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Abstract

We study the two-time distribution in directed last passage percolation with geometric
weights in the first quadrant. We compute the scaling limit and show that it is given
by a contour integral of a Fredholm determinant.
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1 Introduction

In this paper we will consider the so called two-time distribution in directed last-
passage percolation with geometric weights. This last-passage percolation model has
several interpretations. It can be related to the Totally Asymmetric Simple Exclusion
Process (TASEP) and to local random growth models. It is a basic example of a
solvable model in the KPZ universality class. It has been less clear to what extent
the two-time problem is also solvable but recently there has been some developments
in this direction [1,5,9,13,17,18]. The approach in this paper is different in many
ways from that in our previous work [17]. It is closer to standard computations for
determinantal processes, more straightforward and simpler.

To define the model, let (w(i, j)); ;> be independent geometric random variables
with parameter ¢,

Plw(i, j) =kl = (1 — ¢)¢*, k> 0.
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Consider the last-passage times

G(m,n) = i, ]), 1.1
(mom) = max Z wi, j) (1.1)
@, j)en

where the maximum is over all up/right paths from (1, 1) to (m, n), see [14]. We are
interested in the correlation between G (m1, ny) and G(my, ny), when (m1, ny) and
(my, ny) are ordered in the time-like direction, i.e. m; < my and n; < ny. To see
why this is called a time-like direction, and give one reason why we are interested in
the two-time problem, let us reinterpret the model as a discrete polynuclear growth
model. It is clear from (1.1) that

G(m,n) =max(G(m — 1,n), G(m,n — 1)) + w(m, n). (1.2)

Let G(m,n) =0if (m,n) ¢ 72 , and define the height function A (x, t) by

(1.3)

: 1 t—x+1
h(x,t):G( txt Xt >

2 ’ 2

for x 4+ ¢ odd, and extend it to all x € R by linear interpolation. Then (1.2) leads to
a growth rule for i (x, #) and this is the discrete time and space polynuclear growth
model. We think of x + h(x, ) as the height above x at time ¢, and we get a random
one-dimensional interface. Let the constants ¢; be given by (2.1). It is known, see [15],
that the rescaled process

hQeinT)?3,2tT) — cotT

, (1.4)

as a process in 77 € R for a fixed ¢ > 0, converges as T — o0 to A»(17) — n%, where
Az (n) is the Airy-2-process [21]. In particular, for any fixed 7, ¢,

dim PH7(1.0) <& —n’] = F2(8) = det( — Kai) 126,009,
where F is the Tracy—Widom distribution, and

o0
Kai(x, y) = / Ai (x + $)Ai (y + 5) ds,
0

is the Airy kernel. The two-time problem is concerned with the question of the cor-
relation between heights at different times. What is the limiting joint distribution of
Hr(n1,t1) and Hr (2, ) for t; < tr, as T — oo0? From (1.3), we see that this is
related to understanding the correlation between last-passage times in the time-like
direction. That a time separation of order T is the correct order to get non-trivial cor-
relations is quite clear if we think about how much random environment e.g. G (n, n)
and G(N, N), n < N, share. It can also be seen from the slow de-correlation phe-
nomenon, see [4,12]. Looking at (1.4) we see that we have the fluctuation exponent
1/3 (fluctuations have order T''/3), the spatial correlation exponent 2/3, and we also
have the time correlation exponent 1 =3/3 as explained. This is the KPZ 1:2:3 scaling.
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For further references and more on random growth models in the KPZ-universality
class and related interacting particle systems, we refer to the survey papers [2,3,22].

The main result of the present paper is a limit theorem for the following two-time
probability. Fix m, M,n, N with1 <m <M and1 <n < N.Fora, A € Z, we will
consider the probability

P(a, A) = P[G(m,n) < a, G(M, N) < Al, (1.5)

in the appropriate scaling limit. The result is formulated in Theorem 2.1 below.

The first studies of the two-time problem, using a non-rigorous based on the replica
method, was given by Dotsenko in [9,10], see also [11]. However, the formulas are
believed not to be correct [S]. The replica method has also been used by De Nardis
and Le Doussal [5], to derive very interesting results in the limit #; /¢, — 1 and, for
arbitrary t{/t», in the partial tail of the joint law of Hr (11, t1) and Hr (12, t2) when
‘Hr(n1, t1) is large positive. In Le Doussal [18] gives a conjecturally exact formula
for the limit 71 /t, — 0. See also [13] for some rigorous work on this with quantitative
results for the height correlation in the stationary case, which is not investigated here.
We will not discuss these limits although to do so would be interesting. There are
very interesting experimental and numerical results on the two-time problem by K. A.
Takeuchi and collaborators, see [6,23,24].

Recently there has been a striking new development on the two-time problem, and
more generally the multi-time problem, by Baik and Liu [1]. They consider the totally
asymmetric simple exclusion process (TASEP) in a circular geometry, the periodic
TASEP. Baik and Liu are able to give formulas for the multi-time distribution as
contour integrals of Fredholm determinants, and take the scaling limit in the so-called
relaxation time scale, T = O (L3/?), where L is the period. In principle their formulas
include the problem studied here, but they are not able to take the scaling limit that we
study in this paper. It would be interesting to understand the relation between the two
approaches. For some comments on the multi-time problem in the setting used here
see Remark 2.2. A related problem is to understand the Markovian time evolution of
the whole limiting process with some fixed initial condition, the so called KPZ-fixed
point. There has recently been very interesting progress on this problem by Matetski,
Quastel and Remenik, see [19,20].

An outline of the paper is as follows. In Sect. 2 we give the formula for the two-time
distribution using an integral of a Fredholm determinant and state the main theorem.
The main theorem is proved in Sect. 3 using a sequence of lemmas proved in Sects. 4
and 5. In Sect. 7, we briefly discuss the relation to the result in our previous work [17].

Notation Throughout the paper 1(-) denotes an indicator function, y, (a) is a positively
oriented circle of radius r around the point a, and y,- = y,-(0). Also, I'; is the upward
oriented straight line through the point ¢, t > ¢ + iz, t € R.

2 Results

Let0 <1 <1, n1,m € Rand &, & € R be given. Furthermore T is a parameter
that will tend to infinity. To formulate the scaling limit we need the constants,
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co=q PA+ D3 er=q7V00+ -,
_ e st @1
1-va Y

We will investigate the asymptotics of the probability distribution defined by (1.5).
The appropriate scaling is then

2

n=nT —cimT)??, m=uT +cin(nT)*?
N =0T —cim®T)??, M =T +ciml)*?
a=cotT +cE T3, A=cnT + aé&anT)A. (2.2)

Let At =t — t1, and write

f 1/3 03
o= |— . .
At
Introduce the notation

2/3 2/3 1/3 1/3
5] 1 5] n
n ﬁz(m) 771<At> 3 Ez(At> él(At> (2.4)

We will now define the limiting probability function. Before we can do that we
need to define some functions. Fix § such that

8 > max(ny, aAn), 2.5)

and define

o0
S1(x. y) = _ae(m—a>x+(6—aAn)y/ @A (e P — 5,8+ — x)

0

x Kai(AE + An? +as, AE + An® + ay) ds, (2.6)

Ti(x,y) = el —Ox+O-atny / ' @A K pi(E1 + 0t — s, &1+ 0t — x)

—o0

X Kai(AE + An2 + as, AE + An2 +ay)ds, 2.7

Sy(x, y) = ae®"OANO=I K\ (AE + An® + ax, AE + Ap® +ay), (2.8)

and
S3(x,y) = OO KL (& +0f — x E 0 — ). (2.9)

Using these, we can define the functions

S, y) = S1(x, y) + 1(x > 0)8S2(x, y) = S3(x, y)1(y < 0), (2.10)
T(x,y)=-Ti(x,y) = L(x > 0)S2(x, y) + S3(x, N1y <0). (2.1
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Let u be a complex parameter and set
Rw)(x,y) = S(x,y) +u~'T(x, y). (2.12)
Consider the space
X = L*(R_, dx) ® L*(Ry, dx), (2.13)
and define the following matrix kernel on X,

K@)(x, y) = (R(”)(x’ R ) > 2.14)

uR)(x,y)  uRu)(x,y)

K (1) defines a trace-class operator on X, which we also denote by K (u). Let y, denote
a circle around the origin of radius r with positive orientation. We define the two-time
probability distribution by

det(I + K@) x du,  (2.15)

1
Fiwo-time (61, 115 &2, m2; &) = —/ —

2mi U

where r > 1.
We can now formulate our main theorem.

Theorem 2.1 Let P(a, A) be defined as in (1.5) and consider the scaling (2.2). Then,

TlgnmP(a, A) = Fuvo-time(E1, m: &2, 125 ). (2.16)

The theorem will be proved in Sect. 3. The fact that K (1) is a trace-class operator
is Lemma 4.1 below.

The formula for the two-time distribution can be written in different ways. In Sect. 6,
we will give formulas suitable for studying the limits « — 0, « — 0o and expansions
in o and 1/« respectively. We will not discuss these expansions here, but refer to [7]
for more on this and comparison with the results in [18].

For comments on the relation between this formula and the formula derived in [17],
see the discussion in Sect. 7.

Remark 2.2 1t would be interesting to be able to prove the same type of scaling limit
for the multi-time case, i.e. to consider the probability function

P(ay,...,ar) =P[G(mi,n1) <ay,...,Glmr,nr) <arl,
where m; < my < --- < mp,and n; < np < --- < nr. It is possible to write a
formula analogous to (3.17) below but with L — 1 contour integrals. This can be proved
in a very similar way as the proof of (3.17). We hope to say more on this problem in

future work.
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3 Proof of the main theorem
In this section we will prove the main theorem. Along the way we will use several
lemmas that will be proved in Sects. 4 and 5.
Write
G(m) =(G(m,1),...,G(m, N)), (3.1
form > 0, and a fixed N > 1. Let G(0) = 0. By A we denote the finite difference

operator defined on functions f : Z +— Cby A f(x) = f(x + 1) — f(x), which has
the inverse

x—1
ATV = Y0 f),

y=—00

for all functions f for which the series converges. The negative binomial weight is

W (x) = (1 —q)"’(”’:_ l)cf‘l(x > 0), (3.2)

form > 1, x € Z. Write
Wy ={x=(x1,...,xy) € ZV, x; <--- < xn}. (3.3)
Note that G(m) € Wy.

The following proposition is the starting point for the proof. It is proved in [16]
following the paper by Warren [25], see also [8] for a more systematic treatment.

Proposition 3.1 The vectors (G(m)) >0 form a Markov chain with transition function
PIG(m) =y | G(£) = x] = det(A " wp—¢(yj — xi)1<i j<N- (3.4)

foranyx,y € Wy, m > £ > Q.
Write

Am=M-—-m, AN=N-—-n, Aa=A-—a, 3.5
and
Wn.n(a) ={xe Wy; x, <a}.

We can the write

P(a, A) = Z Z

xeWy q(a) yeWn n(A)
det(AY 7wy, (x ) 1<i,j<n det(AT T wam (¥; — xi))1<i j<N- (3.6)
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Here we would like to perform the sum over y, which is straightforward, and then the
sum over X, which is tricky since we cannot use the Cauchy—Binet identity directly. An
important step is part a) of the following lemma, which is proved in Sect. 4. The proof
of (3.7) uses successive summations by parts and generalizes the proof of Lemma 3.2
in [16].

Lemma3.2 Let f, g : Z +— R be given functions and assume that there isan L € 7
such that f(x) = g(x) =0ifx < L.

(a) Letaj,di € Z,1 <i < Nandfixk, 1 <k < N. Then,

Z det (Aj_aif(xj - yi))lgi,jgN det (Adi_jg(zi - xj))lgi,jgN

xeWy (a)

- Z det(Akf“"f(xj—yi))liiijNdet(Ad"fkg(zi—x]‘))lsi’jsN.

xeWy i (a)

(3.7)

(b) For 1 <n < N, we have the identity

Z det (A" wy, (x; — yj))lii,jSdeet (A", (A — yj))lsi’jSN.
XEWN,N(A)

(3.8)

If we use (3.7) and (3.8) in (3.6), we find

Pa, A=Y det(A"Twy(x))), 5oy det (A" wam (A = x) -

xeWy ,(a)

(3.9)

Before we show how we can use the Cauchy—Binet identity to do the summation in
(3.9), we will modify it somewhat. Below, this modification will be a kind of orthog-
onalization procedure, and will be important for obtaining a Fredholm determinant.
Let A = (a;j) and B = (b;;) be two N x N-matrices that satisfy a;; = 0if j > i and
bjj =0if j < i, sothat A is lower- and B upper-triangular. Assume that

N
det AB = [ Jauibii = 1. (3.10)
i=1
Forx € Z,1 <i, j < N, we define
N
forG,x) =" ain(=1)" A" w, (x + a), (3.11)
k=1
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and

N

fr2(, ) =Y (=" A T wa (Aa — )by, (3.12)
k=1

where w,, is the negative binomial weight (3.2). If we shift x; - x; +a,1 <i <N,
in (3.9), and use (3.10), (3.11) and (3.12), we get

P(aa A) = Z det (fo*](i’xj))lfi,jgN det (.f],Z(xiv j))lfl',jSN' (313)
xeWn ,(0)

This formula is the basis for the next lemma, the proof of which is based on the
Cauchy-Binet identity. However, because of the restriction x,, < 0 in the summation
in (3.13), we cannot apply the identity directly. In order to state the result we need
some further notation. Define

—1

Ly, j)= Y fo1G,x)fialx, ), (3.14)
LaGi. j) =Y foa(i.x) fialx, j). (3.15)
x=0

Let u be a complex parameter and set
L, jsu) =u'VLiG, ) +u= 0=, ). (3.16)

Lemma 3.3 We have the formula,

1
P(a,A)=%

7 det (LG i) oy, (3.17)
Yr

foranyr > 1.

The lemma is proved in Sect. 4. The contour integral come from the need to capture
the restriction x, < 0 and still use the Cauchy—Binet identity.

We now come to the choice of the matrices A and B. The aim is to get a good
formula for fp 1 and fi 2 and make it possible to write the determinant in (3.17) as a
Fredholm determinant suitable for asymptotic analysis. Define

w"(l _ w)x+n1

Hn,m,x(w) = (1 _ L)m
1—q

(3.18)
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Using a generating function for the negative binomial weight (3.2), it is straightforward
to show that forallm > 1, k, x € Z,

-1 k—1 d
Ay () = ) | ;= (3.19)
2mi r 1 -
ifr >1.Fork,xeZ,m>1,e € {0,1} and 0 < t < 1, we define
C m
BE(m, a) = L/ ;klﬂdé— (3.20)
kAT 27i . (1— ;-)a-i—m—e : ’

Note that 8§ = 1 and B; = 0if k > 1. By expanding (z — ¢)~ 1 in powers of ¢ /z, we
see that

N

3o fimma) _ 1 (1-¢)F

Y B e S T 321
Z* 27i Jy, Hima(§)(z =) ¢ (32D

k=1
provided |z| > 7.

We now define the matrices A and B. Let ¢(i) be a conjugation factor defined below
in (3.25) which we need to make the asymptotic analysis work. Set

aix = () (=D BL_;(m.a), by =c()T (=DFBY_(Am. Aa).  (322)

From the properties of ,BZ, we see that (a;i) is lower- and (by;) upper-triangular, and
that the condition (3.10) is satisfied.

Lemma 3.4 If fo.1 and f12 are defined by (3.11) and (3.12) respectively, and a; and
bij by (3.22), then

(3.23)

f(),](i,x) = — c(®) / dz de Hn,m,aer(Z)(l —-)

(27Ti)2 Ve Hima(@)(z—80)(1—2) '
L
fiax, j) = c(j) / dw/ do Han,Am,pa—x (W) (3.24)
Yr Yr

Q2ri)? Hyt1-j,am8a(@)(w — 0)(1 — w)’

where) <t <1 <.
The proof of the lemma, which will be given in Sect. 4, is a straightforward com-
putation using the definitions and (3.21).

We now turn to rewriting the determinant in (3.17) as a Fredholm determinant and
performing the asymptotic analysis. The conjugation factor ¢(7) in (3.22) is given by

o) = (1 = Jg)l e /o@D, (325
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where § > 0 is fixed, and satisfies (2.5), and ¢ is given by (2.1). Let 71, 12, p1, p2 and

p3 be radii such that

O<t,pn<l—pi<l—pm<l—-p3<l—g

(3.26)

We denote by y, (1) a positively oriented circle around the point 1 with radius p. For

€ee€{0,1}and 1 <i, j < N, we define
d{/ dw
Yt

A, j) = L‘t/ dZ/ dw/
(N Jy, 1) Yoy (1) Yu )

Hn,m,u(Z)HAn,Am,Au(w)(l -0 - Z)_l
Hi m,a O HN1-j, am, pa(@) (@ — (W — o) (z —w)’

By, j) = —<O / dz/ dw/ do
c(j)@mi)* Yor () Jyp (D) Yol Vo

Huma(@)Han, am,aaw)(1 —)(1 —2)7!
Hima (O HN41—j, Am, 00 (@) (2 — ) (W — 0) (2 — w)

Ay(i, j) = L dw/ dow HN—i Am,na(W)
7 c())@mi)? Voo (1) e Hy 11— j, am,pa(@)(w — @)’

2

and

Hi_ 1—
Az, j) = C(l) / de de J l,m,u(z)( $)
c(H2mi)? Yoy (1) .
We also define, fore € {0, 1} and 1 <1i,j <N,

CG, j)=A1G, ) = 1G > n)A2(, j) + A3, HI( = n),
DG, j) = =B, j) + 1 > m)Ax(i, j) — A3, HI(j < n),

compare with (2.10) and (2.11).
We can now express L, p = 1, 2, in terms of these objects.

Lemma 3.5 We have the formulas
Ly, j) =1G =n)ij + C(, j),
and

L@, j) = 13 > n)é;; + DG, j).

@ Springer
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The proofis based on (3.14), (3.15), and Lemma 3.4, and suitable contour deformations
in order to get the contours into positions that can be used in the asymptotic analysis,
see Sect. 4.

Combining (3.16) with Lemma 3.5 we obtain

LG, jiu) =8 + My, j), (3.35)
where
MG, j) = u" "= wC G, j) + DG, j)), (3.36)

and we also set M, (i, j) = 0ifi, j ¢ {1, ..., N}. Thus we have the formula

1 1 .
P(a, A) = %f —det (3 + Mu(i. ),y ;- (3.37)

Next, we want to rewrite the determinant in (3.37) in a block determinant form,
corresponding toi < n andi > n, and similarly for j. Forr,s € {1,2},and x, y € R,
we define

Furix;s,y)=M,(n+[x]+1,n+[y]+ 1), (3.38)

where [-] denotes the integer part. The right side of (3.38) does not depend on r or s
explicitely but we have x < O for r = I and x > 0 for r = 2, and correspondingly
for y depending on s. Let A = {1, 2} x R and define the measures

dvi(x) = 1(x < 0)dx, dva(x) =1(x = 0)(x)dx.

On A we define a measure p by

2
| rwarar =3 [ servv o, (339)
r=1

for every integrable function f : A +— R. F, defines an integral operator F, on
L%(A, p) with kernel F,(r, x; s, y). Note that the space L2(A, p) is isomorphic to
the space X defined in (2.13), and we can also think of F}, as a matrix operator.

Lemma 3.6 We have the identity,
det(&j + Mu(i, j))lfi,ij = det(I + FM)LZ(A,,O)' (340)

This is straightforward, using Fredholm expansions, and the lemma will be proved
in Sect. 4.
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860 K. Johansson

We can now insert the formula (3.40) into (3.37). This leads to a formula that can
be used for taking a limit, but before considering the limit, we have to introduce the
appropriate scalings. For s = 1, 2, we define

Fur(r,x;s,y) = cotiT)' P F,(r, co(ti 1) Pxs s, co(t1 1) Py) — (3.41)

where ¢ is given by (2.1). The next lemma follows from (3.37), Lemma 3.6, and
(3.41), see Sect. 4.

Lemma 3.7 We have the formula,

P(a, A) = —1 !
a, — :
2mi y U= 1

det (1 + Fu1) 2y, dt- (3.42)

Theorem 2.1 now follows by combining this lemma with the next lemma which will
be proved in Sect. 5.

Lemma 3.8 Consider the scaling (2.2) and let K (1) be the matrix kernel defined by
(2.14). Then,

lim det (I + F,r)

T—o00

12, p = det (I +K@w)y, (3.43)

uniformly for u in a compact set.

4 Proof of Lemmas

In this section we will prove the lemmas that were used in Sect. 3. Some results related
to the asymptotic analysis will be proved in Sect. 5.

Proof of Lemma 3.2 Write
W (@) = {x € Wys x = a)
so that
a
W@ = | Wi, 0
1=—00
Hence, it is enough to prove the statement with Wy 4 (a) replaced by W;f,’ (). Let

ai,bi,ci,di € Z,1 <i,j<N,andletk < € < N. Assume that b,_; = by — 1, and
cg = coy1 if £ < N. Set

b b; if j AL N if j £ ¢
y be—1 ifj=¢" " ce—1 ifj=¢"
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Then,
dt(Abj_ai R ) t(Adi_Cj L )
D e Fo =), . de g =x))
xeW5, (1)
- det (A" £y = w0) det (A" Tz —x))) .
Z € 4 f(x] i) I<i j<N € 1g(z xj) I<i j<N
er;\}'k(t)
.1
To prove (4.1), we use the summation by parts identity,
b b
Y Au(y —x)c@z—y) =Y uly —x)Acz —y) +ulb+ 1 —x)v(z — b)
y=a y=a
—u(a —x)v(z+1—a). “4.2)

Consider the xg-summation in the left side of (4.1) with all the other variables fixed.
Let xp41 = oo if £ = N and let A, denote the finite difference with respect to the
variable x. Using (4.2) in the second inequality we get

Xe+1

Z det (Ahj_uif(xj - yi))lgi,jSN det (Adi_cjg(zi —x,-))

I<i.j=N
Xg=X¢—1

Xe+1

= Z Axkdet(Ab/f_“"f(xj—yi))

Xp=X(—|

det <Ad’_"" Zi — Xj )
1<i,j<N 8 = xj) 1<i,j<N

Xe+1

= Z det <Ab}_aif(xj _yi)>l§i,j§N det (Adi_c}g(zi —x,-))

I<i,j=N
Xe=X¢—1

+det (A" £y — )

det (Adf*cfg(z,‘ — xj))

xXg—>xp41+1

det (A4 g(z; - x,»))

X¢—>X¢—1

I<i,j<N I<i,j<N

Xe—=>Xo+1

—det (A" £y = )

I=i,j=N

I=i.j=N xp—>xp—1—1

(4.3)

If £ = N, then the first boundary term in (4.3) is = 0. This follows since Adi=Ctg(z; —
o0) = 0 (assumption that all series are convergents, expressions well-defined), so one
column in the second determinant the first boundary term in (4.3) is=0.If £ < N,
then the first boundary term in (4.3) is = 0 because ¢; = c¢+1, and xg — Xp41
means that columns ¢ and £ + 1 will be identical in the second determinant. Since
b;z = by — 1 = by_;, we see that columns £ and £ — 1 in the first determinant in the
second boundary term in (4.3) will be identical.
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Similarly, if 1 <€ < k,and cg+1 = c¢ + 1, by = by_1, then

> det (AP fy - yi))ISLJSN det (AT~ g(zi — x)))

xeW (1)

= Y der(ATr0y - )

I<i,j=N

di—c"
_ Ndet (A L-/g(z,-—xj)>

xeWh o (1) I<i,j< I<i,j=N
4.4)
where
b — b if j#¢ o cj if j#4¢
J be+1 ifj=0¢" "/ ce+1 ifj=¢"
The proof of (4.4) is analogous to the proof of (4.1).
To prove Lemma 3.2, we apply (4.1) successively to xy, xy—1, - .., Xk+1, and then
to Xy, XN—1, - - ., Xk+2 etc., and then finally just to xy. Similarly, we apply (4.4) to
X1, X2, ..., Xk—1, then to x1, x2, ..., xx—2, and finally just to x. This proofs part (a)

of the lemma.
Part (b) of the lemma follows from the identity

i-n g _ i—1—n .
Y det (A 1 (x’)>1g,,-51v — det (A fila+ 1)>15i,j5N' (4.5)
xeWy n(a)

To prove (4.5), first sum over xy from xy_; to a in the last row. This gives
AN—1=n fita+1) — AN_lfj (xny—1). The last term does not contribute since it is
the same as in row N — 1. We can now sum over xy_j from xy_» toa inrow N — 1
etc. In this way we obtain (4.5). O

Proof of Lemma 3.3 We see that

P(a’A)Z Z det(fO,l(ivxj))lii’jSNdet(fl,Z(xi’j))]ii,jsN

xeWy ; x, <0

> det (fo0G %)) < iy

xeWy

N

det (f120xi. 1)< jnd | 2010 <0) = n (4.6)
j=1

Now, for any r > 0,
N
1 u =1 166 <0) N
z—m/erduzl Dl <0)=¢

J=1
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Summing over £ > n and assuming that r > 1, we get

N
1 quzll(xj<O) N
I -  du=1 1(x; 0) > . 4.7
Zni/y u(u — 1) " le (xj <O zn @.7)
Since,
N N
u i 16 <0) H (ul(x; <0)+1(x; > 0)),
j=1

it follows from (4.6), (4.7), and the Cauchy—Binet identity that

1 du . .
P(a’A)Zﬁ/y, 1) Z det (fO,l(l,xj))lsi’jsNdet (fl,z(xi,J))lfl»,jsN

xeWy
N
X 1_[ (ul(xj <0)+1(x; > 0))
j=1

1 du

" 2w ), w1y

XEZL

det (Z o, 2) frale, Dl <0)+ 1(x = 0)))
1<i,j<N

1 d ;

= | S det (0T LG )+ Lo )
2mi J,, u — 1<i,j<N
1 du

= — det (L(i, j; D onT .
ol R LI LY

Proof of Lemma 3.4 1t follows from (3.11), (3.21), and (3.22), that

N
for(i,x) =c@) Y B m, a)(=1)"* A" Fwy, (@ + x)

k=1

0 N Bl (m,a) dz
= _2_7_[1 ., <Z —k> Hn,m,a+x(Z)1 —

k=1 <

z_ﬂ/ dZ/ d{ Hn,m,a+x(Z)(1 _C) .
Qa2 Jy, "Ly Hima (@) = 01 = 2)
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Similarly, by (3.12), (3.21) and (3.22),

N
fi2G, x) =c(j)™! Z(_l)k*"Ak*"’lwAm(Aa - x)ﬁ?,k(Am, Aa)
k=1
(! i BO_(Am, Aa) . Jw
- 27 N\ W An,Am,Aa—x(w)l —w
c(j)”! N 'B?f(N+17k)(Amv Aa) dw
~ T oxi Z k Han, Am, Aa—x (W) ——
7l Yr \k=1 w 1—w
= C(j)_l / dw/ dw HAn,Am,Aa—x(Z)
@2 J,, . Hyi1—j,am aa(@)(w — ) (1 —w)
This proves the lemma. -

Proof of Lemma 3.5 Recall the condition (3.26) and choose r1, r» so that r{ > rp >
1 + max(p1, p2), which means that y,, (1) surrounds y,, and y,, i = 1, 2. It follows
from (3.23) and (3.24), that

-1

S ee()! / / Hymax @)1 = 0)
LG, j)=———"F d d
0D == iy ;oo< L Hma @@ — 01— 2)

X

HAn‘Am,Aafx(w)
X dw dw
ry (1) ve,  HN+1-ampa(@)(w — @) (1 —w)

_c@e()” 1 / / / / ! ( 11—z )x
(27'[1)4 (o] (1) 1431 Vrz(l) N Yoo ¢ x;oo I—w

n,m,a(Z)HAn,Am,Aa(w)(l - g-)
Hima(Q)HN1-j, am 80 (@) (2 — O)(w — 0)(1 —2)(1 —w)’

Since r| > rp,

Z 1—z\"  l-w
4 l—w/)  z—-w’

and we obtain
. 1
w6 =D [ e[ [ aw [ a0
(2120 A G MR VANC) S P

Hn,m,a(Z)HAn,Am,Aa(w)(l - C)
Hima(Q)HN 11—, Am. 80 (@) (2 — O)(w — 0)(z —w)(1 —2)
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We now deform y;, (1) to y,,(1). Doing so, we cross the pole at w = w, and hence

o cle()T 1/ / /
L@, = d d
D=0 ), o

2
n,m,a(Z)HAn,Am,Aa(w)(l - ;)
Hi o) Hn11—j Am,pa(@)(2 — ) (w — ) (z —w)(1 —2)

COMU)‘/‘ /
@i S a0 My yfz

nma(z)(l —-¢)
Him,a ()" 1= (z —w)(z — $)(1 — )

=1+ bL. (4.8)

In I; we can shrink y;, (1) to y,, (1). We then cross the pole at z = ¢ (butnot z = w

since po < p1). Thus, by (3.27),
. =1
=A1(i,j)+M/ d;/ dw/ do
Yr ypz(l) yrz

(2mi)3

1
¢ HAn,Am,Aa (w)

x Hyy1—j, am,pa(@) (W — 0) (& — w)
=AG, )+ . 4.9)
We note that
L/ 4 li=m (4.10)
2 - (e —w) wi—n

since |w| > |¢|, and hence by (3.29),

I =—1(G > n)Ax(@, j). 4.11)
Also
1 d 1(j <
—f e _ 1 j".), (4.12)
2ri Sy, 0" (2 —w)

and we obtain

L= 1 < me(@e()™! / dz/ dc Hj tma@)(1—=20)
(2ri)? i Sy Hima(©)@ =01 —2)

1

Deform y;, (1) to y,, (1). We then cross the pole at z = ¢ and we obtain, using (3.30),

1(j < n)e@@e()~!
27

g.ifjfl d;.
1431
=1 =mAs3(, j) + 10 = n)éj;. (4.13)

I =1( =n)A3(@, j) +
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Combining (4.8), (4.9), (4.11), (4.13) and (3.31), we get (3.33).

Consider next,
f jaof w5
w w
Vr2(1) 145 x=0 I—w

o ee()!
2= _W /;/r3(l)dZ /yq

Hn,m,a (Z)HAn,Am,Aa(w)(l - ()
Hi ma (O HN41-j, am,aa(@)(Z — O)(w —o)(1 —2)(1 —w)’

where now r, > r3 > 1 + max(py, p2). Thus,

i 1—z\" 1-w
l-w)  z-w’

x=0

and consequently
Lz(i,j>=—%f dz/ d;/ dw/ do
@t Sy Sy S S

Hn,m,a(Z)HAn,Am,Aa (w)(l - ;)
Hima(Q)HN 11— j, am, 80 (@) (2 — O)(w — 0)(z —w)(1 —2)

We now deform y,, (1) to y,, (1), and doing so we pass the pole at z = ¢, and find

1
Lo, j) = — D) / dz/ dc dw/ dow
Vo3 (1) Y Vry (1) Yo,

(2711)
n,m,a(Z)HAn,Am,Aa(w)(l - C)
Him,a(§)HN+1—j,am, pa(@)(2 — O)(w — @) (z — w)(1 — 2)

. -1
. c(l)C(.])3 f de dw/ do
() S N RS

2
Han,am, Aa(W)
C’ "HN+1—j,Am, Aa(@)(W — @)(§ —w)

3

=N+

In J; we deform y,, (1) to y,,(1). Since p2 > p3, we only cross the pole at w = w,
and we get

. =1
PPPPRETCSY S
Y3 (D) Yo

(27i)3 1 Yoy
« Hn,m,a(Z)(] - ;)
"N T Hi (D)2 — 0)(z — w)(1 —2)
i=—B1(, j)+ J.
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Using (4.10), we find

gy = LA > me@e()! / Jw / o HIN=iAm,na (W)
(27i1)? Yry (1) Ve HN+1-j.ampa(@)(w — )

1 > n)e@@)e()™!
27i

=1 > n) A2, j) +

X / a)j_i_lda) = l(l > n)(A2(15 J) + Sij)’
Yz

2
which gives (3.34) and the lemma is proved. O

Proof of Lemma 3.6 We start with the right side of (3.40),
o0
1 k
dall + Evsinp =Y [ 4t G et Fup gz

2
> / dvy, (x1) . . . dvy, (xp)
Rk

Flyeyrg=1

> 1
ZZE
k=0

x det (M, (n + [xp] + Ln + [x,] + 1))

1=p.q=<k
o] 1 N—n—1 N—n—1
= Z i Z Z det (My,v(n +ip + Ln+ig + 1))15M5k
k=0 ii1=—n ix=—n
=det(8;; + M) (i, j)1<i,j<N»
where we recall that M, (i, j) = 0ifi, j ¢ {1,..., N}. O

Proof of Lemma 3.7 By the formula (3.37) for P(a; A) and Lemma 3.6, we see that

03(11T)1/3/ 1
P(a; A) = det(/ + F, d
(@ 4) i), w1 ST e
1 du
~ i) det( + Fu) 2. pdt. (4.14)

We have the Fredholm expansion,

2
Z / dve (x1) ... dvy (xk)
Rk

Flyeees rr=1

o0
1
det (I + Fu)Lz()t,P) = Z F
k=0 "
det (Fy(rp, xp; rq, xq))lfp,qsk . (4.15)

The change of variables x, — co(t;T)!/3

X) gives
dvy, (cot1T)'Pxp) = coti T)' vy, (x)).
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Take the factor co(t1 7)'/? into row p. We see then that the right side of (4.15) equals,

00 2
1 .
Ya X /Rk vy, (51) - vy (xp) det (B, xpi g, xq))lfpyqik

k=0 Iy re=1

— det (1 i F) .
L2(X,p)

Combining this with (4.14) we have proved the lemma. O

We want to prove that the operator K («) in the definition of the two-time distribution
is a trace-class operator.

Lemma 4.1 The operator K (u) defined by (2.14) is a trace-class operator on the space
X given by (2.13).

Proof Write
S5, y) =1(x > 08 (x, y),  S5(x, y) = S3(x, 1y <0)
so that
S=8-8+S8, T=-T1+S55—S55.

By splitting K () into several parts and factoring out multiplicative constants, we see
that it is enough to prove that

A A

A A

is a trace-class operator on X for A = Sy, T1, S;, S;k. We can think of A as an operator
on L2(A, p) instead, where A = {1, 2} x R and p is given by (3.39).
Define the kernels

N

ai(x,s) = S3(x, )™, ax(s,y) = € Sa(s, y),

bi(x,s) =al(x > 0)e” O7*ADYA (AE + An? + ax + 5),

ba(x,5) = e NIVAI (AE + An® +ay +5),

ci(x,s) = e CTITAI (& + ] —x +5),

er(x,8) = eOTYAI(E 07—y +5)1(y < 0). (4.16)

Using the definitions, we see that

e’} 0
Sl<x,y>=/0 (a1 (x. s))az(s. y) ds, T1<x,y>=/ a1 (x, $)a(s, y)ds

Si“(x,y)=/0 bi(x,5)ba(s, y)ds, Sé"(x,y)=/0 ci(x, s)ea(s, y)ds, (4.17)
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To get kernels on L2(A, p), we define

ay(ri, x; 1,8) =b1(r1, x5 1,8) =c1(r1, x;1,5) =0

ax(l,s;r3,y) =by(l,s;r3,y) =ca(l,s;r3,y) =0.
forr; =1, 2, and
ay(ri,x;2,s) =ax(2,s:r3,y) =0
for ri = 1, 2. Furthermore, we define

—ay(r1,x;2,s) =ai(r, x; 1,5) = ai(x, s)
ax(2,s;r3,y) = a2(2, 5313, y) = ax(s, y)
bi(r1,x;2,8) =b1(x,s), ba(2,s;r3,y) =ba(s,y)

ci1(r, x;2,8) =ci(x,s8), c2(2,5;r3,y) =c2(s, y).

Then, by (4.17) and (3.39),
/ ay(r1, x;r2,2)ax(r2, 2,13, y) dp(r2, 2) = S1(r1, x; 12, y),
A

so S| = ajay. Similarly, we see that T\ = ajaa, S5 = b1by and S5 = cjcz. Using
(2.5) and asymptotic properties of the Airyfunction, we see that ay, az, b1, b2, c1, ¢2
are square integrable over R?, and also over R if we fix one of the variables to be zero.
It follows from this that ay, az, ay, . . ., c2 are Hilbert-Schmidt operators on L2(A, 0).
Since the composition of two Hilbert-Schmidt operators is a trace-class operator, we
have that Sy, 71, S;‘ and S;‘ are trace-class operators on L2(A, p), and hence K (u) is
a trace-class operator also. O

5 Asymptotic analysis

In this section we will prove Lemma 3.8. The proof has several steps and we will
split it into a sequence of lemmas. The proofs of these lemmas will appear later in the
section.

For k = 1, 2, 3, we define the rescaled kernels

Az, y) = ot 1) P AL + [co(t ) P+ 1, nt[eo(1 T) Pyl + 1),

Apr(x,y) = 1(x = 0)co(h T)' P Ay (n+[co(ti T)'Px1+1, nt[co(1 T) Pyl + 1),
Asr(x,y) =1y < 0)co(t )P As(n+co(1 T)' Px]+1, n+[co(t T) Pyl +1),
Bir(x,y) = cotiT)'PBi(n + [coti T)'Px]+ Ln + [eco(h T)' Pyl + ). (5.1)
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Lemma 5.1 Uniformly, for x, y in a compact subset of R, we have the limits

lim ALT()C, y) =S1(x,y),
T—o00

lim Ay 7(x,y) = 1(x > 0)S2(x, y)
T—o0

lim A3 7(x,y) = S3(x, »)1(y < 0), (5.2)
T—o00
and
lim By 7(x,y) = Ti(x.,y). (5.3)
T—o00

The lemma is proved below. In order to prove the convergence of the Fredholm
determinant we also need some estimates.

Lemma 5.2 Assume that |&|, |n| < L for some fixed L. If we choose § in (3.25)
sufficiently large, depending on q and L, there are positive constants Cq, C1, Ca that
only depend on q and L, so that for all x, y satisfying

0<n+IlcotiT)'Px1 <N, 0<n+lco(tiT)Py] <N, (5.4)
we have the estimates
A7, y)| < Cpem O -C@ -0 ~Cat-ms

B (e, y)| < Coem G100 =020 =10 =Cat=ns

Aoz | < Colx = O)e—cl(x)i/z—cl(}v>i/2—Cz(—y)+,

~ 3/2 13/2
A37(x,y)| = Col(y < 0)e™ 1T —GmaED, (5.5)

Here (x)4+ = max(0, x).

The proof is given below. We now have the estimates that we need to prove
Lemma 3.8

Proof of Lemma 3.8 Recall from (2.12) and (2.14) that

Ki(1,x;5,9) =S, y) +u"'T(x,y), Ku2 x;5,y) =uS(x,y)+T(x,),

s =1, 2. It follows from Lemma 5.1 that
lim F7(r,x;is,y) = Ku(r, x5, y), (5.6)
T— o0

for r, s € {1, 2}, uniformly for u, x, y in compact sets. From (5.5) we see that for all
&, n, u in compact sets there are positive constants Cp, C so that

Fur(r.x;is,y)| < Coe” 1 HIHID, (5.7)
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for r,s € {1,2} and all x, y € R. Note that, by definition FL,,T is zero if x, y do not
satisfy (5.4). We can expand the Fredholm determinant,

o
~ 1 ~
det({ + Fu.1)12(n.p) = E F/kdet(Fu,T()»i,)»j))lgi,jgkdk,o()») (5.8)
k=0 " A

in its Fredholm expansion. It follows from (5.6), (5.7) and Hadamard’s inequality that
we can take the limit 7 — oo in (4.15) and get

o0

1
Z ol /k det(Ky, (his M) 1<i,j<kd*p() = det(I + K,)x.
k=0 7A

This completes the proof. O
Consider

wk(] _ w)b+€

Hico.p(w) = Z
(1-12)

1—q
with the scalings (K — oo, 1, &, v fixed),

k=K — c177K2/3 +covK1/3,
b=cK 4 c3tK'3. (5.9)

Here the constants ¢; are given by (2.1). Write

F(w) = log He.¢.p(w) = klogw + (b + ) log(1 — w) — £log (1 - 1L> .

—q
(5.10)
If n =& = v =0, then f(w) has a double critical point at
we = 1= G, (5.11)
Define
Hy p(w) = %- (5.12)

The local asymptotics around the critical point is given by the next lemma.
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Lemma5.3 Fix L > 0 and assume that |&|, |n|, |v| < L. Furthermore, assume that

we have the scaling (5.9). Then, uniformly for w' in a compact set in C

. C4 1
Klgnoo H (wc + Wu/) = exp (ng +qw? — (€ — v)u/) , (5.13)

where
c4 = _611/3(1 — V9
TN
Proof Let
fi(w) =logw + (c2 + 1) log(l — w) — log (1 -7 w ) ’
—q
—q
f3(w) = cox logw + c3& log(1 — w),
so that

fw) = Kfiw) +cink?? fr(w) + K3 f3(w).

(5.14)

(5.15)

Then f{(w) has a double zero at w, only if the constant ¢ = 2,/g/(1 — /q). A

computation gives

2(1+ /q)

(3) _
fl (wc)—q(l_@y

and we find

K (5 (e ) = i) = w0 (10,

Also,

cin 2 (e + W 2(we) ) = nw e
and

lw'|?

K23 <f3 (wc + %w’) — f3(u)c)) =—¢E—-vuw +0 <K1/3
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Using (5.16), (5.17) and (5.18) in (5.15), we obtain

c 1
H]j,[,h (wc + KTA‘/?)w/) = exXp (ng + nwlz — (é — x)w/ + 0(|w/|4/K1/3))

as K — oo. O

To prove the estimates that we need, we use some explicit contours in (3.27) to
(3.30). Let d > 0 and define

d i 3
wi(0) = wi(0:d) = we <1 - W) JoIK", (5.19)
and
d io/K1/3
wz(o) = w2(c7; d) =1- ﬁ 1— W e y (520)

for |o| < 7 K'/3, where K is as in (5.9). Thus, w; gives a circle around the origin of
radius w¢(1 — #), and wy gives a circle of radius /g (1 — #) around 1.

Lemma 5.4 Fix L > 0. Assume that we have the scaling (5.9) and that |&|, |n|, |[v] < L.
Then, there are positive constants Cj, 1 < j < 4 that only depend on q and L, so that
ifC1 <d < C», then
* -1 —Cy0?

|HY ( y(wi(os d))| " < Cre €4, (5.21)

and
|H (w0 d))| < C3e™ €4, (5.22)
for|o| <n K3
We will also need estimates that work for large v.

Lemma 5.5 Assume that ||, |n| < L for some fixed L > 0, and assume that we have
the scaling (5.9) and v is such that k > 0. Then, we can choose d = d(v) > Cy, so
that

— 3/2
|H{ oy (wi (s d@))| 7 < Crem i mm o (5.23)

for|o| < 7 K3, where Co, C1, Ca, 11, up are positive constants that only depend
on q and L. Similarly, there is a choice of d = d(v) so that

32
|H (p(wa(o; d@)| < Crem G 02w (5.24)
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These two Lemmas will be proved below. We can use Lemma 5.3 and Lemma 5.4
to prove Lemma 5.1.

Proof of Lemma 5.1 1t follows from (3.25), (3.27) and (5.12) that

Az, j)

co(t T)! 32—
= BT — dz dw
vy i

H:,m,a (Z)HZn,Am,Aa (w)(1 - {)(1 - ﬁ)7]
H:+[c0(z1 T)1/3x]+1,m,a(§)Hzn—[co(z, 713y am, 00 @@ = W — )z —w)(l - )
(5.25)

d(/ dw
Yz

2

X

Let I'p denote the vertical line through D oriented upwards, R 5 ¢ — D +it. Let
Dy > Dy > 0,d;, d» > 0 be such that

Ci<%p <0 <4 <c
1 - = L2, 1= —= = L2,
Nz NG

r = 1,2, where Cy, C, are the constants in Lemma 5.4 with some fixed L arbitrarily
large. We choose the following parametrizations in (5.25),

D d
2(01) = wy (% C“ﬁ‘) . 2(o3) = w) (% %) , (5.26)
where K = K| = (1,7)Y/3 in (5.19), (5.19), and
w(o) = wy (% C“f;), w(04) = <% %), (5.27)

where K = K> = (AtT)'/3,
loi] < 7K, fori = 1,3, l|oi| <K, fori =2,4. (5.28)
Recall the condition (3.26) on the radii. Let

hi(o1) = Hy ,, 4(2(01)),  h2(02) = H *an, am.aa (w(02)),

h3(63) = H:+[L'()(tlT)1/3x]+1,m,a(é‘(o-3))’ h4(04) = HZn—[L'o(llT)1/3y],Am,Aa(w(o4))'

(5.29)
Now, a computation shows that, for some constant C,
ok, dz dw d¢ do| _
(z(01) — ¢(03))(w(02) — w(04))(z(01) — w(02)) doy dop dos doy
(5.30)
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for all o; satisfying (5.28). Thus, for x, y in a compact set, we have the following
bound on the integrand in (5.25),

coKy " hi (o0 ha(02) (1 = £(@3))(1 —2(@1) ! dz dw dt do
h3(03)h4(04)(z(01) — £(03))(w(02) — w(04))(z(01) — w(02)) doy dop doz doy
‘ hy (0'1)/12(0'2) < 567Ci(012+022+03 +O'4) (5'31)
h3(03)ha(04)

where the last inequality follows from Lemma 5.4.
For o; in a bounded set, we see that

2(01) = we + 1/3( io] + D) + O(K; ),

w(02) = we + 3( i02 + D) + O(Ky %),

£(03) = we + — 17 G0y +di) + O(K; ),
K,

w(04) = we + W(m +do) + 0Ky ), (5.32)
2

It follows from (2.2) that

n=K —cmKk>, An=Ky—ciAnk;?
m=Kj —cimK,?, Am =K+ cAnK,"
a=cKi+ 6K, Aa=crKr+c3AEK), (5.33)

and hence

n+c0x(t1T)1/3 K| —cimK; 2/3 +C()XK1/%
An —coy(T)'P = Ky — 1 AnK " — coay K>, (5.34)

Write 7/ = —io| + Dy, w' = —ioy + Dy, ¢’ =03 + dj, @' = io4 + dy. Note that

dzdwdidw d7/dw'd{’do’
)/ =a(l—
o) e w—oe—w - 2 TV /—;’)(w/— )@ —aw)’
oD PEE 1 T Y o P
z2—¢ 7 —=¢ w —

(5.35)

It follows from Lemma 5.3, (5.25), (5.32), (5.31) and the dominated convergence
theorem that
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lim Ay 7(x,y)
T—o00

2P
= —4/ dz’/ dw// dC’/ do’
@r)* Jry, I'p, " I,

lz/3+mz/2 EIZ/+%W/3+ATIW/2_ASW/

X
e%{/3+771{’2*(§1 —x)¢’ +§a)/3+Anw’2f(AE+ay)w/(Z/ — W =)

and we have the condition
di,dy >0, 0< D <aD, < Dj3.
Define
Gen(2) = 3TNt
and let

aedO=x
Si1(x,y) = / dz/ dw/ dc dw
(2 )4 Ip, Ip, g I_a,
Ge . ()G g, ap(w)

,
—aw’)

(5.36)

(5.37)

(5.38)

Gsl e (DG At yay,an(@)(z — ) (w — 0)(z — aw)’

If d, D > 0, we have the formulas,

— | Gey(@)dz = Ai(E + DTN
2mi

1 de

2.3
— = Ai(§ +nP)e 51757,
2mi r_y Geqn(©)

with absolutely convergent integrals. Using (5.37), we see that

1 o0 1 o0
_ / o510 g, _ f —s20=0) g
z=¢ Jo w—o Jo

1 00
— _/ es3(z—aw)ds3.
Z—ow 0

(5.39)

(5.40)

It follows from these formulas, (5.39) and (5.40) that S is also given by (2.6).
The proof of (5.3) is identical with Dy replaced by D3 satisfying (5.37). The integral

formula for 7 reads
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@)
T(x,y) = —— f dZ/ dwf dg dw
@r)* Jry, Ip, Iy, g,

G ,n (2)G g, an(w)

. (5.41)
Gsl 2.1 (©)G At tay,an(@)(2 = O (w — ©)(z — aw)
The other cases are treated similarly. For S» and S3 we get the formulas
S(y—x) G
Salx.y) = o / dw/ dop—S0srertnW) g g,
Q2ri)* Jr, I, Gagtayan(@)(w — o)
and
S(y—x) Gs _+
S3(x,y) = —— 5 / dz/ dc a=ym () ) (5.43)
@2 Jr, T, T Gaem 0@ =)
This proves Lemma 5.1. O

Proof of Lemma 5.2 Consider first ALT. By Lemma (5.4), we can choose d| and d»,
with d| < ad>, so that

_ 2 1/3
|H o (a(o1, d1))] < Cie™ %, oy < K/,

|HZy am.naW2(02,d1)| < C3e™ G471 o] < wK)°, (5.44)

where C3, C4 are some positive constants independent of 7 and 0». By Lemma 5.5,
we can choose d = d3(x) > Co, and d = da(y) > Cp, so that

_ _ 2 _ 3/2
TN (TR 0))] e o T

_Cro2— 3/2 _
s )15 am a0 W1 @4 da)| 7! < Crem GOl - (5.45)

It is not difficult to check that if z = ws (o1, d1), w = wa(o2, d2), £ = wi(03, d3(x))
and w = w1 (o4, d4(y)), then there is a constant Cs so that

lz—¢l = Csk; ', lw—ol = Csk; ',
and

2 —w| > qld —ady| K] = Csk ;P
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Introducing these parametrizations into (5.25) and using the estimates above, we find
1AL 706 )| < Ce 30 =m0 4@ —m Y a0
« / e—C4(012+022+o32+af)d40
R4
< Ce 8=y~ (ﬂc)i/zﬂn(xn*m (y)i/2+uz(ﬂ')+_ (5.46)
We see that for large enough |x|, we can choose § so large that
3/2 3/2
— (=0 + o)y = 8x < —Ci (=037 = G+
for some positive constants C1, Cy. This proves the estimate for ALT. The proof for

Bl,r is completel}i analogous.
Consider now A3 7,

. 1T) e =M1y <0
el Il I
(2271) v iy

* f—
X — Aty oyma @~ 8 . (5.47)
B coxaryPretma @ =@ =)

Using Lemma 5.5, we see that, just as for ALT, we can choose di(y) and d>(x) so
that

_ 2_ 032
VHy eonry Bma W2(01,di )] < Cre™ CGormmmnetin

_ _ 232
Y eonten 731 W1 (02, da () | < Crem om0t

and we get the estimate
|A3’T(x’ W < Ce—ltl(—X)3+/2+142(X)+—3X—M1(—)’)1/2""5)/1(y <0).

This gives us the estimate we want by choosing § large enough. The proof for /{z,T is
analogous. O

The statements in Lemma 5.4 and in Lemma 5.5 are consequences of two other
lemmas that we will now state and prove. The first lemma is concerned with the decay
along the paths given by w (o) and w; (o).

Lemma 5.6 Assume that we have the scaling (5.9) and let ||, |n| < L for some fixed

L > 0. There are positive constants C1, Ca, C3, C4 that only depend on q and L, so
that if

Ci<d<CK'? (5.48)
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then for |o| < K3,

—1
< Cye~C4do”, (5.49)

‘ Hj ¢ p(wi(o: d))
Hi ¢.p(w1(0; d))

forall v € R. Furthermore, for |o| < K3,

‘Hk,e,b(w2(0'§d)) < Cap—Cido?

) 5.50
Hiop(wi1(0;d)) | — (5.50)

forall v < 0 such that k > 0, and all v such that |v| < L.

Proof Recall the definition of f(w) in (5.10) and the parametrizations (5.19) and
(5.20). Define

gr(0) = Re f(w,(0)) = klog|w,(0)| + (b + £)log |1 — w,(0)]

—Elog‘l _w@) (5.51)
l—¢g
r=12 o < 7 K1/3. Note that for any real numbers «, 8,
d : i
£ log |l — aelfo| = apsinp ’ . (5.52)
do (1 — @)? + 4a sin“(Bo/2)

Let B = K~'3, a1 = w.(1 —dK~'3), 0y = a1 /(1 — ¢). Then a computation using
(5.51) and (5.52) gives

‘o) b+ 0o (1 —ar)? — Lan(l —a1)2+4ba1a2sin2ﬁ7‘7ﬂ info. (5.53)
g1(o0) = sin po. .
: (1 — a1)? + 4oy sin? B2) (1 — @2)? + 4oty sin? B2

By symmetry it is enough to consider 0 < o < 7 K'/3. We have to compute

b+ Oai(l —a)? — tar(l — ay)?

lofq[(l — )b+ 01 —a)® — (1 —a))?]. (5.54)

Now,

1
1+ /9

l—a=qg+0—-J/qdp, 1—a= (Vg +dp),
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and using (5.9) a computation gives

(1= )b+ 01 —a2)* — £(1 —ay)?
3/2 _ B

1+ g 1+ /g 1+ /g

Clﬁ(l_ﬁ) 2 2C3«/§(1_\/§) CS(I_ﬁ) 2-—1/3

— d d d°K .
i+vg Mt Ytirg ¢t

Since |&], [n] < L, we see that

(1= b+ 00 —aa)? — (1 —ay)? > gdK*? + A K3 + A K13, (5.55)

where
2¢y 3/2
A =qd— 1+qﬂL’
2 1— 1— 1—
Ay = Jqd* ~ W =Va, , sU=vaa, aVIl=VD, 2
1+ /q 1+ /9 1+q
_ 253ﬂ(1 - ﬂ)LdK_lﬂ _ c3(1 — ﬁ)Lde_z/g.
1+./q 14+ .q

We note that we can choose C1 and C;, depending only on g and L, so that if C; <
d < C,K'Y3, then A > 0and A, > 0, and also

o] - We _ 1
l—qg ~2(1—-¢q) 201+.q)

Thus, we see from (5.54) and (5.55) that

q 2/3
b+ 0a(1 —a)? —bar(1 —a))? > ————dK
( 1 2 2 1 20+ V)

provided that C; <d < CK 13, Consequently, by (5.53),

qdK?Psin K=2a q

> dK*Psin Ko (5.56)
+ VO +a)?(1+a2)? ~ 8(1+ /q)

gi(o) = 2

since

(14 a1 +a)? < 4.
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It follows, by integration, that, for0 <o <7 K /3

q 43 . 2( O )
—81(0) > ———dK
§1(0) = 910 = g dk i’ (S

q 4/3 20 ? _ q do?
1 — o2,
4(1 + /) 2w K?2/3 472(1 + /q)

since by convexity sint > 2¢/m for 0 < ¢ < 7 /2. This proves the estimate (5.49).
Next, we turn to the proof of (5.50) which is similar. In this case we get

d . 1 .
/ _ _ _ iBo| _ _ _ ipo
g(0) = o <k log |l — \/q(1 —dp)e™?| — tlog|1 _ﬁ(l dp)e I) .

where B = K13, Leta; = Va1 —dp), ar = %a. Then, using (5.52), we obtain

kot (1 — a2)® — Lar (1 — a1)? + 4(k — Doz sin” £
(1 — an)? + 4o sin® B2) (1 — a2)? + day sin® £2)

gr(0) = BsinBo. (5.57)

Now,

kay (1 — a2)? — faa (1 — ap)? = % [kq(l — ) — (1 — a1)2] . (558)

and a computation gives
kq(l —an)? — 0(1 —a1)? = =3(1 — J/@dK*3 — AK?3,
where

A=(1—Jpd+2c1(1 —J*n— A —qdK '3 —co(1 — J*vK 13
+ 2¢1(1 + @)nd K23 4 2¢o(1 — Jq)vd K 23 — coud*K 7", (5.59)

If |€], Inl, |v] < L, we see that we can choose C1, C2, depending only on ¢, L, so that
ifCp <d < C2K1/3, the A > 0, and we obtain

kq(l —a)? — £(1 — a)? < =3(1 — /q)dK*/3. (5.60)

If |€], 9] < L and v < 0, we can also choose C1,Cy sothat A > 0if C; <d <
C2K1/3. Also, we see that

o
2K1/3
< 8(co +c1)LajanK?? < 8(co+c1) LK. (5.61)

4(k — O)ayas sin? ’%" - (—2ch2/3 + covK1/3) oy sin?
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ifv <0or|v|] < L. Assume that C; is such that &y > ,/g/2. Then (5.58), (5.60) and
(5.61) give

ko (1 — a)? — faa(1 — ay)? + 4(k — £)ayaa sin® ’37"

! 1-va 2/3
<——0— JdK?*? + (——d + 8(co + c1)L> K%
Ve 24
1
< —— (1 — J/dKk*",
VAR
if we choose Cy so that
1—-q
— d+8(co+c1)L <0
2/q

ford > Cy.Since a1 < \/q, a1 < 1/./q,

1 1
Tta2(ta)’ - Qg +1/var

and (5.57) gives

_ 1 -4 dK2/3
VIR + g +1//9)? '

We can now proceed, as for g1, to prove that

gh(o) <

o~.
/a2 + q +1/JD?

This completes the proof of the Lemma. O

g2(0) — 2200) < —

The next Lemma is concerned with the decay for large |v|.

Lemma 5.7 Assume that we have the scaling (5.9) and that v is such that k > 0,
which will always be the case. Also, assume that ||, |n| < L for some L > 0. There
are positive constants |11, L2, w3 that only depend on q, L, and a choice d = d(v)
satisfying (5.48) so that

‘ Hio.p(we) < M367M1(7u)?/2+u2(v)+. (5.62)
Hi 0,5 (w1 (05 d(v)))

There is also a choice d = d(v) satisfying (5.48) so that

‘Hk,z,b(wz(O; d(v))) < M3e—m(—v)3+/2+uz(v)+_ 563

Hy o.p(we)

@ Springer



The two-time distribution in geometric last-passage... 883

If we assume that |v| < L, we can choose d independent of v in some interval so that
(5.62) and (5.63) hold.

Proof Using (5.51) we see that

Hi .5 (w1(0; d(v))) _ egl(o)*logf(wc),
Hy ¢.p(we)

so we want to estimate g1(0) — log f (w.) from below, and then make a good choice
of d. We see that

¢1(0) — log f(we) = klog(1 —dK~"3) + (b + £) log (1 + %dK‘m)
q

—Elog( ﬁdl( 1/3) (5.64)

To estimate this expression, we will use the inequalities

2 3 2 3
X 2x X X
= — — — <1 1— <—Xx-—-——-—, 5.65
X =3 3 <log(l —x) < —x 5 3 (5.65)
for1/2 <x <1, and
2 2 3
X X X
— 2 <loso(l <X ——+4—, 5.66
x 2_og(—lrx)_x 2+3 (5.66)

for x > 0. It follows from (5.64) and these inequalities that

1 2
£1(0) — log f(we) > k (—dK—1/3 o §d3K_1>

~ V4,13 1(1—ﬂ)2 2 r—2/3
+ b+ 7 dK~ —— | —) d°K
( )( Ja 2 Ja

123 3g
—d’K 3q3/2d

+ ¢ (—idk—‘“ +
Va 2q
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Substitute the expressions in (5.9). After some manipulation this gives

21(0) — log f(wc)
> (_COU + ! :ﬁﬁcy?) d

1 1 1—./9)?
+ [ —=c1n — =covk 12 — MQSK_IB d?
Ja 2 2q

2 1 2 ! —13_ 2 -2/3) ;3
# (5 - g+ (5 g e - k)4

> (—cov ! :/_ﬂQL) d

q

1 1 1 - /9)?
+ | ———=ciL — —covK71/3 — MC3LK71/3 d?
Vi 2 2q

2
— e LK™V3 — gcovk—w) . (5.67)

If [v| < L, we see that if we choose d so that C] < d < C}, then

g1(0) —log f(w.) > —Cj.

Here C{, C}, C} only depend on ¢, L. If v < 0, then it follows from (5.67) that

£1(0) — log f(w,) > (—Cov _l=va ch) d

NG
1 1—/9)?
+ ——clL—MQLK_Iﬁ d?
Nz 2q
2 1 2 1 13\ ;3
+<_§_W_‘5_361_3/261LK )d. (5.68)

1— L
£1(0) —log f(we) > coe(—v)/? [1 —~ (—ﬁ ) &
Va —v
1 (1—y9? sl , 1
— | —=cIL
(ﬁc‘ T KE)C S
2 1 2 1 | aL ,
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Choose D large, depending on only ¢, L, so that

1 (1 (1—@)2C3L> L,
_‘U_’

- | —=cL
e\ Ty kB

(1 — ﬂ) C3L
Va
if /—v > D;j. Since k > 0, there is a constant D, so that \/—v < D2K1/g The

condition (5.48) becomes

C CrK1/3

€= )
Vant V'

which is satisfied if

c c
o< 22 (5.70)
Dy Dy

We can choose D; so large that C1/D is as small as we want, and hence we can

choose € so small that

_ 1 2 L jal),_1
T3t 3 TRk B) S

It then follows from (5.69) that

£1(0) — log f(we) > %606(—1))3/2

for /—v > Dj. By adjusting u3, we see that (5.62) holds if v < 0
If v > 0, we choose a d satistying (5.48) depending on ¢, L, but not on v or K. It

follows from (5.68) that there are constants 11 and u%, so that

81(0) —log f(we) = —p1(v)4 — p5.

Hence (5.62) holds also when v > 0.
To prove (5.63) we consider instead

82(0) — log f(wc)
= klog (1 + f\/_dK 1/3> + b+ 0)log(1 —dK~'73)

1
— tlog (1 - —dK—1/3)
1— ﬁ

ﬂ —1/3 q 2 - —2/3
k| ————dK - d°K +
= (1—ﬁ 21— Jq)? NS
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1 1
4 (b +E) (_dK—l/3 _ EdZK—Z/?a _ §d3K—l)

d*K~*3 +

#Cﬁ[{l)
(1 - q)? 7

by (5.65) and (5.66). Into this estimate we insert the expressions in (5.9), and after
some computation we get

1
+¢ dK V3 ——
(1 -4 2(1 — /q9)?

£2(0) —log f(w¢)

= <1 :/?/C_IC()U — C3§'> d
1
+ 5 (VA —gank 1P+ et - VoK) &
b - iy
+ 3(1 — /q)3 (1 +Vg+q+ A +3/q9—-3q)cinK

g% 2cquk 23 — e3(1 — ﬁ)3sK—2/3> 43

We can now proceed in analogy with the previous case to show (5.63). O

6 More formulas for the two-time distribution
In this section we give an alternative formula for the two-time distribution, see Propo-

sition 6.1 below.
Recall the notation (5.38),

Gey(z) = 371782, ©.1)
Looking at (5.40), we see that it is natural to write

Aigy(x, y) = Al (& + 1P + x + y)eEHrtnmein 6.2)
since we then get the formulas

1 .
3 Gepxtyn(@)dz = Alg p(x, y), (6.3)
1 I'p

1 de

— —————— = Aig 5(x, ), (6.4)
2mi r g Getxiyn(0) i

for any d, D > 0. We can think of (6.2) as the kernel of an integral operator on
L2(R,).
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In order to give a different formula for the two-time distribution, we need to define
several kernels. We will write

t 1/3
a’:(l+a3)1/3=<A—t) ) (6.5)

Let

Si—v2) G
Mi(vi,12) = ———- / dz/ de £1+v.m (2)
(2mi) I'p r,  Getun@z—19)

:eﬁ(v'*vﬂfo Aig, (1, DAig —y (A, v2) dA, (6.6)

1 G ,
MZ(vlv UZ) = 7‘/‘ dz/ d; Sty /a le(z)
Qri) e I'p -] G§2+v1/a’,nz )(z—19)

1 oo .
= 07[0 Aig, _p,(v1/a, M) Aig, 5, (A, v2/a) dA, 6.7)

and

GA§+U2,A77 (2)

1
My, )= ——— | dz| d
3(U1 UZ) (27_[1)2 /l;D < ‘/Fd gGAgJ,_vl’An({)(Z - é‘)

o0
- /0 Ai ae—an (V1. )AL ag.ag(h, v2) d2, 6.8)

We will also need the following kernels. Let

O0<d <ad) <d3, 0< D) <aDy < D3. (6.9)
Define
ki(vi, v2)
o
= 7,4/ dzf dw/ dc dw
(2ri) I'p; I'p, —d3 T a,
GE] m(z)GAE+v2 An(w)
Gsl m Q)G ag+v,an(@)(Z — §)(z — aw)(aw — &)
= Olf2 Al pg,—ap(v1, —ad)Aig —p (A1, A2)Aig 5 (A2, A3)
Ry
X Al ag,an(—ahs, v2) dA, (6.10)
ka(v1, v2)

=2 3/ dz/ dw/ do—— Gam DG 2y ()
(27'[1) FD3 FDZ F—dz G§2+U1/O{/,r]2 (a))(a = aa))(z - al,U)
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. V] . .
=« fz Ai -§2,—712(y’ aip)Ai £ (Ol/)»] , A2)Al Ag,An(_a)LZ, v2) dz)»,
R+

(6.11)
ks(v1, v2) = ae / de f do !
P @ri? Jr " e, T G (G gy an(@) (@0 — )

= qe 2 / Ai AE,—An (v1, —aA)Ai £l -1 (A, v2)dA, (6.12)
Ry

» ) ae—sz/ dw
4V, 12) = ————
o'2mi I, Gyt +a) /ol np (@)

vl “”2) (6.13)

—8vp @ . (
=e — A1 — —_—, —
7 &, n2 ’ /

ks(vy, v2)

-2 / dw / de do
(27T1) I'p, | e s

% Gy tvy /o (W)
Gep i ()G ag vy, an(@)(@w — a8 (aw — §)

= Otf2 Ai ag,—an(vi, —ad)Aig —y (A1, o'12)
R

+

X Algy (akz, %) d*x, (6.14)

ke (v1, v2)

65111
= 7.4/ dm/ dzz/ dw/ d¢
(27T1) FD3 FD] FDZ F_dl

G 01 (21 Gy toy. (22) G A vy, a0 (W)
G (0)(z1 — §)(z2 — $)(z1 — aw)

= % /3 Aig (1, M)Aig (A1, A2)Aig 5 (A2, A3)
R

+

X Al g, an(—ahs, v2) dA, (6.15)

and
k7(v1, v2)
_ e‘sv.‘ . / dz/ dwf de Ge or,m (Z)GE2+U/2/0/J72 (w)
(2mi) T'p, p, Iy Ge o (O (aw —a'E)(z —¢)

, . . v
= /2 Algyn (v1, @A) AL gy, -y O, @22 Al g,y (@, J)dzk- (6.16)
R

+

The kernels M; and k; depend on the parameters «, &1, A&, 11, An and §. When we need to
indicate this dependence we write M; (o, &1, A&, n1, An, §) and k; («, &1, A&, n1, An, ).
We then think of & and 1, as functions of «, §; and A&, and «, 11 and An respectively.
Explicitly,
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b = B &1, A5 = (ki + AD), 6.17)
m = men, An) = (@ + A, 6.18)

Let
Y =L*Ry) & L (Ry) (6.19)

On Y, we define a matrix operator kernel Q(u) by

(O Q2(w)
Q(u)_<Q21(u) sz(u)>’ (6:20)

where

Q11w)=Q2—u—uYki+ @—1)lky+ks)+ u—1)M3 — uMy

Q1) =W +u' —2)ks + (1 — uky

021 (u) = (1 —u""ke — k7

0n@) = (™" = HM;. 6.21)
We will write Q(u, «, &1, A&, n1, An, §) to indicate the dependence on all parameters.

Proposition 6.1 The two-time distribution (2.15) is given by

2mwi u—1

1 1
Frwo-time (E1, 115 &2, M &) = 7/ det(/ + Q(u))y du, (6.22)
Yr

wherer > 1.

We will give the proof below. The formula (6.22) is suitable for investigating the limit
o — 0 (long time separation). For more on this limit see [7]. To study the limit &« — oo
(short time separation), we can use (6.22) and the next Proposition which gives an o and
1/« relation. Let

p= é B=(+p)0 =2 (6.23)

To indicate the dependence of the kernel K (1) on all parameters we write K (u, o, &1, A&,
n, An, 3).

Proposition 6.2 We have the formula

Fryo-time (&1, 115 &2, m2; @)
1 1
- L / det(l + K™, . AE. &1 An. 1. )y du,  (6.24)
2mi W U= 1

where r > 1.
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The proof is given below. Recall that
At =d'6 —ag, An=an —a’n. (6.25)
Combining the two Propositions above we see that

Fiwo-time (61, 15 &2, 25 @)
1 1
_ 7/ det(I + (™", B, AE &1, An. . 8)y du. (6.26)
i)y, U — 1

Note that « is replaced by B8 = 1/«, &1 and A&, as well as n1 and An, are interchanged,
and u is replaced by u~!. This formula is suitable for studying the limit « — oo since
this corresponds to 8 — 0, see [7]. Note that combining (6.17), (6.18) and (6.25), we get

& =&(B, AL &), m =n(B, An, n). (6.27)

We now turn to the proofs of the Propositions.

Proof of Proposition 6.1 Define the kernels

—0x
P ) = - 3/ dz/ dw/ ap - SamDGas )
(2771) FD3 FDZ I‘_dl Gf]—x,ﬂ] (;)(Z - é‘)(z - C(U))

—dx
e *1(x > 0)
p2(x,v) = B G A tax+v,ap(w) dw,
1 FDZ
e~ 0(x+v) dc
p3(x,v) = . / ;
2mi I_g G§1+v7x,171 (g)

—&x G , /
pa(x,v) = _67'2/ dw/ d¢ &4v/a .,n2(05 w) 7
(2771) FDZ F_,jl G%‘]—X,?)] (é‘)(aw - C)
3y dw

oe
1(v,y) = —— / ,
! 271 Jr_,, Gagtay+v.an(®)
8(y+v)1( 0)
e <
q2(v» )’) = —y G§]+U—y7n| (Z) dZ. (6.28)

2mi Ip,

The factors involving 6v have been introduced in order to get well-defined operators. We
also define

ae(=x)
Sa(x,y) = —7,/ dw/ d¢ dow
@iy Jr, " M,

% Gy (@'w)
Gélfx,m ({)GA§+ay,An(w)(aw —)(w — w) .

(6.29)

From (5.39) and (5.41), we see that

Sa =8 —-T, (6.30)
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by moving the z-integration contour. We then pick up a contribution from the pole at
z = aw, which gives Sy. It follows from (5.41), (5.42), (5.43), (6.29) and (6.28) that

Ti(r,y) = —/R p1(x. 0)q1 (v, y) d,

1(x > 0)S2(x,y) = —/ p2(x, v)q1(v, y) dv,

Ry

S3(x, y)1(y < 0) =/ p3(x, v)q2(v, y) dv,

Ry

Sa(x,y) = /R pa(x,v)q1(v, y)dv. (6.31)
+
From the definition of R(u), (6.30) and (6.31), we see that
Ru)(x,y) = @' =1 /R p1(x, v)q1(v, y) + pa(x, v)qi (v, y)
+

+ pa(x, v)qz(v,y)varf pa(x,v)q1(v, y) dv. (6.32)

Ry

Let pl.jE be the operator from L2(R+) to L2(R.) with kernel pi(x,v), and qii be the
operator from Lz(Ri) to LZ(R+) with kernel ¢; (v, y). From the definition of K (1) and
(6.32) it follows that

K(u) = pq,
where
p= (el e
A—wpy +A—wp; +upy (1 —u)py
and

(%)
q> '
are matrix operators p : Y — X and ¢ : X — Y. Note that p, = q; = 0. Let

Q) =qp

which gives an operator from Y to itself. A straightforward computation using (6.28),
(6.10)—(6.16) and (6.6)—(6.8) shows that

91 Py = —ki, QKPI =k —ka, qf p7 =—-Ms,

q; 3 =ks, q, p3 = —ks+ka, q py = —ks, (6.33)
++:k_M ThT — —k T = _k .

q1 Py 5 2, 9y P 6> 4> Py 75

4, p3 = M.
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From this we see that Q(u) is given by (6.21). In these computations we use (6.17)
and (6.18) to get &, o from &1, A&, n1, An. The Proposition now follows from

det(/ + K(u))x = det(I + pg)x = det(I +gp)y = det({ + Q(u))y.
O
Proof of Proposition 6.2 To indicate the dependence of S, T and R(u) on all parameters

we write S(a, &1, A&, n1, An, §) etc. It is straightforward to check from the definitions
that

1
(e, 1, A, AN 8) (2,2 ) = T(B, A& &1, An, m, B)(—y, =),
o o o

and
1
—T(a. &1, AE. 1. AD, 8) (f, X) = S(B. AE.E(. A 1. BS)(—y, —x).
o o o

It follows that

éR(u,a,sl, Agm An.8) (5.2 ) = u R LA 1. An i, BE) (=Y. ).
If we write

Ru)(x,y) = R™", B, AE &1, An.m1. BO)(x, y),
we see that

Lrw (-2.-2) =u "R M. ).
o o o

Let KX(u)(x,y) =a 'K(a~y,a"!x), and define V : X > X by

v (ﬁ(x)) _ (fz(—x)>
Ja(x) fi=x))"
Note that V2 = I. Since taking the adjoint and rescaling the kernel does not change the
Fredholm determinant, we see that
det(/ + K(u))x =det({ + K;(u))x = det(I + VK ;(u)V)x,

Using these definitions a computation shows that

R H(x, ) @(u—‘)(x,y)> <1 0)

VKa(“)V:(R(u’I)(X,y) Rw™(x, /) \O w1

@ Springer



The two-time distribution in geometric last-passage... 893

This operator has the same determinant as
I 0 R (x,y) R ")(x,y)
0w 'IJ\RG™Hx,y) R Hix,y)
= K@u™', B, A& &1, A i, BO)(x, y).

_( R@Hx,y R ")(x, y)
N\ TR@ D@y w T R y)

Thus,

det(I + K (u, a, &1, A&, 1, An, 8))x = det(I + K™, B, A&, &, An, 1, B))x
=det(I + K", B, A&, &1, An, 1, 8)x

since the Fredholm determinant is independent of the value of § as long as the condition
(2.5) is satisfied. Note that this condition is § > max(n;, ®An) so 8§ > max(An, Bn1)
and we can replace 8§ with § as long as § > max(An, Bn1). O
7 Relation to the previous two-time formula
The approach in the present paper can be modified to study the probability

pla; A) =P[G(m,n) =a, G(IM,N) < A], (7.1

under the same scaling (2.2).
Let

X' = L*(R_, dx) ® L>*(Ry, dx) & L*({0}, &)
and modify the definition of S and T into

S(-x’ y) = Sl(xv Y) + 1(x = O)Sz(xv Y) - S3(.X, Y)l(y < 0)7 (72)
T(x,y) = =Ti(x,y) = 1(x > 0)Sa2(x, y) + S3(x, y)1(y = 0). (7.3)

Define the matrix kernel

Rw)(x,y)  R)(x,y) R@)(x,y)
Kiyy(x,y) = | uR@)(x,y) uR@w)(x,y) uR@u)(x,y)], (1.4)
VR@u)(x,y) vR@w)(x,y) vR@u)(x,y)

where R (u) is defined as in (2.12) but with S and T given by (7.2) and (7.3) instead. Then,
under (2.2),

d
lim ce3(tT) 2 pla: A) = / du/ £ det(d + Ku)x, (7.5)
T—o0 Vr Yr v

(2mi)?
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for any r > 0. From this formula, it is possible to derive the formula for the two-time
distribution given in [17]. It should be possible to get the formula in [17] also by taking
the partial derivative with respect to & in (2.15). We have not been able to carry out that
computation.
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