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Abstract
By using analytic tools from stochastic analysis, we initiate a study of some non-linear
parabolic equations on Sierpinski gasket, motivated bymodellings of fluid flows along
fractals (which can be considered asmodels of simplified rough porousmedia). Unlike
the regular space case, such parabolic type equations involving non-linear convection
terms must take a different form, due to the fact that convection terms must be singular
to the “linear part” which defines the heat semigroup. In order to study these parabolic
type equations, a new kind of Sobolev inequalities for the Dirichlet form on the gasket
will be established. These Sobolev inequalities, which are interesting on their own
and in contrast to the case of Euclidean spaces, involve two L p norms with respect
to two mutually singular measures. By examining properties of singular convolutions
of the associated heat semigroup, we derive the space-time regularity of solutions to
these parabolic equations under a few technical conditions. The Burgers equations on
the Sierpinski gasket are also studied, for which a maximum principle for solutions
is derived using techniques from backward stochastic differential equations, and the
existence, uniqueness, and regularity of its solutions are obtained.
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1 Introduction

The analysis on fractals has attracted attentions of researchers in the last decades, not
only for the reason that fractals are archetypal examples of spaces without suitable
smooth structure, but also because fractals are examples of interestingmodels in statis-
tical mechanics. Many objects in nature (e.g. percolation clusters in disordered media,
complex biology systems, polymeric materials, and etc.) possess features of fractals
(see e.g. [28] for details). Fractals appear as scaling limits of lattices. Lattice models
(e.g. the Ising models and their variants) have been extensively studied in statistical
mechanics, and properties for scaling limits have been derived using conformal field
theory in dimension two.

Since a calculus on fractals is not available, the theory of Dirichlet forms on
measure-metric spaces and stochastic calculus are the analytic tools employed for
the study of analysis problems on fractals, and many interesting results have been
established in the past decades.

Early works on analysis on fractals however have been focused mainly on
diffusion processes and the corresponding Dirichlet forms (see e.g. [1–3,8,11,12,21–
24] and etc.). Brownian motion on the Sierpinski gasket was first constructed by
Goldstein and Kusuoka as the limit of a sequence of (scaled) random walks on
lattices (cf. [9,26]). Kigami [22] has obtained an analytic construction of the Dirich-
let form via finite difference schemes. The construction of gradients of functions
with finite energy has been given in Kusuoka in [25], where a significant dif-
ference between Euclidean spaces and fractals has also been revealed (see [25,
Section 6]). On the Sierpinski gasket for example, volumes of sets and ener-
gies of functions are measured in terms of two mutually singular measures, the
Hausdorff measure and Kusuoka’s measure (see Sect. 2 below for definitions).
By virtue of the results obtained in [25], gradients of functions on the Sierpinski
gasket may be defined as square integrable functions with respect to Kusuoka’s
measure (cf. Sect. 2). Roughly speaking, the gradient of a function with finite
energy is the square root of the density of its energy measure with respect to
Kusuoka’s measure. There have been interests in the understanding of gradients
of functions and non-linear partial differential equations on fractals with non-
linearities involving first-order derivatives (see e.g. [16,18–20,33] and references
therein). A new class of semi-linear parabolic equations involving singular mea-
sures on the Sierpinski gasket was proposed and studied in [27], where, among other
things, a Feynman–Kac representation was obtained assuming the existence of weak
solutions.

In the present paper, we establish the existence and uniqueness of solutions to
the semi-linear parabolic PDEs proposed in [27], and derive the regularity of solu-
tions. A crucial ingredient in our argument is a new type of Sobolev inequalities on
the Sierpinski gasket (and the infinite gasket) involving different measures (which
can be mutually singular). To author’s knowledge, this type of Sobolev inequali-
ties on fractals has not been investigated before, and is of mathematical interests
on its own. We formulate and study the Burgers equations on the gasket, which is
an archetype of non-linear PDEs with non-Lipschitz coefficients, and also as a sim-
plified model of flows in porous medium. The difficulty in our case is that there
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Parabolic type equations associated with the Dirichlet... 1065

exists no suitable analogue of the Cole–Hopf transformation on the gasket. Instead
we tackle the problem by using a Feynman–Kac representation and an iteration argu-
ment.

This paper is organized as follows. We introduce in Sect. 2 the notations and def-
initions which will be effective throughout the paper. Several preliminary results are
also reviewed in the same section. In Sect. 3, we give the formulation and the proof
of new Sobolev inequalities on the Sierpinski gasket (and the infinite gasket), which
will be needed in latter sections. The optimal exponents and a sufficient and necessary
condition for the validity of these inequalities are also given in this section. Section 4
is devoted to the semi-linear parabolic PDEs on the gasket, where we establish the
existence and uniqueness and the regularity of solutions. In Sect. 5, we apply the
results in previous sections to the study of the Burgers equations on the gasket, which
are the analogues of the Burgers equations on R.

The results of this paper are presented only for the Sierpinski gasket in R
2, we

however believe that our results also hold for Sierpinski gaskets in higher dimensions.
The main results and the arguments given in this paper can be adapted accordingly
without difficulties.

2 Preliminaries

In this section, we set up several notations and definitions which will be in force
throughout this paper.

Sierpinski gaskets

Let Fi : R2 → R
2, i = 1, 2, 3 be the contractions defined by F1(x) = 2−1x, F2(x)

= 2−1[x + (1, 0)], F3(x) = 2−1[x + (1/2,
√
3/2)], x ∈ R

2. Let V0 = {
(0, 0),

(1, 0), (1/2,
√
3/2)

}
. Define Vm, m ∈ N+ inductively by Vm = ⋃

i=1,2,3 Fi (Vm−1).

Let V̂m = ⋃∞
k=0 2

k [Vm+k ∪ (−Vm+k)], m ∈ N. The (compact) Sierpinski gasket S
and the infinite Sierpinski gasket Ŝ are defined to be the closures S = cl (

⋃∞
m=0 Vm)

and Ŝ = cl (
⋃∞

m=0 V̂m) respectively. Ŝ can be written as a countable union Ŝ =⋃
i∈Z τi (S), where τi : R2 → R

2, i ∈ Z are translations of R2 such that τi (S), i ∈ Z

have non-overlapping interiors. To our purpose, the labelling of the translations τi ,

i ∈ Z is immaterial. We should point out that there are many different infinite
versions of S (see e.g. [32, Section 5]). The Ŝ we use in the present paper is only
one of them.

Let W∗ = {ω = ω1ω2ω3. . . : ωi ∈ {1, 2, 3}, i ∈ N+} the set of infinite ordered
sequencesω of symbols in {1, 2, 3}. For eachω = ω1ω2ω3. . . ∈ W∗ and eachm ∈ N+,
let [ω]m = ω1ω2 . . . ωm , define F[ω]m = Fω1Fω2 · · ·Fωm , and S[ω]m = F[ω]m

(
S
)
. As

a convention, we define F[ω]0 = Id. The Hausdorff measure on S is the unique Borel
probability measure ν on S such that ν

(
S[ω]m

) = 3−m for allω ∈ W∗, m ∈ N , and the

Hausdorff measure on Ŝ is the unique Borel measure ν̂ on Ŝ such that (ν̂ ◦ τi )|S = ν

for all i ∈ Z.
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1066 X. Liu, Z. Qian

Standard Dirichlet forms

For each m ∈ N and any functions u, v on
⋃∞

m=0 Vm , let

E (m)(u, v) =
∑

x,y∈Vm :|x−y|=2−m

2−1 (5/3)m [u(x) − u(y)][v(x) − v(y)]. (2.1)

The sequence {E (m)(u, u)}m∈N is non-decreasing (cf. [24, Sections 2.2, 2.4]), therefore
E(u, u) = limm→∞ E (m)(u, u) exists (possibly infinite), and the limit will be denoted
by E(u) for simplicity.

LetF(S) = {
u : u is a function on

⋃∞
m=0 Vm with E(u) < ∞}

. According to [24,
Theorem 2.2.6], every function u ∈ F(S) uniquely extends to a continuous function
on S, in other words, F(S) ⊆ C(S). (E,F(S)) is called the standard Dirichlet form
on S, which is a regular local Dirichlet form on L2(S; ν). (E,F(S)) possesses the
property of self-similarity in the sense that

E(u, v) =
∑

i=1,2,3

(5/3) E(
u ◦ Fi , v ◦ Fi

)
, u, v ∈ F(S).

Let L be the self-adjoint non-positive operator on Dom(L) ⊆ L2(S; ν) associated
with (E,F(S)).

Let F(S\V0) = {
u ∈ F(S) : u|V0 = 0

}
. The restricted form

(E,F(S\V0)
)
is

also a regular local Dirichlet form on L2(S; ν) corresponding to Dirichlet boundary
conditions.

By replacing Vm with V̂m in (2.1), Ê(u) can be defined similarly for any u ∈ C(Ŝ).
Let F(Ŝ) be the completion of {u ∈ C(Ŝ) : Ê(u) < ∞} with respect to the norm
Ê(·)1/2 + ‖ · ‖L2(ν̂). It can be shown that F(Ŝ) ⊆ C0(Ŝ), where C0(Ŝ) is the space

of continuous functions on Ŝ vanishing at infinity.
(Ê,F(Ŝ)

)
is called the standard

Dirichlet form on Ŝ, which is a regular local Dirichlet form on L2(Ŝ; ν̂). By definition

Ê(u, v) =
∑

i∈Z
E[

(u ◦ τi )|S, (v ◦ τi )|S
]
, u, v ∈ F(Ŝ). (2.2)

Similar to E , the form Ê is self-similar in the sense that

Ê(u, v) = (5/3) Ê(
u ◦ F1, v ◦ F1

)
, u, v ∈ F(Ŝ). (2.3)

For any x, y ∈ Ŝ, define R(x, y) by

R(x, y)−1 = inf
{Ê(u) : u ∈ F(Ŝ), u(x) = 0, u(y) = 1

}

if x �= y, and R(x, y) = 0 if x = y. For every x, y ∈ Ŝ, R(x, y) < ∞. Moreover, if
x �= y, then there exists a unique u ∈ F(Ŝ) such that u(x) = 1, u(y) = 0, Ê(u) =
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Parabolic type equations associated with the Dirichlet... 1067

R(x, y)−1 (see [24, Theorem 2.3.4]). The function R(·, ·), called the resistancemetric,
is a metric on Ŝ satisfying

C−1∗ |x − y|dw−d f ≤ R(x, y) ≤ C∗ |x − y|dw−d f , x, y ∈ Ŝ

for some universal constant C∗ ≥ 1, where ds = 2 log 3/ log 5, dw = log 5/ log 2,
and d f = dw/(2ds) are the spectral dimension, the walk dimension, and the fractal
dimension of Ŝ respectively (cf. [24, Lemma 3.3.5]). By the definition of R(·, ·),

|u(x) − u(y)| ≤ R(x, y)1/2Ê(u)1/2, u ∈ F(Ŝ), x, y ∈ Ŝ. (2.4)

Since u|S ∈ F(S), u ∈ F(Ŝ) and maxS×S R < ∞, it follows from (2.4) that

osc
S

(u) ≤ C∗ E(u)1/2, u ∈ F(S). (2.5)

Let f be a function on V0. There exists a unique h ∈ F(S) such that h|V0 = f and
E(h) = inf{E(u) : u ∈ F(S), u|V0 = f } (see [24, Proposition 3.2.1]). h is called
the harmonic function in S with boundary value h|V0 = f . A harmonic function h,
restricted on each Vm, m ∈ N, can be evaluated by

(h ◦ F[ω]m )|V0 = A[ω]m (h|V0), ω = ω1ω2ω3 . . . ∈ W∗, (2.6)

(cf. [24, Proposition 3.2.1 ]), where A[ω]m = Aωm · · ·Aω2Aω1 , with

A1 = 1

5

⎡

⎣
5 0 0
2 2 1
2 1 2

⎤

⎦ , A2 = 1

5

⎡

⎣
2 2 1
0 5 0
1 2 2

⎤

⎦ , A3 = 1

5

⎡

⎣
2 1 2
1 2 2
0 0 5

⎤

⎦ .

Let f be a function on Vm . The m-harmonic function with boundary value f is
defined to be the unique h ∈ F(S) such that h|Vm = f and that h ◦F[ω]m is a harmonic
function for all ω ∈ W∗. The energy of an m-harmonic function h can be calculated
using E(h) = E (m)(h|Vm ).

Kusuokameasures and gradients

Let P : R3 → R
3 be the projection Px = x − (x1 + x2 + x3)/3 for x = (x1, x2, x3) ∈

R
3. The Kusuoka measure μ on S, as defined in [25], is the unique Borel probability

measure on S such that

μ
(
S[ω]m

) = 2−1 · (5/3)m tr
(
At[ω]mPA[ω]m

)

for all ω = ω1ω2ω3 . . . ∈ W∗, m ∈ N. The Kusuoka measure μ̂ on Ŝ is the unique
Borel measure on Ŝ such that (μ̂ ◦ τi )|S = μ for all i ∈ Z.

The Kusuoka measure μ (μ̂ respectively) is singular to the Hausdorff measure ν

(ν̂ respectively) (cf. [25, p. 678]). If u ∈ F(S), then μ〈u〉 denotes the energy measure
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1068 X. Liu, Z. Qian

of u, i.e. the Borel measure on S such that
∫
S
φ dμ〈u〉 = E(φu, u) − 2−1E(φ, u2)

for φ ∈ F(S). By [25, Theorem (5.4)], μ〈u〉 � μ for all u ∈ F(S) (see [13,15] for
similar results on general fractals). Moreover, there exists a unique linear operator
∇ : F(S) → L2(μ), called the gradient operator on S, satisfying the following: (i)
μ〈u〉 = |∇u|2 μ for all u ∈ F(S), and (ii) if h is the harmonic function with boundary
value h(0, 0) = 0, h(1, 0) = h(1/2,

√
3/2) = 1, then ∇h > 0 μ-a.e. The gradient

operator ∇ : F(Ŝ) → L2(μ̂) on Ŝ is defined by [(∇u) ◦ τi ]|S = ∇[(u ◦ τi )|S] for all
u ∈ F(Ŝ) and all i ∈ Z.

Remark 2.1 We should point out that there exist several slight variants of gradients on
fractals, which are introduced to address different problems (see, e. g. [4,6,14,23,27,
30,33] and references therein). The definition of gradients on S adopted in the present
paper was introduced in [27] viamartingale representations, and can be regarded as the
special case of the definition given in [14], where μ is the minimal energy-dominant
measure (see [14, p. 3] for the definition).

3 Sobolev inequalities

The objective of this section is to establish some Sobolev inequalities involving
different (probably mutually singular) measures on S and Ŝ (Theorems 3.6, 3.11
respectively), which is crucial to our study of some semi-linear parabolic equations
on the gasket. A sufficient and necessary condition for the validity of these Sobolev
inequalities (Theorems 3.8, 3.13) will be established as well.

To shed some light on the motivation of these inequalities, consider the following
simple parabolic PDE on S

∂t u dν = Lu dν + ∇u dμ.

Here the singular measures ν and μmust be involved asLu is ν-a.e. defined while∇u
is onlyμ-a.e. defined. A precise interpretation of this equation will be given in Sect. 4.
Let us assume for the moment that if u is a solution then one may test the equation
against the solution to obtain

d

dt
‖u(t)‖2L2(ν)

= −E(u(t)) + 〈∇u(t), u(t)〉μ,

from which it follows that

d

dt
‖u(t)‖2L2(ν)

≤ −1

2
E(u(t)) + 1

2
‖u(t)‖2L2(μ)

.

For PDEs on Euclidean spaces, the measures ν and μ are equal to the Lebesgue
measures, and therefore, the above differential inequality together with Grönwall’s
inequality yields the energy estimates and the existence and uniqueness of solutions.
However, on S, the measures ν and μ are mutually singular, and hence the L2-norms
‖ · ‖L2(ν) and ‖ · ‖L2(μ) are in general incomparable. Thus, Grönwall’s inequality does
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Parabolic type equations associated with the Dirichlet... 1069

not apply in this case. For PDEs involving gradients on S, an appropriate comparison
of ‖ · ‖L2(ν) and ‖ · ‖L2(μ) is necessary to obtaining energy estimates. In fact, for
functions u ∈ F(S), the L2-norms ‖u‖L2(ν) and ‖u‖L2(μ) must be compared with the
involvement of (an arbitrarily small portion of) the energy E(u) (see Corollary 3.18
below). This type of comparison is possible due to the Sobolev inequalities to be
established in this section.

For convenience, C∗ will always denote a generic universal constant which may be
different on various occasions.

Definition 3.1 Let Si,m = 2mτi
(
S
)
, m, i ∈ Z. The energy of u ∈ F(Ŝ) on Si,m is

defined to beÊ |Si,m (u) = (3/5)m E[(u ◦ τi ◦ F−m
1 )|S].

Clearly, Ŝ can be written as the non-overlapping union Ŝ = ⋃
i∈Z Si,m for each

m ∈ Z. Therefore, Ê(u) = ∑
i∈Z Ê |Si,m (u) for any u ∈ F(Ŝ) in view of (2.2) and

(2.3).

Definition 3.2 The constant δs > 0 is defined by 1/δs = 2/ds − 1 = log 5/ log 3− 1.

The constant δs is defined so that 5/3 = 31/δs . Therefore, for every i and m, by
(2.5),

osc
S

(
u ◦ τi ◦ F−m

1

) ≤ C∗ E[(u ◦ τi ◦ F−m
1 )|S]1/2

= C∗ (5/3)m/2 Ê |Si,m (u)1/2 = C∗ ν̂
(
Si,m

)1/(2δs )Ê |Si,m (u)1/2,

which implies that

osc
Si,m

(u) ≤ C ν̂
(
Si,m

)1/(2δs )Ê |Si,m (u)1/2. (3.1)

Definition 3.3 A subset S ⊆ Ŝ is called a dyadic triangle if S = Si,m for some
m, i ∈ Z.

We are now in a position to formulate the main results of this section. Let σ̂ be a
Borel measure on Ŝ satisfying the following condition: there exist constants Cσ̂ ≥ 1
and 0 < δ ≤ δ̄ ≤ ∞, δ̄ ≥ 1 such that

{
σ̂ (S) ≤ Cσ̂ ν̂(S)1/δ̄, if 0 < diam(S) < 1,
σ̂ (S) ≤ Cσ̂ ν̂(S)1/δ, if diam(S) ≥ 1,

(M.1)

for any dyadic triangle S ⊆ Ŝ, where diam(A) denotes the diameter of A ⊆ Ŝ with
respect to the Euclidean metric.

Remark 3.4 (i) In literature, a Borel measure σ on R
n is called an Ahlfors regular

measure if there exists a d > 0 such that C−1rd ≤ σ(B(x, r)) ≤ Crd for
any ball of radius r centred at x ∈ R

n . Therefore, the Hausdorff measure is an
Ahlfors regular measure, and we think it is appropriate to call the measure σ̂ in
(M.1) anAhlfors upper regular measure (with distinct exponents for expansion and
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1070 X. Liu, Z. Qian

contraction). In the present paper, we formulate the condition (M.1) in terms of the
Hausdorff measure rather than diameter of sets because of notational convenience
when comparing measures. We would like to mention that a heat kernel estimate
implies the Ahlfors regularity of the Hausdorff measure (see e.g. [10, Theorem
3.2] and references therein).

(ii) The restriction δ̄ ≥ 1 in the condition (M.1) is necessary in view of the countable
additivity of measures.

(iii) Notice that we do not require (M.1) to hold for general Borel sets. In fact, (M.1)
being valid for all Borel sets implies the absolute continuity of σ̂ with respect to
ν̂.

We would like to point out that the condition (M.1) is general enough to include
many cases of interests, some of important examples are listed below.

Example 3.5 (i) Dirac measures, for which the condition (M.1) is satisfied with δ =
δ̄ = ∞.

(ii) The Kusuoka measure μ̂ (cf. Corollary 3.9.(b) below).
(iii) Analogues on Ŝ of weighted measures |x |−θ dx on R

d with 0 ≤ θ < d. For any
cube Q ⊆ R

d , we have
∫
Q |x |−θdx ≤ C |Q|1−θ/d for some constant C > 0

depending only on d. Therefore, the analogue on Ŝ of |x |−θ dx on R
d would

be a Borel measure σ̂ � ν̂ satisfying the condition (M.1) with δ, δ̄ given by
1/δ = 1/δ̄ = 1− θ/ds . Here we have used ds as the Sobolev dimension of Ŝ (cf.
Remark 3.7 below).

Theorem 3.6 Let 1 ≤ p ≤ q ≤ ∞, q ≥ 2. Suppose σ̂ is a Borel measure on Ŝ

satisfying the condition (M.1). Then

‖u‖Lq (σ̂ ) ≤ C
∑

i=1,2

Ê(u)ai /2‖u‖1−ai
L p(ν̂)

, u ∈ F(Ŝ), (3.2)

where

a1 =
[ 1/p − 1/(q δ̄)

1/p + 1/(2δs)

]+
, a2 =

[ 1/p − 1/(qδ)

1/p + 1/(2δs)

]+
, (3.3)

and C > 0 is a constant depending only on the constant Cσ̂ in (M.1).
Moreover, if there exists a sequence {Sm}m∈Z of dyadic triangles such that

lim
m→−∞ diam(Sm) = 0, lim

m→∞ diam(Sm) = ∞

and

1/δ̄ = lim
m→−∞

log σ̂ (Sm)

log ν̂(Sm)
, 1/δ = lim

m→∞
log σ̂ (Sm)

log ν̂(Sm)
, (M.2)

then the pair of exponents given by (3.3) is optimal in the following sense: if

‖u‖Lq (σ̂ ) ≤ C
N∑

i=1

Ê(u)bi /2‖u‖1−bi
L p(ν̂)

, u ∈ F(Ŝ), (3.4)
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for some constants bi ∈ [0, 1], 1 ≤ i ≤ N , N ∈ N+ and C > 0 independent of u,
then mini bi ≤ a2 ≤ a1 ≤ maxi bi .

Proof Suppose first that p ≤ q < ∞. Let ν̂m = ν̂(2mS) = 3m , Si,m = 2m τi (S) for
any m, i ∈ Z. Then Ŝ = ⋃

i Si,m . When m ≥ 0, by (3.1), we have that
∫

Ŝ

|u|qdσ̂ ≤ 2q−1
∑

i

[ ∫

Si,m

∣∣∣u − 1

ν̂m

∫

Si,m
u d ν̂

∣∣∣
q
dσ̂ +

∣∣∣
1

ν̂m

∫

Si,m
u d ν̂

∣∣∣
q
σ̂ (Si,m)

]

≤ Cq
∑

i

[
ν̂
q/(2δs )
m Ê|Si,m (u)q/2 σ̂ (Si,m) + 1

ν̂
q/p
m

[ ∫

Si,m
|u|p d ν̂

]q/p
σ̂ (Si,m)

]

≤ Cq
∑

i

[
ν̂
q/(2δs )+1/δ
m Ê|Si,m (u)q/2 + ν̂

1/δ−q/p
m

( ∫

Si,m
|u|p d ν̂

)q/p]

≤ Cq
{
ν̂
q/(2δs )+1/δ
m

[ ∑

i

Ê|Si,m (u)
]q/2 + Cq ν̂

1/δ−q/p
m

[∑

i

∫

Si,m
|u|p d ν̂

]q/p}

= Cq [
ν̂
q/(2δs )+1/δ
m Ê(u)q/2 + ν̂

1/δ−q/p
m ‖u‖qL p(ν̂)

]
,

where and hereafter C > 0 denotes a generic constant depending only on the constant
Cσ̂ in (M.1). Therefore,

‖u‖Lq (σ̂ ) ≤ C
[
ν̂
1/(2δs )+1/(qδ)
m Ê(u)1/2 + ν̂

1/(qδ)−1/p
m ‖u‖L p(ν̂)

]
. (3.5)

Similarly, when m ≤ 0, we have that

‖u‖Lq (σ̂ ) ≤ C
[
ν̂
1/(2δs )+1/(q δ̄)
m Ê(u)1/2 + ν̂

1/(q δ̄)−1/p
m ‖u‖L p(ν̂)

]
. (3.6)

The proof of (3.2) is done by optimising over m. Suppose Ê(u)1/2 ≥ ‖u‖L p(ν̂).
Consider the following two cases:
Case 1: p ≤ q ≤ p/δ̄. Note that p ≤ p/δ̄ forces δ̄ = 1 and therefore 1/(q δ̄) =
1/p, a1 = 0. Setting m → −∞ in (3.6) gives that

‖u‖Lq (σ̂ ) ≤ C Ê(u)a1/2‖u‖1−a1
L p(ν̂)

.

Case 2: q > p/δ̄. Setting

m = sup
{
m ≤ 0 : ν̂

1/(2δs )+1/p
m ≤ Ê(u)−1/2‖u‖L p(ν̂) ≤ 1

}
< ∞,

in (3.6), we obtain that

‖u‖Lq (σ̂ ) ≤ C Ê(u)a1/2‖u‖1−a1
L p(ν̂)

, where a1 =
[ 1/p − 1/(q δ̄)

1/p + 1/(2δs)

]+
.

Suppose that Ê(u)1/2 < ‖u‖L p(ν̂). We consider the two cases.
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Case 1: p ≤ q ≤ p/δ. In this case, a2 = 0. Setting m = 0 in (3.5) gives that

‖u‖Lq (μ̂) ≤ C Ê(u)a2/2‖u‖1−a2
L p(ν̂)

.

Case 2: q > p/δ. Setting

m = inf
{
m ≥ 0 : ν̂

1/(2δs )+1/p
m ≥ Ê(u)−1/2‖u‖L p(ν̂) > 1

}
< ∞,

in (3.5), we obtain that

‖u‖Lq (σ̂ ) ≤ C Ê(u)a2/2‖u‖1−a2
L p(ν̂)

, where a2 =
[ 1/p − 1/(qδ)

1/p + 1/(2δs)

]+
.

This proves (3.2) for q < ∞. Setting q → ∞ proves the case when q = ∞ as the
constant C is independent of q.

Suppose in addition that the condition (M.2) is satisfied, we prove that (a1, a2) is
the optimal pair of exponents. We first show that, for any dyadic triangle S ⊆ Ŝ, there
exists an hS ∈ F(Ŝ) such that

C−1∗ ≤ hS ≤ C∗ on S, supp(hS) ⊆ S̃, and Ê(hS) ≤ C∗ ν̂(S)−1/δs , (3.7)

where S̃ = {x ∈ Ŝ : dist(x, S) ≤ diam(S)}.
To see this, suppose first that S = 2−1

S for some m ∈ Z. Let h be the 1-harmonic
function in S with boundary value

h
∣∣
V1

(x) =
{
1, if x = (0, 0),
0, otherwise.

Let h(x) = h(−x) for x ∈ −S, and h(x) = 0 for x ∈ Ŝ\[S ∪ (−S)]. Then h ∈ F(Ŝ)

and satisfies (3.7). For a general dyadic triangle S = 2mτi (S), i,m ∈ Z, let hS =
h ◦ τ−1

i ◦ Fm
1 . Then hS ∈ F(Ŝ), and the property (3.7) follows from (2.2) and the

self-similar property (2.3).
Suppose that (3.4) holds. Let {Sm}m∈Z be the sequence of dyadic triangles in (M.2).

For each m ∈ Z, by the above, there exists an hm ∈ F(Ŝ) such that hm ∼ 1 on Sm ,
supp(hm) ⊆ S̃m and Ê(hm) � ν̂(Sm)−1/δs , where the notation A � B means that
A ≤ cB for some constant c > 0 independent of m, and A � B means that A � B
and B � A. In view of (M.2), it is easily seen that

‖hm‖Lq (σ̂ ) � ν̂(Sm)1/(qδ), ‖hm‖L p(ν̂) � ν̂(Sm)1/p, m → ∞,

and

‖hm‖Lq (σ̂ ) � ν̂(Sm)1/(q δ̄), ‖hm‖L p(ν̂) � ν̂(Sm)1/p, m → −∞.
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It follows from the above and (3.4) that

ν̂(Sm)1/(qδ) �
N∑

i=1

ν̂(Sm)−bi /(2δs )+(1−bi )/p, m → ∞,

and

ν̂(Sm)1/(q δ̄) �
N∑

i=1

ν̂(Sm)−bi /(2δs )+(1−bi )/p, m → −∞,

These inequalities imply that mini bi ≤ a2 ≤ a1 ≤ maxi bi . ��
Remark 3.7 (i) Some comments are desired on the interpretation of the exponents

appearing in the inequality (3.2). Recall that, on Euclidean spaceRd , the celebrated
Gagliardo–Nirenberg inequality takes the form

‖D ju‖Lq (Rd ) ≤ C‖Dmu‖aLr (Rd )
‖u‖1−a

L p(Rd )

where a ∈ [0, 1] is given by 1
q = j

d + ( 1
r − m

d

)
a + 1−a

p . The case corresponding
to setting of Dirichlet forms is the one when j = 0, m = 1 and r = 2, for which
the exponent a is given by

a = 1/p − 1/q

1/p − 1/2 + 1/d
. (3.8)

Some insights are gained by comparing (3.3) and (3.8):

(a) The exponents ai , i = 1, 2 in (3.2) are determined by the harmonic structure
on Ŝ (or equivalently the Dirichlet form Ê), the configuration parameters δ and
δ̄ of the measure σ̂ , and the embedding parameters p and q.

(b) The effective Sobolev dimension d of Ŝ, if exists, should depend only on the
harmonic structure. This dependence is expressed in (3.3) as the denominator
1/p + 1/(2δs). Comparing this to the denominator of (3.8), we see that the
Sobolev dimension d should be given by 1/p − 1/2+ 1/d = 1/p + 1/(2δs),
i.e. d = ds . This suggests the identification of the spectral dimension ds as the
effective Sobolev dimension of Ŝ. See [31, pp. 44–45] for more comments on
ds .

(ii) The inequality (3.4) includes the analogue on Ŝ of a specific case of the weighted
Sobolev inequalities on R

d in [5]. The weighted Sobolev inequalities established
in [5] take the form

‖|x |γ u‖Lq (Rd ) ≤ C‖|x |αDu‖aLr (Rd )
‖|x |βu‖1−a

L p(Rd )

where α, β, γ < 0 satisfy 1/r + α/d > 0, 1/p + β/d ≥ 1/q + γ /d > 0 and
1
q + γ

d = a
( 1
r + α−1

d

) + (1 − a)
( 1
p + β

d

)
. The case corresponding to setting of
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Dirichlet forms is the one when α = β = 0, r = 2 and 1/p ≥ 1/q + γ /ds > 0,
for which the weighted inequality reads

‖u‖Lq (|x |γ qdx) ≤ C ‖Du‖aL2(dx) ‖u‖1−a
L p(dx). (3.9)

As remarked in Example 3.5.(iii), the analogue on Ŝ of |x |γ q dx on R
d is

a Borel measure σ̂ on Ŝ satisfying the condition (M.1) with δ, δ̄ given by
1/δ = 1/δ̄ = 1 + γ q/ds . Therefore, the analogue of (3.9) on Ŝ should be
‖u‖Lq (σ̂ ) ≤ C Ê(u)a/2‖u‖1−a

L p(ν̂)
with a given by 1

q + γ
ds

= a
( 1
2 − 1

ds

) + 1−a
p .

This coincides with the result of (3.16) since the exponents for the measure σ̂ are
given by a1 = a2 = 1/p−1/q−γ /ds

1/p+1/ds−1/2 = a.

(iii) An additive version of (3.2), which is a corollary of (3.2) and Young’s inequality,
is derived in [17] for the study of vector fields on resistance spaces.

According to Theorem 3.6, the condition (M.1) is sufficient for the derivation of
Sobolev inequalities. The following theorem states that this condition is also necessary
for the validity of Sobolev inequalities of the form (3.4) with q < ∞.

Theorem 3.8 Let σ̂ be a Borel measure on Ŝ. Suppose that there exist some constants
p, q ∈ (0,∞), bi ∈ [0, 1] where 1 ≤ i ≤ N, and C > 0, such that (3.4) holds for all
u ∈ F(Ŝ). Then there exist constants 0 < δ ≤ δ̄ ≤ ∞ such that the condition (M.1)
is satisfied.

Proof Suppose that (3.4) holds. For any dyadic triangle S ⊆ Ŝ, as shown in the proof
of Theorem 3.6, there exists a piecewise harmonic function hS ∈ F(Ŝ) such that

hS � 1 on S, supp(hS) ⊆ S̃, and Ê(hS) � ν̂(S)−1/δs ,

where the notation S̃ and the relations � and � are the same as those in the proof of
Theorem 3.6. Applying (3.4) to hS gives that

σ̂ (S)1/q �
∑

i

ν̂(S)−bi /(2δs )+(1−bi )/p, (3.10)

Since q < ∞, it follows from the above that

sup
{
σ̂ (S) : S is a dyadic triangle with diam(S) = 1

}
< ∞.

Therefore, the first part of (M.1) is satisfied with δ̄ = ∞.
Furthermore, for any dyadic triangle S with diam(S) ≥ 1, by (3.10), σ̂ (S)1/q �

ν̂(S)1/p as ν̂(S) ≥ 1. Setting δ = p/q completes the proof. ��
Applying Theorem 3.6 to the cases when σ̂ = ν̂ and when σ̂ = μ̂, we obtain the

following.

Corollary 3.9 Let 1 ≤ p ≤ q ≤ ∞, q ≥ 2. Then
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(a) The inequality (3.2) holds with σ̂ = ν̂ and a1 = a2 = 1/p−1/q
1/p+1/(2δs )

∈ [0, 1). In
particular,

max
Ŝ

u ≤ C Ê(u)a/2‖u‖1−a
L p(ν̂)

, u ∈ F(Ŝ), (3.11)

with a = 1/p
1/p+1/(2δs )

. Conversely, the inequality (3.2) holds for all u ∈ F(Ŝ) if

and only if a1 = a2 = 1/p−1/q
1/p+1/(2δs )

.
(b) The inequality (3.2) holds with σ̂ = μ̂. The pair (a1, a2) given by (3.3) is optimal,

where δ = 1 and δ̄ = δs .

Proof The only thing needs a proof is that δ̄ = δs in (b). Clearly,

1/δ̄ = inf
ω∈W∗

lim inf
m→∞

[
− 1

m log 3
logμ

(
S[ω]m

)]
.

We show that
sup

ω∈W∗
lim

m→∞
[
tr
(
At[ω]mPA[ω]m

)]1/m = (3/5)2, (3.12)

from which the conclusion follows immediately.
Let Yi = PtAiP, i = 1, 2, 3. Then Yi , i = 1, 2, 3 have the same eigenvalues

{0, 1/5, 3/5}. It is easily seen that At[ω]mPA[ω]m = Yt[ω]mY[ω]m for every m ∈ N+
and every ω ∈ Wm , where Y[ω]m = Yωm · · ·Yω2Yω1 . Therefore, tr

(
Yt[ω]mY[ω]m

) ≤
C∗ (3/5)2m , which implies that

sup
ω∈W∗

lim
m→∞

[
tr
(
Yt[ω]mY[ω]m

)]1/m ≤ (3/5)2.

For the reverse, letω = 111 . . . ∈ W∗. Then limm→∞
[
tr
(
Yt[ω]mY[ω]m

)]1/m = (3/5)2.
This proves (3.12). ��
Remark 3.10 Setting p = 1, q = 2 in (3.11) gives the Nash inequality on Ŝ (see [8,
Theorem 4.1])

‖u‖2+4/ds
L2(ν̂)

≤ C Ê(u)‖u‖4/ds
L1(ν̂)

, u ∈ F(Ŝ).

Conclusions similar to that of Theorem 3.6 hold when the roles of σ̂ and ν̂ are
exchanged. More specifically, let σ̂ be a Borel measure on Ŝ satisfying the following
condition: there exist constants Cσ̂ ≥ 1 and 0 < δ ≤ δ̄ < ∞ such that

{
C−1

σ̂
ν̂(S)1/δ ≤ σ̂ (S), if 0 < diam(S) < 1,

C−1
σ̂

ν̂(S)1/δ̄ ≤ σ̂ (S), if diam(S) ≥ 1,
(M.1’)

for any dyadic triangle S ⊆ Ŝ. For measures σ̂ satisfying (M.1’), we have Theo-
rems 3.11 and 3.13 below, of which the proofs will be omitted as they are are similar
to those of Theorems 3.6 and 3.8.
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Theorem 3.11 Let 1 ≤ p ≤ q ≤ ∞, q ≥ 2. Suppose that σ̂ is a Borel measure on Ŝ

satisfying the condition (M.1’). Then

‖u‖Lq (ν̂) ≤ C
∑

i=1,2

Ê(u)ai /2‖u‖1−ai
L p(σ̂ )

, u ∈ F(Ŝ), (3.13)

where

a1 =
[ 1/(pδ) − 1/q

1/(pδ) + 1/(2δs)

]+
, a2 =

[ 1/(pδ̄) − 1/q

1/(pδ̄) + 1/(2δs)

]+
, (3.14)

and C > 0 is a constant depending only on the constant Cσ̂ in (M.1’).
Moreover, if there exists a sequence {Sm}m∈Z of dyadic triangles such that

lim
m→−∞ diam(Sm) = 0, lim

m→∞ diam(Sm) = ∞

and

1/δ = lim
m→−∞

log σ̂ (Sm)

log ν̂(Sm)
, 1/δ̄ = lim

m→∞
log σ̂ (Sm)

log ν̂(Sm)
, (M.2’)

then the pair of exponents given by (3.14) is optimal in the following sense: if

‖u‖Lq (ν̂) ≤ C
N∑

i=1

Ê(u)bi /2‖u‖1−bi
L p(σ̂ )

, u ∈ F(Ŝ), (3.15)

for some constants bi ∈ [0, 1] where 1 ≤ i ≤ N , N ∈ N+ and C > 0 independent of
u, then mini bi ≤ a2 ≤ a1 ≤ maxi bi .

Remark 3.12 Theorems 3.6 and 3.11 can be easily combined to yield the following

‖u‖Lq (σ̂2) ≤ C
∑

i=1,2

Ê(u)ai /2‖u‖1−ai
L p(σ̂1)

, u ∈ F(Ŝ), (3.16)

where σ̂2 satisfies (M.1) with δ̄ = δ̄2, δ = δ2, σ̂1 satisfies (M.1’) with δ̄ = δ̄1, δ = δ1,
and

a1 =
[1/(pδ1) − 1/(q δ̄2)

1/(pδ1) + 1/(2δ2)

]+
, a2 =

[1/(pδ̄1) − 1/(qδ2)

1/(pδ̄1) + 1/(2δs)

]+
.

Theorem 3.13 Let σ̂ be a Borel measure on Ŝ. Suppose that there exist some constants
p, q ∈ (0,∞), bi ∈ [0, 1] where 1 ≤ i ≤ N and C > 0 such that (3.15) holds for all
u ∈ F(Ŝ). Then there exist constants 0 < δ ≤ δ̄ ≤ ∞ such that the condition (M.1’)
is satisfied.

Corollary 3.14 The inequality (3.13) holds with σ̂ = μ̂. The pair (a1, a2) of exponents
given by (3.14) is optimal, where the constants δ̄ = 1 and δ is given by 1/δ = 1/δs +2.
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Remark 3.15 The value of δ in Corollary 3.14 follows from the fact that

inf
ω∈W∗

lim
m→∞

[
tr
(
At[ω]mPA[ω]m

)]1/m = 3/25,

which will be given in another work by the present authors.

We end this section with the corresponding Sobolev inequalities on the compact
gasket S, whose proof shall be omitted. Let σ be a finite Borel measure on S. For the
compact gasket, only the first part of the condition (M.1) is relevant, i.e.

σ
(
S[ω]m

) ≤ Cσ ν
(
S[ω]m

)1/δ̄
, for all ω ∈ W∗ and all m ∈ N, (3.17)

where Cσ > 0 and δ̄ ∈ [1,∞] are constants depending only on the Borel measure σ .
Similarly, we only need the first part of the condition (M.1’), i.e.

C−1
σ ν

(
S[ω]m

)1/δ ≤ σ
(
S[ω]m

)
, for all ω ∈ W∗ and all m ∈ N, (3.18)

where δ ∈ (0,∞] is a constant depending only on the Borel measure σ .

Theorem 3.16 Let 1 ≤ p ≤ q ≤ ∞, q ≥ 2, and let σ be a finite Borel measure on S.

(a) Suppose that σ satisfies (3.17). Then for any u ∈ F(S),

‖u − c‖Lq (σ ) ≤ C E(u)a/2‖u − c‖1−a
L p(ν). (3.19)

where c is any constant satisfying minS u ≤ c ≤ maxS u, and

a =
[ 1/p − 1/(q δ̄)

1/p + 1/(2δs)

]+
, (3.20)

and C > 0 is a constant depending only on the constant Cσ in (3.17). Therefore,
for any u ∈ F(S),

‖u‖Lq (σ ) ≤ C
[E(u)a/2‖u‖1−a

L p(ν) + ‖u‖L p(ν)

]
. (3.21)

Moreover, the exponent a given by (3.20) is optimal in the sense that if (3.19)

holds for some a ∈ [0, 1], then a ≥
[
1/p−1/(q δ̄)
1/p+1/(2δs )

]+
.

(b) Suppose that σ satisfies (3.18). Then the conclusions of (a) hold when σ and ν are
exchanged and the exponent (3.20) is replaced by

a =
[ 1/(pδ) − 1/q

1/(pδ) + 1/(2δs)

]+
,
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Remark 3.17 Setting σ = ν, δ = δ̄ = 1 and p = 1, q = 2 in (3.21) gives the Nash
inequality on S (see [8, Theorem 4.4] or [24, Theorem 5.3.3])

‖u‖2+4/ds
L2(ν)

≤ C
[E(u) + ‖u‖2L1(ν)

] ‖u‖4/ds
L1(ν)

≤ C
[E(u) + ‖u‖2L2(ν)

] ‖u‖4/ds
L1(ν)

, u ∈ F(S).

Corollary 3.18 For any u ∈ F(S),

‖u‖L2(μ) ≤ C
[E(u)(ds−1)/2‖u‖2−ds

L2(ν)
+ ‖u‖L2(ν)

]
.

If u ∈ F(S\V0) in addition, then by (3.19) with c = 0,

‖u‖L2(μ) ≤ C E(u)(ds−1)/2‖u‖2−ds
L2(ν)

. (3.22)

4 Semi-linear parabolic PDEs

In this section, we study a type of semi-linear parabolic equations on S, for which
energy estimates and existence and uniqueness of solutions are established (The-
orem 4.16). Moreover, the regularity of solutions to these PDEs is derived under
additional conditions.

We consider the following initial-boundary value problem for semi-linear parabolic
PDEs (see Definition 4.13 below for a precise interpretation)

{
∂t u dν = Lu dν + f (t, x, u,∇u)dμ, in (0, T ] × (S\V0),

u = 0 on (0, T ] × V0, u(0) = ψ,
(4.1)

whereψ ∈ L2(ν), and the coefficient f : [0, T ]×S×R
2 → R satisfies the following:

(i) There exists a constant K > 0 such that

| f (t, x, y, z) − f (t, x, ȳ, z̄)| ≤ K (|y − ȳ| + |z − z̄|), (A.1)

for all (t, x) ∈ [0, T ] × S, (y, z), (ȳ, z̄) ∈ R
2;

(ii) f (·, 0, 0) ∈ L2(0, T ; L2(μ)), that is,

‖ f (·, 0, 0)‖2L2(0,T ;L2(μ))
=

∫ T

0

∫

S

f (t, x, 0, 0)2μ(dx)dt < ∞. (A.2)

Remark 4.1 There exist different formulations of non-linear PDEs on fractals. For
example, a type of non-linear equations on fractals was considered by in [19], where
the non-linearity f (∇u) is a bounded mapping f : L2(μ) → L2(ν). The equations
studied there are essentially defined via a single measure (the Hausdorff measure ν).
Therefore, the PDEs studied in this paper are different in essence from those considered
in [19] in the way the gradients interact with the equations.
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Fromnowon,we shall use the notation 〈 f , g〉λ = ∫
S
f g dλ for anyBorelmeasureλ

on S and any λ-a.e. defined functions f , g on S, whenever the integral is well-defined.
As in the previous section, we denote by C∗ a generic universal constant which may
vary on different occasions.

Let {Pt }t≥0 be the Markov semigroup associated with the killed Brownian motion
on S, the diffusion processes associated with the Dirichlet form (E,F(S\V0)). {Pt }t≥0
admits a jointly continuous heat kernel p(t, x, y), which is C∞ in t (cf. [3, Theorem
1.5]). The following result on heat kernel and resolvent kernel estimatewas first proved
in [3, Theorems 1.5, 1.8].

Lemma 4.2 For each t > 0

p(t, x, y) ≤ C∗ t−ds/2, x, y ∈ S,

is valid. Let ρα, α > 0 be the α-resolvent kernel of L, that is,

ρα(x, y) =
∫ ∞

0
e−αt p(t, x, y) dt, x, y ∈ S.

Then ρα(·, ·) is Lipschitz continuous with respect to the resistance metric, i.e.

|ρα(x, z) − ρα(y, z)| ≤ CαR(x, y), x, y, z ∈ S,

for some constant Cα > 0 depending only on α.

In view of the joint continuity of p(t, x, y), the definition below is legitimate.

Definition 4.3 For anyRadonmeasureλonS,wedefine Ptλ(x) = ∫
S
p(t, x, y) λ(dy),

x ∈ S, t ∈ (0,∞).

Remark 4.4 (i) Let λ be a Radon measure on S. By the symmetry of p(t, ·, ·), it is
easy to see that 〈Pt (gλ), f 〉ν = 〈g, Pt f 〉λ for all f ∈ L2(ν), g ∈ L1(λ).

(ii) For any Radon measure λ on S, we have Ptλ ∈ Dom(L) for t > 0. In fact,
since p(t, x, y) ∈ C((0,∞) × S × S), we have Pt/2λ ∈ C(S), which implies
that Ptλ = Pt/2(Pt/2λ) ∈ Dom(L). Moreover, Ptλ ∈ C1(0,∞; L2(ν)) and
d
dt Ptλ = LPtλ.

(iii) Notice that, due to the singularity betweenν andμ, the contractivity‖Pt (gμ)‖L2(ν)

≤ ‖g‖L2(μ), t > 0 is no longer valid in general. In fact, for g ∈ L2(μ), g �= 0,
we have

lim
t→0

‖Pt (gμ)‖L2(ν) = ∞.

Tosee this, suppose contrarily that limt→0 ‖Pt (gμ)‖L2(ν)= supt>0 ‖Pt (gμ)‖L2(ν)

< ∞. Then there exists a unique g0 ∈ L2(ν) such that limt→0 Pt (gμ) = g0
weakly in L2(ν). On the other hand, for any v ∈ F(S\V0), we have

〈g0, v〉ν = lim
t→0

〈Pt (gμ), v〉ν = lim
t→0

〈g, Ptv〉μ = 〈g, v〉μ,
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where the last equality follows from the uniform convergence limt→0 Ptv = v

as a consequence of the convergence in F(S\V0). By the density of F(S\V0)

in C(S), it is seen that gμ = g0ν, which contradicts the fact that ν and μ are
mutually singular.

To study the semi-linear parabolic PDEs (4.1), let us first investigate the formal
integral ∫ t

0
Pt−s(g(s)μ) ds, (4.2)

which is the formal solution to the equation ∂t u dν = Lu dν + g(t) dμ. Since Pt is
not bounded from L2(μ) to L2(ν) (cf. Remark 4.4.(iii) above), there is a singularity
in the integrand of (4.2) at s = t . We shall show that (4.2) is a well-defined function
in the space L∞(0, T ; L2(ν))∩ L2(0, T ;F(S\V0)), and is jointly Hölder continuous
if g(t) is uniformly bounded in L2(μ). To formulate the results, it is convenient to
introduce several definitions.

Definition 4.5 For any v ∈ L2(ν), define

‖v‖F−1 = sup
{〈u, v〉ν : u ∈ F(S), ‖u‖F ≤ 1

}
,

where

‖u‖F = [‖u‖2L2(ν)
+ E(u)

]1/2
.

The space F−1(S) is defined to be the ‖ · ‖F−1 -completion of L2(ν).

Definition 4.6 Let u ∈ L2(0, T ;F(S)); that is,
∫ T
0 E1(u(t)) dt < ∞. An (F(S)-

valued) function u is said to have a weak derivative ∂t u in L2(0, T ;F−1(S)), if ∂t u
is an F−1(S)-valued function on [0, T ] satisfying
( ∫ T

0
‖∂t u(t)‖2F−1 dt

)1/2
< ∞ and

∫ T

0
〈u(t), ∂tv(t)〉ν dt = −

∫ T

0
〈∂t u(t), v(t)〉ν dt

for all v ∈ C1(0, T ;F(S)) with v(0) = v(T ) = 0.

The following lemma can be easily shown by a mollifier argument similar to that
of [7, Theorem 3, Section 5.9].

Lemma 4.7 Suppose that u ∈ L2(0, T ;F(S\V0)) has a weak derivative ∂t u ∈
L2(0, T ;F−1(S)). Then

(a) u ∈ C(0, T ; L2(ν)); (b) The function t �→ ‖u(t)‖2
L2(ν)

is absolutely continuous,

and d
dt ‖u(t)‖2

L2(ν)
= 2〈∂t u(t), u(t)〉ν for a.e. t ∈ [0, T ].

We derive properties of the convolution (4.2) in the following lemmas.
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Lemma 4.8 Let g ∈ L2(0, T ; L2(μ)). For each δ ∈ (0, T ), let

uδ(t) =
∫ (t−δ)+

0
Pt−s(g(s)μ) ds, t ∈ [0, T ]. (4.3)

Then uδ ∈ L∞(0, T ; L2(ν)) ∩ L2(0, T ;F(S\V0)) and

‖uδ‖2L∞(0,T ;L2(ν))
+

∫ T

0
eCε (T−s)E(uδ(s)) ds ≤ ε

∫ T

0
eCε (T−s)‖g(s)‖2L2(μ)

ds,

for any ε > 0, where Cε > 0 is a constant depending only on ε. Moreover,

‖∂t uδ‖L2(0,T ;F−1) ≤ C∗ ‖g‖L2(0,T ;L2(μ)).

Proof It is convenient to set g(t) = 0 for t < 0. Clearly, uδ(t) ∈ Dom(L), t ∈ [0, T ].
For each s ∈ (0, T ), since t �→ Pt−s(g(s)μ) = Pt−s−δ[Pδ(g(s)μ)], t ∈ (s+ δ, T ) is
a continuously differentiable L2(ν)-valued function, we see that uδ ∈ C1(δ, T ; L2(ν))

and

∂t uδ(t) = Pδ(g(t−δ)μ)+
∫ t−δ

0
LPt−s(g(s)μ) ds = Luδ(t)+Pδ(g(t−δ)μ). (4.4)

For any ε > 0 and each t ∈ (0, T ), testing (4.4) against uδ and applying Corollary 3.18
gives that

1

2

d

dt
‖uδ(t)‖2L2(ν)

= 〈Pδ(g(t − δ)μ), uδ(t)〉ν − E(uδ(t))

= 〈g(t − δ), Pδ(uδ(t))〉μ − E(uδ(t))

≤ Cε E[Pδ(uδ(t))]ds−1‖Pδ(uδ(t))‖2(2−ds)
L2(ν)

−E(uδ(t)) + ε‖g(t − δ)‖2L2(μ)

≤ Cε E(uδ(t))
ds−1‖uδ(t)‖2(2−ds )

L2(ν)
− E(uδ(t)) + ε‖g(t − δ)‖2L2(μ)

≤ Cε ‖uδ(t)‖2L2(ν)
− 1

2
E(uδ(t)) + ε‖g(t − δ)‖2L2(μ)

,

where Cε > 0 denotes a generic constant depending only on ε which may vary on
different occasions. By Grönwall’s inequality and the fact that uδ(t) = 0, t ∈ [0, δ],
we deduce

‖uδ(t)‖2L2(ν)
+

∫ t

0
eCε (t−s)E(uδ(s)) ds ≤ ε

∫ (t−δ)+

0
eCε (t−s)‖g(s)‖2L2(μ)

ds. (4.5)

By (4.4) again, for any v ∈ F(S\V0),

|〈∂t uδ(t), v〉ν | ≤ ∣∣〈g(t − δ), Pδv〉μ
∣∣ + E(uδ(t))

1/2E(v)1/2
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≤ C∗ ‖g(t − δ)‖L2(μ)E(Pδv)1/2 + E(uδ(t))
1/2E(v)1/2

≤ C∗
[‖g(t − δ)‖L2(μ) + E(uδ(t))

1/2]‖v‖F .

The above inequality also holds for v ∈ F(S). This can be seen by considering the
F-orthogonal projection of v on F(S\V0). Therefore,

‖∂t uδ(t)‖F−1 ≤ C∗
[‖g(t − δ)‖L2(μ) + E(uδ(t))

1/2], t ∈ (δ, T ],

which, together with (4.5), implies the desired estimate for ‖∂t uδ‖L2(0,T ;F−1). ��
Lemma 4.9 The limit

u(t) = lim
δ→0

∫ (t−δ)+

0
Pt−s(g(s)μ) ds, (4.6)

exists with respect to the norm ‖ · ‖L∞(0,T ;L2(ν)) + ‖ · ‖L2(0,T ;F), and satisfies

‖u‖2L∞(0,T ;L2(ν))
+

∫ T

0
eCε (T−s)E(u(s)) ds ≤ ε

∫ T

0
eCε (T−s)‖g(s)‖2L2(μ)

ds.

Moreover, u(t) has a weak derivative ∂t u in L2(0, T ;F−1), and

‖∂t u‖L2(0,T ;F−1) ≤ C∗ ‖g‖L2(0,T ;L2(μ)).

Proof As before, we set g(t) = 0 for t < 0. Let δ, δ′ ∈ (0, T ) and w = uδ − uδ′ ,
where uδ are the functions defined by (4.3). By (4.4), we have

∂tw = Lw + Pδ[(g(t − δ) − g(t − δ′))μ] + (Pδ − Pδ′)(g(t − δ′)μ),

from which it follows that

1

2

d

dt
‖w(t)‖2L2(ν)

= −E(w(t)) + 〈Pδ[(g(t − δ) − g(t − δ′))μ], w(t)〉ν
+〈(Pδ − Pδ′)(g(t − δ′)μ),w(t)〉ν . (4.7)

The first term on the right hand side of (4.7) can be estimated in the same way as in
the proof of Lemma 4.8, which yields that

〈Pδ[(g(t − δ) − g(t − δ′))μ], w(t)〉ν ≤ 1

2
‖g(t − δ) − g(t − δ′)‖2L2(μ)

+1

2
E(w(t))ds−1‖w(t)‖2(2−ds)

L2(ν)
.

For the second term on the right hand side of (4.7), we have

〈(Pδ − Pδ′)(g(t − δ′)μ),w(t)〉ν
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≤ C∗E((Pδ − Pδ′)w(t))(ds−1)/2‖(Pδ − Pδ′)w(t)‖2−ds
L2(ν)

‖g(t − δ′)‖L2(μ).

By the spectral decomposition,

‖(Pδ − Pδ′)w(t)‖2L2(ν)
=

∫ ∞

0
(e−λδ − e−λδ′

)2d‖Eλw(t)‖2L2(ν)

≤
∫ ∞

0
(1 − e−λ|δ−δ′|)2d‖Eλw(t)‖2L2(ν)

≤ |δ − δ′|
∫ ∞

0
λd‖Eλw(t)‖2L2(ν)

= |δ − δ′|E(w(t)),

which, together with the fact that E((Pδ − Pδ′)w(t)) ≤ E(w(t)), implies that

〈(Pδ − Pδ′)(g(t − δ′)μ),w(t)〉ν ≤ C∗|δ − δ′|1−ds/2E(w(t))1/2‖g(t − δ′)‖L2(μ).

Therefore, we deduce from (4.7) that

d

dt
‖w(t)‖2L2(ν)

≤ −E(w(t)) + C∗‖w(t)‖2L2(ν)
+ C∗‖g(t − δ) − g(t − δ′)‖2L2(μ)

+C∗|δ − δ′|2−ds‖g(t − δ′)‖2L2(μ)
.

It follows from the above inequality and Grönwall’s inequality that

‖w‖L∞(0,T ;L2(ν)) + ‖w‖L2(0,T ;F) ≤ C∗
[
|δ − δ′|2−ds‖g‖L2(0,T ;L2(μ))

+
∫ T

0
‖g(t − δ) − g(t − δ′)‖2L2(μ)

dt
]
.

Therefore, {uδ} is a Cauchy sequence with respect to the norm ‖ · ‖L∞(0,T ;L2(ν)) + ‖ ·
‖L2(0,T ;F), which proves the convergence of (4.6). Moreover, the desired estimates
for u follows readily from the similar estimates for uδ . ��
Definition 4.10 By virtue of Lemma 4.9, the convolution

∫ t
0 Pt−s(g(s)μ) ds can be

defined to be the limit in (4.6).

Lemma 4.11 If g ∈ L∞(0, T ; L2(μ)), then the convolution u defined by (4.6) is jointly
continuous in [0, T ] × S. Moreover, for any 0 < θ < 3

2 (1 − ds/2),

|u(t, x) − u(s, y)| ≤ ‖g‖L∞(0,T ;L2(μ))

[
Cθ |t − s|θ + CT R(x, y)1/2

]
, (4.8)

where Cθ > 0 is a constant depending only on θ , and CT > 0 one depending only on
T .

Remark 4.12 The authors believe that 1/2 is the correct Hölder exponent in x ∈ S

for (4.6) in general, which is suggested by the fact that a generic u ∈ F(S) has only
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1
2 -Hölder continuity [cf. (2.4)]. As a matter of fact, the convolution (4.6) only has
mild regularity in general due to the singularity between ν and μ [cf. Remark 4.14.(ii)
below].

Proof Let g(t) = 0 for t < 0. We first show that

|u(t, x) − u(t, y)| ≤ CT R(x, y)1/2, x, y ∈ S, (4.9)

where CT > 0 is a constant depending only on T . Denote ps,x (y) = p(s, x, y). By
the definition of u(t), we have

|u(t, x) − u(t, y)| =
∣∣∣
∫ t

0
〈g(t − s), ps,x − ps,y〉μ ds

∣∣∣

≤ ‖g‖L∞(0,T ,L2(μ))

∫ t

0
‖ps,x − ps,y‖L2(μ) ds. (4.10)

By the Sobolev inequality (3.22),

‖ps,x − ps,y‖L2(μ) ≤ C E(ps,x − ps,y)
(ds−1)/2‖ps,x − ps,y‖2−ds

L2(ν)
.

Let −L = ∫ ∞
0 λ dEλ be the spectral representation. Then

E(ps,x − ps,y) = E(Ps/2(ps/2,x − ps/2,y))

=
∫ ∞

0
λe−λs d‖Eλ(ps/2,x − ps/2,y)‖2L2(ν)

≤ s−1‖ps/2,x − ps/2,y‖2L2(ν)
, (4.11)

Therefore

‖ps,x − ps,y‖L2(μ) ≤ Cs−(ds−1)/2‖ps/2,x − ps/2,y‖ds−1
L2(ν)

‖ps,x − ps,y‖2−ds
L2(ν)

,

By the inequality above and Hölder’s inequality,

∫ t

0
‖ps,x−ps,y‖L2(μ)ds ≤ C

( ∫ t

0
s1−ds ds

)1/2( ∫ t

0
‖ps/2,x−ps/2,y‖2L2(ν)

ds
)(ds−1)/2

×
( ∫ t

0
‖ps,x − ps,y‖2L2(ν)

ds
)1−ds/2

≤ CT

( ∫ t

0
‖ps/2,x − ps/2,y‖2L2(ν)

ds
)1/2

,

where we have used the fact that ps,x − ps,y = Ps/2(ps/2,x − ps/2,y) and the L2(ν)-
contractivity of Ps/2 for the last inequality.
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Let ρα(·, ·) be the α-resolvent kernel. By the Chapman–Kolmogorov equation,

∫ t

0
‖ps/2,x − ps/2,y‖2L2(ν)

ds ≤ eαt
∫ ∞

0
e−αs‖ps/2,x−ps/2,y‖2L2(ν)

ds

= eαt
∫ ∞

0
e−αs[p(s, x, x)−2p(s, x, y)+p(s, y, y)] ds

= eαt [ρα(x, x) − 2ρα(x, y) + ρα(y, y)],

which, together with Lemma 4.2, implies that

∫ t

0
‖ps/2,x − ps/2,y‖2L2(ν)

ds ≤ CαR(x, y).

Therefore, we deduce that

∫ t

0
‖ps,x − ps,y‖L2(μ)ds ≤ CT R(x, y)1/2. (4.12)

Now the Hölder continuity (4.9) follows readily from (4.10) and (4.12).
Next, we turn to the Hölder continuity of u(t, x) in t . Let t ≥ 0, δ > 0. By the

definition of u,

u(t + δ, x) − u(t, x) =
∫ t+δ

t
Pt+δ−s(g(s)μ)(x) ds

+
∫ t

0

[
Pt+δ−s(g(s)μ)(x) − Pt−s(g(s)μ)(x)

]
ds

= I1(δ) + I2(δ).

For I1(δ), in the same way as (4.10), we have

|I1(δ)| =
∣∣∣
∫ δ

0
Ps(g(t − s + δ)μ)(x) ds

∣∣∣ ≤ ‖g‖L∞(0,T ;L2(μ))

∫ δ

0
‖ps,x‖L2(μ) ds.

By the Sobolev inequality (3.22),

‖ps,x‖L2(μ) ≤ CE(ps,x )
(ds−1)/2‖ps,x‖2−ds

L2(ν)
.

It follows from an argument similar to (4.11) that E(ps,x ) ≤ s−1‖ps/2,x‖2L2(ν)
. There-

fore,

‖ps,x‖L2(μ) ≤ Cs−(ds−1)/2‖ps/2,x‖ds−1
L2(ν)

‖ps,x‖2−ds
L2(ν)

.
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Using the Chapman–Kolmogorov equation and the estimate p(t, x, y) ≤ C∗ t−ds/2,
we deduce from the above inequality that

∫ δ

0
‖ps,x‖L2(μ) ds ≤ C

∫ δ

0
s−(ds−1)/2 p(s, x, x)(ds−1)/2 p(2s, x, x)1−ds/2 ds

≤ C∗
∫ δ

0
s−3ds/4+1/2 ds = C∗ δ

3
2 (1−ds/2).

Thus
|I1(δ)| ≤ C∗‖g‖L∞(0,T ;L2(μ))δ

3
2 (1−ds/2). (4.13)

For I2(δ), by the same argument as in the estimate of |I1(δ)|, we have

|I2(δ)| ≤ ‖g‖L∞(0,T ;L2(μ))

∫ t

0
‖ps+δ,x − ps,x‖L2(μ) ds

≤ C∗‖g‖L∞(0,T ;L2(μ))

∫ t

0
‖ps/2+δ,x − ps/2,x‖ds−1

L2(ν)
‖ps+δ,x

−ps,x‖2−ds
L2(ν)

ds

s(ds−1)/2

≤ C∗‖g‖L∞(0,T ;L2(μ))

∫ t

0
‖ps/2+δ,x − ps/2,x‖L2(ν)

ds

s(ds−1)/2
. (4.14)

For any θ ∈ [0, 1], by the spectral representation,

‖ps/2+δ,x − ps/2,x‖2L2(ν)
= ‖(Ps/4+δ − Ps/4)ps/4,x‖2L2(ν)

=
∫ ∞

0
(1 − e−δλ)2e−sλ/2 d‖Eλ ps/4,x‖2L2(ν)

≤ δ2θ
∫ ∞

0
λ2θe−sλ/2 d‖Eλ ps/4,x‖2L2(ν)

≤ C∗ (δ/s)2θ‖ps/4,x‖2L2(ν)
= C∗ (δ/s)2θ p(s/2, x, x)

≤ C∗δ2θ s−2θ−ds/2,

which, together with (4.14), implies that

|I2(δ)| ≤ C∗‖g‖L∞(0,T ;L2(μ))δ
θ

∫ t

0
s
3
2 (1−ds/2)−θ ds

s
.

Therefore, for any θ < 3
2 (1 − ds/2), the estimate

|I2(δ)| ≤ Cθ‖g‖L∞(0,T ;L2(μ))δ
θ , (4.15)

is valid. Combining (4.13) and (4.15), we deduce that

|u(t, x) − u(s, x)| ≤ Cθ‖g‖L∞(0,T ;L2(μ))|t − s|θ , (4.16)
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for all 0 < θ < 3
2 (1 − ds/2).

Now the joint Hölder continuity (4.8) follows readily from (4.9) and (4.16). ��
Definition 4.13 A function u is called a weak solution to the PDE (4.1) if:

(WS.1) u ∈ L2(0, T ;F(S\V0)) andu has aweakderivative ∂t u in L2(0, T ;F−1(S));
(WS.2) For any v ∈ F(S\V0),

〈∂t u(t), v〉ν = −E(
u(t), v

) + 〈 f (t, u(t),∇u(t)), v〉μ, a.e. t ∈ [0, T ];

(WS.3) limt→0 u(t) = ψ in L2(ν).

Remark 4.14 (i) The term 〈 f (t, u(t),∇u(t)), v〉μ in (WS.2) is legitimate since ∇u is
μ-a.e. defined and u ∈ F(S) ⊆ C(S).

(ii) Notice that, in general, the Eq. (4.1) does not admit a solution u such that u(t) ∈
Dom(L) and ∂t u(t) ∈ L2(ν) for a.e. t ∈ [0, T ]. Otherwise, the functional v �→
〈 f (t, u,∇u), v〉μ will be L2(ν)-bounded, which contradicts with the singularity
between ν and μ. Therefore, solutions to non-linear parabolic PDEs on S can
only have mild regularity in general. This is a remarkable feature of non-linear
PDEs on S, which suggests a significant distinction between the PDE theory on
Euclidean spaces and that on fractals.

(iii) We shall show that if u is a weak solution to (4.1) then u ∈ C((0, T ] × S) (see
Theorem 4.16 below). Therefore, Definition 4.13 coincides with the definition
of solutions in [27, Definition 3.17]. The joint continuity of solutions is needed
for the validity of the Feynman–Kac representation given by [27, Theorem 3.19],
which will be crucial in the study of the Burgers equations on S (see Sect. 5).

Proposition 4.15 Suppose that g ∈ L2(0, T ; L2(μ)). Then the initial and boundary
problem to the PDE

{
∂t u dν = Lu dν + g(t, x)dμ, in (0, T ] × (S\V0),

u = 0 on (0, T ] × V0, u(0) = ψ
(4.17)

admits a unique weak solution u given by

u(t) = Ptψ +
∫ t

0
Pt−s(g(s)μ)ds, t ∈ [0, T ].

Moreover

‖u‖L∞(0,T ;L2(ν)) + ‖u‖L2(0,T ;F) + ‖∂t u‖L2(0,T ;F−1)

≤ C∗
(‖ψ‖L2(ν) + ‖g‖L2(0,T ;L2(μ))

)
. (4.18)

Proof Clearly, we only need to prove for the case whenψ = 0. Let uδ be the truncated
convolution defined by (4.3), and let u be the convolution given by (4.6). For any
v ∈ F(S\V0), by (4.4),

〈∂t uδ(t), v〉ν = −E(uδ(t), v) + 〈Pδ(g(t − δ)μ), v〉ν
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= −E(uδ(t), v) + 〈g(t − δ), Pδv〉μ, a.e. t ∈ (0, T ].

Since limδ→0 Pδv = v uniformly, by considering a subsequence if necessary and
setting δ → 0, we deduce that

〈∂t u(t), v〉ν = −E(u(t), v) + 〈g(t), v〉μ, a.e. t ∈ (0, T ].

Therefore, u is a weak solution to (4.17).
The estimate (4.18) follows readily from Lemma 4.9, and the uniqueness of solu-

tions is an immediate consequence of (4.18). ��
We are now in a position to state and give the proof of the main result of this section.

Theorem 4.16 Suppose that (A.1) and (A.2) hold. Then (4.1) admits a unique weak
solution u satisfying the following estimate

‖u‖L∞(0,T ;L2(ν)) + ‖u‖L2(0,T ;F) + ‖∂t u‖L2(0,T ;F−1)

≤ CK ,T
(‖ψ‖L2(ν) + ‖ f (·, 0, 0)‖L2(0,T ;L2(μ))

)
, (4.19)

where CK ,T > 0 is a constant depending only on T and the Lipschitz constant K in
(A.1). Moreover, if ũ is the weak solution to (4.1) with initial value ψ̃ ∈ L2(ν), then

‖u − ũ‖L∞(0,T ;L2(ν)) + ‖u − ũ‖L2(0,T ;F)

+‖∂t u − ∂t ũ‖L2(0,T ;F−1) ≤ CK ,T ‖ψ − ψ̃‖L2(ν). (4.20)

Suppose, in addition, that ψ ∈ F(S\V0) and f (·, 0, 0) = 0. Then

‖u‖L∞(0,T ;F) ≤ CK ,T E(ψ)1/2. (4.21)

Moreover, u(t, x) is jointly continuous in (0, T ] × S, with θ -Hölder continuity in
t ∈ (0, T ] for any θ < 3

2 (1 − ds/2) and 1
2 -Hölder continuity in x ∈ S with respect to

the resistance metric.

Proof We first prove the existence. Let u0(t) = Ptψ, t ∈ [0, T ]. By Proposition 4.15,
we may define a sequence {un}n∈N+ in L2(0, T ;F(S\V0)) inductively by

{
∂t un dν = Lun dν + f n−1(t) dμ,

un|V0 = 0, un(0) = ψ,
(4.22)

where f n−1(t, x) = f (t, x, un−1(t, x),∇un−1(t, x)). By Proposition 4.15, un ∈
L2(0, T ;F(S\V0)), ∂t un ∈ L2(0, T ;F−1(S)). Denote wn = un − un−1, n ∈ N+.
By (4.22), wn+1, n ∈ N+ is the solution to

{
∂tw

n+1 dν = Lwn+1 dν + [ f n(t) − f n−1(t)] dμ,

wn+1|V0 = 0, wn+1(0) = 0.
(4.23)
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For any ε ∈ (0, 1), by Lemma 4.7.(b), testing (4.23) against wn+1(t) gives that

1

2

d

dt
‖wn+1(t)‖2L2(ν)

≤ −E(wn+1(t)) + 1

32
E(wn(t)) + ε2‖wn(t)‖2L2(μ)

+CK ‖wn+1(t)‖2L2(μ)

)
,

where, and in the rest of the proof, CK > 0 denotes a generic constant depending only
on K which may vary on different occasions. Since wn|V0 = 0, by (2.5), we have
‖wn(t)‖2

L2(μ)
≤ C2∗E(wn(t)). Moreover, by Corollary 3.18,

1

2

d

dt
‖wn+1(t)‖2L2(ν)

≤ −(1 − CK ε2)E(wn+1(t))

+
( 1

32
+ C2∗ε2

)
E(wn(t)) + CK C2

ε ‖wn+1(t)‖2L2(ν)
,

where Cε > 0 is a constant depending only on ε. By choosing ε > 0 sufficiently
small, we have that

d

dt
‖wn+1(t)‖2L2(ν)

≤ −E(wn+1(t)) + 1

8
E(wn(t)) + CK ‖wn+1(t)‖2L2(ν)

, (4.24)

By the above and Grönwall’s inequality,

‖wn+1(t)‖2L2(ν)
+

∫ t

0
eCK (t−s)E(wn+1(s)) ds ≤ 1

8

∫ t

0
eCK (t−s)E(wn(s)) ds, (4.25)

which implies that

‖um − um−1‖L∞(0,T ;L2(ν)) +
(∫ T

0
eCK (T−s)E(um(s) − um−1(s)) ds

)1/2

≤ 2−m+n
[
‖un − un−1‖L∞(0,T ;L2(ν))

+
( ∫ T

0
eCK (T−s)E(un(s) − un−1(s)) ds

)1/2]
, (4.26)

for all m ≥ n, and that

‖un‖L∞(0,T ;L2(ν)) +
( ∫ T

0
eCK (T−s)E(un(s)) ds

)1/2

≤ ‖u1‖L∞(0,T ;L2(ν)) +
( ∫ T

0
eCK (T−s)E(u1(s)) ds

)1/2

.
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Moreover, by Proposition 4.15, we have

‖u1‖L∞(0,T ;L2(ν)) +
( ∫ T

0
eCK (T−s)E(u1(s)) ds

)1/2

≤ C∗ eCK T (‖ψ‖L2(ν) + ‖ f (·, u0,∇u0)‖L2(0,T ;L2(μ))

)

≤ C∗ eCK T (‖ψ‖L2(ν) + ‖u0‖L2(0,T ;F) + ‖ f (·, 0, 0)‖L2(0,T ;L2(μ))

)
.

Let −L = ∫ ∞
0 λ dEλ be the spectral decomposition. Then

‖u0‖2L2(0,T ;F)
≤ T ‖ψ‖2L2(ν)

+
∫ T

0
E(Ptψ) dt

= T ‖ψ‖2L2(ν)
+

∫ T

0

∫ ∞

0
λe−2tλ d‖Eλψ‖2L2(ν)

dt

= T ‖ψ‖2L2(ν)
+ 1

2

∫ ∞

0
(1 − e−2Tλ) d‖Eλψ‖2L2(ν)

≤ (T + 1)‖ψ‖2L2(ν)
.

Therefore, we obtain that

‖un‖L∞(0,T ;L2(ν)) +
( ∫ T

0
eCK (T−s)E(un(s)) ds

)1/2

≤ C∗ eCK T (‖ψ‖L2(ν) + ‖ f (·, 0, 0)‖L2(0,T ;L2(μ))

)
, n ∈ N+. (4.27)

Furthermore, by (4.22), um − un is the solution to

{
∂t (um − un) dν = L(um − un) dν + [ f m−1(t) − f n−1(t)] dμ,

(um − un)|V0 = 0, (um − un)(0) = 0.

For any v ∈ F(S\V0), by the above equation,

∣∣〈∂t (um − un), v〉ν
∣∣ ≤ [E(um − un)1/2 + CKE(um−1 − un−1)1/2

]E(v)1/2,

which implies that

‖∂t (um − un)‖F−1 ≤ E(um − un)1/2 + CKE(um−1 − un−1)1/2. (4.28)

By (4.26) and (4.27), we see that

‖∂t (um−un)‖L2(0,T ;F−1)≤C∗ eCK T 2−(m−n)
(‖ψ‖L2(ν) + ‖ f (·, 0, 0)‖L2(0,T ;L2(μ))

)
.

Therefore, {un} is a ‖ · ‖∗-Cauchy sequence satisfying

‖un‖∗ ≤ C∗ eCK T (‖ψ‖L2(ν) + ‖ f (·, 0, 0)‖L2(0,T ;L2(μ))

)
, n ∈ N+,
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where

‖u‖∗ = ‖u‖L∞(0,T ;L2(ν)) + ‖u‖L2(0,T ;F) + ‖∂t u‖L2(0,T ;F−1).

Therefore, there exists a u ∈ L2(0, T ;F(S\V0)) such that limn→∞ ‖un − u‖∗ = 0.
It is clear that u is a weak solution to (4.1), and the estimate (4.19) holds as E1/2(·)
and ‖ · ‖F are equivalent on F(S\V0). This proves the existence.

Suppose that ũ is a weak solution to (4.1) with initial value ψ̃ . By an argument
similar to (4.24) and (4.28), it can be shown that

d

dt
‖u(t) − ũ(t)‖2L2(ν)

≤ −1

2
E(u(t) − ũ(t)) + CK ‖u(t) − ũ(t)‖2L2(ν)

,

and that

‖∂t (u − ũ)‖F−1 ≤ CK E(u − ũ)1/2.

The estimate (4.20) follows readily from the above two inequalities. The uniqueness
of solutions is now an immediate consequence of (4.20).

Suppose, in addition, thatψ ∈ F(S\V0) and f (·, 0, 0) = 0. Then (4.25) also holds
for n = 0 with u−1 = 0. Therefore,

∫ T

0
E(um(t)) dt ≤ eCK T

∫ T

0
E(u0(t)) dt = eCK T

∫ T

0
E(Ptψ) dt ≤ T eCK T E(ψ),

which implies that ∫ T

0
E(u(t)) dt ≤ T eCK T E(ψ). (4.29)

Now for any δ ∈ (0, T ), u is the solution to

{
∂t u dν = Lu dν + f (t, x, u,∇u) dμ, t ∈ (t0, t0 + δ],
u|V0 = 0, u|t=t0 = u(t0).

Applying (4.29) to the above PDE and using ‖u‖2
L2(ν)

≤ C∗E(u) gives that

1

δ

∫ t0+δ

t0
E(u(t)) dt ≤ eCK δ E(u(t0)), a.e. t0 ∈ [0, T − δ] and any δ > 0. (4.30)

We claim that (4.30) implies (4.21). We first show the following lemma.

Lemma Let h(t) be a locally integrable function on [0,∞) satisfying

1

δ

∫ t+δ

t
h(s) ds ≤ Lδ + h(t), a.e. t ∈ [0,∞) and any δ > 0, (4.31)

for some constant L > 0. Then h(t) − h(s) ≤ 6L(t − s), a.e. 0 < s ≤ t < ∞.
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To prove the lemma, suppose first that h is differentiable on (0,∞). Suppose the
contrary that h(t) − h(s) > 3L(t − s) for some 0 < s < t < ∞. Then there exists an
t0 ∈ (s, t) such that h′(t0) > 3L . Moreover, h(r)−h(t0) > 3L(r−t0), r ∈ [t0, t0+δ]
for δ > 0 sufficiently small. This implies that 1

δ

∫ t0+δ

t0
h(r) dr > 3Lδ/2+ h(t0), which

contradicts (4.31). This proves the lemma for differentiable functions h.
For general h, let hε(t) = 1

ε

∫ t+ε

t h(s) ds, ε > 0. Then hε is differentiable and
satisfies (4.31) with L replaced by 2L . The above case gives that hε(t) − hε(s) ≤
6L(t − s). It remains to apply the Lebesgue differentiation theorem to complete the
proof of the lemma.

Now by (4.30) and Jensen’s inequality, the function h(t) = log[E(u(t))] satisfies
(4.31) with L = CK . It follows from the previous lemma that

E(u(t)) ≤ eCK (t−s) E(u(s)), a.e. 0 < s ≤ t ≤ T .

Using the above inequality and (4.29) again, we deduce that

E(u(t)) ≤ 1

t

∫ t

0
eCK (t−s) E(u(s)) ds ≤ eCK t E(ψ), a.e. t ∈ (0, T ],

which implies (4.21).
We now prove the joint Hölder continuity. Let g(t, x) = f (t, x, u(t, x),∇u(t, x)).

Then u is the solution to the PDE

∂t u dν = Lu dν + g(t)dμ.

By Proposition 4.15,

u(t) = Ptψ +
∫ t

0
Pt−s(g(s)μ) ds.

By (4.21) and the Sobolev inequality (3.22), it is easily seen that

‖g‖L∞(0,T ;L2(μ)) < ∞.

We now can apply Lemma 4.11 and Proposition 4.15 and to deduce the desired joint
Hölder continuity. ��

5 The Burgers equations

As an application of Theorem 4.16 and the Feynman–Kac representation for (back-
ward) parabolic PDEs on S in [27, Theorem 3.19], we study the initial-boundary value
problem for the following analogue on S of the Burgers equations on R

{
∂t u dν = Lu dν + u∇u dμ, in (0, T ] × (S\V0),

u = 0 on (0, T ] × V0, u(0) = ψ,
(5.1)
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where ψ ∈ F(S\V0). We shall prove the existence and uniqueness of solutions to the
Eq. (5.1), and derive the regularity of the solutions.

Remark 5.1 We would like to point out a difference between the Burgers equations
on S and those on R. The Burgers equations on R can be exactly solved with an
explicit formula for the solutions via the Cole–Hopf transformation, and properties
of solutions can be derived using the explicit formula. However, this Cole–Hopf type
of transformation is not available on S. The Cole–Hopf transformation reduces the
Burgers equation on R for u to a heat equation for −∇(log u). In contrast, on S, the
formal expression L[∇(log u)] is not well-defined, since the gradient ∇(log u) is only
μ-a.e. defined and therefore ∇(log u) /∈ F(S) due to the singularity between ν and μ.
Hence, different approaches must be employed for the study of (5.1).

Let us start with the Feynman–Kac representation for solutions to parabolic PDEs
on S. Let {Xt }t≥0 and {Wt }t≥0 be Brownianmotion and the representingmartingale on
S respectively, i.e. {Xt }t≥0 is the diffusion process associated with the form (E,F(S)),
and {Wt }t≥0 is the uniquemartingale additive functional havingμ as its energymeasure
such that M [u]

t = ∫ t
0 ∇u(Xr ) dWr for any u ∈ F(S), where M [u] is the martingale

part of u(Xt ) − u(X0) (cf. [25, Theorem 5.4] and [27, Section 2]). The following
result was given in [27, Theorem 3.19], and is an analogue on S of the representation
theorem for semi-linear PDEs on Rd established by Peng in [29]. See [27, Section 3]
for the definition of solutions to backward stochastic differential equations (BSDEs)
on S.

Theorem 5.2 If thePDE (4.1) admits aweak solution u jointly continuous in (0, T ]×S,
then

(Yt , Zt ) = (u(T − t, Xt ),∇u(T − t, Xt ))

is the unique solution to the BSDE

{
dYt = − f (T − t, Xt ,Yt , Zt )d〈W 〉t + ZtdWt , t ∈ [0, σ (T )),

Yσ (T ) = �(σ (T ), Xσ (T ) ),

on
(
�,Px

)
for each x ∈ S, where σ (T ) = T ∧ inf{t > 0 : Xt ∈ V0}, and

�(t, x) =
{

0, if (t, x) ∈ [0, T ) × V0,

ψ(x), if (t, x) ∈ {T } × S\V0.

Moreover, the solution to (4.1) has the representation u(T , x) = Y0 = Ex (Y0) for all
x ∈ S.

Proposition 5.3 TheBurgers equation (5.1) admits a uniqueweak solution u satisfying
the maximal principle below

‖u‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ .
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Moreover,

‖u‖L∞(0,T ;L2(ν)) + ‖u‖L2(0,T ;F) + ‖∂t u‖L2(0,T ;F−1) ≤ C, (5.2)

for some constant C > 0 depending only on ‖ψ‖L∞ and T . The solution u is jointly
continuous in (0, T ]×S, with θ -Hölder continuity in t ∈ (0, T ] for any θ < 3

2 (1−ds/2)
and 1

2 -Hölder continuity in x ∈ S with respect to the resistance metric.

Proof Existence. We define the sequence {un}n∈N ⊆ L2(0, T ;F) by induction as
follows. Let u0(t) = Ptψ . Then ‖u0‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ . Suppose that un−1 with
‖un−1‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ has been defined. The function un is defined to be the
unique weak solution to the PDE (cf. Theorem 4.16)

{
∂t undν = Lun dν + un−1∇un dμ, in (0, T ] × (S\V0),

un = 0 on (0, T ] × V0, un(0) = ψ.

To verify the definition of {un}, we must show that ‖un‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ .
Without loss of generality, we only need to show that ‖un(T )‖L∞ ≤ ‖ψ‖L∞ . By
Theorem 5.2, (Yt , Zt ) = (un(T − t, Xt ),∇un(T − t, Xt )) is the unique solution to
the BSDE

{
dYt = −un−1(T − t, Xt ) Zt d〈W 〉t + Zt dWt , t ∈ [0, σ (T )),

Yσ (T ) = �(σ (T ), Xσ (T ) ),
(5.3)

where σ (T ) = T ∧ inf{t > 0 : Xt ∈ V0}, and

�(t, x) =
{

0, if (t, x) ∈ [0, T ) × V0,

ψ(x), if (t, x) ∈ {T } × S\V0.

For each x ∈ S\V0, we define a measure P̃x by

dP̃x

dPx
= exp

[ ∫ σ (T )

0
un−1(T − r , Xr ) dWr − 1

2

∫ σ (T )

0
un−1(T − r , Xr )

2 d〈W 〉r
]
.

The measure P̃x is a probability measure. In fact, by [27, Corollary 4.3], the quadratic
process 〈W 〉 is exponentially integrable, i.e.

sup
x∈S

Ex [exp(β〈W 〉T )] < ∞,

for all β, T > 0. Hence, in view of the uniform boundedness ‖un−1‖L∞(0,T ;L∞) ≤
‖ψ‖L∞ , we see that the Novikov condition is satisfied and therefore P̃x is a probability
martingale measure. By (5.3),

Yt = Y0 +
∫ t

0
Zr dWr −

〈 ∫
Zr dWr ,

∫
un−1(T − r , Xr ) dWr

〉

t
.
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Notice that

Eν

( ∫ T

0
Z2
r d〈W 〉r

)
=

∫ T

0
‖∇un(T − r)‖2L2(μ)

dr ≤ ‖un‖2L2(0,T ;F)
< ∞,

which implies that Ex
( ∫ T

0 Z2
r d〈W 〉r

)
< ∞ for ν-a.e. x ∈ S and therefore, for all

x ∈ S in view of the quasi-continuity of the function x �→ Ex
( ∫ T

0 Z2
r d〈W 〉r

)
and the

fact that the empty set is the only subset of S having zero capacity sinceF(S) ⊆ C(S).
Hence,

∫
ZrdWr is a Px -martingale for all x ∈ S. Moreover, it follows from the

Girsanov theorem that {Yt }t≥0 is a P̃x -martingale, and therefore,

un(T , x) = Y0 = Ẽx (Y0) = Ẽx
(
Yσ (T )

) = Ẽx
(
�(σ (T ), Xσ (T ) )

)
,

which, together with the fact that |�| ≤ ‖ψ‖L∞ , implies that ‖un(T )‖L∞ ≤ ‖ψ‖L∞ .
Hence, we conclude that ‖un‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ , and that the sequence {un} is
well-defined.

Now, by Theorem 4.16,

‖un‖L2(0,T ;F) + ‖∂t un‖L2(0,T ;F−1) ≤ CT , n ∈ N,

where C > 0 is a generic constant depending only on ‖ψ‖L∞ which may vary
on different occasions. Therefore, there exists a subsequence {unk } and a u ∈
L2(0, T ;F(S\V0)) such that ∂t u ∈ L2(0, T ;F−1(S)), and

lim
k→∞ unk = u, weakly in L2(0, T ;F(S\V0)), (5.4)

lim
k→∞ ∂t u

nk = ∂t u, weakly in L2(0, T ;F−1(S)). (5.5)

Since ‖un‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ , the sequence {un∇un}n∈N+ is bounded in
L2(0, T ; L2(μ)). By considering a subsequence of {unk } if necessary, we may assume
that {unk∇unk } is weakly convergent in L2(0, T ; L2(μ)). By the uniqueness of weak
limits,

lim
k→∞ unk∇unk = u∇u, weakly in L2(0, T ; L2(μ)). (5.6)

Thus, it follows readily from (5.4)–(5.6) that u is a weak solution to (5.1). More-
over, the estimate ‖u‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ follows as a corollary of the inequalities
‖un‖L∞(0,T ;L∞) ≤ ‖ψ‖L∞ .

Testing (5.1) against u(t) and using the Sobolev inequality (3.22) gives that for any
ε ∈ (0, 1) and a.e. t ∈ [0, T ],
d

dt
‖u(t)‖2L2(ν)

≤ −E(u(t)) + ‖ψ‖L∞
[
εE(u(t))1/2 + Cε‖u(t)‖L2(ν)

]E(u(t))1/2.

Choosing ε > 0 sufficiently small gives that

d

dt
‖u(t)‖2L2(ν)

≤ −1

2
E(u(t)) + C‖u(t)‖2L2(ν)

, a.e. t ∈ [0, T ],

from which the estimate (5.2) follows readily.
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Uniqueness. Suppose that ū is also a weak solution to (5.1). Then ‖u‖L∞(0,T ;L∞) +
‖ū‖L∞(0,T ;L∞) ≤ 2‖ψ‖L∞ . For any ε > 0, testing the equation for u(t)− ū(t) against
u(t) − ū(t) itself gives that

d

dt
‖u(t) − ū(t)‖2L2(ν)

≤ −E(u(t) − ū(t)) + C‖u(t)

−ū(t)‖L2(μ)

[E(u(t))1/2 + E(u(t) − ū(t))1/2
]
,

where, as before, C > 0 is a generic constant depending only on ‖ψ‖L∞ . For any
ε ∈ (0, 1), using the Sobolev inequality (3.22), we deduce that

d

dt
‖u(t) − ū(t)‖2L2(ν)

≤ C

ε
‖u(t) − ū(t)‖2L2(ν)

+ C(1 + ε)
[E(u(t)) + E(ū(t))

]
.

Therefore,

‖u(t) − ū(t)‖2L2(ν)
≤ C(1 + ε)

∫ t

0
e−C(t−s)/ε[E(u(s)) + E(ū(s))

]
ds.

By the dominated convergence theorem, setting ε → 0 in the above gives that ‖u(t)−
ū(t)‖L2(ν) = 0, t ∈ [0, T ], which proves the uniqueness.

We now turn to the proof of the joint Hölder continuity. Let g(t) = u(t)∇u(t).
Then |g(t)| ≤ ‖ψ‖L∞|∇u(t)|. By an argument similar to the proof of (4.21) in
Theorem 4.16, we may show that ‖g‖L∞(0,T ;L2(μ)) < ∞. Since u is the unique
solution to

{
∂t u dν = Lu dν + g(t) dμ, in (0, T ] × (S\V0),

u = 0 on (0, T ] × V0, u(0) = ψ,

wemay now apply Lemma 4.11 and Proposition 4.15 to obtain the desired joint Hölder
continuity. ��
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33. Teplyaev, A.: Gradients on fractals. J. Funct. Anal. 174, 128–154 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Parabolic type equations associated with the Dirichlet form on the Sierpinski gasket
	Abstract
	1 Introduction
	2 Preliminaries
	Sierpinski gaskets
	Standard Dirichlet forms
	Kusuoka measures and gradients

	3 Sobolev inequalities
	4 Semi-linear parabolic PDEs
	5 The Burgers equations
	Acknowledgements
	References




