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Abstract Suppose that X is a simple random walk on Z
d
n for d ≥ 3 and, for each

t , we let U(t) consist of those x ∈ Z
d
n which have not been visited by X by time t .

Let tcov be the expected amount of time that it takes for X to visit every site of Z
d
n .

We show that there exists 0 < α0(d) ≤ α1(d) < 1 and a time t∗ = tcov(1 + o(1)) as
n → ∞ such that the following is true. For α > α1(d) (resp. α < α0(d)), the total
variation distance between the law of U(αt∗) and the law of i.i.d. Bernoulli random
variables indexed by Z

d
n with success probability n

−αd tends to 0 (resp. 1) as n → ∞.
Let τα be the first time t that |U(t)| = nd−αd . We also show that the total variation
distance between the law of U(τα) and the law of a uniformly chosen set fromZ

d
n with

size nd−αd tends to 0 (resp. 1) for α > α1(d) (resp. α < α0(d)) as n → ∞.

Keywords Random walk · Last visited set · Late points · Uniformity · Cover time
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1 Introduction

Suppose that X is a simple random walk on Z
d
n for d ≥ 3 started from the stationary

distribution. For each x ∈ Z
d
n , we let

τx = min{t ≥ 0 : X (t) = x}
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be the first time that X visits x . For t ≥ 0 we define the process (Qx (t)) and the set
U(t) respectively by

Qx (t) = 1(τx > t) for x ∈ Z
d
n and U(t) = {x ∈ Z

d
n : Qx (t) = 1}.

The purpose of the present work is to study the law of the set U(t) for different
values of t . The correlation structure of (Qx (t)) was analyzed in the physics liter-
ature by Brummelhuis and Hilhorst [3,4]. They show that the probability that any
two given points x, y ∈ Z

d
n which are far from each other are not visited by time t

is asymptotically the same as in the case in which the points are independent, i.e.,
P
(
Qx (t) = 1, Qy(t) = 1

) ∼ P (Qx (t) = 1) P
(
Qy(t) = 1

)
as t, n → ∞ at a certain

rate. This leads them to assert that U(t) is “statistically uniformly distributed at large
distances” [4, Section 4]. In this article, we study in what sense the entire joint law
of (Qx (t)) is uniformly distributed for “large” times t rather than focus on its finite
dimensional distributions.

In order to state our results and put them into better context with the existing
literature, we first introduce the following parameters for X . Themaximal hitting time
(thit) and cover time (tcov) are respectively given by

thit = max
x,y

Ex
[
τy
]

and tcov = max
x

Ex

[
max
y

τy

]
.

The times thit, tcov are related in that tcov = thit log(nd)(1+ o(1)) (see [16] as well as
[15, Chapter 11], in particular [15, Exercise 11.4]). The rate at which the o(1) term
tends to 0 will be important for technical reasons so in some cases we will describe
times in terms of thit or other ways rather than directly in terms of tcov. For measures
μ and ν, we recall that the total variation distance is given by

‖μ − ν‖TV = sup
A

|μ(A) − ν(A)|

where the supremum is taken over all measurable subsets A.
We will analyze the structure of U(t) at times of the form αtcov for α > 0. We

mention here three important regimes of α. The first is when α > 1. It is a consequence
of work by Aldous [1] that for any α > 1 and t > αtcov we have U(t) = ∅ with high
probability. The case thatα = 1was studied byBelius [2] using random interlacements
[21] and later by Imbuzeiro-Oliveira and Prata [13,19] using hitting time estimates
[12]. The main focus of [2] is to obtain the Gumbel fluctuations of the cover time of
Z
d
n and as a consequence of his analysis he shows in [2, Corollary 2.4] that the set of

uncovered points at time tβ = thit(log(nd)+β) for β ∈ R suitably rescaled converges
to a Poisson point process on (R/Z)d of intensity e−βλ where λ denotes Lebesgue
measure on (R/Z)d . This was improved upon in [13,19], where it is shown that the
Gumbel fluctuations for the cover time hold for more general graphs. Moreover they
show that the total variation distance between the law of U(tβ) and that of a random
subset of Z

d
n where points are included independently with probability e−βn−d tends

to 0 as n → ∞. The regime of times considered in [2,13,19] is special because |U(tβ)|
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is tight as n → ∞ for any fixed β ∈ R. Additionally, the law of the evolution of U(tβ)

as β varies is also described in [13,19].
The final regime of times is when α ∈ (0, 1). In contrast to the cases described

above, for such choices of α the size of |U(t)| grows with n. In particular, it is shown
in the proof of [18, Theorem 4.1] that it follows from [1] that |U(t)| = nd−αd+o(1)

with high probability as n → ∞. The combinatorial method of [13,19] does not
extend directly to this regime of times because the number of possible sets one is
led to consider is simply too large. The following alternative “uniformity” statement
for U(t) was proved in [17]. If α ∈ ( 12 , 1) (resp. α ∈ (0, 1

2 )) then U(t) is (resp.
is not) “uniformly random” in the following sense. Suppose that V ⊆ Z

d
n is chosen

independently of X where each x ∈ Z
d
n is included inV independentlywith probability

1
2 . Then the total variation distance between the laws of V\U(t) and V tends to 0 (resp.
1) as n → ∞ for α ∈ ( 12 , 1) (resp. (0,

1
2 )). That is, for α ∈ ( 12 , 1), U(t) in a certain

sense does not possess any sort of systematic geometric structure that would make it
possible to determine from V\U(t) the location of the points in U(t). The threshold
α = 1

2 is important because |Zd
n\(V\U(t))| = 1

2n
d + �(nd−αd+o(1)) for α ∈ (0, 1

2 )

while |Zd
n\V| = 1

2n
d + O(nd/2+o(1)) by the central limit theorem, so in this case the

two sets can be distinguished for elementary reasons. We remark in passing that a
similar problem for “thin” 3D torii is considered in [5] and the d = 2 version of this
problem is solved in [18] using results from [9].

In contrast to [17], in this work we are going to study the asymptotic law of U(t)
itself in the sense of [13,19] in the regime of times with α ∈ (0, 1) without adding the
extra noise. It will be rather important for us to choose the time t at which we consider
U(t) very precisely since we will later need a very accurate estimate of P (τx > t). In
the theorem statement which follows, t∗ indicates a time which we will define later in
the article (Eq. (4.3)) and it satisfies

t∗ = thit log(n
d)(1 + o(1)) = tcov(1 + o(1)) as n → ∞.

For any α > 0 we denote by να,n the law of {x : Zx = 1}, where the Zx are
i.i.d. Bernoulli random variables indexed by Z

d
n with success probability n−αd . We

will write L(·) to indicate the law of a random variable. Our first main result is the
following.

Theorem 1.1 For each d ≥ 3 there exist α0(d), α1(d) ∈ (0, 1) with α0(d) ≤ α1(d)

such that for all α ∈ (α1(d),∞) we have

‖L(U(αt∗)) − να,n‖TV = o(1) as n → ∞ (1.1)

and for all α ∈ (0, α0(d)) we have

‖L(U(αt∗)) − να,n‖TV = 1 − o(1) as n → ∞. (1.2)

In analogy with [9], we refer to the points in U(αt∗) as “α-late” for X . The reason
for the terminology “late” is that the amount of time required by X to hit them is much
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larger than the maximal hitting time. Our definition of α-late is slightly different than
that given in [9] because we use t∗ instead of tcov.

Let pd be the probability that a simple random walk in Z
d starting from 0 returns

to 0 before escaping to ∞. The values of α0(d) and α1(d) from Theorem 1.1 are
explicitly given by

α0(d) = 1 + pd
2

and α1(d) = (κ − 2)d + dκ

(κ − 2)(d + 1) + dκ
where κ = d ∧ 6.

The threshold α0(d) is special because, as we show in Sects. 4 and 5, U(αt∗)with high
probability has neighbouring points for α ∈ (0, α0(d)) but does not for α > α0(d). In
fact, for every α > α0(d) the distance between any pair of distinct points in U(αt∗)
is at least n pd with high probability. That is, the minimal distance between distinct
points inU(αt∗) jumps from 1 to being larger than n pd as α crosses the threshold α0(d)

with high probability. We emphasize that α0(d) > 1
2 for all d ≥ 3 and α0(d) → 1

2 as
d → ∞. The value 1

2 is significant due to the connection between this work and [17]
described above.

Theorem 1.1 describes the asymptotic behavior of the law of U(t) at a deterministic
time t of a specific form. In our secondmain result,wedescribe the asymptotic behavior
of U(τ ) where τ is the first time t that U(t) contains a certain number of points. More
specifically, for each α > 0, we let

τα = inf{t ≥ 0 : |U(t)| = nd−αd}.

We also let Wα be a subset of Z
d
n picked uniformly at random among all subsets of

Z
d
n containing exactly nd−αd points. Then we have the following:

Theorem 1.2 Suppose that d ≥ 3 and that α0(d), α1(d) ∈ (0, 1) are as in Theo-
rem 1.1. For all α ∈ (α1(d),∞), we have

‖L(U(τα)) − L(Wα)‖TV = o(1) as n → ∞ (1.3)

and for all α ∈ (0, α0(d)) we have

‖L(U(τα)) − L(Wα)‖TV = 1 − o(1) as n → ∞. (1.4)

We will derive Theorem 1.2 from Theorem 1.1 using an estimate which gives that
the first hitting distribution of X on A ⊆ Z

d
n , where A is a set of points which is

“well-separated,” is closely approximated by the uniform distribution on A.
A number of questions naturally arise from this work (exact values where the

transitions from non-uniformity to uniformity occur, existence of a phase transition,
behaviour for α ∈ (0, α0(d)), other graphs, etc.) which we state more carefully in
Sect. 7.
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1.1 Relation to other work

The structure ofU(αtcov) for d = 2was also studied in the physics literature by [3] and
later in the mathematics literature by [9]. In contrast to the case that d ≥ 3, U(αtcov)
for d = 2 is not uniform for any α ∈ (0, 1). In particular, the last visited set tends
to organize itself into clusters which are of diameter up to nβ where β = β(α) > 0
for any α ∈ (0, 1). The reason for the difference is that random walk for d = 2 is
recurrent which leads to longer range correlations while for d ≥ 3 it is transient. Thus
the process of coverage in the two regimes is very different. The work [9] is part of a
larger series which also includes [6–8] and the proofs of Theorems 1.1 and 1.2 employ
several techniques which are present in the articles of this series.

1.2 Notation and assumptions

Throughout this article, we shall always assume that d ≥ 3 unless explicitly stated
otherwise. For functions f, g we will write f (n) � g(n) if there exists a constant
c > 0 such that f (n) ≤ cg(n) for all n. We write f (n) � g(n) if g(n) � f (n).
Finally, we write f (n) � g(n) if both f (n) � g(n) and f (n) � g(n). Many of
the proofs will involve a number of different constants which we will often indicate
simply by c. We write P without the subscript π to indicate the law of a simple
random walk in Z

d
n started from stationarity. We will also write Px to indicate the law

of the random walk when started from x . We denote by E and Ex the corresponding
expectations.

1.3 Strategy

The proofs of Theorems 1.1 and 1.2 require many different estimates. We now provide
an overview of the different steps and how they fit together. Throughout, we assume
that we have fixed some value of α ∈ (0, 1) and d ≥ 3.

Spatial decomposition We fix two small parameters ε, ϕ ∈ (0, 1) and let β = α − ε.
We then partition Z

d
n into disjoint boxes of side length nβ + nϕ and consider in each

such box concentric sub-boxes of side lengths nβ − nϕ and nβ (see Fig. 1). We let Sβ

denote the collection of the latter type of concentric boxes and for each S ∈ Sβ we
let S (resp. S) be the box with side length nβ + nϕ (resp. nβ − nϕ) which contains
it (resp. is contained in it). We also let A = Z

d
n\ ∪S∈Sβ

S be the region between

the outside and inside boxes. Note that |A| � nd−dβ × n(d−1)β+ϕ = nd−β+ϕ . The
probability that a given point is not visited at time αt∗ is n−αd(1+o(1)); this follows
from the proof of [18, Theorem 4.1] using [1] as mentioned earlier and the vertex
transitivity of Z

d
n (we will also give a more precise version of this result which is

specific to Z
d
n ). Consequently, for α > (d + ϕ)/(d + 1) we can choose ε > 0 small

enough so that we have A ∩ U(αt∗) = ∅ with high probability. Therefore it suffices
to prove the uniformity of the last visited points which are contained in ∪S∈Sβ

S. This

leads us to consider the following modified version of the problem. We let Ũ(αt∗)
consist of those points in each box S for S ∈ Sβ which have not been visited by
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nβ1
2n

ϕ 1
2n

ϕ

nβ

1
2n

ϕ

1
2n

ϕ

Fig. 1 Four boxes of side length nβ + nϕ in the spatial decomposition of Zd
n used in the proofs of

Theorems 1.1 and 1.2 are illustrated above. The white inner boxes represent the concentric boxes of side
length nβ . We denote by Sβ the collection of all such white boxes and for each S ∈ Sβ we let S (resp. S)

be the concentric box of side length nβ + nϕ (resp. nβ − nϕ ) which contains it (resp. contained in it). For
α > (d+ϕ)/(d+1), with high probability there are no unvisited points inA = Z

d
n\∪S∈Sβ

S. In the setting
of the modified version of the problem described in Step 1 in Sect. 1.3, conditional on the entrance and exit
points of the excursions that X makes between the boundaries of the boxes in S ∈ Sβ and S, the sets of
unvisited points in the different S for S ∈ Sβ are independent. Shown are a few such excursions in dark
blue. The entrance (resp. exit) points are indicated by green (resp. red) disks. These are just a caricature;
in the proofs ϕ is taken to be much smaller than β so most of the excursions are in fact very short and end
very close to where they start (color figure online)

the first time that the number of excursions made by X from ∂S to ∂S by time αt∗
exceeds the typical number E . We show that we have sufficiently good concentration
for the number of such excursions up to a given time so that U(αt∗) = Ũ(αt∗) with
high probability. We then prove the uniformity of Ũ(αt∗). This modified problem is
useful to consider because the random variables (Ũ(αt∗) ∩ S)S∈Sβ

are independent
conditional on the σ -algebra F generated by the entrance and exit points of these
excursions. Thus to bound the total variation distance between L(Ũ(αt∗)) and να,n it
suffices to bound the expectation of the sum of the total variation distances between
the conditional laws of the last visited set in each S for S ∈ Sβ given F and a random
subset of S where points are included independently with probability n−αd (explained
below).
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Fig. 2 (Continuation of Fig. 1)
A single box S of side length
nβ + nϕ is shown along with the
corresponding concentric box
S ∈ Sβ with side length nβ .
Inside S, three points are shown
and around each point we have
placed two concentric balls.
Conditional on the number and
entrance and exit points of the
excursions (illustrated in orange
above) that X makes across each
of these spherical annuli during
a given number of excursions
across S\S, the events that each
of the points are hit are
independent (color figure online)

Uniformity in each box Our strategy for proving the uniformity of Ũ(αt∗) ∩ S for a
given S ∈ Sβ is based on the same high level idea used in [13,19] (inclusion–exclusion
and the Bonferroni inequalities) though the implementation is different. The first step
is to show that for each ε > 0 there exists M < ∞ so that with high probability
maxS∈Sβ

|Ũ(αt∗) ∩ S| ≤ M . We also show that with high probability Ũ(αt∗) ∩ S is
“well-separated” in the sense that for some choice of γ > 0, the distance between any
two distinct points x, y ∈ Ũ(αt∗) ∩ S is at least nγ . Thus to bound the total variation
distance, we can restrict our attention to finite, well-separated sets. To complete the
proof, we need very precise hitting estimates in order to determine the probability that
any given such set S ⊆ S for S ∈ Sβ is not visited by X during its first E excursions
from ∂S to ∂S. This needs to be sufficiently precise so that we can sum the error over
all possible well-separated subsets of S of size M and then sum that error over all of
the boxes in Sβ . To accomplish this, we put spherical annuli (see Fig. 2) around each
of the points in S with in-radius n2ϕ/κ for κ = d ∧ 6 and out-radius nϕ (the sizes
and the value of ϕ are chosen to optimize several error terms). Conditional on the
number of excursions N that X makes across each such spherical annulus and their
entrance and exit points as well as the corresponding data for the first E excursions
from ∂S to ∂S, the events that the centers of these balls are hit are independent. Another
concentration estimate implies that N is with high probability very close to the typical
number made by X by time αt∗, so we can replace it with this deterministic value.
Moreover, estimates for discrete harmonic functions [14] give us that the probability
that a given excursion hits a point does not depend strongly on its entrance and exit
points. Putting everything together finishes this step.

Non-uniformity for small α The next step in the proof of Theorem 1.1 is to establish
the existence of α0(d), i.e., that for small values of α the total variation distance
between the law of U(αt∗) and (Zx ) tends to 1 as n → ∞. The idea is to show that for
sufficiently small values of α, the number of unvisited points which have an unvisited
neighbour is much larger for U(αt∗) than for (Zx ).
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Uniformity of U(τα) The final step is to deduce Theorem 1.2 from Theorem 1.1. The
main idea is to show that for any well-separated collection of points A, the first exit
distribution of X from Z

d
n\A is close to the uniform measure on A provided X starts

sufficiently far from A. By Theorem 1.1, if we fix ε > 0 very small and run X until
time (α − ε)t∗ then we know that U((α − ε)t∗) is close in law to a random subset
of Z

d
n where points are included independently with probability n−(α−ε)d . Using the

aforementioned estimate, for t ≥ (α − ε)t∗ the random walk X decimates U(t) by
removing points one by one uniformly at random. The estimate for the uniformity of
the first exit distribution is good enough that we can sum the error over the�nd−(α−ε)d

points necessary to remove until the last visited set has size exactly nd−αd provided
we choose ε > 0 small enough.

1.4 Outline

The remainder of this article is structured as follows. In Sect. 2, we establish several
concentration estimates for the number of excursions that X makes across annuli of
different widths. Next, in Sect. 3 we establish a number of estimates related to the
probability that an excursion of X hits points. The purpose of Sect. 4 is to prove some
preliminary results on the structure of the last visited set. In particular, we show that
the points which have not been visited by time αt∗ for large enough values of α are
typically far from each other. In Sect. 5, we complete the proof of Theorem 1.1 and in
Sect. 6 we derive Theorem 1.2 from Theorem 1.1. Finally, in Sect. 7 we list a number
of open questions which naturally arise from this work.

2 Excursions

Let r < R. We write S(x, r) for the box centered at x of side length r and B(x, r) for
the closed Euclidean ball centered at x of radius r , i.e.

S(x, r) = x +
{
−
[ r
2

]
, . . . ,

[ r
2

]}
and B(x, r) =

{

y ∈ Z
d
n :

∑

i

(yi − xi )
2 ≤ r2

}

,

where addition is defined modulo n. For a set A we define the boundary ∂A to be the
outer boundary, i.e.

∂A = {y ∈ A : ∃ x ∈ Ac adjacent to y}.

For sets E(x, r) = B(x, r) or S(x, r) and F(x, R) = B(x, R) or B(x, R) with
E(x, r) ⊆ F(x, R) we define a sequence of stopping times

τ0 = inf{t ≥ 0 : X (t) ∈ ∂E(x, r)},
σ0 = inf{t ≥ τ0 : X (t) /∈ F(x, R)}
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and inductively we set

τk+1 = inf{t ≥ σk : X (t) ∈ ∂E(x, r)}
σk+1 = inf{t ≥ τk+1 : X (t) /∈ F(x, R)},

where E and F will be understood from the context.

Definition 2.1 We call a path of the random walk trajectory an excursion if it starts
from F(x, R) and it comes back to ∂F(x, R) after hitting E(x, r).

We now define N�,◦
x (r, R, t) to be the total number of excursions across the annulus

B(x, R)\S(x, r) before time t . More formally for E(x, r) = S(x, r) and F(x, R) =
B(x, R) we let

N�,◦
x (r, R, t) = min

{

k ≥ 0 :
k∑

i=1

(σi − σi−1) + (σ0 − τ0) ≥ t

}

.

Similarly we define N�,�
x (r, R, t) for the number of excursions in the annulus

S(x, R)\S(x, r) before time t and finally N ◦,◦
x (r, R, t) for the excursions across

B(x, R)\B(x, r) before time t .

Lemma 2.2 Let R ≥ 10
√
dr and let Y j be the exit point of the j-th excursion across

B(0, R)\B(0, r) or across B(0, R)\S(0, r). Then (Y j ) j is a finite state space Markov
chain. Let π̃ be its stationary distribution. Then the mixing time of the chain is of order
1, i.e. there exists k0 < ∞ such that tmix = k0 and k0 only depends on d. Then there
exists a positive constant c such that for all m and N we have

‖L(YN , . . . ,YmN ) − π̃⊗m‖TV � me−cN .

Proof See Appendix 1. ��
Definition 2.3 For R ≥ 10

√
dr we let

T �,◦
r,R = Eπ̃ [σ1 − σ0] ,

i.e. T �,◦
r,R is the expected length of the excursion when the walk is started on ∂B(0, R)

according to the stationary distribution π̃ of the exit points of the excursions across
the annulus B(0, R)\S(0, r) as given in Lemma 2.2. We define T ◦,◦

r,R similarly except
that the excursions are across the annulus B(0, R)\B(0, r). Note that we chose R ≥
10

√
dr , so that the box is included in the ball in all dimensions.

Lemma 2.4 For each ψ ∈ (0, 1/2) there exists n0 ≥ 1 and a positive constant c
such that for all n ≥ n0 the following is true. Suppose that n/4 ≥ R ≥ 10

√
dr and

t � nd log n. Then for all δ > 0 such that δrd−2n−ψ−1/2 ≤ 1 and δnψ ≤ 1 we have
that for all x

P
(
N�,◦
x (r, R, t) /∈ [A, A′]) � nψe−cδ2rd−2/nψ + e−cnψ

,

where A = t/((1 + δ)T �,◦
r,R ) and A′ = t/((1 − δ)T �,◦

r,R ).
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Remark 2.5 Wenote that Lemma 2.4 holds whenwe replace N�,◦, T �,◦ by N ◦,◦, T ◦,◦
respectively. The proof is identical to the one given below.

Proof of Lemma 2.4 To simplify notation throughout the proof we simply write N1 =
N�,◦
x (r, R, t) and Tr,R = T �,◦

r,R . In order to avoid carrying too many constants, we will

prove the result for t = nd log n. The proof for t � nd log n is exactly the same. Let
N = k0nψ , where k0 is the mixing time of the exit point chain as in Lemma 2.2.

Note that A, A′ � rd−2 log n by Lemma 8.3. In the following proof we will write
either A, A′ or the expression above depending on whichever is more convenient.

We first show that

P (N1 < A) � Ne−cδ2A/N + e−cN . (2.1)

Let Vi = σi − σi−1 for all i ≥ 1. By the definition of N1 we get

P (N1 < A) = P

(
A∑

i=1

Vi + (σ0 − τ0) ≥ t

)

.

It is easy to see that there exists a positive constant c such that

P

(
σ0 − τ0 ≥ n2 · √

n
)

≤ e−c
√
n . (2.2)

Indeed, σ0 − τ0 is the time it takes for the random walk to exit the ball B(x, R) when
started from ∂B(x, r). Since R ≤ n/4 and the total variationmixing time tmix � n2(see
for instance [15, Theorem 5.5 and Example 7.4.1]), the probability that this time is
�n2 is ≤1/2, so iterating the Markov property proves (2.2). Since t = nd log n we
obtain

P (N1 < A) ≤ P

(
N1 < A, σ0 − τ0 < n5/2

)
+ P

(
N1 < A, σ0 − τ0 ≥ n5/2

)

≤ P

(
A∑

i=1

Vi > t

(
1 − 1

nd−5/2 log n

))

+ e−c
√
n

≤ P

(
A∑

i=1

Vi > t

(
1 − 1

nd−5/2 log n

))

+ e−cN ,

since ψ < 1/2. It thus suffices to show for some positive constant c we have that

P

(
A∑

i=1

Vi > t

(
1 − 1

nd−5/2 log n

))

� Ne−cδ2A/N + e−cN . (2.3)

In order to prove (2.3) we will establish the concentration of the sequence (Vi )i .
The idea is that if we allow enough time so that the corresponding exit point chain
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of Lemma 2.2 mixes, then the times (Vi )i are essentially i.i.d. so we can apply a
concentration inequality for i.i.d. random variables.

Let t ′ = t (1 − 1
nd−5/2 log n

− c1n2ψ

rd−2 log n
) for a positive constant c1. We will set the

value of c1 later in the proof. Observe that

P

(
A∑

i=1

Vi > t

(
1 − 1

nd−5/2 log n

))

≤ P

(
N−1∑

i=1

Vi ≥ c1nd+2ψ

rd−2

)

+ P

(
A∑

i=N

Vi > t ′
)

. (2.4)

Since by Lemma 8.3 we have E [Vi ] � nd/rd−2 uniformly over all starting points in
∂B(x, R), by the Markov property we have by possibly decreasing the value of c > 0

max
x

Px

(
Vi ≥ c1nd+ψ

rd−2

)
� e−cN .

Hence using the union bound we get that

P

(
N−1∑

i=1

Vi ≥ c1nd+2ψ

rd−2

)

� Ne−cN . (2.5)

By decreasing the value of c > 0, the above is in turn �e−cN . It remains to bound the
second term appearing on the right hand side of (2.4). By applying a union bound and
the strong Markov property we get

P

(
A∑

i=N

Vi > t ′
)

≤ N max
x

Px

⎛

⎝
A/N∑

i=1

ViN >
t ′

N

⎞

⎠ (2.6)

Let (Zi ) be i.i.d. distributed according to π̃ and (Wi ) be i.i.d. excursion lengths across
the annulus B(x, R)\B(x, r) when the starting point is Zi . Let (Yi ) be the exit points
of the excursions of the random walk. Then we couple (Vi )i≥N with (Wi )i≥N as
follows: by Lemma 2.2 the optimal coupling for Y = (YN ,Y2N , . . . ,YA) and Z =
(Z1, . . . , ZA/N ) satisfies

P (Y �= Z) = ‖L(Y ) − L(Z)‖TV ≤ A

N
e−cN .

Then we take Vi = Wi if Yi = Zi , otherwise we take Vi and Wi to be independent.
Hence this gives that

∥∥∥L
(
(ViN )

A/N
i=1

)
− L

(
(Wi )

A/N
i=1

)∥∥∥
TV

≤ ‖L(Y ) − L(Z)‖TV ≤ A

N
e−cN . (2.7)
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By decreasing the value of c > 0, the above is�e−cN . Note that for any two measures
μ1 and μ2 we have for any event D that

μ1(D) ≤ μ2(D) + ‖μ1 − μ2‖TV.

Thus letting K = t ′
N , by (2.7) we have

P

⎛

⎝
A/N∑

i=1

ViN > K

⎞

⎠ ≤ P

⎛

⎝
A/N∑

i=1

Wi > K

⎞

⎠+ e−cN . (2.8)

Since Zi ∼ π̃ , it follows that E [Wi ] = Tr,R for all i . Using Kac’s moment formula
[11] we obtain for all j ∈ N and a positive constant c

E

[
W j

1

]
≤ j !c j T j

r,R .

Thus for θ > 0 we have

E

[
eθW1

]
≤ 1 + θTr,R +

∞∑

j=2

(cθTr,R) j .

Choosing θ = c1δ/Tr,R we get that

E

[
eθW1

]
≤ 1 + c1δ + (cc1δ)2

1 − cc1δ
≤ exp

(
c1δ + (cc1δ)2

1 − cc1δ

)
,

and hence

P

⎛

⎝
A/N∑

i=1

Wi > K

⎞

⎠ ≤
(
E

[
eθW1

])A/N
exp (−θK )

≤ exp

(
A

N

(
c1δ + (cc1δ)2

1 − cc1δ

)
− c1δK

Tr,R

)
.

Since δrd−2n−ψ−1/2 ≤ 1 and δnψ ≤ 1, substituting the values of A and K and
choosing c1 > 0 sufficiently small we get that for n sufficiently large

P

⎛

⎝
A/N∑

i=1

Wi > K

⎞

⎠ � e−c′δ2A/N ,

where c′ is a positive constant. Hence this together with (2.5), (2.6), and (2.8) proves
(2.1).
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Next we show that

P
(
N1 > A′) � Ne−c′δ2A/N + e−cN . (2.9)

By the definition of N1 again we get

P
(
N1 > A′) = P

⎛

⎝
A′∑

i=1

Vi + (σ0 − τ0) < t

⎞

⎠ ≤ P

⎛

⎝
A′∑

i=N

Vi < t

⎞

⎠ .

Using the same coupling as before, it suffices to prove that there exists a positive
constant c′ such that

P

⎛

⎝
A′/N∑

i=1

Wi <
(1 − δ)Tr,R A′

N

⎞

⎠ � e−c′δ2t/(Tr,R N ),

where (Wi )i are i.i.d. excursion lengths started from i.i.d. points (Zi )i distributed
according to π̃ . By Chernoff’s bound we have for θ > 0 that

P

⎛

⎝
A′/N∑

i=1

Wi <
(1 − δ)Tr,R A′

N

⎞

⎠ ≤
(
E

[
e−θW1

])A′/N
eθ(1−δ)Tr,R A′/N . (2.10)

Using that e−x ≤ 1 − x + x2 and that E
[
W 2

1

] ≤ cT 2
r,R by Kac’s moment formula

[11], we have

E

[
e−θW1

]
≤ 1 − θTr,R + θ2E

[
W 2

1

]
≤ 1 − θTr,R + cθ2T 2

r,R

≤ exp
(
−θTr,R + cθ2T 2

r,R

)
.

By taking θ = c1δ/Tr,R and plugging everything into (2.10) we deduce

P

⎛

⎝
A′/N∑

i=1

Wi <
t

N

⎞

⎠ ≤ exp

(
− A′

N
δ2c1(1 − cc1)

)
.

Choosing c1 > 0 small enough makes 1 − cc1 positive, hence

P

⎛

⎝
A′/N∑

i=1

Wi <
t

N

⎞

⎠ � e−cδ2A′/N .

Recalling that A and A′ are up to constants equal to rd−2 log n by Lemma 8.3, the
result follows by combining (2.1) and (2.9). ��
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Definition 2.6 Fix β ∈ (0, 1). We let W be a random variable whose law is equal to
that of the number of excursions the randomwalk makes across the annulus S(0, nβ +
nϕ)\S(0, nβ) during one excursion across B(0, 10

√
dnβ)\S(0, nβ) when the starting

point of the excursion on ∂B(0, 10
√
dnβ) is chosen according to π̃ from Lemma 2.2.

In the proofs of Theorem 1.1 and 1.2 we will take β = α − ε for some small ε > 0.
We suppress the dependency of W on β to lighten the notation.

Lemma 2.7 The random variable W defined above is stochastically dominated by
the sum of 2d independent geometric random variables of parameter p � nϕ−β and
satisfies

E [W ] � nβ−ϕ.

Proof We start by proving that E [W ] � nβ−ϕ . We note that the stationary dis-
tribution is up to multiplicative constants the same as the uniform distribution on
∂B(0, 10

√
dnβ), i.e. for all x ∈ ∂B(0, 10

√
dnβ) we have

π̃(x) � 1

∂B(0, 10
√
dnβ)

.

See for instance [14, Lemma 6.3.7].We can realize the randomwalk X in the following
way: let U be a simple random walk on Z and V be a simple random walk on Z

d−1

which is independent of U . Let ξ(i) be i.i.d. Bernoulli random variables with success
probability (d − 1)/d. Write r(k) = ∑k

i=1 ξ(i) and set

Z(k) = (U (k − r(k)), V (r(k))).

Then it is elementary to check that Z is a simple random walk in Z
d , and hence

X (k) = Z(k) mod n is a simple random walk on Z
d
n .

With r = nβ + nϕ , we let x0 = ([r/2], . . . , [r/2],−[r/2]) and let A be the set of
points of ∂S(0, nβ + nϕ) that are within distance nβ/16 of x0. Then if τ is the first
hitting time of ∂S(0, nβ + nϕ) after having first hit ∂S(0, nβ), then it is easy to see
that

P (X (τ ) ∈ A) ≥ p0,

where p0 is a positive constant. Indeed, it is a standard fact that with positive probabil-
ity Brownian motion stays close to a given continuous function f : [0, 1] → R

d for
all times t ∈ [0, 1]. Hence the above claim is true for a Brownian motion started uni-
formly on ∂B(0, 10

√
dnβ). The result for randomwalk follows byDonker’s invariance

principle [10, Theorem 8.6.5].
We now let

T = min

{
t ≥ τ : |V (r(t)) − V (r(τ ))| ≥ nβ

4

}
,
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i.e. T is the first time that V (r(·)) reaches distance nβ/4 from where it hit ∂S(0, nβ +
nϕ) at time r(τ ). Let s(t) = t − r(t). Note that s(T ) − s(τ ) gives the number of steps
that the random walk makes in the first coordinate axis during the time interval from
τ to T . Then there exist positive constants p1 and cd depending only on d such that

P

(
s(T ) − s(τ ) ≥ cdn

2β
)

≥ p1. (2.11)

On the event {X (τ ) ∈ A} the random variableW is greater than or equal to the number
E of excursions that U makes from nβ to nβ + nϕ before time T . Then using (2.11)
we get that for all u

P (E ≥ u) ≥ P

(
E ≥ u, s(T ) − s(τ ) ≥ cdn

2β, X (τ ) ∈ A
)

� P

(
E ≥ u | s(T ) − s(τ ) ≥ cdn

2β
)

.

Since U is independent of V , on the event s(T ) − s(τ ) ≥ cdn2β , the random variable
E stochastically dominates the number of excursions that a one dimensional walk
started from 0 makes from 0 to nϕ until time cdn2β . It now immediately follows that

E [E] � nβ−ϕ.

We now turn to show the first assertion of the lemma. Let (Z1, . . . , Zd) be a simple
random walk in Z

d . For i = 1, . . . , d, we let

• Ai be the number of excursions that Zi makes from − nβ

2 to − nβ

2 − nϕ

2 before
hitting ±10

√
dnβ

• Bi be the number of excursions that Zi makes from nβ

2 to nβ

2 + nϕ

2 before hit-
ting ±10

√
dnβ .

It is not hard to see that once the randomwalk hits ∂S(0, nβ +nϕ), then the number of
excursions it makes from ∂S(0, nβ) to ∂S(0, nβ +nϕ) before hitting ∂B(0, 10

√
dnβ)

is stochastically dominated by

d∑

i=1

(Ai + Bi ).

It follows from the gambler’s ruin estimate that the Ai ’s and Bi ’s are geometric of
parameter nϕ−β , hence this completes the proof of the lemma. ��
Claim 2.8 Let X be a geometric random variable of success probability p ∈ (0, 1/2]
taking values in {1, 2, . . .}. Then for all j we have

E

[
X j
]

� j !
p j

.

Proof See Appendix 1. ��
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Lemma 2.9 For each ψ ∈ (0, 1/2) there exists n0 ≥ 1 and a positive constant c such
that for all n ≥ n0 the following is true. Fix β, ϕ ∈ (0, 1) and t � nd log n. For all
δ > 0 such that δnβ(d−2)−ψ−1/2 ≤ 1 and δnψ ≤ 1 we let

E(t, δ) = tE [W ]

(1 + δ)T �,◦
nβ ,10

√
dnβ

and E(t, δ) = tE [W ]

(1 − δ)T �,◦
nβ ,10

√
dnβ

. (2.12)

Then for all x we have

P
(
N�,�
x (nβ, nβ + nϕ, t) /∈ [E(t, δ), E(t, δ)]) � nψ exp

(
−cδ2nβ(d−2)−ψ

)
+ e−cnψ

.

Proof To simplify notation throughout the proof we write B = E(t, δ), B ′ = E(t, δ),
N1 = N�,◦

x (nβ, 10
√
dnβ, t), and N2 = N�,�

x (nβ, nβ + nϕ, t). Let N = k0nψ , A, and
A′ be as in Lemma 2.4 with r = nβ , R = 10

√
dnβ and δ replaced by δ/2. We start

with the upper bound. We have

P (N2 < B) ≤ P (N1 < A) + P (N2 < B, N1 > A) .

The first probability can be bounded using Lemma 2.4. We first notice that all
excursions across S(x, nβ + nϕ)\S(x, nβ) are contained in the excursions across
B(x, 10

√
dnβ)\S(x, nβ). Hence it follows that we can bound the second probability

by the probability that in the first A excursions of the annulusB(x, 10
√
dnβ)\S(x, nβ)

the number of excursions from ∂S(x, nβ) to ∂S(x, nβ + nϕ) is at most B. Let Wi be
the number of excursions across the “thin” annulus (i.e. S(x, nβ + nϕ)\S(x, nβ))
during the i-th excursion across the “big” annulus (i.e. B(x, 10

√
dnβ)\S(x, nβ)). We

first show

P

(
A∑

i=1

Wi < B

)

� Ne−cδ2nβ(d−2)−ψ + e−cN . (2.13)

By a union bound and the strong Markov property we get

P

(
A∑

i=1

Wi < B

)

≤ P

(
A∑

i=N

Wi < B

)

≤ N max
x

Px

⎛

⎝
A/N∑

i=1

WiN <
B

N

⎞

⎠ (2.14)

Let (Zi )i be i.i.d. distributed according to π̃ on ∂B(0, 10
√
dnβ) and let (Vi )i be

i.i.d. with the same distribution as W when the starting point of the excursion on
∂B(0, 10

√
dnβ) is Zi . Let (Yi )i be the exit points of the excursions of the randomwalk.

Then under the optimal coupling of Y = (YN , . . . ,YA/N ) and Z = (Z1, . . . , ZA/N )

we get from Lemma 2.2

P (Y �= Z) = ‖L(Y ) − L(Z)‖TV ≤ A

N
e−cN .
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Thus we can couple (Wi )i with (Vi )i by letting Vi = Wi if Yi = Zi and otherwise
taking Vi and Wi to be independent. This now gives

∥∥∥L
(
(Wi )

A/N
i=1

)
− L

(
(Vi )

A/N
i=1

)∥∥∥
TV

≤ ‖L(Y ) − L(Z)‖TV ≤ A

N
e−cN .

We obtain

P

⎛

⎝
A/N∑

i=1

WiN <
B

N

⎞

⎠ ≤ P

⎛

⎝
A/N∑

i=1

Vi <
B

N

⎞

⎠+ A

N
e−cN . (2.15)

By adjusting the value of c > 0, the error term above is �e−cN . So now we need to
bound the probability appearing on the right hand side of (2.15). Applying Chernoff’s
inequality we get for θ > 0

P

⎛

⎝
A/N∑

i=1

Vi <
B

N

⎞

⎠ ≤ E

[
e−θ

∑A/N
i=1 Vi

]
eθB/N = E

[
e−θW

]A/N
eθB/N , (2.16)

where the last step follows since the (Vi )i are i.i.d. with Vi ∼ W for all i . Using the
inequalities

e−x ≤ 1 − x + x2

2
for x ≥ 0 and ex ≥ 1 + x for all x ∈ R.

we obtain

E

[
e−θW

]
≤ E

[
1 − θW + θ2

2
W 2

]
≤ exp

(
−θE [W ] + θ2

2
E

[
W 2

])
. (2.17)

Combining (2.16) and (2.17) we thus have that

P

⎛

⎝
A/N∑

i=1

Vi <
B

N

⎞

⎠ ≤ exp

(
A

N

(
−θE [W ] + θ2

2
E

[
W 2

])
+ θ

B

N

)

= exp

(
Aθ2E

[
W 2

]

2N
− AθE [W ] η

N

)

,

where η = δ/(2(1 + δ)). Setting θ = ηE[W ]
E[W 2] , we deduce that

P

⎛

⎝
A/N∑

i=1

Vi <
B

N

⎞

⎠ ≤ exp

(

− Aη2E [W ]2

2NE
[
W 2

]

)

.
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From Lemma 2.7 and Claim 2.8 we see that there exists a positive constant c such that
E [W ]2 /E

[
W 2

] ≥ c. This implies that there exists a positive constant c′ such that

P

⎛

⎝
A/N∑

i=1

Vi <
B

N

⎞

⎠ ≤ exp

(
−c′Aδ2

N

)
.

Since A � nβ(d−2) log n by Lemma 8.3, the above together with (2.14) and (2.15)
proves (2.13) and this completes the proof of the upper bound.

For the lower bound in the same way as above we have

P
(
N2 > B ′) ≤ P

(
N1 > A′)+ P

(
N2 > B ′, N1 < A′) .

For the first termwe use Lemma 2.4. For the second termwe replace again this event by
the event that in the first A′ excursions across the “big” annulus there were at least B ′
excursions across the “thin” one. Hence if (Wi )i are as before, setting H = N 2

E [W ]
we have

P
(
N2 > B ′, N1 < A′) ≤ P

⎛

⎝
A′∑

i=1

Wi > B ′
⎞

⎠

≤ N max
x

Px

⎛

⎝
A′/N∑

i=1

WiN >
B ′

N
− H

N

⎞

⎠+ P

(
N−1∑

i=1

Wi > H

)

.

From Lemma 2.7 we immediately get that

P

(
N−1∑

i=1

Wi > H

)

≤ P

(
N−1∑

i=1

Gi > H

)

,

where (Gi )i are i.i.d. each having the law of the sum of 2d independent geometric
random variables of success probability nϕ−β . Using Claim 2.8 we then get that for a
positive constant c that

P

(
N−1∑

i=1

Wi > H

)

� e−cN .

Using the same coupling as before we obtain

P

⎛

⎝
A′/N∑

i=1

WiN >
B ′ − H

N

⎞

⎠ ≤ P

⎛

⎝
A′/N∑

i=1

Vi >
B ′ − H

N

⎞

⎠+ A′

N
e−cN ,

where the (Vi )i are i.i.d. and distributed according to the law of W . By possibly
decreasing the value of c > 0, the error term above is �e−cN . By Lemma 2.7 and
Claim 2.8 we have for a positive constant c1 that
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E

[
eθW

]
= 1 + θE [W ] +

∞∑

j=2

θ j
E
[
W j

]

j ! ≤ exp

(
θE [W ] + (c1θE [W ])2

1 − c1θE [W ]

)
.

Let η = δ/(2(1 − δ)). Using the above, Chernoff’s inequality, and substituting the
expression for B ′ gives

P

⎛

⎝
A′/N∑

i=1

Vi >
B ′ − H

N

⎞

⎠ ≤ E

[
eθW

]A′/N
e−θ(B′−H)/N

≤ exp

(
θH

N

)
exp

(
A′

N

(
θE [W ] + (c1θE [W ])2

1 − c1θE [W ]

))
exp

(
− A′θ(1 + η)E [W ]

N

)
.

Setting θ = c2η/E [W ] for a positive constant c2 to be determined and recalling that
H = N 2

E [W ] we get

P

⎛

⎝
A′/N∑

i=1

Vi >
B ′ − H

N

⎞

⎠ ≤ exp(c2ηN ) exp

(

−c2η2A′

N

(

1 − c21c2
1 − c1c2η

))

.

Using the assumption δnψ ≤ 1 and taking c2 > 0 sufficiently small we get for a
positive constant c′ and all sufficiently large n that

P

⎛

⎝
A′/N∑

i=1

Vi >
B ′ − H

N

⎞

⎠ � e−c′δ2A′/N

and, since A′ � nβ(d−2) log n by Lemma 8.3, this finishes the proof of the lemma. ��
Definition 2.10 Fix ϕ, β ∈ (0, 1). Let Sβ be a partition of Z

d
n into (disjoint) boxes of

side length nβ + nϕ (we will suppress the dependency on ϕ). For each A ∈ Sβ we let
A (resp. A) be the box of side length nβ (resp. nβ − nϕ) which is concentric with A
and we let Sβ (resp. Sβ ) be the collection of all such concentric boxes with this side
length. For each z ∈ ∪A∈Sβ

A we let Sz be the element of Sβ which contains z and

Sz the element of Sβ which contains z. We letA = Z
d
n\ ∪S∈Sβ

S be the collection of
points of the torus that lie in the annuli between the boxes of side length nβ + nϕ and
the concentric boxes of side length nβ − nϕ .

Definition 2.11 Fix ϕ, β ∈ (0, 1) and recall the definition of E from Lemma 2.9. For
every z ∈ Z

d
n\A and R > r we define Nz(r, R, t) to be the number of excursions

across the annulus B(z, R)\B(z, r) during the first E(t, δ/4) excursions across the
annulus Sz\Sz where Sz and Sz are as in Definition 2.10.

Lemma 2.12 For each ψ ∈ (0, 1/2) and β ∈ (0, 1) there exist n0 ≥ 1 and a positive
constant c such that for all n ≥ n0 the following is true. Let nβ ≥ R ≥ 10r and
δ ∈ (0, 1/3) satisfy
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δnψ ≤ 1 and δnβ(d−2)−ψ−1/2 ≤ 1.

If t � nd log n, then for all z ∈ Z
d
n\A we have that

P
(
Nz(r, R, t) /∈ [L(t), L(t)]) � nψ exp

(
−cδ2rd−2n−ψ

)
+ e−cnψ

,

where L(t) = t
(1+δ)T ◦,◦

r,R
and L(t) = t

(1−δ)T ◦,◦
r,R

.

Proof Wedefine Ñz to be the number of excursions across the annulusB(z, R)\B(z, r)
up to time (1 − δ/2)t and we let T be the time it took for the E(t, δ/4) excursions
across the “thin” annulusS(z, nβ +nϕ)\S(z, nβ) to complete. Notice that on the event
{T ≥ (1 − δ/2)t} we have Ñz ≤ Nz hence we get

P
(
Nz < L(t)

) ≤ P (T < (1 − δ/2)t) + P
(
Ñz < L(t)

)
. (2.18)

We recall the definition of E(t, δ/4)

E(t, δ/4) = E [W ] t

(1 + δ/4)T �,◦
nβ ,10

√
dnβ

.

The first probability on the right side of (2.18) can be written as

P (T < (1 − δ/2)t) = P
(
N2 > E(t, δ/4)

)
. (2.19)

Let

� = (1 − δ/2)E [W ] t

(1 − δ/8)T �,◦
nβ ,10

√
dnβ

= (1 − δ/2)(1 + δ/4)

1 − δ/8
E(t, δ/4) < E(t, δ/4).

Let N2 = N�,�
z (nβ, nβ + nϕ, (1 − δ/2)t). Applying Lemma 2.9 we get that

P
(
N2 > E(t, δ/4)

) ≤ P (N2 > �) � nψ exp
(
−cδ2nβ(d−2)−ψ

)
+ e−cnψ

. (2.20)

For the second probability on the right side of (2.18), we apply Lemma 2.4 to obtain
for all δ ∈ (0, 1/3) that

P
(
Ñz < L(t)

) ≤ P

(

Ñz <
(1 − δ/2)t

(1 + δ/3)T ◦,◦
r,R

)

� e−cδ2rd−2/nψ + e−cnψ

. (2.21)

Combining (2.18), (2.19), and (2.21) we deduce

P
(
Nz < L(t)

)
� nψe−cδ2rd−2/nψ + e−cnψ

(2.22)

and this finishes the proof of the first part.
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We define N ′
z to be the number of excursions across B(z, R)\B(z, r) by time (1+

δ/2)t . Let T be as in the first part of the proof. Notice that on the event {T < (1+δ/2)t}
we have N ′

z ≥ Nz . So

P
(
Nz ≥ L(t)

) ≤ P (T ≥ (1 + δ/2)t) + P
(
N ′
z ≥ L(t)

)
. (2.23)

By the definition of T we have

P (T ≥ (1 + δ/2)t) = P
(
N ′
2 ≤ E(t, δ/4)

)
. (2.24)

Applying Lemma 2.9 we get that if

� = (1 + δ/2)tE [W ]

(1 + δ/4)T �,◦
nβ ,10

√
dnβ

,

then writing N ′
2 = N�,�

z (nβ, nβ + nϕ, (1 + δ/2)t) we have

P
(
N ′
2 ≤ �

)
� nψe−cδ2nβ(d−2)−ψ + e−cnψ

. (2.25)

It is now easy to see that for all δ > 0 we have � > E(t, δ/4), and hence combining
(2.24) and (2.25) we obtain the following bound for the first probability on the right
side of (2.23):

P
(
N ′
2 ≤ E(t)

) ≤ P
(
N ′
2 ≤ �

)
� nψe−cδ2nβ(d−2)−ψ + e−cnψ

. (2.26)

By Lemma 2.4 we can bound the second probability on the right side of (2.23) by:

P
(
N ′
z ≥ L(t)

) ≤ P

(

N ′
z ≥ (1 + δ/2)t

(1 − δ/4)T ◦,◦
r,R

)

� nψe−cδ2rd−2/nψ + e−cnψ

. (2.27)

Inserting the bounds from (2.26) and (2.27) into (2.23) concludes the proof. ��

3 Hitting probabilities

In this section we collect some results about hitting probabilities of simple random
walks in Z

d
n for d ≥ 3. Some of the proofs are deferred to Appendix 1. We start by

recalling Harnack’s inequality (see e.g. [14, Theorem 6.3.8]).

Lemma 3.1 (Harnack’s inequality) For all d ≥ 1 there exists a positive constant cd
such that the following is true. Let R ≥ 2r and let f be a positive harmonic function
on B(0, R) ⊆ Z

d . Then for all x, y ∈ B(0, r) we have

f (x)

f (y)
= 1 + cd ·

( r

R

)
.
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Proof See Appendix 1. ��
Lemma 3.2 There exists a constant Cd > 0 depending only on d such that the fol-
lowing is true. Let n/4 ≥ R ≥ 2r such that both r, R tend to infinity as n → ∞ and
let z ∈ Z

d
n with ‖z‖ ≤ r/4. We denote by τR the first hitting time of ∂B(0, R) and by

τz the first hitting time of z. Then for all x ∈ ∂B(0, r) and all y ∈ ∂B(0, R) we have

Px (τz < τR | X (τR) = y) = Cd

rd−2

(
1 + O

( r

R

)
+ O

(
1

r2

)
+ O

(‖z‖
r

))
.

Proof See Appendix 1. ��
Remark 3.3 To avoid confusion, we emphasize that τx , τy and τz will always refer to
hitting times of a point, while τr and τR to hitting times of boundaries of balls.

Remark 3.4 The constant Cd from the statement of Lemma 3.2 is given by cd/G(0),
where cd is the constant from [14, Theorem 4.3.1] and G is the Green’s function for
simple random walk on Z

d . That is, G(0) is equal to the expected number of visits to
0 made by simple random walk started from 0 before escaping to ∞.

Definition 3.5 We define pd to be the probability that a simple random walk on Z
d

started from 0 returns to 0.

Remark 3.6 For d = 3, it is well-known (see e.g. [20]) that p3 ≈ 0.34. It is also easy
to see that pd → 0 as d → ∞. Note that pd is equal to the probability that a simple
random walk in Z

d starting from 0 visits a given neighbour of 0 before escaping to∞.

Lemma 3.7 Let n/4 ≥ R > 2r → ∞ and x, y ∈ Z
d
n satisfying ‖x − y‖ = o(r). We

denote by τR the first hitting time of B(x, R) and by τx (resp. τy) the first hitting time
of x (resp. y). Then for all a ∈ ∂B(x, r) and all b ∈ ∂B(x, R) then we have

Pa
(
τx ∧ τy < τR | X (τR) = b

) ≥ 2Cd

(1 + pd)rd−2

(
1 + o(1) + O

( r

R

)
+ O

(
1

r2

))
.

(3.1)

Moreover, if x and y are neighbours, then we have

Pa
(
τx ∧ τy < τR | X (τR) = b

) = 2Cd

(1 + pd)rd−2

(
1 + O

( r

R

)
+ O

(
1

r2

))
.

(3.2)

Proof By Bayes’ formula we have

Pa
(
τx ∧ τy < τR | X (τR) = b

) = Pa
(
XτR = b | τx ∧ τy < τR

)

Pa
(
XτR = b

) Pa
(
τx ∧ τy < τR

)

=
(
1 + O

( r

R

))
Pa

(
τx ∧ τy < τR

)
,
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where the second equality follows by the strong Markov property and Harnack’s
inequality (Lemma 3.1). Let

Z =
τR∑

t=0

1(X (t) ∈ {x, y})

be the number of times that X visits either x or y before hitting ∂B(x, R). Then it is
easy to see that

Pa
(
τx ∧ τy < τR

) = Ea [Z ]

Ea
[
Z
∣
∣ τx ∧ τy < τR

] .

Note that we can write

Z =
∞∑

t=0

1(X (t) ∈ {x, y}) −
∞∑

t=τR

1(X (t) ∈ {x, y}). (3.3)

Applying [14, Theorem 4.3.1] and the strong Markov property we thus have

Ea [Z ] = 2CdG(0)

rd−2 (1 + o(1)) + O

(
1

Rd−2

)
+ O

(
1

rd

)
,

where the o(1) term disappears when x and y are neighbours. For the denominator we
have

Ea
[
Z
∣∣ τx ∧ τy < τR

] = Ex

[
τR∑

t=0

1(X (t) ∈ {x, y})
]

Pa
(
τx < τy | τx ∧ τy < τR

)

+ Ey

[
τR∑

t=0

1(X (t) ∈ {x, y})
]

Pa
(
τy < τx | τx ∧ τy < τR

)
.

Consequently, using the representation for Z from (3.3) it is easy to see by applying
[14, Theorem 4.3.1] again and the last part of Remark 3.6 that

Ea
[
Z
∣
∣ τx ∧ τy < τR

] ≤ G(0)(1 + pd) + O

(
1

Rd−2

)

with equality when x and y are neighbours. Putting everything together yields the
result. ��

4 Separated points

In this section we define the time t∗ referred to in the Introduction and we prove that
with high probability at time αt∗ for α ∈ (0, 1) large enough the points in the last
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visited set are at distance at least nγ for some γ to be defined later. We prove these
results in a certain setup which we describe below in order to make them compatible
with the proofs of Theorems 1.1 and 1.2.

Setup Let β = α−ε for some ε > 0 small enough to be determined later. As in Defini-
tion 2.10, we divide the torus into boxes of side length nβ +nϕ with ϕ ∈ (0, β) and we
will make use of the notation described there. For every S ∈ Sβ wewrite τS for the first
time that the random walk has made E(αt∗, δ/4) = αt∗E [W ] /((1+ δ/4)T �,◦

nβ ,10
√
dnβ

)

excursions across the annulus surrounding S, where W is as in Definition 2.6
and r = n2ϕ/κ

δ = r (2−d)/2nψ = nϕ(2−d)/κ+ψ where κ = d ∧ 6 (4.1)

and ψ, ϕ > 0 will be fixed later. We will explain the choice of the value of δ in
Remark 5.4 in Sect. 5.

We recall A = Z
d
n\ ∪S∈Sβ

S is the collection of points of the torus that lie in the
annuli between the boxes of side length nβ + nϕ and the concentric boxes of side
length nβ − nϕ .

As in Definition 2.10, for every z /∈ A, we write Sz ∈ Sβ for the unique box in Sβ

that contains z. We now consider the process Y = (Yz)z defined by Yz = 1(τz > τSz )

for z /∈ A and Yz = 0 for z ∈ A.
For any ζ > 0 we recall that the definition of the collection of ζ -separated subsets

P(ζ ) was follows

P(ζ ) = {U ⊆ Z
d
n : ‖x − y‖ ≥ nζ , ∀x, y ∈ U }. (4.2)

We will now define the time t∗ that was introduced in the statement of Theorem 1.1
(but not defined there). We set

t∗ =
log(nd)T ◦,◦

n2ϕ/κ ,nϕ

Pπ (τz < τnϕ )
. (4.3)

The precise value of ϕ and the radii in (4.3) are selected to optimize several error terms
in Claim 5.1 and Eq. (5.12) in Sect. 5 and it is explained in Remark 5.4.

We remind the reader that we writeP (τz < τnϕ ) for the probability that z is hit in an
excursion across the annulus B(z, nϕ)\B(z, n2ϕ/κ) when the random walk starts from
the uniform distribution onZ

d
n . (Lemma 3.2 gives an error boundwhich is independent

of the starting point.)
The following lemma implies that t∗ = tcov(1+o(1)) and it is proved inAppendix 2.

Lemma 4.1 For all r, R → ∞ with R = o(n) and r = o(R) as n → ∞ we have

T ◦,◦
r,R

P (τz < τR)
= thit(1 + o(1)) as n → ∞.
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The following lemma concerning the hitting probability of a point up to αt∗ is a
standard fact (see for instance [17, Theorem 1.6] or [2, Lemma 2.3]). We include the
proof here for completeness.

Lemma 4.2 For every x ∈ Z
d
n we have

P (τx > αt∗) � n−αd

Proof Let ϕ be as in the definition of t∗ and r = n2ϕ/κ , R = nϕ and Nx be the
number of excursions across the annulus B(x, R)\B(x, r) before time αt∗. Let A =
αt∗/((1+ δ)T ◦,◦

n2ϕ/κ ,nϕ ) and ψ ∈ (0, 1/2) be as in Lemma 2.4 and δ as in (4.1). Writing
Exc(x, i) = {x not hit in the i-th excursion}, we then have

P (τx > αt∗) ≤ P (τx > αt∗, Nx ≥ A) + P (Nx < A)

≤ P

(
A⋂

i=2

Exc(x, i)

)

+ P (Nx < A) .

We took the lower index in the intersection to be 2 rather than 1, because the first
excursion has a positive chance of starting in B(x, r), while the second does not. Let
ai = X (τi ) and bi = X (σi ), where τi , σi are defined at the beginning of Sect. 2. Let
F = σ({(ai , bi ) : i = 1, . . . , A}) be the σ -algebra generated by ai , bi . Notice that
conditional on F the events Exc(x, i) are independent for i = 2, . . . , A. Writing τR
for the first hitting time of ∂B(x, R) we therefore get

P

(
A⋂

i=2

Exc(x, i)

)

= E

[
A∏

i=2

P (Exc(x, i) | F)

]

= E

[
A∏

i=2

Pai (τx < τR | X (τR) = bi )

]

.

From Lemma 3.2 we immediately get for all i ≥ 2 that

Pai (τx < τR | X (τR) = bi ) = 1 − Cd

n2ϕ(d−2)/κ

(
1 + O

(
1

nϕ(κ−2)/κ

))
.

Hence we deduce

P

(
A⋂

i=2

Exc(x, i)

)

=
(
1 − Cd

n2ϕ(d−2)/κ

(
1 + O

(
1

nϕ(κ−2)/κ

)))A−1

≤ exp

(
−(A − 1)

Cd

n2ϕ(d−2)/κ

(
1 + O

(
1

nϕ(κ−2)/κ

)))

≤ exp

(
−αd log n

(
1 + O(δ) + O

(
1

nϕ(κ−2)/κ

)))
exp

(
O
(
n−2ϕ(d−2)/κ

))

= n−αd
(
1 + O

(
δ log n + n−ϕ(κ−2)/κ log n

))
,

123



1026 J. Miller, P. Sousi

where for the second inequality we used the expression for A and t∗ and Lemma 3.2.
Recalling that δ = n−(d−2)ϕ/κ+ψ and ψ ∈ (0, 1/2) small enough we thus see that

P

(
A⋂

i=2

Exc(x, i)

)

� n−αd .

By Lemma 2.4 (since the choice of δ satisfies the assumptions) we get

P (Nx < A) � n−αd

and this concludes the proof. ��
Lemma 4.3 Fix 0 < ζ < ϕ and c > 0. Let U ∈ P(ζ ) with |U | ≤ c. Then we have

E

[
∏

u∈U
Yu

]

� 1

nαd|U |(1+o(1))
,

where the constant in � depends only on c. Moreover, for any u ∈ Z
d
n we have

P (Yu = 1) � 1

nαd
.

Note that the final part of Lemma 4.3 is not the same as Lemma 4.2, because we
consider the hitting probability after the random walk has made a certain number of
excursions across Sx\Sx rather than at time αt∗.

Proof of Lemma 4.3 Around every u ∈ U we place two balls of radii r = n2ζ/κ and
R = 1

2n
ζ . We let Nu be the number of excursions across the annulus that is created by

the two balls during the first E(αt∗, δ/4) excursions across the “thin” annulus Su\Su ,
where E is as in Lemma 2.9 and we will set the value of δ later in the proof. We then
have

E

[
∏

u∈U
Yu

]

≤
∑

u∈U
P
(
Nu < L(αt∗)

)+ E

[
∏

u∈U
Yu1(Nu > L(αt∗))

]

, (4.4)

where L(t) is defined in the statement of Lemma 2.12. We let F be the σ -algebra
generated by X (τi (u)) and X (σi (u)) for all u ∈ U , where τi (u) and σi (u) are
defined at the beginning of Sect. 2 with respect to the annuliB(u, R)\B(u, r). Writing
Exc(u, i) = {u not hit in the i-th excursion} we have

E

[
∏

u∈U
Yu1(Nu > L(αt∗))

]

≤ E

⎡

⎣P

⎛

⎝
⋂

u∈U

L(αt∗)⋂

i=2

Exc(u, i) | F
⎞

⎠

⎤

⎦ .

Given F the events ∩L(αt∗)
i=2 Exc(u, i) are independent over different u ∈ U , and

hence

123



Uniformity of the late points of random walk on Zd
n for d ≥ 3 1027

E

[
∏

u∈U
Yu1(Nu > L(αt∗))

]

≤ E

⎡

⎣
∏

u∈U
P

⎛

⎝
L(αt∗)⋂

i=2

Exc(u, i) | F
⎞

⎠

⎤

⎦ . (4.5)

By Lemma 3.2 we have

P

⎛

⎝
L(αt∗)⋂

i=2

Exc(u, i) | F
⎞

⎠ =
(
1 − Cd

n2(d−2)ζ/κ

(
1 + O

(
1

nζ(κ−2)/κ

)))L(αt∗)−1

≤ exp

(
−Cd(L(αt∗) − 1)

n2(d−2)ζ/κ

(
1 + O

(
1

nζ(κ−2)/κ

)))
.

We now set δ = n−(d−2)ζ/κ+ψ and ψ ∈ (0, 1/2) very small. Using Lemma 4.1 we
get

L(αt∗) = αn2(d−2)ζ/κ log(nd)

Cd(1 + δ)
(1 + o(1)) = αn2(d−2)ζ/κ log(nd)

Cd
(1 + o(1)).

Substituting this expression for L(αt∗) in the inequality above we deduce

P

⎛

⎝
L(αt∗)⋂

i=2

Exc(u, i) | F
⎞

⎠ ≤ exp
(
−α log(nd)(1 + o(1))

)
� 1

nαd(1+o(1))
. (4.6)

Lemma 2.12 together with (4.4), (4.5) and (4.6) give

E

[
∏

u∈U
Yu

]

� 1

nαd|U |(1+o(1))
.

Note that in the above argument if U = {u}, then we can place two balls of radii
n2ϕ/κ and nϕ around u and hence we lose the 1 + o(1) term in the expression for L .
Therefore we get

P (Yu = 1) � 1

nαd

and this concludes the proof. ��
Lemma 4.4 Fix 0 < ζ < ϕ and c > 0. Let U /∈ P(ζ ) with |U | ≤ c. Suppose that
U viewed as a subset of the graph which arises by adding edges between all of the
vertices of Z

d
n at distance at most nζ consists of f components. Then

E

[
∏

u∈U
Yu

]

� n−αd f−αd(1−pd )/(1+pd )+o(1),

where pd is as in Definition 3.5 and the constant in � depends on c, d, ζ and ϕ.
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Proof First we decompose U into its f connected components, i.e. every component
contains points that are within distance nζ from some point of the same component. If
two points belong to different components, then their distance is at least nζ . Let a be
the number of components (Ai ) containing exactly one point and let b be the number of
components (A′

i ) containing at least two points. SinceU /∈ P(ζ ), it follows that b ≥ 1.
For i = 1, . . . , a we let Y1,i = 1(τai > τSai ), where Ai = {ai }. For i = 1, . . . , b we

pick xi , yi ∈ A′
i distinct such that ‖xi − yi‖ ≤ nζ andwe set Y2,i = 1(τxi , τyi > τSxi ).

Note that for ζ > 0 small enough Sxi = Syi . Let k = ∑b
i=1 1(‖xi − yi‖ ≤ nζ/(10d)).

For j = 1, . . . , b we place two balls centered at each x j satisfying ‖x j − y j‖ ≤
nζ/(10d) of radii n2ζ/d and nζ /2. For each j not satisfying the above condition we
place two balls around x j of radii nζ/(15d) and nζ/(10d)/2. We also place two balls
of the same radii around the corresponding y j . As in Lemma 2.12 we denote by
Nu = Nu(n2ζ/d , nζ /2, αt∗) and N ′

u = Nu(nζ/(15d), nζ/(10d)/2, αt∗) for u ∈ U . By
conditioning on the events {Nu > L(αt∗)} and {N ′

u > L(αt∗)} depending on the radii
of the balls that we placed around u and using (3.1) in the case when ‖xi − yi‖ ≤
nζ/(10d) we get exactly in the same way as in the proof of Lemma 4.3 that

E

[
∏

u∈U
Yu

]

≤ E

⎡

⎣
a∏

i=1

Y1,i ·
b∏

j=1

Y2, j

⎤

⎦ ≤ n−αda · n−2αdk/(1+pd ) · n−2αd(b−k) · no(1).

Since k ≤ b, a + b = f , and b ≥ 1 from the above we deduce

E

[
∏

u∈U
Yu

]

≤ n−αd f −αd(1−pd )/(pd+1)+o(1),

and this finishes the proof. ��
Proposition 4.5 Fix α > (1 + pd)/2, 0 < γ < 2α − 1 and let

Zγ =
∑

x,y:‖x−y‖≤nγ

1(τx > τSx )1(τy > τSy ).

Then E
[
Zγ

] = o(1) as n → ∞.

Remark 4.6 We will show in the proof of the lower bound of Theorem 1.1 that the
threshold (1 + pd)/2 is sharp: for α ∈ (0, (1 + pd)/2) the random variable Zγ from
the statement of Proposition 4.5 tends to ∞ almost surely for any γ > 0.

Proof of Proposition 4.5 For 0 < ζ < ϕ to be determined shortly we write

Zγ =
∑

x,y:‖x−y‖≤nζ

1(τx > τSx )1(τy > τSy )

+
∑

x,y:nζ ≤‖x−y‖≤nγ

1(τx > τSx )1(τy > τSy ).
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From Lemma 4.4 with f = 1 we get

E

⎡

⎣
∑

x,y:‖x−y‖≤nζ

1(τx > τSx )1(τy > τSy )

⎤

⎦ � nd+dζ · n−2αd/(pd+1)+o(1).

Hence for ζ < 2α/(pd +1)−1 we get that the above upper bound is o(1) as n → ∞.
From Lemma 4.3 with |U | = 2 we get

E

⎡

⎣
∑

x,y:nζ ≤‖x−y‖≤nγ

1(τx > τSx )1(τSy > τSy )

⎤

⎦ � nd+dγ · n−2αd(1+o(1)).

Therefore taking γ < 2α − 1 we conclude that E
[
Zγ

] = o(1) as n → ∞ and this
completes the proof. ��

5 Total variation distance

In this section we give the proof of Theorem 1.1. As mentioned in Sect. 1.3 we will
proceed by using the concentration estimates from Sect. 2 to reduce the problem to
proving the uniformity of the last visited set in each box in an appropriately chosen
partition ofZd

n . In order to establish the latter wewill use the general strategy employed
in the proof of [19, Theorem 6].

Let t∗ be as defined in (4.3) in Sect. 4. Let Q = (Qz)where Qz = 1(τz > αt∗) and
Z = (Zz), where Zz are i.i.d. Bernoulli random variables of parameter n−αd . Recall
the definition of A, the process Y and the collection of boxes Sβ , where β = α − ε,
defined in the setup subsection at the beginning of Sect. 4 and in Definition 2.10. We
define Q̃ by setting Q̃z = 0 for all z ∈ A and Q̃z = Qz for z /∈ A. We also define Z̃
by setting Z̃z = 0 for z ∈ A and Z̃z = Zz for z /∈ A.

Claim 5.1 If α, ϕ and ε satisfy d − (d + 1)α + ε + ϕ < 0, then we have as n → ∞

‖L(Q) − L(Q̃)‖TV = o(1) and ‖L(Z) − L(Z̃)‖TV = o(1).

Proof Using the obvious coupling between Q and Q̃ we get

‖L(Q) − L(Q̃)‖TV ≤ P (∃z ∈ A : Qz = 1) ≤ |A|P (τz > αt∗) .

Since the volume of each annulus is of order n(d−1)β+ϕ and the total number of annuli
in the torus is of order nd−dβ , using Lemma 4.2 we get

‖L(Q) − L(Q̃)‖TV � nd−dβ · n(d−1)β+ϕ · n−αd = nd−(d+1)α+ε+ϕ = o(1),

where in the last step we used the assumption of the claim. In exactly the same way
we get the result for Z and Z̃ . ��
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1030 J. Miller, P. Sousi

Lemma 5.2 We have

P
(
Q̃ �= Y

) = o(1) as n → ∞.

We prove Lemma 5.2 at the end of this section. We now proceed to the proof of
Theorem 1.1.
Proof of Theorem 1.1 Part I, existence of α1(d) Let α > (1 + pd)/2. The statement
of the theorem is equivalent to showing

‖L(Q) − L(Z)‖TV = o(1) as n → ∞.

By the triangle inequality for total variation distance we have

‖L(Q) − L(Z)‖TV ≤ ‖L(Q) − L(Q̃)‖TV + ‖L(Q̃) − L(Y )‖TV
+‖L(Y ) − L(Z̃)‖TV + ‖L(Z̃) − L(Z)‖TV.

By Claim 5.1 and Lemma 5.2 it is enough to show that

‖L(Y ) − L(Z̃)‖TV = o(1) as n → ∞.

Since Yz = Z̃z = 0 for z ∈ A, in the total variation distance we only consider the
distance between the law μ of (Yz)z /∈A and the law ν of (Z̃z)z /∈A.

For γ = 2α − 1− 2ε we recall that the definition of the collection of nγ -separated
subsets of Z

d
n\A is given by

P(γ ) = {S ⊆ Z
d
n\A : ∀x, y ∈ S, ‖x − y‖ ≥ nγ }.

For the total variation distance between μ and ν we have

‖μ − ν‖TV =
∑

S∈S
(μ(S) − ν(S))+ +

∑

S /∈S
(μ(S) − ν(S))+, (5.1)

where abusing notation we write

μ(S) = P (Yz = 1, z ∈ S,Yu = 0, u /∈ A ∪ S) .

Let Zγ be as in Proposition 4.5. Since (a − b)+ ≤ a for a, b > 0, we can bound by
Markov’s inequality

∑

S /∈S
(μ(S) − ν(S))+ ≤

∑

S /∈S
μ(S) ≤ E

[
Zγ

] = o(1),

where the last equality follows from Proposition 4.5, since γ ∈ (0, 2α − 1) and
α > (1 + pd)/2. Let M satisfy d − αd − εdM < 0. For B ∈ Sβ we define the
collections of sets

SB = {S ∈ S : S ⊆ B} and SM = {S ∈ S : |S ∩ B| ≤ M, ∀B ∈ Sβ}.
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Using again (a − b)+ ≤ a for a, b > 0 we now get

∑

S∈S
(μ(S) − ν(S))+ =

∑

S∈S\SM

(μ(S)−ν(S))+ +
∑

S∈SM

(μ(S) − ν(S))+

≤
∑

S∈S\SM

μ(S) +
∑

S∈SM

(μ(S) − ν(S))+.

We now show that
∑

S∈S\SM
μ(S) = o(1) as n → ∞. Setting U = {x /∈ A : τx >

τSx } we get by the union bound

∑

S∈S\SM

μ(S) = P (U ∈ S\SM )=P
(∃B ∈ Sβ,W ∈ S : |W | = M + 1,W ⊆ U ∩ B

)

≤
∑

B∈Sβ ,W∈SB
|W |=M+1

P (W ⊆ U) � nd−dβ
(

ndβ

M + 1

)
n−αd(M+1)(1+o(1))

≤ nd−dβ n
dβ(M+1)

(M + 1)!n
−αd(M+1)(1+o(1)) = 1

(M + 1)!n
d−εdM−αd+o(1),

where in the second inequality we used Lemma 4.3. Since d − αd − εdM < 0 we
obtain that

∑

S∈S\SM

μ(S) = o(1) as n → ∞.

Therefore we only need to show that

∑

S∈SM

(μ(S) − ν(S))+ = o(1) as n → ∞. (5.2)

Let F denote the σ -algebra generated by X (τi (S)) and X (σi (S)) for all S ∈ Sβ and
i ≥ 0, where τi (S) and σi (S) refer to the stopping times as defined at the beginning
of Sect. 2 with respect to the annulus S\S. Then conditioning on F , the collections
(Yz)z∈B , for B ∈ Sβ become independent. Therefore using the independence and
Jensen’s inequality, we have

∑

S∈SM

(μ(S) − ν(S))+ =
∑

S∈SM

(
E
[
P (Yz = 1, z ∈ S, Yu = 0, u /∈ A ∪ S | F)

]− ν(S)
)
+ .

≤
∑

S∈SM

E

⎡

⎣

⎛

⎝
∏

B∈Sβ

P (Yz =1, z ∈ S ∩ B, Yu =0, u ∈ B\(A∪S) | F) −
∏

B∈Sβ

ν(S∩B)

⎞

⎠

+

⎤

⎦

≤
∑

B∈Sβ

∑

S∈SB|S|≤M

E
[
(P (Yz = 1, z ∈ S, Yu = 0, u ∈ B\(A ∪ S) | F) − ν(S ∩ B))+

]
.
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Around every z ∈ Z
d
n\A we place two balls of radii r = n2ϕ/κ and R = nϕ and

we write Nz for the number of excursions across the annulus B(z, R)\B(z, r) during
the first E(αt∗, δ/4) excursions across Sz\Sz as in Lemma 2.12, where we recall
δ = nϕ(2−d)/κ+ψ from (4.1) andwe takeψ > 0 very small. In some of the calculations
below we have substituted the values of r and R, except in a few places in order to
emphasize the cancellation. We set

L = αt∗
(1 + δ)T ◦,◦

r,R

and L ′ = αt∗
(1 − δ)T ◦,◦

r,R

(5.3)

and using Lemma 2.12we get that there existsC > 0 such that
∑

S∈SM
(μ(S)−ν(S))+

is upper bounded by

∑

B∈Sβ

∑

S∈SB|S|≤M

E
[(

P
(
Yz = 1, z ∈ S, Yu = 0, u ∈ B\(A ∪ S), Nw ∈ (L , L ′), w ∈ B | F)

−ν(S ∩ B)
)
+
]+ nCe−cnψ

. (5.4)

We now focus on the first term appearing in the expression above. We use the same
technique as in the proof of [19, Theorem 6]. By the inclusion–exclusion formula it
is easy to see that

P
(
Yz = 1, z ∈ S,Yu = 0, u ∈ B\(A ∪ S), Nw ∈ (L , L ′), w ∈ B | F)

=
ndβ−|S∪(A∩B)|∑

�=0

(−1)�
∑

W∈(B\(S∪A)
� )

E

[
∏

u∈S∪W
Yu1(Nu ∈ (L , L ′))

∣∣
∣∣ F

]

and

ν(S ∩ B) =
ndβ−|S∪(A∩B)|∑

�=0

(−1)�
∑

W∈(B\(S∪A)
� )

(
1

nαd

)|S|+�

,

where for a set P and � ∈ N we write
(P

�

)
for the collection of subsets of P of size

�. Let K = 1, . . . , ndβ−|S∪(A∩B)|
2 to be determined later. Applying the Bonferroni

inequalities as in [13,19] the sum in (5.4) is upper bounded by

E

⎡

⎢⎢
⎣
∑

B∈Sβ

∑

S∈SB|S|≤M

⎡

⎢
⎣

2K∑

�=0

(−1)�
∑

W∈(B\(S∪A)
� )

(

E

[
∏

v∈S∪W
Yv1(Nv ∈ (L , L ′))

∣
∣∣∣ F

]

−
(

1

nαd

)|S|+�
)⎤

⎥
⎦

+

⎤

⎥⎥
⎦

+
∑

B∈Sβ

∑

S∈SB|S|≤M

∑

W∈(B\(S∪A)
2K )

(
1

nαd

)|S|+2K

. (5.5)
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We start by showing that the second term in (5.5) is o(1). Indeed, it can be bounded
by

� nd−dβ
M∑

s=0

(
ndβ

s

)(
ndβ − s

2K

)(
1

nαd

)s+2K

≤ nd−dβ
M∑

s=0

ndβs

s! · n
2dβK

(2K )! · 1

nαds+2αdK

= nd−dβ
M∑

s=0

1

ndεs+2dεK
· 1

s!(2K )! � 1

(2K )!n
d−αd+dε−2dK ε.

Choosing K > 0 such that d − αd + dε − 2dK ε < 0 gives that the above expression
is o(1). This leads us to choose K > 1−α+ε

2ε . Next we turn to bound the first term

appearing in (5.5). To do that we split the sum over all W ∈ (B\(S∪A)
�

)
into the sets

W such that W ∪ S ∈ S and into those W such that W ∪ S /∈ S. We also bound the
positive part by the absolute value, so that we may forget about the term (−1)�. Hence
now we focus on proving that the following is o(1):

∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=0

∑

W∈(B\(S∪A)
� )

W∪S∈S

E

[∣∣∣∣∣
E

[
∏

v∈S∪W
Yv1(Nv ∈ (L , L ′))

∣∣∣∣ F
]

−
(

1

nαd

)|S|+�
∣∣∣∣∣

]

(5.6)

+
∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=1

∑

W∈(B\(S∪A)
� )

W∪S /∈S

E

[∣∣∣∣∣
E

[
∏

v∈S∪W
Yv1(Nv ∈ (L , L ′))

∣∣∣∣ F
]

−
(

1

nαd

)|S|+�
∣∣∣∣∣

]

(5.7)

Claim 5.3 There existsα1(d) ∈ (0, 1) depending only on d such that for allα > α1(d)

we have that the sum in (5.6) is o(1) as n → ∞.

Proof Let W ∈ (B\S
�

)
such that W ∪ S ∈ S. Note that |W ∪ S| = |S| + �. Note that

since γ = 2α −1−2ε, if we take ϕ satisfying the assumption of Claim 5.1 and ε > 0
sufficiently small, then nϕ < nγ . Hence we can use Lemma 3.2 to get that almost
surely

(
1 − Cd

rd−2

(
1 + O

(
1

nϕ(κ−2)/κ

)))L ′(|S|+�)

≤ E

[
∏

v∈S∪W
Yv1(Nv ∈ (L , L ′))

∣∣∣
∣ F

]

≤
(
1 − Cd

rd−2

(
1 + O

(
1

nϕ(κ−2)/κ

)))L(|S|+�)

.
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Substituting the value of t∗ into the expressions for L and L ′ from (5.3), using
Lemma 3.2 and the value of δ (recall Eq. (4.1)) we get that

L = αrd−2 log(nd)

Cd

(
1 + O

(
nψ

nϕ(d−2)/κ

))
and (5.8)

L ′ = αrd−2 log(nd)

Cd

(
1 + O

(
nψ

nϕ(d−2)/κ

))
. (5.9)

From (5.8) and using that for all x we have e−x ≥ 1 − x we get
(
1 − Cd

rd−2

(
1 + O

(
1

nϕ(κ−2)/κ

)))L(|S|+�)

≤ exp

(
−L(|S| + �)

Cd

rd−2

(
1 + O

(
1

nϕ(κ−2)/κ

)))

= exp

(
−α log(nd)(|S| + �)

(
1 + O

(
nψ

nϕ(κ−2)/κ

)))

= n−αd(|S|+�) exp

(
−α log(nd)(|S| + �)O

(
nψ

nϕ(κ−2)/κ

))

≤ n−αd(|S|+�)

(
1 − log(nd)(|S| + �)O

(
nψ

nϕ(κ−2)/κ

))
,

where in the last inequality we used that for all x > 0 we have e−x ≤ 1− x + x2 and
that |S| + � is at most M + 2K which is independent of n. Similarly substituting the
value of L ′ and using 1 − x ≥ e−x−2x2 for x ∈ (0, 1/2) we obtain

(
1 − Cd

rd−2

(
1 + O

(
1

nϕ(κ−2)/κ

)))L ′(|S|+�)

≥ exp

(
−L ′(|S| + �)

Cd

rd−2

(
1 + O

(
1

nϕ(κ−2)/κ

))
− L ′(|S| + �)O

(
1

r2(d−2)

))

= exp

(
−α log(nd)(|S| + �)

(
1 + O

(
nψ

nϕ(κ−2)/κ

)))

= n−αd(|S|+�) exp

(
− log(nd)(|S| + �)O

(
nψ

nϕ(κ−2)/κ

))

≥ n−αd(|S|+�)

(
1 − log(nd)(|S| + �)O

(
nψ

nϕ(κ−2)/κ

))
.

Putting everything together we deduce
∣∣
∣∣∣
E

[
∏

v∈S∪W
Yv1(Nv ∈ (L , L ′))

∣∣
∣∣ F

]

−
(

1

nαd

)|S|+�
∣∣
∣∣∣

≤ n−αd(|S|+�)(|S| + �)O

(
nψ log n

nϕ(κ−2)/κ

)
.
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Therefore the sum in (5.6) is bounded from above by

∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=0

∑

W∈(B\(S∪A)
� )

W∪S∈S

n−αd(|S|+�)(|S| + �)O

(
nψ log n

nϕ(κ−2)/κ

)
(5.10)

≤
∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=0

ndβ�

�! n−αd(|S|+�)(|S| + �)O

(
nψ log n

nϕ(κ−2)/κ

)

≤ nd−dβ
M∑

s=0

ndβs

s!
2K∑

�=0

(M + 2K )n−αds−εd�O

(
nψ log n

nϕ(κ−2)/κ

)

= nd−dβ
M∑

s=0

1

s!
2K∑

�=0

(M + 2K )n−εds−εd�O

(
nψ log n

nϕ(κ−2)/κ

)

� nd−dβ− ϕ
κ
(κ−2)+ψ log n. (5.11)

Thus if

d − dβ − ϕ

κ
(κ − 2) + ψ < 0, (5.12)

then this last quantity is o(1). Recall that ϕ was taken to satisfy ϕ < (d + 1)α − d − ε

from Claim 5.1. These two inequalities together give that

α >
(κ − 2)d + dκ

(d + 1)(κ − 2) + dκ
+ ε(κ − 2) + dεκ + ψκ

(d + 1)(κ − 2) + dκ
.

Since we can take ψ and ε as small as we like, we deduce that for any

α >
(κ − 2)d + dκ

(κ − 2)(d + 1) + dκ
=: α1(d), (5.13)

the sum in (5.10) is o(1) as n → ∞ and this finishes the proof of the claim. ��
Remark 5.4 We now explain how we chose the values of r , R, and δ. The error terms
that come from the hitting estimate Lemma 3.2 are O(r/R) and O(1/r2) where r and
R are the in and out radii, respectively, for the annulus that we put around each point.
From the expressions (5.8) and (5.9) for L and L ′, respectively, we get the additional
factor of 1 + O(δ) where δ is as in (4.1). Combining the different estimates yields
an error term which is of order O(r/R) + O(1/r2) + O(δ). From the concentration
result (Lemma 2.12) the smallest value of δ that we can choose is of order r (2−d)/2nψ .
In particular, the value of r essentially determines the value of δ. The largest value of
R that we can take is of order nϕ because we need the outer boundary of the annulus
centred at a point x ∈ S for S ∈ Sβ to fit inside S. Given this choice, it is not hard to
see that the optimal choice of r is �n2ϕ/κ .
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It only remains to show that the sum in (5.7) is o(1). This will follow from the
following two claims:

Claim 5.5 If γ ∈ (0, 2β − 1), then as n → ∞

∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=1

∑

W∈(B\(S∪A)
� )

W∪S /∈S

(
1

nαd

)|S|+�

= o(1).

Proof Clearly we have

∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=1

∑

W∈(B\(S∪A)
� )

W∪S /∈S

(
1

nαd

)|S|+�

� nd−dβ
∑

U⊆B:
U /∈S,|U |≤M+2K

1

nαd|U |

= nd−dβ
M+2K∑

m=2

∑

U⊆B:
U /∈S,|U |=m

1

nαdm
.

(5.14)

We now bound the total number of sets U ⊆ B with U /∈ S such that |U | = m. Since
U /∈ S, there exist two points of U that are at distance less than nγ from each other.
The number of ways of choosing these two points is�ndβ ·ndγ . Then we have to pick
another m − 2 points. Therefore we get

|{U ⊆ B : U /∈ S, |U | = m}| � ndβ · ndγ ·
(

ndβ

m − 2

)
≤ ndβ · ndγ · n

dβ(m−2)

(m − 2)! .
(5.15)

Hence (5.14) is

� nd−dβ
M+2K∑

m=2

ndβ · ndγ · n
dβ(m−2)

(m − 2)! · 1

nαdm
� nd−2dβ+dγ−εd . (5.16)

Since γ = 2α − 1 − 2ε we get that the expression in (5.16) is o(1) as n → ∞. ��
Claim 5.6 For all α > α1(d) we have as n → ∞ that

∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=1

∑

W∈(B\(S∪A)
� )

W∪S /∈SB

E

[
∏

u∈S∪W
Yu1(Nu ∈ (L , L ′))

]

= o(1). (5.17)
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Proof Fix ζ > 0;wewill determine its precise value later. Firstwedefine the collection
of the ζ -separated subsets of the box B similar to Sect. 4:SB(ζ ) = {U ⊆ B : |x−y| ≥
nζ ,∀x, y ∈ U }. The expression in the left side of (5.17) is upper bounded by

∑

B∈Sβ

∑

S∈SB|S|≤M

2K∑

�=1

∑

W∈(B\(S∪A)
� )

W∪S /∈SB

E

[
∏

u∈S∪W
Yu

]

≤
∑

B∈Sβ

∑

U⊆B:U /∈SB ,
|U |≤M+2K

E

[
∏

u∈U
Yu

]

= nd−dβ
∑

U⊆B:U /∈SB ,
|U |≤M+2K ,U∈SB (ζ )

E

[
∏

u∈U
Yu

]

+ nd−dβ
∑

U⊆B:U /∈SB ,
|U |≤M+2K ,U /∈SB (ζ )

E

[
∏

u∈U
Yu

]

= I + I I.

For the term I , using (5.15) and Lemma 4.3, since U ∈ SB(ζ ), we get

I � nd−dβ
M+2K∑

m=2

ndβ · ndζ · ndβ(m−2) · 1

nαdm(1+o(1))
� nd+dζ−2dβ−εd+o(1).

If ζ ∈ (0, 2α − 1 − ε), this last quantity is o(1). It remains to bound I I . We view
U /∈ SB(ζ )withU ⊆ B as a subset of the graphwhich arises by adding edges between
all of the vertices of Z

d
n at distance at most nζ . Writing S(ζ, f,m) for the collection

of sets U ⊆ B with U /∈ SB(ζ ) and |U | = m that consist of f components, we have

|S(ζ, f,m)| � ndβ f · ndζ(m− f ) · (m − 1)m,

since first we choose one point for each component among the ndβ possible points
and then we connect the remaining m − f points to the already existing components.
This upper bound and the same explanation appears in [19]. Using also Lemma 4.4
we deduce

I I ≤ nd−dβ
∑

U⊆B:U /∈SB ,
U /∈SB (ζ ),|U |≤M+2K

E

[
∏

u∈U
Yu

]

� nd−dβ
M+2K∑

m=2

m−1∑

f =1

ndβ f ndζ(m− f )

nαd f +αd(1−pd )/(1+pd )+o(1)

� nd−2αd/(1+pd )+dζ(M+2K−1)+o(1).

Since for all d we have α1(d) > (1 + pd)/2, by taking ζ sufficiently small we see
that this last quantity is o(1) and this finishes the proof of the claim and the proof of
Part I of the theorem. ��
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Proof of Lemma 5.2 We recall from (4.1) that δ = nϕ(2−d)/κ+ψ and recall from the
setup in Sect. 4 that for S ∈ Sβ we write τS for the first time that X has made
E(αt∗, δ/4) = αt∗E [W ] /((1 + δ/4)T �,◦

nβ ,10
√
dnβ

) excursions across the annulus S\S.
We now let

U S = {z ∈ S : τz ≥ τS} and U =
⋃

S∈Sβ

U S .

Note that it suffices to show that P
(U(αt∗) = U) = 1− o(1). If xS is the center of the

box S ∈ Sβ , we write NS(t) = NxS (n
β, nβ + nϕ, t). Since the value of δ satisfies the

assumptions of Lemma 2.9 we immediately get

P
(U(αt∗) � U) ≤ P

(∃S ∈ Sβ : NS(αt∗) < E(αt∗, δ/4)
) = o(1) as n → ∞.

(5.18)

Therefore, it remains to show that P
(U ⊆ U(αt∗)

) = 1 − o(1). We first note that

P

(
min
S∈Sβ

τS ≥ αt∗(1 − 2δ)

)
= 1 − o(1). (5.19)

Indeed, by Lemma 2.9 we have

P

(
min
S∈Sβ

τS < αt∗(1 − 2δ)

)
= P

(∃S ∈ Sβ : τS < αt∗(1 − 2δ)
)

≤ nd−dβ
P
(
NS(αt∗(1 − 2δ)) > E(αt∗, δ/4)

)

� nd−dβ exp
(
−cn(d−2)(β−2ϕ/κ)+ψ

)
= o(1),

since 2ϕ/κ < β by Claim 5.1 provided that ε > 0 is sufficiently small. For each box
S ∈ Sβ and each point z ∈ S, let σz be the first time that X |[τS ,∞) has made

10δt∗
T ◦,◦
nβ ,10nβ

≡ E

excursions across the annulus B(z, 10nβ)\B(z, nβ). Then we have

P

(
min
z

σz < αt∗
)

= P

(
min
z

σz < αt∗, min
S∈Sβ

τS > αt∗(1 − 2δ)

)
+ o(1)

≤ ndP

(

N ◦,◦
z (nβ, 10nβ, 2αt∗δ) >

10t∗δ
T ◦,◦
nβ ,10nβ

)

+ o(1) = o(1),

where the final assertion follows fromLemma 2.4. (Lemma 2.4 is stated and proved for
t � nd log n. The same result and proof are also applicable for times t > n3/2+ε for any
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fixed ε > 0. In this case the exponent in the first error term becomes t/(T ◦,◦
nβ ,10nβn

ψ)).)
Consequently,

P

(
min
z

σz ≥ αt∗
)

= 1 − o(1),

and hence it follows that

P ({z : τz ≥ σz} ⊆ U(αt∗)) = 1 − o(1). (5.20)

In order to show that P
(U ⊆ U(αt∗)

) = 1 − o(1), it suffices to show that

P
({z : τz ≥ σz} = U) = 1 − o(1).

By (5.18) and (5.20) we only need to show that

P
(U ⊆ {z : τz ≥ σz}

) = 1 − o(1). (5.21)

In order to prove this, we are going to get a bound on the probability that X visits
a given point z ∈ U ∩ S in the time interval [τS, σz]. By Lemma 3.2 we obtain for
constants c1, c2, c3 > 0 that

P
(
τz ≤ σz | z ∈ U) = P

(
z is hit in [τS, σz] | z ∈ U)

= P
(
z is hit in E excursions | z ∈ U)

≤ 1 −
(
1 − c1

nβ(d−2)

)E ≤ 1 − exp
(
c2n

− ϕ
κ
(d−2)+ψ log n

)
≤ c3n

− ϕ
κ
(d−2)+2ψ.

We now use the above estimate to prove (5.21). We have

P
(U � {z : τz ≥ σz}

) ≤
∑

z

P
(
τz ≤ σz, z ∈ U) =

∑

z

P
(
τz ≤ σz | z ∈ U)P

(
z ∈ U)

� E
[|U |] c3n− ϕ

κ
(d−2)+2ψ. (5.22)

From Lemma 4.3 we immediately get

E
[|U |] =

∑

z

P (Yz = 1) � nd−αd . (5.23)

Therefore combining (5.22) and (5.23) we deduce

P
(U � {z : τz ≥ σz}

)
� nd−αd− ϕ

κ
(d−2)+2ψ,

and using (5.12) it follows that for ψ sufficiently small this last quantity is o(1) as
n → ∞ and this concludes the proof. ��
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Proof of Theorem 1.1 Part II, existence of α0(d) We define

W =
∑

x,y:‖x−y‖=1

1(Qx = Qy = 1) and U =
∑

x,y:‖x−y‖=1

1(Zx = Zy = 1).

(5.24)

SinceP
(
Zx = Zy = 1

) = n−2αd , we get thatE [U ] � nd−2αd . Let ε ∈ (0, 2αpd/(1+
pd)). Then we have

‖L(Q) − L(Z)‖TV ≥ P

(
W ≥ nd−2αd/(1+pd )−εd

)
− P

(
U ≥ nd−2αd/(1+pd )−εd

)
.

By Markov’s inequality we immediately get

P

(
U ≥ nd−2αd/(1+pd )−εd

)
= o(1) as n → ∞

since ε < 2αpd/(1 + pd). It thus remains to show that

P

(
W ≥ nd−2αd/(1+pd )−εd

)
= 1 − o(1) as n → ∞. (5.25)

Let L = {(xi , yi )}nd−ε

i=1 be a grid of points such that ‖xi − yi‖ = 1 for all i and
‖xi − y j‖ ≥ nε/d for all i �= j . We now place two balls around each pair of points

xi , yi of radii R = nε/d/2 and r = nε/d2 . Let Ni be the number of excursions in the
annulus around the point xi up to time αt∗. Let Ei be the event that neither xi nor yi
is covered during the A′ = αt∗/((1− δ)T ◦,◦

r,R ) excursions of the annulus around them,

where δ = r (2−d)/2nψ for some ψ > 0 sufficiently small. We now define

W̃ =
nd−ε∑

i=1

1(Ei ).

Then by the union bound and Lemma 2.4 we have that

P
(∃i : Ni > A′) = o(1) as n → ∞.

Therefore we get as n → ∞ that

P
(
W ≤ W̃

) ≤ P
(∃i : Ni > A′) = o(1).

So we can now bound

P

(
W ≥ nd−2αd/(1+pd )−εd

)
≥ P

(
W̃ ≥ nd−2αd/(1+pd )−εd ,W ≥ W̃

)

≥ P

(
W̃ ≥ nd−2αd/(1+pd )−εd

)
+ o(1).
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It thus suffices to show that

P

(
W̃ ≥ nd−2αd/(1+pd )−εd

)
= 1 − o(1) as n → ∞.

Let F be the σ -algebra generated by X (τ j (xi )) and X (σ j (xi )) for all i and j , where
τ j (xi ) and σ j (xi ) are as defined at the beginning of Sect. 2. Then given F the events

Ei become independent. From (3.2) of Lemma 3.7 and using 1 − x ≥ e−x−2x2 for
x ∈ (0, 1/2) we get that for all i and all n sufficiently large

P (Ei | F) ≥
(
1 − 2Cd

(1 + pd)rd−2 + O

(
1

rd

))A′

≥ exp

(
−A′ 2Cd

(1 + pd)rd−2 + O

(
1

rd

)
A′
)

� n−2αd/(1+pd )+o(1).

From the above it follows that for all n sufficiently large

E

[
W̃

∣∣∣
∣ F

]
− nd−2αd/(1+pd )−εd ≥

E

[
W̃

∣∣∣
∣ F

]

2
,

and hence by Chebyshev’s inequality we get

P

(
W̃ ≤ nd−2αd/(1+pd )−εd

)
= E

[
P

(
W̃ ≤ nd−2αd/(1+pd )−εd | F

)]

≤ E

⎡

⎢⎢⎢
⎣

P

⎛

⎜⎜⎜
⎝

∣∣∣∣W̃ − E

[
W̃

∣∣∣∣ F
]∣∣∣∣ ≥

E

[
W̃

∣∣∣∣ F
]

2
| F

⎞

⎟⎟⎟
⎠

⎤

⎥⎥⎥
⎦

≤ 4E

⎡

⎢⎢⎢⎢
⎣

var(W̃ |F)

E

[
W̃

∣∣∣∣ F
]2

⎤

⎥⎥⎥⎥
⎦

.

Since conditional on F the events Ei are independent, we get

var(W̃ |F) =
∑

i

var(1(Ei )|F) =
∑

i

(
P (Ei | F) − P (Ei | F)2

)
≤ E

[
W̃

∣∣∣∣ F
]

.

Therefore, we deduce

P

(
W̃ ≤ nd−2αd/(1+pd )−εd

)
≤ 4E

⎡

⎢⎢⎢
⎣

1

E

[
W̃

∣∣∣∣ F
]

⎤

⎥⎥⎥
⎦

� 1

nd−2αd/(1+pd )−ε+o(1)
.

123



1042 J. Miller, P. Sousi

Setting α0(d) = (1 + pd)/2 gives that for all α ∈ (0, α0(d)) if we take ε sufficiently
small the quantity above is o(1) and this concludes the proof of the theorem. ��

6 Exact uniformity

In this section we prove Theorem 1.2. We start with a preliminary lemma.

Lemma 6.1 Fix γ > 0. Let A ⊆ Z
d
n satisfy A ∈ S(γ ) (recall (4.2)). Then for all x

such that dist(x, A) ≥ nγ and all z ∈ A we have

Px (X (τA) = z) = 1

|A| + O(|A|n−γ (d−2)) as n → ∞,

where τA is the first hitting time of A.

Proof We let

tunif = min

{
t ≥ 0 : max

x,y

∣
∣∣∣1 − Pt (x, y)

π(y)

∣
∣∣∣ ≤ 1

4

}
.

Then it is standard that tunif � c(d)n2 with c(d) only depending on dimension. Let
ε > 0 be sufficiently small. We define

τ ′
A = inf

{
t ≥ nεtunif : X (t) ∈ A

}
.

Then we have

Px (X (τA) = z) = Px
(
X (τA) = z, τA ≥ nεtunif

)+ Px
(
X (τA) = z, τA < nεtunif

)

= Px
(
X (τ ′

A) = z
)− Px

(
X (τ ′

A) = z, τA < nεtunif
)+ Px

(
X (τA) = z, τA < nεtunif

)
.

(6.1)

By the Markov property we have

Px
(
X (τ ′

A) = z
) =

∑

y

Px
(
X (τ ′

A) = z, X (nεtunif) = y
)

=
∑

y

Py (X (τA) = z) Px
(
X (nεtunif) = y

)

=
(
1 + O(e−cnε

)
)

Pπ (X (τA) = z) , (6.2)

where the last equality follows from Proposition 8.1. Let τ+
A be the first return time to

A. By reversibility we have for all z ∈ A
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Pπ (X (τA) = z) =
∑

t≥0

Pπ (X (0) /∈ A, X (1) /∈ A, . . . , X (t − 1) /∈ A, X (t) = z)

=
∑

t≥0

Pπ (X (0) = z, X (1) /∈ A, . . . , X (t − 1) /∈ A, X (t) /∈ A)

=
∑

t≥0

π(z)Pz (X (1) /∈ A, . . . , X (t) /∈ A)

=
∑

t≥0

π(z)Pz
(
τ+
A > t

) = π(z)Ez
[
τ+
A

]
. (6.3)

Since A ∈ S(γ ), it follows that for all w ∈ A we have A ∩ B(w) = {w}, where
B(w) = B(w, nγ /2). This now gives that for all w ∈ A

Ew

[
τ+
A 1(τ+

A < τ∂B(w))
] = K and Pw

(
τ+
A > τ∂B(w)

) = s (6.4)

where K and s are independent of w and τ∂B(w) is the first hitting time of ∂B(w).
Therefore we get

Ez
[
τ+
A

] = Ez
[
τ+
A 1(τ+

A < τ∂B(z))
]+ Ez

[
τ+
A 1(τ+

A > τ∂B(z))
]

= K + Ez
[
τ+
A 1(τ+

A > τ∂B(z))
]
. (6.5)

Using (6.4) we obtain for all z ∈ A

Ez
[
τ+
A 1(τ+

A > τ∂B(z))
] = Ez

[
EX (τ∂B(z)) [τA]

]
Pz
(
τ+
A > τ∂B(z)

)

= sEz
[
EX (τ∂B(z)) [τA]

]
. (6.6)

Writing for shorthand E∂B [F] = Ez
[
EX (τ∂B(z)) [F]

]
we deduce

E∂B [τA] = E∂B
[
τ ′
A1(τA ≥ nεtunif)

]+ O(n2+ε)

= E∂B
[
τ ′
A

]− E∂B
[
τ ′
A1(τA < nεtunif)

]+ O(n2+ε). (6.7)

Using again Proposition 8.1 as in the last step of (6.2) we have

E∂B
[
τ ′
A

] =
(
1 + O(e−cnε

)
)

Eπ [τA] . (6.8)

We also have

E∂B
[
τ ′
A1(τA < nεtunif)

] = E∂B
[
τ ′
A

∣∣ τA < nεtunif
]
P∂B

(
τA < nεtunif

)
(6.9)

and sincemaxx,y Ex
[
τy
] � nd (this follows from instance fromLemma 8.3 for r = 1)

we obtain

E∂B
[
τ ′
A

∣∣ τA < nεtunif
]

� n2+ε + nd � nd . (6.10)
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Writing G(x, y) = Ex
[∑tunif

t=0 1(X (t) = y)
]
for the Green kernel we have by

Lemma 8.2 that

P∂B (τA ≤ tunif) ≤
∑

w∈A

G(∂B(z), w) = O
(
|A|n−γ (d−2)

)
, (6.11)

since dist(w, ∂B(z)) ≥ nγ /2 for all w ∈ A. By the union bound we get

P∂B
(
tunif < τA < nεtunif

)
� n2+ε |A|

nd
= O(|A|n2−d+ε). (6.12)

Therefore, from (6.11) and (6.12) we deduce

P∂B
(
τA < nεtunif

) = P∂B (τA ≤ tunif) + P∂B
(
tunif < τA < nεtunif

)

= O(|A|n−γ (d−2)), (6.13)

since γ ∈ (0, 1) and ε > 0 is sufficiently small. Similarly we have

Px
(
τA < nεtunif

) = O(|A|n−γ (d−2)). (6.14)

Substituting (6.10) and (6.13) into (6.9) we get

E∂B
[
τ ′
A1(τA < nεtunif)

]
� nd |A|n−γ (d−2). (6.15)

Plugging (6.8) and (6.15) into (6.7) gives

E∂B [τA] =
(
1 + O(e−cnε

)
)

Eπ [τA] + O(nd |A|n−γ (d−2)) + O(n2+ε)

= Eπ [τA] + O(nd |A|n−γ (d−2)) + O(n2+ε). (6.16)

Combining (6.16) with (6.1), (6.2), (6.3), (6.5), (6.6) and (6.14) results in

Px (X (τA) = z) = K + sEπ [τA]

nd
+ O(|A|n−γ (d−2)).

Since the first term appearing in the sum above is independent of z by summing the
above equality over all z ∈ A we get

1 = |A|
(
K + sEπ [τA]

nd

)
+ O(|A|2n−γ (d−2)).

This implies that

K + sEπ [τA]

nd
= 1

|A| + O(|A|n−γ (d−2)).
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Finally we get

Px (X (τA) = z) = 1

|A| + O(|A|n−γ (d−2))

and this finishes the proof. ��
Proof of Theorem 1.2 Part I, existence of α1(d) Let t1 = (α − ε)t∗, where α − ε >

α1(d) and α1(d) is as in Theorem 1.1. For each x ∈ Z
d
n we let Zx = 1 with probability

n−d(α−ε) and 0 otherwise, independently over different x ∈ Z
d
n . We set V = {x ∈

Z
d
n : Zx = 1}. Then by Theorem 1.1 we have that

‖L(U(t1)) − L(V )‖TV = o(1) as n → ∞,

where we recall that U(t) is the uncovered set at time t . Therefore there exists a
coupling of V and U(t1) such that

P (U(t1) �= V ) = o(1) as n → ∞. (6.17)

We now describe a coupling of the laws of U(τα) andWα: First we fix γ ∈ (0, 2(α −
ε) − 1). We couple U(t1) and V using the optimal coupling. If |V | < nd−αd or
V /∈ S(γ ), then we generate U(τα) and Wα independently. If |V | ≥ nd−αd and
V ∈ S(γ ), then we keep running the random walk until it has visited nd − nd−αd

points. We also remove points from V independently at random until we are left with
a set on nd−αd points. Note that the resulting set is equal in distribution to Wα .

Let ξ1, . . . , ξ|V |−nd−αd ∈ U(t1) be the first |V | − nd−αd points in V visited by the
random walk after time t1. Let ζ1 be uniform in V . For each 2 ≤ j ≤ |V | − nd−αd we
inductively let ζ j be uniform in V \{ζ1, . . . , ζ j−1}. Then by Lemma 6.1 there exists a
coupling of (ξi ) and (ζi ) such that

P

(
ξi �= ζi | V = U(t1) ∈ S(γ ), ξ j = ζ j ,∀ j < i, |V | ≤ nd−αd+ε

)

� n−γ (d−2) · n2(d−αd+ε). (6.18)

We first couple ξ1 and ζ1 using the above coupling. If this succeeds, then we couple
ξ2 and ζ2 in the same way. If at some point the coupling fails, then we let the two
processes evolve independently. Therefore we get

P (U(τα) �= Wα) ≤ P (U(t1) �= V ) + P

(
|V | > nd−αd+ε

)
+ P (V /∈ S(γ ))

(6.19)

+P

(
∃i ≤ |V | : ξi �= ζi | U(t1) = V, |V | ≤ nd−αd+ε, V ∈ S(γ )

)
. (6.20)

Since E [|V |] = nd−αd by Markov’s inequality we get as n → ∞

P

(
|V | > nd−αd+ε

)
= o(1). (6.21)
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Using Lemma 4.5 and (6.17) or by a straightforward calculation we obtain that for
γ ∈ (0, 2(α − ε) − 1)

P (V /∈ S(γ )) ≤ P (U(t1) /∈ S(γ )) + o(1) = o(1). (6.22)

By the union bound we now have

P

(
∃i ≤ |V | : ξi �= ζi | U(t1) = V, |V | ≤ nd−αd+ε, V ∈ S(γ )

)

≤ n−γ (d−2)
(
nd−αd+ε

)3 = n−γ (d−2)+3d−3αd+3ε.

Using the expression forα1(d) given in (5.13), choosing ε sufficiently small and taking
γ = 2(α − ε) − 1− ε give that the above quantity is o(1), since α − ε > α1(d). This
together with (6.19), (6.21) and (6.22) implies that

P (U(τα) �= V ) = o(1) as n → ∞

and this concludes the proof. ��
Proof of Theorem 1.2 Part II, existence of α0(d) The proof of this part follows in the
same way as the proof of the existence of α0(d) in Theorem 1.1. Let α0(d) be as in
Theorem 1.1 and α > 0 with α + ε < α0(d) with ε > 0 sufficiently small. We let
Qu = 1(u ∈ U(τα)) and Zu = 1(u ∈ Wα). Then we define

W ′ =
∑

x,y:‖x−y‖=1

1(Qx = Qy = 1) and U ′ =
∑

x,y:‖x−y‖=1

1(Zx = Zy = 1).

Then for all x, y ∈ Z
d
n distinct we have

P
(
Zx = Zy = 1

) = nd−αd

nd
· n

d−αd − 1

nd − 1
,

and hence E
[
U ′] � nd−2αd . Let t1 = (α + ε)t∗. Then on the event {τα ≤ t1} we

have W ′ ≥ W , where W is defined in (5.24) in the proof of Theorem 1.1 Part II. Take
ε ∈ (0, 2αpd/(1 + pd)). Then we have

‖L(U(τα)) − L(Wα)‖TV ≥ P

(
W ′ ≥ nd−2αd/(1+pd )−εd

)

−P

(
U ′ ≥ nd−2αd/(1+pd )−εd

)
.

By Markov’s inequality we get

P

(
U ′ ≥ nd−2αd/(1+pd )−εd

)
= o(1) as n → ∞,
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since ε ∈ (0, 2αpd/(1 + pd)). By Markov’s inequality again we have

P (τα > t1) = P

(
|U(t1)| > nd−αd

)
≤ 1

nεd
= o(1) as n → ∞,

where we used that E [|U(t1)|] � nd−d(α+ε). Therefore we get

P

(
W ′ ≥ nd−2αd/(1+pd )−εd

)
≥ P

(
W ′ ≥ nd−2αd/(1+pd )−εd , τα < t1

)

≥ P

(
W ≥ nd−2αd/(1+pd )−dε

)
− o(1) = 1 − o(1),

where the last equality follows from (5.25) in the proof of Theorem 1.1 Part II and
this concludes the proof. ��

7 Further questions

Throughout, we let α0(d) (resp. α1(d)) be the largest (resp. smallest) value such that
the assertions of (1.1)–(1.4) hold.

Question 1 What are the precise values of α0(d) and α1(d)? Is it true that α0(d) cor-
responds to the threshold α0(d) = (1+ pd)/2 above which U(t)with high probability
does not have neighbouring points while belowwhich it does (as shown in Sects. 4 and
5)? Is there a phase transition: is it true that α0(d) = α1(d)? Our lower bound α0(d)

for α0(d) converges to 1
2 as d → ∞. Is this the correct asymptotic value of both α0(d)

and α1(d) in the d → ∞ limit (in agreement with the threshold for non-uniformity in
the sense of [17])?

Question 2 What is the asymptotic law of U(αt∗) for α ∈ (0, α0(d))? We proved in
Theorem 1.1 that U(αt∗) for α ∈ (0, α0(d)) is not uniformly random by showing that
it contains more neighbours than a random subset of Z

d
n where points are included

independently with probability n−αd . The arguments of Sect. 4 generalize to give that
for any α ∈ (0, 1) there exists k = k(α) and γ > 0 such that each ball of radius nγ

contains at most k points with high probability. This suggests that there is a way to
describe U(αt∗) by:

(i) sampling points in Z
d
n independently with probability �n−αd and then

(ii) decorating the neighbourhood of each such point in a given way.

Question 3 For what class of graphs beyond Z
d
n for d ≥ 3 do the results of Theo-

rems 1.1 and 1.2 also hold?
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Appendix 1: Elementary estimates

We begin by recording a few elementary estimates for Markov chains and random
walks. Afterwards, we will give the proofs of several results stated in the text. The
following is a restatement of [17, Proposition 3.3].

Proposition 8.1 Suppose that ps(·, ·) denotes the transition kernel for a time-
homogeneous Markov chain on a countable state space with a unique stationary
distribution π . For every s, t ∈ N,

max
x

‖pt+s(x, ·) − π‖T V ≤ 4max
x,y

‖pt (x, ·) − π‖T V ‖ps(y, ·) − π‖T V (7.1)

max
x,y

∣∣
∣∣
pt+s(x, y)

π(y)
− 1

∣∣
∣∣ ≤ max

x,y

ps(x, y)

π(y)
max
x

‖pt (x, ·) − π‖T V . (7.2)

It is easy to see that the following result can be derived from [14, Theorem 4.3.1].

Lemma 8.2 Let G(x, y) = Ex
[∑tunif

t=0 1(X (t) = y)
]
, where tunif is the uniform mix-

ing time of random walk on Z
d
n . There exists a constant c1 > 0 depending only on

d ≥ 3 such that

G(x, y) ≤ c1(1 + |x − y|)2−d for all x, y ∈ Z
d
n .

The following is a standard hitting time estimate for random walk.

Lemma 8.3 For all r < n/4 we have

max
x∈Zd

n

Ex
[
τ∂B(0,r)

] � nd

rd−2 .

Proof of Lemma 2.2 It is clear that the sequence of exit points is a Markov chain.
Since it is irreducible on a finite state space, it has a unique invariant distribution π̃ .

Fix y ∈ ∂B(0, R). We let f (x) = P (X (τR) = y | X (τr ) = x). Then f is a har-
monic function and since R/r ≥ 10

√
d , then B(0, r) or S(0, r) are separated from

∂B(0, R), so we can apply Harnack’s inequality (Lemma 3.1) and thus we get a con-
stant c ≥ 1 such that for all x, z ∈ ∂B(0, r) or x, z ∈ ∂S(0, r) we have

1

c
f (z) ≤ f (x) ≤ c f (z)

uniformly over all y ∈ ∂B(0, R). From that it follows that if νx is the law of Y j given
that Y j−1 = x , then for all x, z ∈ ∂B(0, R)

1

c
νz ≤ νx ≤ cνz .
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By using the optimal coupling between νx and νy we get that for all x, y

‖νx − νy‖TV = 1 −
∑

z

νx (z) ∧ νy(z) ≤ 1 − 1

c

∑

z

νx (z) = 1 − 1

c
.

Therefore, since d̄(t) (defined in [15, Section 4.4])) is sub-multiplicative, we get that
for all t

d̄(t) ≤
(
1 − 1

c

)t

.

This now immediately gives that tmix = k0 < ∞ and independent of the size of the
state space.

Let μ denote the law of (YN , . . . ,YmN ), then we have

‖μ − π̃⊗m‖TV = 1

2

∑

y1,...,ym

|μ(y1, . . . , ym) − π̃(y1) · · · π̃(ym)|

= 1

2

∑

y1,...,ym

|μ(ym |y1, . . . , ym−1) · · · μ(y2|y1)μ(y1) − π̃(y1) · · · π̃(ym)|,

where we write μ(y j |y1, . . . , y j−1) for the conditional probability that Y jN = y j
given YiN = yi for all 1 ≤ i ≤ j − 1. Using Proposition 8.1 we get

μ(y j |y1, . . . , y j−1)

π̃(y j )
= 1 + O(e−cN ).

Substituting in the formula above we get for me−N < 1

‖μ − π̃⊗m‖TV = 1

2

∑

y1,...,ym

π̃(y1) · · · π̃(ym)

∣
∣∣(1 + O(e−cN ))m − 1

∣
∣∣ � me−cN ,

where in the last step we used that

ex − 1 ≤ 10x for x < 1.

If me−N > 1, then the bound of Lemma 2.2 is trivially true and this completes the
proof. ��
Proof of Claim 2.8 Since p ∈ (0, 1/2], we have that p/(1 − p) ≤ 1, and hence

E

[
X j
]

=
∞∑

x=1

x j (1 − p)x−1 p ≤
∞∑

x=1

x j e−px .
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We are now going to compare the sum appearing on the right hand side above to the
integral

∫∞
1 x j e−px dx . The function f (x) = x j e−px is increasing for x ≤ j/p and

decreasing for x > j/p. We thus have

∫ [ j/p]

1
x j e−xp dx =

[ j/p]−1∑

k=1

∫ k+1

k
x j e−xp dx ≥

[ j/p]−1∑

k=1

k j e−kp

and
∫ ∞

[ j/p]+1
x j e−xp dx =

∞∑

k=[ j/p]+1

∫ k+1

k
x j e−xp dx

≥
∞∑

k=[ j/p]+1

(k + 1) j e−(k+1)p =
∞∑

k=[ j/p]+2

k j e−kp.

Therefore we get

∞∑

k=1

k j e−kp =
[ j/p]−1∑

k=1

k j e−kp + f ([ j/p]) + f ([ j/p] + 1) +
∞∑

k=[ j/p]+2

k j e−kp.

Since the function f achieves its maximum at j/p we have that f (x) ≤ ( j/p) j e− j

for all x . Using the above inequalities we get

∞∑

k=1

k j e−kp ≤ 2( j/p) j e− j +
∫ ∞

1
x j e−xp dx .

It is easy to see that the integral appearing above is equal to j !/p j (it is the Gamma
function), and using Stirling’s formula we get

∞∑

k=1

k j e−kp � j !
p j

and this finishes the proof of the claim. ��
Proof of Lemma 3.1 By [14, Theorem 6.3.8, equation (6.19)] and using the fact that
R > 2r we get that there exists a universal constant c1 such that for all u, v ∈ B(0, r)
with ‖u − v‖ = 1

| f (u) − f (v)| ≤ c1
f (u)

R
. (7.3)

By Harnack’s inequality (see for instance [14, Theorem 6.3.9]) we get for a universal
constant c2 that

max
u∈B(0,r)

f (u) ≤ c2 f (y). (7.4)
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Let u0 = x, u1, . . . , u�−1, u� = y be the shortest path from x to y such that ‖ui+1 −
ui‖ = 1 for all i . Notice that the assumption x, y ∈ B(0, r) gives that � ≤ 2r and
ui ∈ B(0, r) for all i . We thus obtain

∣∣∣∣
f (x)

f (y)
− 1

∣∣∣∣ = | f (x) − f (y)|
f (y)

≤
�−1∑

i=0

| f (ui+1) − f (ui )|
f (y)

≤
�−1∑

i=0

c1 f (ui )

R f (y)
≤ 2c1c2r

R
,

where in the second inequality we used (7.3) and for the last one we used (7.4).
Therefore we deduce

f (x)

f (y)
= 1 + O

( r

R

)
(7.5)

and this concludes the proof. ��
Proof of Lemma 3.2 Let G be the Green kernel for simple random walk in Z

d . Then
by [14, Theorem 4.3.1] we have that as ‖x‖ → ∞, then

G(x) = cd
‖x‖d−2 + O

(
1

‖x‖d
)

,

where cd is a constant that only depends on the dimension d. By Bayes’ formula we
have

Px (τz < τR | X (τR) = y) = Px (X (τR) = y | τz < τR) Px (τz < τR)

Px (X (τR) = y)
. (7.6)

We now treat the term Px (τz < τR) and the ratio Px (X (τR) = y | τz < τR) /

Px (X (τR) = y) separately. By transitivity in expressions involving the Green ker-
nel we will take z = 0. However, ‖z‖ refers to the setting without the translation.
Since the Green kernel is harmonic outside of 0, we can apply the optional stopping
theorem to get

G(x) = G(0)Px (τz < τR) + Ex
[
G(X (τR))

∣∣ τR < τz
]
(1 − Px (τz < τR)) .

Since R − ‖z‖ ≤ ‖X (τR)‖ ≤ R + ‖z‖ and r − ‖z‖ ≤ ‖x‖ ≤ r + ‖z‖ and we have
that ‖z‖ ≤ r/4, r, R → ∞ as n → ∞ by substituting in the asymptotic expression
for the Green kernel, we get

Px (τz < τR) = cd
G(0)rd−2

(
1 + O

(( r
R

)d−2
)

+ O

(
1

r2

)
+ O

(‖z‖
r

))
. (7.7)

Now it remains to bound the ratio

Px (X (τR) = y | τz < τR)

Px (X (τR) = y)
= Pz (X (τR) = y)

Px (X (τR) = y)
,
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where the equality follows by the strong Markov property. If we set f (w) =
Pw (X (τR) = y), then it is easy to check that f is harmonic in B(0, R). Since by
assumption x, z ∈ B(0, r) Lemma 3.1 gives

f (z)

f (x)
= 1 + O

( r

R

)
(7.8)

Plugging (7.7) and (7.8) into (7.6) and setting Cd = cd/G(0) gives

Px (τz < τR | X (τR) = y) = Cd

rd−2

(
1 + O

( r
R

)
+ O

(
1

r2

)
+ O

(‖z‖
r

))

and this concludes the proof. ��

Appendix 2: Proof of Lemma 4.1

We start with some preliminary results. Throughout we assume that R = o(n) and
R ≥ 2r . First we let τ = σ1 − σ0, where the σi ’s are defined in Sect. 2 and we take
F(x, R) = B(0, R) and E(x, r) = B(0, r). We start by proving that up to small error
the expectation of τ does not depend on the starting point of X on ∂B(0, R).

Proposition 9.1 There exist constants c1, c2 > 0 such that for all u, v ∈ ∂B(0, R)

we have

∣∣∣∣
Eu [τ ]

Ev [τ ]
− 1

∣∣∣∣ ≤ c1

(
R

n

)c2
.

We prove the above proposition after establishing the following two lemmas.

Lemma 9.2 There exists a constant C > 1 such that the following is true. Suppose
that Q1 < Q2 with Q1 ≥ 2r and Q ≥ Q2 ≥ 2Q1. Let Er,Q = {τ∂B(0,Q) < τ∂B(0,r)}
and σ = min{t ≥ 0 : X (t) ∈ ∂B(0, Q2)}. Then

1

C
≤ Pu

(
X (σ ) = w | Er,Q

)

Pv

(
X (σ ) = w | Er,Q

) ≤ C for all u, v ∈ ∂B(0, Q1) and w ∈ ∂B(0, Q2).

Proof Note that the functions

u �→ f (u) := Pu
(
X (σ ) = w, Er,Q

)
and u �→ g(u) := Pu

(
Er,Q

)

are harmonic inB(0, Q2)\B(0, r). Consequently, it follows fromHarnack’s inequality
(Lemma 3.1) that there exists a constant C1 ≥ 1 such that

1

C1
≤ h(u)

h(v)
≤ C1 for h = f, g and all u, v ∈ ∂B(0, Q1) and w ∈ ∂B(0, Q2).
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Since we have

Pu
(
X (σ ) = w | Er,Q

)

Pv

(
X (σ ) = w | Er,Q

) = f (u)/g(u)

f (v)/g(v)
= f (u)

f (v)
· g(v)

g(u)
.

by taking C = C2
1 proves the statement of the lemma. ��

Lemma 9.3 Let Er,Q be as in Lemma 9.2, where Q = 2k R for some k and let σ

be the first time that X hits ∂B(0, Q). There exist constants c1, c2 > 0 such that the
following is true:

∣∣∣
∣∣
Pu

(
X (σ ) = w | Er,Q

)

Pv

(
X (σ ) = w | Er,Q

) − 1

∣∣∣
∣∣
≤ c1

(
R

Q

)c2
for all u, v ∈ ∂B(0, R)

and w ∈ ∂B(0, Q).

Proof For each 1 ≤ j ≤ k, we let Q j = 2 j R. Note that Qk = Q. Lemma 9.3 implies
that there exists a constant ρ0 > 0 such that if u, ũ ∈ ∂B(0, Q j−1) and Y, Ỹ are
random walks starting from u, v respectively both conditioned on the event Er,Q and
σ j , σ̃ j denotes the first time that they hit ∂B(0, Q j ) then

P
(
Yσ j = Ỹσ̃ j

) ≥ ρ0.

Let σk−1 be the first time that X hits ∂B(0, Qk−1). By iterating this, it follows that
there exists a constant ρ1 ∈ (0, 1) such that for all u, v ∈ ∂B(0, R) we have that

∑

z∈∂Bk−1

∣∣Pu
(
X (σk−1) = z | Er,Q

)− Pv

(
X (σk−1) = z | Er,Q

)∣∣ ≤ ρ
(k−1)
1 . (7.9)

Let σ be the first time that X hits ∂B(0, Q). Then it follows that

∣∣∣
∣∣
Pu

(
X (σ ) = w | Er,Q

)

Pv

(
X (σ ) = w | Er,Q

) − 1

∣∣∣
∣∣
=
∣∣∣
∣∣
Pu

(
X (σ ) = w | Er,Q

)− Pv

(
X (σ ) = w | Er,Q

)

Pv

(
X (σ ) = w | Er,Q

)

∣∣∣
∣∣

≤
∑

z∈∂Bk−1

∣∣Pu
(
X (σk−1) = z | Er,Q

)− Pv

(
X (σk−1) = z | Er,Q

)∣∣

×Pz
(
X (σ ) = w | Er,Q

)

Pv

(
X (σ ) = w | Er,Q

) .

By the strong Markov property, we note that

Pv

(
X (σ ) = w | Er,Q

) ≥ min
b∈∂B(0,Qk−1)

Pb
(
X (σ ) = w | Er,Q

)
.

Combining this with (7.9) and using Lemma 9.2 we see that the above is bounded
from above by
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max
a,b∈∂B(0,Qk−1)

Pa
(
X (σ ) = w | Er,Q

)

Pb
(
X (σ ) = w | Er,Q

) × ρk−1
1 ≤ Cρk−1

1 ,

and this finishes the proof. ��
Proof of Proposition 9.1 Fix y ∈ ∂B(0, R). Let ξ be the length of time it takes for the
random walk, after hitting ∂B(0, Q) where Q = n/2, to come hit ∂B(0, r), and then
hit ∂B(0, R). Then for y ∈ ∂B(0, R), we have that

Ey
[
ξ1(Er,Q)

] ≤ Ey [τ ] ≤ Ey
[
τB(0,R)c

]+ Ey
[
ξ1(Er,Q)

]
.

Since in each round of the mixing time, the random walk has a positive chance of
being outside of B(0, Q), it follows that there exists a constant C > 0 such that

Ey
[
ξ1(Er,Q)

] ≤ Ey [τ ] ≤ Cn2 + Ey
[
ξ1(Er,Q)

]
.

Let σ be the first time that X hits ∂B(0, Q). We have that,

Ey
[
ξ1(Er,Q)

] =
∑

w∈∂BQ

Ew [ξ ]Py
(
X (σ ) = w | Er,Q

)

=
(
1 + ρ

−(k−1)
1

) ∑

w∈∂BQ

Ew [ξ ]Pz
(
X (σ ) = w | Er,Q

)
(Lemma 9.3)

=
(
1 + ρ

−(k−1)
1

)
Ez
[
ξ1(Er,Q)

]
.

Combining, we have thus shown so far that

(
1 − ρ

−(k−1)
1

)
Ez
[
ξ1(Er,Q)

] ≤ Ey [τ ] ≤ Cn2 +
(
1 + ρ

−(k−1)
1

)
Ez
[
ξ1(Er,Q)

]
.

The result then follows because Ez
[
ξ1(Er,Q)

] � nd/rd−2 from Lemma 8.3. ��
Proof of Lemma 4.1 Let N be the index of the first excursion from ∂B(x, R) back
to itself through ∂B(x, r) which hits x . Then from Lemma 3.2 it follows that N is
essentially a geometric random variable with expectation

rd−2

Cd

(
1 + O

( r

R

)
+ O

(
1

r2

))
= rd−2

Cd
(1 + o(1)),

since r = o(R). Let ζi be the length of the i-th such excursion. If z ∈ ∂B(x, R), then
we have that

Ez [τx ] =
∞∑

i=1

Ez
[
ζi
∣∣ N ≥ i

]
P (N ≥ i) − Ex

[
τ∂B(0,R)

]
(7.10)

=
∞∑

i=1

Ez
[
ζi
∣∣ N ≥ i

]
P (N ≥ i) + O(n2). (7.11)
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Proposition 9.1 gives that

Ez
[
ζi
∣∣ N ≥ i

] = T ◦,◦
r,R (1 + o(1)),

and hence putting everything together we obtain

Ez [τx ] = T ◦,◦
r,R

Pπ

(
τx < τ∂B(x,R)

) (1 + o(1)).

If z /∈ B(x, R), then

Ez [τx ] = Ez
[
τ∂B(x,R)

]+ T ◦,◦
r,R

Pπ

(
τx < τ∂B(x,R)

) (1 + o(1)).

In this case, by Lemma 8.3 we have Ez
[
τ∂B(x,R)

] = O(nd/Rd−2), and hence from
the above we get that if z /∈ B(x, R), then

Ez [τx ] = T ◦,◦
r,R

Pπ

(
τx < τ∂B(x,R)

) (1 + o(1)).

If z ∈ B(x, R), then we have that

Ez [τx ] ≤ Ez
[
τ∂B(x,R)

]+ T ◦,◦
r,R

Pπ

(
τx < τ∂B(x,R)

) (1 + o(1)).

Therefore, combining everything we get that

thit = T ◦,◦
r,R

Pπ

(
τx < τ∂B(x,R)

) (1 + o(1))

and this concludes the proof. ��
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