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Abstract The results of this paper build upon those first obtained by Sznitman and
Zeitouni (Invent Math 164(3), 455–567, 2006). We establish, for spacial dimensions
d ≥ 3, the existence of a unique invariant measure for isotropic diffusions in random
environment on Rd which are small perturbations of Brownian motion. Furthermore,
we establish a general homogenization result for initial data which are locally mea-
surable with respect to the coefficients.
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1 Introduction

The results of this paper should be seen as an extension of those first obtained in
Sznitman and Zeitouni [12] for stationary diffusion processes in random environment
onRd , for d ≥ 3, which are a small perturbation of Brownianmotion andwhich satisfy
a restricted isotropy condition and finite range dependence. The framework depends
upon an underlying probability space (Ω,F ,P), which can be viewed as indexing the
collection of all equations or environments described, for each x ∈ R

d and ω ∈ Ω ,
by the coefficients

A(x, ω) ∈ S(d) and b(x, ω) ∈ R
d , (1.1)
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for S(d) the space of d × d symmetric matrices.
More precisely, the stationarity is described by a group of transformations {τx }x∈Rd

preserving the measure of Ω and satisfying, for each x, y ∈ R
d and ω ∈ Ω ,

A(x + y, ω) = A(x, τyω) and b(x + y, ω) = b(x, τyω). (1.2)

There exists R > 0 quantifying the finite-range dependence such that, whenever
subsets A, B ⊂ R

d satisfy d(A, B) ≥ R, the sigma-algebras

σ (A(x, ω), b(x, ω) | x ∈ A) and σ (A(x, ω), b(x, ω) | x ∈ B) are independent.
(1.3)

The coefficients are isotropic in the sense that for every orthogonal transformation
r : Rd → R

d preserving the coordinate axis, for every x ∈ R
d , the random variables

(
rb(x, ω), r A(x, ω)r t

)
and (b(r x, ω), A(r x, ω)) have the same law. (1.4)

Finally, the perturbation is described, for a parameter η > 0 to be chosen small, by
the condition

|b(x, ω)| < η and |A(x, ω) − I | < η on R
d × Ω. (1.5)

We remark that these assumptions are identical to model considered in [12] and are the
continuous counterpart of the model first studied in the discrete setting by Bricmont
and Kupiainen [2].

The coefficients will be sufficiently regular to guarantee, for each x ∈ R
d and

ω ∈ Ω , the well-posedness of the martingale problem corresponding to the generator

1

2

d∑

i, j=1

ai j (y, ω)
∂2

∂yi∂y j
+

d∑

i=1

bi (y, ω)
∂

∂yi
,

where we have written A = (ai j )di, j=1 for the diffusion matrix. See Stroock and
Varadhan [11, Chapter 6, 7].We denote by Px,ω the corresponding probabilitymeasure
on the space of continuous paths C([0,∞);Rd) and recall that, almost surely with
respect to Px,ω, paths Xt ∈ C([0,∞);Rd) satisfy the stochastic differential equation

{
dXt = b(Xt , ω)dt + σ(Xt , ω)dBt ,

X0 = x,

for A(y, ω) = σ(y, ω)σ (y, ω)t , and for Bt a standard Brownian motion under Px,ω
with respect to the canonical right continuous filtration on C([0,∞);Rd).

We now present our main result where in the statement we write, for every mea-
surable subset E ∈ F , using the transformation group appearing in (1.2),

Pt (ω, E) = P0,ω
(
τXtω ∈ E

)
. (1.6)
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Theorem 1.1 There exists a unique probability measure π on (Ω,F) which is
absolutely continuous with respect to P and satisfies, for every t ≥ 0 and E ∈ F ,

π(E) =
∫

Ω

Pt (ω, E) dπ.

Furthermore, π is mutually absolutely continuous with respect to P and defines an
ergodic probability measure with respect to the canonical Markov process onΩ defin-
ing (1.6).

Theorem 1.1 is obtained by analyzing the long term behavior of solutions u :
R
d × [0,∞) × Ω → R satisfying

{
ut = 1

2 tr(A(y, ω)D2u) + b(y, ω) · Du on R
d × (0,∞),

u(x, 0, ω) = f (x, ω) on R
d × {0} ,

(1.7)

since, for 1E : Ω → Ω the indicator function of E ∈ F , for fE (x, ω) = 1E (τxω), if
uE (x, t, ω) satisfies (1.7) with initial data fE (x, ω), then, for each ω ∈ Ω and t ≥ 0,

uE (0, t, ω) = E0,ω
(
1E (τXtω)

) = P0,ω
(
τXtω ∈ E

) = Pt (ω, E).

Indeed, along an exponentially increasing sequence of time scales L2
n , see (2.18),

the invariant measure π is first identified, for every E ∈ F , as the limit

π(E) = lim
n→∞E

(
uE (0, L2

n, ω)
)

.

Weprove that the limit exists in Propositions 3.10 and 3.11 and, in Proposition 3.12, we
prove that π defines a probability measure on (Ω,F) which is absolutely continuous
with respect to P.

An almost sure characterization of π is then established along the full limit, as
t → ∞, for a class of subsets E ∈ F whose indicator functions satisfy a version of
(1.3), see Proposition 4.3. Precisely, on a subset of full probability depending on E ,

lim
t→∞ uE (0, t, ω) = π(E). (1.8)

Here, we use crucially the results of [12], where it is shown that, with high probability,
there exists a coupling at large length and time scales between the diffusion process
generated in environment ω by coefficients A(y, ω) and b(y, ω) and a Brownian
motionwith deterministic variance, seeControl 2.2.Notice, however, that this coupling
cannot in general provide an effective comparison between solutions of (1.7) and
solutions u : Rd × [0,∞) × Ω → R satisfying, for α > 0 defined in Theorem 2.1,
the deterministic equation

{
ut = α

2Δu on R
d × (0,∞),

u(x, 0, ω) = f (x, ω) on R
d × {0} ,

(1.9)
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since, for stationary initial data, we expect

lim
t→∞ u(0, t, ω) =

∫

Ω

f (0, ω) dπ and lim
t→∞ u(0, t, ω)

=
∫

Ω

f (0, ω) dP = E( f (0, ω)).

However, in Proposition 3.9, this coupling does provide a means by which the
solution of (1.7) can be effectively compared,with high probability, on large length and
time scales, to a quantitywhich, for suitable initial data, is nearly constant. That is, with
high probability, we obtain an effective comparison between the solution u(x, t, ω)

of (1.7) at time L2
n+1 with the solution of (1.9) at time L2

n+1 − 6L2
n corresponding to

initial data u(x, 6L2
n, ω).

This is essentially to say that u(x, L2
n+1, ω) is an averaged version of u(x, 6L2

n, ω),
where we provide a quantitative version of the averaging in Proposition 4.4 for subsets
whose characteristic function satisfies a version of (1.3), see Propositions 4.2 and 4.3.
In combination, the comparison and averaging complete the proof of (1.8).

Finally, in [12], localization estimates for the diffusion in environment ω are
obtained with high probability, see Control 2.3. We use this localization in Propo-
sition 4.6 to upgrade the convergence along the discrete sequence L2

n to the full limit,
as t → ∞, at the cost of obtaining the convergence on a marginally smaller portion
of space. The proof of invariance and uniqueness then follow by standard arguments,
see Proposition 4.7 and Theorem 4.8.

As an application of Proposition 4.6, we establish a homogenization result for
oscillating initial data which are locally measurable with respect to the coefficients.
Precisely, we define, for each R > 0, the sigma algebra

σBR = σ (A(x, ω), b(x, ω) | x ∈ BR) ,

and consider functions f ∈ L∞(Rd × Ω) which are stationary with respect to the
translation group {τx }x∈Rd and satisfy f (0, ω) ∈ L∞(Ω, σBR ), where L∞(Ω, σBR )

denotes the space of bounded σBR -measurable functions on Ω .

Theorem 1.2 Suppose that f ∈ L∞(Rd × Ω) and R > 0 satisfy, for each x, y ∈ R
d

and ω ∈ Ω ,

f (x + y, ω) = f (x, τyω),

with f (0, ω) ∈ L∞(Ω, σBR ). For each ε > 0, let uε : Rd ×[0,∞)×Ω → R denote
the solution to

{
uε
t = 1

2 tr(A(x/ε, ω)D2uε) + 1
ε
b(x/ε, ω) · Duε on R

d × (0,∞),

uε(x, 0, ω) = f (x/ε, ω) on R
d × {0} .

(1.10)
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There exists a subset of full probability such that, as ε → 0,

uε →
∫

Ω

f (0, ω) dπ locally uniformly on R
d × (0,∞).

Thesemethods also apply to equations like (1.10) involving an oscillating righthand
side and to the analogous time independent problems. See Theorems 5.2 and 5.3.

We remark that, in the case b(y, ω) = 0, the existence of an invariant measure and
applications to homogenization were established by Papanicolaou and Varadhan [9]
and Yurinsky [13]. Furthermore, when equation (1.7) may be rewritten in divergence
form, results have been obtained by De Masi et al. [3], Kozlov [5], Olla [6], Osada [7]
and Papanicolaou and Varadhan [8]. We point the interested reader to the introduction
of [12] for amore complete list of references regarding related problems in the discrete
setting.

The paper is organized as follows. In Sect. 2, we present our notation and assump-
tions aswell as provide a summaryof the aspects of [12]most relevant to our arguments.
We identify the invariant measure in Sect. 3 and, in Sect. 4, we prove that the invari-
ant measure is indeed invariant and unique. Finally, in Sect. 5, we prove the general
homogenization result for functions which are locally measurable with respect to the
coefficients.

2 Preliminaries

2.1 Notation

Elements of Rd and [0,∞) are denoted by x and y and t respectively and (x, y)
denotes the standard inner product on R

d . We write Dv and vt for the derivative of
the scalar function v with respect to x ∈ R

d and t ∈ [0,∞), while D2v stands for the
Hessian of v. The spaces of k × l and k × k symmetric matrices with real entries are
respectively writtenMk×l and S(k). If M ∈ Mk×l , then Mt is its transpose and |M |
is its norm |M | = tr(MMt )1/2. If M is a square matrix, we write tr(M) for the trace
of M . The Euclidean distance between subsets A, B ⊂ R

d is

d(A, B) = inf {|a − b| | a ∈ A, b ∈ B}

and, for an indexA and a family of measurable functions
{
fα : Rd × Ω → R

nα
}
α∈A,

we write

σ( fα(x, ω) | x ∈ A, α ∈ A)

for the sigma algebra generated by the randomvariables fα(x, ω) for x ∈ A andα ∈ A.
For U ⊂ R

d , USC(U ;Rd), LSC(U ;Rd), BUC(U ;Rd), Lip(U ;Rd), C0,β(U ;Rd)

and Ck(U ;Rd) are the spaces of upper-semicontinuous, lower-semicontinuous,
bounded continuous, Lipschitz continuous, β-Hölder continuous and k-continuously
differentiable functions on U with values in Rd . For f : Rd → R, we write Supp( f )
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414 B. J. Fehrman

for the support of f . Furthermore, BR and BR(x) are respectively the open balls of
radius R centered at zero and x ∈ R

d . For a real number r ∈ R we write [r ] for
the largest integer less than or equal to r . Finally, throughout the paper we write C
for constants that may change from line to line but are independent of ω ∈ Ω unless
otherwised indicated.

2.2 The random environment

There exists an underlying probability space (Ω,F ,P) indexing the individual real-
izations of the random environment. Since the environment is described, for each
x ∈ R

d and ω ∈ Ω , by the diffusion matrix A(x, ω) and drift b(x, ω), we may take

F = σ
(
A(x, ω), b(x, ω) | x ∈ R

d
)

. (2.1)

Furthermore, we assume this space is equipped with a

group of ergodic, measure-preserving transformations {τx : Ω → Ω}x∈Rd , (2.2)

such that the coefficients A : Rd×Ω → S(d) and b : Rd×Ω → R are bi-measurable
stationary functions satisfying, for each x, y ∈ R

d and ω ∈ Ω ,

A(x + y, ω) = A(x, τyω) and b(x + y, ω) = b(x, τyω). (2.3)

We remark that the ergodicity is not an assumption, and can be deduced from (2.1)
and (2.7).

We assume that the diffusion matrix and drift are bounded and Lipschitz uniformly
for ω ∈ Ω . There exists C > 0 such that, for all y ∈ R

d and ω ∈ Ω ,

|b(y, ω)| ≤ C and |A(y, ω)| ≤ C (2.4)

and, for all x, y ∈ R
d and ω ∈ Ω ,

|b(x, ω) − b(y, ω)| ≤ C |x − y| and |A(x, ω) − A(y, ω)| ≤ C |x − y|. (2.5)

In addition, we assume that the diffusion matrix is uniformly elliptic uniformly in Ω .
There exists ν > 1 such that, for all y ∈ R

d and ω ∈ Ω ,

1

ν
I ≤ A(y, ω) ≤ ν I. (2.6)

The coefficients satisfy a finite range dependence. There exists R > 0 such that,
whenever A, B ⊂ R

d satisfy d(A, B) ≥ R, the sigma algebras

σ(A(x, ω), b(x, ω) | x ∈ A) and σ(A(x, ω), b(x, ω) | x ∈ B) are independent.
(2.7)
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The diffusion matrix and drift satisfy a restricted isotropy condition. For every orthog-
onal transformation r : R

d → R
d which preserves the coordinate axes, for every

x ∈ R
d ,

(b(r x, ω), A(r x, ω)) and (rb(x, ω), r A(x, ω)r t ) have the same law. (2.8)

And, finally, the diffusion matrix and drift are a small perturbation of the Laplacian.
There exists η0 > 0, to later be chosen small, such that, for all y ∈ R

d and ω ∈ Ω ,

|b(y, ω)| ≤ η0 and |A(y, ω) − I | ≤ η0. (2.9)

To avoid cumbersome statements in what follows, we introduce a steady assump-
tion.

Assume (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8) and (2.9). (2.10)

The collection of assumptions (2.4), (2.5) and (2.6) guarantee the well-posedness
of the martingale problem set on R

d , for each ω ∈ Ω and x ∈ R
d , associated to the

generator

1

2

d∑

i, j=1

ai j (y, ω)
∂2

∂yi∂y j
+

d∑

i=1

bi (y, ω)
∂

∂yi
,

see [11, Chapter 6, 7]. We write Px,ω and Ex,ω for the corresponding probability mea-
sure and expectation on the space of continuous paths C([0,∞);Rd) and remark that,
almost surely with respect to Px,ω, paths Xt ∈ C([0,∞);Rd) satisfy the stochastic
differential equation

{
dXt = b(Xt , ω)dt + σ(Xt , ω)dBt ,

X0 = x,
(2.11)

for A(y, ω) = σ(y, ω)σ (y, ω)t , and for Bt a standard Brownian motion under Px,ω
with respect to the canonical right-continuous filtration on C([0,∞);Rd).

We write Px = P × Px,ω and Ex = E × Ex,ω for the corresponding semi-direct
product measure and expectation onΩ×C([0,∞);Rd). The annealed law Px inherits
the translation invariance and restricted rotational invariance implied by (2.3) and (2.8).
In particular, for all x, y ∈ R

d ,

Ex+y(Xt ) = Ey(x + Xt ) = x + Ey(Xt ), (2.12)

and, for all orthogonal transformations r preserving the coordinate axis and x ∈ R
d ,

Ex (r Xt ) = Er x (Xt ). (2.13)

This stands in contrast to the quenched laws Px,ω, for which no invariance properties
can be expected to hold, in general.
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416 B. J. Fehrman

2.3 A review of [12]

In this section, we review the aspects of [12] most relevant to our arguments. Observe
that this summary is by no means complete, as considerably more was achieved in
their paper than we mention here.

We are interested in the long term behavior of the equation, for a fixed, Hölder
continuous function f : Rd → R,

{
ut = 1

2 tr(A(x, ω)D2u) + b(x, ω) · Du on R
d × (0,∞),

u = f (x) on R
d × {0} .

(2.14)

This is essentially achieved by comparing the solutions of (2.14) to the solution of the
deterministic problem, for α > 0 identified in Theorem 2.1,

{
ut = α

2Δu on R
d × (0,∞),

u = f (x) on R
d × {0} ,

(2.15)

along an increasing sequence of length and time scales.
The constantα defining (2.15) is identified in [12, Proposition 5.7] through a process

we describe after introducing some notation. Fix the dimension

d ≥ 3, (2.16)

and fix a Hölder exponent

β ∈
(
0,

1

2

]
and a constant a ∈

(
0,

β

1000d

]
. (2.17)

Let L0 be a large integer multiple of five. For each n ≥ 0, inductively define

�n = 5

[
La
n

5

]
and Ln+1 = �nLn, (2.18)

so that, for L0 sufficiently large, we have 1
2 L

1+a
n ≤ Ln+1 ≤ 2L1+a

n . For each n ≥ 0,
for c0 > 0, let

κn = exp(c0(log log(Ln))
2) and κ̃n = exp(2c0(log log(Ln))

2), (2.19)

where we remark that, as n tends to infinity, κn is eventually dominated by every
positive power of Ln . Furthermore, define, for each n ≥ 0,

Dn = Lnκn and D̃n = Ln κ̃n . (2.20)

We choose L0 sufficiently large so that, for each n ≥ 0,

Ln < Dn < D̃n < Ln+1, 4κ̃n < κ̃n+1 and 3D̃n+1 < L2
n+1. (2.21)
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The following constants enter into the probabilistic statements below. Fix m0 ≥ 2
satisfying

(1 + a)m0−2 ≤ 100 < (1 + a)m0−1, (2.22)

and δ > 0 and M0 > 0 satisfying

δ = 5

32
β and M0 ≥ 100d(1 + a)m0+2. (2.23)

In the arguments to follow, we will use the fact that δ and M0 are sufficiently larger
than a.

We now describe the identification of α. Recall, for each x ∈ R
d and ω ∈ Ω , the

quenched law Px,ω on C([0,∞);Rd) and, for each x ∈ R
d , the annealed law Px on

Ω × C([0,∞);Rd). The constant α is seen effectively as the limit of the effective
diffusivities, in average, of the ensemble of equations (2.14) along the sequence of
time steps L2

n . However, so as to apply the finite range dependence, see (2.7), the
stopping time

Tn = inf
{
s ≥ 0 | |Xs − X0| ≥ D̃n

}
(2.24)

is introduced, for each n ≥ 0, and the approximate effective diffusivity of ensemble
(2.14) is defined as

αn = 1

dL2
n
E0[|XTn∧L2

n
|2]. (2.25)

The following theorem describes the control and convergence of the αn to α, see [12,
Proposition 5.7].

Theorem 2.1 Assume (2.10). There exists L0 and c0 sufficiently large and η0 > 0
sufficiently small such that, for all n ≥ 0,

1

2ν
≤ αn ≤ 2ν and |αn+1 − αn| ≤ L

−(1+ 9
10 )δ

n ,

which implies the existence of α > 0 satisfying

1

2ν
≤ α ≤ 2ν and lim

n→∞ αn = α.

We discuss next the coupling between solutions of (2.14) and (2.15). The first step
involves comparing solutions of (2.14), for each n ≥ 0, at time L2

n , with respect to a
Hölder norm at scale Ln , to solutions of the deterministic problem

{
un,t = αn

2 Δun on R
d × (0,∞),

un,t = f (x) on R
d × {0} .

(2.26)

To do so, introduce, for each n ≥ 0, the rescaled Hölder norm

| f |n = sup
x∈Rd

| f (x)| + Lβ
n sup
x 	=y

| f (x) − f (y)|
|x − y|β . (2.27)
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A localized control of the difference between solutions of (2.14) and (2.26) at time
L2
n is obtained via a cutoff function. For each v > 0, let

χ(y) = 1 ∧ (2 − |y|)+ and χv(y) = χ
( y

v

)
, (2.28)

and define, for each x ∈ R
d and n ≥ 0,

χn,x (y) = χ30
√
dLn

(y − x). (2.29)

The following result then describes the desired comparison between solutions of (2.14)
and (2.26), at time L2

n , for Hölder continuous initial data.
We emphasize here that this control depends upon x ∈ R

d , ω ∈ Ω and n ≥ 0. It
is not true, in general, that this contraction is available for all such triples (x, ω, n).
However, as described below, it is shown in [12, Proposition 5.1] that such controls
are available for large n, with high probability, on a large portion of space.

Controll 2.2 Fix x ∈ R
d , ω ∈ Ω and n ≥ 0. Let u and un respectively denote the

solutions of (2.14) and (2.26) corresponding to initial data f ∈ C0,β(Rd). We have

|χn,x (y)
(
u(y, L2

n) − un(y, L
2
n)
)
|n ≤ L−δ

n | f |n .

The final control we will use concerns tail-estimates for the diffusion process. We
wish to control, under Px,ω, for Xt ∈ C([0,∞);Rd), the probability that

X∗
t = max

0≤s≤t
|Xs − X0| (2.30)

is large with respect to the time elapsed. The desired result is similar to the standard
exponential estimates for Brownian motion at large length scales.

As with Control 2.2, this control depends upon x ∈ R
d , ω ∈ Ω and n ≥ 0. It is not

true, in general, that this type of localization control is available for all such triples
(x, ω, n), but it is shown in [12, Proposition 2.2] that such controls are available for
large n, with high probability, on a large portion of space.

Controll 2.3 Fix x ∈ R
d , ω ∈ Ω and n ≥ 0. For each v ≥ Dn, for all |y − x | ≤

30
√
dLn,

Py,ω(X∗
L2
n

≥ v) ≤ exp

(
− v

Dn

)
.

We now introduce the primary probabilistic statement concerning Controls 2.2 and
2.3. Notice that the event defined below does not include the control of traps described
in [12, Proposition 3.3], which play in important role in propagating Control 2.2 in
their arguments. Since we simply use the Hölder control there obtained, we do not
require a further use of their control of traps.
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On the existence of an invariant measure for isotropic diffusions… 419

Consider, for each x ∈ R
d , the event

Bn(x) = {ω ∈ Ω | Controls 2.2 and 2.3 hold for the triple (x, ω, n).} . (2.31)

Notice that, in view of (2.3), for all x ∈ R
d and n ≥ 0,

P(Bn(x)) = P(Bn(0)). (2.32)

It is therefore shown that the probability of the compliment of Bn(0) approaches zero
as n tends to infinity, see [12, Theorem 1.1].

Theorem 2.4 Assume (2.10). There exist L0 and c0 sufficiently large and η0 > 0
sufficiently small such that, for each n ≥ 0,

P (Ω\Bn(0)) ≤ L−M0
n .

We henceforth fix the constants L0, c0 and η0 appearing above.

Fix constants L0, c0 and η0 satisfying (2.21) and the hypothesis of

Theorems 2.1 and 2.4. (2.33)

We conclude this section with a few basic observations concerning Control 2.2,
Control 2.3 and the Hölder norms introduced in (2.27). Since Control 2.2 cannot be
expected to hold globally in space, it will be frequently necessary to introduce cutoff
functions of the type appearing in (2.28). The primary purpose of Control 2.3 is to
bound the error we introduce, as seen in the following proposition.

Proposition 2.5 Assume (2.10) and (2.33). Fix x ∈ R
d , ω ∈ Ω and n ≥ 0 and

suppose thatControl 2.3 is satisfied for the triple (x, ω, n). For f ∈ L∞(Rd) satisfying

d
(
Supp( f ), B30

√
dLn

(x)
)

≥ Dn + 30
√
dLn,

let u(y, t) satisfy (2.14) with initial data f (y). Then, for each |y − x | ≤ 30
√
dLn,

|u(y, L2
n)| ≤ exp

(
−d(Supp( f ), y)

Dn

)
‖ f ‖L∞(Rd ).

Proof The proof is immediate from the representation formula for the solution. We
have, for each y ∈ R

d ,

u(y, L2
n) = Ey,ω

(
f (XL2

n
)
)

.

Therefore,

|u(y, L2
n)| ≤ Py,ω

(
X∗
L2
n

≥ d(Supp( f ), y)
)

‖ f ‖L∞(Rd ).
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420 B. J. Fehrman

Since d(Supp( f ), B30
√
dLn

(x)) ≥ Dn + 30
√
dLn , and since Control 2.3 is satisfied

for the triple (x, ω, n), this implies that, for all |y − x | ≤ 30
√
dLn ,

|u(y, L2
n)| ≤ exp

(
−d(Supp( f ), y)

Dn

)
‖ f ‖L∞(Rd ),

which completes the argument.

The following two elementary propositions will be used to extend Control 2.2 to a
larger portion of space. The first is an elementary and well-known fact concerning the
product of Hölder continuous functions.

Proposition 2.6 For each n ≥ 0, for every f, g ∈ C0,β(Rd),

| f g|n ≤ | f |n|g|n .

The second will play the most important role in extending Control 2.2. The only
observation is that the Hölder norms introduced in (2.27) occur at the length scale Ln .
Therefore, a function agreeing locally with Hölder continuous functions on scale Ln

must itself be globally Hölder continuous. The proof is elementary and can be found
in [12, Lemma A.1].

Proposition 2.7 Let I be an arbitrary index and n ≥ 0. If f : R
d → R and{

gi : Rd → R
}
i∈I are such that, for a collection {xi }i∈I ⊂ R

d ,

f = gi on B(xi , 20
√
dLn) and Supp( f ) ⊂

⋃

i∈I
B(xi , 10

√
dLn), (2.34)

then

| f |n ≤ 3 sup
i∈I

|gi |n .

3 The identification of the invariant measure

In order to identify the invariant measure, we will analyze the long term behavior of
the solution u : Rd × [0,∞) × Ω → R satisfying

{
ut = 1

2 tr(A(x, ω)D2u) + b(x, ω) · Du on R
d × (0,∞),

u = f (x, ω) on R
d × {0} .

(3.1)

Therefore, to simplify the notation in what follows, we write, for each s ≥ 0 and
ω ∈ Ω ,

Rs f (x, ω) = u(x, s, ω),

for u(x, s, ω) satisfying (3.1) with initial data f (y, ω).
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We will be particularly interested in translations of functions f̃ ∈ L∞(Ω) with
respect to the translation group {τx }x∈Rd , and therefore assume in many of the propo-
sitions to follow that a function f : Rd×Ω → R is stationarywith respect to {τx }x∈Rd .
Precisely, for each x, y ∈ R

d and ω ∈ Ω ,

f (x + y, ω) = f (x, τyω). (3.2)

For every f ∈ L∞(Rd × Ω) satisfying (3.2), we identify a deterministic constant
π( f ) ∈ R which is effectively identified as the limit of the sequence defined, for each
n ≥ 0, by

E

(
RL2

n
f (0, ω)

)
. (3.3)

And, for 1E : Ω → R the indicator function of a measurable subset E ∈ F , by taking
fE (x, ω) = 1E (τxω), we define a measure π : F → R on (Ω,F) by the rule

π(E) = π( fE ). (3.4)

Wewill prove thatπ is a probabilitymeasure on (Ω,F)which is absolutely continuous
with respect to P. And, for every f ∈ L∞(Rd × Ω) satisfying (3.2),

π( f ) =
∫

Ω

f (0, ω) dπ.

The following two propositions describe the basic existence and regularity results
concerning equation (3.1) for bounded and stationary initial data.

Proposition 3.1 Assume (2.10). For each ω ∈ Ω and f ∈ L∞(Rd × Ω) there exists
a unique solution u(x, t, ω) : Rd × [0,∞) × Ω → R of (3.1) satisfying, for each
T > 0 and ω ∈ Ω , u(x, t, ω) ∈ BUC(Rd × [0, T ]) with, for each ω ∈ Ω ,

‖u(x, t, ω)‖L∞(Rd×[0,∞)) ≤ ‖ f (x, ω)‖L∞(Rd ).

Furthermore, if f (x, ω) satisfies (3.2), then for each t ≥ 0, the map u(x, t, ω) :
R
d × Ω → R

d is stationary. Precisely, for each x, y ∈ R
d , t ≥ 0 and ω ∈ Ω ,

u(x, t, τyω) = u(x + y, t, ω).

Proof The existence and uniqueness of a solution to (3.1) satisfying the above
estimates, for each ω ∈ Ω , is an elementary consequence of (2.4), (2.5) and
f ∈ L∞(Rd × Ω). See, for instance, Friedman [4, Chapter 1, Theorem 12]. The
stationarity is a consequence of (3.2) and the uniqueness since, for each ω ∈ Ω , both
u(x, t, τyω) and u(x + y, t, ω) satisfy (3.1) for τyω.

Proposition 3.2 Assume (2.10). For each ω ∈ Ω , t ≥ 1 and g ∈ L∞(Rd), for C > 0
independent of ω ∈ Ω and t ≥ 1,

‖Rt g(x, ω)‖C0,β (Rd ) ≤ C‖g‖L∞(Rd ).
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Proof Fix ω ∈ Ω and g ∈ L∞(Rd). Recall that, for each t ≥ 0 and x ∈ R
d , see [4,

Chapter 1, Theorem 12],

Rt g(x, ω) = Ex,ω (g(Xt )) =
∫

Rd
p(x, t, y, ω)g(y) dy, (3.5)

for p(x, t, y, ω) : Rd × (0,∞) ×R
d → R satisfying, for each 0 < t ≤ 1, for C > 0

and c > 0 independent of ω,

|p(x, t, y, ω)|≤Ct−d/2e−c|x−y|2/t and |Dx p(x, t, y, ω)|≤Ct−(d+1)/2e−c|x−y|2/t .
(3.6)

First, we observe that for each x ∈ R
d and t ≥ 0, using (3.5),

|Rt g(x, ω)| ≤ ‖g‖L∞(Rd ). (3.7)

It remains to bound the Hölder semi-norm.
Whenever x, y ∈ R

d satisfy |x − y| ≥ 1,

|R1g(x, ω) − R1g(y, ω)| ≤ 2‖g‖L∞(Rd ) ≤ 2|x − y|β‖g‖L∞(Rd ). (3.8)

And, whenever x, y ∈ R
d satisfy |x − y| < 1, since (3.5) and (3.6) imply that

R1g(x, ω) is Lipschitzwith constant determinedby‖g‖L∞(Rd ), forC > 0 independent
of ω ∈ Ω ,

|R1g(x, ω) − R1g(y, ω)| ≤ C |x − y|‖g‖L∞(Rd ) ≤ C |x − y|β‖g‖L∞(Rd ). (3.9)

Therefore, for each x, y ∈ R
d and t ≥ 1, using (3.7), (3.8) and (3.9),

|Rt g(x, ω) − Rt g(y, ω)| = |Rt−1(R1g(x, ω) − R1g(y, ω))|
≤ sup

x,y∈Rd
|R1g(x, ω) − R1g(y, ω)| ≤ C |x − y|β‖g‖L∞(Rd ). (3.10)

The claim follows from (3.7), (3.8) and (3.10), since ω ∈ Ω and g ∈ L∞(Rd) were
arbitrary.

Before proceeding, it is convenient to introduce some useful notation. We write,
for each n ≥ 0 and f ∈ C0,β(Rd),

Rn f (x, ω) = u(x, L2
n), (3.11)

for u(x, t) satisfying

{
ut = 1

2 tr(A(x, ω)D2u) + b(x, ω) · Du on R
d × (0,∞),

u = f (x) on R
d × {0} .
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Similarly, for each n ≥ 0 and f ∈ C0,β(Rd),

Rn f (x) = un(x, t), (3.12)

for un(x, t) satisfying

{
un,t = αn

2 Δun on R
d × (0,∞),

un = f (x) on R
d × {0} .

And, finally, for each n ≥ 0 and f ∈ C0,β(Rd),

Sn f (x, ω) = Rn f (x, ω) − Rn f (x). (3.13)

This allows us to restate Control 2.2 in the following equivalent way, where we recall
from (2.29), for each x ∈ R

d and n ≥ 0, the cutoff function χn,x .

Controll 3.3 Fix x ∈ R
d , ω ∈ Ω and n ≥ 0. For each f ∈ C0,β(Rd),

|χn,x Sn f |n ≤ L−δ
n | f |n .

We now make two elementary observations concerning the interaction of the heat
kernels Rn introduced in (3.12) and the scaled Hölder norms introduced in (2.27), and
an observation concerning the localization properties of the kernels Rn . Notice that, in
the following proposition, we make use of Theorem 2.1, which in particular provides
a lower bound for the αn . This lower bound ensures that the kernels Rn provide a
sufficient regularization, uniformly in n ≥ 0, for our arguments to follow.

Proposition 3.4 Assume (2.10) and (2.33). There exists C > 0 satisfying, for each
n ≥ 0 and f ∈ L∞(Rd),

|Rn f |n ≤ C‖ f ‖L∞(Rd ).

Proof Fix n ≥ 0 and f ∈ L∞(Rd). In view of (3.12), for each x ∈ R
d ,

Rn f (x) =
∫

Rd
(4παn L

2
n)

−d/2e−|x−y|2/4αn L2
n f (y) dy.

Therefore,
‖Rn f (x)‖L∞(Rd ) ≤ ‖ f ‖L∞(Rd ). (3.14)

It remains to bound the Hölder semi-norm.
For each x ∈ R

d ,

DRn f (x) = π−d/2(4αnL
2
n)

−1/2
∫

Rd

x − y

(4αnL2
n)

(d+1)/2
e−|x−y|2/4αn L2

n f (y) dy.
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Therefore, in view of Theorem 2.1, for each x ∈ R
d , for C > 0 independent of n ≥ 0

and f ∈ L∞(Rd),

|DRn f (x)| =
∣∣
∣∣π

−d/2(4αn L
2
n)

−1/2
∫

Rd
ye−|y|2 f

(
4αnL

2
n)

1/2y + x
)
dy

∣∣
∣∣

≤ CL−1
n ‖ f ‖L∞(Rd ).

So, whenever x, y ∈ R
d satisfy 0 < |x − y| < Ln ,

Lβ
n
|Rn f (x) − Rn f (y)|

|x − y|β ≤ CLβ−1
n ‖ f ‖L∞(Rd )|x − y|1−β ≤ ‖ f ‖L∞(Rd ). (3.15)

And, in view of (3.14), if |x − y| ≥ Ln ,

Lβ
n
|Rn f (x) − Rn f (y)|

|x − y|β ≤ 2‖ f ‖L∞(Rd ). (3.16)

The claim follows from (3.14), (3.15) and (3.16).

The following observation is elementary and well-known. The kernels Rn preserve
Hölder continuous initial data.

Proposition 3.5 For each n ≥ 0 and f ∈ C0,β(Rd),

|Rn f |n ≤ | f |n .

Finally, the following proposition describes the localization properties of the kernels
Rn . Here, notice again the role of Theorem2.1 and recall the cutoff function introduced
in (2.28).

Proposition 3.6 Assume (2.10) and (2.33). There exits C = C(d) > 0 and c > 0
independent of n such that, for each f ∈ L∞(Rd),

|Rn(1 − χD̃n
) f (0)| ≤ Ce−cκ̃2n ‖ f ‖L∞(Rd ).

Proof Fix n ≥ 0. Then, for C = C(d) > 0,

|Rn(1 − χD̃n
) f (0)| ≤

∫

Rd\BD̃n

(4παn L
2
n)

−d/2e−|x−y|2/4αn L2
n f (y) dy

≤ C‖ f ‖L∞(Rd )

∫ ∞

D̃n/2
√

αn Ln

re−r2 dr.

Therefore, using Theorem 2.1, there exists c > 0 independent of n such that, for
C = C(d) > 0,

|Rn(1 − χD̃n
) f (0)| ≤ Ce−κ̃2n /4αn‖ f ‖L∞(Rd ) ≤ Ce−c̃κ2n‖ f ‖L∞(Rd ),

which completes the argument.
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We are now prepared to begin our identification of the measure. In order to exploit
the finite range dependence in what follows, see (2.7), we introduce localized versions
of the kernels Rn . Define, for each n ≥ 0 and ω ∈ Ω ,

R̃n f (x, ω) = ũ(x, L2
n, ω),

for ũ : B6D̃n
× [0,∞) × Ω → R

d satisfying

{
ũt = 1

2 tr(A(y, ω)D2ũ)+b(y, ω) · Dũ on B6D̃n
(x) × (0,∞),

ũ = f (y, ω) on B6D̃n
(x)×{0} ∪ ∂B6D̃n

(x)×[0,∞).

(3.17)
The following proposition describes the basic properties of the solutions to (3.17).

Proposition 3.7 Assume (2.10). For each x ∈ R
d and f ∈ L∞(Rd × Ω) there exists

a unique solution ũ(y, t, ω) : B6D̃n
× [0,∞) × Ω → R of (3.17) satisfying, for each

T > 0, x ∈ R
d and ω ∈ Ω , ũ(y, t, ω) ∈ BUC(B6D̃n

(x) × [0, T ]) with, for each
ω ∈ Ω ,

‖ũ(y, t, ω)‖L∞(B6D̃n
(x)×[0,∞)) ≤ ‖ f (y, ω)‖L∞(Rd×Ω).

Furthermore, if f (x, ω) satisfies (3.2), then for each n ≥ 0 and k ≥ 0, the map
(R̃n)

k f (x, ω) : R
d × Ω → R

d is stationary. Precisely, for each x, y ∈ R
d and

ω ∈ Ω ,

(
R̃n

)k
f (x, τyω) =

(
R̃n

)k
f (x + y, ω).

Proof Fix n ≥ 0 and k ≥ 0. The existence and uniqueness of a solution to (3.17)
satisfying the above estimates, for each ω ∈ Ω , is an elementary consequence of
(2.4), (2.5) and f ∈ L∞(Rd × Ω). See, for instance [4, Chapter 3, Theorem 9]. The
stationarity is a consequence of (2.3) and the uniqueness since, for each ω ∈ Ω and
x, y ∈ R

d , if ũ(·, ·, ω) satisfies (3.17) corresponding to ω on B6D̃n
(x + y) × [0,∞)

then ũ(· + y, ·, ω) satisfies (3.17) corresponding to τyω on B6D̃n
(x) × [0,∞).

We now obtain Controls 2.3 and 3.3 on a large portion of space, with high proba-
bility. Define, for each n ≥ 0,

Ãn =
{
ω ∈ Ω | ω ∈ Bn(x) for all x ∈ LnZ

d ∩ [−2L2
n+2, 2L

2
n+2]d .

}
,

and, for each n ≥ 0,
An = Ãn ∩ Ãn+1 ∩ Ãn+2. (3.18)

The following proposition provides, for each n ≥ 0, a lower bound for the probability
of An . We remark that, in view of (2.17) and (2.23), the exponent (2(1+ a)2 − 1)d −
M0 < 0.
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Proposition 3.8 Assume (2.10) and (2.33). For each n ≥ 0, for C > 0 independent
of n,

P(Ω\An) ≤ CL(2(1+a)2−1)d−M0
n .

Proof In view of (2.32), for each n ≥ 0, for C > 0 independent of n,

P(Ω\ Ãn)≤
∑

x∈LnZ
d∩[−2L2

n+2,2L
2
n+2]d

P (Ω\Bn(x))≤C
(
L2
n+2/Ln

)d
P (Ω\Bn(0)) .

Therefore, using Theorem 2.4, for each n ≥ 0, for C > 0 independent of n,

P(Ω\ Ãn) ≤ CL(2(1+a)2−1)d−M0
n .

This implies that, for each n ≥ 0,

P (Ω\An) ≤ P

(
Ω\ Ãn

)
+ P

(
Ω\ Ãn+1

)
+ P

(
Ω\ Ãn+2

)

≤ C
(
L(2(1+a)2−1)d−M0
n + L(2(1+a)2−1)d−M0

n+1 + L(2(1+a)2−1)d−M0
n+2

)

≤ CL(2(1+a)2−1)d−M0
n ,

which completes the argument.

The following proposition is the essential step toward constructing the invariant
measure and provides the first comparison between Rn+1 f (x, ω) to Rn f (x, ω) for
environments in the subset An defined in (3.18). Notice that the estimates contained
below depend upon the unscaled β-Hölder norm of the initial data. Since the identifi-
cation of the measure requires us to consider initial data f ∈ L∞(Rd × Ω), we will
later use Proposition 3.2 and apply the following result to R1 f (x, ω). Observe that,
in view of (2.17) and (2.23), the exponent β − 7(δ − 5a) appearing below is negative.

Proposition 3.9 Assume (2.10) and (2.33). For each n ≥ 0, ω ∈ An, 1 ≤ k < �2n+1
and f ∈ C0,β(Rd), for C > 0 independent of n,

sup
x∈B4√k D̃n+1

|(Rn+1)
k f (x, ω)−(Rn

)k�2n−6
(
R̃n

)6
f (x, ω)|≤CLβ−7(δ−5a)

n ‖ f ‖C0,β (Rd ).

Proof Fix n ≥ 0, ω ∈ An , 1 ≤ k < �2n+1 and f ∈ C0,β(Rd). In what follows, we
suppress the dependence on ω ∈ Ω . Notice that (2.18), (2.19) and (2.20) imply that,
since 1 ≤ k < �2n+1,

4
√
k D̃n+1 < D̃n+2. (3.19)

Also, notice (2.21) implies that, in the definition of An ,

3D̃n+2 < L2
n+2. (3.20)
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And, recall that

(Rn+1)
k f (x) = (Rn)

k�2n f (x).

Fix x ∈ B4
√
k D̃n+1

and define the cutoff function χ̃n,x : Rd → R
d , recalling (2.28),

χ̃n,x (y) = χD̃n+2
(y − x) on R

d . (3.21)

Since
‖Rn f ‖L∞(Rd ) ≤ ‖ f ‖L∞(Rd ), (3.22)

and since x ∈ B4
√
k D̃n+1

and ω ∈ An , Control 2.3, Proposition 2.5, (3.19) and (3.20)
imply that

|(Rn)
k�2n f (x) − (Rn)

k�2n−1 χ̃n,x Rn f (x)| = |(Rn)
k�2n−1 (1 − χ̃n,x )Rn f (x)|

≤ e−κn+2‖ f ‖L∞(Rd ).

Proceeding inductively,

|(Rn)
k�2n f (x) − (χ̃n,x Rn

)k�2n f (x)| ≤ k�2ne
−κn+2‖ f ‖L∞(Rd )

≤ �2n+1�
2
ne

−κn+2‖ f ‖L∞(Rd ). (3.23)

We now write

(
χ̃n,x Rn

)k�2n f (x) = (χ̃n,x Sn + χ̃n,x Rn
)k�2n f (x),

and, for nonnegative integers ki ≥ 0,

(
χ̃n,x Sn + χ̃n,x Rn

)k�2n f (x)

=
k�2n∑

m=0

∑

k0+···+km+m=k�2n

(
χ̃n,x Rn

)k0
χ̃n,x Sn

(
χ̃n,x Rn

)k1
. . . χ̃n,x Sn

(
χ̃n,x Rn

)km f (x).

Since, for each n ≥ 0,

| f |n ≤ Lβ
n ‖ f ‖C0,β (Rd ),

and since x ∈ B4
√
k D̃n+1

and ω ∈ An , Proposition 2.6, Proposition 2.7, Control 3.3,
Proposition 3.4, Proposition 3.5, (3.19) and (3.20) imply that
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∣∣∣∣
∣∣

k�2n∑

m=7

∑

k0+···+km+m=k�2n

(
χ̃n,x Rn

)k0
χ̃n,x Sn

(
χ̃n,x Rn

)k1
. . . χ̃n,x Sn

(
χ̃n,x Rn

)km f (x)

∣∣∣∣
∣∣

≤
k�2n∑

m=7

(
k�2n
m

)
3mLβ−mδ

n ‖ f ‖C0,β (Rd ).

Therefore, for C > 0 independent of n, using (2.17) to write 4a + 2a2 < 5a, since
1 ≤ k < �2n+1, the lefthand side of the above string of inequalities is bounded by

k�2n∑

m=7

3m

m! L
β−m(δ−5a)
n ‖ f ‖C0,β (Rd ) ≤ CLβ−7(δ−5a)

n ‖ f ‖C0,β (Rd ), (3.24)

where we remark that β − 7(δ − 5a) < 0 in view of (2.17) and (2.23).
It remains to consider

6∑

m=0

∑

k0+···+km+m=k�2n

(
χ̃n,x Rn

)k0
χ̃n,x Sn

(
χ̃n,x Rn

)k1
. . . χ̃n,x Sn

(
χ̃n,x Rn

)km f (x).

(3.25)
We will prove that, up to an error which vanishes as n approaches infinity, the above
sum reduces to

(
Rn
)k�2n−6

(Rn)
6 f (x).

To do so, we consider each summand in m individually.
For the case m = 0, the single summand is

(
χ̃n,x Rn

)k�2n f (x). (3.26)

For the case m = 1, observe that, as a consequence of the assumptions x ∈
B4

√
k D̃n+1

and ω ∈ An , Proposition 2.6, Proposition 2.7, Control 3.3, Proposition
3.4, Proposition 3.5, (3.19) and (3.20), this summand in (3.25) may be bounded by
using (2.17) to write 4a + 2a2 < 5a, for C > 0 independent of n,

∣∣∣∣∣∣

∑

k0+k1+1=k�2n

(
χ̃n,x Rn

)k0
χ̃n,x Sn

(
χ̃n,x Rn

)k1 f (x) − (χ̃n,x Rn
)k�2n−1

χ̃n,x Sn f (x)

∣∣∣∣∣∣

≤
(
k�2n
1

)
3L−δ

n ‖ f ‖L∞(Rd ) ≤ CL5a−δ
n ‖ f ‖L∞(Rd ), (3.27)
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where we observe that 5a − δ < 0 in view of (2.17) and (2.23). Furthermore,

(
χ̃n,x Rn

)k�2n−1
χ̃n,x Sn f (x) = (χ̃n,x Rn

)k�2n−1
χ̃n,x Rn f (x) − (χ̃n,x Rn

)k�2n f (x).
(3.28)

Notice the additive cancellation between (3.26) and the final term of (3.28).
In the following, we use the fact that, for every f ∈ L∞(Rd),

‖Sn f ‖L∞(Rd ) ≤ 2‖ f ‖L∞(Rd ).

Fix 2 ≤ m ≤ 6. In this case, as in the case m = 0 and m = 1, Proposition 2.6,
Proposition 2.7, Control 3.3, Proposition 3.4 and Proposition 3.5 allow us to reduce
the sum to the single term ki = 0 for all 1 ≤ i ≤ m. Observe that, since x ∈ B4

√
k D̃n+1

and ω ∈ An ,

∣∣∣
∣∣∣

∑

km 	=0

(
χ̃n,x Rn

)k0
χ̃n,x Sn . . .

(
χ̃n,x Rn

)km f (x)

∣∣∣
∣∣∣
≤
(
k�2n
m

)
3mL−mδ

n ‖ f ‖L∞(Rd ).

And, generally, for 1 ≤ i ≤ m, since x ∈ B4
√
k D̃n+1

and ω ∈ An ,

∣∣∣
∣∣∣

∑

ki 	=0, k j=0 if j>i

(
χ̃n,x Rn

)k0
χ̃n,x Sn . . .

(
χ̃n,x Rn

)ki (
χ̃n,x Sn

)m−i
f (x)

∣∣∣
∣∣∣

≤
(
k�2n − m + i

i

)
2m−i3i L−iδ

n ‖ f ‖L∞(Rd ).

Therefore, for C > 0 independent of 2 ≤ m ≤ 6 and n, using (2.17) to write
4a + 2a2 < 5a,

∣∣∣∣
∣∣

∑

k0+···+km+m=k�2n

(
χ̃n,x Rn

)k0
. . .
(
χ̃n,x Rn

)km f (x) − (χ̃n,x Rn
)k�2n−m (

χ̃n,x Sn
)m

f (x)

∣∣∣∣
∣∣

≤
m∑

i=1

(
k�2n − m + i

i

)
2m−i3i L−iδ

n ‖ f ‖L∞(Rd ) ≤ CL5a−δ
n ‖ f ‖L∞(Rd ), (3.29)

where we observe that 5a − δ < 0 in view of (2.17) and (2.23).
Furthermore, again using Proposition 2.6, Proposition 2.7, Control 3.3, Proposition

3.4, Proposition 3.5 and (3.14), since x ∈ B4
√
k D̃n+1

andω ∈ An , for each 2 ≤ m ≤ 6,

∣
∣∣∣
(
χ̃n,x Rn

)k�2n−m (
χ̃n,x Sn

)m
f (x) − (χ̃n,x Rn

)k�2n−m (
χ̃n,x Sn

)m−1
χ̃n,x Rn f (x)

∣
∣∣∣

=
∣∣∣∣
(
χ̃n,x Rn

)k�2n−m (
χ̃n,x Sn

)m−1
χ̃n,x Rn f (x)

∣∣∣∣ ≤ 3m−1L(m−1)δ
n ‖ f ‖L∞(Rd ).
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Proceeding inductively, for each 2 ≤ m ≤ 6, for C > 0 independent of m and n,

∣∣∣
∣
(
χ̃n,x Rn

)k�2n−m (
χ̃n,x Sn

)m
f (x) − (χ̃n,x Rn

)k�2n−m
χ̃n,x Sn

(
χ̃n,x Rn

)m−1
f (x)

∣∣∣
∣

≤ CL−δ
n ‖ f ‖L∞(Rd ),

where we observe that

(
χ̃n,x Rn

)k�2n f (x) +
6∑

m=1

(
χ̃n,x Rn

)k�2n−m
χ̃n,x Sn

(
χ̃n,x Rn

)m−1
f (x)

= (χ̃n,x Rn
)k�2n−6 (

χ̃n,x Rn
)6

f (x). (3.30)

And, using the assumptions x ∈ B4
√
k D̃n+1

, ω ∈ An and 1 ≤ k < �2n+1, Control 2.3,
Proposition 2.5, Proposition 3.6, (3.19) and (3.20), there exists C > 0 and c > 0
independent of n and such that

∣∣∣∣
(
χ̃n,x Rn

)k�2n−6 (
χ̃n,x Rn

)6
f (x) − (Rn

)k�2n−6
(Rn)

6 f (x)

∣∣∣∣

≤ C�2n+1�
2
ne

−cκn+2‖ f ‖L∞(Rd ). (3.31)

Therefore, following the sequence of inequalities (3.20), (3.23), (3.24), (3.26),
(3.27), (3.29), (3.30) and (3.31), we have obtained an effective comparison between
(Rn+1)

k f (x) and the quantity regularized by the heat kernel (Rn)
k�2n−6R6

n f (x)which
takes the form, for C > 0 and c > 0 independent of n,

|(Rn+1)
k f (x) − (Rn

)k�2n−6
(Rn)

6 f (x)| = |(Rn)
k�2n f (x) − (Rn

)k�2n−6
(Rn)

6 f (x)|
≤ C�2n+1�

2
ne

−cκn+2‖ f ‖L∞(Rd ) + CLβ−7(δ−5a)
n ‖ f ‖C0,β (Rd ) + CL5a−δ

n ‖ f ‖L∞(Rd ).

(3.32)

In view of (2.17), (2.18), (2.19) and (2.23) there exits C > 0 independent of n such
that, for all n ≥ 0,

�2n+1�
2
ne

−cκn+2 ≤ CLβ−7(δ−5a)
n and L5a−δ

n ≤ CLβ−7(δ−5a)
n .

And, since ‖ f ‖L∞(Rd ) ≤ ‖ f ‖C0,β (Rd ), we have, using (3.32), for C > 0 independent
of n,

|(Rn+1)
k f (x, ω) − (Rn

)k�2n−6
(Rn)

6 f (x, ω)| ≤ CLβ−7(δ−5a)
n ‖ f ‖C0,β (Rd ). (3.33)

Finally, since ω ∈ An , using (3.18) and the fact that 6D̃n < L2
n+2, for each

y ∈ [−L2
n+2, L

2
n+2]d , we have, using Control 2.3 and (3.17),
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|(Rn)
6 f (y, ω) −

(
R̃n

)6
f (y, ω)| ≤ 6e−κn‖ f ‖L∞(Rd ). (3.34)

We write

∣
∣∣∣
(
Rn
)k�2n−6

(Rn)
6 f (x) − (Rn

)k�2n−6
(
R̃n

)6
f (x)

∣
∣∣∣

≤
∣∣∣∣
(
Rn
)k�2n−6

χ̃n,x

(
(Rn)

6 −
(
R̃n

)6)
f (x)

∣∣∣∣

+
∣∣
∣∣
(
Rn
)k�2n−6

(1 − χ̃n,x )

(
(Rn)

6 −
(
R̃n

)6)
f (x)

∣∣
∣∣

and observe that, using Proposition 3.6, (3.19), (3.20), (3.22) and (3.34), since x ∈
B4

√
k D̃n+1

and 1 ≤ k < �2n+1, for C1 > 0 and c1 > 0 independent of n,

∣
∣∣∣
(
Rn
)k�2n−6

(Rn)
6 f (x) − (Rn

)k�2n−6
(
R̃n

)6
f (x)

∣
∣∣∣ ≤ C1e

−c1κn‖ f ‖L∞(Rd ). (3.35)

Since ‖ f ‖L∞(Rd ) ≤ ‖ f ‖C0,β (Rd ) and since (2.17), (2.18), (2.19) and (2.23) imply that
there exists C > 0 satisfying, for all n ≥ 0,

C1e
−c1κn ≤ CLβ−7(δ−5a)

n ,

we conclude that, in view of (3.33) and (3.35),

|(Rn+1)
k f (x, ω) − (Rn

)k�2n−6
(
R̃n

)6
f (x, ω)| ≤ CLβ−7(δ−5a)

n ‖ f ‖C0,β (Rd ).

Since n ≥ 0, 1 ≤ k < �2n+1,ω ∈ An , x ∈ B4
√
k D̃n+1

and f ∈ C0,β(Rd)were arbitrary,
this completes the proof.

We now prepared to provide the initial characterization of the invariant measure
π : F → R. In view of Proposition 3.9, for each n ≥ 0 and f ∈ L∞(Rd ×Ω), define

πn( f ) = E

((
R̃n

)6
R1 f (0, ω)

)
. (3.36)

The following two propositions prove that, for each f ∈ L∞(Rd ×Ω) satisfying (3.2),
the sequence {πn( f )}∞n=0 is Cauchy. Notice in particular that the rate of convergence
depends only upon the L∞-norm of the initial condition.

Proposition 3.10 Assume (2.10) and (2.33). For each n ≥ 0 and f ∈ L∞(Rd × Ω)

satisfying (3.2), for C > 0 independent of n,

|πn+1( f ) − πn( f )| ≤ CLβ−7(δ−5a)
n ‖ f ‖L∞(Rd×Ω).
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Proof Fix n ≥ 0 and f ∈ L∞(Rd × Ω) satisfying (3.2). Since

‖R1 f ‖L∞(Rd×Ω) ≤ ‖ f ‖L∞(Rd×Ω),

we have, for each ω ∈ An , using Control 2.3 and (3.17),

|(Rn+1)
6 R1 f (0, ω) −

(
R̃n+1

)6
R1 f (0, ω)|≤6e−κn+1‖ f ‖L∞(Rd×Ω), (3.37)

and, using Proposition 3.2 and Proposition 3.9 for k = 6, for C > 0 independent of n
and f ,

|(Rn+1)
6 R1 f (0, ω) − (Rn

)6�2n−6
(
R̃n

)6
R1 f (0, ω)|

≤ CLβ−7(δ−5a)
n ‖R1 f (x, ω)‖C0,β (Rd )

≤ CLβ−7(δ−5a)
n ‖ f ‖L∞(Rd×Ω). (3.38)

Since (2.17), (2.18), (2.19) and (2.23) imply that there exists C > 0 satisfying, for
each n ≥ 0,

e−κn+1 ≤ CLβ−7(δ−5a)
n ,

we have, for each ω ∈ An , in view of (3.37) and (3.38), for C > 0 independent of n,

∣∣∣∣
(
R̃n+1

)6
R1 f (0, ω) − (Rn

)6�2n−6
(
R̃n

)6
R1 f (0, ω)

∣∣∣∣ ≤ CLβ−7(δ−5a)
n ‖ f ‖L∞(Rd×Ω).

(3.39)
Therefore, since Proposition 3.1, the stationarity guaranteed by (3.2) and Proposi-

tion 3.7 imply that, for each x ∈ R
d ,

E

(
(
Rn
)6�2n−6

(
R̃n

)6
R1 f (x, ω)

)
= πn( f ),

and since (2.17) and (2.23) imply that, for each n ≥ 0,

L(2(1+a)2−1)d−M0
n ≤ Lβ−7(δ−5a)

n ,

by Proposition 3.8 and (3.39), for C > 0 independent of n,

|πn+1( f ) − πn( f )| ≤ CLβ−7(δ−5a)
n ‖ f ‖L∞(Rd×Ω) + 2‖ f ‖L∞(Rd×Ω)P (Ω\An)

≤ CLβ−7(δ−5a)
n ‖ f ‖L∞(Rd×Ω),

which, since n ≥ 0 and f ∈ L∞(Rd × Ω) were arbitrary, completes the argument.
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Proposition 3.11 Assume (2.10) and (2.33). For each f ∈ L∞(Rd × Ω) satisfying
(3.2) there exists a unique π( f ) ∈ R satisfying

π( f ) = lim
n→∞ πn( f ).

Furthermore, for each n ≥ 0, for C > 0 independent of n and f ,

|πn( f ) − π( f )| ≤ C‖ f ‖L∞(Rd×Ω)

∞∑

m=n

Lβ−7(δ−5a)
m .

Proof In view of (2.17), (2.18) and (2.23), since β − 7(δ − 5a) < 0, the ratio test
implies that

∞∑

m=0

Lβ−7(δ−5a)
m < ∞.

Since, for each f ∈ L∞(Rd × Ω) stationary in the sense of (3.2), Proposition 3.10
implies that the sequence {πn( f )}∞n=1 is Cauchy, there exists a unique π( f ) ∈ R

satisfying
lim
n→∞ πn( f ) = π( f ). (3.40)

Furthermore, for each f ∈ L∞(Rd × Ω) satisfying (3.2), the triangle inequality,
Proposition 3.10 and (3.40) imply that, for each n ≥ 0, for C > 0 independent of n
and f ,

|πn( f ) − π( f )| ≤
∞∑

m=n

|πm+1( f ) − πm( f )| ≤ C‖ f ‖L∞(Rd×Ω)

∞∑

m=n

Lβ−7(δ−5a)
m ,

which completes the argument.

Wenow identifywhat is shown in the next section to be the unique invariantmeasure.
For every E ∈ F , write 1E : Ω → R for the indicator function of E ⊂ Ω , and define
fE : Rd × Ω → R using the translation group {τx }x∈Rd , see (2.2),

fE (x, ω) = 1E (τxω). (3.41)

We define π : F → R, for each E ∈ F , by the rule

π(E) = π( fE ), (3.42)

and prove now that π defines a probability measure on (Ω,F) which is absolutely
continuous with respect to P.

Proposition 3.12 Assume (2.10) and (2.33). The function π : F → R defined in
(3.42) is a probability measure on (Ω,F) which is absolutely continuous with respect
to P.
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Proof For each E ∈ F , since 0 ≤ fE ≤ 1 on R
d × Ω , the comparison principle

implies that, for each n ≥ 0,

0 ≤ πn( fE ) ≤ 1,

and, therefore, for each E ∈ F ,

0 ≤ π(E) = π( fE ) ≤ 1. (3.43)

Furthermore, since fΩ is identically one and, since f∅ is identically zero, we have, for
each n ≥ 0,

πn( fΩ) = 1 and πn( f∅) = 0.

Therefore,
π(Ω) = 1 and π(∅) = 0. (3.44)

It remains to prove that π is countably additive and absolutely continuous.
Let {Ai }∞i=1 ⊂ F be a countable collection of disjoint subsets. Since, for each n ≥ 0

and 1 ≤ m ≤ ∞,

πn( f⋃m
i=1 Ai

) =
∫

Ω

∫

C([0,∞);Rd )

R1 f⋃m
i=1 Ai

(X6L2
n∧Tn , ω) dP0,ωdP,

for the stopping time

Tn = inf
{
s ≥ 0 | Xs /∈ B6D̃n

}
,

the dominated convergence theorem implies that, for each n ≥ 0, there exists kn ≥ n
such that

∣∣∣πn( f⋃∞
i=1 Ai

) − πn( f⋃kn
i=1 Ai

)

∣∣∣ ≤ 1

n
.

Therefore, in view of Proposition 3.11, since each initial condition has unit L∞-norm,
the triangle inequality implies, for C > 0 independent of n,

∣∣∣∣∣
π

( ∞⋃

i=1

Ai

)

− π

( kn⋃

i=1

Ai

)∣∣∣∣∣
≤ 1

n
+ C

∞∑

m=n

Lβ−7(δ−5a)
m . (3.45)

Furthermore, since the {Ai }∞i=1 are disjoint, for each n ≥ 0,

π

( kn⋃

i=1

Ai

)

=
kn∑

i=1

π(Ai ). (3.46)
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Therefore, in view of (3.45) and (3.46), since we choose kn ≥ n,

lim
n→∞

∣
∣∣∣∣
π

( ∞⋃

i=1

Ai

)

− π

( kn⋃

i=1

Ai

)∣∣∣∣∣
= lim

n→∞

∣
∣∣∣∣
π

( ∞⋃

i=1

Ai

)

−
kn∑

i=1

π (Ai )

∣
∣∣∣∣

=
∣
∣∣∣∣
π

( ∞⋃

i=1

Ai

)

−
∞∑

i=1

π(Ai )

∣
∣∣∣∣
= 0,

which, since the family {Ai }∞i=1 was arbitrary, completes the proof of countable addi-
tivity.

We now prove the absolute continuity. We first show that whenever E ∈ F satisfies
P(E) = 0 we have R1 fE (x, ω) = 0 on R

d for almost every ω ∈ Ω . To do so, recall
that there exists a density p(x, 1, y, ω) satisfying for each x ∈ R

d ,ω ∈ Ω and E ∈ F ,

R1 fE (x, ω) =
∫

Rd
p(x, 1, y, ω) fE (y, ω) dy.

Furthermore, for each x ∈ R
d and ω ∈ Ω , the probability measure defined by

p(x, 1, y, ω) dy onRd is equivalent to Lebesgue measure. See, for instance [4, Chap-
ter 1, Theorem 11].

Fix E ∈ F satisfying P(E) = 0. Then, for each x ∈ R
d , using (2.2) and P(E) = 0,

by Fubini’s theorem

E (R1 fE (x, ω)) =
∫

Ω

∫

Rd
p(x, 1, y, ω)1E (τyω) dydP

=
∫

Rd

∫

Ω

p(x, 1, y, ω)1E (τyω) dPdy = 0,

since 1E (τyω) = 0 almost everywhere in Ω for every y ∈ R
d . Therefore, Fubini’s

theorem implies that, for every x ∈ R
d , there exists a subset Ax ⊂ Ω of full probability

such that, for every ω ∈ Ax ,

R1 fE (x, ω) = 0.

Define the subset of full probability

A =
⋂

x∈Qd

Ax ,

and observe that, for each ω ∈ A and x ∈ Q
d ,

R1 fE (x, ω) = 0.

Since Proposition 3.2 implies that, for everyω ∈ Ω , we have R1 fE (x, ω) ∈ C0,β(Rd),
we conclude that, for every x ∈ R

d and ω ∈ A,
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R1 fE (x, ω) = 0,

and, therefore, for every ω ∈ A and n ≥ 0,

(
R̃n

)6
R1 fE (0, ω) = 0.

Since P(A) = 1, this implies that, for each n ≥ 0, πn( fE ) = 0 and, therefore, that
π(E) = 0. Since E ∈ F satisfying P(E) = 0 was arbitrary, this completes the
argument.

In the final proposition of this section, we prove that for each f ∈ L∞(Rd × Ω)

satisfying (3.2), the constant π( f ) characterizes the integral of f (0, ω) with respect
to π . This is essentially an immediate consequence of the definition of π and the fact
that the kernels Rt preserve the L∞-norm of initial data.

Proposition 3.13 Assume (2.10) and (2.33). For every f ∈ L∞(Rd × Ω) satisfying
(3.2),

π( f ) =
∫

Ω

f (0, ω) dπ.

Proof We recall, for every subset E ∈ F and ω ∈ Ω , the definition fE (x, ω) =
1E (τxω), and from which it follows immediately by definitions of π and π that

π( fE ) = π(E) =
∫

Ω

f (0, ω) dπ =
∫

Ω

1E (ω) dπ. (3.47)

And, since for every t ≥ 0, n ≥ 0 ω ∈ Ω and f ∈ L∞(Rd),

‖Rt f (x, ω)‖L∞(Rd ) ≤ ‖ f ‖L∞(Rd ) and ‖R̃n f (x, ω)‖L∞(Rd ) ≤ ‖ f ‖L∞(Rd ),

we have, for each n ≥ 0 and f, g ∈ L∞(Rd × Ω) satisfying (3.2),

|πn( f − g)| = |πn( f ) − πn(g)| ≤ ‖ f − g‖L∞(Rd×Ω).

Therefore, for every pair f, g ∈ L∞(Rd × Ω) satisfying (3.2),

|π( f ) − π(g)| ≤ ‖ f − g‖L∞(Rd×Ω). (3.48)

The claim now follows from (3.47), (3.48) and the definition of the Lebesgue integral.

4 The proof of invariance and uniqueness

In this section, we prove that the measure π defined in (3.42) is the unique invariant
measure which is absolutely continuous with respect to P. Furthermore, π is mutually
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absolutely continuous with respect to P and defines an ergodic probability measure for
the canonical Markov process on Ω defining (1.6). We observe that, for each t ≥ 0,
ω ∈ Ω and E ∈ F , for Pt (ω, E) defined below and as in (1.6),

Rt fE (0, ω) = P0,ω(τXtω ∈ E) = Pt (ω, E).

In order to prove invariance, therefore, it suffices to prove that, for each t ≥ 0 and
E ∈ F ,

π(E) =
∫

Ω

Rt fE (0, ω) dπ.

See Proposition 4.7.
To exploit the finite range dependence we define, for each R > 0, t ≥ 1 andω ∈ Ω ,

the localized kernels
R̃t,R f (x, ω) = ũ R(x, t, ω), (4.1)

for ũ : BR(x) × [0,∞) × Ω → R satisfying

{
ũ R,t = 1

2 tr(A(y, ω)D2ũ R)+b(y, ω) · DũR on BR(x) × (0,∞),

ũ R = f on BR(x)×{0} ∪ ∂BR(x)×[0,∞).

(4.2)
The following proposition controls the error we make due to this localization. And,
in contrast to Control 2.3, we obtain this control globally for x ∈ R

d and ω ∈ Ω at
the cost of an effective length scale which is significantly larger than that appearing in
Control 2.3. That is, this control is effective at length scale approximately t whereas
Control 2.3 is effective at length scale approximately

√
t .

Proposition 4.1 Assume (2.10). For each x ∈ R
d , t ≥ 1, ω ∈ Ω and R > 0, for

C > 0 independent of x, t , ω and R, for every f ∈ L∞(Rd),

|Rt f (x, ω) − R̃t,R f (x, ω)| ≤ ‖ f ‖L∞(Rd )e
− (R−Ct)2+

Ct

Proof Fix R > 0, t ≥ 1, x ∈ R
d and ω ∈ Ω . Introduce the stopping time TR :

C([0,∞);Rd) → R defined by

TR = inf {s ≥ 0 | Xs /∈ BR(x)} .

Then, for each f ∈ L∞(Rd), for X∗
t = sup0≤s≤t |Xs − X0| defined in (2.30),

|Rt f (x, ω) − R̃t,R f (x, ω)| ≤ ‖ f ‖L∞(Rd )Px,ω
(
X∗
t ≥ R

)
. (4.3)

We recall that, almost surely with respect to Px,ω, for Bs a Brownian motion onRd

under Px,ω with respect to the canonical right-continuous filtration on C([0,∞);Rd),
paths Xs ∈ C([0,∞);Rd) satisfy the stochastic differential equation
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{
dXs = b(Xs, ω)dt + σ(Xs, ω)dBs,

X0 = x .

Therefore, using the exponential inequality for Martingales, see Revuz and Yor [10,
Chapter 2, Proposition 1.8], and (2.4) and (2.5), for every R̃ ≥ 0, for C > 0 indepen-
dent of R̃, t , x and ω,

Px,ω
(
X∗
t ≥ R̃ + Ct

)
≤ e− R̃2

Ct . (4.4)

Therefore, by choosing R̃ = (R − CT )+ in (4.4), we conclude in view of (4.3)
that, for C > 0 independent of x , t , ω and R,

|Rt f (x, ω) − R̃t,R f (x, ω)| ≤ ‖ f ‖L∞(Rd )e
− (R−Ct)2+

Ct ,

which, since x , t , ω and R were arbitrary, completes the argument.

We define, for each subset A ⊂ R
d , the sub sigma algebra of F

σA = σ (A(x, ω), b(x, ω) | x ∈ A) . (4.5)

The following proposition uses stationarity, see (2.3), to describe the interaction
between the transformation group {τx }x∈Rd and the sigma algebras σA.

Proposition 4.2 Assume (2.10). For every subset A ⊂ R
d and y ∈ R

d ,

τy (σA) = {τy(B) | B ∈ σA
} = σA−y .

Proof Fix A ⊂ R
d . We identify S(d) with R

(d+1)d/2 and write Bd and B(d+1)d/2
for the Borel sigma algebras on R

d and R
(d+1)d/2 respectively. Observe that σA is

generated by sets of the form, for fixed x ∈ A, Bd ∈ Bd and B(d+1)d/2 ∈ B(d+1)d/2,

b(x, ω)−1(Bd) = {ω ∈ Ω | b(x, ω) ∈ Bd} , (4.6)

and
A(x, ω)−1(B(d+1)d/2) = {ω ∈ Ω | A(x, ω) ∈ B(d+1)d/2

}
. (4.7)

Furthermore, since the group {τy}y∈Rd is composed of invertible, measure-preserving
transformations, for every fixed y ∈ R

d ,

τy (σA) = {τy B | B ∈ σA
}
,

is a sigma algebra generated by sets of the form, for fixed x ∈ A, Bd ∈ Bd and
B(d+1)d/2 ∈ B(d+1)d/2,

τy

(
b(x, ω)−1(Bd)

)
and τy

(
A(x, ω)−1(B(d+1)d/2)

)
. (4.8)
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And, in view of the stationarity (2.3), for each y ∈ R
d , x ∈ A, Bd ∈ Bd and

B(d+1)d/2 ∈ B(d+1)d/2,

τy

(
b(x, ω)−1(Bd)

)
= b(x, τ−yω)−1(Bd) = b(x − y, ω)−1(Bd), (4.9)

and

τy

(
A(x, ω)−1(B(d+1)d/2)

)
= A(x, τ−yω)−1(B(d+1)d/2)= A(x−y, ω)−1(B(d+1)d/2).

(4.10)
We therefore conclude, using (4.6), (4.7), (4.8), (4.9) and (4.10), for each y ∈ R

d ,

τy (σA) = τyσ (A(x − y, ω), b(x − y, ω) | x ∈ A) = σA−y . (4.11)

Since A ⊂ R
d was arbitrary, this completes the argument.

We will later use the fact that

F = σ
(
A(x, ω), b(x, ω) | x ∈ R

d
)

= σ

(
⋃

R>0

σBR

)

.

This will allow us to obtain our general statement after consideringmeasurable subsets
E ⊂ Ω in the algebra of subsets ∪R>0σBR , where it is shown in the next proposition
that for these subsets we can effectively apply the finite range dependence, see (2.7).

Proposition 4.3 Assume (2.10) and (2.33). Suppose that, for R1 > 0, E ∈ F satisfies
E ∈ σBR1

. For each x ∈ R
d , t ≥ 1 and R2 > 0, see (3.41) and (4.1),

σ
(
R̃t,R2 fE (x, ω)

)
⊂ σBR2+R1 (x).

Proof Fix E ∈ F and R1 > 0 satisfying E ∈ σBR1
, x ∈ R

d , t ≥ 1 and R2 > 0. In
view of the definition (4.1),

σ
(
R̃t,R2 fE (x, ω)

)
⊂ σ

(
A(y, ω), b(y, ω), fE (y, ω) | y ∈ BR2(x)

)
. (4.12)

And, since fE (y, ω) = 1E (τyω) and using Proposition 4.2, since E ∈ σBR1
, for every

y ∈ R
d ,

σ( fE (y, ω)) = {τ−y(E),Ω\τ−y (E)
} ⊂ τ−y(σBR1

) = σBR1+y . (4.13)

Therefore, in view of (4.12) and (4.13),

σ
(
R̃t,R2 fE (x, ω)

)
⊂ σ

⎛

⎝
⋃

y∈BR2 (x)

σBR1+y

⎞

⎠ = σBR2 (x)+BR1
= σBR2+R1 (x),
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which, since R1, E ∈ σBR1
, x , t , and R2 were arbitrary, completes the argument.

Recall that in Proposition 3.9, with high probability, we obtained an effective com-
parison between the kernels

Rn+1 and R
�2n−6
n R6

n,

where, in view of Theorem 2.1, the expectation is that the presence of the heat kernel
will result significant averaging for appropriate initial data. The following proposition
quantifies the effect of this averaging.

Proposition 4.4 Assume (2.10) and (2.33). Suppose that, for R1 > 0, E ∈ F satisfies
E ∈ σBR1

. For each n ≥ 0, 1 ≤ k < �2n and t ≥ 0 there exists C = C(t, R1) > 0
independent of E, n and k, and there exists ζ > 0 independent of R1, E, n, k and t,
such that

P

⎛

⎝ sup
x∈B4√k D̃n+1

∣∣∣
∣
(
Rn
)k�2n−6

(
R̃n

)6
R1+t fE (x, ω)−πn(Rt fE )

∣∣∣
∣>

C

κ̃n

⎞

⎠≤Ck−(1+ζ )L−ζ
n .

Proof Fix E ∈ F and R1 > 0 satisfying E ∈ σBR1
, t ≥ 0, n ≥ 0 and 1 ≤ k < �2n .

We define
R2 = 6D̃n, (4.14)

and observe that, in view of Proposition 4.1, for every x ∈ R
d and ω ∈ Ω , for C1 > 0

independent of n, k, x , t and ω,

∣∣∣R1+t fE (x ω) − R̃1+t,R2 fE (x, ω)

∣∣∣ ≤ ‖ fE‖L∞(Rd×Ω)e
− (6D̃n−C1(1+t))2+

C1(1+t)

≤ e
− (6D̃n−C1(1+t))2+

C1(1+t) . (4.15)

In order to obtain better localization properties, we consider the quantity

(
Rn
)k�2n−6

(
R̃n

)6
R̃1+t,R2 fE (0, ω) =

∫

Rd
pn,k(y)

(
R̃n

)6
R̃t+1,R2 fE (y, ω) dy,

(4.16)
where, for each y ∈ R

d ,

pn,k(y) = (4παn(kL
2
n+1 − 6L2

n))
−d/2e−|y|2/4αn(kL2

n+1−6L2
n).

Here, observe that Theorem 2.1 implies, for C > 0 independent of n,

‖pn,k(y)‖L∞(Rd ) ≤ Ck−d/2L−d
n+1. (4.17)
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We now define, for each n ≥ 0,

π̃n(Rt fE )=E

(
(
Rn
)k�2n−6

(
R̃n

)6
R̃1+t,R2 fE (0, ω)

)
=E

((
R̃n

)6
R̃1+t,R2 fE (0, ω)

)
,

(4.18)
and see, in view of (4.15), for each n ≥ 0,

|πn(Rt fE ) − π̃n(Rt fE )| ≤ e− (6D̃n−C(1+t))2+
C(1+t) . (4.19)

Furthermore, using the stationary (2.3), and since fE is stationary in the sense of (3.2),
we have, for each x ∈ R

d ,

π̃n(Rt fE )=E

(
(
Rn
)k�2n−6

(
R̃n

)6
R̃1+t,R2 fE (x, ω)

)
=E

((
R̃n

)6
R̃1+t,R2 fE (x, ω)

)
.

(4.20)
The definition of R̃n in (3.17) and the choice of R2 = 6D̃n in (4.14) imply that, for

each x ∈ R
d and ω ∈ Ω ,

(
R̃n

)6
R̃t+1,R2 fE (x, ω) = R̃6L2

n+1+t,R2
fE (x, ω),

and, using Proposition 3.6, for each x ∈ R
d ,

σ

((
R̃n

)6
R̃t+1,R2 fE (x, ω)

)
⊂ σBR2+R1 (x) = σB6D̃n+R1

(x). (4.21)

Therefore, for R > 0 as in (2.7),whenever x, y ∈ R
d satisfy |x−y| ≥ 12D̃n+2R1+R,

the random variables

(
R̃n

)6
R̃t+1,R2 fE (x, ω) and

(
R̃n

)6
R̃t+1,R2 fE (y, ω) are independent. (4.22)

We now write π̃n = π̃n(Rt f ) and compute the variance

E

(((
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (0, ω) − π̃n

)2
)

= E

(∫

Rd

∫

Rd
pn,k(y)pn,k(z)

((
R̃n

)6
R̃t+1,R2 fE (y, ω) − π̃n

)

×
((

R̃n

)6
R̃t+1,R2 fE (z, ω) − π̃n

)
dydz

)
. (4.23)

Since there exists C = C(R1) > 0 such that, for all n ≥ 0,

C D̃n ≥ 12D̃n + 2R1 + R,
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and since, for each x ∈ R
d and ω ∈ Ω ,

−1 ≤
(
R̃n

)6
R̃t+1,R2 fE (y, ω) − π̃n ≤ 1,

we have, in view of (4.22), for C = C(R1) > 0 independent of n, k and t ,

E

(((
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (0, ω) − π̃n

)2
)

≤
∫

Rd

∫

C D̃n

pn,k(y)pn,k(z) dydz.

Therefore, using (4.17), for C = C(R1) > 0 independent of n, k and t ,

E

(((
Rn
)k�2n−6

(
R̃n

)6
fE (0, ω) − π̃n

)2
)

≤ Ck−d/2L−d
n+1 D̃

d
n ≤ Ck−d/2κ̃d

n �−d
n ,

(4.24)
and, together with (4.24), Chebyshev’s inequality implies that, for C = C(R1) > 0
independent of n, k and t ,

P

(∣∣
∣∣
(
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (0, ω) − π̃n

∣∣
∣∣ ≥ 1/κ̃n

)
≤ Ck−d/2κ̃d+2

n �−d
n .

(4.25)
We will now extend a version of this estimate to the whole of B4

√
k D̃n+1

.
Fix 0 < γ < 1 satisfying, in view of (2.16) and (2.17),

1

1 + a
< γ < 1, which implies

2

d
< γ < 1. (4.26)

Since fE is stationary in the sense of (3.2), the stationarity (2.3) and (4.20) imply that,
for C = C(R1) > 0 independent of n, k, and t ,

P

⎛

⎜
⎝ sup

x∈
(√

kLn+1

)γ
Zd∩B4

√
k D̃n+1

∣∣∣
∣
(
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (x, ω) − π̃n

∣∣∣
∣ ≥ 1/κ̃n

⎞

⎟
⎠

≤ C

⎛

⎜
⎝

4
√
k D̃n+1(√
kLn+1

)γ

⎞

⎟
⎠

d

k−d/2κ̃d+2
n �−d

n ≤ C κ̃d
n+1κ̃

d+2
n k−γ d/2L(1−(1+a)γ )d

n ,

where we observe (4.26) implies that −γ d/2 < −1 and (1 − (1 + a)γ )d < 0.
Therefore, in view of (2.18) and (2.19), there exists ζ > 0 and C = C(R1) > 0
independent of n, k, and t such that
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P

⎛

⎜
⎝ sup

x∈
(√

kLn+1

)γ
Zd∩B4

√
k D̃n+1

∣∣∣∣
(
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (x, ω) − π̃n

∣∣∣∣ ≥ 1/κ̃n

⎞

⎟
⎠

≤ Ck−(1+ζ )L−ζ
n . (4.27)

Using Theorem 2.1, Proposition 3.1 and (4.16), for each ω ∈ Ω and x ∈ R
d , for

C > 0 independent of n, k, t and R1,

‖Dx
(
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (x, ω)‖L∞(Rd ) ≤

∫

Rd
Dy pn,k(y) dy≤Ck−1/2L−1

n+1.

(4.28)
Since, for each x ∈ B4

√
k D̃n+1

there exists y ∈ (
√
kLn+1)

γ
Z
d ∩ B4

√
k D̃n+1

satisfying

|x − y| ≤ C(
√
kLn+1)

γ for C > 0 independent of n, we conclude that, in view of
(4.28),

sup
x∈B4√k D̃n+1

∣∣∣
∣
(
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (x, ω) − π̃n

∣∣∣
∣

≤ sup
x∈
(√

kLn+1

)γ
Zd∩B4

√
k D̃n+1

∣∣∣
∣
(
Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (x, ω)

−π̃n| + C
(√

kLn+1

)γ−1
. (4.29)

Because (2.18) and (2.19) imply that there exists C > 0 independent of n such that,
for all n ≥ 0 and k ≥ 1, (√

kLn+1

)γ−1 ≤ C/κ̃n, (4.30)

for C = C(R1) > 0 independent of n, k, and t , using (4.27), (4.29) and (4.30),

P

⎛

⎝ sup
x∈B4√k D̃n+1

|(Rn
)k�2n−6

(
R̃n

)6
R̃t+1,R2 fE (x, ω) − π̃n| >

C

κn

⎞

⎠ ≤ Ck−(1+ζ )L−ζ
n .

(4.31)
Finally, since (2.19) and (2.20) imply that there exists C = C(t) > 0 such that, for
C1 > 0 as in (4.15), for all n ≥ 0,

e
− (6D̃n−C1(1+t))2+

C1(1+t) ≤ C/κ̃n,

we conclude in view of (4.15), (4.19) and (4.31) that there exists C = C(R1, t) > 0
independent of n and k such that

P

⎛

⎝ sup
x∈B4√k D̃n+1

|(Rn
)k�2n−6

(
R̃n

)6
Rt+1 fE (x, ω)−πn(Rt fE )|> C

κn

⎞

⎠≤Ck−(1+ζ )L−ζ
n ,
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which, since E , R1, n, k and t were arbitrary, completes the argument.

The following proposition is essentially a restatement of Proposition 3.9 best suited
to our current circumstances, where we recall the definition of the subsets {An}∞n=0 in
(3.18).

Proposition 4.5 Assume (2.10) and (2.33). For every E ∈ F , n ≥ 0, 1 ≤ k < �2n+1,
t ≥ 0 and ω ∈ An, for C > 0 independent of E, n, k, t and ω,

sup
x∈B4√k D̃n+1

|(Rn+1)
k R1+t fE (x, ω)−(Rn

)k�2n−6
(
R̃n

)6
R1+t fE (x, ω)|≤CLβ−7(δ−5a)

n .

Proof Fix E ∈ F , n ≥ 0, 1 ≤ k < �2n+1 and ω ∈ An . In view of Proposition 3.2,
there exists C > 0 independent of E , n, k, t and ω such that

‖R1+t fE‖C0,β (Rd ) ≤ C‖ fE‖L∞(Rd ) ≤ C.

Therefore, since ω ∈ An , Proposition 3.9 implies that, for C > 0 independent of E ,
n, k and ω,

sup
x∈B4√k D̃n+1

|(Rn+1)
k R1+t fE (x, ω) − (Rn

)k�2n−6
(
R̃n

)6
R1+t fE (x, ω)|

≤ CLβ−7(δ−5a)
n ‖R1+t fE‖C0,β (Rd ) ≤ CLβ−7(δ−5a)

n ,

which, since E , n, k, t and ω were arbitrary, completes the argument.

Observe that the convergence obtain in Proposition 4.5 occurs along the discrete
sequence of time steps kL2

n on 4
√
k D̃n . We now upgrade this convergence along the

full limit, as t → ∞, using Control 2.3. The cost is that the convergence now occurs
on a marginally smaller portion of space.

Proposition 4.6 Assume (2.10)and (2.33). Suppose, for some R1 > 0, E ∈ F satisfies
E ∈ σBR1

. For each n ≥ 0, 1 ≤ k < �2n+1 and t ≥ 0, for C = C(R1, t) > 0 and
ζ > 0 appearing in Proposition 4.4,

P

⎛

⎝ sup
kL2

n+1≤s≤(k+1)L2
n+1

sup
x∈B√

k D̃n+1

|Rs R1+t (x, ω)−πn(Rt fE )|> C

κ̃n

⎞

⎠≤Ck−(1+ζ )L−ζ
n .

Proof Fix E ∈ F and R1 > 0 satisfying E ∈ σBR1
, n ≥ 0, 1 ≤ k < �2n+1 and t ≥ 0.

We observe that, in view of (2.17), (2.19) and (2.23), for each n ≥ 0, for ζ > 0 defined
in Proposition 4.4, there exists C > 0 independent of n satisfying,

Lβ−7(δ−5a)
n ≤ C/κ̃n,
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and, for each n ≥ 0 and 1 ≤ k < �2n+1,

L(2(1+a)2−1)d−M0
n ≤ k−(1+ζ )L−ζ

n .

Therefore, Propositions 3.8, 4.4 and 4.5 imply that, forC = C(R1, t) > 0 independent
of E , n and k,

P

⎛

⎝ sup
x∈B4√k D̃n+1

∣∣
∣(Rn+1)

k R1+t fE (x, ω) − πn(Rt f )
∣∣
∣ >

C

κ̃n

⎞

⎠ ≤ Ck−(1+ζ )L−ζ
n .

(4.32)
Recall the cutoff function χ2

√
k D̃n+1

defined in (2.28). For each x ∈ B√
k D̃n+1

and

kL2
n+1 ≤ s ≤ (k + 1)L2

n+1, we write

|Rs R1+t fE (x, ω) − πn(Rt fE )| =
∣∣
∣Rs−kL2

n+1

(
(Rn+1)

k R1+t fE (x, ω) − πn(Rt fE )
)∣∣
∣

≤
∣
∣∣Rs−kL2

n+1
χ2

√
k D̃n+1

(
(Rn+1)

k R1+t fE (x, ω)−πn(Rt fE )
)∣∣∣

+
∣∣
∣Rs−kL2

n+1
(1−χ2

√
k D̃n+1

)
(
(Rn+1)

k R1+t fE (x, ω)−πn(Rt fE )
)∣∣
∣ .

Since, for each x ∈ R
d and ω ∈ Ω ,

−1 < (Rn+1)
k R1+t fE (x, ω) − πn(Rt fE ) < 1,

we have, for eachω ∈ An and x ∈ B√
k D̃n+1

, using Control 2.3, since 0 ≤ s−kL2
n+1 ≤

L2
n+1,

∣
∣∣Rs−kL2

n+1
(1 − χ2

√
k D̃n+1

)
(
(Rn+1)

k R1+t fE (x, ω) − πn(Rt fE )
)∣∣∣ ≤ e−κn+1 .

(4.33)
Furthermore, for each x ∈ R

d and ω ∈ Ω ,

∣∣∣Rs−kL2
n+1

χ2
√
k D̃n+1

(
(Rn+1)

k R1+t fE (x, ω) − πn(Rt fE )
)∣∣∣

≤ sup
x∈B4√k D̃n+1

∣∣∣(Rn+1)
k R1+t fE (x, ω) − πn(Rt fE )

∣∣∣ . (4.34)

To conclude, observe that (2.17), (2.18), (2.19) and (2.23) imply that there exists
C > 0 satisfying, for each n ≥ 0,

e−κn ≤ C/κ̃n .

Therefore, because kL2
n+1 ≤ s < (k + 1)L2

n+1 was arbitrary, using (4.33) and (4.34),
for C = C(R1, t) > 0 independent of E , n and k,
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P

⎛

⎝ sup
kL2

n+1≤s≤(k+1)L2
n+1

sup
x∈B√

k D̃n+1

|Rs R1+t fE (x, ω) − πn(Rt fE )| >
C

κ̃n

⎞

⎠

≤ P

⎛

⎝ sup
x∈B4√k D̃n+1

|(Rn+1)
k R1+t fE (x, ω) − πn(Rt fE )| >

C

κ̃n

⎞

⎠+ P (Ω\An) .

Since, for each n ≥ 0 and 1 ≤ k < �2n+1,

L(2(1+a)2−1)d−M0
n ≤ k−(1+ζ )L−ζ

n ,

in view of Proposition 3.8 and (4.32), for C = C(R1, t) > 0 independent of E , n and
k,

P

⎛

⎝ sup
kL2

n+1≤s≤(k+1)L2
n+1

sup
x∈B√

k D̃n+1

|Rs R1+t fE (x, ω) − πn(Rt fE )| >
C

κ̃n

⎞

⎠

≤ Ck−(1+ζ )L−ζ
n ,

which completes the proof.

We are now prepared to present our main result. Define, for each n ≥ 0, 1 ≤ k <

�2n+1, t ≥ 0 and E ∈ F satisfying, for some R1 > 0, E ∈ σBR1
, forC = C(R1, t) > 0

as in Proposition 4.6,

Bn,k,t (E) =
⎧
⎨

⎩
ω ∈ Ω | sup

kL2n+1≤s≤(k+1)L2n+1

sup
x∈B√

k D̃n+1

∣∣Rs R1+t fE (x, ω) − πn(Rt fE )
∣∣ ≤ C

κn

⎫
⎬

⎭
,

(4.35)
and, for each n ≥ 0,

Bn,t (E) =
�2n+1−1⋂

k=1

Bn,k,t (E). (4.36)

We have, using Proposition 4.6, for each n ≥ 0, t ≥ 0, E ∈ F satisfying, for some
R1 > 0, E ∈ σBR1

, for C = C(R1, t) > 0 independent of n and E ,

P
(
Ω\Bn,t (E)

) ≤
�2n+1−1∑

k=1

P
(
Ω\Bn,k,t (E)

) ≤
�2n+1−1∑

k=1

Ck−(1+ζ )L−ζ
n ≤ CL−ζ

n .

And, in view of (2.18), for each t ≥ 0 and E ∈ F satisfying E ∈ σBR1
, for some

R1 > 0,

∞∑

n=0

P
(
Ω\Bn,t (E)

)
< ∞.
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We therefore define, for each t ≥ 0 and E ∈ F satisfying E ∈ σBR1
, for some R1 > 0,

the subset

Ωt (E) = {ω ∈ Ω | There exists n(ω) ≥ 0 such that, for all n ≥ n, ω ∈ Bn,t .
}
,

(4.37)
where the Borel–Cantelli lemma implies that, for every t ≥ 0 and E ∈ F satisfying
E ∈ σBR1

, for some R1 > 0,

P(Ωt (E)) = 1.

We now present the invariance property of the measure π . In the proof, we use that
fact that

F = σ

(
⋃

R>0

σBR

)

.

That is, the sigma algebra F is generated by subsets satisfying the hypothesis of
Proposition 4.3.

Proposition 4.7 Assume (2.10) and (2.33). For every E ∈ F and t ≥ 0,

π(E) = π(Rt fE ) =
∫

Ω

Rt fE (0, ω) dπ.

Proof We define
F̃ =

⋃

R>0

σBR , (4.38)

and observe that F̃ is an algebra of subsets of Ω . That is, F̃ is closed under relative
complements and finite unions. Furthermore, for every E ∈ F̃ , there exists R1 =
R1(E) > 0 satisfying E ∈ σBR1

.

Fix t ≥ 0 and E ∈ F̃ . For every ω ∈ Ωt (E)∩Ω0(E), (4.35) and (4.36) imply that

π(E) = π( fE ) = lim
s→∞ Rs R1 fE (0, ω) = lim

s→∞ Rs Rt+1 fE (0, ω) = π(Rt fE ).

And, in view of Proposition 3.13, since Rt fE satisfies (3.2),

π(Rt fE ) =
∫

Ω

Rt fE (0, ω) dπ.

Therefore, for every t ≥ 0 and E ∈ F̃ ,

π(E) =
∫

Ω

Rt fE (0, ω) dπ.

123



448 B. J. Fehrman

To conclude, the absolute continuity of π with respect to P and the dominated
convergence theorem imply that, using a repetition of the argument appearing in
Proposition 3.12, for each t ≥ 0, the rule

E →
∫

Ω

Rt fE (0, ω) dπ

defines a probability measure on (Ω,F). Therefore, since

F = σ(F̃),

the Caratheodory Extension Theorem implies that, for every E ∈ F and t ≥ 0,

π(E) =
∫

Ω

Rt fE (0, ω) dπ,

which completes the argument.

In the final proposition of this section, we prove that the invariant measure π

is the unique invariant measure which is absolutely continuous with respect to P.
Furthermore, π is mutually absolutely continuous with respect to P and defines an
ergodic probability measure for the canonical Markov process on Ω defining (1.6).
The proof of ergodicity is presented for the convenience of the reader, since it is
virtually identical to that presented in [9, Theorem 2.1].

Recall that the ergodicity of (2.2) implies that whenever E ∈ F satisfies, with
equality up to sets of measure zero,

τx (E) = E for every x ∈ R
d then P(E) = 1 or P(E) = 0. (4.39)

Theorem 4.8 Assume (2.10) and (2.33). There exists a unique invariant measure
which is absolutely continuous with respect to P. Furthermore, the invariant measure
is mutually absolutely continuous with respect to P and defines an ergodic probability
measure for the canonical Markov process on Ω defining (1.6).

Proof Themeasureπ constructed according to (3.42)was shown inProposition 3.12 to
be absolutely continuouswith respect toP and,was shown tobe invariant inProposition
4.7. It therefore suffices to prove the uniqueness.

Suppose that μ is a probability measure on (Ω,F) which is absolutely continuous
with respect to P and satisfies, for each t ≥ 0 and E ∈ F ,

μ(E) =
∫

Ω

Rt fE (0, ω) dμ. (4.40)

Fix E ∈ F̃ . In view of (4.35) and (4.36), for every ω ∈ Ω0(E), as t → ∞,

Rt fE (0, ω) → π(E).
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Furthermore, since μ is absolutely continuous with respect to P,

μ(Ω0(E)) = P(Ω0(E)) = 1. (4.41)

Therefore, the dominated convergence theorem, (4.40) and (4.41) imply that

μ(E) = lim
t→∞

∫

Ω

Rt fE (0, ω) dμ =
∫

Ω

π(E) dμ = π(E).

Since E ∈ F̃ was arbitrary, and since F̃ is an algebra of subsets, the Caratheodory
Extension Theorem implies, using the fact thatF = σ(F̃), we have, for every E ∈ F ,

π(E) = μ(E),

which completes the argument.
The argument for mutual absolute continuity proceeds by contradiction. If not, the

Lebesgue decomposition theorem implies that there exists a subset E ⊂ Ω satisfying
0 < P(Ω\E) < 1 and π(Ω\E) = 0, and with P absolutely continuous with respect
to π on E . Since

1 = π(E) =
∫

Ω

R1 fE (0, ω) dπ =
∫

Ω

∫

Rd
p(0, 1, y, ω)1E (τyω) dy dπ,

and since π is absolutely continuous with respect to P, this implies that, for almost
every ω ∈ E with respect to P, and for almost every y ∈ R

d , we have τyω ∈ E .

Fubini’s theorem therefore implies that, for almost every y ∈ R
d , up to a set of

measure zero,

τy(E) = E .

And, since the map y → 1E (τyω) is continuous fromR
d to L1(Ω), we conclude that,

for every y ∈ R
d , up to a set of measure zero,

τy(E) = E .

Therefore, using (4.39), we have P(E) = 0 or P(E) = 1, a contradiction, which
completes the proof of mutual absolute continuity.

We now prove the ergodicity. Suppose that, for E ∈ F and t ≥ 0, we have

Rt fE (0, ω) = Pt (ω, E) = 1 for almost every ω ∈ E with respect to π.

Since P is absolutely continuous with respect to π , this implies

Rt fE (0, ω) = Pt (ω, E) = 1 for almost every ω ∈ E with respect to P,

which, by repeating the above argument, implies E ∈ F is an invariant set under
the transformation group {τx }x∈Rd . Therefore, because (4.39) implies P(E) = 0 or
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P(E) = 1, we conclude that, since π is absolutely continuous with respect to P, either
π(E) = 0 or π(E) = 1, and this completes the argument.

5 A Proof of Homogenization for Locally Measurable Functions

In this section, we characterize the limiting behavior, as ε → 0, on a subset of full
probability, of solutions uε : Rd × [0,∞) × Ω → R satisfying

{
uε
t = 1

2 tr(A(x/ε, ω)D2uε) + 1
ε
b(x/ε, ω) · Duε on R

d × (0,∞),

uε(x, 0, ω) = f (x/ε, ω) on R
d × {0} ,

(5.1)

for initial data f ∈ L∞(Rd × Ω) stationary in the sense of (3.2) and which is locally
measurable in the sense that, for some R > 0, f (0, ω) ∈ L∞(Ω, σBR ).

The local measurability ensures that the triplet (A(x, ω), b(x, ω), f (x, ω)) satisfies
a finite range dependence in the sense of (2.7), and the following three statements can
be extended to this situation by a repetition of the arguments appearing in Sect. 4. We
remark, however, that after a rescaling the case of local measurability and Theorem
5.3 below are enough to prove the convergence, on a subset of full probability, for
each p ∈ R

d , of the approximate first-order correctors

δvδ(y) = 1

2
tr(A(y, ω)D2vδ) + b(y, ω) · (p + Dvδ) on R

d ,

in the sense that, on a subset of full probability, as δ → 0 and using the isotropy (2.8)
to obtain the final equality,

−δvδ(0, ω) →
∫

Ω

p · b(0, ω) dπ = 0.

See for instance Bensoussan et al. [1, Chapter 3] for the role of correctors in the
periodic homogenization theory of equations like (5.1) with non-oscillating initial
data and elliptic analogues.

In what follows, for each E ∈ ⋃
R>0 σBR , recall the subset of full probability

Ω0(E) defined in (4.37), and the related subsets Bn,0(E) defined in (4.36).

Theorem 5.1 Assume (2.10) and (2.33). Suppose f ∈ L∞(Rd × Ω) satisfies (3.2)
and, for some R1 > 0, satisfies f (0, ω) ∈ L∞(Ω, σBR1

). For each ε > 0, write uε

for the solution of (5.1) with initial data f (x/ε, ω). On a subset of full probability, as
ε → 0,

uε → π( f ) =
∫

Ω

f (0, ω) dπ locally uniformly on R
d × (0,∞).

Proof Observe that, for eachn ≥ 0, f, g ∈ L∞(Rd×Ω) satisfying (3.2) andα, β ∈ R,
we have

πn(α f + βg) = απn( f ) + βπn(g) and π(α f + βg) = απ( f ) + βπ(g).
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Furthermore, for each f, g ∈ L∞(Rd × Ω), for each n ≥ 0,

|πn( f ) − πn(g)| = |πn( f − g)| ≤ ‖ f − g‖L∞(Rd×Ω),

and

|π( f ) − π(g)| = |π( f − g)| ≤ ‖ f − g‖L∞(Rd×Ω).

It therefore suffices, using the definition of the Lebesgue integral, to prove the the-
orem for translates under {τx }x∈Rd of indicator functions corresponding to locally
measurable sets in F .

Fix R1 > 0 and E ∈ σBR1
. We write uε for the solution of (5.1) with initial

data fE (x/ε, ω). Observe that, for each ε > 0, uε(x, t, ω) = u(x/ε, t/ε2, ω) for
u : Rd × [0,∞) × Ω → R satisfying

{
ut = 1

2 tr(A(y, ω)D2u) + b(y, ω) · Du on R
d × (0,∞),

u(x, 0, ω) = fE (x, ω) on R
d × {0} .

It therefore remains to prove that, on a subset of full probability, for each R > 0,

lim
ε→0

sup
(x,t)∈BR/ε×[R2/ε2,∞)

|u(x, t, ω) − π( fE )| = 0. (5.2)

We now prove that (5.2) is satisfied for every ω ∈ Ω0(E), for every R > 0.
Fix R > 0 and ω ∈ Ω0(E). Since ω ∈ Ω0(E), choose ε1 > 0 such that, whenever

0 < ε < ε, n ≥ 0 and 1 ≤ k < �2n satisfy

kL2
n ≤ R2/ε2 ≤ (k + 1)L2

n,

we have ω ∈ Bn,0(E). And, in view of (2.19) and (2.20), choose ε2 > 0 such that,
whenever 0 < ε < ε2 satisfies, for n ≥ 0 and 1 ≤ k < �2n ,

kL2
n ≤ R2/ε2 < (k + 1)Ln,

we have

(k + 1)R2L2
n ≤ k D̃2

n .

Define ε = min {ε1, ε2} and observe that, whenever 0 < ε < ε satisfies, for n ≥ 0
and 1 ≤ k < �2n ,

kL2
n ≤ R2/ε2 ≤ (k + 1)L2

n,

it follows that ω ∈ Bn,0(E) and BR/ε ⊂ B√
k D̃n

. Therefore, Proposition 4.6 implies,

whenever 0 < ε < ε satisfies, for n ≥ 0 and 1 ≤ k < �2n ,

kL2
n ≤ R2/ε2 < (k + 1)L2

n,
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for C > 0 independent of n,

sup
(x,t)∈BR/ε×[(R2+ε2)/ε2,∞)

|u(x, t, ω) − π( fE )| ≤ C/κ̃n + sup
n≥n

|πn( f ) − π( f )|.

This, in view of Proposition 3.11, completes the argument, since n → ∞ as ε → 0,
and since R > 0, R1 > 0 and E ∈ σBR1

were arbitrary.

Finally, as an immediate consequence of Theorem 5.1, our methods also imply the
homogenization of equations involving an oscillating righthand side,

{
uε
t = 1

2 tr(A(x/ε, ω)D2uε) + 1
ε
b(x/ε) · Duε + f (x/ε, ω) on R

d × (0,∞),

uε = 0 on R
d × {0} ,

(5.3)
and, the homogenization of analogous time-independent problems, like

uε = 1

2
tr(A(x/ε, ω)D2uε) + 1

ε
b(x/ε, ω) · Duε + f (x/ε, ω) on R

d , (5.4)

for righthand side f (x, ω) satisfying (3.2) with, for some R > 0, f (0, ω) ∈
L∞(Ω, σBR ). The following two theorems summarize the results.

Theorem 5.2 Assume (2.10) and (2.33). Suppose f ∈ L∞(Rd × Ω) satisfies (3.2)
and, for some R1 > 0, satisfies f (0, ω) ∈ L∞(Ω, σBR1

). For each ε > 0, write uε for
the solution of (5.3) with righthand side f (x/ε, ω). On a subset of full probability, as
ε → 0,

uε(x, t, ω) → tπ( f ) = t
∫

Ω

f (0, ω) dπ locally uniformly on R
d × [0,∞).

Proof Fix f ∈ L∞(Rd × Ω) and R1 > 0 satisfying (3.2) and f (0, ω) ∈
L∞(Ω, σBR1

). For each ε > 0, let uε : Rd × [0,∞) × Ω → R satisfy (5.3) with

righthand side f (x/ε, ω) and let ũε : Rd ×[0,∞)×Ω → R satisfy (5.1) with initial
data f (x/ε, ω). We observe that, for each ε > 0,

uε(x, t, ω) =
∫ t

0
ũε(x, s, ω) ds on R

d × [0,∞) × Ω.

This, in view of Theorem 5.1, completes the proof.

Theorem 5.3 Assume (2.10) and (2.33). Suppose f ∈ L∞(Rd × Ω) satisfies (3.2)
and, for some R1 > 0, satisfies f (0, ω) ∈ L∞(Ω, σBR1

). For each ε > 0, write uε for
the solution of (5.4) with righthand side f (x/ε, ω). On a subset of full probability, as
ε → 0,

uε → π( f ) =
∫

Ω

f (0, ω) dπ locally uniformly on R
d .
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Proof Fix f ∈ L∞(Rd × Ω) and R1 > 0 satisfying (3.2) and f (0, ω) ∈
L∞(Ω, σBR1

). For each ε > 0, let uε : R
d × Ω → R satisfy (5.4) with right-

hand side f (x/ε, ω) and let ũε : Rd ×[0,∞)×Ω → R satisfy (5.1) with initial data
f (x/ε, ω). We observe that, for each ε > 0,

uε(x, ω) =
∫ ∞

0
e−s ũε(x, s, ω) ds on R

d × Ω.

This, in view of Theorem 5.1, completes the proof.
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