaced by edges η1, . . . , ηi−1 (and the natural
edge identification after the flip sequence pairs e1 with η1, e2 with η2, and so on)—see
Fig. 14. Indeed, if this is true for qi , then the edge ei as seen in qi is adjacent to two
faces, one in whose clockwise contour it’s preceded by ηi−1, one in whose clockwise
contour it’s preceded by ei+1 (where we set ek+1 to be the edge between t(c) and
t(t(c))). It follows that flipping ei counterclockwise results in an edge joining the
appropriate endpoint of ei+1 to v, which does correspond to creating ηi . Since η0 can
already be identified with an edge of q1, the final quadrangulation q

ek ,−
k is φ(tv,−, ε),

up to rerooting.
If some e j is the root edge of q1 = φ(t, ε), then—as described in Lemma 6.4—

η j−1 is the root edge of φ(tv,−, ε), oriented towards v if and only if the root of q1 is
oriented towardsw. We have shown that in q j edges e j and η j−1 do belong to the same
face, e j coming right after η j−1 in its clockwise contour; performing the appropriate
root rotation sequence of flips on q j has exactly the effect of rerooting q j in η j−1
(with the desired orientation). After that is done, one can proceed with the “normal”
flip sequence to obtain qek ,−k , which is now rooted correctly. ��

This concludes the description of our canonical flip paths corresponding to label
changes of leaves: we simply set Pε(t, tv,−), when l(v) = l(p(v)) in t , to be the
concatenation of Pε(t, tv,+) and Pε(tv,+, (tv,+)v,−), while in general Pε(tv,x , t) is
the reverse path of Pε(t, tv,x ) (for x ∈ {+,−,=}).

In order to compare spectral gaps as we did in Sect. 6.1, we need to estimate the
maximum length of a flip path of the form Pε(t, tv,x ) and the number of paths involving
any fixed quadrangulation edge flip; we do this via the following two lemmas.

Lemma 6.7 Given t ∈ LTn, a leaf v of t and x ∈ {+,−,=}, the length of the flip path
Pε(t, tv,x ), for ε ∈ {−1, 1}, is at most 2n + 6.

Proof The flip sequence Pε(t, tv,−), if we ignore the possible root rotating subse-
quence, does not flip “the same edge” twice, so it has length at most 2n (in fact, it has
length at most the maximum degree of a vertex in φ(t, ε), since all flipped edges are
adjacent to the same vertex). The root rotating subsequence has length 5 and the path
Pε(t, tv,+) has length 1, hence the above estimate. ��

Lemma 6.8 Let (q, e, s) be a triple with q ∈ Q•
n, e ∈ E(q), s ∈ {+,−}; then there is

a constant C such that there are at most C quadruples (t, v, x, ε), where t ∈ LTn, v
is a leaf in t , x ∈ {+,−,=} and ε = ±1, for which (q, e, s) appears in the flip path
Pε(t, tv,x ).
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Fig. 14 The flip path Pε(t, tv,−). Since q1 is rooted in e4, a root rotating sequence is inserted right before
flipping e4, thus correctly rooting the final quadrangulation in η3, i.e. the flipped image of e3

Proof Let us first consider quadruples of the form (t, v,−, ε).
Suppose t, v are such that l(v)− l(p(v)) = 1 and (q, e, s) appears in Pε(t, tv,−) =

(qi , ei , si )ki=1 (that is, q = ql , e = el and s = sl for some l ∈ {1, . . . , k}); we
first consider the case where no root rotation sequence appears in Pε(t, tv,−). Let
v1 and v2 be the endpoints of e in qe,s ; then v corresponds to one of these two
vertices in q1 = φ(t, ε), since every edge ei is adjacent to v in qei ,−i and subsequent
quadrangulations in the flip path. In particular, since the degree of v in q1 is 1 and it
increases by 1 with each flip in Pε(t, tv,−), if d1 and d2 are the respective degrees
of v1 and v2 in q, then l = d1 or l = d2, according to whether v is v1 or v2.
Suppose v is v1; let η0, . . . , ηd1−1 be the edges incident to v1 in q, in clockwise
order around v1, numbered so that e will end up in between ηd1−1 and η0 in qe,s . Then
q1 = φ(t, ε) = ((qηd1−1,+)η2,+)...)η1,+, since ei corresponds to the edge ηdi−1 in q.
We therefore have only 2 possibilities for (t, v).

Nowsuppose a root rotation sequence does appear in Pε(t, tv,−); if it appears strictly
after (q, e, s), then the reasoning above is still valid. If it appears strictly before, then the
root of q is some η j , and—reasoning as before—the quadrangulation q1 is recovered
by inserting the reverse of a root rotation sequence right before applying the clockwise
flip of η j (or right at the end if j = 0). We are left to deal with the case where (q, e, s)
actually belongs to a root rotation sequence. Notice that the number of possibilities
for the quadrangulation q ′ obtained at the end of the root rotation sequence is bounded
by a constant independent of n, since the sequence only acts within (at most) three
adjacent faces, two of which are adjacent to e. Having established some q ′ to be the
quadrangulation in question, the vertex v must be one of the endpoints of the root
edge e′ of q ′. As before, we can now reconstruct q1 by labelling η0, . . . , ηdi−1 the
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Fig. 15 The quadrangulations φ(t, ε) and φ(tv,→, ε), drawn in a case where l(cl+2) = l(v) − 1

edges incident to this endpoint and performing the appropriate reverse root rotation
sequence, followed by clockwise flips on ηdi−1, . . . , η1.

Similarly, suppose t, v are such that l(v) = l(p(v)) and (q, e, s) appears in
Pε(t, tv,−); if (q, e, s) appears in Pε(tv,+, tv,−), then φ(tv,+, ε) can be reconstructed
as above, hence t = (tv,+)v,=. Otherwise we have (q, e, s) = Pε(t, tv,+), hence
q = φ(t, ε).

Now, since (q, e,−) appears in Pε(t, tv,−) if and only if (qe,−, e,+) appears in
Pε(tv,−, t), we have thus also covered the cases where (t, v, x) is such that l(v) =
l(p(v)) − 1, which correspond to another 4 possibilities.

Finally, the missing cases (x ∈ {+,=} and l(v) − l(p(v)) ∈ {1, 0}) are completely
straightforward, since they correspond to a flip path of length 1, and therefore imply
that (t, ε) = φ−1(q) and v is the one vertex whose label is changed by the flip.

This results, indeed, in a number of possibilities for the quadruple (t, v, x, ε) that
is bounded independently of n. ��

6.4 The leaf translation sequences P�(t, tv,→), P�(t, tv,←)

Theother type of “move”wewish to emulate via quadrangulationflips is the translation
of a leaf left or right in the contour of the tree. In doing this, wemay suppose the leaf has
the same label as its parent, and deal with all other cases by prefixing and appending
flip paths of the type Pε(t, tv,=) and Pε(tv,=, t), which we have constructed in the
previous section.

The description of φ(tv,→, ε) in terms of φ(t, ε) is rather simple and depicted in
Fig. 15:

Lemma 6.9 Consider (t, ε) ∈ LTn × {−1, 1} and let v be a leaf of t such that l(v) =
l(p(v)). Let c1, . . . , c2n be the clockwise contour of t and suppose cl , with 2 ≤ l ≤
2n − 1, is the corner of v (notice that, if we had l = 2n, we would have tv,→ = t).
Then φ(tv,→, ε) can be obtained from φ(t, ε) by

• identifying the two edges (cl−1, t(cl−1)) and (cl+1, t(cl+1)) and erasing the dou-
ble edge (cl , cl+1) (that is eliminating the one degenerate face of φ(t, ε) which
corresponds to the tree edge (p(v), v));
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Fig. 16 The flip path Pε(t, tv,→) has length 1 when the edge (v, p(v)) is replanted onto a vertex which
has the same label as v and p(v). Notice that the edge that needs to be flipped in order to change φ(t, ε)
into φ(tv,→, ε) cannot be the root edge of φ(t, ε), since it is not issued from the first corner of t

• replacing the edge (cl+2, t(cl+2)) by a degenerate face whose internal vertex is
adjacent to the vertex of t(cl+2).

Notice that it is possible that either the edge (cl−1, t(cl−1)) (if l = 2) or the edge
(cl+2, t(cl+2))) (if l = 2n − 1) is the root edge of φ(t, ε). In the former case, the root
of φ(tv,→, ε) is the edge obtained from identifying (cl−1, t(cl−1)) and (cl+1, t(cl+1)),
oriented as before; in the latter, it is the second edge of the new degenerate face in
clockwise order around the vertex of cl+2, oriented as (cl+2, t(cl+2)) was.

Proof Given t ∈ LTn and ε ∈ {−1, 1}, a leaf v such that l(v) = l(p(v)) is the internal
vertex of a degenerate face in φ(t, ε); removing the leaf (and the tree edge joining it
to its parent) results in a tree t ′ ∈ LTn−1 and a quadrangulation φ(t ′, ε) in which the
face is eliminated by identifying the two edges of its boundary (into a root edge with
the same orientation as before in the case where one of them was root edge in φ(t, ε)).

Notice that erasing the leaf v from t and from tv,→ yields the same tree t ′. The
quadrangulation φ(tv,→, ε) can thus be obtained by first performing the operation
described above to build φ(t ′, ε) and then performing it “in reverse” by replacing the
appropriate edge (which is the one drawn from the corner of t ′ that contains the edge
joining v to p(v) in tv,→) with a degenerate face (see Fig. 15). ��

The quadrangulation flip path Pε(t, tv,→) will depend on the label of the vertex
w of corner cl+2 in t ; since the cases where l(w) = l(v) and l(w) = l(v) + 1 are
simpler (we can construct a path of length 1 in the first case and 3 in the second!),
we refer to Figs. 16 and 17 for its construction, which only involves flips within two
adjacent faces ofφ(t, ε). Notice that, furthermore, the construction preserves the edges
issued from cl−1 and cl+2, so that the root edge is automatically the correct one in the
quadrangulations q2 from Fig. 16 and q4 from Fig. 17.

The casewhere l(w) = l(v)−1 ismore complex, andwill be treated in the following
lemma.

Lemma 6.10 (Flip path construction, leaf translation onto smaller label) Consider a
tree t ∈ LTn with contour c1, . . . , c2n and let v be a leaf of t such that l(v) = l(p(v)),
adjacent to a corner cl with 2 ≤ l ≤ 2n − 1. Let w be the vertex of the corner cl+2
and further suppose that l(w) = l(v) − 1.
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Fig. 17 The flip path Pε(t, tv,→)when l(w) = l(v)+1, wherew is the vertex that becomes the new parent
of v in tv,→

Fig. 18 The flip path Pε(t, tv,→) in the case where the edge (v, p(v)) is followed by a corner labelled
p(v) − 1 in the clockwise contour of t

For ε ∈ {−1, 1}, let e1, . . . , ek−1 be the edges of φ(t, ε) that are adjacent to w

and lie strictly between the edge ek = (cl , cl+2) and the edge (cl+2, t(cl+2)), in
clockwise order around w. If none of them is the root edge of φ(t, ε), then we can set
Pε(t, tv,→) = (qi , ei ,−)ki=1, and we have qk+1 := qek ,−k = φ(tv,→, ε).

If some e j is the root edge of φ(t, ε), then we can set Pε(t, tv,→) to be the same flip
path as above, with the root rotation flip sequence from Lemma 6.5, performed around
the endpoint of the root edge that is not w, inserted right before the flip (q j , e j ,−).

See Fig. 18 for the construction.

Proof One can show inductively that, for i = 2, . . . , k − 1, the quadrangulation qi is
obtained from q1 by collapsing the face that contains the edge ek in q1 and replacing
the edge ei with a degenerate face whose internal vertex is adjacent tow; furthermore,
the natural edge identification between q1 and qi has ek correspond to the internal edge
of the degenerate face, while ei corresponds to the ‘rightmost’ boundary edge of the
newly created degenerate face in clockwise order around w. Then, qk is obtained by
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flipping ek−1 counterclockwise. By Lemma 6.9, the only difference between qk and
φ(tv,→, ε) is the fact that the internal edge of the new degenerate face is incident to
w in qk and, potentially, the choice of the root edge (in the case where the root edge
of q1 is among the flipped edges e1, . . . , ek−1). Flipping ek in qk—thus obtaining
qk+1—is enough to fix the first issue, and yields φ(tv,→, ε) up to rerooting. Suppose
now that the root edge of q1 is some e j (with 1 ≤ j ≤ k − 1); the edge issued from
the same corner in qk+1 is actually the flipped version of edge e j−1 (or the edge out
of cl+1, which never gets flipped, in the case where l = 2: for ease of notation we will
call it e0). In the quadrangulation q j , e j (not yet flipped and still the root edge) and
e j−1 (already flipped, unless j = 1) are consecutive in clockwise order around their
endpoint that is not w. Performing the root rotation sequence before (q j , e j ,−) thus
simply results in rerooting q j in its edge e j−1 (with the correct orientation), which
will not be flipped again and will end up being the correct root edge in qk+1 once the
rest of the flips are performed. ��

As mentioned before, we construct Pε(t, tv,→) in general as the concatenation of
Pε(t, tv,=), Pε(tv,=, (tv,=)v,→) and Pε((tv,=)v,→, ((tv,=)v,→)v,c), where c is chosen
so as to “restore” the colour of (v, p(v)) to the original one from t . We can further set
Pε(tv,→, (tv,→)v,←) to be the reverse sequence of Pε(t, tv,→) (keeping in mind that
Pε(t, t) is already set to be empty). Notice that, using Lemma 6.7 and the fact that the
construction from Lemma 6.10, excluding root rotation sequences, does not flip the
same edge twice, we immediately have

∣∣∣Pε(t
v,d , t)

∣∣∣ ≤ 6n + 17 (4)

for all t ∈ LTn , v leaf of t , d ∈ {→,←}, ε ∈ {−1, 1}.
Additionally, we have the following lemma.

Lemma 6.11 Let (q, e, s) be a triple with q ∈ Q•
n, e ∈ E(q), s ∈ {+,−}; then there

is a constant C such that there are at most C quadruples (t, v, d, ε), where t ∈ LTn,
v is a leaf in t , d ∈ {→,←} and ε = ±1, for which (q, e, s) appears in the flip path
Pε(t, tv,d).

Proof By lemma 6.8, the number of such quadruples is at most a constant times the
number of those where l(v) = l(p(v)), so we shall restrict ourselves to the latter case;
since Pε(t, tv,→) is the reverse of Pε(tv,→, t), we may also suppose d =→.

Suppose (t, v,→, ε) is a quadruple such that l(v) = l(p(v)) and (q, e, s) appears
in Pε(t, tv,→), and let c1, . . . , c2n be the clockwise contour of t , with cl being the
corner of v. If l(cl+2) = l(v), then q = φ(t, ε) and v is uniquely determined from the
flip (q, e, s).

If l(cl+2) = l(v) + 1, then there are a few possibilities (refer again to Fig. 17). If
q has one more degree one vertex than qe,s , then q = φ(t, ε) and v is that degree one
vertex. If qe,s has one more degree one vertex than q, let e′ be the edge issued from
that vertex; then v is the vertex in question and φ(tv,→, ε) = (qe,s)e

′,−. Otherwise, e
is a double edge within a degenerate face, qe,s = φ(tv,→, ε) and v is its degree one
endpoint.
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Finally, if l(cl+2) = l(v) − 1, then consider the edge e in qe,s . First, let’s suppose
that (q, e, s) does not belong to a root rotating sequence. If e is the interior edge of a
degenerate face, then φ(tv,→, ε) = qe,s and v is its endpoint of degree 1. Otherwise,
consider the two endpoints w1, w2 of e in qe,s ; one of them must play the role of the
vertex w from Lemma 6.10. If it is w1, then to the right of the oriented edge (w1, w2)

in qe,s lies a degenerate face with an internal vertex connected to w1. If (w1, u) is the
first oriented edge in clockwise order around w starting with (w1, w2) such that u is
strictly nearer to δ than w1, the construction of the flip path implies that φ(tv,→, ε)

can be obtained from qe,s by collapsing the face lying right of (w1, w2) and replacing
(w1, u) with a new degenerate face whose internal edge is issued from u and has v

as the other endpoint. An analogous argument holds for w2, giving rise to only two
possibilities for (t, v,→). If (q, e, s) actually belongs to a root rotation sequence, then
the the number of possibilities for the final quadrangulation q ′ obtained by completing
the sequence is bounded by a constant; we can then use q ′ and its root edge in place of
qe,s and e to reconstruct the final quadrangulation φ(tv,→, ε) and its vertex v (from
which one determines t as (tv,→)v,←) in (at most) two ways. ��

6.5 The final comparison betweenFn,• and˜X

Proof of Theorem 1 The upper bound for the spectral gap of Fn is Proposition 4.1; we
set out to prove the lower bound.

Consider the chains X̃ and Fn,• from Sect. 6.1 and their respective spectral gaps γ̃

and ν•
n , and let νn be the spectral gap of Fn . Also recall the Schaeffer correspondence

φ : LTn×{−1, 1} → Q•
n fromSect. 3 and the flip paths P(t) and Pε(t, tv,x ) constructed

throughout Sects. 6.2, 6.3 and 6.4 .
Let f : Q•

n → R be a function such that Vπ•( f ) = 1 (where π• is the uniform
measure on Q•

n) and EFn,•( f , f ) = ν•
n . Then thanks to Corollary 6.1 we have

Cn− 9
2 ≤ γ̃ ≤ EX̃ ( f ◦ φ, f ◦ φ)

= 1

2

∑

t,t ′∈LTn
ε,ε′∈{−1,1}

(
f (φ(t, ε)) − f (φ(t ′, ε′))

)2 1

2|LTn| pX̃ (t, t ′)

= 1

2

∑

t∈LTn
v leaf of t

x∈{→,←,+,−,=}
ε∈{1,−1}

(
f (φ(t, ε)) − f (φ(tv,x , ε))

)2 1

2|LTn|
1

5(n + 1)

+
∑

t∈LTn
( f (φ(t, 1)) − f (φ(t,−1)))2

1

2|LTn|
1

n + 1
.

Now we may rewrite each difference within the sums above in terms of the images
of subsequent quadrangulations appearing in the paths Pε(t, tv,x ) and P(t), apply the
Cauchy–Schwarz inequality and tweak the constants in order to recover factors of the
form pFn,•(q, q ′). We obtain that the expression above is at most
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1

2|LTn|
1

n

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

∑

t∈LTn
v leaf of t

x∈{→,←,+,−,=}
ε∈{1,−1}

⎛

⎜⎜⎜
⎝

∑

i=0,...,|Pε(t,tv,x )|
Pε(t,tv,x )=(qi ,ei ,si )Ni=1

f (qi ) − f (qei ,sii )

⎞

⎟⎟⎟
⎠

2

+
∑

t∈LTn

⎛

⎜⎜⎜
⎝

∑

i=0,...,|P(t)|
P(t)=(qi ,ei ,si )Ni=1

f (qi ) − f (qei ,sii )

⎞

⎟⎟⎟
⎠

2⎞

⎟⎟⎟
⎠

≤ 6
∑

t∈LTn
v leaf of t

x∈{→,←,+,−,=}
ε∈{1,−1}

|Pε(t, t
v,x )|

∑

i=0,...,|Pε(t,tv,x )|
Pε(t,tv,x )=(qi ,ei ,si )Ni=1

( f (qi ) − f (qei ,sii ))2
1

|Q•
n|

1

6n

+6
∑

t∈LTn
|P(t)|

∑

i=0,...,|P(t)|
P(t)=(qi ,ei ,si )Ni=1

( f (qi ) − f (qei ,sii ))2
1

|Q•
n|

1

6n
.

Given q ∈ Q•
n , e ∈ E(q), s ∈ {+,−}, write C(q, e, s) for

∣
∣{t, v, x, ε : (q, e, s) appears in Pε(t, t

v,x )}∣∣ + |{t : (q, e, s) appears in P(t)}| .

Thanks to Lemmas 6.2, 6.8 and 6.11, there is a constant M independent of n such
that C(q, e, s) ≤ M for all q, e, s. Furthermore, Lemmas 6.2, 6.7 and (4) imply that
max{|P(t)|, |Pε(t, tv,x )|} ≤ 7n for all n ≥ 17, t ∈ LTn , v leaf of t , x ∈ {→,←,+,=
,−}, ε ∈ {−1, 1}. From this we obtain that, for some constant C ′,

Cn− 9
2 ≤ C ′n

2

∑

q∈Q•
n

e∈E(q)
s∈{+,−}

C(q, e, s)( f (q) − f (qe,s))2
1

|Q•
n|

1

6n

≤ C ′nM · EFn,•( f , f ) = C ′nMν•
n ≤ C ′Mnνn,

where the last inequality follows fromLemma 2.3. Following the chain of inequalities,

we have indeed shown that νn ≥ C1n− 11
2 for some constant C1 independent of n. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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