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Abstract
Internal DLA is a discrete model of a moving interface. On the cylinder graph Zy x Z,
a particle starts uniformly on Zy x {0} and performs simple random walk on the
cylinder until reaching an unoccupied site in Zy X Zx¢, which it occupies forever.
This operation defines a Markov chain on subsets of the cylinder. We first show that a
typical subset is rectangular with at most logarithmic fluctuations. We use this to prove
that two Internal DLA chains started from different typical subsets can be coupled with
high probability by adding order N log N particles. For a lower bound, we show that
at least order N2 particles are required to forget which of two independent typical
subsets the process started from.
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1 Introduction

Internal diffusion-limited aggregation (IDLA) models a random subset of Z¢ that
grows in proportion to the harmonic measure on its boundary seen from an internal
point. More precisely, let A(0) = {0} denote the subset (“cluster”) at time t = 0. For
integer times ¢ > 1 inductively define

A() = At — 1) U{Z}, ey

where Z; denotes the exit location from A(r — 1) of a simple random walk on Vi
starting from 0, independent of the past. The process (A(t));>0 is a Markov chain on
the space of connected subsets of Z¢. As t — oo, the asymptotic shape of A(t) is
an origin-centered Euclidean ball [11] and its fluctuations from the ball are at most
logarithmic in dimensions d > 2 [2,4,7,10]; see also [3] for a lower bound on the
fluctuations. Space-time averages of the fluctuations converge to a logarithmically
correlated Gaussian field [8,9].

In the setting of the cylinder graph [9] it was asked what happens if the process is
initiated with a cluster A(0) other than a singleton: How long does it take for IDLA to
forget the shape of A(0)? Our main results, Theorems 1.3 and 1.4 below, give upper
and lower bounds that match up to a log factor.

Fix an integer N > 3, and let Zy x Z denote the cylinder graph with the cycle
on N vertices as base graph. We refer to x € Zy as the horizontal coordinate, and to
y € Z as the vertical coordinate. For k € Z, we call {y = k} := Zy x {k} the kth level
of the cylinder, and Ry := {(x, y) : y < k} the infinite rectangle of height k.

It is sometimes convenient to formulate the growth in terms of aggregation of
particles. Let A(0) be the union of the lower half-cylinder Ry with a finite (possibly
empty) set of sites in the upper half-cylinder. At time zero, each site in A(0) is occupied
by aparticle. At each discrete time step, a new particle is released from a uniform point
on level 0, and performs a simple random walk until reaches an unoccupied site, which
it occupies forever. Motion of particles is instantaneous: we do not take into account
how many random walk steps are required for a particle reach an unoccupied site, but
rather increment the time by 1 after it does so. Formally, we define A(¢) inductively
according to (1), where Z; is the the exit location from A (¢ — 1) of a simple random
walk on the cylinder graph starting from a uniform random site on level 0, independent
of the past. Note that this is equivalent to adding a new site to the cluster according to
the harmonic measure on its exterior boundary seen from level —oo. When A(0) = Ry
we say that the process is “starting from flat”.

In the cylinder setting there are two parameters, the size N of the base graph, and
the time . Just as large IDLA clusters on Z¢ are logarithmically close to Euclidean
balls, it is natural to expect large IDLA clusters on the cylinder to be logarithmically
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close to filled rectangles. Whenr = N 2 this was stated in [9] (but not proved there, as
the proof method is the same as in [7]). Our first result extends this result to large times
t < N™, which we will later use to control the fluctuations of stationary clusters.

Theorem 1.1 Let (A(t));>0 be an IDLA process on Zy x Z starting from the flat
configuration A(0) = Ro. For any y > 0, m € N there exists a constant by ,
depending only on y, m, such that

]P’(R#_by.m gy SAD SRy, gy VI < N’") >1—N~V )

for N large enough.

We prove the above result in two steps. To start with, we argue that (2) holds for
T < (Nlog N)2, which can be shown by adapting the Jerison, Levine and Sheffield
arguments [7] to the cylinder setting (cf. Theorem 5.1). We then invoke the Abelian
property of IDLA (cf. Sect. 2) to build large clusters by piling up nearly rectangular
blocks of O(N? log N) particles each.

Suppose now that the IDLA process on Zy x Z is not initiated from the flat config-
uration Ry, but rather from an arbitrary connected cluster A(0) D Ro. How long does
it take for the process A(#) to forget that it did not start from flat? Clearly, the answer
to this question very much depends on A(0). For example, it will take an arbitrarily
large time to forget an arbitrarily tall initial profile. On the other hand, most profiles
are unlikely for IDLA dynamics. This leads us to the following related question:

How long does it take for IDLA to forget a typical initial profile?

To define “typical” let

Q:={ACZn XxZ : A= RyU F for some finite F'}

denote the set of clusters which are completely filled up to level 0. This is the state
space of IDLA. On 2 we introduce the following shift procedure: each time the cluster
is completely filled up to level k > 0, we shift the cluster down by k (see Fig. 1).

Definition 1.1 (Shifted IDLA) Let S be the map from the space of IDLA configurations
to itself defined as follows. For a given cluster A, let

ka:=max{k >0: Ry C A}

be the height of the maximal filled (infinite) rectangle contained in A. The downshift
of A is the cluster

S(A) :={(x,y —ka) : (x,y) € A},

Note that kg4)y = 0, s0 S(5(A)) = S(A). Now from the IDLA chain (A(t));>0 we
set

A*(1) := S(A(1))

forall # > 0. We will refer to (A*(r))s>0 as the shifted process associated to (A(¢));>0.
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1222 L. Levine, V. Silvestri

Fig.1 An IDLA cluster A and
its shifted version S(A)

S(A)

The shifted process defines a new Markov chain on the same configuration space €2.
While the original IDLA chain is transient, we will see that Shifted IDLA is a positive
recurrent Markov chain (cf. Remark 6.1) and it thus has a stationary distribution, which
we denote by uy.

Recall from [1] that a probability distribution is called a warm start for a given
Markov chainifitis upper bounded by a constant factor times the stationary distribution
of the chain. We relax this definition below.

Definition 1.2 (Lukewarm start) For k € N, a probability measure vy on €2 is said to
be a k-lukewarm start (for Shifted IDLA) if

v (A) < N un(A) VA e Q.

We say that vy is a lukewarm start if it is a k-lukewarm start for some k € N.

Definition 1.3 (Typical clusters) A random cluster A €  is said to be a typical cluster
if it is distributed according to some lukewarm start vy for Shifted IDLA. If vy = un
then A is said to be a stationary cluster.

For A € Q, let |A| denote the number of occupied sites above level 0, that is
|Al:=={(x,y) € A:y >0}
Let further 2(A) denote the height of A, that is
h(A) = max{y : (x,y) € A for some x € Zy},

so that 7(A) > O for all A € Q.
Our next result is a bound for the height of a typical cluster: it is at most logarithmic
in N with high probability.

Theorem 1.2 (Height of typical clusters) Forany y > 0, k € N there exists a constant

cy k» depending only on y and k, such that for all k-lukewarm starts vy it holds

vN({A Lh(A) > ¢y 1og1v}) <NV 3)

for N large enough.

In particular, taking k = 0 we see that stationary IDLA clusters have logarith-
mic height with high probability. This gives nontrivial information on the stationary
measure of a nonreversible Markov chain on an infinite state space.
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How long does it take for Internal DLA to forget... 1223

Remark 1.1 We believe that this bound is tight, in the sense that for Ay ~ uy the
ratio h(An)/log N converges in probability to a positive constant as N — oo. See [6,
Figure 9] for some numerical evidence.

We use Theorem 1.2 to bound from above the time it takes for IDLA to forget a
typical initial profile.

Theorem 1.3 (The upper bound) For any y > 0, k € N there exist a constant d,, j
and a set Q2 C 2, depending only on y and k, such that the following hold for all
sufficiently large N. For any k-lukewarm start vy on Zy X Z, we have

v (Qy4) = 1= N7,

Moreover, for any Ao, Ay € Qy,x with |Ag| = |Ayl, writing 1, = dy,sz log N for
brevity, we have

1Pty k) — P'(ty )Ty < N7

where (A(t))r>0 and (A’ (t))s>0 are IDLA processes starting from Ao and A6 respec-
tively, and P (t) and P’ (t) denote the laws of A(t) and A'(t) respectively.

Thus IDLA forgets a typical initial state, and hence in particular a stationary initial
state, in O(N? log N) steps with high probability.

Remark 1.2 The assumption |Ag| = |A| could be relaxed to |Ag| = |Aj| (mod N),
by shifting the smaller cluster to include some full rows of N sites each. To remove the
cardinality assumption entirely, one could consider “lazy” IDLA processes: at each
discrete time step, a particle is added with probability 1/2, and otherwise nothing
happens. Then the difference |A;| — |A}| (mod N) is a lazy simple random walk on an
N-cycle, so with probability at least 1 — N™7 there is atime 7 < d, N 2]og N such
that [A7| = |A%| (mod N).

When the initial profiles are stationary, we can complement the upper bound in
Theorem 1.3 with the following lower bound.

Theorem 1.4 (The lower bound) For any 8, ¢ > 0 there exist disjoint subsets Qs, Qg
of Q such that

1 1
unN(82s) = oo 8, un(p) = 5 J 4)
and a constant « = «(8,¢) > 0 such that the following holds. Let (A(t)):>0 and
(A'(1))1=0 be two IDLA processes on Zy x 7 starting from Ag € Qs, A, € Qf, and
denote by P(t), P'(t) the laws of A(t), A'(t) respectively. Then
IP@N?) — P'(@N)|rv > 1 —¢ )

for N large enough.
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1224 L. Levine, V. Silvestri

The above theorem tells us that two independently sampled stationary profiles A, A’
are, with probability arbitrarily close to 1/2, different enough for IDLA to need
order N steps to forget from which one it started. To prove this, we identify a slow-
mixing statistic based on the second eigenvector of simple random walk on Zy (see
Definition 8.1 in Sect. 8.3).

1.1 Outline of the proofs

We start by showing that IDLA forgets polynomially high profiles in polynomial time,
as stated in the following theorem.

Theorem 1.5 Let Ag, A, be any two clusters in Q with |Ag| = |A{| and define
ho = max{h(Ap), h(AE))}

Assume that hy < N™ for some fixed m € N. Let (A(t));>0 and (A’ (t))s>0 be two
IDLA processes starting from Ao, A, and denote the laws of A(t), A'(t) by P(t), P'(t)
respectively. Then for any y > 0 there exists a constant d;’m, depending only on y
and m, such that for

tym =hoN +d, , N*log N
and N large enough, it holds
”P(ty,m) - P/(ty,m)”TV = N7,

Theorem 1.5 is proved via a coupling argument that we spell out below. We then
combine it with Theorem 1.1 to show that stationary clusters have at most logarithmic
height with high probability (cf. Theorem 1.2). The upper bound (cf. Theorem 1.3),
is a simple corollary of these two results. We sketch here the main ideas behind these
proofs.

1.1.1 Theorem 1.5: the water level coupling

Let Ap and A be two clusters in Q@ with ng := [Ag] = [|Ajy] and hy =
max{h(Ag), h(Aé))} < N™. We are going to build large IDLA clusters starting from
A, A, in a convenient way. Let 1, ,, = hoN + d)’/’mN2 log N as in Theorem 1.5.
Introduce a new IDLA cluster Wy, independent of everything else, built by adding z,, ,
particles to the flat configuration Ry. Note that since W contains polynomially many
particles, by Theorem 1.1 it will be completely filled up to height hg + b, ,, N log N
for a suitable constant by, ,, with high probability.

We take Wy to be the initial configuration of two auxiliary processes (W (¢));<n,
and (W/(t));<n,. that we think of as water flooding the clusters. Water falling in A
(resp. Ay) freezes, and it is only released at a later time. Frozen water particles are
released in pairs, and their trajectories are coupled so to make the particles meet with
high probability before exiting the respective clusters. Clearly, by taking the initial
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meeting point

Fig. 2 The “water level coupling” in the proof of Theorem 1.5. Top row: initial clusters. Middle row:
the water cluster W (0), with frozen particles in light blue. Frozen particles are released in pairs, and their
trajectories (in black) are coupled so that they meet with high probability before exiting W (0). After meeting,
they follow the same trajectory (in red). As a result, they exit in the same exit location. Bottom row: identical
clusters W (ng) = W' (n) resulting from the release of all frozen particles (color figure online)

water cluster Wy large enough we can ensure that all pairs of frozen particles meet
with high probability before exiting their respective clusters, in which case we have
W(s) = W'(s) for all s < ng. The theorem then follows by invoking the Abelian
property (cf. Sect. 2) for the equalities in law

d d
Alty) L Wno),  Atym) L W (no).

See Fig. 2 for an illustration of this argument, and Sect. 4 for the details.
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1226 L. Levine, V. Silvestri

_— _—
Nm
logN I

Fig.3 Sketch of the proof of Theorem 1.2. Starting from a high density configuration (left), the associated
Shifted IDLA process reaches a polynomially high profile (centre), and then a logarithmically high one
(right). Both transitions take at most polynomially many steps

1.1.2 Theorem 1.2: typical clusters are shallow

It suffices to prove the result for vy = pupy. Assume Theorem 1.1, accord-
ing to which an IDLA process starting from flat has logarithmic fluctuations for
polynomially many steps, with high probability. It suffices to show that such
process reaches stationarity in polynomial time to conclude. This would follow
from Theorem 1.5, if we knew that stationary clusters have at most polynomial height
in N, with high probability. To see this, we first observe that stationary clusters are
dense, since an IDLA process spends only a small amount of time at low density
configurations. Here the density of a cluster A € 2 is measured via its excess height
E(A) = h(A)—|A|/N,thatis the difference between the actual height and ideal height
of A. We show that if the excess height is too large, then it has a negative drift under
IDLA dynamics. The advantage of measuring the clusters’ density via their excess
height lies on the fact that a bound on the latter easily translates on a bound on the
number of empty sites below the top level. Once we have such bound, we can try to
fill the holes below the top level by releasing enough (but at most polynomially many)
additional particles. This will leave us with clusters of at most polynomial height. Take
any deterministic time of the form r = N* for large enough k. Then the cluster A(r)
is both stationary and it has at most polynomial height with high probability, which
implies that typical clusters have at most polynomial height with high probability, as
claimed (Fig. 3).

1.2 Organization of the paper

We start by recalling the Abelian property of Internal DLA in Sect. 2. We then collect
some useful preliminary results in Sect. 3. In Sect. 4 we prove Theorem 1.5, concerning
deterministic initial profiles. In Sect. 5 we bound the fluctuations of IDLA clusters
with polynomially many particles (cf. Theorem 1.1), which we then use in Sect. 6
to prove Theorem 1.2. The upper bound (cf. Theorem 1.3) is a simple corollary of
Theorems 1.5 and 1.2, as we briefly explain in Sect. 7. The corresponding lower bound
(cf. Theorem 1.4) is proved in Sect. 8. We conclude the paper with a short review of
the logarithmic fluctuations result by Jerison, Levine and Sheffield (cf. Theorem 5.1),
that we include in “Appendix C”.
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2 The Abelian property

The Abelian property of Internal DLA was first observed by Diaconis and Fulton [5].
More recently, it has been used to generate exact samples of Internal DLA clusters in
less time than it takes to run the constitutent random walks [6]. For the related model
of activated random walkers on Z, the Abelian property was used to prove existence
of a phase transition [13].

To state the version of the Abelian property that will be used in our arguments, let
us start by defining the Diaconis—Fulton smash sum in our setting. Given aset A € Q
and a vertex z € Zy X Z, define the set A @ {z} as follows:

(1) ifz ¢ A, then A @ {z} := AU {z},
(i1) if z € A, then A & {z} is the random set obtained by adding to A the endpoint of
a simple random walk started at z and stopped upon exiting A.

Remark 2.1 Note that if A(0) = Ry and {z1, 22, - . ., 2;} are ¢t independent, uniformly
distributed vertices at level zero, then we can build an IDLA cluster A(#) by setting

A) = ((AO) @ {z1}) @ {z2h) @ - & {z}

The Abelian property, stated below, gives some freedom on how to build IDLA
clusters without changing their laws.

Proposition 2.1 (Abelian property [5]) Given any finite set {z1, 22, . . . , 2t} of vertices
of Zn X 7Z, and a set A € 2, the law of

(A {z1) ®{z2}) ®--- & {2}

does not depend on the order of the z; ’s. More precisely, ifo : {1,...,t} — {1,...,t}
is an arbitrary permutation of {1, ..., t}, we have the equality in distribution

(A @)@ @z} L (A o)) @ o) & ® [2o))-

In light of the above result, given A € Q2 and a finite subset B of Zy x Z, we write
A @ B to denote ((A ® {z1}) ® {z2}) ® - - - ® {z,}, where 7y, ...z, is an arbitrary
enumeration of the elements of B.

Remark 2.2 'We point out that Proposition 2.1 is stated and proved in [5] for finite sets,
while in our setting the set A is infinite. Nevertheless, we can easily reduce to working
with finite sets by changing the jump rates of our random walks at level zero to mimic
the hitting distribution of a simple random walk after an excursion below level zero.
This has the effect of contracting all excursions below level zero to a single step, and
it clearly does not change the law of the model.
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1228 L. Levine, V. Silvestri

3 Preliminaries
3.1 A mixing bound

For x € Zy, let P} denote the law of a lazy' simple random walk on Zy starting from
x, and denote its stationary measure, uniform on Zy, by 7. For ¢ > 0 define

Ty (e) := inf {tzO: max ||P. —nwylry 58}. 6)
XEZN

The Total Variation (TV) mixing time of this walk is defined to be T (1/4), which we
simply denote by ty. It is well known that

™ < N?, @)
and moreover
tn(N7) < [log, N |ty < 3yN?log N ®)

forany y > 0 (see e.g. [14]). Let w = (x(t), y(¢))s>0 be a simple random walk on
Zn X 7 and define

) = inf{r > 0: y(t) = n}

to be the first time it reaches level n. The next lemma tells us that by the time the
walker has travelled for about N log N levels in the vertical coordinate, it has mixed
well in the horizontal one.

Lemma 3.1 Forall y > 0andalln > 10y N log N, it holds

max ]P’(x,())(t,f <3yN%logN) < N7
XEZN

for N large enough.

Proof Let (X(1));>0 be the jump process associated to the motion of the horizontal
coordinate, obtained by only looking at (x(¢));>0 when the random walk makes a
horizontal step. Similarly, let (y(¢));>0 be the jump process associated to the motion
of the vertical coordinate. Let

) :=inf{r > 0: $(t) = n}

denote the number of vertical steps made by the walk to reach level n. For i > 0,
let G; — 1 denote the number of moves in the x coordinates between the ith and the

LA lazy walk stays in place with probability 1/2, and otherwise takes a simple random walk step.
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(i + 1)th move in the y coordinate. Then (G;);>¢ is a collection of i.i.d. Geometric
random variables of mean 2, and we have

It follows that

-1
max P, 0)(tq < N*log N¥) = PO( Y Gi<N’log N3V>
XEZN i=1
8y N2 log N
< IP’O( > Gi<3yN’log N) +Po(% < 9yN%logN). (9)
i=1

We estimate the two terms separately: the first one is controlled by large deviations
estimates, while the second one by using the explicit expression for the moment
generating function of 7, . More precisely, we have

8y N2log N oh g i
IP’()( Z G; < 3)/N2 10gN> :P0<2— 2z Gi _ p—3YN logN)
i=1
3yN%log N 3y N2 log N
<[ ol [ < Gy

where we have used that E(2~¢1) = 1/3 for the second inequality. For the second
term, it is simple to check that, for z € (0, 1),

. 1—=/1=22 -y .y
]E()(Zr]}) = %7 ]EO(ZTg) = ]E()(ZTI )n

This gives, for any z € (0, 1),

Po(£) < 9y N2log N) < Eo(z)z o7V loeV
(1 —J1 _ZZ)n <1)9yN210gN

Z <

Choose z € (0, 1) of the form z2 = 1 — 1/012 for some a > 1 as N — o0, to have
that

Z

(1_\/1—Z2)n <1)9VN210gN<<1 l)n/2(1 1 )_%VNZIOgN
B =

o 0{2

5
< exp(— % + a—];NzlogN).
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1230 L. Levine, V. Silvestri

To have the far r.h.s. smaller than, say, N —5v/4 it suffices to take
10y  » 5
n>——N"logN + —yalogN.
o 2
Optimizing over o suggests to take « = 2N, to getn > 10y N log N. O

3.2 The role of starting locations

The following result tells us that if the walkers have time to mix in the horizontal
coordinate before exiting the cluster, the resulting IDL A configuration does not depend
too much on their initial positions.

Proposition 3.1 Fix any T > 0 such that T < N™ for some finite m € N. Let
{(xi, yi)h<i<r and {(xi’, yi’)}1§i57 denote two fixed collections of vertices of Zn X Z.
such that y;, yl.’ < O foralli < T. Let, moreover, (A(t));<r and (A'(t));<7 be two
IDLA processes with starting configurations A(0) = A’(0), and such that the ith
walkers start from (x;, y;) and (x, y!) respectively. Then there exists a coupling of
the two processes such that the following holds. For any y > 0 there exists a finite
constant Cy, ,, depending only on y and m, such that if

A(0) = A'(0) 2 Rc,,,Nlog N (10)
then
PA(t) = A'(t) forallt <T)>1—- N7, (11)

Remark 3.1 In particular, this tells us that, as long as the IDLA cluster is filled up to
level Cy,u N log N, releasing the next T walkers from fixed initial locations below
level 0 or from uniform locations at level O results in the same final cluster with high
probability.

Proof This is an easy consequence of Lemma 3.1. For i < T, let w; =
((xi (k), yi (k))r=0 and w; = ((x(k), y/(k)))x=0 denote the simple random walk tra-
jectories of the ith walkers starting from (x;, y;) and (x/, y;) respectively. These are
coupled as follows. If, say, y; < y/ then o] stays in place until w; reaches level y/ (and
vice versaif y; > y/). We can therefore assume that y; = y! without loss of generality.
If, moreover, N is even and |x; — x; | is odd, then the first time that w; moves in the
horizontal coordinate we keep ), in place. Since the probability of w; reaching level
N before making a horizontal step is 0(2~) for large N, we can assume that |x; — x/|
is even without loss of generality.

The walks move as follows. If w; moves in the y coordinate, then so does a)l’., and
the two walks take the same step. Thus y; (0) = ylf (0) implies that y; (k) = ylf(k) for
all k > 0. If, on the other hand, w; moves in the x coordinate, then so does a)l’. , and the
two walks move according to the reflection coupling on the N-cycle (cf. Sect. 1.1).
Finally, the walkers w; and o] stick together upon meeting, that is if w; (k) = o] (k)
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How long does it take for Internal DLA to forget... 1231

for some k > 0 then w; (j) = w;(j) forall j > k. Note that if A — 1) = A'(i — 1)
and the ith walkers meet before exiting the identical clusters, then A(i) = A’(i).

Let, consistently with the notation introduced in the proof of the previous result,
(X (k))k>0 and ()?i/(k))kzo be the jump processes associated to (x;(k))x>0 and
(x](k))x=0- Then, if

T, = inf{k > 0: %;(k) = x/(k)}
we have, by comparison with a simple random walk,
P(%, > 3yN?logN) < N7 (12)
for all y > 0 and N large enough. Moreover, by setting
Ty := inf{k > 0 : x; (k) = x/(k)},
we see that x; (1) = x'(ty) = x(Tx) = x'(z,) and

T —1

TX = Z Gla
k=1

for (G;);>1 i.i.d. Geometric random variables of mean 2. Let ' = 6(y + m) and
y” = y’/3. Recall that R, denotes the infinite rectangle of height 7, and assume that
A(0) = A’(0) 2 R, for n = 10y’N log N. Denote by t, the first time both walkers
reach level n. Then by Lemma 3.1 and (12) we have

Ty —1

P(w; and a)l/- exit R, before meeting) = P(7y > 1) = ]P’( Z Gy > rn)
k=1

Tx
< ]P’( Z Gy > 3)//N210gN> + P(r, < 3)//N210gN)
k=1
3y”"N%log N
Pl Y Gi>3y'Nlog N)) +P(% > 3y N2 log N) + N7’
k=1
3y”"N%log N
P( > Gi>9"Nlog N) + N N
k=1
B [E(emk)ry”z\ﬂ log N
=7

IA

IA

i ZN_yN,

where the third inequality follows from (12). Finally, taking A = log(3/2) > 0 makes
the term in the square brackets equal to 8/9, from which we conclude that

" 9 "
P(w; and ! exit R, before meeting) < N3N log g +2N7V < N~rtm)
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for N large enough. In all, we have found that

P(3t < T such that A(1) # A'(t))
< P(3i < T such that w; and a)lf exit R, before meeting)

<TN-Otm < N77,

This shows that we can take C, ,, = 60(y + m) in (10) to have (11), thus concluding
the proof. O

4 The water level coupling

In this section we prove Theorem 1.5.

Proof of Theorem 1.5 Let Ao, A, be any two clusters in Q with [Ag| = |Aj| = n¢ and
such that

ho = max{h(Aop), h(Ay)} < N™.

Let Cy41,m+1 and by, 11,42 be defined as in Proposition 3.1 and Theorem 1.1 respec-
tively, and define

ro
dy, = 2max{Cyp1mt1, by+1,m42}.

/
y.m

to the flat configuration Ry according to IDLA rules. Then, since t, ,, < N m+2 by
Theorem 1.1 we have

We build an auxiliary water cluster Wy by addingt,, ,, = hoN+d,, , N % log N particles

>1-—N"tD

]P’(W SR )
0= tmi—byﬂ,erlegN -

for N large enough. In particular, since d}/,’m > Cy+1,m+1 + by11,m+2, this gives

IP(WO 2 RhO+CV+l,m+1N10gN) z 1 - N_(y+1)’

i.e. the water cluster is completely filled up to height g + Cy 1 1N log N with
high probability. Write

A():{Z17Z25"'7Zn0}9 AE)Z{Z,I’Z&""’ZI'!O}
for arbitrary enumerations of the sites in Ay, A6 above level 0. We define two auxiliary
processes (W (t))i<ng. (W' (t))¢<n, by setting W(0) = W'(0) = Wy and inductively
defining for ¢t < ng

W) =W —1DU{Z}), W@ =We-1)U{z)},
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where Z;, Z; denote the exit locations from W (¢t — 1), W'(r — 1) of simple random
walks on Zy x Z starting from z;, z;. These walks are coupled as follows. If z; is at
a lower level than z;, then the walk starting from z, moves freely (independently of
everything else) until it reaches the level of z/, while the other walk stays in place.
Once at the same level, the walks move together in the vertical coordinate, whereas
the horizontal coordinates evolve according to the reflection coupling: if one steps to
the left, the other one steps to the right, and vice versa.> Once the walks meet, they
move together in both coordinates. Since ng < hoN < N m+1 and all the walks start
at disgance atleast Cy11,,+1 N log N from the boundary of the cluster, Proposition 3.1
gives®

P(W(10) # W' 10) <P(W0) # W' 10)| Wo 2 R o o)

—HP’(WO 2 Riym ) <2N~OFD < N7V
N

+Cy+1,m+1 IOg N

for N large enough. The result then follows by observing that if (A(#));>0 and
(A’(1))1=0 denote two IDLA processes starting from Ag and Aj, respectively, then

d d
Altym) L Wno).  A'Gtym) L Wing)

by the Abelian property. Indeed, if we denote by wy, wa, ..., wy,, the starting loca-

tions of the t,, ,,, walkers used to grow Wy, then, with the notation introduced in Sect. 2,
we have

W(no) = ((Ro @ {w1}) ® {w2})) & --- & {wy, . }) © Ao,
while
A(tym) = (Ro @ Ag) ® {w1}) & {w2}) &--- & {wy,, }.

The claimed equality in law is then given by Proposition 2.1. O

Remark 4.1 Note that to prove Theorem 1.5 we have constructed a coupling of the
final clusters A(t, ), A’(ty,m), not of the whole processes (A(?));>0, (A'(t))>o0.

5 Logarithmic fluctuations for large clusters

In this section we bound the fluctuations of an IDLA cluster with polynomially many
particles, thus proving Theorem 1.1. To start with, we claim that the following holds.

2 Here we again use the first horizontal step of the walks to adjust the parity of the difference of the
horizontal coordinates, if needed, as explained in the proof of Proposition 3.1.

3 Although the particles’ starting positions were taken to be below level 0 in Proposition 3.1 for notational
convenience, the result applies in this setting by invariance under vertical shifts.

@ Springer



1234 L. Levine, V. Silvestri

Theorem 5.1 Let (A(t));>0 denote an IDLA process on Zy X Z starting from the flat
configuration A(0) = Ry. Fix any T < (N log N)2. Then for any y > 0 there exists
a finite constant a,, depending only on y, such that

IP’(RT C A(T) C Rr
N

— N7
~ —ay logN N+ay10gN) >1-N

for N large enough.

The above theorem is stated for 7 = N2 in [9], where the authors use it to show
convergence of space-time averages of IDLA fluctuations to the Gaussian free field.
It can be proved by the same arguments used in [7] for planar IDLA, which are in
fact rather simplified by the structure of the cylinder graph. Since this proof does not
appear anywhere, and since we need to extend it to larger values of 7', we give it in
“Appendix C”.

Assuming Theorem 5.1, we can proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1 1t suffices to show that (2) holds for any fixed T < N™. The
result will then follow by replacing y with y + m and using the union bound over all
T < N™.

If T = O(N?log N) then we are done by Theorem 5.1, so assume T >> NZlog N.
We are going to iteratively reduce the size of the cluster, until it becomes O(N? log N).
To this end, let a, 124, and Cy 42, denote the constants in Theorem 5.1 and Propo-
sition 3.1 respectively, and set a := ay124m, ¢ := C, 42, for brevity. At cost of
increasing these constants, we can assume that 2c¢ > 1 and both a log N and clog N
are integers. Define

n:=aNlogN + 2¢N? log N.

We build a large cluster, with the same law of A(T'), by using the water processes
mentioned in the introduction. To this end, let Wi denote the cluster obtained by
adding n particles to A(0) = Ry according to IDLA rules. Then by Theorem 5.1

P(Raentogn € Wi € Raalog N+2cNlogn) = 1 — N~ +2+m) (13)
for N large enough. Let

Wlf = W1 N RocNlog N
denote the region which is filled with high probability after n releases. Write further
F = wi\Ww/

for the fluctuation region. Water particles in the fluctuation region are declared frozen,

and they will be released at a later time. On top of the water-filled region Wlf we are
going to build a second cluster with again n particles, so to fill a rectangle of height
4cN log N with high probability. Let W5 denote such a cluster, obtained by adding
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logN

NlogN

Fig.4 Sketch of the proof of Theorem 1.1

n particles to Wlf according to IDLA rules (thus, new water particles can, and will,

settle inside F7). Write sz and F> for the filled region and fluctuation region of such
cluster. Then, as in (13), we have

]P’(R4czvlog1v - Wlf UW,; C R2aNlogN+4cN1ogN) > 1 — 2N~ (r+2+m),

We again declare particles in F> frozen, and treat their locations as empty for subse-
quent walkers. This procedure is iterated for k = |7 /n| — 1 rounds (Fig. 4).

Let €21 denote the event that the fluctuations bound (13) holds for all £ rounds, that
is

Q = {w/uwfu..uw/
k
= RokeNlogn} D ﬂ {FI € Raatog N+21eN10g N\ R2ieN og N }-
=1

Then by (13)

P(Q)) > 1 — kN~ @20 > | _ y~0r+2)
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Let us restrict to this good event. It remains to release the ak N log N frozen particles
from their locations, plus 7 — kn new ones uniformly from level 0. Denote by W (T)
the cluster obtained after all the released particles have settled, so that |[W(T)| = T.
By the Abelian property, W (T) has the same distribution as A(T). Write T’ = T —
kn + akN log N for brevity, and let W/(T") denote the cluster obtained by adding 7’
particles to the filled rectangle Roxcn10g v according to IDLA rules (more precisely,
we start T’ random walks uniformly from level zero, independently of everything
else, and add their exit locations to the cluster). We argue that we can couple W(T)
and W/(T’) so that they coincide with high probability. To see this, we proceed as
follows. First release T — kn new particles uniformly from level 0, and note that, since
T — kn > n, on the event 2 these will fill a rectangle of height 2cN log N with
probability at least 1 — N ~+2+™) If this happens, then all the frozen particles are at
distance at least ¢ N log N from the boundary of the cluster. Thus by Proposition 3.1
we can couple W(T) and W/(T") so that

]P(W(T) - W’(T’)) > 1= P(Q)) — N~0F20m _ =04 > | y=rtD)

In all, we have reduced the problem of bounding the fluctuations of W(T') @ A(T)

to the same one for the smaller cluster

(d)
A(T") = W/(T")\Roken1og N »

at the price of a small probability of failure. Since 7/ < 2max{2n,aT /N}, this
either makes the number of particles O((N log N )2), in which case we stop, or it
decreases it by a multiplicative factor 2a/N. Thus after at most m iterations of the
above procedure we are back to clusters with O((N log N )2) particles, which we know
to have logarithmic fluctuations. This shows that

~(+1) -
P(R1_yiogn S AT S R yipqy) Z 1= mN~0+) = 1= N7,
so (2) holds with by, ,, = a, as wanted. O

6 Typical profiles are shallow
In this section we show that typical IDLA profiles have at most logarithmic height,

thus proving Theorem 1.2. This is achieved by combining Theorem 1.5 with a control
on the density of stationary clusters.

6.1 Decay of the excess height

We distinguish between high and low density clusters by looking at their excess height,
that we now define. Recall that €2 denotes the set of clusters completely filled up to
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Fig.5 Clusters with high excess
height (left) and low excess
height (right)

level 0, so that #(A) > 0 for all A € 2, while |A| denotes the total number of sites in
A strictly above level 0.

Definition 6.1 (Excess height) For A € Q, the excess height of A, denoted by £(A),
is defined as the difference between the height of A and the minimum possible height,
ie.,

A
E(A) = h(A) — |N—|

Note that £(A) > 0. We say that a cluster A has high density if £(A) < £*, where £*
is a constant to be chosen later depending only on N. If instead £(A) > £, then A is
said to have low density (Fig. 5).

To start with, we prove that, for a suitable choice of £*, the excess height drops
below £* quickly under the IDLA dynamics.

Lemma 6.1 Let (A(t));>0 denote an IDLA process on Zy x Z with A(0) 2 Ro. For
t > 0let £(t) := E(A(1)) denote the excess height of A(t). Then for any n € (0, 1)
there exists a constant £* = E*(N, n), depending only on N and n, such that if

Te« :=inf{t > 0: E(1) < %)

denotes the first time that the excess height drops below E*, then

2
_n_
P(Tes > 1) < e 82,

fort > %(5(0) — &E*) and N large enough.

Lemma 6.1 is an easy consequence of the following result, which tells us that if
a cluster has low density then its excess height has a negative drift under the IDLA
dynamics.

Lemma 6.2 Let F; := o {A(s) : s < t}, and write h(t) in place of h(A(t)) for brevity.
Then for all n € (0, 1) there exists a constant £* = E*(N, n), depending only on N
and 0, such that if £(t) > E* then it holds

1—
E(h(t+1) = h(OIF) < —
for N large enough.

@ Springer



1238 L. Levine, V. Silvestri

Fig.6 An example of the
trajectory of a particle surviving
all the bad levels at distance at
least n* one from the other

Proof Fix n € (0, 1) throughout. For k < h(t), we say that level k is bad if it contains
at least one empty site, that is if A(#)° N {y = k} # ¥. We claim that if £(r) > £*
then there are at least £* bad levels between 0 and the top one A (¢). Indeed, since
h(t) > ‘ANM + £* then there are at least % + £* levels above level 0 in the cluster,

and at most | 2@ | of them can be completely filled.
Recall from (6) the definition of 7y (N ~7), and note that by (8) and Lemma 3.1
with y = 2 we have

max P, 0) (7 < tnv(N72)) < max P, 0)(z) < 6N?log N) < N2
XEZLN XELN

as long as n > n* := 20N log N. Then, if @ = (x(k), y(k))r>0 is a simple random
walk on Zy x Z, the above implies that

n P Yy — ")) > — — — > —
min Pao(@e) =0\nM) 2 5= 552 op

X
for N large enough. In words, a simple random walk on Zy x Z starting at level zero
has probability at least 1/2N to reach level n* for the first time at any given vertex,
uniformly over the starting location. Now, since there are at least £* bad levels, we
can find at least % bad levels at distance at least n* from each other. We treat these
as traps. More precisely, for a new particle to increase the height of the cluster A(¢),
the particle must travel through all the bad levels without exiting the cluster, until it
reaches the top. Since we are taking the bad levels sufficiently far apart, the particle
has time to mix in between, so whenever it reaches a bad level for the first time it has
probability at least ﬁ to fall outside the cluster. By taking enough bad levels, then,
we can make the probability for the particle to survive all of them arbitrarily small
(Fig. 6).

Formally, since the walker has probability at least ﬁ to exit the cluster upon
reaching a bad level for the first time, we have

1 \&/n”

PG+ 1) = ho) = 117) = (1 - ﬁ) . (14)
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To make this smaller than 1%" it suffices to take £* large enough, precisely

E* > ’72n*N10g (%)—‘, (15)

which concludes the proof. O
Note in particular that

E* > 40(N log N)?, (16)

which will be useful later on. We can now prove that low density clusters tend to
decrease their excess height under IDLA dynamics.

Proof of Lemma 6.1 Let nyp = |A(0)| denote the number of sites in A(0) of positive
height, and assume that £(0) = h(0) — ng/N > £*, with £* as in (15). It follows
from Lemma 6.2 that

M) = h(r) — W’ 1>0

is a supermartingale up to the stopping time 7g+, with M (0) = £(0). As aconsequence,
the stopped process M*(t) = M(t A Tg+) is a supermartingale for all ¢+ > 0, with
M*(t) = M(¢) fort < Te«, and

IM*(t+ 1) — M*@©)| < |h(t + 1) — h(t)| + I_T" <2

for all + > 0. Now, since |A(t)| = no + ¢, fort < Tgx we have

no+t

{S(t)>5*}:{h(t) — - 5*} - {M(t) S & %t}:[M*(t) S & 4 %t}

It thus follows from Azuma’s inequality that, for ¢ > %(5 0) — &M,

P(Tge > 1) < P(Tgr > 1,£(1) > £%) < P (Tg* >0 M) > EF + %I)

< ]P’(M*(t) — M*0) > £ + %t - M(O))

E* +nt/N — M(0))?
sexp{—( 77/8t ())}
¥ — £(0))> + (nt/N)?
<exp{_( ();t (n/)]
2
o0 - )
as claimed. O
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Remark 6.1 Lemma 6.1 implies that Shifted IDLA is positive recurrent, thus proving
the existence of the stationary distribution py. To see this it suffices to show, for
example, that the flat configuration Ry is positive recurrent. Let (A(#));>0 be an IDLA
process with A(0) = Ry, and define Tj to be the first time ¢ such that A(¢) = Ry for
some k > 1. Here is a wasteful way to show that Eg,(7p) < co. Fix any n € (0, 1)
and let £* = £*(N, n) be the integer constant in Lemma 6.1. Starting from Ry, release
E* N particles: with probability at least N €™V the final confi guration will be the filled
rectangle Rgx. If not, then the excess height has increased by at most £*N. We keep
releasing particles until the excess height falls again below £*: by Lemma 6.1 this
takes a random time with exponential tails, and hence finite expectation. Once the
excess height is at most £*, there are at most £* N empty sites below the top level
in the cluster. We release as many particles as the number of the empty sites below
the top level: with probability at least N —&€"N the final configuration will be a filled
rectangle Ry for some k > 1. If not, the excess height is at most £* + £*N: we again
wait for it to fall below £*, and iterate. After at most a Geometric (N —&N ) number
of attempts, the final configuration will be a filled rectangle. Each attempt takes £* N
releases, plus the time it takes for the excess height to fall below £* starting from
E* 4+ £*N, which has exponential tails. In all, we conclude that the total time it takes
to go from R back to a flat configuration Ry for some k& > 1 has finite expectation.

6.2 Typical clusters are dense

In this section we show that, for N large enough, py gives high probability to high
density clusters. This shows that stationary clusters are dense, and hence that typical
clusters are dense, with high probability.

Proposition 6.1 For £* = £*(N, n) as in (15) and N large enough, it holds
MN({A CE(A) > 25*}) <e N2,
Proof Recall that for (A(¢));>0 IDLA process on Zy x Z, we denote by (A*(1));>0
the associated shifted process. Let us denote by Q* := {A* : A € Q} its state space.
Define the sets

A={AeQ :EA) <&, B={AecQ :EA) <28

We seek to bound py (B€). By the Ergodic theorem for positive recurrent Markov
chains,

1 t
cN o1 - * e C
;LN(B)_tllj;otE<El]1(A (l)GB)). (17)
1=
Define the following stopping times:

Ty op = inf{t = 0: A*(t) € 3B},
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Tt AT € AY =Ty 45
rgg} D A*(r) € 0B} — rgl—g}A, i>2,

Typ.4 = inf{t

v

\

r}ws = inf{¢

Thga = inf{t > Tl g AY@) € A — T 4z 0122,

where 0B = {A € Q* : £(A) € [2E*, 2E* + 1)}. Note that, since the excess height
always changes by either 1 — 1/N or 1/N,

k
5<Z(r;l,38+rg&fl)>55*+1, V k>

i=1

We divide the interval [0, ¢] into excursions from A to 93 and then from 95 to A.
Since during excursions from 4 to B the process is in 3, only excursions from 93
to A contribute to the expectation in (17). Let us say that the concatenation of an
excursion from .4 to 315 and from 9B to A is a complete excursion. In the next lemma
we bound the number of complete excursions by time 7.

Lemma 6.3 Let
k
K(t) := sup {k >1: Z (T,[zl,aB + TéB,A) < t}
i=1

6

denote the l’lumbe’ ofcomplete exCulSiOnS by tlme t. Thenfm y = NeN (l”ld N lalge
enough it ]’lOldS
t eX[) . l
ZY = N N

Proof Let

k
I%(t) ‘= sup {k >1: foét,als < t}.

i=1

Then clearly K(t) > K (), and so P(K () > yt) < P(K (1) > yt). Moreover, since
the excess height changes by at most 1 at each step, at the start of each excursion from
A to 98 the excess height must lie between £* — 1 and £*. We know (cf. Lemma 6.2)
that when the excess height is greater than £* it has a negative drift, but we do not
have any information on its drift when the process is in the set .4. To overcome this
problem, we simply ignore the time spent in .A. Indeed, we will see that the time spent
in B\ A is large enough to give us what we want.
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We seek to stochastically bound t :4 o3 from below. To this end, define the following

auxiliary random walk on %N = {% :neN }, with a reflecting barrier at zero:

|
Xo =0, IP(XZ-H:l—N}Xi:o):l,

19)

1 — 1. with probability 1=,
Xiy1 — i={ N> WITR Probablily 7y for X; > 0.

] .
- otherwise

Note that, while the Shifted IDLA process (A*(7));>0 is in B\\A, the walk X away
from O stochastically dominates the associated excess height process by Lemma 6.2. In
particular, let Ny denote the total number of visits of X to 0 before reaching [, 00).
Then

4 95 = NoN., (20)

since each time the walk reaches 0 it jumps deterministically to 1 — 1/N, after which
it takes at least N steps to reach 0 again. Now, Ny is a geometric random variable with
success probability P11,y (X reaches [£*, 00) before 0). The next result tells us that
this probability is very small, and so Ny is typically large.

Lemma 6.4 For £* as in (15) and N large enough, it holds
Py_1 /5 (X reaches [E*, 00) before 0) < e V. 21)
Let us postpone the proof of the above lemma to “Appendix A”, and explain how from

this one can deduce the bound of Lemma 6.3. Note that (20) and (21) together imply
that

E(ty y3) = NeV

for N large enough. Let now Tgﬂ :=inf{i > 0: X; > £*} denote the first hitting time
of [E*, 00) for the walk X, and notice that Tgﬂ > NoN. We define (Té;(') ), tobe

i1
i.i.d. copies of Tg’i, independent of everything else. Recall the definition of K (1), and
define further

k
K'(t) := sup {k >1: ZTé’(’) < t}.

i=1
Then we have

P(K (1) = y1) <P(K'(t) = y1) = P( s < t). (22)
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Lemma6.5 Lety = %. Then for N large enough it holds

(ZTX () ) Sexp(— NteN>'

This lemma is an easy consequence of the fact that Tgi > NoN and Lemma 6.4, so
we leave the proof for “Appendix B”. This finishes the proof of Lemma 6.3. O

Using (18) we can conclude the proof of Proposition 6.1. Indeed, writing £(¢) in
place of £(A*(¢)) for brevity, and taking y as above, we find

4 1 t K1)
pun (B = lim ?E<Z]1(€(t) 325*)> < lim ]E< ZzA aB)
i=1
K@)

< lim [%E(t - Z 154’36; K@) < yt) +P(K(@) > Vf)]

t—00
i=1

(S ' 1 2E (755 4)
= lim, [;E<Z fw) +exp (- W)} = vE@sA) = NN

i=1
Lemma 6.1 with 79 := ¥ 5 * then yields

o0

o0
B ) = [ Plels > e <0+ [

0]
NE*  8N? E* 2NE*
= + —— X ( —_ n ) S

n n? 8N

for N large enough, since £* > (N log N)? by (16). Thus we conclude that

*
un (B < 4E7 <e N2
n

for N large enough, as claimed. O

6.3 From high density to low height

We have shown in the previous section that typical clusters are dense. While this does
not give any information on the height of A, it provides an upper bound on the number
of empty sites, that we will call holes, below the top level 2(A). Indeed, if £(A) < £*
then there can be at most N E* holes in the cluster. We now obtain a bound on the time
it takes to fill these holes (cf. Proposition 6.2), showing that it is at most polynomial
in N, and use this to prove that stationary clusters have at most polynomial height (cf.
Proposition 6.3).
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Proposition 6.2 Let (A*(t));>0 denote a Shifted IDLA process on Zy x Z, and assume
that E(A*(0)) < &%, with £* as in (15). Let

A= (21\725*] 1. (23)

Write h*(t) in place of h(A*(t)) for brevity, and assume that h*(0) > A. Define
Ta := inf{t > 0 : h*(t) < A} to be the first time the height of the Shifted IDLA
process drops below A. Then there exists a constant C,, > 0, depending only on n,
such that

P(Ts > 1) < dexp ( - %) (24)

for N large enough.

Remark 6.2 Since N A is polynomial in N, this tells us that, when starting from a
dense configuration, the height of a Shifted IDLA process drops below A after at most
polynomially many releases.

Proof We argue as follows. Each time we add a new particle to the cluster, the lowest
hole has probability at least 1/N to be filled, independently of everything else. Hence
it will take at most a geometric number of releases of parameter 1 /N to fill the lowest
hole. In total, then, it will take at most the sum of NE* i.i.d. Geometric(1/N) to fill
all the holes up to the top level #(A). Some care is needed, though: we cannot let the
excess height increase too much while releasing these extra particles.

Let (G,-),N: gl* be a collection of i.i.d. Geometric(1/N) random variables, and note
that since A > 2N2£* we have

NE*

P(ZG[ > A) < % (25)
i=l1

It follows that if we release A particles then we have probability at least 1/2 to fill
all the holes below the top level. If we fail, then the excess height has increased by at
most A. If so, we keep on releasing particles until the excess height falls again below
&*, and iterate. After a Geometric(1/2) number of attempts we will have filled all the
holes below the top level, which implies that the resulting Shifted IDLA cluster will
have height at most A.

To formalise the above strategy, write £(¢) in place of £(A*(z)) and define the
following random times:

70 := 0,
oi=inf{t > +A:E@) <&}, k>1,
Spi=1 — (k-1 +4A), k>1.

Then, by definition, at times t; there are at most NE* holes below the top level. Since
the number of releases needed to fill all these holes is stochastically dominated by
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the sum of NE* i.i.d. Geometric(1/N) random variables, (25) implies that at times

7; + A we have filled all the holes with probability at least 1/2. If this happens, then

h*(t; + A) < A, and we stop. Otherwise £(1; + A) < £* + A, and we start again.
Let

K :=min{k > 0: h*(tx + A) < A}

denote the number of attempts needed to succeed. Then, denoting by < stochastic
domination, we have K < K’ for K’ Geometric(1/2) random variable. Note that the
times s;’s are not in general identically distributed. It is convenient to make them i.i.d.
by assuming that the excess height always starts from the maximum value £* 4 A.
More precisely, let

§:=inf{t > 0: E(r) < & starting from £(0) = £* + A}, (26)

and let (§;);>1 be a sequence of i.i.d. random variables equal in law to §. Then s; < §;
and we have that

K K’
Ta <KA+Y & 2K'A+) &

i=1 i=1

We use this to estimate the moment generating function of 7o. For A € R, set M (%) :=
E(e*). We have

E(eATA) < E| exp {A(K’A + i@)”

i=1

E[exp {A(kA + Zs,»)}w(’ — k):|

i=1

VWA k
()’

1

o

~
Il
-

M

k=1

where the first equality above follows from the Monotone Convergence Theorem, and
the last inequality from the independence of K’ and the §;’s.

2ANA)

Lemma 6.6 For A < % and N large enough, it holds M (}.) < %exp ( 7

The above lemma implies that % < % exp {AA(I + ZTN) }, which can be made
smaller than, say, 4/5 by taking

log(16/15)
AL+ 2
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Let C, = bg({#n, so that % < 1222(1176%5)) for large N. If A* = % then we have

B> T) < i (;-‘)k _4

k=1

Thus we conclude that

* * * C t
P(Ta > 1) <E(eM )™ < 4o = 4exp(— N_UA)

as claimed. It remains to prove Lemma 6.6.

Proof of Lemma 6.6 Recall the definition of § from (26), so that M(L) = E(e™).
Introduce the auxiliary random walk (X )x>0 defined as in (19), and note that

§ <X Ta :=inf{r > 0: X, < &* starting from £* + A}.

Then it follows from Lemma 6.1 that, for ¢ >

% and N large enough, it holds

2

P(ta > 1) < exp(— 8’7?)

Therefore, for A < we find

i
32N2°

3 3 > 2 © n logt
E(e“) < ]E(e)»TA) :/ P(ehA > t)dt =/ P(‘EA > &)dl
0 0 A

2ANA > n*logt
gexp( ;. >+~/exp(2AnN}‘) exp(— FYYERN )dt

2

2ANAy  exp (= 2N (e — 1)
o (P22 22
|
SN2
3 2ANA
= s exp ( >,
2 n
where the last inequality holds for N large enough. O
This concludes the proof of Proposition 6.2. O

We use this to show that stationary clusters have at most polynomial height.

Proposition 6.3 For N large enough, it holds

,u,N({A - h(A) > N8}> <2¢N2,
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Proof Let (A());>0 be an IDLA process with A(0) = A ~ uy. Then A(f) ~ un
for all deterministic # > 0. Write h(¢) in place of h(A(t)) for brevity. Take £* =
N?log? N, and note that it satisfies (15). Define A as in (23). Then we have

P(h(A) > N® =P(h(N") > N¥A(0) = A)
<P((N7) > N¥E(A0)) < 2E%) + P(E(A(0) > 2£¥)
<P(Tx > NT|E(A0)) < 2E*) + e N2 <2e7N/2,

where we have used that if T < N7 then h(N7) < A + N7 < N8, O

Remark 6.3 1t is worth pointing out that the proof of Proposition 6.1, and hence of
Proposition 6.3 above, would also work for driving random walks on Zy x Z with
a vertical drift. This would still give a polynomial bound for the height of typical
clusters, perhaps with a larger exponent than the one in Proposition 6.3. Reasoning
as in Theorem 1.5, such height bound could in turn be translated into a (largely non-
optimal) upper bound for the time it takes for IDLA with transient driving walks to
forget its initial profile.

6.4 Typical clusters are shallow

We now finish the proof of Theorem 1.2. To start with, note that it suffices to prove
the result for stationary clusters. Indeed, suppose we showed that for any y > O there
exists a constant ¢, such that

un ({A:h(A) > ¢, logN}) < N7
for N large enough. Then, if vy is any k-lukewarm start for Shifted IDLA, we have
vn ({A:h(A) > ¢y logN}) < N-070),

so that (3) still holds with y 4k in place of y . It thus suffices to prove Theorem 1.2 for
stationary clusters. We argue as follows. Let (A(¢));>0 be an IDLA process starting
from A(0) ~ un, sothat A(¢) ~ uy forall deterministic # > 0. Introduce an auxiliary
IDLA process (A (1))s>0 starting from the flat profile A (0) = Rg. Then, if |A(0)| = nog,
we have

A = |A(no +1)| = o+, ¥t >0.

Write A'(t) = A(no + t) to shorten the notation. Following the ideas presented in
the proof of Theorem 1.5, we will couple the clusters A(N 10y and A’(N19) so that
they match with high probability. Since A(N!%) ~ uy, and A’(N'?) has logarithmic
fluctuations with high probability, this will allow us to conclude.

To start with, note that by Proposition 6.3 we have

P(h(A(0)) > N¥) <2¢7N/2
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for N large enough. In particular this shows that P(ng > N°%) < 2¢~N/2. We can use

this to bound the height of A’(0). Indeed, for y as in the statement of Theorem 1.2,
we have

P(h(A'(0)) > 2N®) < P(h(A(ng)) > 2N®, ng < N%) +P(ng > N°)
< P(h(A(N®)) > 2N®) + 2 N/2 < N2 4 2¢7 N2 < 2N~

for N large enough, where in the last inequality we have used Theorem 1.1 to argue
that an IDLA cluster built by adding N particles to Ro has height O(N?®) with high
probability. Introduce a water cluster Wy obtained by adding N'© particles to the flat
configuration Ry according to IDLA rules, and note that

P(Wo 2 Ryps) = 1— N~% (28)

by Theorem 1.1 for N large enough. Define two auxiliary water processes (W (¢)):>0
and (W'(1));>0 as follows. Set W(0) = W’(0) = W. Particles in W(0) N A(0) and
W’(0) N A’(0) are declared frozen, and will be released at a later time. Note that

IP’(max{h(A(O)), h(A'(0))) < 2NS; Wy 2 R3Ns> >1—4N"2, (29)

which shows that all frozen particles are at distance at least N from the boundary of
Wy with high probability. Fix arbitrary enumerations of the two sets of frozen particles,
and accordingly denote their locations by {z1, z2, ..., zn,} and {z’1 , z’z, e, z;m}. For
t > 0, then, let W (¢) (respectively W’ (¢)) be the cluster obtained by adding to W (z — 1)
(respectively W'(r — 1)) the exit location from it of a simple random walk on Zy x Z
starting from z; (respectively z;). The random walks starting from z; and z; are coupled
as explained in the introduction: the higher one stays in place until the other one reaches
its level, after which they move together in the vertical coordinate, and according to
the reflection coupling in the horizontal one.* Then, writing E for the event appearing
in (29) for brevity, by Proposition 3.1 we find

P(W (ng) # W'(no)) < P(W(ng) # W'(no)| Eo) + P(Ef)
<N 4+ 4N~ =5N~%

for N large enough. Thus W (ng) = W'(ng) with high probability. Since A(Nlo) @

W (np) and A'(N19) @ W (no), this shows that we can couple A(N'?) and A’(N'0)
so that

P(ANN'") = A(N'9) > 15N,

Now, A(Nlo) is stationary since A (0) is. We want to argue that A’(Nlo) = A(ng+N'9)
has logarithmic fluctuations. If ny were deterministic, this would follow from Theo-

4 If needed, we use the first horizontal step to adjust the parity of the difference of the horizontal coordinates,
as explained in the proof of Proposition 3.1.
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rem 1.1. Instead ng is random since such is A(0), and as already observed it satisfies
P(ng > N?) < 2¢=N/2 for N large enough. Moreover, by Theorem 1.1 there exists a
constant b,,, depending only on y, such that

10 -2
P(Rﬁfbylogﬁ, CA() S Ry yp 100y V1 <2N ) >1-N"%
for N large enough. We thus conclude that

c
[P’({R 10 C AN CR 10 } )
1IN logN T W 20NV 1h, log N

- c
:P({R 10 CAmg+N'OCR 10 })
n0+NN “bylogN = (no ) S no+NN +b, log N

i 10]¢ 9
< P({Ry s 0w S AO S iy 1ogn Y1 <2N") ) +Po > N9
< N2 42 N2 <oN~2
for N large enough. This shows that A’(N ') has logarithmic fluctuations with high

probability. Recall that for A € Q we denote by A* its shifted version (cf. Defini-
tion 1.1). Then we have found that

MN({A L h(A) > 2b,, log N}) = P(h(A*(N'%)) > 2b, log N)
< P(h(A™*(N'%) > 2b, log N)
+P(AN'?) £ A'(N'?))
<IN % <N77

for N large enough, which concludes the proof.

7 The upper bound

We briefly explain how one can deduce Theorem 1.3 from Theorems 1.5 and 1.2.
For any y,k > 0 let ¢, ; be defined as in Theorem 1.2, while we take al)’/’2 as in
Theorem 1.5 with m = 2. Set

dyi:=cyr+d,, tyx:=dyNlogN.
Then, if vy is any k-lukewarm distribution, we can define
Qyr:={A:h(A) <cyrlogN}
to have that, by Theorem 1.2,
]P’(Qy,k) >1—-N77
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for N large enough. Take any two clusters Ao, Aj in Q, x with [Ag| = A, and let
(A(t))s>0and (A’ (t))s>0 be two IDLA processes starting from Ag and A6 respectively.
Then Theorem 1.5 tells us that we can build A(#, x) and A’ (ty,x) on the same probability
space so that

P(A(tyx) # A'(tyx)) < N7
for N large enough. We thus gather that

IP(ty 1) — P'(ty.0)llTv = sup [P(A(ty 1) € S) — P(A'(t,.4) € 5)|
SCQ

< 2P(A(ty0) # A'(ty0)) <2N77

for N large enough. Since y is arbitrary, this concludes the proof.

8 The lower bound

In this section we specialise to stationary initial clusters, and prove that if two such
clusters are sampled independently from wy, then the IDLA dynamics will remember
from which one it started for at least order N2 steps, as stated in Theorem 1.4. We
proceed as follows. We first recall the GFF fluctuations result by Jerison, Levine
and Sheffield [9], saying that the average IDLA fluctuations, appropriately measured,
converge to the restriction of the Gaussian Free Field to the unit circle. We then use
this to define an observable which we show to be large, with positive probability,
for stationary IDLA clusters (cf. Proposition 8.1). Finally, we argue that a necessary
condition for IDLA to forget the initial configuration is for this observable to reach 0,
and show that this takes time at least o N2 for some o > 0, thus proving the result.

8.1 Average IDLA fluctuations and the GFF

Let us start by briefly recalling the average IDLA fluctuations result by Jerison, Levine
and Sheffield [9]. Let (A(#));>0 be an IDLA process on Zy x Z starting from flat, i.e.
A(0) = Rg. Forn = (n1,ny) € Zn x Z, define the rescaled square

On(n) = {(x,y)e’JI“xI[{:xe(nl_1 ”_‘]’ y€<n2—1 Q]}

N ' N N ' N
with side-length 1/N and (%, %2) as top-right corner, and set
Av = | onm), (30)

neA(r)
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so that Ay(¢) C T x R. We use the rescaled and filled cluster Ay (¢) to define the
discrepancy function

Dy (e y) = N(Layo 3 =1y 4 0) (1)

N2

for (x,y) € T x R. Note that Dy is supported on the symmetric difference
AN(t)AR,; 2. Finally, let ¢ € C°°(T x R) be of the form

P, ) = Y (e
|kI<K

for some finite integer K and with o_; = o, so that ¢ is real-valued. Jerison, Levine
and Sheffield proved the following.

Theorem 8.1 (Theorem 3 [9]) Let T = yoN2 and ¢ be as above. Then, as N — o0,

Dy 1(p) == /

Tx

Dy r(x, y)p(x, y)dxdy
R
converges in distribution to a Gaussian random variable with mean zero and variance
—4m|klyo

W= Y el (t

0<l|k|<K 47T|k| )

The next result tells us that the above theorem can be generalised to larger times.

Theorem 8.2 Let T = CNZ%log N for some absolute constant C large enough. Then,
as N — oo,

T
Dy r(x, y)w(x, y— —)dxdy
[IFX]R N2

converges in distribution to a Gaussian random variable with mean zero and variance

0 2
vﬂ(<p)= Z e (0)]

O<|k|<K 47T|k|

Remark 8.1 Note that, as observed in [9], the exponential term in v(¢) is due to the
fact that the process started from flat. Indeed, this term does not appear in the limiting
variance vy, (¢), since 7T is large enough for the process to have reached stationarity.

The above result can be proved exactly as in [9], Theorem 3, by replacing the maximal
fluctuations result with Theorem 1.1 above. For this reason we choose to skip the
proof.

We now use the fact that A(T) is close to a stationary cluster to control the size
of the average fluctuations at stationarity. Let A* denote a stationary cluster, that is
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1252 L. Levine, V. Silvestri

A" ~ pp, and denote by A% its rescaled and filled version as in (30). We start an
IDLA process (A*(t));>0 from A*(0) = A*. Let nyp = |A*(0)| be the number of
particles in A*(0) above level zero. Then, if (A(t));>0 is an IDLA process starting
from flat, we have

|A(no)| = |A*(0)] = no

and hence [A(ng + t)| = |A*(t)] = no + ¢ for all t+ > 0. Moreover, by The-
orems 1.1 and 1.2, for any y > O there exists a, < oo such that, with 7y =
max{h(A(ng)), h(A*(0))}, it holds

]P’(ho > a, log N) <2N77

for N large enough. Consider the time-shifted IDLA process A'(t) = A(ng + 1)
starting from logarithmic height with high probability. Then by Theorem 1.5 for any
y > 0 there exists a finite constant d,, such that fort, = d, N 2]og N we can couple
the clusters A*(z,,), A’(t,) so that

P(A(t,) # A'(ty), ho < aylogN) <3N~

for N large enough. Let T = 1, + ng. Recall from (31) the definition of Dy r, and
define

Dl (x,y) = N(]IAZ(,V)(x, n-1y (x. y)). 32)

< T
=i}

For ¢ as above, introduce the random variables

T
Xﬁ = f Dy 1(x, y)(p(x, y— —z)dxdy,
TxR N

T
e . _ M -
Xy = /TxR DN,ty (x, y)go(x, y Nz)dxdy.

Then for any § > 0 we have
P(XN? > 8) = P(XY, > 8, A'(1)) = A(T)) = P(X}, > 8) =5N7.

Moreover, by Theorem 8.2 for any ¢ > 0 we can take N large enough to ensure that,
if A is a standard Gaussian random variable,

P(X% > 8) z[P’( >

§ 1 )
w(g))) TfEaT (\/27“’/4(@ +e)
from which

I
PO > 8) = 5 ( +e+5NT), (33)

)
V2, (@)
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for any y, §, e > 0 and N large enough.

8.2 The initial imbalance

We now make a choice for the test function ¢ in the above discussion. Let

2wix _ e—2mx

$(x,y) :=sinQrx) = —

for which v, (¢) = %. Then by (33) we can take ¢ = § and N large enough to get
w9 !
P(Xy" > 8) = 3~ 46. (34)
On the other hand,
X = / Dy . (6, ) (x, y)drdy = N / B 06, ) gp ) (3, )dxdy
TxR

_N 6 (x. y)dxdy L N / é(x. y)dxdy,
Al (ty)

where A* ~ p and the last equality holds in distribution. In order to build a martin-
gale, we now approximate ¢ by its discrete harmonic extension i away from the line
{y = 0} on the high probability event

E, = [h(A") < ¢, log N},

with ¢, as in Theorem 1.2 with k = 0. Following [9], to define ¥ we introduce gy
solution of

cosh(gny/N) =2 —cos(2n/N), 35)
so that gy = 277 + O(N~2), and for n = (n1, n2) € Zy x 7Z set

2nn1)

-— pdNm2/N (
Y(n) :=e sin N

(36)

Itis easy to check that i is discrete harmonic on Zy X Z. Moreover, forn = (ny, ny) €
A" and (x, y) € Qn(n) we have that on the good event E,

127c, log N
N 9

90 3) = ¥ )] = |sin(x) — 2/ sin (2’;’“)‘ <

from which

I N
N/ p(x, Y)dxdy = — Zwuw(og )

neA“
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for N large enough. Combining this with (34), we get

IP’(% RO %) > IP’(N /AH é(x, y)dxdy > 8, Eﬂ)
neAkr N

1 1
>—-—456—P(E,) > - —56
z 5 (,L)_2

for any § > 0 and N large enough. The same arguments can be used to prove the
reverse inequality, thus obtaining the following.

Proposition 8.1 Let A" ~ uy be a stationary IDLA cluster. For any § > 0 and N
large enough, it holds

]P’(% > vm > 5) > % — 108, P(% v < —5) > % — 106.

neAmr neAwr

Let ¢, be defined as in Theorem 1.2 with k = 0. We define

. : c2 10 an n) > .
$ = C21og N 20

(37)

1 5
Q : {A €Q:h(A) <crlogN andﬁgl//(n) < —%}

to have that

mn (§25)

v

1
1—un({A: h(A) > c2log N}) — IP’(N > vm) > 5)

neAmr

for N large enough. Similarly, pn (2§) > % — § for N large enough, and thus (4) in
Theorem 1.4 is satisfied.

Remark 8.2 Tt follows from the above result that if A and A’ are two independent
samples of 1, then for any 6 > 0 we can take N large enough so that

p(‘% Swm - Y v > 25) = 2(35 - 108) 2

neA neA’

! 208
2 9

which can be made arbitrarily close to 1/2 by taking § small enough.

8.3 The observable

We use the above remark to define a convenient observable which, loosely speaking,
measures the difference in the horizontal imbalance of two IDLA processes. Take
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Ao € Q5 and A € 2, and assume |Ag| = |A| without loss of generality, as if not
then two IDLA processes starting from Ag and A;, will never meet. We take A, Aj
as starting configurations of two IDLA processes (A(¢));>0 and (A’ (#))r>0.

Definition 8.1 (Imbalance) For A € 2, define the horizontal imbalance of A by

Uy = %Zlﬁ(n) = %Ze‘“\’"Z/N sin (h%)

neA neA

with gy as in (35).

We use this to define an observable u (1) which measures the difference in the imbalance
of A(r) and A’(r), namely

1 1
u(t) = uam —uan = 3, YW=~ D v,

neA(t) neA’(t)

Remark 8.3 Since  is discrete harmonic on Zy X Z, we have that (u(t));>0 is a
discrete time martingale.

By Proposition 8.1 and Remark 8.2 we have
1
P(|u(0)| > 8) > 5~ 106 (38)

for any 8§ > 0 and N large enough. Clearly A(r) = A’(¢) implies u(t) = 0, so if we
define

To =inf{t > 0:u(t) =0}
then for any o > 0 we have

P(Ty < aN2, [u(0)| > 8) < ]P’( sup |u(t) — u(0)| > 5)

t<aN?

1
< SE( sup |u(t) —u(0)?) <
82 <t§aN2 )

for ¢ absolute constant and

aN?

Q ==Y E(u(t) —ult — DI*|Fi-1),

t=1

where the last inequality in (39) follows by the Burkholder—Davis—Gundy inequality.
Now, if we let n, n} denote the settling locations of the rth walkers in the two IDLA
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processes, we have
1 aN?
0 = 5 Y E(1W ) =y P|Finr),
=1
SO

aN? aN?

E(Q) < B( » Y @l) +B( g b» W P).
t= t=

To estimate the above expectations we have to control the height of the clusters A (e N2)
and A’(aN?), as the function ¥ grows exponentially with them. We explain how to
control the first expectation, the second one following from the same arguments.
Introduce the good event

E := {h(A(@N?)) < 100N} D {h(A(@N?)) < h(Ag) + 60aN}.
Then the a priori bound in Lemma C.1 with m = 60 gives
P(EC) < ¢~ 100N
for N large enough. On E we have
aN?

2 WP = o

t=1

2 2gN 2
max (o) ) < aexp{Th(A(aN ))} <c,

neA(

for some constant C, depending only on «, and N large enough. On E€, on the other
hand, we trivially have that A(A(aN?)) < h(Ag) + aN? < 2aN?, from which

A(@N?)

1 aN?
N2 P < max o)
=1
< aexp {ZqTNh(A(aNz))] < aexp {32aN},

since gy < 8 for N large enough. In all, we have found

aN? aN? aN?

1 1 1 :
El 5z 2 Wl | <E{ 53 el B[ +E( 5 3 1wl E°
=1 t=1

t=1

< Cy + ae*NP(E) < Cy + ae %N <20,
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for N large enough. Similarly one can control the same expectation involving A’ (e N2).
Thus

8cCy
82’

P(Ty < aN?, [u(0)| > 8) <

where c is the absolute constant in (39). Let ¢ be as in Theorem 1.4. Since C, — 0 as
o — 0, we can take o small enough so that 868# < 8(% — 108), to find

1
P(Ty < N2, [u(0)| > 8) < s(5 — 103).
Finally, putting this together with (38) we gather that

P(Ty < aN?, [u(0)] > §) -

P(To < aN?||u(0)| > §) = P > 5) <

3

which concludes the proof of Theorem 1.4.
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Appendix A: Proof of Lemma 6.4

Recall that we consider a random walk X on %N, with a reflecting barrier at 0, with
transition probabilities given by

|
Xo =0, ]I”(Xi+1 =1-~IXi =o) —1,

Xo.. _x. — [ 1=, with probability L, (40)
N L —%, otherwise

for X; > 0.

We aim to show that

q = P11/~ (X reaches [E, 00) before 0) < e N

for N large enough. Denote IP1_,y simply by IP to shorten the notation, and let TOXS*
be the first time X reaches either 0 or [E*, 00). Then we have

g=P(Xp 2 &) <P(Xpn = & T <N log N) + P(T3%e. >N log N)

0,&* 0,&*
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TX.,
< IP( sup X, > 5*) +]P’(T0X > N3 logN>,
t<N3logN

where TOX is the first time the random walk X reaches 0, and X Toes denotes the process
X stopped upon reaching 0 or [£*, 00). We bound the two terms above separately.

For the rightmost term, it is easy to check that M (t) = X, + ”Nt is a martingale up to
time TOX. If we thus define My(t) = M (t A TOX), then (Mo (t));>0 is a martingale for
all times, with increments bounded by 1. It therefore follows from Azuma’s inequality
that fort > 2N /n,

2
BT > 1) = B > 1. X = 1/N) = B(T > 1. X, = Xo = =1+ =)

r+2
=BT > 1, M)~ M) = %

- 1) < IP’(MO(t) ~ Mo(0) > "Nt - 1)
cop(- B cop (- 21,

which can be made smaller than e=>" by choosing > N3 log N.
For the remaining term, again by Azuma we have

TX. .
]P’( sup X, > 8*) < ]P’( sup Mt A TOXS*) > 5*)
t<N3log N t<N3log N '

(E*)? ><e—2N

< e’
- exp( 8N3log N

for N large enough. In all, we have found that

qg= IP(XTX‘E > 5*) <e N 4 2N <N
0,E%

for N large enough. This concludes the proof of Lemma 6.4.

Appendix B: Proof of Lemma 6.5

We have, for any A > 0,

(ZTX 0 < ) <exp( AZTX M) ze )5e“[E<e"\T§*)]W.

To bound the right hand side above, recall that Tg)i > NoN for Ny ~Geometric(p),
with p < eV, Thus if we let 1% be a Geometric random variable of parameter
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A

p:=eN, then we find

! 2logt ANeN
<1- exp(—)dl:l——,
0 ANeN ANeN +2
where for the last inequality we have used that log(1 — x) > —2x for x € (0, 1/2).
Thus
X.0) gify_ *NeY v
Ay LG
ANeN +2
exp {11 + priog (1 - )]
= 0 —_—
VIR T aNeN 12

yNeV
exp | == 14+ 505}
ANeN +2

since log(1 — x) < —x. Taking A = ﬁ and recalling that y =
to check that

Ne N , it is then easy

e [ 21— 1+ TN <ewpan = e (- 1),

which concludes the proof.

Appendix C: Logarithmic fluctuations for IDLA at large times

We survey the proof of the logarithmic fluctuations bound by Jerison, Levine and
Sheffield for IDLA on the cylinder graph Zy x Z, and extend it to larger times to
prove Theorem 5.1.

C.1. A priori bound

We obtain an a priori bound on the height of A(T') following the outer bound argument
by Lawler, Bramson and Griffeath [11], for arbitrary starting configurations.

Lemma C.1 Let (A(t));>0 denote an IDLA process on Zy X Z, and let ho = h(A(0))
denote its initial height. Then for any m > 3 there exists f = f(m) € (0, 1) such that,
for T > Nlog N and N large enough, it holds

P(AT) & Rypyur ) < 877,
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1260 L. Levine, V. Silvestri

Thus if, in particular, the process starts from the flat configuration A(0) = Ay, then
h(A(T)) <mT /N with high probability for N large enough.

Proof Let Zy(t) := |A(t) N {y = k}| denote the number of particles in A(z) at level
k, and set ug () := E(Zy(¢)). Then

IED(A(T) g Rhw’%) = P(Zho+”,‘vi+1(T) z 1) = “h0+mTT+1(T)'

We claim that
1 \k=ho—1 ¢k=ho "
H<(— —_—
“"()—<N> (k — ho)! @D
for all k > hg and r > 0. Indeed, clearly p1(f) < N and ui(0) = 0 for all k > hy.
For other values of k, j we have

pi(t + 1) — () = E(Zi(t + 1) — Zi(1)) = P(Yr41 € A N {y = k})

1 1
< NE(IA(t) N{y=k—-1}) = 1),

where in the above inequality we have used that the probability that the (¢ + 1)th
walker reaches level k — 1 inside A(#) is maximised when A(¢) is completely filled
up to level k — 2. Thus for k > hg

t—1

() =Y Guls +1) — () < — Zuk 1(5),

s=0

and (41) follows by a simple iteration. Now take t = T', k = ho + % + 1 and recall
that k! > kke % to get

1\ % T'W e\mw T/N
mep D = ()" Gy =MG) T =8
N

forany B € ((%)m 1) and N large enough. O

Remark C.1 By the above result with sy = 0, it suffices to prove Theorem 5.1 for
large T'. Suppose, indeed, that there exists a finite constant b such that T < bN log N.

Since % < blog N, it suffices to take a > b to have that the inner bound is trivially

satisfied. For the outer bound we set ¢ = “J{b and note that, as long as a > 2b, it

holds

]ID({R%—alogN A < RT+ IOgN}C) - P<A(T) ’¢_ R(a+b)logN>
< IP(A(cN logN) ¢ R3clogN>

1
S ‘BCIOgN - N_Clogﬁa
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which can be made smaller than N~7 by taking @ > max {2b; mgﬁ — b}. In light

of this observation, from now on we can assume that 7 > N log N as N — oo.

The proof of Theorem 5.1 follows an iterative argument, which we now sketch.
Definition C.1 A point (x, y) with y > 0 is said to be:

e m-early if (x,y) € A((y —m)N),
e (-lateif (x,y) ¢ A((y + £)N).

Fort < T, let

Enlt] = U {(x, y) is m-early}, Lolt] := U {(x, y) is £-1ate}.

(x,y)€A(r) (x,y)eRN
Clearly,

{R1 _y10gn S AT S R1 10 n]" S EatogNITTU LatognIT],

so we bound the probability of the right hand side. Note that the a priori bound in the
previous section (cf. Lemma C.1) with m = 3 tells us that there exists an absolute
constant 8 € (0, 1) such that

P(exr[T1) < BT/ < ploz™
N
for N large enough. We use this to initialise the iteration, which consists of showing

that, in turn,

e no m-early point implies no £-late point (¢ < m), and
e 10 (-late point implies no m’-early point (m’ =< £).

To perform the above steps, we will use an explicit discrete harmonic function with a
pole close to the early/late point to build a martingale, which will be then controlled
via its quadratic variation.

C.2. No early points implies no late points

The main goal of this section is to prove the following.

Proposition C.1 For any y > 0 there exists a finite constant C = C(y), depending
only on y, such that, if ¢ > Clog N and m < EZ/C log N, then

P(LT1N ElTTY) < N~OHD

for N large enough.

The above result tells us that on the event that there is no m-early point, there is no
¢-late point with high probability, with £ = [/CmTog N | < m.
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1262 L. Levine, V. Silvestri

To prove this, we argue as follows. For ¢ € Zy x Z,let L(¢) = {¢ is £-late}. Then,
since

Lari= |J Lo,

{eRT
Tt

we have

P(LATINELTI) < D P(LE) N ETT).

(ERT
y i

It therefore suffices to show that
P(L(@Z) N ERITI) < N~OH

for arbitrary ¢ € R Ty To see this, we use a discrete harmonic function to build a
martingale with pole at ¢. We then show that on the event L(¢) this martingale is large
and negative, while on the event &,,[T]¢ its quadratic variation is small. This will then
imply that the probability that both L(¢) and &,,[T]¢ hold is small.

Recall that (A(#));>0 denotes the IDLA process. For { = (¢x, ¢y)andz € Zy x Zy
define

H; (z) := IP;(a SRW reaches level ¢, for the first time at ¢),

where SRW stands for simple random walk on Zy x Z. Then H(z) € [0, 1] for all z
and H;(z) — 1/N as zy, — —o0. Moreover, H; is discrete harmonic up to level ¢y,
(in fact, it is the discrete harmonic extension of the function 1(x = ¢y) at level ¢, to
the region {(x, y) : y < &y ).

We embed the driving random walks in continuous time by mean of time-changed
Brownian motions on the lattice (see [7] for a precise definition), that we denote by
{(B,(1))te[0,17, 1 = 1}, so that B, (0) and B, (1) are the starting and settling location
of the nth random walk respectively. This turns out to be technically convenient, since
it makes our discrete time martingales into continuous time ones. Finally, for real
t € [0, o) we define

[7]
Mo = 3 (HeBa) = )+ (He By — 1) — ).

n=1

Note that the first sum represents the contribution of the settled walkers, while the last
term gives the contribution of the active one at time ¢. Since the function H; is discrete
harmonic up to level ¢y, M; above is a continuous-time martingale up to the first time
the cluster reaches level ¢,,. We split it into a continuous part and a jump part, namely
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we set My (1) = M} (1) + M} (t) with

lt]—1
ML) = 3" (He(Ba()) = He (Ba(0)) + Hy (Byy(¢ = 11])) = By (0),
n=1

and

L1
i = Y (HeBo) - ).

n=1

Let S, S; and S? denote the quadratic variation of M;, M {1 and M? respectively.

Since M Cl is a continuous martingale starting from 0, it is a time-changed Brownian
Motion, that is

M{(1) = B(S; (1))

for B one-dimensional Brownian motion. Moreover, since M? is piecewise constant
and by independence of the starting locations, we have

1] L
S20) = Y E[ (HeB,0) = ) -

n=1

Recall that we want to bound the quadratic variation of M, on the event that no point is
m-early, which means that the cluster has a controlled height. The next lemma shows
how a control on the shape of the cluster can be translated into a control of the quadratic
variation of the martingale.

Lemma C.2 Assume that m > 1 and that {, > % +2m + 1. Then
]E(esf(t)lgmﬂ[t]c) < &8,
Proof We have S¢ (1) < 2(S; (1) + S7 (1)), from which

1 2
Ee% Mg, , ) < BSOS Oe, 00,
< [E(e45(1(t)15m+1[,1c)E(e45?(t)lgm+lmc)]1/2.

Let us estimate the two factors separately. As a technical trick, we will assume that the
driving random walks are released from a uniformly chosen location at level — N 250
that

1 1
H;(Bn(o)) - = =

. (42)
N Nlog N
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This clearly does not change the law of the process, and it has the technical advantage
of transferring some amount of the quadratic variation of M, from S? to S ; We have:

]E(€4S?(t)lgm+l[[]c) < E(exp {4i (Hs“ (Bn(0)) — %)2})

n=1

= E<eXp { (NTOL;JN)Q }) <

Note that the above bound does not depend on m, but only on the assumption (42). It
remains to show that

E(ezts;(t)lgmﬂl,r ) < 1600,

To this end, we use that on the event &,,11[¢]° the height on the cluster is controlled,
which in turn implies that the quadratic variation of the continuous martingale part
cannot be too large. Let us take ¢ to be integer to simplify the writing. Then we find

t
1
E(e*Sc Olenincy < E(exp {4 Z(S; (n) — S; (n—D)lg, 1o })
n=1

We claim that on the event &, [f]¢ the martingale increments are bounded, that is
M} (s) — M/ (|s]) € [-a, b,]
forall s € [n,n + 1) and some (non-random) a, b,,. Indeed,

M} (s) — M (s]) = H;(Bys)(s — s])) — Hy (B4 (0))

2
z —Hy (B (0) 2 - =i —a.

Moreover, on the event &, 1 [1]° we have that for all n < ¢ the cluster A(n) is contained
in Rt from which

ML (s) — ML(Ls)) = He (Bys(s — 1s))) — He (By5(0))
= max  (H(z) — Hy (B, (0)))
zizy<y+m+l
10

< ———— =1by,

G-F-m—1"

where the last inequality follows from the explicit computation of H;(z) for large
N, and it holds as long as m > 1 (see [12] for details). By a standard argument on
Brownian motion, this implies that

Sp(n) — S;(n — 1) € Ty(—a, by),
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where 7, (a, b) denotes the exit time from the interval (—a, b) for a one-dimensional
Brownian motion starting from 0. We thus have that

logE(eXp {4 Zt:(S; (n) — S; (n — 1))15m+1[1]6])

n=1

< log E(exp {4 Xt: T (—a, bn)})
n=1

t
< 3 log (et —abn). 43)

n=1

It is easy to check (cf. [7], Lemma 5) that E(e*?*"%?) < 1 + 10Aab provided
V/A(a + b) < 3. For our choice of parameters A = 4 and

‘b 2+ 10 <2+ 10 <1
a = — _— —
"TN Cy—%—m—l_N —'&"+m_

for N large enough, since m > 1. Thus

t t t t
B 1
> logE (e ) <y “log(1 + 40ab,) < 40a Y by < 400an§ =

n=1 n=1 n=1

800 ' dx 800
< —1 —— )= —(1+ Nlogt) <1600logt,
_N(+_/1x/N) (14 Nlog) < 1600 log

which concludes the proof. O
We can now show that no early points implies no late points.

Proof of Proposition C.1 Take m = % without loss of generality, with C as in
the statement, and note thatm > £ since £ > C log N by assumption. Let ¢ = (¢x, &y)
be such that ¢, < % — £, and set T = N(¢y + £). Note that 77 < T. Recall that
L(¢) denotes the event that ¢ is £-late, thatis ¢ ¢ A(T7). As already observed, it will
suffice to show that

P(LE)NELTIS) < N~

for arbitrary ¢ € R Ty On the event L(¢) we use the martingale M, with pole at ¢.

We will show that both M, (T7) is large and negative, and S, (771) is small, so that the
probability of both happening simultaneously is tiny.

Let Ay (¢) denote the IDLA cluster at time ¢ with points stopped upon reaching
level ¢y, counted with multiplicity. We have

M (T)) = Z (Hg(z) — %)

A (T1)
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On the event L(¢), no particle reaches ¢ by time 7. Moreover, H;(z) = 0 for all
z # ¢ atlevel ¢, while H; (z) > 0if zy < ¢y. Itfollows that the sum defining M (T)
is maximised when as many particles as possible are below level ¢y, that is when the
cluster is completely filled up to level ¢, — 1. Hence

man= Y (ho-3)+ X (K-

Z€R;, 1 2€A(T), zy=¢y

0 (mean value pr.)

1
=-¥ f{particles stopped at level ¢} < —¢.

Ti—N(Gy—D=N(+1)

To show that, on the other hand, the quadratic variation is small, we use the following
lemma.

Lemma C.3 Assume that m > 1 and £ < m. Fix any ¢, and lett = N(¢y + £). Then
E(e% D1 () < e200m30,
Using the above with + = T} and since 77 < ¢ we gather that
E(eSc(Tl)lgm[TI]C) < e200mT1800 < elOO()m_
In conclusion, for any s > 0 we have
P(L(&) NEWTIY) < PERITI N{Se(T1) > sH) + PSS (T1) < s} N L)),
with

P(EnlTI N (S (T1) > s})
< P(S(T)1g,71c > 5) < E@* T 1g (7,10)e™ < ¢~ 1000m

taking s = 2000m, and
P({S¢ (T1) <5} N LE)) < P(S(T) <5, Me(Ty) < —€) < e U/
by a standard large deviations estimate for Brownian motion. In all,
P(L(2) N E[T]) < e~ 1000m | o=E2/4000m _ 5 N—(r+5).

aslongasm > £ > (y + 5)log N and ﬁ > (y + 5)log N. This shows that
Proposition C.1 holds with C > 4000(y + 5).
In order to conclude, it remains to prove the above lemma.
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Proof of Lemma C.3 As in the proof of Lemma C.2, we have
E(e%O1g 1) < ]E(eZ(Sfl (t)+s§<r))lgm[,1c)) < [E(eztsg <r)lgm[,]¢)]E(e4s§(t)15mmc)]1/z'

The factor involving S? is bounded above by an absolute constant, so it suffices to
show that, say,

1
]E(e4S; g, 11l < p320m 1600,

Note that ¢, = % — ¢, so we cannot use Lemma C.2, which requires ¢, > % +2m+1.
On the other hand, note that if 7o < ¢ then &,,[t]° C &,,[f9]¢. Moreover, for g such that
&y = INO +2m +1 we can apply Lemma C.2. Take therefore tp = N (¢, —2m —1) v 0.
Then

E(e“rl (z)lgmH[,Jc) < []E(eS(Sfl -S} (l‘()))lgm+1mc) }E(ess{1 (zo)lgmﬂw) ] 1/2
——— ——

<3200

d 1/2
< []E(exp{8 3 Sk — Skin - 1))15m[,0]f})] 2 1600
n=to+1
2 Sh 80
< [E(esr(—ﬁ,l))] 271600 5 (1—10)1600
—
<1410 <160/N

Now, if fo = O then &y < 2m + 1,50 7 = ¢y + € < 2m + 1 + € < 4m. Otherwise,
I*T’(J:€+2m+2§4m.lnall,

1 :
(5 Olemiey < (320m41600

as wanted. O

This concludes the proof of Proposition C.1. O

C.3. No late points implies no early points

We prove the following.

Proposition C.2 Assume m, £ < \/3CN log N, with C as in Proposition C.1. Then for
any y > 0, there exist a finite constant C' = C’(y), depending only on y, and an
absolute constant b > 0 such that, if m > C'log N and £ < bm_ it holds

487’
P(EITIN L[TT) < N~OFD

for N large enough.
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Proof We assume ¢ = 48 without loss of generality, with b to be determined. Let
Q.1 = {z is the first m-early point, absorbed at time ¢}.

Then
T
P(EnlTTN Lol T Z Z P(Q: N LATI).
t=1 zeRt

On the event Q. take ¢ = (¢, ¢y) such that ¢y = zy and ¢y = zy +m + 1 =
ﬁ +2m + 1. Then for any s > 0

P(Qri NLelT1Y) = P(Qr N{Sc (1) > s5})

+ P(Qz,z N{M; (1) < m}n L‘/Z[T]C>

b
1000
b
+ P({Sg (1) > s} N {Mc (1) > mm}).

Taking s = (2y + 1000) log N, we find
P({S (t) > siN {M (t) > Lm}) < ¢—%/2 < N~y +500)
‘ “=T000"1) = = ’

and, using that Q ; C &y 41[t1,

P(Q: N{Sc (1) > s} < P(En+1lt]° N {Sc (1) > s} = P(S¢ (D1, 11e > $)

< E(esf(t)lgmﬂ[t]c)eis < 68t800 —s < N7(2y+100)‘

To finish, we show that

b . B
P(Qz,t N {M;(t) < mm} N Le[T] ) < N~0+9),

Note that on the event Q, ; we have A(t) C Rﬁ +m+1- Let B (z) denote the Euclidean
ball of radius » around z. Partition A(t) as follows:

Alt) = (A(t) n Rﬁ_e) U (A(t) n Bm(z)> U (A(t)\(Al U Az)).
N

Ap A3

Aj

Then

M) =Y (He () - %) + > (M - %) +3 (H@ - %)

Z€A] z€A) z€A3
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Since A| = Rﬁ_g on the event £,[T]°,
> (B - ) =0
¢(2) =+ )=0.
z€EA] N

Moreover,

> (W(z)—%) > —%}3' =_t_(t_5;\1’\/)—|Az| - s,

ZEA3

It remains to estimate the contribution to the martingale of points in A,, which we
show to be large. To this end, observe thatif i <m and m < k < 2m + 1, then (with
m > 1)

Po(a SRW reaches level k for the first time at (i, k))
1 4k 1
awoe (1 ) +o(3)
a2t o) TP a2
1 k 1
> — > .
T2 il4+ (k- 12T 127m

v

This implies that H;(z) > ﬁ for z € A,. Moreover, the next lemma shows that
A» contains a positive proportion of points, and it identifies the absolute constant b in
Proposition C.2.

Lemma C.4 (Thin tentacles, cf. [7] Lemma 2) Assume m << N. Then there exist
absolute constants b, Co, co such that for all z with z, > m it holds

P(z € A1), |A(t) N Bp(2)| < bm?) < Coe™ ™,

forallt.

Proof This can be proven exactly as in the Z? case treated in [7], as the argument is
completely local and m < N. O

This allows us to conclude that, on the event Q, ;N Lo[T]1°N{|A(F) N By (2)] < bm?},
it holds

Mo = Y (Heo) - %) —e=( Lo %)|A2|

- 12rm
bm bm? - bm
~ 12n N ~ 487’

where the last inequality follows by recalling that £ = bm /48m and that, by assump-
tion, m? < 3CN log N and m > C’log N, from which

bm? _ wClogN < 27"
— O —_—
N = 8N = our
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as long as 3C < C’/247w, which can always be ensured by taking C’ large enough,
depending only on C.
In all, we conclude that

b C
]P(QZ,, N {Me ) <3g55m} N LelT) )

b
= P(QZ,, N{M; (1) < mm} N LTI N{JA®E) N By (2)] < bm2}>

<P(z € AQW), {|A(t) N B (2)] < bm?})
< Coe™ " < N~

where the last inequality holds as long as m > % (y +5)log N, which can always be

ensured at cost of increasing C’, only depending on y. This concludes the proof of
Proposition C.2. O

C.4. Iterative scheme

To finally prove Theorem 5.1 we iteratively apply Propositions C.1 and C.2, starting
with m = 2T /N > log N and iterating as long as m,{ > a, log N, with a,, =
max{C, C’}. Assume that T > N log N, otherwise the result holds by Remark C.1.
We have from Lemma C.1 with m = 3 that

P(A(T) ¢ Ryr/n) < P(A(N?log® N) ¢ Rar/n) < g~ < N7+,

where, for all fixed y > 0, the last inequality holds for N large enough. Let my =
3N log? N. For C, C' as in Proposition C.1 and C.2 respectively, iteratively define

Kk = ka_1 logN,

k>1.
mi = BLey,

Then, as long as my, £, > a, log N, we have

P(Emp [T1° N L, [TT) < N~
P(Le, [T N En [T]) < N~OFD

by Proposition C.1 and C.2 respectively. Thus

P(Epo[T]) < N~ HD]
P(Le, [T]) < P(Le,[T1N Emp[T1E) + P(Epy [T]) < 2N~ D,
P(Eu, [T1) < P(Em, [T10 Lo, [T]6) +P(Ly, [T]) < 3N-HD

P(Ly, [T]) < 2kN~HD,
P(Em, [T] < Qk + DN FD,
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We want to iterate as much as possible, that is to take k as large as possible so
that £;, my > a, log N. It is easy to check that if k > cgloglog N, for a suitable
absolute constant cg, then £; < a,log N, so we can iterate at most cploglog N
times. In all, this shows that by taking £ = max{{¢loglogN: @y log N} and m =
max{mcloglog N; dy log N} we have

P(EnlTIU LT < PEWTD) +P(LAT]) < 5coN~ 7+ loglogN < N77,

for N large enough, as wanted.
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