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Abstract

By using analytic tools from stochastic analysis, we initiate a study of some non-linear
parabolic equations on Sierpinski gasket, motivated by modellings of fluid flows along
fractals (which can be considered as models of simplified rough porous media). Unlike
the regular space case, such parabolic type equations involving non-linear convection
terms must take a different form, due to the fact that convection terms must be singular
to the “linear part” which defines the heat semigroup. In order to study these parabolic
type equations, a new kind of Sobolev inequalities for the Dirichlet form on the gasket
will be established. These Sobolev inequalities, which are interesting on their own
and in contrast to the case of Euclidean spaces, involve two L?” norms with respect
to two mutually singular measures. By examining properties of singular convolutions
of the associated heat semigroup, we derive the space-time regularity of solutions to
these parabolic equations under a few technical conditions. The Burgers equations on
the Sierpinski gasket are also studied, for which a maximum principle for solutions
is derived using techniques from backward stochastic differential equations, and the
existence, uniqueness, and regularity of its solutions are obtained.
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1 Introduction

The analysis on fractals has attracted attentions of researchers in the last decades, not
only for the reason that fractals are archetypal examples of spaces without suitable
smooth structure, but also because fractals are examples of interesting models in statis-
tical mechanics. Many objects in nature (e.g. percolation clusters in disordered media,
complex biology systems, polymeric materials, and etc.) possess features of fractals
(see e.g. [28] for details). Fractals appear as scaling limits of lattices. Lattice models
(e.g. the Ising models and their variants) have been extensively studied in statistical
mechanics, and properties for scaling limits have been derived using conformal field
theory in dimension two.

Since a calculus on fractals is not available, the theory of Dirichlet forms on
measure-metric spaces and stochastic calculus are the analytic tools employed for
the study of analysis problems on fractals, and many interesting results have been
established in the past decades.

Early works on analysis on fractals however have been focused mainly on
diffusion processes and the corresponding Dirichlet forms (see e.g. [1-3,8,11,12,21—
24] and etc.). Brownian motion on the Sierpinski gasket was first constructed by
Goldstein and Kusuoka as the limit of a sequence of (scaled) random walks on
lattices (cf. [9,26]). Kigami [22] has obtained an analytic construction of the Dirich-
let form via finite difference schemes. The construction of gradients of functions
with finite energy has been given in Kusuoka in [25], where a significant dif-
ference between Euclidean spaces and fractals has also been revealed (see [25,
Section 6]). On the Sierpinski gasket for example, volumes of sets and ener-
gies of functions are measured in terms of two mutually singular measures, the
Hausdorff measure and Kusuoka’s measure (see Sect. 2 below for definitions).
By virtue of the results obtained in [25], gradients of functions on the Sierpinski
gasket may be defined as square integrable functions with respect to Kusuoka’s
measure (cf. Sect. 2). Roughly speaking, the gradient of a function with finite
energy is the square root of the density of its energy measure with respect to
Kusuoka’s measure. There have been interests in the understanding of gradients
of functions and non-linear partial differential equations on fractals with non-
linearities involving first-order derivatives (see e.g. [16,18-20,33] and references
therein). A new class of semi-linear parabolic equations involving singular mea-
sures on the Sierpinski gasket was proposed and studied in [27], where, among other
things, a Feynman—Kac representation was obtained assuming the existence of weak
solutions.

In the present paper, we establish the existence and uniqueness of solutions to
the semi-linear parabolic PDEs proposed in [27], and derive the regularity of solu-
tions. A crucial ingredient in our argument is a new type of Sobolev inequalities on
the Sierpinski gasket (and the infinite gasket) involving different measures (which
can be mutually singular). To author’s knowledge, this type of Sobolev inequali-
ties on fractals has not been investigated before, and is of mathematical interests
on its own. We formulate and study the Burgers equations on the gasket, which is
an archetype of non-linear PDEs with non-Lipschitz coefficients, and also as a sim-
plified model of flows in porous medium. The difficulty in our case is that there
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exists no suitable analogue of the Cole—Hopf transformation on the gasket. Instead
we tackle the problem by using a Feynman—Kac representation and an iteration argu-
ment.

This paper is organized as follows. We introduce in Sect. 2 the notations and def-
initions which will be effective throughout the paper. Several preliminary results are
also reviewed in the same section. In Sect. 3, we give the formulation and the proof
of new Sobolev inequalities on the Sierpinski gasket (and the infinite gasket), which
will be needed in latter sections. The optimal exponents and a sufficient and necessary
condition for the validity of these inequalities are also given in this section. Section 4
is devoted to the semi-linear parabolic PDEs on the gasket, where we establish the
existence and uniqueness and the regularity of solutions. In Sect. 5, we apply the
results in previous sections to the study of the Burgers equations on the gasket, which
are the analogues of the Burgers equations on R.

The results of this paper are presented only for the Sierpinski gasket in R?, we
however believe that our results also hold for Sierpinski gaskets in higher dimensions.
The main results and the arguments given in this paper can be adapted accordingly
without difficulties.

2 Preliminaries

In this section, we set up several notations and definitions which will be in force
throughout this paper.

Sierpinski gaskets

LetF; : R2 — R2, i = 1,2, 3 be the contractions defined by Fi(x) = 271y, Fr(x)
=271x + (1,0)], Fa(x) = 271 [x + (1/2,4/3/2)], x € R% Let Vo = {(0,0),
(1,0), (1/2, \/3/2)}. Define V,,,, m € Ny inductively by V,,, = Ui:1’2’3 Fi(Viu—1).
Let \A7m U,fo 0 2k [Vitx U (— Vm+k)] m € N. The (compact) Sierpinski gasket S
and the infinite Szerpmvkz gasket S are defined to be the closures S = cl Uoo Vm)
and § = ¢l U= V) respectively. S can be written as a countable union § =
Uiez i (S), where 7; : R? — R?, i € Z are translations of R? such that 7;(S), i € Z
have non-overlapping interiors. To our purpose, the labelling of the translations t;,
i € Z is immaterial. We should point out that there are many different infinite
versions of S (see e.g. [32, Section 5]). The S we use in the present paper is only
one of them.

Let W, = {w = w1maws... : w; € {1,2,3}, i € N4} the set of infinite ordered
sequences w of symbolsin {1, 2, 3}. Foreachw = wjwrws. .. € Wyandeachm € N,
let [w]y = wiws ... w,,, define F[w]m = leFwZ s me, and S[w]m = F[w]m (S) As
a convention, we define F,, = Id. The Hausdorff measure on S is the unique Borel
probability measure v on S such that v(Sje,, ) = 37" forallw € W,, m € N, and the

Hausdorff measure on § is the unique Borel measure U on S such that Pot)|ls=v
foralli € 7Z.
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Standard Dirichlet forms

For each m € N and any functions u, v on U:f;o Vi, let

£ (u, v) = > 271 (5/3)" [u(x) —u(MIv) —v(M]. Q2.1

X, yE€Vp:lx—y|=27"

The sequence {£ ) (u, 1)} men 1s non-decreasing (cf. [24, Sections 2.2, 2.4]), therefore
Eu, u) = lim,y_ 00 £ (u, u) exists (possibly infinite), and the limit will be denoted
by £(u) for simplicity.

Let 7(S) = {u : u is a function on U _o Vm With E(u) < oo} According to [24,
Theorem 2.2.6], every function u € F(S) uniquely extends to a continuous function
on S, in other words, F(S) C C(S). (£, F(S)) is called the standard Dirichlet form
on S, which is a regular local Dirichlet form on L*(S; v). (€, F(S)) possesses the
property of self-similarity in the sense that

Ew,v)= Y (5/3)EmoF; vok,), uveF®).
i=1,2,3

Let £ be the self-adjoint non-positive operator on Dom(£) € L2(S; v) associated
with (&€, F(S)).

Let F(S\Vo) = {u € F(S) : uly, = 0}. The restricted form (€, F(S\Vo)) is
also a regular local Dirichlet form on L?(S; v) corresponding to Dirichlet boundary
conditions.

By replacing V,, with V,u in (2.1), é (u) can be defined similarly for any u € C (S)
Let (S) be the completion of {# € C (S) 5 (u) < oo} with respect to the norm
5( W24 - [l L2¢5)- It can be shown that .7-'(8) - CO(S), where CO(S) is the space

of continuous functions on $ vanishing at infinity. (é , F (§)) is called the standard
Dirichlet form on S, which is a regular local Dirichlet form on Lz(g; D). By definition

E,v) =) E[wot)ls. wor)ls]. u.veFES). (22)
i€z

Similar to &, the form £ is self-similar in the sense that
E,v)=(5/3)EmoFi,voFy), u,veFES). (2.3)
Forany x, y € g, define R(x, y) by
R(x, y)_1 = inf {g‘(u) Tu € .7-"(@), ux) =0, u(y) = 1}

if x # y,and R(x, y) =0if x = y. Forevery x, y € S, R(x, y) < oo. Moreover, if
x # y, then there exists a unique u € F(S) such that u(x) =1, u(y) =0, Eu) =
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R(x, y)’1 (seeA[24, Theorem 2.3.4]). The function R(-, -), called the resistance metric,
is a metric on S satisfying

Collx —y|™ 4 < R(x,y) < Cylx —y|" %, x,ye$

for some universal constant C, > 1, where d; = 2log3/log5, d,, = log5/log2,
and dy = d,,/(2dy) are the spectral dimension, the walk dimension, and the fractal

dimension of S respectively (cf. [24, Lemma 3.3.5]). By the definition of R(:, ),
u(x) —u(y) < R, N'?E@'?, ue FS), x,yes. 2.4)
Since uls € F(S), u € F(g) and maxsys R < o0, it follows from (2.4) that

cg@gCJ@W%uef@. (2.5)

Let f be a function on V(. There exists a unique 2 € F(S) such that i|y, = f and
E(h) = inf{Eu) : u € F(S), uly, = f} (see [24, Proposition 3.2.1]). & is called
the harmonic function in S with boundary value &|y, = f. A harmonic function ,
restricted on each V,,, m € N, can be evaluated by

(h © F[w]m)lvo = A[w]m (h|V0)7 w=wmww3... € W*, (26)

(cf. [24, Proposition 3.2.1 ]), where A[,,],, = Ay, - - - Ay Ay, , With

m

500 221 [ T212
Al=-|221|. Ap=-]050|. As==]122
212 51122 51005

Let f be a function on V,,,. The m-harmonic function with boundary value f is
defined to be the unique 2 € F(S) such that /2|y,, = f and that 4 0 F|y,, is a harmonic
function for all ® € W,. The energy of an m-harmonic function % can be calculated
using E(h) = £ (hly,).

Kusuoka measures and gradients

Let P : R3 — R3 be the projection Px = x — (x1 +x2 +x3)/3 for x = (x1, x2, x3) €
R3. The Kusuoka measure u on S, as defined in [25], is the unique Borel probability
measure on S such that

1(Stw,) =271+ (5/3)" (A}, PAl,)

for all w = W3 ... € W., m € N. The Kusuoka measure [ on S is the unique
Borel measure on S such that ({1 o 7;)|s = u forall i € Z.

The Kusuoka measure p (i respectively) is singular to the Hausdorff measure v
(D respectively) (cf. [25, p. 678]). If u € F(S), then ) denotes the energy measure
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of u, i.e. the Borel measure on S such that fS(I)d/L(u) = E(pu,u) — 27 'E(p, u?)
for ¢ € F(S). By [25, Theorem (5.4)], 1y < w for all u € F(S) (see [13,15] for
similar results on general fractals). Moreover, there exists a unique linear operator
V : F(S) — L*(w), called the gradient operator on S, satisfying the following: (i)
My = |Vu |2 u for all u € F(S), and (ii) if 4 is the harmonic function with boundary
value 7(0,0) = 0, ~(1,0) = h(1/2,~/3/2) = 1, then VA > 0 p-a.e. The gradient
operator V : F(S) — L2(2) on § is defined by [(Vu) o 7i]ls = V[(u 0 7;)|s] for all
uecF(S)andalli € Z.

Remark 2.1 We should point out that there exist several slight variants of gradients on
fractals, which are introduced to address different problems (see, e. g. [4,6,14,23,27,
30,33] and references therein). The definition of gradients on S adopted in the present
paper was introduced in [27] via martingale representations, and can be regarded as the
special case of the definition given in [14], where p is the minimal energy-dominant
measure (see [14, p. 3] for the definition).

3 Sobolev inequalities

The objective of this section is to establish some Sobolev inequalities involving
different (probably mutually singular) measures on S and S (Theorems 3.6, 3.11
respectively), which is crucial to our study of some semi-linear parabolic equations
on the gasket. A sufficient and necessary condition for the validity of these Sobolev
inequalities (Theorems 3.8, 3.13) will be established as well.

To shed some light on the motivation of these inequalities, consider the following
simple parabolic PDE on S

orudv = Ludv+ Vudu.
Here the singular measures v and p must be involved as Lu is v-a.e. defined while Vu
is only p-a.e. defined. A precise interpretation of this equation will be given in Sect. 4.

Let us assume for the moment that if u is a solution then one may test the equation
against the solution to obtain

d

SO, = =E@®) + (Vu@), u@®)y,
from which it follows that

d ) 1 1 5

For PDEs on Euclidean spaces, the measures v and wu are equal to the Lebesgue
measures, and therefore, the above differential inequality together with Gronwall’s
inequality yields the energy estimates and the existence and uniqueness of solutions.
However, on S, the measures v and p are mutually singular, and hence the L?-norms
I~ Ilz2¢y) and [ - [ 2, are in general incomparable. Thus, Gronwall’s inequality does
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not apply in this case. For PDEs involving gradients on S, an appropriate comparison
of || - lz2vy and || - llz2(,, is necessary to obtaining energy estimates. In fact, for
functions u € F(S), the L2-norms ||u 22y and |[ull 2, must be compared with the
involvement of (an arbitrarily small portion of) the energy £(u) (see Corollary 3.18
below). This type of comparison is possible due to the Sobolev inequalities to be
established in this section.

For convenience, C, will always denote a generic universal constant which may be
different on various occasions.

Definition 3.1 Let S; , = 2"'7; (S), m,i € 7. The energy of u € f(g) on Sim 1s
defined to b€5A|S,~,,,l (u) = (3/5)" El(uot o F™)s].

Clearly, S can be written as the non-overlapping union S = Uiez Si.m for each
m € Z. Therefore, Eu) = ¥ ;o7 Els,,, (w) for any u € F(S) in view of (2.2) and
(2.3).

Definition 3.2 The constant §; > 0 is defined by 1/8; = 2/d; — 1 =log5/log3 — 1.

The constant & is defined so that 5/3 = 31/%_ Therefore, for every i and m, by
(2.5),

ogc (u oT; o F]_m) <Ci€[(uorto Fl_m)|§,]l/2

W2 = Co v (i) Els,, )2,

i,m

= C. (5/3)"* &5

i,m

which implies that
osc() < Co(Sim) /€5, ). (3.1)

i,m

Definition 3.3 A subset S € S is called a dyadic triangle if S = S; , for some
m,i € 7.

We are now in a position to formulate the main results of this section. Let & be a
Borel measure on S satisfying the following condition: there exist constants C5 > 1
and 0 < § <6 < o0, § > 1 such that
6(S) < Cs DSV, if 0 < diam(S) < 1,

N A l/S e s M.1)
6(S) < Cs D(S)'8, if diam(S) > 1,

for any dyadic triangle S C S, where diam(A) denotes the diameter of A C S with
respect to the Euclidean metric.

Remark 3.4 (i) In literature, a Borel measure o on R” is called an Ahlfors regular
measure if there exists a d > 0 such that C~'r? < o(B(x,r)) < Cr¢ for
any ball of radius r centred at x € R". Therefore, the Hausdorff measure is an
Ahlfors regular measure, and we think it is appropriate to call the measure & in
(M.1) an Ahlfors upper regular measure (with distinct exponents for expansion and
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contraction). In the present paper, we formulate the condition (M.1) in terms of the
Hausdorff measure rather than diameter of sets because of notational convenience
when comparing measures. We would like to mention that a heat kernel estimate
implies the Ahlfors regularity of the Hausdorff measure (see e.g. [10, Theorem
3.2] and references therein).
(ii) The restriction 8 > 1 in the condition (M.1) is necessary in view of the countable
additivity of measures.
(iii) Notice that we do not require (M.1) to hold for general Borel sets. In fact, (M.1)
being valid for all Borel sets implies the absolute continuity of 6 with respect to
V.

We would like to point out that the condition (M.1) is general enough to include
many cases of interests, some of important examples are listed below.

Exarflple 3.5 (i) Dirac measures, for which the condition (M.1) is satisfied with § =
8 = o0.
(i1) The Kusuoka measure i (cf. Corollary 3.9.(b) below).
(iii) Analogues on S of weighted measures |x|~? dx on R? with 0 < 6 < d. For any
cube O C R?, we have fQ lx|=%dx < C|Q|'"?/ for some constant C > 0

depending only on d. Therefore, the analogue on S of |x|~? dx on RY would
be a Borel measure 6 < ¥ satisfying the condition (M.1) with §, § given by
1/8 = 1/8 = 1 —6/d,. Here we have used dy as the Sobolev dimension of S (cf.
Remark 3.7 below).

Theorem3.6 Let 1 < p < g < 00, g > 2. Suppose & is a Borel measure on S
satisfying the condition (M.1). Then

lullay <C > E@ Plull,b, ueF@S), (3.2)
i=1,2
where _
Y=V @dH rl/p—1/gd 7+
= [—] , Ay = [—] , (3.3)
1/p+1/(28) 1/p+1/(285)
and C > 0 is a constant depending only on the constant Cs in (M.1).
Moreover, if there exists a sequence { Sy }mez of dyadic triangles such that
lim diam(S,,) =0, lim diam(S,) = co
m——00 m—0Q
and
- loga (S, log o (S
1/5 = Og‘f—(’")7 1/8 = lim Og(f—(’")’ (M.2)
m——o00 log V(S;,;) m—o00 log v(Sy,)
then the pair of exponents given by (3.3) is optimal in the following sense: if
N , R
Il o) < € D E@P P ull . ue FS), (3.4)
i=1
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for some constants b; € [0,1], 1 <i < N, N € Ny and C > 0 independent of u,
then min; b; < ap < a; < max; b;.

Proof Suppose first that p < g < oo. Let b, = v(2"S) = 3", S; , = 2" 7;(S) for
any m, i € Z. Then S = Ui Si.m- When m > 0, by (3.1), we have that

q 1
[ul9dé < 2971 E [/ ’u—— udv| do + A—/ udv
/ .m S .m Vm i,m

5 5 1 qalr .
= Z I:v?”/(zaﬁglsi,m (”)q/2 6 (Sim) + Aq/p [/ Jue|? dU] U(Si,m)]
i

i,m

< 0 Y [o8/ O Byl 4 gl (/ | d;,)”]

i i,m
A q/2 — q/p
< [\A)Zl/(Zég)-H/é [Z€|Si,nz (u)] + 4 \A)}n@ q/p I:Z/ |ul? dﬁ] }
i i Y Sim

~q/(285)+1/8 & l 83—
—c1 [Vgl/( s)+ /,g(u)q/z / q/p “ ”LP

"]

(u)]

where and hereafter C > 0 denotes a generic constant depending only on the constant
Cs in (M.1). Therefore,

~1/(28)+1/(q8 Al 8)—1
”u”LLI(g) < C[ /(285)+1/(q8 )g( )1/2 /(LI,) /p ”u”LP(ﬁ)] (35)

Similarly, when m < 0, we have that
~1/(285)+1/(qb ~1/(g8)—1
lull ey < € [8/@FVED gy 2 4 /D= 0] 36)

The proof of (3.2) is done by optimising over m. Suppose f:'(u)l/2 > lullpr @)
Consider the following two cases:
Case 1: p < g < p/8. Note that p < p/8 forces § = 1 and therefore 1/(¢8) =
1/p, a1 = 0. Setting m — —oo in (3.6) gives that

5 2 1-
lllzo) < € €@ ull 7).

Case 2: ¢ > p/$. Setting
m = sup [m < 0: 0,/ TP <y 2 ull oy < 1) < o0,
in (3.6), we obtain that

LP (D)’

1/p —1/(¢d) ]+

wll g < CE@M|u)|l =% . where a =[
lull oy = € E@ M lu] "L 1y

172

Suppose that é ()= < |lullLr ). We consider the two cases.
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Case 1: p < q < p/é. In this case, a, = 0. Setting m = 0 in (3.5) gives that

o 2 l1—a
lullzoy < CE@P 2l

Case 2: ¢ > p/3§. Setting
m=inf {m > 0: 5,/ PP = Ewy = 2 )| ) > 1) < oo,
in (3.5), we obtain that

p—1/ad)

5 < CEW™?ull'>% , wh :[
lullze@y = € E@) ™= |lull VIR =+ 1728y

LP (D)’

This proves (3.2) for g < oco. Setting ¢ — oo proves the case when g = oo as the
constant C is independent of q.

Suppose in addition that the condition (M.2) is satisfied, we prove that (ay, a>) is
the optimal pair of exponents. We first show that, for any dyadic triangle S < S, there
exists an hg € F(S) such that

C;' <hs<CyonS, supp(hs) € S, and E(hg) < C, H(S)~ /%, 3.7)

where § = {x € S: dist(x, §) < diam(S)}.
To see this, suppose first that S = 27!S for some m € Z. Let h be the 1-harmonic
function in S with boundary value

(1, ifx =(0,0),
h|V1(x) o {0, otherwise.

Let h(x) = h(—x) forx € —S, and h(x) = 0 for x € S\[SU (=S)]. Then h € F(S)
and satisfies (3.7). For a general dyadic triangle § = 2"'1; (S), i,m e Z,lethg =
ho rl._l o F'. Then hg € F(S), and the property (3.7) follows from (2.2) and the
self-similar property (2.3).

Suppose that (3.4) holds. Let { S, },n<z be the sequence of dyadic triangles in (M.2).
For each m € Z, by the above, there exists an /i, € F (g) such that 4, ~ 1 on S,,,
supp(hy) € S, and Ehm) < D(Sm) "%, where the notation A < B means that
A < ¢B for some constant ¢ > 0 independent of m, and A >~ B means that A < B
and B < A. In view of (M.2), it is easily seen that

Wl oy = D(Sm) V9D, Nl oy 2= D(Sw) /P, m — oo,
and
PNl oy 2= D(Sm) 9, Nl o) == D(Sm) P, m — —o0.
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Parabolic type equations associated with the Dirichlet... 1073

It follows from the above and (3.4) that

N
]A)(Sm)l/(qé) < Zﬁ(Sm)_bi/(285)+(l_bi)/p, m— 0o,
i=l1

and
. N
D(Sy) /@ < ZI’J(Sm)*bi/(zas)+(l*bi)/P’ m— —oo,
i=1
These inequalities imply that min; b; < ay < a; < max; b;. O

Remark 3.7 (i) Some comments are desired on the interpretation of the exponents

(i)

appearing in the inequality (3.2). Recall that, on Euclidean space R?, the celebrated
Gagliardo—Nirenberg inequality takes the form

; -
1D/ ullpaway < CID™ ullyr gay 1l gay

where a € [0, 1] is given by =1 4 ( %)a + 1%“ The case corresponding
to setting of Dirichlet forms i 1s the one when j =0, m = 1 and r = 2, for which
the exponent a is given by

l/p—1/q

O i S (3.8)
1/p—1/2+1/d

Some insights are gained by comparing (3.3) and (3.8):

(a) The > exponents d; i =1,2in (3.2) are determmed by the harmonic structure
on$ (or equlvalently the Dirichlet form & ), the configuration parameters § and
§ of the measure &, and the embedding parameters p and g.

(b) The effective Sobolev dimension d of S, if exists, should depend only on the
harmonic structure. This dependence is expressed in (3.3) as the denominator
1/p + 1/(285). Comparing this to the denominator of (3.8), we see that the
Sobolev dimension d should be givenby 1/p — 1/2+1/d = 1/p + 1/(265),
i.e. d = ds. This suggests the identification of the spectral dimension ds as the
effective Sobolev dimension of S. See [31, pp. 44-45] for more comments on
ds.

The inequality (3.4) includes the analogue on Sofa specific case of the weighted
Sobolev inequalities on R? in [5]. The weighted Sobolev inequalities established
in [5] take the form

1x17 ]l o ey < CllIxI*Dulls, gy Nx1Pull),

"(RY) LP(R")

where o, B,y < Osatisfy 1/r +«/d > 0,1/p+ B/d > 1/g + y/d > 0 and
5 + % = a(% + “T_l) + (1 — a)(% + g) The case corresponding to setting of
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Dirichlet forms is the one wheno = 8 =0, r =2and 1/p > 1/qg + y/ds; > 0,
for which the weighted inequality reads

lullzaepradny < CIIDullyz 4 leell - (3.9

As remarked in Example 3.5.(iii), the analogue on S of |x|”?dx on R i

a Borel measure & on S satisfying the condition (M.1) with 8,8 given by
1/§ = 1/5 = 1 + yq/d,. Therefore, the analogue of (3.9) on S should be
lull o) < Cé’(u)“/2||u||u,(v) with a given by % +r = a(y — —) + l=a

This coincides with the result of (3.16) since the exponents for the measure & are
. 1/p—=1/q—y/ds

givenby a; = ap = —1//; +1//(¢]is—yl/ 5 =a

(iii) An additive version of (3.2), which is a corollary of (3.2) and Young’s inequality,
is derived in [17] for the study of vector fields on resistance spaces.

According to Theorem 3.6, the condition (M.1) is sufficient for the derivation of
Sobolev inequalities. The following theorem states that this condition is also necessary
for the validity of Sobolev inequalities of the form (3.4) with ¢ < oo.

Theorem 3.8 Let & be a Borel measure on S. Suppose that there exist some constants
P, q € (0,00), bj € [0, 1]where 1 <i <N, and C > 0, such that (3.4) holds for all
uerF (S) Then there exist constants 0 < § < § < 0o such that the condition (M.1)
is satisfied.

Proof Suppose that (3.4) holds. For any dyadic triangle S C S, as shown in the proof
of Theorem 3.6, there exists a piecewise harmonic function g € F(S) such that

hs >~ lonS, supp(hs) C S, and E(hs) < Sy~ /%

where the notation S and the relations < and ~ are the same as those in the proof of
Theorem 3.6. Applying (3.4) to hg gives that

&(S)l/q < Za(S)_bi/(Z‘s.v)‘i‘(l—bi)/P’ (3.10)

i
Since g < o0, it follows from the above that
sup {6(5) : S is a dyadic triangle with diam(S) = 1} < 00

Therefore, the first part of (M.1) is satisfied with § = oo
Furthermore, for any dyadic triangle S with diam(S) > 1, by (3.10), 6($)V/4 <
D($)1/P as D(S) > 1. Setting § = p/q completes the proof. O

Applying Theorem 3.6 to the cases when 6 = b and when 6 = {1, we obtain the
following.

Corollary3.9 Let1 < p <g < o0, g > 2. Then
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(a) The inequality (3.2) holds with 6 = D and a1 = ar = % € [0,1). In
particular, .
maxu < C &(u)*/? ueF©S), (3.11)

: lull}).

1/p
1/p+1/28)
and only ifa;y = ay =

with a = Conversely, the inequality (3.2) holds for all u € .7-'(8) if

1/p—1/q
1/p+1/(25)"
(b) The inequality (3.2) holds with 6 = 1. The pair (a1, ap) given by (3.3) is optimal,

where § = 1 and § = .

Proof The only thing needs a proof is that § = §; in (b). Clearly,

1/8 = inf hmlnf[

weW, m—o0

lOg 3 log 1% (S[w]m )] .

We show that
1/m

sup lim [tr(Af,; PA,)] " = (3/5)°% (3.12)

weW, M=
from which the conclusion follows immediately.

Let Y; = P'A;P,i = 1,2,3. Then Y;, i = 1,2, 3 have the same eigenvalues
{0,1/5,3/5}. It is easily seen that A}, PA(e),, = Y|, Yw, forevery m € Ny
and every € Wy, where Y[y],, = Yo, - - Y, Yo, . Therefore, tr(YEw]mY[w]m) <
C. (3/5)%", which implies that

sup lim [tr(Yl,; Yien )] < 3/5)7%

weW,, M=

For the reverse, letw = 111... € W,. Thenlim, o0 [tr(Y!,; Yiu, )] = 3/5)%
This proves (3.12). O

Remark 3.10 Setting p = 1, ¢ = 2 in (3.11) gives the Nash inequality on S (see [8,
Theorem 4.1])

2+4/d

4/dy
||M ||L2(f))

< CEWully\G, we FO.
Conclusions similar to that of Theorem 3.6 hold when the roles of 6 and ¥ are
exchanged. More specifically, let & be a Borel measure on S satisfying the following
condition: there exist constants C5 > 1 and 0 < § < § < oo such that
{ C;UHSHVE < 5(S), if 0 < diam(S) < 1, LI

15818 < 6(S), if diam(S) > 1,

for any dyadic triangle S C S. For measures & satisfying (M.1"), we have Theo-
rems 3.11 and 3.13 below, of which the proofs will be omitted as they are are similar
to those of Theorems 3.6 and 3.8.
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Theorem3.11 Let 1 < p < g < 00, q > 2. Suppose that 6 is a Borel measure on S
satisfying the condition (M.1"). Then

Il oy < C Y E@ P lul 6%, ueFES), (3.13)
i=1,2
where _
1 YW -=1/g 1+ 1 1/(pd-1/q 7+
ay = [—] ay = [—] , (3.14)
1/(pd) +1/(28;) 1/(pd) +1/(285)
and C > 0 is a constant depending only on the constant Cs in (M.1’).
Moreover, if there exists a sequence {S,,;}mez of dyadic triangles such that
lim diam(S,;) =0, lim diam(S,;) = oo
m——00 m— 00
and
log6 (S, - log& (S,
/6= lim 2896w 5y 0806w (M.2")
m——o00 log v(Sy,;) m—o0 log V(Sy,)
then the pair of exponents given by (3.14) is optimal in the following sense: if
N
- 1—b; N
Loy < C Y E@ P lull b, ue FES), (3.15)
i=1

for some constants b; € [0, 1] where 1 <i < N, N € Ny and C > 0 independent of
u, then min; b; < ap < a; < max; b;.

Remark 3.12 Theorems 3.6 and 3.11 can be easily combined to yield the following

lullay < C Y E@ Plul G, ue FES), (3.16)
i=1,2

where 6, satisfies (M.1) with§ = &5, § = §,, 61 satisfies (M.1’) with§ = &1, & = §,,
and

. 2[1/(p§1)—1/(qr§z)]+ . _[l/(11751)—1/(61§2)]+
Y (sy) + 17280 (o + 17289 )

Theorem 3.13 Let & be a Borel measure on S. Suppose that there exist some constants
p,q € (0,00), b; € [0, 1]where 1 <i < N and C > 0 such that (3.15) holds for all
uelkF (§)_ Then there exist constants 0 < § < 8 < oo such that the condition (M.1")
is satisfied.

Corollary 3.14 The inequality (3.13) holds with & = [i. The pair (a1, az) of exponents
given by (3.14) is optimal, where the constants § = 1 and § is givenby 1/5 = 1/§;+2.
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Remark 3.15 The value of § in Corollary 3.14 follows from the fact that

inf lim [tr(Al,; PAw,)]""

weW, m—00

=3/25,

which will be given in another work by the present authors.

We end this section with the corresponding Sobolev inequalities on the compact
gasket S, whose proof shall be omitted. Let o be a finite Borel measure on S. For the
compact gasket, only the first part of the condition (M.1) is relevant, i.e.

o (Stwln) < Cov(Str,)'”’, forallo € W, and all m € N, (3.17)

where C;, > 0 and § € [1, oc] are constants depending only on the Borel measure o.
Similarly, we only need the first part of the condition (M.1"), i.e.

178

C;'(Swl) " < (S, ). forallo € Wy and allm € N, (3.18)

where § € (0, oo] is a constant depending only on the Borel measure o.
Theorem3.16 Let1 < p < g < o0, g > 2, and let o be a finite Borel measure on S.

(a) Suppose that o satisfies (3.17). Then for any u € F(S),
lu = ellza@y < CE@llu = cll5f,,- (3.19)
where c is any constant satisfying ming u < ¢ < maxg u, and

_ [ 1/p—1/(4é) ]+7

_ (3.20)
1/p+1/(255)

and C > 0 is a constant depending only on the constant Cy in (3.17). Therefore,
forany u € F(S),

Il ooy < € [E@ Y ull 50, + lullrw)] (3.21)

Moreover, the exponent a given by (3.20) is optimal in the sense that if (3.19)

o1+
holds for some a € [0, 1], then a > [%] .

(b) Suppose that o satisfies (3.18). Then the conclusions of (a) hold when o and v are
exchanged and the exponent (3.20) is replaced by

a:[ 1/(pd) — 1/q ]+
1/(pd) +1/(28,)1 °
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Remark 3.17 Settingo = v, 8 =8 = land p = 1, ¢ = 2 in (3.21) gives the Nash
inequality on S (see [8, Theorem 4.4] or [24, Theorem 5.3.3])

2+4/ds 2 4/ds
”u”LZ(v) = C[g(l/l) + ”M”Ll(u)] ”u”Ll(U)

< CLE@) + )32, ]l %

Doy uEFS).

Corollary 3.18 For any u € F(S),

— 2—d;
il 20y < € [E@ STVl 0 + lull 20y ]

If u € F(S\Vy) in addition, then by (3.19) with ¢ = 0,

lull 2y < CE@WS Dl 0. (3.22)

4 Semi-linear parabolic PDEs

In this section, we study a type of semi-linear parabolic equations on S, for which
energy estimates and existence and uniqueness of solutions are established (The-
orem 4.16). Moreover, the regularity of solutions to these PDEs is derived under
additional conditions.

We consider the following initial-boundary value problem for semi-linear parabolic
PDEs (see Definition 4.13 below for a precise interpretation)
{ dudv=Ludv+ f(t,x,u, Vu)du, in(0, T] x (S\ Vo), @1
u=0 on (0, T] x Vg, u(0) =1, ’

where ¢ € Lz(v), and the coefficient f : [0, T] xS x R2 — R satisfies the following:

(i) There exists a constant K > 0 such that
lf@,x,y,2) = ft,x, 9,2 < K(y—yl+1z—2zD, (A.1)

forall (,x) € [0, T] x S, (y.2), (3. 2) € R?;
(i) f(-,0,0) € L2(0, T; L*(w)), that is,

T
76002y = [ [ £ 0,070t <0 a2

Remark 4.1 There exist different formulations of non-linear PDEs on fractals. For
example, a type of non-linear equations on fractals was considered by in [19], where
the non-linearity f(Vu) is a bounded mapping f : L?(u) — L%(v). The equations
studied there are essentially defined via a single measure (the Hausdorff measure v).
Therefore, the PDEs studied in this paper are different in essence from those considered
in [19] in the way the gradients interact with the equations.
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From now on, we shall use the notation ( f, g), = fS fg d for any Borel measure A
on S and any XA-a.e. defined functions f, g onS, whenever the integral is well-defined.
As in the previous section, we denote by C, a generic universal constant which may
vary on different occasions.

Let {P;};>0 be the Markov semigroup associated with the killed Brownian motion
on S, the diffusion processes associated with the Dirichlet form (£, F(S\Vo)). {P:}i>0
admits a jointly continuous heat kernel p(t, x, y), which is C* in ¢ (cf. [3, Theorem
1.5]). The following result on heat kernel and resolvent kernel estimate was first proved
in [3, Theorems 1.5, 1.8].

Lemma4.2 Foreacht > 0

pt,x,y) < Cot ™4/2 x,y €S,

is valid. Let py, a > 0 be the a-resolvent kernel of L, that is,

o
Pa(X,y) = / e ' p(t,x,y)dt, x,y€S.
0
Then pgy (-, -) is Lipschitz continuous with respect to the resistance metric, i.e.

l0a (X, 2) — pa(¥,2)| < CqR(x,y), Xx,¥,Z€S,

for some constant Cy > 0 depending only on «.
In view of the joint continuity of p(¢, x, y), the definition below is legitimate.

Definition 4.3 Forany Radon measure A on S, we define P;A(x) = fs pt,x,y)Aldy),
x €S, te(0,00).

Remark 4.4 (i) Let A be a Radon measure on S. By the symmetry of p(z, -, -), it is
easy to see that (P;(ghA), ), = (g, Pif)y forall f € L?(v), g € L'()).

(i) For any Radon measure A on S, we have P;A € Dom(L) for + > 0. In fact,
since p(t,x,y) € C((0,00) x S x S), we have P;21 € C(S), which implies
that A = P;p(Pijph) € Dom(L). Moreover, PA € C'(0, co; L?(v)) and
4Pk = LPh.

(iii) Notice that, due to the singularity between v and u, the contractivity || P (g) [l 121

< llgllz2(), t > 01is no longer valid in general. In fact, for g € L*(n), g # 0,
we have

lim || P (gl 2 () = 00.

t—0
To see this, suppose contrarily thatlim;_.q || P; (g1t) lL2y=sup,~0 1 P (g1 I L21
< 00. Then there exists a unique gy € L?(v) such that lim,_.o P;(gp) = go
weakly in L2(v). On the other hand, for any v € F(S\Vy), we have

(g0, v)y = lim (P (gu), v)y = lim(g, Pv), = (g, V)4,
t—0 t—0
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where the last equality follows from the uniform convergence lim;—.o P,v = v
as a consequence of the convergence in F(S\Vy). By the density of F(S\Vjy)
in C(S), it is seen that gu = gov, which contradicts the fact that v and w are
mutually singular.

To study the semi-linear parabolic PDEs (4.1), let us first investigate the formal
integral

t
/O Pry(g(s)p) ds. 42)

which is the formal solution to the equation d;u dv = Ludv + g(t) du. Since P; is
not bounded from L2(,u) to L2(v) (cf. Remark 4.4.(iii) above), there is a singularity
in the integrand of (4.2) at s = ¢. We shall show that (4.2) is a well-defined function
in the space L>°(0, T; L?(v)) N L2(0, T; F(S\ Vo)), and is jointly Holder continuous
if g(¢) is uniformly bounded in L?(u). To formulate the results, it is convenient to
introduce several definitions.

Definition 4.5 For any v € L*(v), define
vl z—1 = sup {(u, v}, 1 u € F(S), |lullF <1},

where

lullF = [lull?a,, + €],

The space F~!(S) is defined to be the || - || -1 -completion of L2(v).

Definition 4.6 Let u € L2(0, T; F(S)); that is, fOT E1(u(t))dt < oo. An (F(S)-
valued) function u is said to have a weak derivative d;u in L*>(0, T; F~X(S)), if d,u
is an F~1(S)-valued function on [0, T'] satisfying

T 1/2 T T
(] 1ol dr) ™ <00 and [ . d0n,dr = - [ (o). v, ar
0 0 0

forall v e C'(0, T; F(S)) with v(0) = v(T) = 0.

The following lemma can be easily shown by a mollifier argument similar to that
of [7, Theorem 3, Section 5.9].

Lemma 4.7 Suppose that u < L0, T; F(S\Vp)) has a weak derivative d;,u €

L?0, T; F~(S)). Then

(a) u € CO,T; LXv)); (b) The function t +— ||u(t)||i2(u) is absolutely continuous,
and 5—,||u(t)||iz(v) = 2(0u(t), u(t)), fora.e. t € [0, T].

We derive properties of the convolution (4.2) in the following lemmas.
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Lemma4.8 Let g € L*(0, T; L*(w)). For each § € (0, T), let

8"
us() :/0 Pi_s(g(s)w)ds, t€[0,T]. 4.3)

Then us € L°°(0, T; L?>(v)) N L*(0, T; F(S\Vo)) and

T T
2 Ce(T—s) Ce(T—s) 2
||M8||LOO(O’T;L2(V)) +[) e g(”5(s)) dS S € /0 e ”g(s)”LZ(M) dS,
for any € > 0, where C. > 0 is a constant depending only on €. Moreover,

19rusll 20, 7;7-1) = Cx gl L2075 12))-

Proof 1Itis convenient to set g(¢) = 0 fort < 0. Clearly, us(t) € Dom(L), t € [0, T].
Foreachs € (0, T),sincet — Pr_s(g(s)) = Pr—s—s[Ps(g(s)u)], t € (s+68,T)1is
acontinuously differentiable L?(v)-valued function, we see that us € C'(8, T; L?(v))
and

-8
dus (1) = Pa(g(t—S)M)Jr/O LP_s(g(s)w)ds = Lus(t)+ Ps(g(t—38)p). (4.4)

Forany e > Oandeacht € (0, T'), testing (4.4) against us and applying Corollary 3.18
gives that

ld
zallua(t)lliz(v) = (Ps(g(t = O)p), us(1))y — E(us (1))
= (g(t = &), Ps(us (1)) — Eus (1))

< Ce EMPs (us (D™ I Ps s () 175"
—Eus () +€llgt = ),

< Ce Es@)™ ™ usOI75,," = Ews®) + ellgt = O3z,
1
= Ce s, = 3E@s () + €llgt = Oz,

where C. > 0 denotes a generic constant depending only on € which may vary on
different occasions. By Gronwall’s inequality and the fact that us(¢) = 0, ¢ € [0, 6],
we deduce

t t—8)*
HM‘S(t)”iz(v) —i—[) ece(tfs)g(ua(s)) ds < e /(; eCe(tfs)”g(S)”iz(M) ds. (4.5)
By (4.4) again, for any v € F(S\Vy),

(Brus(), v)v| < [(g(t — 8), Psv) | + Eus () 2EW)' /2
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< Cillg(t — )l 120 EPs)' + Eus (1) 2Ew)1/2
< Cu[llglt = )2 + Ews@) ] vll 7.

The above inequality also holds for v € F(S). This can be seen by considering the
JF-orthogonal projection of v on F(S\Vy). Therefore,

s ()| 7-1 < Cu [t = Ol 1200y + Es@)'?], t € (8, T1,
which, together with (4.5), implies the desired estimate for ||d;u; || L2(0,T: F-1)- O

Lemma4.9 The limit

t—8)"
u(t) = lim f Pry(g(s)) ds. 4.6)
5—0 0

exists with respect to the norm || - || poo o, 7:12(v)) T Il  I20,7: ), and satisfies

T T
IIMIIioc(o T:120) +/ eCT=9Eu(s))ds < e / eCG(T_S)”g(S)”iz(m ds.
T 0 0

Moreover, u(t) has a weak derivative d,u in L2(O, T; ]—'_1), and

0:ull20,7:7-1) < Cx gl 20,722 (0))-

Proof As before, we set g(t) = O fortr < 0. Let 8,8 € (0,T) and w = us — ug,
where u;s are the functions defined by (4.3). By (4.4), we have

dw = Lw + Ps[(g(t —8) — gt —8NHul+ (Ps — Py)(g(t — 8 )),
from which it follows that
1d > /
zallw(t)lle(v) = —Ew() + (Ps[(g(t —8) — gt —)Nul, w(t))y
+((Ps — Py)(g(t — 8")), w(t)),. 4.7

The first term on the right hand side of (4.7) can be estimated in the same way as in
the proof of Lemma 4.8, which yields that

1
(Pl(g(t = 8) = gt = 8 Nul w(D)y = S8t =) = gt = )},

2(2—dy)

I -
+5 €O w®150)

For the second term on the right hand side of (4.7), we have
((Ps — Py)(g(t — 8Hp), w(n))y
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< CLE((Ps = Py)yw () @™ V2| (Ps = Pyw() 7200 18 = 8120

By the spectral decomposition,

o0
1(Ps = Py)w(®l17a,, = /0 (€ — e Epw(®)]a,,

o '1N2 2

< [Ca- e aiE ol
o 2
/
<153 |f0 M w75,
=18 = &'IEw(1)),
which, together with the fact that £((Ps — Py)w(t)) < E(w(t)), implies that
((Ps — Py)(g(t — 8w, w())y < Cl8 — 8'|'H2E (@) 1g(t — 8"l 12)-

Therefore, we deduce from (4.7) that

d
”w(t)”LZ(V) g(w(t)) + C*”w(t)”LZ(U) + C*”g(t - 8) g(t - 8/)”%‘2(10
+Cals = 8P4 N1g(t = 81175,

It follows from the above inequality and Gronwall’s inequality that

lwll o.7: 220y + Wl L200.7:7) < Cx [|8 =8P gl 207 1200))
T
+f gt = 8) = gt = 82t |
0

Therefore, {us} is a Cauchy sequence with respect to the norm || - || oo 7:22¢y) + | -
I 22(0.7:7)> Which proves the convergence of (4.6). Moreover, the desired estimates
for u follows readily from the similar estimates for u;. O

Definition 4.10 By virtue of Lemma 4.9, the convolution fé P;_s(g(s)u)ds can be
defined to be the limit in (4.6).

Lemma4.11 Ifg € L*°(0, T; LZ(M)), then the convolution u defined by (4.6) is jointly
continuous in [0, T] x S. Moreover, for any 0 < 6 < %(l —ds/2),

lu(t, x) —uls, )| < gl oo.7:2p[Colt = sI” + Cr R(x, '], (4.8)

where Co > 0 is a constant depending only on 6, and Ct > 0 one depending only on
T.

Remark 4.12 The authors believe that 1/2 is the correct Holder exponent in x € S
for (4.6) in general, which is suggested by the fact that a generic u € F(S) has only
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%-H'Older continuity [cf. (2.4)]. As a matter of fact, the convolution (4.6) only has
mild regularity in general due to the singularity between v and u [cf. Remark 4.14.(ii)
below].

Proof Let g(t) = 0 fort < 0. We first show that
lu(t, x) —u(t, y)| < CrR(x, )", x,y €S, (4.9)

where C7 > 0 is a constant depending only on 7'. Denote p; «(y) = p(s, x, y). By
the definition of u(¢), we have

13
) = e, )1 = | [ 5= 5)pes = pu)ds|
0
t
< ”g”LOO(O,T,Lz(,u))/O IPs,x — Ps,yllL2qnds.  (4.10)

By the Sobolev inequality (3.22),

ds—1)/2 2—ds

| ps,x — Ps,y”LZ(M) =< Cg(l’s,x - ps,y) | ps,x — ps,y”Lz(‘;)-

Let —£ = [;° A dE;, be the spectral representation. Then

E(ps,x — Ps,y) = EPs2(Psja,x — Psy2,y))
= /(-)00 e dIE(psax = Ps2) 72
< s psjan — Ps/2,y”i2(u)’ 4.11)
Therefore

~(dy—1)/2 2—d;

dg—1 g
| ps,x — ps,y”LZ(M) <Cs ”ps/Z,x - ps/2,y||[;2(v)”ps,x - Ps,y||L2(V),

By the inequality above and Holder’s inequality,

t ' d 1/2 ! 2 (ds—1)/2
/ ||ps,x_ps,y||L2(M)ds <C (/ s ds) (/ ||ps/2,x_ps/2,y”Lz(v)ds)
0 0 0

t 5 1—dy/2
x( / 1Psx = Poyl320,)ds)
0

t 5 1/2
< CT(/O lps/2.x — Ps/2,y||L2<u)ds) ’

where we have used the fact that p; » — ps.y = Ps2(Ps/2,x — Ps/2,y) and the L?(v)-
contractivity of Py, for the last inequality.
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Let p, (-, ) be the a-resolvent kernel. By the Chapman—Kolmogorov equation,

t [e¢]
/ I Ps/2.x — ps/Z,y”iz(v)ds =< ea[/ e_w||Ps/2,x_PS/2’y”%2(u)dS
0 0

o0
Ze“’/o e [p(s, x, x)=2p(s, x, y)+p(s, y, y)lds

= e [pa(x,x) = 2pa (X, ¥) + pa (¥, V)],

which, together with Lemma 4.2, implies that

t
/0 ||ps/2,x - ps/Z,y”iz(U)ds < CyR(x,y).

Therefore, we deduce that

t
/0 IPs.x — Psylli2qods < CTR(x, )"/, (4.12)

Now the Holder continuity (4.9) follows readily from (4.10) and (4.12).
Next, we turn to the Holder continuity of u(¢#,x) in¢. Lett > 0, § > 0. By the
definition of u,

t+6
WGt 8. %) — u(tx) = / Privss(g())(x) ds
t

t
+ /0 [Pras—s (g(5)i)(x) — Pr—y(g(s)) ()] ds
= 11(8) + 1 (9).

For 71 (5), in the same way as (4.10), we have

8 8
111(8)| = ’/0 Ps(g(t —s +8)m)(x)ds| = ||g||L®(0,T;L2(M))/0 25l L2y ds-

By the Sobolev inequality (3.22),

yfl 2 z_ds
1Ps.xll 20y < CEPs ) @™V 2D xll ()

It follows from an argument similar to (4.11) that £(py ) < 51 | ps/2,x ||2L2(v)' There-
fore,

—(ds—1)/2

di—1 2—d,
s, xllz2gy = Cs ||Ps/2,x||L2(v) ||Ps,x||L2(v)~
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Using the Chapman—Kolmogorov equation and the estimate p(z, x, y) < Cy 1~ %/2,
we deduce from the above inequality that

8 8
/ ||Ps,x||L2(M) ds < C/ s—(dx—l)/Zp(s’x’x)(ds—l)/Z p(Zs,x,x)l_dS/z ds
0 0
8
3
< C*/ s—3ds/4+1/2 ds = C*Bf(l_d‘/z).
0

Thus ,
IO = Callgll oo, 11200082472 (4.13)

For I(5), by the same argument as in the estimate of |/1(§)|, we have

t
()] < ||g||L°°(O,T;L2(u))/O | Ps+s.x — Psxllz2qu ds

1
ds—1
< Culllimorzg [ Ipszias = pyaslifioy Ipsens

N
Psxllp2) Sa@—n72

! ds
< C*”g”LC’O(O,T;Lz(M))/O I Psj2+s.x — Psj2.xllL2) @D (4.14)
For any 6 € [0, 1], by the spectral representation,
I Ps/2+s.x — Ps/2,x||%2(u) = | (Pyja+s — Ps/4)ps/4,x”iz(u)
o
- / (1 = e 22| By pyjaaliag,
0
20 7,20 —sap2 2
<5 fo A2y pyjaalilag,

< Cu (8/9) 1psjacllzag,, = Cx (8/$)* p(s/2, x, x)
< C*829s—29—ds/2’

which, together with (4.14), implies that

s g ds
1L(O)] < Cullgll oo, 120 0° /0 s2Imbm0 ==

Therefore, for any 6 < %(1 — d/2), the estimate
1G] < CollgllLo.7:L24u00” (4.15)
is valid. Combining (4.13) and (4.15), we deduce that
lu(t, x) — u(s, x)| < Collgllpo.7: 1200t — 51°, (4.16)
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forall0 <6 < 3(1 —d,/2).
Now the joint Holder continuity (4.8) follows readily from (4.9) and (4.16). O

Definition 4.13 A function u is called a weak solution to the PDE (4.1) if:

(WS.1) u € L*(0, T; F(S\Vp)) and u has a weak derivative 8,u in L>(0, T; F~1(S));
(WS.2) Forany v € F(S\Vy),

(B (), v}y = —E(u(0), v) + (£, u(@), Vu(r)), v}, ae.t €0, T];

(WS.3) lim,_ou(t) = ¥ in L2(v).

Remark 4.14 (i) The term (f(t, u(t), Vu(t)), v), in (WS.2) is legitimate since Vu is
u-a.e. defined and u € F(S) C C(S).

(i) Notice that, in general, the Eq. (4.1) does not admit a solution u such that u(t) €
Dom(L) and d;u(t) € L?(v) for a.e. t € [0, T]. Otherwise, the functional v >
(f(t,u, Vu), v), will be L2 (v)-bounded, which contradicts with the singularity
between v and . Therefore, solutions to non-linear parabolic PDEs on S can
only have mild regularity in general. This is a remarkable feature of non-linear
PDEs on S, which suggests a significant distinction between the PDE theory on
Euclidean spaces and that on fractals.

(iii) We shall show that if « is a weak solution to (4.1) then u € C((0, T] x S) (see
Theorem 4.16 below). Therefore, Definition 4.13 coincides with the definition
of solutions in [27, Definition 3.17]. The joint continuity of solutions is needed
for the validity of the Feynman—Kac representation given by [27, Theorem 3.19],
which will be crucial in the study of the Burgers equations on S (see Sect. 5).

Proposition 4.15 Suppose that g € L*(0, T; L*>(1)). Then the initial and boundary
problem to the PDE

udv = Ludv+ g(t,x)du, in(0,T]x (S\Vop), @.17)
u=0 on(0,T] x Vg, u(0) =1 ’
admits a unique weak solution u given by
t
u) =Py +/ P_s(g(s)wyds, t€[0,T].
0
Moreover
lullpooo,7: 200y + el 20,7 7) + 10cutll 120, 7. 71y
< Cu(IlW 20y + gl 20,7 220y (4.18)

Proof Clearly, we only need to prove for the case when ¢ = 0. Let us be the truncated
convolution defined by (4.3), and let u be the convolution given by (4.6). For any
v € F(S\Vp), by (4.4),

(us (1), v)y = —E(us(®), v) + (Ps(g(t — ), v)y
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= —E(ust),v) + (g(t =), Psv),, ae.te(0,T]

Since lims_.0 Psv = v uniformly, by considering a subsequence if necessary and
setting 6 — 0, we deduce that

(Oru(t), v)y = =E(t),v) + (g(t),v),, ae.te(0,T]

Therefore, u is a weak solution to (4.17).
The estimate (4.18) follows readily from Lemma 4.9, and the uniqueness of solu-
tions is an immediate consequence of (4.18). O

We are now in a position to state and give the proof of the main result of this section.

Theorem 4.16 Suppose that (A.1) and (A.2) hold. Then (4.1) admits a unique weak
solution u satisfying the following estimate

lull oo, 7:220vy) + Nl L20,7:7) + 10eutll 20,7 71y
< Cr.r (Il L2y + I1FC 0.0 220, 7522 ())) (4.19)

where Ck 1t > 0 is a constant depending only on T and the Lipschitz constant K in
(A.1). Moreover; if u is the weak solution to (4.1) with initial value v € L2(v), then

”M — IZ”LOC(O’T;Lz(U)) + ”u - ﬁ“LZ(O,T;]:)
+||0;u — 3,12||L2(0’T;]:71) = CK,T ||W - Iﬁ”LZ(U)' (420)

Suppose, in addition, that € F(S\Vo) and f(-,0,0) = 0. Then
lull o7 < Cr.1 EGN'2. 4.21)

Moreover, u(t, x) is jointly continuous in (0, T] x S, with 0-Hélder continuity in
t € (0, T] forany 6 < %(1 —ds/2) and %-Hb'lder continuity in x € S with respect to
the resistance metric.

Proof We first prove the existence. Let O P:yr, t € [0, T]. By Proposition 4.15,
we may define a sequence {u"},en, in L*0,T; F (S\ Vo)) inductively by

Wy, =0, u"(0) = . (4.22)

{ du dv = Lu™ dv + f"7N1t) du,
where f"~1(t,x) = f(t,x,u" (¢, x), Vu"~ (¢, x)). By Proposition 4.15, u" €
L%(0, T; F(S\Vo)), d,u” € L>(0, T; F~'(S)). Denote w" = u" —u""', n € N,.
By (4.22), w"*!, n € N is the solution to
dw"hdv = Lw" M dv + [ f* (1) — 0] dp,

Wy, =0, w1 (0) = 0. (423
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For any € € (0, 1), by Lemma 4.7.(b), testing (4.23) against w"tL(t) gives that

1d n+1 2 n+1 1 n 2 n 2
5 g Oz, = —E@T0) + SEW" ) + 0" 012,

2dt
+1 2
+Cx W™ D172,

where, and in the rest of the proof, Cx > 0 denotes a generic constant depending only
on K which may vary on different occasions. Since w"|y, = 0, by (2.5), we have

[[w™ (t)||i2(m < Cfé‘(w” (1)). Moreover, by Corollary 3.18,

1d
52 1" O, = =1 = Cx HEW™ 1)

1
+<§ + Cfez)g(w" (1) +Ck C€2||w"+1(t)||iz(v)»

where C. > 0 is a constant depending only on €. By choosing € > 0 sufficiently
small, we have that

d 1
Enw"“(t)uizm < —E"T (1) + gE@" ) + Cxllw" (D72, 424)

By the above and Gronwall’s inequality,

t t
”wl‘l-l—l(t)”%z(v)_’_/ eCK(l—S)g(wn-'rl(S)) ds < / eCK([—S)E(wVL(S)) dS, (425)
0

0

0| =

which implies that

T 1/2
”um _ um_l”LOO(()‘T;LZ(U)) + </(; gCK(T—S)S(uI’n(S) _ um—l(s)) ds)
S 2—m+n |:||un _ un—] ”LOO(()’T;LZ(U))

T 1/2
+ ( / eCKT=9g M (5) — u"_l(s))ds> ] (4.26)
0

for all m > n, and that

T 12
””"HLOO(O,T;LZ(V)) + (/ ecK(T*S)E(M"(S)) ds)
0

T 1/2
= ”M1 ||L°°(O,T;L2(v)) + <[) ecK(TS)g(ul(S))dS> .
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Moreover, by Proposition 4.15, we have

T 1/2
I Il oo 0.7 120y + (/0 eck”‘s)g(ul(s))ds)

< CyetkT (1 L2y + 1L G u®, VMO)”LZ(o,T;LZ(M)))
< Cu e T (191120 + 16’ 20,7:) + 17 G 0,020, 752201))-

Let—L = fooo A dE) be the spectral decomposition. Then

T
161132 0. 7:0 < TNV 72 + / E(P)dt
Y 0

T 00
= TIY12:, + fo /O A dI B2, di
2 1 © —2T A\ 2
=TIl +5 [ (0= dIEVIE,,
< T+ DIV,

Therefore, we obtain that

T 1/2
™ | oo 0.7 220y + ( /0 eCK(T_S)E(u"(s))ds)

< Cu ek (IWll 2y + 1£C 0,0l 20,7 02G0)s 7€ N (427)
Furthermore, by (4.22), u™ — u" is the solution to

{ B W™ —u"y dv = L™ —u™) dv+[f" @) — 0] du,
@™ —u"ly, =0, @™ —u")(0)=0.

For any v € F(S\Vy), by the above equation,
[(@ @™ —u™), v)y| < [E@™ — w2+ CkE@™ —u"H2]EW)! 2,
which implies that
18 ™ — u™) || p-1 < E@™ —u™)V? 4+ CxE@™ ™ —u"H1/2, (4.28)
By (4.26) and (4.27), we see that
18 @~ 200,771y <Cx €K 27 (11 2y + 1 0.0V 20,72 2200)-
Therefore, {#"} is a || - [|«-Cauchy sequence satisfying

lu™ [l < Cx e (¥l 2y + 1 FC. 0,0 20,7 12uy). 7 € Ny,
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where
lulle = Nl pooo,7:20y) + Nl 20, 7:7) + 10Ul L2¢0,7: 71y

Therefore, there exists a u € L2(0, T; F(S\ Vo)) such that lim,,_ o [|u" — ulls = 0.
It is clear that u is a weak solution to (4.1), and the estimate (4.19) holds as £1/2(-)
and || - || = are equivalent on F(S\Vy). This proves the existence.

Suppose that u is a weak solution to (4.1) with initial value V. By an argument
similar to (4.24) and (4.28), it can be shown that

d ~ 2 1 ~ ~ 2
@ =@M, = =3E@®) = @0) + Cxllu@) = #MOa,),
and that
19: (e — )| -1 < Cx E —it)'/>.

The estimate (4.20) follows readily from the above two inequalities. The uniqueness
of solutions is now an immediate consequence of (4.20).

Suppose, in addition, that v € F(S\ Vo) and f (-, 0, 0) = 0. Then (4.25) also holds
for n = 0 with u~! = 0. Therefore,

T T T
/ EW™ @) dr < eCKT/ EWl ) dr = eCKT/ E(PY)dt < TeCKTEW),
0 0 0

which implies that
T
f Eu)dt < TeC*TEw). (4.29)
0

Now for any § € (0, T'), u is the solution to

{ oudv = Ludv+ f(t,x,u,Vu)du, t € (to, to + 8],
u'Vo = 0’ u|t=t() = u(t())-

< C.&(u) gives that

Applying (4.29) to the above PDE and using ||u ||i2 W =

to+6
é/ E(n)dt < e“¥° Eu(ty)), ae.toe[0,T —58]andany s > 0. (4.30)
0]

We claim that (4.30) implies (4.21). We first show the following lemma.

Lemma Let h(t) be a locally integrable function on [0, 00) satisfying

1 t+68
5/ h(s)ds < L5 + h(t), ae.t €[0,00)andany$ > 0, 4.31)
t

for some constant L > 0. Then h(t) — h(s) < 6L(t —s), a.e.0 <s <t < 00.
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To prove the lemma, suppose first that 4 is differentiable on (0, 0co). Suppose the
contrary that h(t) — h(s) > 3L(t — s) forsome 0 < s < t < 00. Then there exists an
to € (s, t) suchthat 4’ (ty) > 3L.Moreover, h(r)—h(ty) > 3L(r—ty), r € [to, to+35]
for§ > O sufficiently small. This implies that § ftff*‘s h(r)dr > 3L8/2+ h(tp), which
contradicts (4.31). This proves the lemma for differentiable functions /.

For general &, let he (1) = 1 [/*“h(s)ds, € > 0. Then h, is differentiable and
satisfies (4.31) with L replaced by 2L. The above case gives that h. () — hc(s) <
6L(t — s). It remains to apply the Lebesgue differentiation theorem to complete the
proof of the lemma.

Now by (4.30) and Jensen’s inequality, the function A (z) = log[€ (u(¢))] satisfies
(4.31) with L = Ckg. It follows from the previous lemma that

Ewr) < K9 Eu(s)), ae.0<s<t<T.

Using the above inequality and (4.29) again, we deduce that
1 t
E)) < ;/ Sk Eu(s)) ds < KT E(Y), ae.t e (0,T],
0

which implies (4.21).
We now prove the joint Holder continuity. Let g(¢, x) = f(¢, x, u(z, x), Vu(t, x)).
Then u is the solution to the PDE
o dv=Ludv+ gt)du.

By Proposition 4.15,

13
u(t) = Py + /0 Pi_s(g(s)u) ds.
By (4.21) and the Sobolev inequality (3.22), it is easily seen that

gl oo 0,722 ()) < ©©-

We now can apply Lemma 4.11 and Proposition 4.15 and to deduce the desired joint
Holder continuity. O

5 The Burgers equations

As an application of Theorem 4.16 and the Feynman—Kac representation for (back-
ward) parabolic PDEs on S in [27, Theorem 3.19], we study the initial-boundary value
problem for the following analogue on S of the Burgers equations on R

5.1

oudv =Ludv+uVudp, in (0, T] x (S\Vyp),
u=20 on(0,T] x Vg, u(0) =1y,
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where ¥ € F(S\ Vo). We shall prove the existence and uniqueness of solutions to the
Eq. (5.1), and derive the regularity of the solutions.

Remark 5.1 We would like to point out a difference between the Burgers equations
on S and those on R. The Burgers equations on R can be exactly solved with an
explicit formula for the solutions via the Cole—Hopf transformation, and properties
of solutions can be derived using the explicit formula. However, this Cole-Hopf type
of transformation is not available on S. The Cole—Hopf transformation reduces the
Burgers equation on R for u to a heat equation for —V (log u). In contrast, on S, the
formal expression L[V (log )] is not well-defined, since the gradient V (log ) is only
u-a.e. defined and therefore V(logu) ¢ F(S) due to the singularity between v and w.
Hence, different approaches must be employed for the study of (5.1).

Let us start with the Feynman—Kac representation for solutions to parabolic PDEs
onS. Let {X;},>0 and {W,},>0 be Brownian motion and the representing martingale on
S respectively, i.e. {X;}s>0 is the diffusion process associated with the form (€, F(S)),
and { W, };>0 is the unique martingale additive functional having u as its energy measure
such that M) = Jo Vu(X,)dW, for any u € F(S), where M"! is the martingale
part of u(X;) — u(Xo) (cf. [25, Theorem 5.4] and [27, Section 2]). The following
result was given in [27, Theorem 3.19], and is an analogue on S of the representation
theorem for semi-linear PDEs on R established by Peng in [29]. See [27, Section 3]
for the definition of solutions to backward stochastic differential equations (BSDEs)
onS.

Theorem 5.2 Ifthe PDE (4.1) admits a weak solution u jointly continuous in (0, T]xS,
then

(Y, Z) = u(T — 1, Xy), Vu(T — 1, Xy))
is the unique solution to the BSDE

dY, = —f(T —t, X, Y,, Z)d(W), + Z,dW,, t €[0,07)),
Yoo = V(D X, ),

o

on (Q, Px)for eachx € S, where c™) =T Ainf{t > 0: X; € Vo}, and

0, if (t,x) €[0,T) x Vo,

W(t,x) = :
{w(x), if (1. %) € (T} x S\Vo.

Moreover, the solution to (4.1) has the representation u(T, x) = Yo = E,(Yp) for all
x €S.

Proposition 5.3 The Burgers equation (5.1) admits a unique weak solution u satisfying
the maximal principle below

lull Lo, 7:20) < W]l ze.
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Moreover,

”u”LOC(O,T;LZ(U)) + ”u”LZ(O,T;]:) + ||81M||L2(O’T;]:—l) < C, (52)

for some constant C > 0 depending only on |||~ and T. The solution u is jointly
continuous in (0, T]1xS, with0-Hélder continuityint € (0, T]forany < %(1 —ds/2)
and %-Hb'lder continuity in x € S with respect to the resistance metric.

Proof Existence. We define the sequence {u"},en < L%0,T; F) by induction as
follows. Let u®(t) = Py. Then |[u®| 1. 7:2) < ||| 1. Suppose that u"~! with
[l llzoo0,7:2¢) < ¥ |lL= has been defined. The function u" is defined to be the
unique weak solution to the PDE (cf. Theorem 4.16)

du'dv = Lu"dv + u""'Vu"du, in (0, T] x (S\Vp),
u" =0 on (0, T] x Vo, u"(0)=1.

To verify the definition of {u"}, we must show that |[u" | p@©,7.20) < [[¥]lL.
Without loss of generality, we only need to show that ||u"(T)| L < ||[{||L>. By
Theorem 5.2, (Yy, Z;) = w"(T —t, X;), Vu" (T — t, X;)) is the unique solution to
the BSDE

{dY, =—u""N T —t, X)) Z; d(W); + Z, dW;, t €[0,0T)), (53)

Yo = V(oD X, ),
where 0T) = T Ainf{r > 0: X; € Vo}, and

{ 0, if(r,x) €[0,T) x Vo,
W(t, x) = :
Y(x), if (r,x) € {T} x S\Vp.

For each x € S\Vy, we define a measure Px by

o™

dF, / "N —r, X,)dW, 1/
= €X — —_ —
dP, p 0 u r, Xy r= 5 0

o™

T —r,X,)Zd(W)r].

The measure P, is a probability measure. In fact, by [27, Corollary 4.3], the quadratic
process (W) is exponentially integrable, i.e.

sup B [exp(B(W)r)] < oo,

xeS

for all B, T > 0. Hence, in view of the uniform boundedness ||z~ lL>,7:050) <

[l || o<, we see that the Novikov condition is satisfied and therefore P, is a probability
martingale measure. By (5.3),

t

t
Y, =Y0+/ Z,dW,—</Z,dW,,/u"’l(T—r,Xr)dWr>
0
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Notice that
T ) T ) ,
E(/ z2aw),) =/ IV (T = )2y dr < 1" 1220 7. < 0O
0 0 £ £

which implies that Ex(fOT Z2d(W),) < oo for v-ae. x € S and therefore, for all
x € Sin view of the quasi-continuity of the function x — E, ( fOT Zr2 d (W)r) and the
fact that the empty set is the only subset of S having zero capacity since F(S) € C(S).
Hence, f Z,dW, is a P,-martingale for all x € S. Moreover, it follows from the
Girsanov theorem that {Y;};>¢ is a }fl’x -martingale, and therefore,

u(T,x) =Yy =E.(Y0) = E,(Y,i) = E. (W0, X,n))).

o

which, together with the fact that || < ||| oo, implies that ||u" (T)|| oo < ||| Loo.
Hence, we conclude that ||u" ||z 0,7.2¢) < [¥|lL~, and that the sequence {u"} is
well-defined.

Now, by Theorem 4.16,

lu* 20,77 + 10" 20, 7;7-1) < CT, n €N,
where C > 0 is a generic constant depending only on ||¥| L~ which may vary

on different occasions. Therefore, there exists a subsequence {u"*} and a u €
L%(0, T; F(S\Vy)) such that d,;u € L>(0, T; F~1(S)), and

klim u™ = u, weakly in LZ(O, T; F(S\Vp)), 5.4
—00

Jim 9u = ,u, weakly in L%0, T; F7X(S)). (5.5)
— 00

Since [lu"|lzo@,1;2¢) < l¥lr, the sequence {u"Vu"},cn, is bounded in
L?*(0,T; Lz(u)). By considering a subsequence of {u"**} if necessary, we may assume
that {u"* Vu'**} is weakly convergent in L0, T; L*(w)). By the uniqueness of weak
limits,

lim ™ Vu™ = uVu, weaklyin L2(0, T; L% (1)). (5.6)

k— 00

Thus, it follows readily from (5.4)—(5.6) that u is a weak solution to (5.1). More-
over, the estimate ||u|| o, 7:1) < |[¥[L~ follows as a corollary of the inequalities

" I, 1:0%0) < 1Yl oo
Testing (5.1) against u(¢) and using the Sobolev inequality (3.22) gives that for any
€€ (0,1)andae.t €[0, T],
d
Enu(t)n’izm < —E®) + ¥l [eE@@)'? + Cellu®) 12, |E @)/,
Choosing € > 0 sufficiently small gives that
d 2 1 2
Ellu(t)lle(U) < —55(u(t)) + Cllu®l72,), ae.r€l0,T],

from which the estimate (5.2) follows readily.
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Uniqueness. Suppose that u is also a weak solution to (5.1). Then [[u|| 10,7 %) +
el Loo0,7: 10y < 2||¥ ]l Lo~. For any € > 0, testing the equation for u(f) — it (¢) against
u(t) — u(r) itself gives that

d i _
Tl = a0, = —E@®) = a®) + Clu()
—it(1)[l 20 [E@O)'? + Eu(t) — i)' /?],

where, as before, C > 0 is a generic constant depending only on ||| 1. For any
€ € (0, 1), using the Sobolev inequality (3.22), we deduce that
d 2 C 0 _
EIIM(I) —u@®ly2,, = :Ilu(t) —u(Dll72,, + CA+6) [E@®) + E@®)].

Therefore,

t
(@) = &D)1175,,) < CA+€) / e CUIE[E(u(s)) + Ei(s))] ds.
0

By the dominated convergence theorem, setting € — 0 in the above gives that ||u(¢) —
ﬁ(t)lle(U) =0, t € [0, T'], which proves the uniqueness.

We now turn to the proof of the joint Holder continuity. Let g(¢) = u(r)Vu(z).
Then [g(t)] < ||¥|lLe|Vu(t)|. By an argument similar to the proof of (4.21) in
Theorem 4.16, we may show that ||gll; o0 7.22(,)) < ©0°. Since u is the unique
solution to

oudv = Ludv+ gt)dw, in(0,T] x (S\Vp),
{ u=0 on(,T]x Vg, u(0) =1,
we may now apply Lemma 4.11 and Proposition 4.15 to obtain the desired joint Holder
continuity. O
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