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Abstract We study asymptotics of the dimer model on large toric graphs. Let L be a
weighted Z2-periodic planar graph, and let Z2 E be a large-index sublattice of Z2. For
LL bipartite we show that the dimer partition function Z¢ on the quotient I/ (Z>E) has
the asymptotic expansion

Z=exp{Afy+fsc+ o(1)}

where A is the area of L/(Z*E), fy is the free energy density in the bulk, and fsc is
a finite-size correction term depending only on the conformal shape of the domain
together with some parity-type information. Assuming a conjectural condition on
the zero locus of the dimer characteristic polynomial, we show that an analogous
expansion holds for L non-bipartite. The functional form of the finite-size correction
differs between the two classes, but is universal within each class. Our calculations
yield new information concerning the distribution of the number of loops winding
around the torus in the associated double-dimer models.
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1 Introduction

Dimer systems have been studied since the 1960s when they were introduced to model
close-packed diatomic molecules, and research on them has flourished with a renewed
vigor since the 1990s (see e.g. [30]).

A dimer configuration on a graph G = (V, £) is a perfect matching on G: that is, a
subset of edges m C & such that every vertex v € V is covered by exactly one edge
of m; for this reason m is also referred to as a dimer cover. If G is a finite undirected
graph equipped with non-negative edge weights (v.).cg, a probability measure on
dimer covers is given by

Pg(m) = v(‘gm)

, withvg(m) = H ve and Zg = Z vg(m).

ecm m

The non-normalized measure vg is the dimer measure on the v-weighted graph G.
The normalizing constant Zg is the associated dimer partition function, with log Zg
the free energy and |V|~! log Zg (free energy per vertex) the free energy density.

An ordered pair of independent dimer configurations gives (by superposition) a
double-dimer configuration, consisting of even-length loops and doubled edges. The
double-dimer partition function is Zg = (Zg)z. Double-dimer configurations on pla-
nar graphs are closely related to the Gaussian free field [29,31].

1.1 Square lattice dimer partition function

Kasteleyn, Temperley, and Fisher [16,25,46] showed how to compute the dimer parti-
tion function Zg on a finite planar graph G as the Pfaffian of a certain signed adjacency
matrix, now known as the Kasteleyn matrix. For graphs embedded on a torus or other
low-genus surface, Zg can be computed by combining a small number of Pfaffians
[18,25,45]; we provide further background in Sect. 2.1. Using this method, Kasteleyn
[25] showed that on the unweighted square lattice, both the m x n rectangle and m x n
torus have asymptotic free energy density

fy = m}liinoo’(mn)*l log Zg = G/,

mn even

where G = ijo(—l)-//(Zj + 1)?2 = 0.915965594 . . . is Catalan’s constant. (If mn
is odd, clearly Zg = 0.) In the case of m and n both even, Fisher [16] calculated the
free energy of the m x n rectangle to be given more precisely by

logZ=mnfy —2(m +n)f; + O(1), with
fi = Llog(1+2"%) - 1G/n

—the second term in the expansion of log Zis linear in the rectangle perimeter, so we
interpret f; as the surface free energy density while f is the bulk free energy density.
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On the asymptotics of dimers on tori 973

Fig. 1 Unweighted square lattice dimers. Finite-size corrections fsc for rectilinear m x n tori, shown as a
function of logarithmic aspect ratio log(n/m). Curves are labeled according to parity of (m, n)

Ferdinand [14] refined the calculation further for both rectangle and torus, finding
a constant-order correction term which depends on both the “shape” of the region (the
choice of rectangle or torus boundary conditions, as well as the aspect ratio =-) as well
as the parities of m and n. For mn even, Ferdinand found

log Z = mn fy 4 (perimeter) f; + (corners) f1 + fsct(o_pf)l,?,ﬁyn () +o(l)

mn fy + fsct(o_rl)ern (L) +o(1), (m x n torus);

mnfy+2m +n)f; +4f,+ fscze_ci)m” (Z)+o0(1) (m x n rectangle)
(1)

where f_ is a constant which may be interpreted as the free energy per corner, and
the four functions fsc'}, fsc'f{' are explicit analytic functions of the aspect ratio
n/m. These functions fsc are called the finite-size corrections to the free energy: they
contain information about long-range properties of the dimer system (see e.g. [1,6,
441). Figure 1 shows these finite-size corrections for the m x n torus. We shall see
(Fig. 5) that if we expand our consideration slightly to all near-rectilinear tori—tori
which are rotated with respect to the coordinate axis, or which deviate slightly from
being perfectly rectangular—then in fact seven fSC curves arise in the limit.

Kasteleyn, Fisher, and Ferdinand also carried out these calculations for the weighted
square lattice where the horizontal edges receive weight a while the vertical edges
receive weight b. In this setting they found (for mn even)

log Z = mn fy|a.+ (perimeter) £ |, » + (corners) £, +fsct(°_pf)1f’,,§y,, (221 0(1) (2)

ma

where the free energy coefficients fy, f{, f1 depend on the weights a, b in a complicated
manner, but the finite-size correction fsctpf ;Zi}; (r’:l—l;) is the same function as appearing
in the expansion (1) for the unweighted square lattice, now applied to the “effective”
aspect ratio ’%’1. In this sense the finite-size corrections are seen to be robust to the

particulars of the model.
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974 R. W. Kenyon et al.

Finite-size corrections for square lattice dimers have also been explicitly computed
on the cylinder [4, eq. (46)], [22], M6bius band [4, eq. (48)], [22], and Klein bottle
[22]. In each of these topologies, for each given choice of side length parities, the
finite-size correction is an analytic function of the aspect ratio [22]. See [23,24] for
a discussion of these finite-size corrections in the context of logarithmic conformal
field theory.

1.2 Characteristic polynomial and spectral curve

In this article we consider dimer systems defined on two broad classes of critically
weighted Z?-periodic planar lattices—rather loosely, a bipartite and a non-bipartite
class. We assume throughout that the lattices are connected, with each edge occurring
with positive probability. Within each class, we compute an asymptotic expansion of
the dimer free energy on large toric quotient graphs—including “skew” or “helical”
(non-rectilinear) tori—and explicitly determine the finite-size correction.

On non-bipartite lattices, the finite-size correction depends on a single parameter ©
in the complex upper half-plane describing the conformal shape of the domain—rt /i
generalizes the “effective aspect ratio” 7= b — appearing in (2). On bipartite lattices, the
correction depends further on whether the finite torus is globally bipartite or non-
bipartite, as well as on a phase parameter (¢, &) € T? which generalizes the signs
((=1)™, (—=1)") appearing in (2). The functional form of the correction is universal
within each class.

More precisely, the bipartite and non-bipartite graph classes which we consider
throughout this paper are characterized by algebraic conditions on the dimer charac-
teristic polynomial. This is a certain Laurent polynomial P (z, w), whose definition
depends only on the combinatorics of the fundamental domain, the 1 x 1 toric quotient
of the Z2-periodic graph.

On the unit torus T? = {(z, w) € C : |z| = |w| = 1}, the characteristic polynomial
P(z, w) is non-negative. Many large-scale quantities of interest in the dimer model
can be computed from P: for example the free energy per fundamental domain is
given by half the logarithmic Mahler measure

= //log P(z, w) 2n§z Y 3

Edge-edge correlations are obtained from the Fourier transform of P(z, w)~ ! [28].
Criticality in dimer models is characterized by the intersection of the spectral curve

{(z,w) € C*: P(z,w) =0},

with the unit torus T2. Dimer models on bipartite graphs have been quite deeply
understood, in part via the classification of the spectral curve as a simple Harnack
curve [32-34]. The bipartition of the graph gives a natural factorization P(z, w) =
0(z, w)Q(z_l, w1 with QO a real polynomial, so that the factors Q(z, w) and
Q(z', w™!) are complex conjugates for (z, w) € T2 (see Sect. 2.2). It is known
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that if the zero set of Q on T? is non-empty, then it consists of a pair of com-
plex conjugate zeroes—which either are distinct, or coincide at a real root of Q.
In the case of distinct zeroes, or zeroes coinciding at a real root at which Q has
a node, the model is critical or liquid, with polynomial decay of correlations. [A
node is a point (2o, wo) at which the polynomial is a product of two distinct lines
(b1(z — z0) + c1(w — wo)) (b2(z — z0) + c2(w — wo)) plus higher-order terms.] In all
other cases the model is off-critical, and belongs (depending on the geometry of the
spectral curve) either to a gaseous (exponential decay of correlations) or frozen (no
large-scale fluctuations) phase.

Far less is known about the spectral curves of non-bipartite dimer systems. In
this setting it is conjectured that the characteristic polynomial P(z, w) is either non-
vanishing on the unit torus, or is vanishing to second order at a single real node which
is one of the four points (£1, &1). This conjecture has been proved for the Fisher
lattice with edge weights corresponding to any bi-periodic ferromagnetic Ising model
on the square lattice [37]. For lattices satisfying this condition one can show (see [33])
that frozen phases do not exist: when the spectral curve is disjoint from the unit torus
the model is gaseous (off-critical), and when it intersects at a real node the model is
liquid (critical). In this paper we assume this condition and illustrate its implications
for critical dimer systems.

1.3 Statement of results

Let IL be a weighted Z2-periodic quasi-transitive (that is, the quotient I/Z? is finite)
planar graph. We consider dimers on large toric quotients of I, as follows: let End 4 (Z?)
be the set of integer 2 x 2 matrices

E= (“ “) with det E > 0. )
Xy

Any E € End, (Z?) defines the toric graph Lz = L/(Z?E), the quotient of . modulo
translation by the vectors in the lattice 72E = {a(u,v)+b(x,y) :a,b e Z}. We take
asymptotics with E tending to infinity while being “well-shaped” in the sense that

det E tends to infinity
while remaining within a constant factor of both ||(u«, v) % and || (x, y)|I.

(&)

1.3.1 Finite-size correction to the characteristic polynomial

The 1 x 1 toric quotient L.; (with / the 2-dimensional identity matrix) is called the
Sfundamental domain. We assume it has k vertices with k even: as a consequence (see
Sect. 5.2), L is equipped with a periodic Kasteleyn orientation in which the contour
loop surrounding each face has an odd number of clockwise-oriented edges [27]. (In
Sect. 5 we discuss how to handle k£ odd, for which such orientations do not exist.) The
dimer characteristic polynomial P (z, w) is the determinant of a certain k-dimensional
matrix K (z, w) associated with the fundamental domain, which may be considered as
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976 R. W. Kenyon et al.

the discrete Fourier transform of the (infinite-dimensional) weighted signed adjacency
matrix of L. For a brief review and formal definitions see Sect. 2.1.

Of course for given L there is some freedom in the choice of fundamental
domain: in particular any Ly may be regarded as the fundamental domain, with
corresponding characteristic polynomial Pg(¢, &) which is the determinant of a
(k det E)-dimensional matrix K g (¢, £). It can be obtained from P (z, w) by the double
product formula

Pe.&) = [] PG w), 6)
Mwl=¢
wY=¢
(see e.g. [8,28,33]). If the characteristic polynomial P is non-vanishing on the
unit torus, it is easily seen from (6) (see Theorem 2, below) that, in the limit (5),
log Pg (¢, &) = (det E) 2fy + o(1) uniformly over (¢, &) € T2, which readily implies
(using e.g. Proposition 2.2) the free energy expansion log Zg = (det E) fy + o(1).

In this paper we compute an asymptotic expansion of Pg(£, &) (¢, & € T) in the
more interesting critical case where P (z, w) is vanishing to second order at nodes on
the unit torus. Formally, let us say that P has a positive node at (¢/0, ¢'50) € T2 if it
is vanishing there to second order with positive-definite Hessian matrix:

P(emiE0F) omi(s0+9)y — 72((r, s), H(r, s)) + O(|[(x, s)|?) where

H= (f]‘; fw) with A, A, > Oand D = \/A.A, — B > 0. 7

In the bipartite case (see above), distinct conjugate zeroes of Q correspond to positive
nodes of P; see (21). If instead Q has a real node, the Harnack property implies that
this node is positive (up to global sign change). We associate to H the parameter

t[Hl=(—B+iD)/Ay, e H={z€ C:Imz > 0}. 8)

Theorem 1 Suppose P(z, w) is an analytic non-negative function defined on the unit
torus T?, non-vanishing except at positive nodes (zj, w;) (1 < j < £)withassociated
Hessians H;. Then, in the limit (5), for ¢, & € T we have
0 —1 9
T )+ 375, ©)]

where £y is given by (3), r is the minimum Euclidean distance between (1, 1) and the set
of points (¢ / (Z? w;), &/ (Z); w]y. ), T is the parameter (8) associated to the transformed

Hessian (Et)_lHj E~', and E is the explicit function (31).

¢
log Pg(¢, &) = 2(det E) fy + ZZlog = (z”g:v'?’ wa .

_ y
j=1 RV A

In the two settings we consider (see Sect. 1.2), the spectral curve of the character-
istic polynomial either intersects the unit torus at a single positive node (zg, wg) =
(£1, £1) with Hessian H, or at conjugate positive nodes (zg, wo) # (Zo, wp) with
the same Hessian H (see (21)). These conjugate nodes may occur at the same point,
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On the asymptotics of dimers on tori 977

in which case P vanishes to fourth order; however in this case we can still treat each
node separately in Theorem 1. In either case we define

H
E = Lt[] = r[(E’)leEfl] € H the conformal shape of Lg;
u—+vt[H]

(Ce, Ep) = (€77E, €™'5E) = (zfwg, Zjw)) € T? the domain phase of Lg. (10)

where rg, sg are chosen to lie in the interval (—1, 1]. (In the case of two distinct
nodes, for most purposes it suffices to take the phase to be defined modulo complex
conjugation. For one of our results, Theorem 4, we specify a distinction between the
nodes to have a more explicit statement.)

1.3.2 Finite-size correction to the dimer partition function

By the method of Pfaffians [18,25,45] (see also [9]), the dimer partition function on
LLg is a signed combination of the four square roots Pg (%1, £1)1/%:

Zg = SEPe(+1, + D2 £ Pp(+1, —=D'2 £ Pp(=1,+D'? £ Pp(~1, -D'/?]

(areview is given in Sect. 2.1; see in particular Proposition 2.2). In Sect. 3 we explain
how to choose the signs to deduce from Theorem 1 the finite-size correction to the
dimer partition function for the two classes of critically weighted graphs described
above:

Theorem 2 If the spectral curve {P(z, w) = 0} is disjoint from the unit torus, then
log Zg = (det E) fo + o(1).

(a) If the spectral curve intersects the unit torus at a single real positive node with
associated Hessian H, then

log Zg = (det E) fy + fsci(tg) + o(1)
where T is as in (10), and fsc; = log FSC with
FSCi(1) = 3> sou) E(C.E[T).

(b) Suppose the fundamental domain is bipartite, with dimer characteristic polyno-
mial P(z,w) = Q(z,w) Q(1/z, 1/w) non-vanishing on T2 except at distinct
conjugate positive nodes (zo, wo) # (Zo, Wo) with associated Hessian H 1 Then

log Zg = (det E) fo + fsca(¢k, EelTE) + o(1)

where tg, (g, &g are as in (10), and fscy = log FSC, with

FSCa(¢.&lt) = 3>, iy Bz, wElD)?

' The Hessian is necessarily the same at both nodes, see (21).
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978 R. W. Kenyon et al.

which has the equivalent expression

2 ec72 eXp{—7F g (e — (s, —1))}

FSC m'r’ Tis — 11
e el n(@PQ@Im )72 (o
where for T € H, g is the quadratic form
o N1 2 22
gr(e) = (tim) ™ (e] +21eeren + |T]%€5) (12)

and 1 is the Dedekind eta function.

(c) Suppose the fundamental domain is bipartite, with dimer characteristic polyno-
mial P(z,w) = Q(z,w) Q(1/z, 1/w) non-vanishing on T2 except at a single
(real) root at which Q has a positive node with associated Hessian H. Then

log Zg = (det E) fo + fsca (1, 1|zg) 4+ o(1)

where tg is as in (10).
(d) If the spectral curve intersects the unit torus at two real positive nodes (z1, wi)
and (z2, wy) with the same associated Hessian H, then

log Zg = (det E) fo + fsc3(¢e, éelTE) + 0(1)

where, defining (20, wo) = (2122, wiw2), the parameters T, g, g are as in
(10), and fscs = log FSCs with

FSC3(¢,§11) = 3 X, yesy E(@ wIDE (L, wé7)
We further have the simplifications

FSCs3(+1, +1|t) = FSCy(+1, +1]1)

FSC3(+1, —1|t) = E(—1, —1|7)E(—1, +1]7) = E(—1, +1]27)
FSCs(—1, +1jt) = E(—1, —=1|1) E(+1, —1|7t) = E(+1, —1|t/2)
FSCi(—1, —1|t) = E(—1, +1|1) E(+1, —1|7) = E(+1, —l|l%)

See Fig. 2 for plots of these functions fscy, fsc;, and fsc3. In [33, Thm. 5.1] it is
shown that for bipartite graphs on tori, case d does not occur. However, for graphs on
tori that are locally bipartite but not globally bipartite, such as an odd x even grid on
a torus, we see in Sect. 5.1 that this case does occur.

We emphasize again that the functional form of the finite-size correction is universal
within each class: the finite-size correction E to the characteristic polynomial (The-
orem 1) is an explicit function depending only on the three parameters ¢, &, t. Thus
in Theorem 2a the graph structure enters into the correction only through 7 (that is,
only through the Hessian associated with the real node). In the bipartite setting (The-
orem 2b—d), the finite-size correction depends on the graph structure only through
and (¢g, k).
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On the asymptotics of dimers on tori 979

(A) (B) ©

(D) (E) (F)

G) (H) D

Fig. 2 Free energy finite-size corrections as a function of T = x 4 iy € H. In these plots, —1 < x < 1 and
0 < y < 1, and the identically zero function is indicated by the horizontal plane. There is one fsc| function,
there are four fsc3 functions, and there is a two-parameter family of fsc, functions. Panels ¢ through i show
the seven functions for unweighted square-grid tori; their restrictions to the pure imaginary line t = ip are
the curves in Fig. 5 (shown there as a function of log p). Panels b and d show two of the functions relevant
to unweighted honeycomb graph tori; see Fig. 4. The function shown in panel a is relevant to the Ising
model; see Fig. 7

As we explain in Sect. 3.3, the parameter v has a simple interpretation as the
half-period ratio of the torus with respect to its “natural” or “conformal” embedding.
Consequently the finite-size corrections are invariant under modular transformations.
For example, for the unweighted honeycomb graph, the m x n torus (Fig. 3) has t = ip
where p = n/(m+/3) is the effective or geometric aspect ratio.

The domain phase parameter ({g, §g) is of a quite different nature: it generalizes
the signs (—1)™, (—1)" appearing in (2), and depends sensitively on the entries of E.
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980 R. W. Kenyon et al.

Fig. 3 The 4 x 3 toric quotient of the honeycomb graph, with effective aspect ratio p = +/3/4 (also the
actual aspect ratio of this geometric embedding) in the unweighted setting

—0.2 0.2

Fig. 4 Unweighted honeycomb graph dimers. Finite-size corrections fscy (¢, £ |t) for near-rectilinear
toric quotients, shown as a function of logarithmic aspect ratio log p, labelled according to value of (u —
v, x — y)/3 modulo 1 (see Sect. 4.4)

For example, for dimers on the honeycomb lattice, the finite-size correction for m x n
quotients (Fig. 3) was computed by Boutillier and de Tiliere in the case n = 0 mod 3
[2]. Figure 4 shows this correction for the unweighted honeycomb lattice as a function
of the logarithmic effective aspect ratio log p, together with three other curves—one
showing the different correction which applies for n % 0 mod 3, and the remaining
two showing corrections which can be found on toric quotients which are nearly but
not quite rectilinear. Some discussion of this is given in Sect. 4.4.

In the square lattice we find a similar phase sensitivity, but we find a dependence
also on the global bipartiteness of the torus (for example, the 4 x 3 torus in the square
lattice is non-bipartite). As a result, for near-rectilinear tori the finite-size correction
lies asymptotically on any of seven curves, Fig. 5—four curves for bipartite tori and
three for nonbipartite. Further discussion of this is given in Sect. 5.

1.3.3 Non-contractible loops on the torus

Recall that the superposition of two independent dimer covers of a planar graph G
produces a double-dimer configuration consisting of even-length loops and doubled
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On the asymptotics of dimers on tori 981

Fig. 5 Unweighted square lattice dimers. Finite-size corrections fsc for near-rectilinear toric quotients,
shown as a function of the logarithmic aspect ratio log p. There are seven distinct curves, depending on
parities of vectors defining the torus (see Sect. 5.1). (It is easy to distinguish only five of the curves, see
Fig. 16 for a magnified view.)

edges. Alternatively, a single dimer cover of G may be mapped to a double-dimer
configuration by superposition with a fixed reference matching m. It is of interest to
study the non-contractible loops arising from this process on toric graphs. In addition
to the finite-size corrections to the overall dimer partition functions Zg (Theorem 2),
we are able to obtain some finer information on the distribution of the partition function
between dimer covers of different homological types, as follows.

Non-contractible loops in the bipartite setting. If G is bipartite, a double-dimer con-
figuration resulting from the (ordered) pair (m, m’) is naturally regarded as an oriented
loop configuration m©m’, with edges from m oriented black-to-white and edges from
m’ oriented white-to-black. We then let

windmoem’' = (wy, Wy) € Z2 (13)

denote the homology class (or “winding numbers”) of the oriented loop configuration.’

For m x n toric quotients of the unweighted honeycomb tiling (Fig. 3), it was shown
in [2] that for n € 3Z, the winding windm © m of a dimer cover m with respect to
a fixed reference matching m is asymptotically distributed as a pair of independent
discrete Gaussians, with variances determined by the torus aspect ratio. The proof is
based on a perturbative analysis of the finite-size correction, and we generalize their
method to prove

Theorem 3 [n the setting of Theorem 2b, let mg be a fixed reference matching of Lg
obtained by periodically extending a matching my of the fundamental domain. Then
the winding windm & mg € Z? asymptotically fluctuates as a discrete Gaussian:

2 If mow’ contains two loops each winding once around the torus in the +(u, v) direction, then wind m&
m’ = (2, 0); if the two loops wind in opposing directions then wind m © m’ = (0, 0).
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982 R. W. Kenyon et al.

exp{—Z(e — np)'T; (e — pnp))
Yeenexp{—%(e —np)Tg (€ — pp)}
(EN"'HE™!
(det H)!/2/det E’

Pwindmoemg =e¢) — with

covariance X g = center b = :l:”i(arg Ep, —arg¢g) mod 72,

A more explicit version of Theorem 3 is given as Theorem 4, stated and proved in
Sect. 4. Dubédat [12, Thm. 7] proved a version of Theorem 3 for dimers on bipartite
isoradial graphs.

Non-contractible loops in the non-bipartite setting. In the non-bipartite setting, the
loop configuration m & m’ is not oriented, and we take the winding wind m & m’ to be
defined only as an element of (Z/27Z)?. In the setting of Theorem 2a, we also compute
(Proposition 3.1) the finite-size corrections to the partition functions Z¢° of the four
homology classes indexed by (r, s) € {0, 1}°.

To note one particular motivation, we remark that this winding is of particular
interest in the context of Ising models. On a graph G = (V, £) with real-valued para-
meters (Be)c.ce (coupling constants), we define the associated Ising model to be the
probability measure on spin configurations o € {1}V given by

1
Po@) =5[] explfeouoi).

e=uv)e€

On the square lattice with vertical and horizontal coupling constants B, and S
(“Onsager’s lattice™), the bulk free energy density *fy was first calculated by Onsager
[42]. Kasteleyn [26] and Fisher [17] rederived this result by exhibiting a correspon-
dence between the Ising model on a planar (weighted) graph G and the dimer model
on various “decorated” versions G’ of G.

For instance, the Ising model on the triangular lattice with coupling constants
Bas By, Be corresponds—via its low-temperature expansion—to the dimer model
on the Fisher lattice with unit weights on the within-triangle edges, and weights
(a,b,c) = (e2Pa, e2Pv ¢2Pc) on the edges between triangles (Fig. 6). To calculate the
Ising partition function #Z, , on the m x n torus in the triangular lattice, take the
m x n torus in the Fisher lattice, and fix the reference matching m consisting of all
(a, b, c)-edges. Let Z 00 [a, b, c] denote the partition function of dimer configurations
m with windm @ m = (0, 0): then

. 2. ZOO ezﬁa , ezﬁb’ ezﬁc
+Zm n = e [ ] . (14)
’ I, o

At 8. = 0 (c = 1), the Ising model on the triangular lattice reduces to the Ising model
on Onsager’s lattice. Criticality for Z?-periodic Ising models has been characterized in
terms of the intersection of the Fisher lattice spectral curve with the unit torus ([36,37],
see also [7]).

Using (14) and similar correspondences, the asymptotic expansion of the Ising
partition function has been computed in numerous contexts [5,11,15,21,38,41,43,47].
In particular, for Onsager’s lattice on the ferromagnetic critical line
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On the asymptotics of dimers on tori 983

L N M 7~

1 1 1
Fig. 6 Fisher correspondence between the Ising model on the triangular lattice and the dimer model on
the Fisher lattice. The Ising spins £1 (yellow and blue) live on the dodecagonal faces of the Fisher lattice.
The Fisher lattice is given the reference matching m consisting of all between-triangle edges (black). Take
the unique dimer configuration m which contains a between-triangle edge if and only if it separates like

spins (red): then the loops of m @ m trace the spin domain boundaries in the low-temperature expansion of
the Ising model. The Ising and dimer partition functions are related in (14) (color figure online)

a+b+1=ab with a =e*Pa and b = %, (15)

the Ising free energy on m x n graphs has the expansion (compare (2))
log*Z,., =mn *fy + (perimeter) *f; + (corners) *f_ + *sc'oPoloy (% %) +o(1),

where *fsc is an explicit analytic function depending on the topology (rectangle, torus,
cylinder, etc.)—but not on the parity of (m, n). On the anti-ferromagnetic critical line

a '+ '+ 1=@b) !,
the finite-size correction depends also on the parity of (mn). Figure 7 shows the
finite-size corrections for m x n toric quotients of the homogeneous Onsager’s lattice
(Ba = Bp = P) at the critical points
B ==+1log(v2+1),
where § positive is ferromagnetic and 8 negative is anti-ferromagnetic.

The following proposition characterizes criticality for the Fisher lattice, as well as
for a superficially similar lattice, the so-called rhombitrihexagonal tiling (Fig. 18). The
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(F) all parities; P
(AF) evhii x even —
12 11 //// I I
& <
+C
£) A= ar) ol
N
-3
Fig.7 Square lattice critical Ising (B = i log(+/2+ 1)). Finite-size corrections for m x n tori as a function

of logarithmic aspect ratio log p (color figure online)

latter graph has no known correspondence with the Ising model, yet its dimer systems
exhibit some similar features. Though the proposition is easy to prove and various
special cases appear in the literature, we include a detailed proof in the Appendix 1
for completeness. Combined with Theorem 2a, it gives the finite-size correction for
general (critical) Ising models on large toric quotients (including skew tori) of the
triangular lattice and Onsager’s lattice.

Proposition 1.1 For the Fisher graph (Fig. 17) or the 3.4.6.4 graph (Fig. 18), the
spectral curve can only intersect the unit torus at a real node, characterized by the
vanishing of one of the four quantities

—Pf K(+1, +1) +a+ b+ c—abce Ko
+Pf K(+1, —1) _ —a+b+c+abc| _ |«ka (16)
+Pf K(—1,+1) +a—b+4+cH+abc | |k
+Pf K(—1,—-1) +a+b—c—+abc Ke

where c is 1 for the Fisher graph, and 1/2 for the 3.4.6.4 graph.

For dimers coming from the Ising model, such as on the Fisher graph, the node
coincides with the Ising model’s critical temperature [7,36].

We summarize the relevant background in Sect. 2. Theorem 2 is proved in Sect. 3.
In Sect. 4 we prove Theorem 4, which is a stronger version of Theorem 3. In Sect. 5
we consider lattices with odd-sized fundamental domain, which provide examples for
some of the cases in Theorem 2. We postpone the proof of Theorem 1 until Sect. 6,
even though the proofs of Theorems 2 and 4 depend on it, since its proof is somewhat
technical. Proposition 1.1 is proved in Appendix 1.

2 Preliminaries

Throughout this paper, L. denotes a Z?-periodic quasi-transitive planar graph equipped
with positive edge weights.
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2.1 Kasteleyn orientation and characteristic polynomial
The Kasteleyn orientation is a way of computing the dimer and double-dimer partition

functions via matrix Pfaffians and determinants. The Pfaffian of a 2n x 2n skew-
symmetric matrix is given by

Pf K =

1 n
o > seno) [ Koj-n.oei: (17)

€S, j=1

and satisfies (Pf K)?>= det K. If K is the (skew-symmetric) weighted adjacency
matrix of a finite directed graph G, then each non-zero term in (17) corresponds
to a dimer cover of G. All the n!2" permutations o € S», corresponding to the same
dimer cover m appear with the same sign sgn m in (17), so that we may write Pf K =
> m (Pf K)n where each matching contributes (Pf K )y = (sgnm) H(ij)em |Kijl.

Every finite planar graph G can be equipped with a Kasteleyn or Pfaffian orientation,
in which all dimer covers m appear with the same sign sgn m in (17)—that is, for which
|Pf K| is the dimer partition function Zg of G, and det K is the double-dimer partition
function (Zg)z. A Kasteleyn orientation is given by arranging each (non-external)
face to be clockwise odd, i.e. with an odd number of edges oriented in the clockwise
direction; see [27, § V-D] for details.?

Returning to the setting of Sect. 1.3, let IL be a planar Z?-periodic lattice, with an
even number k of vertices per fundamental domain. I, can be equipped with a periodic
Kasteleyn orientation in which every face is clockwise odd (see Sect. 5.2); this defines
an infinite-dimensional weighted signed adjacency matrix (Kasteleyn matrix) K, with
entries K;; = (1;; —1;;)v;; fori, j € L. For z, w € C and

_[(uv 2
E= (x y) € End, (Z%),

define a (z, w)-periodic function to be a function f : L — C satisfying f(p +
a(u,v) +bx,y)) = f(p)z“wb forp e Landa, b € Z. We let

KE(z, w) the “Fourier transform of K with respect to E” (18)

denote the action of K on the (finite-dimensional) space of (z, w)-periodic functions.
We write K (z, w) = K (z, w) € CF*K (where [ is the identity matrix) and call

P(z, w) =det K(z, w) the characteristic polynomial of L.

Note that K (z, w)! = —K (1/z, 1/w), so P(z, w) = P(1/z, 1/w).

3 It is sometimes useful to allow some edges of G to have imaginary weights, in which case K is no longer
real-valued (but still skew-symmetric). In this setting a Kasteleyn orientation of a planar graph is given
by taking the product of signed edge weights going clockwise (that is, edge e = (1 — v) contributes
+ve = Ky,p or —ve = Ky 4 to the product according to whether it is traversed in the positive (# — v) or
negative (v — u) direction while going clockwise around the face) around each (non-external) face to be
negative real. We say that an oriented loop has sign ¢ € T to mean that the product of signed edge weights
along the loop equals a positive real number times ¢ .
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2.2 Bipartite characteristic polynomial

Note that in (18) the linear map K (z, w) was defined without reference to a basis,
which is unnecessary for defining the determinant. To consider Pfaffians of K (z, w),
however, we must fix a basis: from the relation Pf (M KM") = (det M)(Pf K) it is
clear that even an orthogonal change of basis can change the sign of the Pfaffian. We
therefore assume a fixed ordering 1, . .., k of the vertices of the fundamental domain,
and take the basis (f1, ..., fi) where f,(g) = Z22w? if g is the vertex corresponding
to p in the (a, b)-translate of the fundamental domain, and f,(q) = O for all other g.
For the action of K (z, w) fix any ordering of the fundamental domains and take the
basis

i Sl R ) (19)

where f; (g) is the (z, w)-periodic function (with period E) corresponding to the

p-vertex in the e-th fundamental domain.*

If a planar graph G (with positive edge weights) is bipartite with parts B (black)
and W (white), an equivalent characterization of a Kasteleyn orientation is that the
boundary of each non-external face has an odd or even number of edges B — W
according to whether its length is 0 or 2 modulo 4.3

Suppose L has bipartite fundamental domain, with k/2 vertices of each color; and
for E € End,(Z?) let by = (det E)k/2. The action of K (z, w) interchanges the
(z, w)-periodic functions supported on B with those supported on W: from the basis
(19), there is an orthogonal change-of-basis matrix O with det O = (—=1)bebe—D/2
such that

0 KE(Z, w)

(0] KE(Zv ’l,U) Ot = (—KE(l/Z, l/w)l 0

) = kvE(Zv U)),

with Kg (z, w) the action of Kg(z, w) from W-supported to B-supported functions.
For z, w € {£1} the matrix Kg(z, w) is skew-symmetric, with Pfaffian

Pf K£(z, w) = (det O)(Pf Kg(z, w)) = detKg(z, w) = QE(z, w). (20)

The bipartite characteristic polynomial is Q(z, w) = Q(z, w). In this setting it is
known that Q(z, w) either has no roots on the unit torus or two roots, which are
necessarily complex conjugates; it is possible for the roots to coincide [34]. Simple
zeroes of Q(z, w) are nodes of P(z, w) = Q(z, w)Q(1/z, 1/w) = |Q0(z, w)I2 with
associated positive-definite Hessian
A, B
= ( B Aw) . 2D

4 Since the number of vertices per fundamental domain is even, the arbitrary ordering of fundamental
domains within IL g will not affect the Pfaffian.

g 1:0:QF  Re[zd:Qwd,Ql
 \Relz0:Qwdy Q] |wdn QP

(z,w)=(z0,wo0)

5 More generally, if imaginary weights are allowed, the condition is that the product of signed B — W
edge weights is negative or positive real according to whether the length is 0 or 2 modulo 4.
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In particular, distinct conjugate nodes of P must have the same Hessian matrix. If
instead Q has a real node then P vanishes there to fourth order, but the finite-size
corrections to Zg can be determined using the second-order expansion of Q.

2.3 Pfaffian method for toric graphs

For non-planar graphs Kasteleyn orientations do not in general exist. Instead the dimer
partition function of the toric graph L can be computed as a linear combination of
four Pfaffians, as follows (cf. [25]).

Fix arbitrarily a reference matching my of the fundamental domain, and “unroll”
the matching to obtain a periodic reference matching my, of L. Assume that no edges
of the reference matching cross between different fundamental domains (which can
be achieved by deforming the domain boundaries in a periodic manner), so that mg
occurs with the same sign in Pf K (z, w) forall z, w € {£1}. This sign can be switched
by reversing the orientation of all edges incident to any single vertex, and we hereafter
take it to be +1. If mg is the projection of my, to Lg, then for the basis (19) we
have (Pf Kg (41, +1))m, = (Pf K(+1, +1))?§(§ E__thus mg appears with sign +1 in
Pf Kg(z, w) forall E € End, (Z?) and all z, w € {£1}.

Next, say that an even-length cycle on Lg is mg-alternating if every other edge
comes from mg. All mp-alternating cycles on the fundamental domain with the same
homology must occur with the same sign: to see this, let Cy, Cs be two mgp-alternating
cycles of the same homology type. Then we can transform C; to C, by deforming the
cycle across planar faces one at a time (the intermediate cycles need not have even
length). Switching C; with C; as needed, we may assume that each face traversed by
this process has boundary partitioned into a segment y_ (containing £_ edges) which
is traveled in the negative direction by the cycle just before the face is traversed, and
another segment 4 (containing £, edges) which is traveled in the positive direction
by the cycle just after the face is traversed. Since the face is clockwise odd (i.e., has
negative sign in the counterclockwise direction), sgn(y_) sgn(y4) = —(— 1)¢-. The
deformation from y_ to y4 “crosses” £_ — 1 vertices in the sense that it brings £_ — 1
more vertices (strictly) to the left of the cycle. Thus the total sign change between
Cyand Cy is (—1)‘Z with £ the total number of vertices crossed. Since C; and C, are
both mgp-alternating, mp must restrict to a perfect matching of the £ vertices crossed:
therefore £ must be even, and so sgn(C1) = sgn(C>) as claimed.

Appropriately reversing edges along horizontal or vertical “seams” (boundaries
separating adjacent copies of the fundamental domain) produces a periodic Kasteleyn
orientation of L such thatin any L g with the inherited orientation, every mg-alternating
cycle has sign 4+1. We hereafter assume that the lattice IL. has been “pre-processed”
such that all these sign conditions hold, that is:

Definition 2.1 Fix mg a reference matching of the fundamental domain L, let m
denote its periodic extension to IL. We say that IL is mg-oriented if (1) no edges of mso
cross boundaries separating different copies of the fundamental domain, (2) mg occurs
with positive sign in Pf K (41, +1) [hence in all four Pfaffians Pf K (£1, 1)], and
(3) every mo-alternating cycle in the fundamental domain has sign +1.
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For r, s € {0, 1} let Z;® denote the partition function of matchings m such that
the superposition of m with mg is of homology (r, s) modulo 2. For any periodic
Kasteleyn orientation of L, it is easily seen that

(Pt Ke(z, w)m (PfKE(z, W)my s forz, w € {£1};
PFKe(l, D)m PEKe(1, D)my m contributing to Z5°.

(22)

Specializing to the case that I is mg-oriented, the argument of [25] (also explained in
[40, Ch. 4]) gives the following

Proposition 2.2 [f lattice L is mg-oriented, then

—Pf Kp(+1, +1) -11 1 1 zJ0
+PfKp(+1,-D| [ 1 -1 1 1 zZi° ’;
+PFKp(—1,+D | | 1 1 =11 zyt (23)
+PfKg(—1,—1) 111 —1) \Z*

S

In particular, the dimer partition function of Lg is
Zp = J—PEKp(+1,+1) + Pf Kg(+1, —1) + Pf Kg(—1, +1) + Pf Kp(—1, D).

We shall also define Z £ ® to be the partition function of double-dimer configurations
m; @ my with homology (r, s) modulo 2. It can be seen from (22) that

2=, ZES ZE ) (24)

The double-dimer partition function on L is given by the sum Z, = > Z7°.

2.4 Special functions and Poisson summation

For dimer systems on tori we find finite-size corrections which can be expressed in
terms of the Jacobi theta functions ¥.¢ (r,s € {0, 1}), whose definition we now
briefly recall (for further information see e.g. [13]). These are functions ¥,¢(v|7) of
complex variables v and T = 1t + iTim, With 73, > 0, expressed equivalently as
functions ¥,¢ (v, g;) of v and the nome

q‘[ = e?TiT — eﬂi‘fre|qr|. (25)
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Note that |g;| < 1. Each theta function is given by an infinite sum:

i?

— 2mij
ooty = > ) el

. . .2
Porv) =D (~1) el

2rijv 2 (26)
Powin = L el
. . . %)
B (vlT) =i zjeZ+1/2(_l)] 1/262711]1)61{ )
e theta functions also have infinite product expressions, as follows:
The theta functi Iso have infinite prod pressi foll
Pooln) = Ggo) [ ], , (1 + 247" (cos2mv) + )
D010 = Ggo) [ ], ,(1 = 247" (cos2mv) + g7
27)

Ho(v|T) = 2qu/4(cos7rv)G(qr) H€>1 1+ 2q$£(cos 2wv) + q?e)

P11 (0]7) = 2/ sinw)G(go) [T, (1 =247 (cos 2v) + 47,

where G(q) = szl(l — ¢%); this is also the g-Pochhammer symbol (¢2; ¢%)cc.
The Dedekind n function is
n(® = q;'*G(go). (28)

We also write ¥,5(t) = ¥,5(0|7); the function ¥, (7) is identically zero.”

Many useful theta function identities may be found in [10, 13] (see in particular
[13, p. 356]). The theta functions satisfy the relations

o0 (v + 117) = Yoo (v[7), Do (v +7]7) = e X oo wlr).  (29)
The four theta functions are related by the transformations

P00 (v + 3|7) = Y01 (v[7),
Poo(v + 37I7) = e TV 5 (v]T) (30)
Poo(v + 21+ 1)|7) = —ie T Ty (v]7).

2.5 Finite-size correction and Gaussian sum formulas

The correction appearing in (9) is expressed in terms of these special functions as
follows: for ¢, ¥ € Rand r, s € {0, 1} we define

P b2
IS(_eZHi(p’ _eZNiwh) = Vrs(¢pT — 1/j|.[)emr¢
n(t)

, andE=2° 3D

=
=

6 Another standard notation is given by ) = —v11, ¥ = 010, 93 = D00, Vg4 = Do1-
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From the relations (29), the evaluation of E does not depend on the integer parts of ¢
or . It then follows from (30) that the same holds for any E*°, and further

E(=D"¢ (=D%[r) = E™®(¢, &|r) forall¢, & e T. (32)

Recalling 9, (1) = ¥,5(0|7), we define E*5(1) = E*S(—1, —1|1), with E*! = 0.

Expressions involving theta functions can often be transformed in a useful way
using the Poisson summation formula: for f € L!(R?), denote its Fourier transform
f (k) = fRd e~ 2mitkx) £ (x)dx. With this normalization, the Gaussian function e~ x?

is preserved by the Fourier transform. If both f, f satisfy | f(x)] + | f @ <A+
|x)~?=% for some 8 > 0, then they are both continuous functions with

Z fhkye?mitkx) = z f(x+n) forallx € RY.

keZd neZd

(see e.g. [19]). Our typical application of this formula is to transform expressions
involving theta functions into partition functions for discrete Gaussian distributions:

Definition 2.3 For i € RY, £y € R?*? positive-definite, and L any discrete subset
of RY, the discrete Gaussian on L with center parameter g and scale parameter X is
the L-valued random variable X with

exp{—Z[(e — WXy (e — w1}
Yeerexp(—3e —mEy' (¢ — w])

P(X =e) = fore € L.

Only two-dimensional discrete Gaussians arise in this paper.
Theta functions and discrete Gaussian distributions are related as follows. Recalling
the quadratic form g, (e) from (12), if T = t[H] as in (8), then

gr(e)=e'Z;'e with Zg = (det H)"'/?H. (33)
Lemma 2.4 Forr,s € {0,1}and ¢, ¥ € R,

> ke (—DEOED expl—Z e (j — 20, k +2¢))
()12 2tim) /2 ’

EIS(_eZHid)’ _827”'1//“:)2 —

(34)

Proof Write v = ¢t — . Recalling (25), write ¢ = |g;| = e ""m. Use (26) to
expand
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2442 ) .
[P0l =3" P T exp27i[(PTre — ¥) + 3 Tre(X+2)](x — )}
i2 1 2 . .
=320 PP Y d P explanil@re — ) + dre k)

1 NS iR 242 vk K22 . . 1.
+3 20 (DI RS (D exp il (@t — ) + Srie 1K)

where the second equality follows by the change of variables j = x+y,k = x —y. For
both of the double sums appearing in the last expression, apply Poisson summation
over k for each fixed j to obtain [with some rearranging, and recalling (32)]

2 2
q? oo (vl7)

n(t)
ke (DM exp(=Fgc(j — 29 k + 2¢))
B ()P Q2Tim) 2

EOO(_e2m'¢’ _EZHiwl_L,)Z —

k]

proving (34) for (r, s) = (0,0). The formulas for the remaining values of (r, s)
follow from (32). O

Lemma 2.5 The zero-argument correction factors 2°(t) = E°(—1, —1|t) satisfy
the cross product identities

2000 EM (v) = B (21),
20 EY (1) = B (1/2), (35)

E0)EY (1) = B0 (D).
For distinct pairs r1s1 and vy s, belonging to {00, 01, 10},

ZeeZz eXp{—%gr (2e + (s1, r1) + (52, r2))}
[n(0)*(tim) /2

ETISI (1) B2 (1) =

(36)

Proof We have the identities (see e.g. [10, §4.1])

900(T)001(7) = D01(27)%, 2g2.(e) = g (e1, 2e2)
2000(0)010(7) = D10(t/2)%, 2g:2(€) = g:(2e1, €2)
24901 (1) 010 (1) = ?910(1%)2, 28(1+1)2(e) = gr(2e1 + e2, €2)

Straightforward manipulations using the product formulas (27) give (35). Combining
with (34) gives (36): for example, recalling £** () = 0,

EOQr)2+ BN Q20)2  2ecozyr4a.0) XP{—T 82 (€1, €2/2))
In(z)/n2)? () [*(tim) /2

=00, g0l
E(E ()= ;

and combining with the above identity for g, gives the formula. O
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3 Finite-size correction to the torus partition function

In this section we prove Theorem 2, determining the finite-size corrections to the
dimer partition function Z as well as to its four components Z5°. The critical non-
bipartite setting (single real node) is treated in Sect. 3.1, while the critical bipartite
setting (distinct conjugate nodes) is treated in Sect. 3.2. In both cases the asymptotic
expansion of the absolute value |Pf Kg (¢, £)| = Pg(¢, £)'/? is given by Theorem 1,
and we explain how to determine the sign of Pf K (¢, £). Applying S~! to both sides
of (23) then gives expressions for the finite-size corrections to the quantities Z5° as
signed combinations of absolute values or squared absolute values of the functions
E7°. In some cases, we can apply Lemma 2.4 to obtain Gaussian sum formulas for
the finite-size corrections. Lastly, in Sect. 3.3 we explain the interpretation of 7 as the
shape of the torus in its “conformal” embedding.

We take the standard branch of the logarithm, which is holomorphic on C\R <, and
continuous in z as it approaches the negative real half-line from the upper half-plane.
If for z € T we write ¢ = z, unless otherwise specified we mean that —7 <6 <
equals arg z, the imaginary part of (the chosen branch of) log z.

3.1 Finite-size correction in presence of real nodes
3.1.1 Calculations of the finite-size corrections

Proposition 3.1 (Implies Theorem 2a) Suppose L is mg-oriented with characteristic
polynomial P(z, w) which is non-vanishing on T? except at a positive node (zg, wg) €
{(£1)2 where it has expansion (7) with Hessian matrix H. Then, in the limit (5),

log Z5® = (det E) fo + fsci " 75551 E (1) + o(1)

where 1 € H and the indices rg,sg € {0,1} are as in (10), and fsc;™® =
log FSC*® with

FSClrS(T) = }1Zr,’s,(_l)(s+r/)(r+s/)Erfsl(r)'

Summing over r, s gives the statement of Theorem 2a.

Proof The asymptotic expansions of absolute values of the Pfaffians Pf Kg (¢, &) are
given by Theorem 1, so the issue is to determine their signs for ¢, & € {41}?. The
location of the node at (zg, wo) implies Pf Kg (¢, £g) = 0.If ¢g = &g = 1 then (23)
gives

0=-2°+2Z:° + Z0* + Z3*, (37)

implying that the other three entries on the left-hand side of (23) must be non-negative.
A similar argument applies for the other three possibilities for the location of ({g, &E).
It follows from Theorem 1 and (32) that for r, s € {0, 1},

Pe((—=DF, (=1)®)1/2

G BT = B, felrg) = BETLETDIERS ),
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The matrix S in (23) satisfies S = 487! s0

Zgo PE(+17 +1)l/2 E(l’l)+(rE’SE)(TE)

Z' | g1 Pe(+1,=DY2 ] Get By foro(l) ig ELO+EESE) (7p)

Zgl - PE(—l, +1)l/2 =e 4 E(O,l)+(rE,SE)(TE) ’

Zit Pp(—1,—1)1/2 5 (0.0+(TE.SE) (7)
implying the result. O

Proof of Theorem 2c Suppose Q has a single real node at (zg, wo) = (£1, £1). Let
(¢e, &) be asin (10); (¢, Ep) = (1, £1). A very slight modification to the proof
of Theorem 1 gives

log P (¢,€)"/2 = (det E) fo + 2 log E (¢ /¢E, £ /EE|TE) + 0(1).

(The proof of Theorem 1 approximates P near a positive node by a certain polynomial
P determined from the Hessian; see (61). In this case we instead determine P from
the Hessian associated to the node of Q, and approximate P by the square of Pj; the
rest of the proof remains essentially unchanged.) The finite-size correction to Zg is
then computed by the same argument as for Proposition 3.1, except with E replaced
with 2. Finally we observe that FSC, (%1, £1|7) = FSCy(1, 1|7). O

Clearly, the most straightforward application of Proposition 3.1 is when zg = wg =
+1: in this case Pf Kg(+1, +1) = 0, implying that Zp = 2220 and

log Z;° = (det E) fo + fsc1*° () + o(1).

Figure 8 shows fsc; (x + iy) as a function of (x, y). Figure 9a, b show FSC (x + iy)
together with the individual contributions FSC|*®(x + iy) as a function of x with y
fixed at 1/20 and 1/100 respectively.

If (zo, wo) # (1, 1), then the correspondence between Z;° and FSClr/S/ depends
on the parities of the entries of E. On the other hand, the following corollary shows
that finite-size corrections to the double-dimer partition function do not depend on the
location of the node (zq, wp):

Corollary 3.2 In the setting of Proposition 3.1,

Zg° Decrr expl—Fg:2e+ (r,8)} |
o(det E) 2fgto(l) 2170 2 () /2 if (r,s) #(0,0),
Zgo N ZeeZ2 eXp{—%gr(e)} _ Zeezz eXp{—%g,(Ze)}
et E)2Mtol 2 ()P Qnm) 2 (D)2 2Tim) 12

Proof From the definition (24) of Z7*° and from Proposition 3.1 we find

ng — eldet E) 2fg+o(1) 4_1‘ Z L Er’s’(T)E(r’,s’)+(s,r)(r)
rs ’
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©) D)

Fig.8 (Theorem 2a) Finite-size corrections fsc; = log FSC and log E, shown as a functionof t = x+iy
for —1/2 < x < 1/2,0 < y < L. (Recall FSC{(1) = } 3, s_s| B, &[0), with E(+1, +1]7)
identically zero.)

regardless of where the real node is located. Recalling £ (1) = 0 gives

z E(0)E (1)
ZEIO — e(det E)2fp+o(1) % EOO(T) = 01(.’:)
ZEll EOl(.L,)ElO(.L_)

and applying (36) gives the result for (r, s) # (0, 0). Using E'*(r) = 0 again gives

00
ZE

_1[m00,02 | =01, 12 | =10, 32 4 m1l, 2
e(detE)2f0+o(1)_4|:“ (M)"+E (@) +E (1)L E (f)]

and combining with (34) gives the two expressions for the case (r, s) = (0,0). O
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wi= |
I

1
1

(A)
Fig. 9 (Proposition 3.1) FSC (x + iy) (bold) and FSC{*® (x + iy) with y fixed

5

A similar calculation give the finite-size correction in the presence of two real
nodes:

Proof of Theorem 2d There are two domain phases, (;‘é, gé) = (z? w;, z’j? w;) (G =

1, 2), where we must have Pf K (¢ é & é) = (. It follows that all four entries on the
left-hand side of (23) must be non-negative, therefore

z20 BN (¢p EplTe) BN (R, ERITE)
10 =101 &1 m100+2 £2

Zg | _ jaabytrom g1 [ B Cp Eplte) B (g, EplTe)
zy B9 (¢p. EplTE)EO (G ERITE)
Zit E00(s4. ELITE)EOO(¢E, E2ITE)

Thus, with ({, &g) = ((4¢3, ELER) = (WDTE, (—1)5E), we conclude

ZE — e(det E)f()+0(1)% Z EIS(,L,E)E(r,s)+(rE,SE)(,L_E)

r,s

— (B otoDESC, (25, £x|Tr)

as claimed. The alternative expressions given in the theorem statement for the four
FSC; (41, +1|7) follow from (35). O

3.1.2 Ising model on triangular lattice and Onsager’s lattice

By way of example we discuss Proposition 3.1 in the context of the Ising model. Recall
(14) the correspondence between the low-temperature expansion of the Ising model
on the triangular lattice and the dimer model on the Fisher lattice. Criticality for the
latter model (vanishing of the Fisher characteristic polynomial on the unit torus) is
characterized in Proposition 1.1: in particular, P(+1, +1) = /cg, so P(+1,+1) =0
includes the cases
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a =b=c=+/3 (critical ferromagnetic Ising on triangular lattice),

a + b+ 1 = ab (critical ferromagnetic Ising on Onsager’s lattice),

(in particular the homogeneous Onsager’s lattice with 8, = B, = %log(ﬁ + 1)).
Meanwhile, P(—1, —1) = KCZ, so P(—1, —1) = 0 includes the case

a ' +b7 1+ 1= (ab)"! (critical anti-ferromagnetic Ising on Onsager’s lattice).

Thus, as expected, we see parity dependence in the finite-size correction to (14) only
in the anti-ferromagnetic case.
We also comment briefly on the observation (cf. (37)) that

(. &p) = (=DF, (=1)°F) implies Zp =2Z;""". (38)

In the setting of Onsager’s lattice with ferromagnetic coupling constants 8,, B, > 0,
this can be understood in terms of a duality transformation (see [36]): in addition to
the low-temperature correspondence (14) we also have

(Onsager’s lattice Ising) *Z, ,
(Fisher lattice dimers, homology (n,m)) = ([, ) - 2- Z};"[e=%Pa, e72P 1]
(Fisher lattice dimers, all homologies) = 2" (][, cosh B,)Z »[tanh B,, tanh By, 1].

The first equivalence is again obtained through the low-temperature expansion, except
that instead of considering the polygonal configuration on the dual lattice formed by the
spin domain boundaries, we take the complementary polygonal configuration which
includes each dual edge separating like spins. On the m X n torus, the partition function
is restricted to dimer covers m with wind m @ m = (n, m) mod 2 because the original
spin domain boundaries must have homology (0, 0) (cf. (14)). The second equivalence
is obtained through the usual high-temperature expansion, with no restriction on the
homology of the dimer cover.

From (38), the finite-size correction to Z"m’fﬁ[e_zﬂfl, e~2Pr 1] at criticality will be
sensitive to the parity of (m, n) unless P(—1,—1) = k. = 0, which corresponds
precisely to the ferromagnetic critical line (15). On this line,

Zynle e, e 11 =2. Z0"[e72Pa 7?0 1] = Z,, ,[tanh B, tanh By, 1]

where the first identity is from (38), and the second follows by comparing the low-
and high-temperature expansions and observing that 2(cosh ;) (cosh ;) = ePaefr.
In particular, in the homogeneous case 8, = B, = B = %log(\/i + 1), we have
e~2P = tanh B, so that the Fisher lattice is self-dual under the above transformations.
Thus the Ising—Fisher correspondences give an alternate proof of (38) in this special
instance; we emphasize however that (38) holds in a much more general setting.
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3.2 Finite-size correction in presence of distinct conjugate nodes

Proposition 3.3 (Implies Theorem 2b) Suppose the mg-oriented lattice L has bipar-
tite fundamental domain, with bipartite characteristic polynomial Q(z, w) which
is non-vanishing on T2 except at distinct conjugate zeroes (zo, wo) # (Zo, Wo).
The two zeroes are positive nodes of the characteristic polynomial P(z,w) =
0(z, w) Q(1/z, 1/w) with the same Hessian matrix H. Then, in the limit (5),

log Z;° = (det E) fo + fsC2"° (¢, EElTE) + 0(1)
where tg, g, £g are as in (10), and fscy = log FSC, with
FSCer(g“, El7) = 4_11Zr’,s’(_l)(r+s,)(s+r/)Er/s,(—{, —%‘|‘L’)2.

Summing over r, s € {0, 1} gives the statement of Theorem 2b.

Lemma 3.4 In the setting of Proposition 3.3, the four quantities
0 =(=D"0(=(=D", =(=D?®), r,se{0,1}
must all be positive.
Proof Since all the Z5° are non-negative, we see on the right-hand side of (23) that
either all four entries are non-negative, or exactly one is negative while the rest are

positive. In the case that E is the two-dimensional identity matrix, recalling (20) shows
that (since Q has no real zeroes on the unit torus)

either threeor four Q% are positive. (39)
For z, w € C define the counts

£h(w) = number of zeroes in z of Q(z, w) inside unit circle;

£y(z) = number of zeroes in w of Q(z, w) inside unit circle (40)

(taken with multiplicity), where for the moment we leave the count undefined in the
case that there is a zero exactly on the unit circle.

Now suppose that zg, wo ¢ R. By the assumption of distinct conjugate nodes, £y (z)
stays constant as z travels around the unit circle except that it jumps by one when z
Crosses zg or zo: thus

[eh(+1D) = h(=DI = [ty(+1) = & (=D| =L (41)
By the argument principle, ¢y (z) is also the total winding of the closed curve Q(z, T)

around the origin, or equivalently the total change in (277) ! arg Q(z, w) as w travels
around T. For z = =1, the curve is symmetric about the real line, so ¢,(z) is given
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by twice the change in Q2m)! arg Q(z, w) as w travels halfway around T, from +1
counter-clockwise to —1. Thus

sgn[Q(—1, +DQ(=1, =D]= (=D sen[Q(+1, + D O(+1, —D)]= (=D,
sgn[Q(+1, =D Q(=1, =D]= (=D sen[Q(+1, + D Q(—1, +D)]= (= 1)nD,

From (41), two of the signs above are +1 while the other two are —1.

If instead zp € R or wp € R, the argument principle can be used only to determine
three of the four signs, but the fourth is then also determined since the product of
the signs must be 4-1. Thus it must always be the case that Q has the same sign at
three points in {£1}?, and takes the opposite sign at the last point. Therefore o1 =
(=D Q(—(—=1)*, —(—1)®) is positive at an even number of points. Together with
(39) this implies that the Q%* are all positive. O

Proof of Proposition 3.3 Again the issue is to determine the signs of the four Pfaf-
fians Pf Kg (41, £1) which here can be all non-zero in contrast to the setting of
Proposition 3.1. From (20), Pf Kg(£1, £1) = Qg(%1, £1), where QF can also be
computed recursively from Q(z, w) as in (6): it then follows from Lemma 3.4 that for
r,s € {0, 1},

sgn(—DZSPf Kp(—(—DF, —(= 1)) = sgn Q%% = +1,
and so it follows from Theorem 1 together with (42) that
(—DFSPf Kp(— (=1, —(=1)%) = @t BYfoto) g (_1)7¢p, —(—1)%¢p)?

It then follows from (23) that

zp° EM (¢, —EEl|tE)?
10 =10/ » 2
ZE :e(detE)f0+”(1)lS EV(—CE, —EElTE)
zp P E (—gp, —gplTE)? |
Zit E%9(—¢r, —£lTE)?

implying the expansion of Z;® in the statement of the proposition. Summing over
r, s € {0, 1} and recalling Lemma 2.4 concludes the proof of Theorem 2b. m|

Figure 10 shows fsci(x + iy) versus fscy(x + iy) for y = ﬁ; note that fsc,

resembles fsc, but lies below it.

3.3 Modular transformation of finite-size correction

From the results presented so far it is clear that the asymptotic behavior of dimer
systems on large toric graphs LLg is governed by the conformal shape parameter tg
defined in (10). We now explain the interpretation of this parameter as the half-period
ratio of the torus with respect to its “natural” or “conformal” embedding.
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10

fscy

fscy

e
wlw =
Tl
SIS
R=1l
Wi

Wl -

L
1
1

i
o=
cim b

0

Fig. 10 fscj(x +i/200) (blue) and fscy (1, 1|x +i/200) (red). The local maxima in fscy (1, 1|t) are twice
as high as those for fscy (7)

Recall that any E € End, (Z?) defines the fractional linear transformation

x+zy,

yEiC—>C, yE@= ;
u -+ zv

note y £E "= yEo yE/. The associated lattice half-period ratio TF is the evaluation of
this fractional linear transformation at i, 7% = y £ (i), a point in the upper half-plane.
The parameter 7 associated to the transformed Hessian Hr = (E') ™' H E~! is simply
the half-period ratio of a certain matrix square root of the inverse Hessian:

_ - Eh7! _ A-12
T[Heg]l=1 , whereh = A, (B A,

D 0) satisfies (ER~"Y(ER™Y = (Hp) ™.

In particular we have the symmetries

ET5(C,&lr) = E*S(5, 6| — 1) = E*°(5. | —7),

therefore E75 (¢, £|7) = E*5(Z. E|7) ] forg,§e€T (42
(these relations are also straightforward to prove directly from the definitions of the
special functions).

Two matrices E, E’ € End, (Z?) specify the same lattice of vectors Z>E = Z’E’
if and only if E = TE’' for T € SL,Z. The half-period ratio transforms under left
multiplication by SL»Z via the group I" of modular transformations (VT)TGSL2Z~ The
Jacobi theta and Dedekind eta functions transform naturally under the modular group.
To understand the transformations of E, fscy, fsc;, fscs under the modular group, it
suffices to describe their transformations under the generating transformations

yA 17+ 7+ 1 corresponding to A =

(
y8 1+ —1/t corresponding to B = (

@ Springer



1000 R. W. Kenyon et al.

From the relations

Ors T+ 1) = (€N 0y g 41-r(0]7), n(r +1) =™/ Py(0),
Fra(v/T | —1/7) = (=)™ (=in) 2™ 7o (v]7), (=1/7) = (=i1)2y(2),

it is straightforward to prove the following

Proposition 3.5 The functions E*° satisfy the modular relations

E*°(.&lr) =
E*°(. &[0 =

BETS(L, CElT 4 1,
ST, ¢l = 1/T) = BST(E, ¢[1/D),

—
=
—
=

implying for all T € SL,Z that, with ({g, &) = (zqwg, 25 wg), we have

fsc1™5(v) = fsci BT B3 (y T (1)) and fsca™ (¢g, &g |T)
=18, BT B9 (¢rp, ey T (1)),
hence fsc(t) = fsci(y” (1)) and fsca(Lk, E61T) = fsCa(trE, ErelyT (1))

These results indicate that at criticality, the second-order behavior of P(z, w) at its
nodes determines a “natural” or “conformal” geometric embedding of IL into the com-
plex plane—that is, the embedding in which the lattice is invariant under translations
by h_lZz, so that the matrix Eh~! describes L g in Cartesian coordinates.

3.4 Asymptotic behavior of the scaling functions

In this subsection we describe the asymptotics of the finite-size correction functions
as the imaginary part i, of 7 tends to +00 (corresponding to the situation that one of
the lattice vectors defining the torus becomes much longer than the other, with det E
still within a constant factor of ||(u, v)||||(x, ¥)||). As we shall see, when 7i, — 00,
the corrections to the free energy become linear in tjn,, while the dependence on the
twist in the torus given by 1. becomes negligible.

Consider first the function E of (31). Recalling (27) and (28), we express

= (oo, it = [ [(1 4+ 2T 4 i) |

oit(1/12—¢2)

We may assume —1/2 < ¢ < 1/2; then, in the limit 7, — o0, it is clear that all
terms £ # 1/2 in the infinite product give a negligible contribution:

E(_eZJTi(ﬁ’ _627Ti1//|t) (1 + erTi((l/Z—H]ﬁ)r—w))(l +627Ti((l/2—¢)‘f+1ﬁ))
I+ O(e2mmm) ‘ oit(1/12-¢7) ‘

If ¢ is bounded away from =£1/2 in the limit 7, — o0, then

E (=™, —?V 1) = exp{—Tim (¢ — 15) + o(1)}.
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At ¢ = 1/2 we instead find
E(+1, =¥V |1) = 2cos(m ) exp{—7 Tim - 1/6 + O (e~ 27Tm)}.
We therefore find in the limit 7;,, — oo that

fsci(t) = mtim /12 + O (e "m),
fSCo (i, £]7) = TTim /24 + log2 + O (e "m/2)
fsca (™', £|T) = wTim - (1/6 — 2(1p| A (1/2 = [$]))*) + o(1)
(for |¢| bounded away from 1/4)
fsc3 (41, £1]7) = 7 Tim /6 + O (e 7Tm),
fsc3(—1, £1|7) = =Ty /12 + log2 + O (e " im).

These estimates hold uniformly over 7. € R.

4 Loop statistics on bipartite graphs

In this section we show that in the bipartite setting with distinct conjugate zeroes,
the dimer winding numbers (13) have asymptotically discrete Gaussian fluctuations.
Earlier results showing that the dimer height distribution is a discrete Gaussian were
obtained by Kenyon and Wilson [35] for the square lattice on a cylinder and Boutillier
and de Tiliere [2] for the honeycomb lattice on a rectilinear torus.

Theorem 4 (Implies Thm. 3) In the setting of Theorem 2b, suppose L is mp-oriented,
and let mg be the reference matching of Lg obtained by periodically extending my.
Let

€= (ba(=D), & (=)

as defined by (40). Up to switching black with white, windm © mg is asymptoti-
cally distributed in the limit (5) as a discrete Gaussian on 72 with center and scale
parameters L and X g given by

_ 1 ( xargzo+yargwo | 1
Re = (—uargz()—vargwo) (det E)(E)™'e, 43)
(Et)—lHE—l
E (44)

= (et H)'2/det E
with (z9, wo) € T? the distinguished root of Q(z, w) specified by (47) below.

Remark 4.1 The choice of reference matching mg is not particularly important to the
result. For an arbitrary reference matching ng of Lg, sincem & ng = (m6 mg) ©
(ng © mg), the limiting distribution of wind m © ng is a discrete Gaussian with the
same covariance as for wind m © mg, but with a mean that is shifted.
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a b a
* 7
d o
7777777777777 o T
b, a v
el a7 - -
/ a b, a
(A) (B)

Fig. 11 Square lattice, with Q(z, w) = a — bz — dw — cz/w. a Fundamental domain in dashed lines;
reference matching my in gray; my-alternating double-dimer loops (blue-gray horizontally,red-gray verti-
cally). b For unweighted square lattice: radial plot z — z|w(z)| with z € T, colored according to Im w(z)
(unit disk shaded) (color figure online)

The proof of Theorem 4 is via perturbative analysis of the expansion of Theorem 2b,
which we repeat here for convenience:

ZE
o@et E) fo+o() FSCa(¢k, §eltr) (45)

with tg, rg, sg as in (10), and

D ecz2 exp{—5 g (e — (sg, —rE))}

PG Cr el = (0P Q)72

Forz € T, if w — Q(z, w) has a root at w(z) € C, then w — Q(z~ ', w™!) has
aroot at w = 1/w(z). Since switching black and white simply reverses the roles of
Q0(z,w) and Q(z~!, w™"), recalling (41) we may hereafter assume that

L+ =46(=D) - L (46)

If zo is real, then one of the ¢, (£1) is defined by (40) while the other is not, in which
case we define it by (46) (Fig. 11).

We distinguish between the conjugate roots of Q(z, w) by taking (zg, wp) to be the
root such that on a small neighborhood of zg in T, there is a smooth function w(z)
such that

w(zp) = wo, Q(z, w(z)) =0, and |w(Zer"ir)| is decreasing in r for |r| small.
47)

4.1 Moment-generating function of winding numbers

Let us briefly review the notion of a dimer height function in this bipartite setting (see
[33] and references therein). A dimer configuration m on Lg may be regarded as a
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black-to-white unit flow. If mg is the reference matching on Lg, then m © mg is a
divergence-free flow (in addition to being an oriented loop configuration), and gives
rise to a height function h which is defined on the faces of the graph as follows:

For any two faces fp, f1 in the graph, A(f1) — h(fo) gives the flux of m © mg
across a path in the dual graph joining fy to fi. This definition depends on the choice
of the path from fy to f1, but homologous paths give the same value. In particular,
for a closed path which can be deformed to a point, the height change is zero. The
horizontal winding wy, of the oriented loop configuration m © mg is the height change
along a vertical closed loop oriented downwards, and the vertical winding Wy is the
height change along a horizontal closed loop oriented rightwards.

For & = (ap, ay) € R2, consider the lattice L with weights modified periodically
as follows: for each edge joining a black vertex in the x € Z? copy of the fundamental
domain to a white vertex in the x + e € Z?> copy of the fundamental domain, multiply
the edge weight by exp{(a, e)} (regardless of the Kasteleyn orientation of the edge).
Let v* = v§ and Z¥ = Zg denote the associated (non-normalized) dimer measure
and dimer partition function on ILg. The associated bipartite characteristic polynomial
is

0%z, w) = Q(e*z, e*w).
The free energy fo associated with the a-perturbed lattice weighting is the evaluation

at a of the Ronkin function R associated to Q(z, w):

d d
R() = // log | Q (e 7, ¢ w)| —— % (48)
2mwiz 2wiw
TZ

(see [33] for more information).
Recall that mg is the periodic extension of my. For a dimer configuration m for
which windm © mg = (Wp, Wy),
v (m)/v*(mg)

= exp{Wh (uan + vay) + Wy (xon + yay)} = exp{(Wh, Wy) Ea}.
v(m)/v(mg)
Since no edges of the reference matching are reweighted, v*(mg) = v(mg), and so

o _ VE(mE) 3 v (m)/v¥(mp)

E™ v(mp) v(m)/v(mg)

v(m) = Zg xIE[exp{(Wind memE)Eoc}]. (49)

m

where the expectation is with respect to the original normalized dimer measure on E.

Given Z%/Zg, assuming it is a sufficiently well-behaved function of &, we can
determine the distribution of the winding of the double-dimer configurations on the
torus E. Itis enough to evaluate Z% / Zg (sufficiently precisely) for & in a neighborhood
of 0. From (49), (45) and (48),

Zp _ exp{R(e)det E} FSCy(¢g, §ElTE)
Zr  exp{R(0)det E} FSC,(c?,£9|70)
—_————

A (@) Z (o)

(I +0o(1)) (50)
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where T, ¢, £ are all evaluated with respect to the a-perturbed weights. We compute
the first factor on the right-hand side in Sect. 4.2, the second factor in Sect. 4.3, and
then complete the proof in Sect. 4.3.

4.2 Perturbation of free energy

In this section we estimate % («) from (50) by computing the gradient and Hessian of
the Ronkin function R.

A version of the gradient calculation also appears in [33, Theorem 5.6]. For
|| small, Q% also has distinct conjugate zeroes on the unit torus, and to compute
the gradient we must understand how the zeroes change with «. To this end let
ro(a), so(a) be the unique smooth real-valued functions such that

ro(en'iro((x)’ eﬂiso(‘!)) — 0’ (em'ro((x)’ eﬂiSO(u))ltJ[:() — (ZO’ wo)’ (51)

and 1 < rg(0), so(0) < 1, where (zg, wp) denotes the root of Q at @ = 0 which was
distinguished in (47).

Lemma 4.2 In the setting of Proposition 3.3 with (46),

_ (9 R(@)) _ (€n(=1) + so(e) )
VR(x) = (aavR(tx)) = (ZV(—I) N ro(a)) for small o;

and

2
Hess R(at)|q—0 = ( aahR(“) aavaahR(Ol))

Oty Oor, R(0) 02 R(0t)

1 (4
a=0_JTD B Ay}’

where A;, Ay, B, and D are defined in (7) and (21). Consequently,
R(a) — R(0) = (£, &) — (—soa 4+ roay) + 2 D) ' Ha) + O (o),

where the constants in big-O term depend on the fundamental domain (but not E).

Proof By the argument principle,

8avR(ot)=Re]{ % (Woy Q) ez, w) dw dz B j{ E?(Z) dz

Q(e®nz, w) 2miw2wiz 2wiz’
lz|=1 |w]=e*v lz|=1

where £J (z) counts the number of zeroes in w of Q% (z, w) inside the unit circle. It
follows from the condition (46) and from our definition (51) of rq, s¢ that

Jar, R(e) = €3 (—1) — ro(),

where £%(—1) = €y(—1) for || small. Therefore BOZLVR(ot) = —0q,ro(a), which is
positive due to (47).
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Differentiating the relation Q%*(z, w) = 0 in & and evaluating at « = 0 gives

o, T0(@) Dy S0 (@) (20:Q ) _ i (20:0

0o, T0(@) do,S0(@) ) \wdwQ) 7 \wdwQ)"
Since rg and s are real-valued, separating the other terms into real and imaginary
parts (zQ; = x; +iy; and wQ, = Xy, +1yy) gives a system of four equations for the

four variables O, ro(0t), 0y, S0(@), Ja, To (), e, So(ar). We use (21) to solve these
and find

aahrO(“) aothSO(“) _ sgn(x;yw — YzXw) { —B A, :L —B A;
O, To(0) 0y, s0(0) D —Ay B 7D \—Ayw B)’

where the last equality follows from the preceding observation that e, ro(et) < 0.
This then implies dg, so(ar) > 0, so a similar line of reasoning as above gives

o dw o
aahR(“):% h(w)m=ﬂh(—1)+50(a),

lw]=1

with £ (—1) defined to be £ (4+1) — 1 in the case wy = —1. Therefore

gy R(@) B, 0oy R(@)) _ (+0ys0(@) +e,s0(@)) _ 1 (A; B
Ouy, Oy R () 8§VR(oz) T\, ro(@) =0y, ro(@)) 7D \ B Ay)~

(52)

O

4.3 Perturbation of finite-size correction

We now compute the effect of the a-perturbation on the finite-size correction. Recall
the quadratic form g, which was defined in (12).

Lemma 4.3 In the setting of Proposition 3.3 with (46), assuming |a|(det E)'/? < 1,
the second factor in (50) is

2eez2 xpl—5 8.0 (e — pp)+(Ea) (e—pp))

exp {%?.[tgottH(X} ZeeZz exp{—%grg (e_”'E)}

T (o) = exp{O(Ja|(log(1/]a])'/?)}

with pg as in (43).

Proof The parameter tf varies smoothly with e, so we find

0(en FSC2E. §FI7)

F(o) = .
¢ FSCyc?. %Y
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In the expression (11) for FSCy (¢, &F |rg), let off9, be the “offset vector”:

o
of f% = ( SE )
E _roli_

where r, s% are as in (10). Then

ez expl—F 2,0 (e — off}))

F(a) = 0D )
> ecz2 exp(—F g, (e — off}))

(53)

The above is invariant under the addition of integer vectors to off%., so for convenience
we take the unperturbed offset vector off % to have norm <1, and let the a-perturbed
offset vector be defined by

off%. — off!). = (det E)(E")™! S0 Sg
r§ + g

The Taylor series expansion with (52) gives

det £

off} — offy = —=(E) ™' [Ha + O(la")]

detE(E )y 'Ha + O(Ja|*(det E)'/?), (54)

where the second equation holds for well-shaped tori (5). Recall that the quadratic
form g, can also be expressed using (33) and (44):

EH'E!

=t s 55
det H)- 12 det E* (55)

80 (e) = elZEIe =eé

Since X g is symmetric, we can rewrite

8.9 (e — offf) — g 0 (e — offY) = 8.9 (off;, — offY.)
— 2(off% — off? ) EE (e — offE)

Combining (55) and (54) and recalling that D = +/det H, and using the well-shaped
torus assumption (5), the terms on the right-hand side are

et E
8.0 (off% — off! )— Da’Ha+0(|a|3detE),

2
—2(off% — off%) = ! (e — offh) = — =o' E' (e—off%) + O (|ee|* (det E) /% (| +1)).
T
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Combining these gives

exp(—F g, (e off%) + (Ea)' (e — off?)}
exp{g?;gafHa}
x exp{|ee|*(det E)/?[|e| + 1+]|ee|(det E)'/?]}.  (56)

exp —%gtg(e —off)} =

To apply this estimate in (53), we truncate the sum in the numerator so that |e| will not
be too large. For convenience, we now invoke the assumption that |e|(det E) 12 <1,s0
that |0ff°,§—0ff%| < |ae|(det E)'/? < 1.Then, since gre (e) =< |e|?, there is an absolute
constant C such that the contribution in the numerator from |e > C(log(1/|a|))'/?
will be less than a. The numerator itself is =< 1, so the additive error || translates
into multiplicative error exp{ O (|e|)}. Then, for |e| < C(log(1/|a|))1/2, we apply the
estimate (56). Finally we remove the truncation on e, giving

D ecr? exp{—%grg (e — off%) + (Ea) (e — off%)}

() = &t E o7 - 0
exp {mcx Hoc} D ect? exp{—jgfg (e — off)}
x exp{O (|| (log(1/la]) /).
The lemma follows since pf is a representative of off% modulo Z2. O

Proof of Theorem 4 Let @ € R? with 8] < 1, and set @ = E~'0. Combining (50)
with Lemmas 4.2 and 4.3 gives

Zy e[,(l)eXpW, a)det E} > cpmexp{—5gi(e — up) + (Ea) (e — pup)}

2% exp{(—soan + roay) det E} >, 72 exp{—F g (e — pup)}

’

with i as in (43). Using the fact that
(€, a)det E + (Ea)' (e — ) — (—soon + rooy) det E = (0, e),
we obtain

E[eMWindmoms.0)] ZE _ o) 2ecz? XP=F 8x (€ — pp)exp((f. e)}

2 2 ecz2 €Xpl—T gr (e — pp)}

If a sequence of probability measures have Laplace transforms that convergence
pointwise to the Laplace transform of a probability measure, then the sequence con-
verges in distribution to that measure [3, Ex. 5.5]. We therefore find that the winding
wind m © mp is asymptotically distributed as a discrete Gaussian on Z> with parame-
ters g, X g as in (43) and (44). m]
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1008 R. W. Kenyon et al.

4.4 Dimers on the honeycomb graph

By way of example, consider the honeycomb graph with edge weights a, b, ¢ and
bipartite fundamental domain, mg-oriented for the reference matching mgy given by
the a-edge (Fig. 12).

The bipartite characteristic polynomial is Q(z, w) = a — bz — cw. If a, b, ¢ do
not satisfy the triangle inequality then Q is non-vanishing on T2. If the weak triangle
inequality is satisfied, then C = ]_[r, €0, 1) Q7° is non-negative (see Lemma 3.4), and

Q vanishes at (29, wo) = (€70, ¢750) and its conjugate where

ro = 1 cos™! (%) €[0,1], so=—Lcos! (M) €[=1,0]. (57)

Assume now that a, b, ¢ satisfy the strict triangle inequality, so that C > 0 and
the conjugate zeroes of Q are distinct. These zeroes are positive nodes of P(z, w) =
0(z,w) Q(1/z, 1/w), with Hessian

b2 l(aZ o b2 _ C2)
H = 2 det H = C/4. 58
(%(a2 —b* =) c? ) o ¢/ (58)

The following is then a direct consequence of Theorem 2b and Theorem 4 (with
£=1(0,0)):

Corollary 4.4 For the mg-oriented honeycomb graph (Fig. 12), the characteristic

polynomial has zeroes at (zo, wo) = (€70, ™50) given by (57) and its conjugate,
with Hessian H given by (58). Thus

log Zg = (det E) fo + fsC2(¢k, EeltE) + o(1)

(A) (B)

Fig. 12 Honeycomb graph, with Q(z, w) = a —bz —cw. a Fundamental domain in dashed lines; reference
matching mg in gray; mg-alternating double-dimer loops (blue-gray horizontally, red-gray vertically). b
For unweighted honeycomb graph: radial plot z — z|w(z)| with z € T, colored according to Im w(z) (unit
disk shaded) (color figure online)
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Fig. 13 The 4 x 3 rectilinear torus, shown together with a skew torus

with T, (g, Ep as in (10). For mg the matching of Lg given by taking all the a-
edges, wind m © my is asymptotically distributed as a discrete Gaussian on 7> with
parameters

g = xro+ yso Sy = (Et)—lHE—l
E —urg—vso)’ (det H)1/2/det E”

We emphasize again that while the conformal shape tr depends smoothly on the
entries of the normalized matrix (det E)~ /2 E [whichhas O (1) entries for well-shaped
tori (5)], the domain phase (¢g, £g) is highly sensitive to constant-order changes in
the non-normalized entries of E.

This is illustrated in Fig. 4 for the unweighted honeycomb graph (a = b =c = 1).
With our choice of fundamental domain (Fig. 12), the m x n rectilinear torus (Fig. 13)
studied in [2] corresponds to matrix E given by (u, v) = (m, m) and (x, y) = (—n, n).
In the usual embedding where all hexagons are regular, the geometric aspect ratio is
o = n/(3'2m), and it is straightforward to check that the conformal shape 7 is simply
ip. From (57) we have (rg, so) = (1/3, —1/3), so there are multiple possibilities
for the domain phase ({g, &g). Figure 12 considers the near-rectilinear case 7 =
ip+o(1), and shows that the finite-size correction lies on one of four different limiting
curves

p > fsca((€™3)7, (7 )ip)

depending on the phase ({g, §g). Three of these can arise from exactly rectilinear
tori, while the fourth (the one corresponding to both j, k % 0 mod 3) arises from
almost-rectilinear tori with T = ip + o(1).

Arbitrarily many curves can be obtained by adjusting the weights: for example,
if we keep b = ¢ = 1 but change a, the conformal shape T becomes T becomes
ita(4—a®)"V2 1fa = $(v/5— 1) then (ro, so) = (2/5, —2/5), and Fig. 14 shows
the nine limiting curves arising for near-rectilinear tori.

5 Odd-sized fundamental domains

In this section we briefly address the case where the fundamental domain LL; contains
an odd number k of vertices. Up to now we have always assumed k to be even, which,
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(A) B)

Fig. 14 (Honeycomb graph with weights a = %(\/5 — 1), b = ¢ = 1.) Finite-size corrections
fscy(¢g, &g |t) for near-rectilinear (t = ip + o(1)) tori, shown as a function of logarithmic aspect ratio
log p

DR ’:”1’1%‘ ””””” ;’/7 S ”””””i ”””” ﬁ””””i;”’ S
(A) (B)

Fig. 15 Two choices of fundamental domain for the unweighted square lattice. a Bipartite fundamental
domain: Q(z, w) = 1 —z—z/w—w. b Nonbipartite fundamental domain: P(z, w) = 4—z—1/z—w2—l/w2

as we review in Sect. 5.2 below, guarantees the existence of an [L;-periodic Kasteleyn
orientation of L. Clearly we can perform calculations with doubled versions of the
domain, but if the “natural” fundamental domain of the lattice has k£ odd then different
doublings need to be considered to access all possible toric quotients. For concreteness,
in Sect. 5.1 we illustrate with the example of the unweighted square lattice, whose
natural fundamental domain contains a single vertex. In Sect. 5.2 we comment on the
general situation.

5.1 Odd-sized fundamental domains in the square lattice

The natural fundamental domain IL; of the unweighted square lattice is the 1 x 1 torus
containing a single vertex, connected to itself by one horizontal edge and one vertical
edge. Clearly IL has no LL;-periodic Kasteleyn orientation with real weights; to find
such an orientation we have to double the fundamental domain. Two possibilities are
shown in Fig. 15; we note that the domain of Fig. 15a is bipartite while that of Fig. 15b
is nonbipartite.
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On the asymptotics of dimers on tori 1011

For ad — bc positive, quotient by the (a, b) and (c, d) translations to form the
(a, b) x (c, d) torus, which can have dimer covers for ad — bc even. The torus can be
formed from copies of the (2, 0) x (1, 1) bipartite fundamental domain (Fig. 15a) if
and only if @ 4+ b and ¢ + d are both even. The bipartite characteristic polynomial has
simple zeroes at (1, £i), so it follows from Theorem 2b that the finite-size correction
to Zis FSC,(i*, i®|t) with r the value of a (or b) modulo 2, and s the value of ¢ (or
d) modulo 2.

The (a, b) x (c,d) torus can be formed from copies of the 2 x 1 nonbipartite
fundamental domain L, ; (Fig. 15b) if and only if @ and ¢ are both even. The char-
acteristic polynomial has positive nodes at (1, £1) with the same Hessian. It follows
from Theorem 2d that the finite-size correction to Zis FSC3((—1)?, (—1)?|7).

The case of b, d both even is handled by the 1 x 2 nonbipartite fundamental domain
LL1,2 (v /4-rotation of Fig. 15b). Alternatively, by the  /4-rotational symmetry of the
square lattice, it has the same partition function as the (b, a) x (—d, —c) torus. We
therefore conclude

Proposition 5.1 For the (a,b) x (c,d) torus formed from the unweighted square
lattice, the dimer partition function Z satisfies

log Z— (det E) fy — o(1)

|00 01 10 11
00|fscy(+1, +1|7) fsc3(+1, —1|7) fsc3(+1, —1|1) fsco(+1, +i|7)
= 01|fscs(—1, +1]|7) fsc3(—1, —1|t) —o0 —00
10|fsc3(—1, +1|t) —c0 fsc3(—1, —1|t) —o0
11|fscy(+i, +1]t) —o0 —00 fscy(+i, +i|7)

where the row index is the value of (a, b) modulo 2 while the column index is the value
of (c, d) modulo 2.

We see from Proposition 5.1 that for general 7, the finite-size correction lies on
one of seven curves. Figure 16a shows the four curves coming from the bipartite
fundamental domain (Fig. 15a), while Fig. 16b shows the four curves coming from
the nonbipartite fundamental domain (Fig. 15b), where the case of a, b, ¢, d all even
appears in both.

5.2 Odd-sized fundamental domains in general graphs

The assumption of L; even guarantees that IL. can be given a IL;-periodic Kasteleyn
orientation, as follows (see [27]): choose a planar spanning tree 7 on the dual graph
of IL;, and give an arbitrary orientation to any edges of IL; not crossed by an edge of
T . For any vertex f € T with a single neighbor g € T, there is a unique way to orient
the edge of IL; crossed by the dual edge ( f, g) such that the face corresponding to f is
clockwise odd. By repeatedly pruning leaf vertices of 7', IL; can be oriented such that
all faces are clockwise odd except possibly the final face, corresponding to the root
of T'. For each face f let oy count the number of clockwise-oriented edges around
f: then Zf(l + oy) is even if and only if the root face is also clockwise odd. But
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(A) B)

Fig. 16 Unweighted square lattice dimers. Finite-size corrections fsc for near-rectilinear toric quotients,
shown as a function of logarithmic aspect ratio log p and labelled according to parity of (a, b) x (c, d).
a Corrections fsc) (¢, £|7), obtained from bipartite domain Fig. 15a. b Corrections fsc3 (¢, &|t), obtained
from non-bipartite domain Fig. 15b

this sum is also simply the number of faces and edges in the graph, and so by Euler’s
formula must have the same parity as the number & of vertices. It follows that L; can
be oriented to give rise to a periodic Kasteleyn orientation of L if and only if & is
even.

If k is odd, the above procedure produces a IL;-periodic orientation of I which
is “almost” Kasteleyn, in that exactly one face per fundamental domain is clockwise
even. This can be resolved by doubling the fundamental domain: for example, if we
put two copies of the fundamental domain side by side to make the 2 x 1 torus L 1, the
orientation of the doubled graph can be corrected by choosing a dual path y joining
the two clockwise even faces, and reversing the orientation of each edge crossing the
dual path y.

Recalling Definition 2.1, suppose further that we are given a reference matching mg
of L, 1 such that its periodic extension my, does not cross any boundaries separating
different copies of Ly 1. We can choose the dual path y such that its periodic extension
either does or does not cross any of these boundaries, and we take the choice which
results in all vertical mp-alternating cycles having sign +1. If horizontal mg-alternating
cycles also have sign +1 then L is mp-oriented; otherwise reverse edges along vertical
seams to complete the orientation.

Proposition 5.2 With the above orientation, the characteristic polynomial P(z, w)
associated to 1L 1 is a polynomial in (z, w?). Consequently, if P(z, w) has two distinct
real nodes then they must be of form (zq, 1) with the same associated Hessian.

Proof Express P(z, w) = det K(z, w) as a sum over permutations, so that each non-
zero term corresponds to an oriented cycle configuration in L ;. Odd powers of w
correspond to cycle configurations winding an odd number of times in the vertical
direction.

Consider the mapping on cycle configurations induced by switching the two copies
of L inside L5 1. The sig