
Probab. Theory Relat. Fields (2016) 166:971–1023
DOI 10.1007/s00440-015-0687-8

On the asymptotics of dimers on tori

Richard W. Kenyon1 · Nike Sun2 ·
David B. Wilson3

Received: 14 October 2013 / Revised: 26 September 2015 / Published online: 2 January 2016
© Springer-Verlag Berlin Heidelberg 2015

Abstract We study asymptotics of the dimer model on large toric graphs. Let L be a
weighted Z2-periodic planar graph, and let Z2E be a large-index sublattice of Z2. For
L bipartite we show that the dimer partition function ZE on the quotient L/(Z2E) has
the asymptotic expansion

Z = exp{A f0 + fsc + o(1)}

where A is the area of L/(Z2E), f0 is the free energy density in the bulk, and fsc is
a finite-size correction term depending only on the conformal shape of the domain
together with some parity-type information. Assuming a conjectural condition on
the zero locus of the dimer characteristic polynomial, we show that an analogous
expansion holds for L non-bipartite. The functional form of the finite-size correction
differs between the two classes, but is universal within each class. Our calculations
yield new information concerning the distribution of the number of loops winding
around the torus in the associated double-dimer models.
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972 R. W. Kenyon et al.

1 Introduction

Dimer systems have been studied since the 1960s when they were introduced to model
close-packed diatomic molecules, and research on them has flourished with a renewed
vigor since the 1990s (see e.g. [30]).

A dimer configuration on a graph G = (V, E) is a perfect matching on G: that is, a
subset of edges m ⊆ E such that every vertex v ∈ V is covered by exactly one edge
of m; for this reason m is also referred to as a dimer cover. If G is a finite undirected
graph equipped with non-negative edge weights (νe)e∈E , a probability measure on
dimer covers is given by

PG(m) ≡ νG(m)

ZG
, with νG(m) ≡

∏

e∈m
νe and ZG ≡

∑

m

νG(m).

The non-normalized measure νG is the dimer measure on the ν-weighted graph G.
The normalizing constant ZG is the associated dimer partition function, with logZG
the free energy and |V|−1 logZG (free energy per vertex) the free energy density.

An ordered pair of independent dimer configurations gives (by superposition) a
double-dimer configuration, consisting of even-length loops and doubled edges. The
double-dimer partition function is ZG = (ZG)2. Double-dimer configurations on pla-
nar graphs are closely related to the Gaussian free field [29,31].

1.1 Square lattice dimer partition function

Kasteleyn, Temperley, and Fisher [16,25,46] showed how to compute the dimer parti-
tion function ZG on a finite planar graph G as the Pfaffian of a certain signed adjacency
matrix, now known as the Kasteleyn matrix. For graphs embedded on a torus or other
low-genus surface, ZG can be computed by combining a small number of Pfaffians
[18,25,45]; we provide further background in Sect. 2.1. Using this method, Kasteleyn
[25] showed that on the unweighted square lattice, both them×n rectangle andm×n
torus have asymptotic free energy density

f0 ≡ lim
m,n→∞,
mn even

(mn)−1 logZG = G/π,

where G ≡ ∑
j≥0(−1) j/(2 j + 1)2 = 0.915965594 . . . is Catalan’s constant. (If mn

is odd, clearly ZG = 0.) In the case of m and n both even, Fisher [16] calculated the
free energy of the m × n rectangle to be given more precisely by

logZ = mn f0 − 2(m + n) f1 + O(1), with

f1 = 1
4 log(1 + 21/2) − 1

2G/π

—the second term in the expansion of logZ is linear in the rectangle perimeter, so we
interpret f1 as the surface free energy density while f0 is the bulk free energy density.
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Fig. 1 Unweighted square lattice dimers. Finite-size corrections fsc for rectilinear m × n tori, shown as a
function of logarithmic aspect ratio log(n/m). Curves are labeled according to parity of (m, n)

Ferdinand [14] refined the calculation further for both rectangle and torus, finding
a constant-order correction term which depends on both the “shape” of the region (the
choice of rectangle or torus boundary conditions, as well as the aspect ratio m

n ) as well
as the parities of m and n. For mn even, Ferdinand found

logZ = mn f0 + (perimeter) f1 + (corners) f� + fsctopology
(−1)m+n (

n
m ) + o(1)

=
{
mn f0 + fsctor(−1)m+n (

n
m ) + o(1), (m × n torus);

mn f0 + 2(m + n) f1 + 4f� + fscrect(−1)m+n (
n
m ) + o(1) (m × n rectangle)

(1)

where f� is a constant which may be interpreted as the free energy per corner, and
the four functions fsctor±1, fsc

rect±1 are explicit analytic functions of the aspect ratio
n/m. These functions fsc are called the finite-size corrections to the free energy: they
contain information about long-range properties of the dimer system (see e.g. [1,6,
44]). Figure 1 shows these finite-size corrections for the m × n torus. We shall see
(Fig. 5) that if we expand our consideration slightly to all near-rectilinear tori—tori
which are rotated with respect to the coordinate axis, or which deviate slightly from
being perfectly rectangular—then in fact seven fsc curves arise in the limit.

Kasteleyn, Fisher, and Ferdinand also carried out these calculations for theweighted
square lattice where the horizontal edges receive weight a while the vertical edges
receive weight b. In this setting they found (for mn even)

logZ = mn f0|a,b+(perimeter) f1|a,b+(corners) f�|a,b+fsctopology
(−1)m+n (

nb
ma )+o(1) (2)

where the free energy coefficients f0, f1, f� depend on theweights a, b in a complicated
manner, but the finite-size correction fsctopology

(−1)m+n (
nb
ma ) is the same function as appearing

in the expansion (1) for the unweighted square lattice, now applied to the “effective”
aspect ratio nb

ma . In this sense the finite-size corrections are seen to be robust to the
particulars of the model.
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974 R. W. Kenyon et al.

Finite-size corrections for square lattice dimers have also been explicitly computed
on the cylinder [4, eq. (46)], [22], Möbius band [4, eq. (48)], [22], and Klein bottle
[22]. In each of these topologies, for each given choice of side length parities, the
finite-size correction is an analytic function of the aspect ratio [22]. See [23,24] for
a discussion of these finite-size corrections in the context of logarithmic conformal
field theory.

1.2 Characteristic polynomial and spectral curve

In this article we consider dimer systems defined on two broad classes of critically
weighted Z

2-periodic planar lattices—rather loosely, a bipartite and a non-bipartite
class. We assume throughout that the lattices are connected, with each edge occurring
with positive probability. Within each class, we compute an asymptotic expansion of
the dimer free energy on large toric quotient graphs—including “skew” or “helical”
(non-rectilinear) tori—and explicitly determine the finite-size correction.

On non-bipartite lattices, the finite-size correction depends on a single parameter τ
in the complex upper half-plane describing the conformal shape of the domain—τ/ i
generalizes the “effective aspect ratio” nb

ma appearing in (2). On bipartite lattices, the
correction depends further on whether the finite torus is globally bipartite or non-
bipartite, as well as on a phase parameter (ζ, ξ) ∈ T

2 which generalizes the signs
((−1)m, (−1)n) appearing in (2). The functional form of the correction is universal
within each class.

More precisely, the bipartite and non-bipartite graph classes which we consider
throughout this paper are characterized by algebraic conditions on the dimer charac-
teristic polynomial. This is a certain Laurent polynomial P(z, w), whose definition
depends only on the combinatorics of the fundamental domain, the 1×1 toric quotient
of the Z2-periodic graph.

On the unit torus T2 ≡ {(z, w) ∈ C : |z| = |w| = 1}, the characteristic polynomial
P(z, w) is non-negative. Many large-scale quantities of interest in the dimer model
can be computed from P: for example the free energy per fundamental domain is
given by half the logarithmic Mahler measure

f0 ≡ 1
2

∫∫

T2

log P(z, w)
dz

2π i z

dw

2π iw
. (3)

Edge-edge correlations are obtained from the Fourier transform of P(z, w)−1 [28].
Criticality in dimermodels is characterized by the intersection of the spectral curve

{(z, w) ∈ C
2 : P(z, w) = 0},

with the unit torus T
2. Dimer models on bipartite graphs have been quite deeply

understood, in part via the classification of the spectral curve as a simple Harnack
curve [32–34]. The bipartition of the graph gives a natural factorization P(z, w) =
Q(z, w)Q(z−1, w−1) with Q a real polynomial, so that the factors Q(z, w) and
Q(z−1, w−1) are complex conjugates for (z, w) ∈ T

2 (see Sect. 2.2). It is known
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On the asymptotics of dimers on tori 975

that if the zero set of Q on T
2 is non-empty, then it consists of a pair of com-

plex conjugate zeroes—which either are distinct, or coincide at a real root of Q.
In the case of distinct zeroes, or zeroes coinciding at a real root at which Q has
a node, the model is critical or liquid, with polynomial decay of correlations. [A
node is a point (z0, w0) at which the polynomial is a product of two distinct lines
(b1(z − z0) + c1(w − w0))(b2(z − z0) + c2(w − w0)) plus higher-order terms.] In all
other cases the model is off-critical, and belongs (depending on the geometry of the
spectral curve) either to a gaseous (exponential decay of correlations) or frozen (no
large-scale fluctuations) phase.

Far less is known about the spectral curves of non-bipartite dimer systems. In
this setting it is conjectured that the characteristic polynomial P(z, w) is either non-
vanishing on the unit torus, or is vanishing to second order at a single real nodewhich
is one of the four points (±1,±1). This conjecture has been proved for the Fisher
lattice with edge weights corresponding to any bi-periodic ferromagnetic Ising model
on the square lattice [37]. For lattices satisfying this condition one can show (see [33])
that frozen phases do not exist: when the spectral curve is disjoint from the unit torus
the model is gaseous (off-critical), and when it intersects at a real node the model is
liquid (critical). In this paper we assume this condition and illustrate its implications
for critical dimer systems.

1.3 Statement of results

Let L be a weighted Z
2-periodic quasi-transitive (that is, the quotient L/Z2 is finite)

planar graph.Weconsider dimers on large toric quotients ofL, as follows: let End+(Z2)

be the set of integer 2 × 2 matrices

E ≡
(
u v

x y

)
with det E > 0. (4)

Any E ∈ End+(Z2) defines the toric graph LE ≡ L/(Z2E), the quotient of Lmodulo
translation by the vectors in the lattice Z2E ≡ {a(u, v)+b(x, y) : a, b ∈ Z}. We take
asymptotics with E tending to infinity while being “well-shaped” in the sense that

det E tends to infinity
while remaining within a constant factor of both ‖(u, v)‖2 and ‖(x, y)‖2. (5)

1.3.1 Finite-size correction to the characteristic polynomial

The 1 × 1 toric quotient LI (with I the 2-dimensional identity matrix) is called the
fundamental domain. We assume it has k vertices with k even: as a consequence (see
Sect. 5.2), L is equipped with a periodic Kasteleyn orientation in which the contour
loop surrounding each face has an odd number of clockwise-oriented edges [27]. (In
Sect. 5 we discuss how to handle k odd, for which such orientations do not exist.) The
dimer characteristic polynomial P(z, w) is the determinant of a certain k-dimensional
matrix K (z, w) associated with the fundamental domain, which may be considered as
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976 R. W. Kenyon et al.

the discrete Fourier transform of the (infinite-dimensional) weighted signed adjacency
matrix of L. For a brief review and formal definitions see Sect. 2.1.

Of course for given L there is some freedom in the choice of fundamental
domain: in particular any LE may be regarded as the fundamental domain, with
corresponding characteristic polynomial PE (ζ, ξ) which is the determinant of a
(k det E)-dimensional matrix KE (ζ, ξ). It can be obtained from P(z, w) by the double
product formula

PE (ζ, ξ) =
∏

zuwv=ζ
zxwy=ξ

P(z, w), (6)

(see e.g. [8,28,33]). If the characteristic polynomial P is non-vanishing on the
unit torus, it is easily seen from (6) (see Theorem 2, below) that, in the limit (5),
log PE (ζ, ξ) = (det E) 2f0 + o(1) uniformly over (ζ, ξ) ∈ T

2, which readily implies
(using e.g. Proposition 2.2) the free energy expansion logZE = (det E) f0 + o(1).

In this paper we compute an asymptotic expansion of PE (ζ, ξ) (ζ, ξ ∈ T) in the
more interesting critical case where P(z, w) is vanishing to second order at nodes on
the unit torus. Formally, let us say that P has a positive node at (eir0 , eis0) ∈ T

2 if it
is vanishing there to second order with positive-definite Hessian matrix:

P(eπ i(r0+r), eπ i(s0+s)) = π2〈(r,s), H(r,s)〉 + O(‖(r,s)‖3) where

H =
(
Az B
B Aw

)
with Az, Aw > 0 and D ≡

√
Az Aw − B2 > 0.

(7)

In the bipartite case (see above), distinct conjugate zeroes of Q correspond to positive
nodes of P; see (21). If instead Q has a real node, the Harnack property implies that
this node is positive (up to global sign change). We associate to H the parameter

τ [H ] ≡ (−B + i D)/Aw ∈ H ≡ {z ∈ C : Im z > 0}. (8)

Theorem 1 Suppose P(z, w) is an analytic non-negative function defined on the unit
torusT2, non-vanishing except at positive nodes (z j , w j ) (1 ≤ j ≤ �) with associated
Hessians Hj . Then, in the limit (5), for ζ, ξ ∈ T we have

log PE (ζ, ξ) = 2(det E) f0 +
�∑

j=1

2 log�

(
ζ

zujw
v
j
,

ξ

zxjw
y
j

∣∣∣ τ j
)

+ O

(
1

n2/5r

)
(9)

where f0 is given by (3), r is theminimumEuclidean distance between (1, 1) and the set
of points (ζ/(zujw

v
j ), ξ/(zxjw

y
j )), τ j is the parameter (8) associated to the transformed

Hessian (Et )−1Hj E−1, and � is the explicit function (31).

In the two settings we consider (see Sect. 1.2), the spectral curve of the character-
istic polynomial either intersects the unit torus at a single positive node (z0, w0) =
(±1,±1) with Hessian H , or at conjugate positive nodes (z0, w0) �= (z0, w0) with
the same Hessian H (see (21)). These conjugate nodes may occur at the same point,
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On the asymptotics of dimers on tori 977

in which case P vanishes to fourth order; however in this case we can still treat each
node separately in Theorem 1. In either case we define

τE ≡ x + y τ [H ]
u + v τ [H ] = τ [(Et )−1HE−1] ∈ H the con f ormal shape of LE ;

(ζE , ξE ) ≡ (eπ irE , eπ isE ) ≡ (zu0w
v
0 , z

x
0w

y
0 ) ∈ T

2 the domain phase of LE . (10)

where rE ,sE are chosen to lie in the interval (−1, 1]. (In the case of two distinct
nodes, for most purposes it suffices to take the phase to be defined modulo complex
conjugation. For one of our results, Theorem 4, we specify a distinction between the
nodes to have a more explicit statement.)

1.3.2 Finite-size correction to the dimer partition function

By the method of Pfaffians [18,25,45] (see also [9]), the dimer partition function on
LE is a signed combination of the four square roots PE (±1,±1)1/2:

ZE = 1
2 [±PE (+1,+1)1/2 ± PE (+1,−1)1/2 ± PE (−1,+1)1/2 ± PE (−1,−1)1/2]

(a review is given in Sect. 2.1; see in particular Proposition 2.2). In Sect. 3 we explain
how to choose the signs to deduce from Theorem 1 the finite-size correction to the
dimer partition function for the two classes of critically weighted graphs described
above:

Theorem 2 If the spectral curve {P(z, w) = 0} is disjoint from the unit torus, then
logZE = (det E) f0 + o(1).

(a) If the spectral curve intersects the unit torus at a single real positive node with
associated Hessian H, then

logZE = (det E) f0 + fsc1(τE ) + o(1)

where τE is as in (10), and fsc1 ≡ logFSC1 with

FSC1(τ ) ≡ 1
2

∑
ζ,ξ=±1 �(ζ, ξ |τ).

(b) Suppose the fundamental domain is bipartite, with dimer characteristic polyno-
mial P(z, w) = Q(z, w) Q(1/z, 1/w) non-vanishing on T

2 except at distinct
conjugate positive nodes (z0, w0) �= (z0, w0) with associated Hessian H.1 Then

logZE = (det E) f0 + fsc2(ζE , ξE |τE ) + o(1)

where τE , ζE , ξE are as in (10), and fsc2 ≡ logFSC2 with

FSC2(ζ, ξ |τ) ≡ 1
2

∑
z,w=±1 �(zζ,wξ |τ)2

1 The Hessian is necessarily the same at both nodes, see (21).
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978 R. W. Kenyon et al.

which has the equivalent expression

FSC2(e
π ir, eπ is|τ) =

∑
e∈Z2 exp{−π

2 gτ (e − (s,−r))}
|η(τ)|2(2 Im τ)1/2

(11)

where for τ ∈ H, gτ is the quadratic form

gτ (e) ≡ (τim)−1(e21 + 2τree1e2 + |τ |2e22) (12)

and η is the Dedekind eta function.
(c) Suppose the fundamental domain is bipartite, with dimer characteristic polyno-

mial P(z, w) = Q(z, w) Q(1/z, 1/w) non-vanishing on T
2 except at a single

(real) root at which Q has a positive node with associated Hessian H. Then

logZE = (det E) f0 + fsc2(1, 1|τE ) + o(1)

where τE is as in (10).
(d) If the spectral curve intersects the unit torus at two real positive nodes (z1, w1)

and (z2, w2) with the same associated Hessian H, then

logZE = (det E) f0 + fsc3(ζE , ξE |τE ) + o(1)

where, defining (z0, w0) ≡ (z1z2, w1w2), the parameters τE , ζE , ξE are as in
(10), and fsc3 ≡ logFSC3 with

FSC3(ζ, ξ |τ) ≡ 1
2

∑
z,w=±1 �(z, w|τ)�(zζ,wξ |τ)

We further have the simplifications

FSC3(+1,+1|τ) = FSC2(+1,+1|τ)

FSC3(+1,−1|τ) = �(−1,−1|τ)�(−1,+1|τ) = �(−1,+1|2τ)

FSC3(−1,+1|τ) = �(−1,−1|τ)�(+1,−1|τ) = �(+1,−1|τ/2)

FSC3(−1,−1|τ) = �(−1,+1|τ)�(+1,−1|τ) = �(+1,−1| 1+τ
2 )

See Fig. 2 for plots of these functions fsc1, fsc2, and fsc3. In [33, Thm. 5.1] it is
shown that for bipartite graphs on tori, case d does not occur. However, for graphs on
tori that are locally bipartite but not globally bipartite, such as an odd × even grid on
a torus, we see in Sect. 5.1 that this case does occur.

We emphasize again that the functional form of the finite-size correction is universal
within each class: the finite-size correction � to the characteristic polynomial (The-
orem 1) is an explicit function depending only on the three parameters ζ, ξ, τ . Thus
in Theorem 2a the graph structure enters into the correction only through τ (that is,
only through the Hessian associated with the real node). In the bipartite setting (The-
orem 2b–d), the finite-size correction depends on the graph structure only through τ

and (ζE , ξE ).
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On the asymptotics of dimers on tori 979

Fig. 2 Free energy finite-size corrections as a function of τ = x + iy ∈ H. In these plots, −1 ≤ x ≤ 1 and
0 < y ≤ 1, and the identically zero function is indicated by the horizontal plane. There is one fsc1 function,
there are four fsc3 functions, and there is a two-parameter family of fsc2 functions. Panels c through i show
the seven functions for unweighted square-grid tori; their restrictions to the pure imaginary line τ = iρ are
the curves in Fig. 5 (shown there as a function of log ρ). Panels b and d show two of the functions relevant
to unweighted honeycomb graph tori; see Fig. 4. The function shown in panel a is relevant to the Ising
model; see Fig. 7

As we explain in Sect. 3.3, the parameter τ has a simple interpretation as the
half-period ratio of the torus with respect to its “natural” or “conformal” embedding.
Consequently the finite-size corrections are invariant under modular transformations.
For example, for the unweighted honeycomb graph, them×n torus (Fig. 3) has τ = iρ
where ρ = n/(m

√
3) is the effective or geometric aspect ratio.

The domain phase parameter (ζE , ξE ) is of a quite different nature: it generalizes
the signs (−1)m, (−1)n appearing in (2), and depends sensitively on the entries of E .
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980 R. W. Kenyon et al.

Fig. 3 The 4 × 3 toric quotient of the honeycomb graph, with effective aspect ratio ρ = √
3/4 (also the

actual aspect ratio of this geometric embedding) in the unweighted setting

−0.2 0.2

0.89

0.88

0.87

0× 0

0×±1/3 ±1/3 × 0

±1/3 ×±1

Fig. 4 Unweighted honeycomb graph dimers. Finite-size corrections fsc2(ζE , ξE |τ) for near-rectilinear
toric quotients, shown as a function of logarithmic aspect ratio log ρ, labelled according to value of (u −
v, x − y)/3 modulo 1 (see Sect. 4.4)

For example, for dimers on the honeycomb lattice, the finite-size correction for m × n
quotients (Fig. 3) was computed by Boutillier and de Tilière in the case n ≡ 0 mod 3
[2]. Figure 4 shows this correction for the unweighted honeycomb lattice as a function
of the logarithmic effective aspect ratio log ρ, together with three other curves—one
showing the different correction which applies for n �≡ 0 mod 3, and the remaining
two showing corrections which can be found on toric quotients which are nearly but
not quite rectilinear. Some discussion of this is given in Sect. 4.4.

In the square lattice we find a similar phase sensitivity, but we find a dependence
also on the global bipartiteness of the torus (for example, the 4× 3 torus in the square
lattice is non-bipartite). As a result, for near-rectilinear tori the finite-size correction
lies asymptotically on any of seven curves, Fig. 5—four curves for bipartite tori and
three for nonbipartite. Further discussion of this is given in Sect. 5.

1.3.3 Non-contractible loops on the torus

Recall that the superposition of two independent dimer covers of a planar graph G
produces a double-dimer configuration consisting of even-length loops and doubled
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−1 1

1

2

Fig. 5 Unweighted square lattice dimers. Finite-size corrections fsc for near-rectilinear toric quotients,
shown as a function of the logarithmic aspect ratio log ρ. There are seven distinct curves, depending on
parities of vectors defining the torus (see Sect. 5.1). (It is easy to distinguish only five of the curves, see
Fig. 16 for a magnified view.)

edges. Alternatively, a single dimer cover of G may be mapped to a double-dimer
configuration by superposition with a fixed reference matching m. It is of interest to
study the non-contractible loops arising from this process on toric graphs. In addition
to the finite-size corrections to the overall dimer partition functions ZE (Theorem 2),
we are able to obtain somefiner information on the distribution of the partition function
between dimer covers of different homological types, as follows.

Non-contractible loops in the bipartite setting. If G is bipartite, a double-dimer con-
figuration resulting from the (ordered) pair (m,m′) is naturally regarded as an oriented
loop configurationm�m′, with edges fromm oriented black-to-white and edges from
m′ oriented white-to-black. We then let

windm � m′ ≡ (wh,wv) ∈ Z
2 (13)

denote the homology class (or “winding numbers”) of theoriented loop configuration.2

Form×n toric quotients of the unweighted honeycomb tiling (Fig. 3), it was shown
in [2] that for n ∈ 3Z, the winding windm � m of a dimer cover m with respect to
a fixed reference matching m is asymptotically distributed as a pair of independent
discrete Gaussians, with variances determined by the torus aspect ratio. The proof is
based on a perturbative analysis of the finite-size correction, and we generalize their
method to prove

Theorem 3 In the setting of Theorem 2b, let mE be a fixed reference matching of LE

obtained by periodically extending a matching m0 of the fundamental domain. Then
the winding windm � mE ∈ Z

2 asymptotically fluctuates as a discrete Gaussian:

2 Ifm�m′ contains two loops each winding once around the torus in the+(u, v) direction, thenwindm�
m′ = (2, 0); if the two loops wind in opposing directions then windm� m′ = (0, 0).
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982 R. W. Kenyon et al.

P(windm � mE = e) → exp{−π
2 (e − μE )t�−1

E (e − μE )}
∑

e′∈Z2 exp{−π
2 (e′ − μE )t�−1

E (e′ − μE )} with

covariance �E = (Et )−1HE−1

(det H)1/2/ det E
, center μE ≡± 1

π
(arg ξE , − arg ζE ) mod Z

2.

A more explicit version of Theorem 3 is given as Theorem 4, stated and proved in
Sect. 4. Dubédat [12, Thm. 7] proved a version of Theorem 3 for dimers on bipartite
isoradial graphs.

Non-contractible loops in the non-bipartite setting. In the non-bipartite setting, the
loop configurationm⊕m′ is not oriented, and we take the windingwindm⊕m′ to be
defined only as an element of (Z/2Z)2. In the setting of Theorem 2a, we also compute
(Proposition 3.1) the finite-size corrections to the partition functions Zrs

E of the four
homology classes indexed by (r,s) ∈ {0,1}2.

To note one particular motivation, we remark that this winding is of particular
interest in the context of Ising models. On a graph G = (V, E) with real-valued para-
meters (βe)e∈E (coupling constants), we define the associated Ising model to be the
probability measure on spin configurations σ ∈ {±1}V given by

‡
PG(σ ) ≡ 1

‡ZG

∏

e=(uv)∈E
exp{βeσuσv}.

On the square lattice with vertical and horizontal coupling constants βa and βb

(“Onsager’s lattice”), the bulk free energy density ‡f0 was first calculated by Onsager
[42]. Kasteleyn [26] and Fisher [17] rederived this result by exhibiting a correspon-
dence between the Ising model on a planar (weighted) graph G and the dimer model
on various “decorated” versions G′ of G.

For instance, the Ising model on the triangular lattice with coupling constants
βa, βb, βc corresponds—via its low-temperature expansion—to the dimer model
on the Fisher lattice with unit weights on the within-triangle edges, and weights
(a, b, c) = (e2βa , e2βb , e2βc ) on the edges between triangles (Fig. 6). To calculate the
Ising partition function ‡Zm,n on the m × n torus in the triangular lattice, take the
m × n torus in the Fisher lattice, and fix the reference matching m consisting of all
(a, b, c)-edges. Let Z00[a, b, c] denote the partition function of dimer configurations
m with windm ⊕ m = (0,0): then

‡Zm,n = 2 · Z00
m,n

[
e2βa , e2βb , e2βc

]
∏

e e
βe

. (14)

At βc = 0 (c = 1), the Ising model on the triangular lattice reduces to the Ising model
on Onsager’s lattice. Criticality forZ2-periodic Isingmodels has been characterized in
terms of the intersection of the Fisher lattice spectral curve with the unit torus ([36,37],
see also [7]).

Using (14) and similar correspondences, the asymptotic expansion of the Ising
partition function has been computed in numerous contexts [5,11,15,21,38,41,43,47].
In particular, for Onsager’s lattice on the ferromagnetic critical line
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On the asymptotics of dimers on tori 983

Fig. 6 Fisher correspondence between the Ising model on the triangular lattice and the dimer model on
the Fisher lattice. The Ising spins ±1 (yellow and blue) live on the dodecagonal faces of the Fisher lattice.
The Fisher lattice is given the reference matchingm consisting of all between-triangle edges (black). Take
the unique dimer configuration mwhich contains a between-triangle edge if and only if it separates like
spins (red): then the loops ofm⊕m trace the spin domain boundaries in the low-temperature expansion of
the Ising model. The Ising and dimer partition functions are related in (14) (color figure online)

a + b + 1 = ab with a = e2βa and b = e2βb , (15)

the Ising free energy on m × n graphs has the expansion (compare (2))

log ‡Zm,n =mn ‡f0 + (perimeter) ‡f1 + (corners) ‡f� + ‡fsctopology
(
n
m

a2−1
2a

)
+ o(1),

where ‡fsc is an explicit analytic function depending on the topology (rectangle, torus,
cylinder, etc.)—but not on the parity of (m, n). On the anti-ferromagnetic critical line

a−1 + b−1 + 1 = (ab)−1,

the finite-size correction depends also on the parity of (mn). Figure 7 shows the
finite-size corrections for m × n toric quotients of the homogeneous Onsager’s lattice
(βa = βb = β) at the critical points

β = ± 1
2 log(

√
2 + 1),

where β positive is ferromagnetic and β negative is anti-ferromagnetic.
The following proposition characterizes criticality for the Fisher lattice, as well as

for a superficially similar lattice, the so-called rhombitrihexagonal tiling (Fig. 18). The
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−2 −1 1 2

1

−1

−3

(f) all parities;
(af) even × even

(af) even × odd(af
) od

d× eve
n

(af) odd× odd

Fig. 7 Square lattice critical Ising (β = 1
2 log(

√
2+1)). Finite-size corrections form×n tori as a function

of logarithmic aspect ratio log ρ (color figure online)

latter graph has no known correspondence with the Ising model, yet its dimer systems
exhibit some similar features. Though the proposition is easy to prove and various
special cases appear in the literature, we include a detailed proof in the Appendix 1
for completeness. Combined with Theorem 2a, it gives the finite-size correction for
general (critical) Ising models on large toric quotients (including skew tori) of the
triangular lattice and Onsager’s lattice.

Proposition 1.1 For the Fisher graph (Fig. 17) or the 3.4.6.4 graph (Fig. 18), the
spectral curve can only intersect the unit torus at a real node, characterized by the
vanishing of one of the four quantities

c

⎛

⎜⎜⎝

−Pf K (+1,+1)
+Pf K (+1,−1)
+Pf K (−1,+1)
+Pf K (−1,−1)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

+a + b + c − abc
−a + b + c + abc
+a − b + c + abc
+a + b − c + abc

⎞

⎟⎟⎠ ≡

⎛

⎜⎜⎝

κ◦
κa
κb
κc

⎞

⎟⎟⎠ (16)

where c is 1 for the Fisher graph, and 1/2 for the 3.4.6.4 graph.

For dimers coming from the Ising model, such as on the Fisher graph, the node
coincides with the Ising model’s critical temperature [7,36].

We summarize the relevant background in Sect. 2. Theorem 2 is proved in Sect. 3.
In Sect. 4 we prove Theorem 4, which is a stronger version of Theorem 3. In Sect. 5
we consider lattices with odd-sized fundamental domain, which provide examples for
some of the cases in Theorem 2. We postpone the proof of Theorem 1 until Sect. 6,
even though the proofs of Theorems 2 and 4 depend on it, since its proof is somewhat
technical. Proposition 1.1 is proved in Appendix 1.

2 Preliminaries

Throughout this paper,L denotes aZ2-periodic quasi-transitive planar graph equipped
with positive edge weights.
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2.1 Kasteleyn orientation and characteristic polynomial

The Kasteleyn orientation is a way of computing the dimer and double-dimer partition
functions via matrix Pfaffians and determinants. The Pfaffian of a 2n × 2n skew-
symmetric matrix is given by

Pf K ≡ 1

n! 2n
∑

σ∈S2n
(sgn σ)

n∏

j=1

Kσ(2 j−1),σ (2 j), (17)

and satisfies (Pf K )2 = det K . If K is the (skew-symmetric) weighted adjacency
matrix of a finite directed graph G, then each non-zero term in (17) corresponds
to a dimer cover of G. All the n! 2n permutations σ ∈ S2n corresponding to the same
dimer cover m appear with the same sign sgnm in (17), so that we may write Pf K =∑

m (Pf K )m where each matching contributes (Pf K )m ≡ (sgnm)
∏

(i j)∈m |Ki j |.
Every finite planar graphG can be equippedwith aKasteleyn orPfaffian orientation,

in which all dimer coversm appear with the same sign sgnm in (17)—that is, for which
|Pf K | is the dimer partition function ZG of G, and det K is the double-dimer partition
function (ZG)2. A Kasteleyn orientation is given by arranging each (non-external)
face to be clockwise odd, i.e. with an odd number of edges oriented in the clockwise
direction; see [27, § V-D] for details.3

Returning to the setting of Sect. 1.3, let L be a planar Z2-periodic lattice, with an
even number k of vertices per fundamental domain. L can be equipped with a periodic
Kasteleyn orientation in which every face is clockwise odd (see Sect. 5.2); this defines
an infinite-dimensional weighted signed adjacency matrix (Kasteleyn matrix) K , with
entries Ki j ≡ (1i→ j − 1 j→i )νi j for i, j ∈ L. For z, w ∈ C and

E =
(
u v

x y

)
∈ End+(Z2),

define a (z, w)-periodic function to be a function f : L → C satisfying f (p +
a(u, v) + b(x, y)) = f (p)zawb for p ∈ L and a, b ∈ Z. We let

KE (z, w) the “Fourier transform of K with respect to E ′′ (18)

denote the action of K on the (finite-dimensional) space of (z, w)-periodic functions.
We write K (z, w) ≡ KI (z, w) ∈ C

k×k (where I is the identity matrix) and call

P(z, w) ≡ det K (z, w) the characteristic polynomial of L.

Note that K (z, w)t = −K (1/z, 1/w), so P(z, w) = P(1/z, 1/w).

3 It is sometimes useful to allow some edges of G to have imaginary weights, in which case K is no longer
real-valued (but still skew-symmetric). In this setting a Kasteleyn orientation of a planar graph is given
by taking the product of signed edge weights going clockwise (that is, edge e = (u → v) contributes
+νe = Ku,v or −νe = Kv,u to the product according to whether it is traversed in the positive (u → v) or
negative (v → u) direction while going clockwise around the face) around each (non-external) face to be
negative real. We say that an oriented loop has sign ζ ∈ T to mean that the product of signed edge weights
along the loop equals a positive real number times ζ .
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2.2 Bipartite characteristic polynomial

Note that in (18) the linear map K (z, w) was defined without reference to a basis,
which is unnecessary for defining the determinant. To consider Pfaffians of K (z, w),
however, we must fix a basis: from the relation Pf (MKMt ) = (det M)(Pf K ) it is
clear that even an orthogonal change of basis can change the sign of the Pfaffian. We
therefore assume a fixed ordering 1, . . . , k of the vertices of the fundamental domain,
and take the basis ( f1, . . . , fk) where f p(q) = zawb if q is the vertex corresponding
to p in the (a, b)-translate of the fundamental domain, and f p(q) = 0 for all other q.
For the action of KE (z, w) fix any ordering of the fundamental domains and take the
basis

( f 11 , . . . , f 1k , . . . , f det E1 , . . . , f det Ek ) (19)

where f ep (q) is the (z, w)-periodic function (with period E) corresponding to the
p-vertex in the e-th fundamental domain.4

If a planar graph G (with positive edge weights) is bipartite with parts B (black)
and W (white), an equivalent characterization of a Kasteleyn orientation is that the
boundary of each non-external face has an odd or even number of edges B → W
according to whether its length is 0 or 2 modulo 4.5

Suppose L has bipartite fundamental domain, with k/2 vertices of each color; and
for E ∈ End+(Z2) let bE ≡ (det E)k/2. The action of KE (z, w) interchanges the
(z, w)-periodic functions supported on B with those supported on W : from the basis
(19), there is an orthogonal change-of-basis matrix O with det O = (−1)bE (bE−1)/2

such that

O KE (z, w) Ot =
(

0 kE (z, w)

−kE (1/z, 1/w)t 0

)
≡ K̃E (z, w),

with kE (z, w) the action of KE (z, w) from W -supported to B-supported functions.
For z, w ∈ {±1} the matrix KE (z, w) is skew-symmetric, with Pfaffian

Pf KE (z, w) = (det O)(Pf K̃E (z, w)) = det kE (z, w) ≡ QE (z, w). (20)

The bipartite characteristic polynomial is Q(z, w) ≡ QI (z, w). In this setting it is
known that Q(z, w) either has no roots on the unit torus or two roots, which are
necessarily complex conjugates; it is possible for the roots to coincide [34]. Simple
zeroes of Q(z, w) are nodes of P(z, w) ≡ Q(z, w)Q(1/z, 1/w) = |Q(z, w)|2 with
associated positive-definite Hessian

H =
( |z∂z Q|2 Re[z∂z Q w∂wQ]
Re[z∂z Q w∂wQ] |w∂wQ|2

) ∣∣∣∣
(z,w)=(z0,w0)

=
(
Az B
B Aw

)
. (21)

4 Since the number of vertices per fundamental domain is even, the arbitrary ordering of fundamental
domains within LE will not affect the Pfaffian.
5 More generally, if imaginary weights are allowed, the condition is that the product of signed B → W
edge weights is negative or positive real according to whether the length is 0 or 2 modulo 4.
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In particular, distinct conjugate nodes of P must have the same Hessian matrix. If
instead Q has a real node then P vanishes there to fourth order, but the finite-size
corrections to ZE can be determined using the second-order expansion of Q.

2.3 Pfaffian method for toric graphs

For non-planar graphsKasteleyn orientations do not in general exist. Instead the dimer
partition function of the toric graph LE can be computed as a linear combination of
four Pfaffians, as follows (cf. [25]).

Fix arbitrarily a reference matching m0 of the fundamental domain, and “unroll”
the matching to obtain a periodic reference matchingm∞ of L. Assume that no edges
of the reference matching cross between different fundamental domains (which can
be achieved by deforming the domain boundaries in a periodic manner), so that m0
occurs with the same sign in Pf K (z, w) for all z, w ∈ {±1}. This sign can be switched
by reversing the orientation of all edges incident to any single vertex, and we hereafter
take it to be +1. If mE is the projection of m∞ to LE , then for the basis (19) we
have (Pf KE (+1,+1))mE = (Pf K (+1,+1))det Em0

—thusmE appears with sign +1 in
Pf KE (z, w) for all E ∈ End+(Z2) and all z, w ∈ {±1}.

Next, say that an even-length cycle on LE is mE-alternating if every other edge
comes from mE . All m0-alternating cycles on the fundamental domain with the same
homology must occur with the same sign: to see this, let C1,C2 be twom0-alternating
cycles of the same homology type. Then we can transform C1 to C2 by deforming the
cycle across planar faces one at a time (the intermediate cycles need not have even
length). Switching C1 with C2 as needed, we may assume that each face traversed by
this process has boundary partitioned into a segment γ− (containing �− edges) which
is traveled in the negative direction by the cycle just before the face is traversed, and
another segment γ+ (containing �+ edges) which is traveled in the positive direction
by the cycle just after the face is traversed. Since the face is clockwise odd (i.e., has
negative sign in the counterclockwise direction), sgn(γ−) sgn(γ+) = −(−1)�− . The
deformation from γ− to γ+ “crosses” �− −1 vertices in the sense that it brings �− −1
more vertices (strictly) to the left of the cycle. Thus the total sign change between
C1 and C2 is (−1)� with � the total number of vertices crossed. Since C1 and C2 are
both m0-alternating, m0 must restrict to a perfect matching of the � vertices crossed:
therefore � must be even, and so sgn(C1) = sgn(C2) as claimed.

Appropriately reversing edges along horizontal or vertical “seams” (boundaries
separating adjacent copies of the fundamental domain) produces a periodic Kasteleyn
orientation ofL such that in anyLE with the inherited orientation, everymE -alternating
cycle has sign +1. We hereafter assume that the lattice L has been “pre-processed”
such that all these sign conditions hold, that is:

Definition 2.1 Fix m0 a reference matching of the fundamental domain LI , let m∞
denote its periodic extension to L. We say that L ism0-oriented if (1) no edges ofm∞
cross boundaries separating different copies of the fundamental domain, (2)m0 occurs
with positive sign in Pf K (+1,+1) [hence in all four Pfaffians Pf K (±1,±1)], and
(3) every m0-alternating cycle in the fundamental domain has sign +1.

123



988 R. W. Kenyon et al.

For r,s ∈ {0, 1} let Zrs
E denote the partition function of matchings m such that

the superposition of m with m0 is of homology (r,s) modulo 2. For any periodic
Kasteleyn orientation of L, it is easily seen that

(Pf KE (z, w))m (Pf KE (z, w))m0

(Pf KE (1, 1))m (Pf KE (1, 1))m0

= zrws for z, w ∈ {±1};
m contributing to Zrs

E .
(22)

Specializing to the case that L is m0-oriented, the argument of [25] (also explained in
[40, Ch. 4]) gives the following

Proposition 2.2 If lattice L is m0-oriented, then

⎛

⎜⎜⎝

−Pf KE (+1,+1)
+Pf KE (+1,−1)
+Pf KE (−1,+1)
+Pf KE (−1,−1)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟⎟⎠

︸ ︷︷ ︸
S

⎛

⎜⎜⎝

Z00
E

Z10
E

Z01
E

Z11
E

⎞

⎟⎟⎠ . (23)

In particular, the dimer partition function of LE is

ZE = 1
2 [−Pf KE (+1,+1) + Pf KE (+1,−1) + Pf KE (−1,+1) + Pf KE (−1,−1)].

We shall also defineZ rs
E to be the partition function of double-dimer configurations

m1 ⊕ m2 with homology (r,s) modulo 2. It can be seen from (22) that

Z rs
E ≡ ∑

r′,s′ Zr′s′
E Z (r′+r)(s′+s)

E . (24)

The double-dimer partition function on LE is given by the sum ZE = ∑
r,sZ rs

E .

2.4 Special functions and Poisson summation

For dimer systems on tori we find finite-size corrections which can be expressed in
terms of the Jacobi theta functions ϑrs (r,s ∈ {0, 1}), whose definition we now
briefly recall (for further information see e.g. [13]). These are functions ϑrs(ν|τ) of
complex variables ν and τ ≡ τre + iτim, with τim > 0, expressed equivalently as
functions ϑrs(ν, qτ ) of ν and the nome

qτ ≡ eπ iτ = eπ iτre |qτ |. (25)
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Note that |qτ | < 1. Each theta function is given by an infinite sum:

ϑ00(ν|τ) ≡
∑

j∈Z e2π i jνq j2
τ ,

ϑ01(ν|τ) ≡
∑

j∈Z(−1) j e2π i jνq j2
τ ,

ϑ10(ν|τ) ≡
∑

j∈Z+1/2
e2π i jνq j2

τ ,

ϑ11(ν|τ) ≡ i
∑

j∈Z+1/2
(−1) j−1/2e2π i jνq j2

τ .

(26)

The theta functions also have infinite product expressions, as follows:

ϑ00(ν|τ) = G(qτ )
∏

�∈N−1/2
(1 + 2q2�τ (cos 2πν) + q4�τ )

ϑ01(ν|τ) = G(qτ )
∏

�∈N−1/2
(1 − 2q2�τ (cos 2πν) + q4�τ )

ϑ10(ν|τ) = 2q1/4τ (cosπν)G(qτ )
∏

�≥1
(1 + 2q2�τ (cos 2πν) + q4�τ )

ϑ11(ν|τ) = −2q1/4τ (sin πν)G(qτ )
∏

�≥1
(1 − 2q2�τ (cos 2πν) + q4�τ ),

(27)

where G(q) ≡ ∏
j≥1(1 − q2 j ); this is also the q-Pochhammer symbol (q2; q2)∞.

The Dedekind η function is
η(τ) ≡ q1/12τ G(qτ ). (28)

We also write ϑrs(τ ) ≡ ϑrs(0|τ); the function ϑ11(τ ) is identically zero.6

Many useful theta function identities may be found in [10,13] (see in particular
[13, p. 356]). The theta functions satisfy the relations

ϑ00(ν + 1|τ) = ϑ00(ν|τ), ϑ00(ν + τ |τ) = e−π i(2ν+τ)ϑ00(ν|τ). (29)

The four theta functions are related by the transformations

ϑ00(ν + 1
2 |τ) = ϑ01(ν|τ),

ϑ00(ν + 1
2τ |τ) = e−π i(ν+τ/4)ϑ10(ν|τ)

ϑ00(ν + 1
2 (1 + τ)|τ) = −ie−π i(ν+τ/4)ϑ11(ν|τ).

(30)

2.5 Finite-size correction and Gaussian sum formulas

The correction appearing in (9) is expressed in terms of these special functions as
follows: for φ,ψ ∈ R and r,s ∈ {0, 1} we define

�rs(−e2π iφ,−e2π iψ |τ) ≡
∣∣∣∣
ϑrs(φτ − ψ |τ)eπ iτφ2

η(τ)

∣∣∣∣, and � ≡ �00. (31)

6 Another standard notation is given by ϑ1 ≡ −ϑ11, ϑ2 ≡ ϑ10, ϑ3 ≡ ϑ00, ϑ4 ≡ ϑ01.
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From the relations (29), the evaluation of � does not depend on the integer parts of φ

or ψ . It then follows from (30) that the same holds for any �rs, and further

�((−1)rζ, (−1)sξ |τ) = �rs(ζ, ξ |τ) for all ζ, ξ ∈ T. (32)

Recalling ϑrs(τ ) ≡ ϑrs(0|τ), we define �rs(τ ) ≡ �rs(−1,−1|τ), with �11 ≡ 0.
Expressions involving theta functions can often be transformed in a useful way

using the Poisson summation formula: for f ∈ L1(Rd), denote its Fourier transform
f̂ (k) = ∫

Rd e−2π i〈k,x〉 f (x)dx . With this normalization, the Gaussian function e−πx2

is preserved by the Fourier transform. If both f, f̂ satisfy | f (x)| + | f̂ (x)| � (1 +
|x |)−d−δ for some δ > 0, then they are both continuous functions with

∑

k∈Zd

f̂ (k)e2π i〈k,x〉 =
∑

n∈Zd

f (x + n) for all x ∈ R
d .

(see e.g. [19]). Our typical application of this formula is to transform expressions
involving theta functions into partition functions for discrete Gaussian distributions:

Definition 2.3 For μ ∈ R
d , �0 ∈ R

d×d positive-definite, and L any discrete subset
of Rd , the discrete Gaussian on L with center parameter μ and scale parameter �0 is
the L-valued random variable X with

P(X = e) = exp{−π
2 [(e − μ)�−1

0 (e − μ)]}
∑

e′∈L exp{−π
2 [(e′ − μ)�−1

0 (e′ − μ)]} for e ∈ L .

Only two-dimensional discrete Gaussians arise in this paper.
Theta functions and discrete Gaussian distributions are related as follows. Recalling

the quadratic form gτ (e) from (12), if τ = τ [H ] as in (8), then

gτ (e) = et�−1
0 e with �0 = (det H)−1/2H. (33)

Lemma 2.4 For r,s ∈ {0,1} and φ,ψ ∈ R,

�rs(−e2π iφ,−e2π iψ |τ)2 =
∑

j,k∈Z(−1)(r+k)(s+ j) exp{−π
2 gτ ( j − 2ψ, k + 2φ)}

|η(τ)|2(2τim)1/2
,

(34)

Proof Write ν ≡ φτ − ψ . Recalling (25), write q ≡ |qτ | ≡ e−πτim . Use (26) to
expand
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|ϑ00(ν|τ)|2=
∑

x,y∈Z qx
2+y2+2φ(x+y) exp{2π i[(φτre − ψ) + 1

2τre(x+y)](x − y)}
= 1

2

∑
j∈Z q j2/2+2φ j

∑
k∈Z qk

2/2 exp{2π i[(φτre − ψ) + 1
2τre j]k}

+ 1
2

∑
j∈Z(−1) j q j2/2+2φ j

∑
k∈Z(−1)kqk

2/2 exp{2π i[(φτre − ψ) + 1
2τre j]k}

where the second equality follows by the change of variables j ≡ x+y, k ≡ x−y. For
both of the double sums appearing in the last expression, apply Poisson summation
over k for each fixed j to obtain [with some rearranging, and recalling (32)]

�00(−e2π iφ,−e2π iψ |τ)2 =
∣∣∣∣∣
qφ2

ϑ00(ν|τ)

η(τ )

∣∣∣∣∣

2

=
∑

j,k∈Z(−1) jk exp{−π
2 gτ ( j − 2ψ, k + 2φ)}

|η(τ)|2(2τim)1/2
,

proving (34) for (r,s) = (0, 0). The formulas for the remaining values of (r,s)

follow from (32). ��
Lemma 2.5 The zero-argument correction factors�rs(τ ) ≡ �rs(−1,−1|τ) satisfy
the cross product identities

�00(τ )�01(τ ) = �01(2τ),

�00(τ )�10(τ ) = �10(τ/2),

�01(τ )�10(τ ) = �10( 1+τ
2 ).

(35)

For distinct pairs r1s1 and r2s2 belonging to {00,01,10},

�r1s1(τ )�r2s2(τ ) =
∑

e∈Z2 exp{−π
4 gτ (2e + (s1,r1) + (s2,r2))}
|η(τ)|2(τim)1/2

(36)

Proof We have the identities (see e.g. [10, §4.1])

ϑ00(τ )ϑ01(τ ) = ϑ01(2τ)2, 2g2τ (e) = gτ (e1, 2e2)

2ϑ00(τ )ϑ10(τ ) = ϑ10(τ/2)2, 2gτ/2(e) = gτ (2e1, e2)

2eiπ/4ϑ01(τ )ϑ10(τ ) = ϑ10(
1+τ
2 )2, 2g(1+τ)/2(e) = gτ (2e1 + e2, e2)

Straightforward manipulations using the product formulas (27) give (35). Combining
with (34) gives (36): for example, recalling �11(τ ) = 0,

�00(τ )�01(τ )= �01(2τ)2 + �11(2τ)2

|η(τ)/η(2τ)|2 =
∑

e∈(2Z)2+(1,0) exp{−π
2 g2τ (e1, e2/2)}

|η(τ)|2(τim)1/2
,

and combining with the above identity for g2τ gives the formula. ��
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3 Finite-size correction to the torus partition function

In this section we prove Theorem 2, determining the finite-size corrections to the
dimer partition function ZE as well as to its four components Zrs

E . The critical non-
bipartite setting (single real node) is treated in Sect. 3.1, while the critical bipartite
setting (distinct conjugate nodes) is treated in Sect. 3.2. In both cases the asymptotic
expansion of the absolute value |Pf KE (ζ, ξ)| = PE (ζ, ξ)1/2 is given by Theorem 1,
and we explain how to determine the sign of Pf KE (ζ, ξ). Applying S−1 to both sides
of (23) then gives expressions for the finite-size corrections to the quantities Zrs

E as
signed combinations of absolute values or squared absolute values of the functions
�rs. In some cases, we can apply Lemma 2.4 to obtain Gaussian sum formulas for
the finite-size corrections. Lastly, in Sect. 3.3 we explain the interpretation of τ as the
shape of the torus in its “conformal” embedding.

We take the standard branch of the logarithm, which is holomorphic onC\R≤0, and
continuous in z as it approaches the negative real half-line from the upper half-plane.
If for z ∈ T we write eiθ ≡ z, unless otherwise specified we mean that −π < θ ≤ π

equals arg z, the imaginary part of (the chosen branch of) log z.

3.1 Finite-size correction in presence of real nodes

3.1.1 Calculations of the finite-size corrections

Proposition 3.1 (Implies Theorem 2a) Suppose L is m0-oriented with characteristic
polynomial P(z, w)which is non-vanishing onT2 except at a positive node (z0, w0) ∈
{±1}2 where it has expansion (7) with Hessian matrix H. Then, in the limit (5),

logZrs
E = (det E) f0 + fsc1r+sE ,s+rE (τE ) + o(1)

where τE ∈ H and the indices rE ,sE ∈ {0, 1} are as in (10), and fsc1rs ≡
logFSC1

rs with

FSC1
rs(τ ) ≡ 1

4

∑
r′,s′(−1)(s+r′)(r+s′)�r′s′

(τ ).

Summing over r,s gives the statement of Theorem 2a.

Proof The asymptotic expansions of absolute values of the Pfaffians Pf KE (ζ, ξ) are
given by Theorem 1, so the issue is to determine their signs for ζ, ξ ∈ {±1}2. The
location of the node at (z0, w0) implies Pf KE (ζE , ξE ) = 0. If ζE = ξE = 1 then (23)
gives

0 = −Z00
E + Z10

E + Z01
E + Z11

E , (37)

implying that the other three entries on the left-hand side of (23) must be non-negative.
A similar argument applies for the other three possibilities for the location of (ζE , ξE ).
It follows from Theorem 1 and (32) that for r,s ∈ {0, 1},

PE ((−1)r, (−1)s)1/2

e(det E) f0+o(1)
= �rs(ζE , ξE |τE ) = �(r+1,s+1)+(rE ,sE )(τE ).
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The matrix S in (23) satisfies S = 4S−1, so

⎛

⎜⎜⎝

Z00
E

Z10
E

Z01
E

Z11
E

⎞

⎟⎟⎠ = S−1

⎛

⎜⎜⎝

PE (+1,+1)1/2

PE (+1,−1)1/2

PE (−1,+1)1/2

PE (−1,−1)1/2

⎞

⎟⎟⎠ = e(det E) f0+o(1) 1
4 S

⎛

⎜⎜⎝

�(1,1)+(rE ,sE )(τE )

�(1,0)+(rE ,sE )(τE )

�(0,1)+(rE ,sE )(τE )

�(0,0)+(rE ,sE )(τE )

⎞

⎟⎟⎠ ,

implying the result. ��
Proof of Theorem 2c Suppose Q has a single real node at (z0, w0) = (±1,±1). Let
(ζE , ξE ) be as in (10); (ζE , ξE ) = (±1,±1). A very slight modification to the proof
of Theorem 1 gives

log PE (ζ, ξ)1/2 = (det E) f0 + 2 log�(ζ/ζE , ξ/ξE |τE ) + o(1).

(The proof of Theorem 1 approximates P near a positive node by a certain polynomial
P� determined from the Hessian; see (61). In this case we instead determine P� from
the Hessian associated to the node of Q, and approximate P by the square of P�; the
rest of the proof remains essentially unchanged.) The finite-size correction to ZE is
then computed by the same argument as for Proposition 3.1, except with � replaced
with �2. Finally we observe that FSC2(±1,±1|τ) = FSC2(1, 1|τ). ��

Clearly, the most straightforward application of Proposition 3.1 is when z0 = w0 =
+1: in this case Pf KE (+1,+1) = 0, implying that ZE = 2Z00

E and

logZrs
E = (det E) f0 + fsc1rs(τE ) + o(1).

Figure 8 shows fsc1(x + iy) as a function of (x, y). Figure 9a, b show FSC1(x + iy)
together with the individual contributions FSC1

rs(x + iy) as a function of x with y
fixed at 1/20 and 1/100 respectively.

If (z0, w0) �= (1, 1), then the correspondence between Zrs
E and FSC1

r′s′
depends

on the parities of the entries of E . On the other hand, the following corollary shows
that finite-size corrections to the double-dimer partition function do not depend on the
location of the node (z0, w0):

Corollary 3.2 In the setting of Proposition 3.1,

Z rs
E

e(det E) 2f0+o(1)
=

∑
e∈Z2 exp{−π

4 gτ (2e + (r,s))}
2|η(τ)|2(τim)1/2

if (r,s) �= (0, 0),

Z 00
E

e(det E) 2f0+o(1)
=

∑
e∈Z2 exp{−π

2 gτ (e)}
2|η(τ)|2(2τim)1/2

=
∑

e∈Z2 exp{−π
2 gτ (2e)}

|η(τ)|2(2τim)1/2

Proof From the definition (24) of Z rs
E and from Proposition 3.1 we find

Z rs
E = e(det E) 2f0+o(1) 1

4

∑
r′s′ �r′s′

(τ )�(r′,s′)+(s,r)(τ ),
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Fig. 8 (Theorem 2a) Finite-size corrections fsc1 ≡ logFSC1 and log�, shown as a function of τ = x+iy
for −1/2 ≤ x ≤ 1/2, 0 < y ≤ 1. (Recall FSC1(τ ) = 1

2
∑

ζ,ξ=±1 �(ζ, ξ |τ), with �(+1,+1|τ)

identically zero.)

regardless of where the real node is located. Recalling �11(τ ) ≡ 0 gives
⎛

⎝
Z 01

E
Z 10

E
Z 11

E

⎞

⎠ = e(det E) 2f0+o(1) 1
2

⎛

⎝
�00(τ )�10(τ )

�00(τ )�01(τ )

�01(τ )�10(τ )

⎞

⎠

and applying (36) gives the result for (r,s) �= (0,0). Using �11(τ ) ≡ 0 again gives

Z 00
E

e(det E) 2f0+o(1)
= 1

4

[
�00(τ )2 + �01(τ )2 + �10(τ )2 ± �11(τ )2

]

and combining with (34) gives the two expressions for the case (r,s) = (0,0). ��
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Fig. 9 (Proposition 3.1) FSC1(x + iy) (bold) and FSC1
rs(x + iy) with y fixed

A similar calculation give the finite-size correction in the presence of two real
nodes:

Proof of Theorem 2d There are two domain phases, (ζ j
E , ξ

j
E ) ≡ (zujw

v
j , z

x
jw

y
j ) ( j =

1, 2), where we must have Pf KE (ζ
j
E , ξ

j
E ) = 0. It follows that all four entries on the

left-hand side of (23) must be non-negative, therefore

⎛

⎜⎜⎜⎜⎝

Z00
E

Z10
E

Z01
E

Z11
E

⎞

⎟⎟⎟⎟⎠
= e(det E) f0+o(1)S−1

⎛

⎜⎜⎜⎝

�11(ζ 1
E , ξ1E |τE )�11(ζ 2

E , ξ2E |τE )

�10(ζ 1
E , ξ1E |τE )�10(ζ 2

E , ξ2E |τE )

�01(ζ 1
E , ξ1E |τE )�01(ζ 2

E , ξ2E |τE )

�00(ζ 1
E , ξ1E |τE )�00(ζ 2

E , ξ2E |τE )

⎞

⎟⎟⎟⎠ .

Thus, with (ζE , ξE ) ≡ (ζ 1
Eζ 2

E , ξ1Eξ2E ) ≡ ((−1)rE , (−1)sE ), we conclude

ZE = e(det E) f0+o(1) 1
2

∑

r,s

�rs(τE )�(r,s)+(rE ,sE )(τE )

= e(det E) f0+o(1)FSC3(ζE , ξE |τE )

as claimed. The alternative expressions given in the theorem statement for the four
FSC3(±1,±1|τ) follow from (35). ��

3.1.2 Ising model on triangular lattice and Onsager’s lattice

Byway of example we discuss Proposition 3.1 in the context of the Isingmodel. Recall
(14) the correspondence between the low-temperature expansion of the Ising model
on the triangular lattice and the dimer model on the Fisher lattice. Criticality for the
latter model (vanishing of the Fisher characteristic polynomial on the unit torus) is
characterized in Proposition 1.1: in particular, P(+1,+1) = κ2◦ , so P(+1,+1) = 0
includes the cases
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a = b = c = √
3 (critical ferromagnetic Ising on triangular lattice),

a + b + 1 = ab (critical ferromagnetic Ising on Onsager’s lattice),

(in particular the homogeneous Onsager’s lattice with βa = βb = 1
2 log(

√
2 + 1)).

Meanwhile, P(−1,−1) = κ2
c , so P(−1,−1) = 0 includes the case

a−1 + b−1 + 1 = (ab)−1 (critical anti-ferromagnetic Ising on Onsager’s lattice).

Thus, as expected, we see parity dependence in the finite-size correction to (14) only
in the anti-ferromagnetic case.

We also comment briefly on the observation (cf. (37)) that

(ζE , ξE ) = ((−1)rE , (−1)sE ) implies ZE = 2ZsErE
E . (38)

In the setting of Onsager’s lattice with ferromagnetic coupling constants βa, βb > 0,
this can be understood in terms of a duality transformation (see [36]): in addition to
the low-temperature correspondence (14) we also have

(Onsager’s lattice Ising) ‡Zm,n

(Fisher lattice dimers, homology (n,m)) = (
∏

e e
βe ) · 2 · Zn,m

m,n[e−2βa , e−2βb , 1]
(Fisher lattice dimers, all homologies) = 2mn(

∏
e cosh βe)Zm,n[tanh βa, tanh βb, 1].

The first equivalence is again obtained through the low-temperature expansion, except
that instead of considering the polygonal configuration on the dual lattice formed by the
spin domain boundaries, we take the complementary polygonal configuration which
includes each dual edge separating like spins. On them×n torus, the partition function
is restricted to dimer coversm with windm⊕m = (n,m) mod 2 because the original
spin domain boundariesmust have homology (0,0) (cf. (14)). The second equivalence
is obtained through the usual high-temperature expansion, with no restriction on the
homology of the dimer cover.

From (38), the finite-size correction to Zn,m
m,n[e−2βa , e−2βb , 1] at criticality will be

sensitive to the parity of (m, n) unless P(−1,−1) = κc = 0, which corresponds
precisely to the ferromagnetic critical line (15). On this line,

Zm,n[e−2βa , e−2βb , 1] = 2 · Zm,n
m,n[e−2βa , e−2βb , 1] = Zm,n[tanh βa, tanh βb, 1]

where the first identity is from (38), and the second follows by comparing the low-
and high-temperature expansions and observing that 2(cosh βa)(cosh βb) = eβa eβb .
In particular, in the homogeneous case βa = βb = β = 1

2 log(
√
2 + 1), we have

e−2β = tanh β, so that the Fisher lattice is self-dual under the above transformations.
Thus the Ising–Fisher correspondences give an alternate proof of (38) in this special
instance; we emphasize however that (38) holds in a much more general setting.
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3.2 Finite-size correction in presence of distinct conjugate nodes

Proposition 3.3 (Implies Theorem 2b) Suppose the m0-oriented lattice L has bipar-
tite fundamental domain, with bipartite characteristic polynomial Q(z, w) which
is non-vanishing on T

2 except at distinct conjugate zeroes (z0, w0) �= (z0, w0).
The two zeroes are positive nodes of the characteristic polynomial P(z, w) =
Q(z, w) Q(1/z, 1/w) with the same Hessian matrix H. Then, in the limit (5),

logZrs
E = (det E) f0 + fsc2rs(ζE , ξE |τE ) + o(1)

where τE , ζE , ξE are as in (10), and fsc2 ≡ logFSC2 with

FSC2
rs(ζ, ξ |τ) ≡ 1

4

∑
r′,s′(−1)(r+s′)(s+r′)�r′s′

(−ζ,−ξ |τ)2.

Summing over r,s ∈ {0, 1} gives the statement of Theorem 2b.

Lemma 3.4 In the setting of Proposition 3.3, the four quantities

Qrs+ ≡ (−1)rsQ(−(−1)r,−(−1)s), r,s ∈ {0, 1}

must all be positive.

Proof Since all the Zrs
E are non-negative, we see on the right-hand side of (23) that

either all four entries are non-negative, or exactly one is negative while the rest are
positive. In the case that E is the two-dimensional identitymatrix, recalling (20) shows
that (since Q has no real zeroes on the unit torus)

ei ther three or f our Qrs+ are posi tive. (39)

For z, w ∈ C define the counts

�h(w) ≡ number of zeroes in z of Q(z, w) inside unit circle;

�v(z) ≡ number of zeroes in w of Q(z, w) inside unit circle (40)

(taken with multiplicity), where for the moment we leave the count undefined in the
case that there is a zero exactly on the unit circle.

Now suppose that z0, w0 /∈ R. By the assumption of distinct conjugate nodes, �v(z)
stays constant as z travels around the unit circle except that it jumps by one when z
crosses z0 or z0: thus

|�h(+1) − �h(−1)| = |�v(+1) − �v(−1)| = 1. (41)

By the argument principle, �v(z) is also the total winding of the closed curve Q(z,T)

around the origin, or equivalently the total change in (2π)−1 arg Q(z, w) as w travels
around T. For z = ±1, the curve is symmetric about the real line, so �v(z) is given
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by twice the change in (2π)−1 arg Q(z, w) as w travels halfway around T, from +1
counter-clockwise to −1. Thus

sgn[Q(−1,+1)Q(−1,−1)]= (−1)�v(−1), sgn[Q(+1,+1)Q(+1,−1)]=(−1)�v(+1),

sgn[Q(+1,−1)Q(−1,−1)]= (−1)�h(−1), sgn[Q(+1,+1)Q(−1,+1)]=(−1)�h(+1).

From (41), two of the signs above are +1 while the other two are −1.
If instead z0 ∈ R or w0 ∈ R, the argument principle can be used only to determine

three of the four signs, but the fourth is then also determined since the product of
the signs must be +1. Thus it must always be the case that Q has the same sign at
three points in {±1}2, and takes the opposite sign at the last point. Therefore Qrs+ =
(−1)rsQ(−(−1)r,−(−1)s) is positive at an even number of points. Together with
(39) this implies that the Qrs+ are all positive. ��
Proof of Proposition 3.3 Again the issue is to determine the signs of the four Pfaf-
fians Pf KE (±1,±1) which here can be all non-zero in contrast to the setting of
Proposition 3.1. From (20), Pf KE (±1,±1) = QE (±1,±1), where QE can also be
computed recursively from Q(z, w) as in (6): it then follows from Lemma 3.4 that for
r,s ∈ {0, 1},

sgn(−1)rsPf KE (−(−1)r,−(−1)s) = sgn Qrs+ = +1,

and so it follows from Theorem 1 together with (42) that

(−1)rsPf KE (−(−1)r,−(−1)s) = e(det E) f0+o(1) �(−(−1)rζE ,−(−1)sξE )2

It then follows from (23) that

⎛

⎜⎜⎜⎜⎝

Z00
E

Z10
E

Z01
E

Z11
E

⎞

⎟⎟⎟⎟⎠
= e(det E) f0+o(1) 1

4 S

⎛

⎜⎜⎜⎝

�11(−ζE ,−ξE |τE )2

�10(−ζE ,−ξE |τE )2

�01(−ζE ,−ξE |τE )2

�00(−ζE ,−ξE |τE )2

⎞

⎟⎟⎟⎠ ,

implying the expansion of Zrs
E in the statement of the proposition. Summing over

r,s ∈ {0, 1} and recalling Lemma 2.4 concludes the proof of Theorem 2b. ��
Figure 10 shows fsc1(x + iy) versus fsc2(x + iy) for y = 1

200 ; note that fsc1
resembles fsc2 but lies below it.

3.3 Modular transformation of finite-size correction

From the results presented so far it is clear that the asymptotic behavior of dimer
systems on large toric graphs LE is governed by the conformal shape parameter τE
defined in (10). We now explain the interpretation of this parameter as the half-period
ratio of the torus with respect to its “natural” or “conformal” embedding.
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Recall that any E ∈ End+(Z2) defines the fractional linear transformation

γ E : C → C, γ E (z) ≡ x + zy

u + zv
;

note γ EE ′ = γ E ◦γ E ′
. The associated lattice half-period ratio τ E is the evaluation of

this fractional linear transformation at i , τ E ≡ γ E (i), a point in the upper half-plane.
The parameter τ associated to the transformed Hessian HE ≡ (Et )−1HE−1 is simply
the half-period ratio of a certain matrix square root of the inverse Hessian:

τ [HE ]=τ Eh−1
, where h ≡ A−1/2

w

(
D 0
B Aw

)
satisfies (Eh−1)(Eh−1)t = (HE )−1.

In particular we have the symmetries

�rs(ζ, ξ |τ) = �rs(ζ , ξ | − τ) = �rs(ζ, ξ | − τ),

therefore �rs(ζ, ξ |τ) = �rs(ζ , ξ |τ)

}
for ζ, ξ ∈ T (42)

(these relations are also straightforward to prove directly from the definitions of the
special functions).

Two matrices E, E ′ ∈ End+(Z2) specify the same lattice of vectors Z2E = Z
2E ′

if and only if E = T E ′ for T ∈ SL2Z. The half-period ratio transforms under left
multiplication by SL2Z via the group � ofmodular transformations (γ T )T∈SL2Z. The
Jacobi theta and Dedekind eta functions transform naturally under the modular group.
To understand the transformations of �, fsc1, fsc2, fsc3 under the modular group, it
suffices to describe their transformations under the generating transformations

γ A : τ �→ τ + 1 corresponding to A ≡ ( 1 0
1 1 );

γ B : τ �→ −1/τ corresponding to B ≡ ( 0 1−1 0 ).
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From the relations

ϑrs(ν|τ + 1) = (eπ i/4)rϑr,s+1−r(ν|τ), η(τ + 1) = eπ i/12η(τ),

ϑrs(ν/τ | −1/τ) = (−i)rs(−iτ)1/2eπ iν2/τ ϑsr(ν|τ), η(−1/τ) = (−iτ)1/2η(τ),

it is straightforward to prove the following

Proposition 3.5 The functions �rs satisfy the modular relations

�rs(ζ, ξ |τ) = �r,r+s(ζ, ζ ξ |τ + 1),
�rs(ζ, ξ |τ) = �sr(ξ̄ , ζ | − 1/τ) = �sr(ξ, ζ |1/τ̄ ),

implying for all T ∈ SL2Z that, with (ζE , ξE ) ≡ (zu0w
v
0 , z

x
0w

y
0 ), we have

fsc1rs(τ ) = fsc1BT B(r,s)(γ T (τ )) and fsc2rs(ζE , ξE |τ)

= fsc2BT B(r,s)(ζT E , ξT E |γ T (τ )),

hence fsc1(τ ) = fsc1(γ T (τ )) and fsc2(ζE , ξE |τ) = fsc2(ζT E , ξT E |γ T (τ )).

These results indicate that at criticality, the second-order behavior of P(z, w) at its
nodes determines a “natural” or “conformal” geometric embedding of L into the com-
plex plane—that is, the embedding in which the lattice is invariant under translations
by h−1

Z
2, so that the matrix Eh−1 describes LE in Cartesian coordinates.

3.4 Asymptotic behavior of the scaling functions

In this subsection we describe the asymptotics of the finite-size correction functions
as the imaginary part τim of τ tends to +∞ (corresponding to the situation that one of
the lattice vectors defining the torus becomes much longer than the other, with det E
still within a constant factor of ‖(u, v)‖‖(x, y)‖). As we shall see, when τim → ∞,
the corrections to the free energy become linear in τim, while the dependence on the
twist in the torus given by τre becomes negligible.

Consider first the function � of (31). Recalling (27) and (28), we express

�(−e2π iφ,−e2π iψ |τ) =
∣∣∣∣

∏
�∈N−1/2

[
(1 + e2π i((�+φ)τ−ψ))(1 + e2π i((�−φ)τ+ψ))

]

eπ iτ(1/12−φ2)

∣∣∣∣.

We may assume −1/2 < φ ≤ 1/2; then, in the limit τim → ∞, it is clear that all
terms � �= 1/2 in the infinite product give a negligible contribution:

�(−e2π iφ,−e2π iψ |τ)

1 + O(e−2πτim )
=

∣∣∣∣
(1 + e2π i((1/2+φ)τ−ψ))(1 + e2π i((1/2−φ)τ+ψ))

eπ iτ(1/12−φ2)

∣∣∣∣.

If φ is bounded away from ±1/2 in the limit τim → ∞, then

�(−e2π iφ,−e2π iψ |τ) = exp{−πτim(φ2 − 1
12 ) + o(1)}.
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At φ = 1/2 we instead find

�(+1,−e2π iψ |τ) = 2 cos(πψ) exp{−πτim · 1/6 + O(e−2πτim )}.

We therefore find in the limit τim → ∞ that

fsc1(τ ) = πτim/12 + O(e−πτim ),

fsc2(±i, ξ |τ) = πτim/24 + log 2 + O(e−πτim/2)

fsc2(e±2π iφ, ξ |τ) = πτim · (1/6 − 2(|φ| ∧ (1/2 − |φ|))2) + o(1)

(for |φ| bounded away from 1/4)

fsc3(+1,±1|τ) = πτim/6 + O(e−πτim ),

fsc3(−1,±1|τ) = −πτim/12 + log 2 + O(e−πτim ).

These estimates hold uniformly over τre ∈ R.

4 Loop statistics on bipartite graphs

In this section we show that in the bipartite setting with distinct conjugate zeroes,
the dimer winding numbers (13) have asymptotically discrete Gaussian fluctuations.
Earlier results showing that the dimer height distribution is a discrete Gaussian were
obtained by Kenyon andWilson [35] for the square lattice on a cylinder and Boutillier
and de Tilière [2] for the honeycomb lattice on a rectilinear torus.

Theorem 4 (Implies Thm. 3) In the setting of Theorem 2b, suppose L ism0-oriented,
and let mE be the reference matching of LE obtained by periodically extending m0.
Let

� ≡ (�h(−1), �v(−1))

as defined by (40). Up to switching black with white, windm � mE is asymptoti-
cally distributed in the limit (5) as a discrete Gaussian on Z

2 with center and scale
parameters μE and �E given by

μE ≡ 1
π

(
x arg z0 + y argw0

−u arg z0 − v argw0

)
− (det E)(Et )−1�, (43)

�E ≡ (Et )−1HE−1

(det H)1/2/ det E
, (44)

with (z0, w0) ∈ T
2 the distinguished root of Q(z, w) specified by (47) below.

Remark 4.1 The choice of reference matchingmE is not particularly important to the
result. For an arbitrary reference matching nE of LE , since m � nE = (m � mE ) �
(nE � mE ), the limiting distribution of windm � nE is a discrete Gaussian with the
same covariance as for windm � mE , but with a mean that is shifted.
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a b a

b a

a b a

c

c

d

d

w

z

(A) (B)

Fig. 11 Square lattice, with Q(z, w) = a − bz − dw − cz/w. a Fundamental domain in dashed lines;
reference matchingm0 in gray;m0-alternating double-dimer loops (blue-gray horizontally,red-gray verti-
cally). b For unweighted square lattice: radial plot z �→ z|w(z)| with z ∈ T, colored according to Imw(z)
(unit disk shaded) (color figure online)

The proof of Theorem 4 is via perturbative analysis of the expansion of Theorem 2b,
which we repeat here for convenience:

ZE

e(det E) f0+o(1)
= FSC2(ζE , ξE |τE ) (45)

with τE ,rE ,sE as in (10), and

FSC2(ζE , ξE |τ) =
∑

e∈Z2 exp{−π
2 gτ (e − (sE ,−rE ))}

|η(τ)|2(2τim)1/2
.

For z ∈ T, if w �→ Q(z, w) has a root at w(z) ∈ C, then w �→ Q(z−1, w−1) has
a root at w = 1/w(z). Since switching black and white simply reverses the roles of
Q(z, w) and Q(z−1, w−1), recalling (41) we may hereafter assume that

�v(+1) = �v(−1) − 1. (46)

If z0 is real, then one of the �v(±1) is defined by (40) while the other is not, in which
case we define it by (46) (Fig. 11).

We distinguish between the conjugate roots of Q(z, w) by taking (z0, w0) to be the
root such that on a small neighborhood of z0 in T, there is a smooth function w(z)
such that

w(z0) = w0, Q(z, w(z)) = 0, and |w(z0e
2π ir )| is decreasing in r for |r | small.

(47)

4.1 Moment-generating function of winding numbers

Let us briefly review the notion of a dimer height function in this bipartite setting (see
[33] and references therein). A dimer configuration m on LE may be regarded as a
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On the asymptotics of dimers on tori 1003

black-to-white unit flow. If mE is the reference matching on LE , then m � mE is a
divergence-free flow (in addition to being an oriented loop configuration), and gives
rise to a height function h which is defined on the faces of the graph as follows:

For any two faces f0, f1 in the graph, h( f1) − h( f0) gives the flux of m � mE

across a path in the dual graph joining f0 to f1. This definition depends on the choice
of the path from f0 to f1, but homologous paths give the same value. In particular,
for a closed path which can be deformed to a point, the height change is zero. The
horizontal windingwh of the oriented loop configurationm�mE is the height change
along a vertical closed loop oriented downwards, and the vertical winding wv is the
height change along a horizontal closed loop oriented rightwards.

For α ≡ (αh, αv) ∈ R
2, consider the lattice L with weights modified periodically

as follows: for each edge joining a black vertex in the x ∈ Z
2 copy of the fundamental

domain to a white vertex in the x + e ∈ Z
2 copy of the fundamental domain, multiply

the edge weight by exp{〈α, e〉} (regardless of the Kasteleyn orientation of the edge).
Let να ≡ να

E and Zα ≡ Zα
E denote the associated (non-normalized) dimer measure

and dimer partition function onLE . The associated bipartite characteristic polynomial
is

Qα(z, w) ≡ Q(eαh z, eαvw).

The free energy f0 associated with the α-perturbed lattice weighting is the evaluation
at α of the Ronkin function R associated to Q(z, w):

R(α) ≡
∫∫

T2

log |Q(eαh z, eαvw)| dz

2π i z

dw

2π iw
(48)

(see [33] for more information).
Recall that mE is the periodic extension of m0. For a dimer configuration m for

which windm � mE = (wh,wv),

να(m)/να(mE )

ν(m)/ν(mE )
= exp{wh(uαh + vαv) + wv(xαh + yαv)} = exp{(wh,wv)Eα}.

Since no edges of the reference matching are reweighted, να(mE ) = ν(mE ), and so

Zα
E = να(mE )

ν(mE )

∑

m

να(m)/να(mE )

ν(m)/ν(mE )
ν(m) = ZE×E

[
exp{(windm�mE )Eα}]. (49)

where the expectation is with respect to the original normalized dimer measure on E .
Given Zα

E/ZE , assuming it is a sufficiently well-behaved function of α, we can
determine the distribution of the winding of the double-dimer configurations on the
torus E . It is enough to evaluateZα

E/ZE (sufficiently precisely) forα in a neighborhood
of 0. From (49), (45) and (48),

Zα
E

ZE
= exp{R(α) det E}

exp{R(0) det E}︸ ︷︷ ︸
R(α)

· FSC2(ζ
α
E , ξα

E |τα
E )

FSC2(ζ
0
E , ξ0E |τ 0E )

︸ ︷︷ ︸
F (α)

·(1 + o(1)) (50)
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where τα
E , ζα

E , ξα
E are all evaluatedwith respect to theα-perturbedweights.Wecompute

the first factor on the right-hand side in Sect. 4.2, the second factor in Sect. 4.3, and
then complete the proof in Sect. 4.3.

4.2 Perturbation of free energy

In this section we estimateR(α) from (50) by computing the gradient and Hessian of
the Ronkin function R.

A version of the gradient calculation also appears in [33, Theorem 5.6]. For
|α| small, Qα also has distinct conjugate zeroes on the unit torus, and to compute
the gradient we must understand how the zeroes change with α. To this end let
r0(α),s0(α) be the unique smooth real-valued functions such that

Qα(eπ ir0(α), eπ is0(α)) = 0, (eπ ir0(α), eπ is0(α))|α=0 = (z0, w0), (51)

and 1 < r0(0),s0(0) ≤ 1, where (z0, w0) denotes the root of Q at α = 0 which was
distinguished in (47).

Lemma 4.2 In the setting of Proposition 3.3 with (46),

∇R(α) =
(

∂αh R(α)

∂αv R(α)

)
=

(
�h(−1) + s0(α)

�v(−1) − r0(α)

)
for small α;

and

Hess R(α)|α=0 =
(

∂2αh
R(α) ∂αv∂αh R(α)

∂αh∂αv R(α) ∂2αv
R(α)

)∣∣∣∣
α=0

= 1

πD

(
Az B
B Aw

)
,

where Az, Aw, B, and D are defined in (7) and (21). Consequently,

R(α) − R(0) = 〈�,α〉 − (−s0αh + r0αv) + (2πD)−1(αt Hα) + O(α3),

where the constants in big-O term depend on the fundamental domain (but not E).

Proof By the argument principle,

∂αv R(α) = Re
∮

|z|=1

∮

|w|=eαv

(w∂wQ)(eαh z, w)

Q(eαh z, w)

dw

2π iw

dz

2π i z
=

∮

|z|=1

�α
v (z)

dz

2π i z
,

where �α
v (z) counts the number of zeroes in w of Qα(z, w) inside the unit circle. It

follows from the condition (46) and from our definition (51) of r0,s0 that

∂αv R(α) = �α
v (−1) − r0(α),

where �α
v (−1) = �v(−1) for |α| small. Therefore ∂2αv

R(α) = −∂αvr0(α), which is
positive due to (47).
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Differentiating the relation Qα(z, w) = 0 in α and evaluating at α = 0 gives

(
∂αhr0(α) ∂αhs0(α)

∂αvr0(α) ∂αvs0(α)

)(
z∂z Q
w∂wQ

)
= i

π

(
z∂z Q
w∂wQ

)
.

Since r0 and s0 are real-valued, separating the other terms into real and imaginary
parts (zQz ≡ xz + iyz and wQw ≡ xw + iyw) gives a system of four equations for the
four variables ∂αhr0(α), ∂αhs0(α), ∂αvr0(α), ∂αvs0(α). We use (21) to solve these
and find

(
∂αhr0(α) ∂αhs0(α)

∂αvr0(α) ∂αvs0(α)

)
= sgn(xz yw − yzxw)

πD

( −B Az

−Aw B

)
= 1

πD

( −B Az

−Aw B

)
,

where the last equality follows from the preceding observation that ∂αvr0(α) < 0.
This then implies ∂αhs0(α) > 0, so a similar line of reasoning as above gives

∂αh R(α) =
∮

|w|=1

�α
h (w)

dw

2π iw
= �α

h (−1) + s0(α),

with �α
h (−1) defined to be �α

h (+1) − 1 in the case w0 = −1. Therefore

(
∂2αh

R(α) ∂αv∂αh R(α)

∂αh∂αv R(α) ∂2αv
R(α)

)
=

(+∂αhs0(α) +∂αvs0(α)

−∂αhr0(α) −∂αvr0(α)

)
= 1

πD

(
Az B
B Aw

)
.

(52)
��

4.3 Perturbation of finite-size correction

We now compute the effect of the α-perturbation on the finite-size correction. Recall
the quadratic form gτ which was defined in (12).

Lemma 4.3 In the setting of Proposition 3.3 with (46), assuming |α|(det E)1/2 � 1,
the second factor in (50) is

F (α)=
∑

e∈Z2 exp{−π
2 gτ 0E

(e − μE )+(Eα)t (e−μE )}
exp

{ det E
2πD αt Hα

}∑
e∈Z2 exp{−π

2 gτ 0E
(e−μE )} exp{O(|α|(log(1/|α|))1/2)}

with μE as in (43).

Proof The parameter τα
E varies smoothly with α, so we find

F (α) = eO(|α|)FSC2(ζ
α
E , ξα

E |τ 0E )

FSC2(ζ
0
E , ξ0E |τ 0E )

.
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In the expression (11) for FSC2(ζ
α
E , ξα

E |τ 0E ), let offαE be the “offset vector”:

offαE ≡
(

sα
E−rα
E

)

where rα
E ,sα

E are as in (10). Then

F (α) = eO(|α|)
∑

e∈Z2 exp{−π
2 gτ 0E

(e − offαE )}
∑

e∈Z2 exp{−π
2 gτ 0E

(e − off0E )} . (53)

The above is invariant under the addition of integer vectors to offαE , so for convenience
we take the unperturbed offset vector off0E to have norm �1, and let the α-perturbed
offset vector be defined by

offαE − off0E = (det E)(Et )−1
(

sα
0 − s0

0−rα
0 + r00

)
.

The Taylor series expansion with (52) gives

offαE − off0E = det E

πD
(Et )−1[Hα + O(|α|2)]

= det E

πD
(Et )−1Hα + O(|α|2(det E)1/2), (54)

where the second equation holds for well-shaped tori (5). Recall that the quadratic
form gτ can also be expressed using (33) and (44):

gτ 0E
(e) = et�−1

E e = et
EH−1Et

(det H)−1/2 det E
e. (55)

Since �E is symmetric, we can rewrite

gτ 0E
(e − offαE ) − gτ 0E

(e − off0E ) = gτ 0E
(offαE − off0E )

− 2(offαE − off0E )t�−1
E (e − off0E ).

Combining (55) and (54) and recalling that D = √
det H , and using the well-shaped

torus assumption (5), the terms on the right-hand side are

gτ 0E
(offαE − off0E ) = det E

π2D
αt Hα + O(|α|3 det E),

−2(offαE − off0E )t�−1
E (e − off0E )=− 2

π
αt Et (e−off0E )+O(|α|2(det E)1/2(|e|+1)).
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Combining these gives

exp{−π
2 gτ 0E

(e − offαE )} =
exp{−π

2 gτ 0E
(e − off0E ) + (Eα)t (e − off0E )}
exp

{ det E
2πD αt Hα

}

× exp{|α|2(det E)1/2[|e| + 1+|α|(det E)1/2]}. (56)

To apply this estimate in (53), we truncate the sum in the numerator so that |e|will not
be too large. For convenience,wenow invoke the assumption that |α|(det E)1/2 � 1, so
that |offαE −off0E | � |α|(det E)1/2 � 1. Then, since gτα

E
(e) � |e|2, there is an absolute

constant C such that the contribution in the numerator from |e > C(log(1/|α|))1/2
will be less than α. The numerator itself is � 1, so the additive error |α| translates
into multiplicative error exp{O(|α|)}. Then, for |e| ≤ C(log(1/|α|))1/2, we apply the
estimate (56). Finally we remove the truncation on e, giving

F (α) =
∑

e∈Z2 exp{−π
2 gτ 0E

(e − off0E ) + (Eα)t (e − off0E )}
exp

{ det E
2πD αt Hα

}∑
e∈Z2 exp{−π

2 gτ 0E
(e − off0E )}

× exp{O(|α|(log(1/|α|))1/2)}.

The lemma follows since μE is a representative of off0E modulo Z
2. ��

Proof of Theorem 4 Let θ ∈ R
2 with |θ | � 1, and set α = E−1θ . Combining (50)

with Lemmas 4.2 and 4.3 gives

Zα
E

Z0
E

= eo(1)
exp{〈�,α〉 det E} ∑

e∈Z2 exp{−π
2 gτ (e − μE ) + (Eα)t (e − μE )}

exp{(−s0αh + r0αv) det E} ∑
e∈Z2 exp{−π

2 gτ (e − μE )} ,

with μE as in (43). Using the fact that

〈�,α〉 det E + (Eα)t (e − μE ) − (−s0αh + r0αv) det E = 〈θ , e〉,

we obtain

E
[
e〈windm�mE ,θ〉] = Zα

E

Z0
E

= eo(1)
∑

e∈Z2 exp{−π
2 gτ (e − μE )} exp{〈θ, e〉}

∑
e∈Z2 exp{−π

2 gτ (e − μE )} .

If a sequence of probability measures have Laplace transforms that convergence
pointwise to the Laplace transform of a probability measure, then the sequence con-
verges in distribution to that measure [3, Ex. 5.5]. We therefore find that the winding
windm�mE is asymptotically distributed as a discrete Gaussian on Z2 with parame-
ters μE ,�E as in (43) and (44). ��
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4.4 Dimers on the honeycomb graph

By way of example, consider the honeycomb graph with edge weights a, b, c and
bipartite fundamental domain, m0-oriented for the reference matching m0 given by
the a-edge (Fig. 12).

The bipartite characteristic polynomial is Q(z, w) = a − bz − cw. If a, b, c do
not satisfy the triangle inequality then Q is non-vanishing on T2. If the weak triangle
inequality is satisfied, thenC ≡ ∏

r,s∈{0,1} Qrs+ is non-negative (see Lemma 3.4), and

Q vanishes at (z0, w0) ≡ (eπ ir0 , eπ is0) and its conjugate where

r0 = 1
π
cos−1

(
a2+b2−c2

2ab

)
∈ [0, 1], s0 ≡ − 1

π
cos−1

(
a2+c2−b2

2ac

)
∈ [−1, 0]. (57)

Assume now that a, b, c satisfy the strict triangle inequality, so that C > 0 and
the conjugate zeroes of Q are distinct. These zeroes are positive nodes of P(z, w) ≡
Q(z, w) Q(1/z, 1/w), with Hessian

H ≡
(

b2 1
2 (a

2 − b2 − c2)
1
2 (a

2 − b2 − c2) c2

)
, det H ≡ C/4. (58)

The following is then a direct consequence of Theorem 2b and Theorem 4 (with
� = (0, 0)):

Corollary 4.4 For the m0-oriented honeycomb graph (Fig. 12), the characteristic
polynomial has zeroes at (z0, w0) = (eπ ir0 , eπ is0) given by (57) and its conjugate,
with Hessian H given by (58). Thus

logZE = (det E) f0 + fsc2(ζE , ξE |τE ) + o(1)

a

c

c

b

b

w

z

(A) (B)

Fig. 12 Honeycomb graph, with Q(z, w) = a−bz−cw. a Fundamental domain in dashed lines; reference
matching m0 in gray; m0-alternating double-dimer loops (blue-gray horizontally, red-gray vertically). b
For unweighted honeycomb graph: radial plot z �→ z|w(z)| with z ∈ T, colored according to Imw(z) (unit
disk shaded) (color figure online)
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Fig. 13 The 4 × 3 rectilinear torus, shown together with a skew torus

with τE , ζE , ξE as in (10). For mE the matching of LE given by taking all the a-
edges, windm � m0 is asymptotically distributed as a discrete Gaussian on Z

2 with
parameters

μE =
(

xr0 + ys0
−ur0 − vs0

)
, �E = (Et )−1HE−1

(det H)1/2/ det E
.

We emphasize again that while the conformal shape τE depends smoothly on the
entries of thenormalizedmatrix (det E)−1/2E [which hasO(1) entries forwell-shaped
tori (5)], the domain phase (ζE , ξE ) is highly sensitive to constant-order changes in
the non-normalized entries of E .

This is illustrated in Fig. 4 for the unweighted honeycomb graph (a = b = c = 1).
With our choice of fundamental domain (Fig. 12), them×n rectilinear torus (Fig. 13)
studied in [2] corresponds tomatrix E given by (u, v) = (m,m) and (x, y) = (−n, n).
In the usual embedding where all hexagons are regular, the geometric aspect ratio is
ρ ≡ n/(31/2m), and it is straightforward to check that the conformal shape τ is simply
iρ. From (57) we have (r0,s0) = (1/3,−1/3), so there are multiple possibilities
for the domain phase (ζE , ξE ). Figure 12 considers the near-rectilinear case τ =
iρ+o(1), and shows that the finite-size correction lies on one of four different limiting
curves

ρ �→ fsc2((eπ i/3) j , (eπ i/3)k |iρ)

depending on the phase (ζE , ξE ). Three of these can arise from exactly rectilinear
tori, while the fourth (the one corresponding to both j, k �≡ 0 mod 3) arises from
almost-rectilinear tori with τ = iρ + o(1).

Arbitrarily many curves can be obtained by adjusting the weights: for example,
if we keep b = c = 1 but change a, the conformal shape τ becomes τ becomes
i nm a(4− a2)−1/2. If a = 1

2 (
√
5− 1) then (r0,s0) = (2/5,−2/5), and Fig. 14 shows

the nine limiting curves arising for near-rectilinear tori.

5 Odd-sized fundamental domains

In this section we briefly address the case where the fundamental domain LI contains
an odd number k of vertices. Up to now we have always assumed k to be even, which,
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1
2−1

2 0

0.86

0.90

0.94

1
5−1

5 0

0.87

0.88

0.89

0.90

(A) (B)

Fig. 14 (Honeycomb graph with weights a = 1
2 (

√
5 − 1), b = c = 1.) Finite-size corrections

fsc2(ζE , ξE |τ) for near-rectilinear (τ = iρ + o(1)) tori, shown as a function of logarithmic aspect ratio
log ρ

w

z

w

z

(A) (B)

Fig. 15 Two choices of fundamental domain for the unweighted square lattice. a Bipartite fundamental
domain:Q(z, w) = 1−z−z/w−w.bNonbipartite fundamental domain: P(z, w) = 4−z−1/z−w2−1/w2

as we review in Sect. 5.2 below, guarantees the existence of an LI -periodic Kasteleyn
orientation of L. Clearly we can perform calculations with doubled versions of the
domain, but if the “natural” fundamental domain of the lattice has k odd then different
doublings need to be considered to access all possible toric quotients. For concreteness,
in Sect. 5.1 we illustrate with the example of the unweighted square lattice, whose
natural fundamental domain contains a single vertex. In Sect. 5.2 we comment on the
general situation.

5.1 Odd-sized fundamental domains in the square lattice

The natural fundamental domain LI of the unweighted square lattice is the 1×1 torus
containing a single vertex, connected to itself by one horizontal edge and one vertical
edge. Clearly L has no LI -periodic Kasteleyn orientation with real weights; to find
such an orientation we have to double the fundamental domain. Two possibilities are
shown in Fig. 15; we note that the domain of Fig. 15a is bipartite while that of Fig. 15b
is nonbipartite.
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For ad − bc positive, quotient by the (a, b) and (c, d) translations to form the
(a, b) × (c, d) torus, which can have dimer covers for ad − bc even. The torus can be
formed from copies of the (2, 0) × (1, 1) bipartite fundamental domain (Fig. 15a) if
and only if a + b and c+ d are both even. The bipartite characteristic polynomial has
simple zeroes at (1,±i), so it follows from Theorem 2b that the finite-size correction
to Z is FSC2(ir, is|τ) with r the value of a (or b) modulo 2, and s the value of c (or
d) modulo 2.

The (a, b) × (c, d) torus can be formed from copies of the 2 × 1 nonbipartite
fundamental domain L2,1 (Fig. 15b) if and only if a and c are both even. The char-
acteristic polynomial has positive nodes at (1,±1) with the same Hessian. It follows
from Theorem 2d that the finite-size correction to Z is FSC3((−1)b, (−1)d |τ).

The case of b, d both even is handled by the 1×2 nonbipartite fundamental domain
L1,2 (π/4-rotation of Fig. 15b). Alternatively, by the π/4-rotational symmetry of the
square lattice, it has the same partition function as the (b, a) × (−d,−c) torus. We
therefore conclude

Proposition 5.1 For the (a, b) × (c, d) torus formed from the unweighted square
lattice, the dimer partition function Z satisfies

logZ − (det E) f0 − o(1)

=

00 01 10 11
00 fsc2(+1,+1|τ) fsc3(+1,−1|τ) fsc3(+1,−1|τ) fsc2(+1,+i |τ)

01 fsc3(−1,+1|τ) fsc3(−1,−1|τ) −∞ −∞
10 fsc3(−1,+1|τ) −∞ fsc3(−1,−1|τ) −∞
11 fsc2(+i,+1|τ) −∞ −∞ fsc2(+i,+i |τ)

where the row index is the value of (a, b)modulo 2 while the column index is the value
of (c, d) modulo 2.

We see from Proposition 5.1 that for general τ , the finite-size correction lies on
one of seven curves. Figure 16a shows the four curves coming from the bipartite
fundamental domain (Fig. 15a), while Fig. 16b shows the four curves coming from
the nonbipartite fundamental domain (Fig. 15b), where the case of a, b, c, d all even
appears in both.

5.2 Odd-sized fundamental domains in general graphs

The assumption of LI even guarantees that L can be given a LI -periodic Kasteleyn
orientation, as follows (see [27]): choose a planar spanning tree T on the dual graph
of LI , and give an arbitrary orientation to any edges of LI not crossed by an edge of
T . For any vertex f ∈ T with a single neighbor g ∈ T , there is a unique way to orient
the edge of LI crossed by the dual edge ( f, g) such that the face corresponding to f is
clockwise odd. By repeatedly pruning leaf vertices of T , LI can be oriented such that
all faces are clockwise odd except possibly the final face, corresponding to the root
of T . For each face f let o f count the number of clockwise-oriented edges around
f : then

∑
f (1 + o f ) is even if and only if the root face is also clockwise odd. But
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−0.2 0.2

0.89

0.87

0.91

ee× ee

ee× oo oo× ee

oo× oo −1 1

1

0.5

ee× ee

ee× eo
ee× oe

eo× eo

oe× ee
eo× ee

oe× oe

(A) (B)

Fig. 16 Unweighted square lattice dimers. Finite-size corrections fsc for near-rectilinear toric quotients,
shown as a function of logarithmic aspect ratio log ρ and labelled according to parity of (a, b) × (c, d).
a Corrections fsc2(ζ, ξ |τ), obtained from bipartite domain Fig. 15a. b Corrections fsc3(ζ, ξ |τ), obtained
from non-bipartite domain Fig. 15b

this sum is also simply the number of faces and edges in the graph, and so by Euler’s
formula must have the same parity as the number k of vertices. It follows that LI can
be oriented to give rise to a periodic Kasteleyn orientation of L if and only if k is
even.

If k is odd, the above procedure produces a LI -periodic orientation of L which
is “almost” Kasteleyn, in that exactly one face per fundamental domain is clockwise
even. This can be resolved by doubling the fundamental domain: for example, if we
put two copies of the fundamental domain side by side to make the 2×1 torusL2,1, the
orientation of the doubled graph can be corrected by choosing a dual path γ joining
the two clockwise even faces, and reversing the orientation of each edge crossing the
dual path γ .

Recalling Definition 2.1, suppose further that we are given a reference matchingm0
of L2,1 such that its periodic extension m∞ does not cross any boundaries separating
different copies ofL2,1. We can choose the dual path γ such that its periodic extension
either does or does not cross any of these boundaries, and we take the choice which
results in all verticalm0-alternating cycles having sign+1. If horizontalm0-alternating
cycles also have sign+1 then L ism0-oriented; otherwise reverse edges along vertical
seams to complete the orientation.

Proposition 5.2 With the above orientation, the characteristic polynomial P(z, w)

associated toL2,1 is a polynomial in (z, w2). Consequently, if P(z, w) has two distinct
real nodes then they must be of form (z0,±1) with the same associated Hessian.

Proof Express P(z, w) = det K (z, w) as a sum over permutations, so that each non-
zero term corresponds to an oriented cycle configuration in L2,1. Odd powers of w

correspond to cycle configurations winding an odd number of times in the vertical
direction.

Consider the mapping on cycle configurations induced by switching the two copies
ofLI insideL2,1. The sign of the corresponding permutation remains the same (regard-
less of the parity of k), but the product over entries of K (z, w) changes sign if and
only if the configuration winds vertically an odd number of times: if the two copies of
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LI have the same orientation except across the dual path γ then this is immediate. If
we also reversed edges along vertical boundaries to produce an m0-orientation of L,
the statement can be proved by considering deformations of the edge-reversal seams.

��

Asdemonstrated for the square lattice in Sect. 5.1, if the natural fundamental domain
LI of L has an odd number of vertices, any (a, b) × (c, d) torus containing an even
number of vertices can be obtained using an even-sized fundamental domain: either
the 2 × 1 torus L2,1, the 1 × 2 torus L1,2, or the (2, 0) × (1, 1) torus.

6 Finite-size correction for characteristic polynomials

In this sectionwe proveTheorem1. For simplicity let us assume that P(z, w) has a pos-
itive node located at (1, 1), with Hessian expansion (7). We will make no assumptions
on the locations of the other (finitely many) nodes, nor will we assume the relation
P(z, w) = P(1/z, 1/w)—the theorem for a general finite collection of nodes will
then follow by considering (z, w) �→ P(z0z, w0w).

We will make use of the following standard quadrature rules (see e.g. [20,39]) to
approximate sums over discrete subsets of T by contour integrals. For f a smooth
C-valued function on [x − h, x + h] ⊂ R, write

Ih f (x) ≡ 1
2h

∫ x+h
x−h f (s) ds, Ah f (x) ≡ 1

6 [ f (x − h) + 4 f (x) + f (x + h)].

Lemma 6.1 (Quadrature rules) For f aC-valued function smooth in a neighborhood
of [−h, h], the following hold:

1
2h

∫ h
−h f (s) ds= 1

2 [ f (−h)+ f (h)] − 4h2
12 f ′′(ξ), some ξ ∈(−h, h) (trapezoid rule);

Ih f (0) = Ah f (0) − h4

180
f (4)(ξ), some ξ ∈ (−h, h) (Simpson’s rule).

If g is aC-valued function smooth in a neighborhood of [x−h, x+h]×[y−h, y+h],
we write Ah

j g(x, y) to indicate A
h applied to g in the j-th coordinate, and Ahg(x, y)

to indicate the composition of Ah
1,A

h
2 applied to g. Similarly we write Ihg(x, y) ≡

Ih1I
h
2g(x, y); Lemma 6.1 then implies

|Ahg(x, y) − Ihg(x, y)| ≤ h4 sup{|(∂4x + ∂4y )g(x
′, y′)| : |x ′ − x | ∨ |y′ − y| ≤ h}.

We turn now to the computation of PE (ζ, ξ) with (ζ, ξ) ≡ (e2π iφ, e2π iψ). From the
double product formula (6), this is the product of P(e2π ir , e2π is) over (r, s) in the
intersection of the unit square H ≡ [− 1

2 ,
1
2 )

2 with the grid of points E−1[(φ + Z) ×
(ψ + Z)]. Equivalently, define F ≡ nE−1 for a positive scaling parameter n within a
constant factor of (det E)1/2, and let p�(r, s) ≡ log P(e2π ir

′
, e2π is

′
) with (r ′, s′) the
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vector obtained by applying the matrix F to the vector (r, s): then

log PE (ζ, ξ) = ∑
(r,s)∈L p�(r, s) = ∑

(r,s)∈L Ah p�(r, s),

where h ≡ n−1 and L ≡ Lφψ
E ≡ (F−1H) ∩ h[(φ + Z) × (ψ + Z)] (59)

(so L is a subset of a rectilinear lattice with spacings h).

Remark 6.2 For practical purposes the double product (6) is easily computed as fol-
lows: for ζ = ξ = 1, take the product of P(e2π ir , e2π is) over

(
r
s

)
= (det E)−1

(
y j − vk

−x j + uk

)
over 0 ≤ j <

det E

gcd(x, y)
, 0 ≤ k < gcd(x, y).

(To see that this is valid, note that for each fixed k ∈ Z, all j’s map to (r, s) pairs
which are distinct modulo Z

2, since clearly (det E)−1(y j,−x j) ∈ Z
2 if and only if

(det E)−1gcd(x, y) j ∈ Z
2. As ( j, k) ranges over all Z2, (r, s)must take exactly det E

distinct values, and this would fail if any repeats occur in the stated range of k.)

For convenience we hereafter choose n to be an integer within a constant factor of
(det E)1/2, sufficiently small such that H is contained in F−1H , and such that the
restriction of p� to H is non-vanishing except at the origin—for example this can be
accomplished with

n ≡ h−1 ≡ max{ j ∈ Z≥1 : H ⊆ j−1EH and p�|H\(0,0) > −∞}, F ≡ nE−1.

(60)
If P has expansion (7) at the origin with Hessian matrix H , then P� ≡ ep� at the origin
has the transformed Hessian matrix H� ≡ Ft H F , whose entries we shall denote

az, b, aw, with d ≡ √
det H� =

√
azaw − b2 > 0. A second-order approximation to

P� near the origin is then given by

P�(z, w) ≡ β(z)w + β(1/z)/w − 2γ (z), where
β(z) ≡ −aw + b(1 − z) and γ (z) ≡ (az − b) 12 (z + 1/z) − (az + aw − b).

(61)
Let p� ≡ log P�: we consider both p�, p� as functions of (r, s) ∈ R

2; note however
that p� has period F−1H while p� has period H .

The polynomial 1
2wP�(z, w) is quadratic in w, with discriminant γ (z)2 −

β(z)β(1/z) which is quadratic in x ≡ 1
2 (z + z−1) with real coefficients. In partic-

ular, for z ∈ T, x = Re z and the discriminant is real-valued. The discriminant is
minimized over all x ∈ R at x� = 1 + [d/(az − b)]2 > 1, hence minimized over
z ∈ T at z = 1 where it takes value zero. The function γ is linear in x , and is easily
checked (using azaw > b) to be negative at x ∈ {±1}, therefore γ (z) < 0 for all
z ∈ T. If z ∈ T with β(z) = 0, then clearly P(z, w) = −2γ (z) > 0 for all w. Fixing
z with β(z) �= 0, P�(z, w) has roots (in w) given by

w±(z) ≡ β(z)−1[γ (z) ∓ δ(z)], δ(z) ≡
√

γ (z)2 − β(z)β(1/z) ≥ 0. (62)
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For z ∈ T, w+(z)w−(z) = w+(z)w−(1/z) = 1, and |w−(z)| ≤ 1 ≤ |w+(z)| with
strict inequality except at z = 1 where w± both evaluate to 1. In particular, together
with (60) this shows that P�/P� is bounded and non-vanishing on H . For z = e2π ir

with |r | small, Taylor expanding (62) gives

w±(z) = 1− b
aw

(2π ir)± d
aw

(2π |r |)+O(r2) = 1+τre(2π ir)±τim(2π |r |)+O(r2).
(63)

The following lemma shows that in large toric graphsLE , any finite-size corrections
in the asymptotic expansion of PE (ζ, ξ) (with ζ, ξ ∈ T) depend only on the second-
order behavior of the fundamental domain polynomial P(z, w) around its nodes—thus,
for the purposes of calculating this correction, we may replace p� near the node with
its approximation p�. The precise statement is as follows:

Lemma 6.3 In the above setting, let μ ≡ μn ≡ n−4/5 and Lμ ≡ L ∩ [−μ,μ]2. It
holds for any Lμ ⊆ V ⊆ L ∩ H that

log PE (ζ, ξ) − (det E) 2f0 + O(n−2/5) = log�V ≡ ∑
(r,s)∈V (Ah − Ih)p�(r, s)

Proof The proof is an application of Simpson’s rule (Lemma 6.1).

Estimates on derivatives. For any smooth function a defined on an interval of R,

(log a)(4) = −6(L1a)4 + 12(L1a)2(L2a) − 3(L2a)2 − 4(L1a)(L3a) + L4a (64)

where L ja ≡ a( j)/a. If we take a�, a◦ to be p�, p� regarded as a function of r only
or s only, we find |L ja�| + |L ja◦| � t (2− j)∨0/t2 where t ≡ ‖(r, s)‖. Substituting
into (64) gives

|∂4s p�| + |∂4t p�| + |∂4s p�| + |∂4t p�| � r−4 with t ≡ ‖(r, s)‖. (65)

Application of Simpson’s rule. From (59),

log PE (ζ, ξ) − (det E) 2f0 = ∑
(r,s)∈L(Ah − Ih)p�(r, s).

If P were non-vanishing on T2, Simpson’s rule would give that the right-hand side is
O(n−2). In the current setting this false, however, combining Simpson’s rule and (65)
shows that the total contribution from points outside Lμ is small:

∑
(r,s)∈L\Lμ

|(Ah − Ih)p�(r, s)| � n−4 ∑
(r,s)∈L\Lμ

t−4 � (nμ)−2 = n−2/5.

We also claim that

∑
(r,s)∈L∩H |(Ah − Ih)(p� − p�)(r, s)| � n−2/5.

Indeed the contribution from points outside Lμ is is (crudely) � n−2/5 by the same
reasoning as above, recalling (60) that H ⊆ F−1H . Near the origin we do not apply
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Simpson’s rule, and instead note that |(p� − p�)(r, s)| � t , so that the contribution
from Lμ is � n2μ3 = n−2/5. Combining these estimates gives the result. ��

Write L ≡ L1 × L2 with L j the projection of L onto the j-th coordinate, and
similarly Lμ ≡ L1

μ × L2
μ. Hereafter we take V ≡ Vμ ≡ L1

μ × L2 ⊂ L ∩ H , and
compute the quantity �V defined in the statement of Lemma 6.3. First note that since
p� has period H , �V may be simplified by summing over the s-coordinate: define

pavg� (r) ≡ n−1 ∑
s∈L2 p�(r, s)

pint� (r) ≡ ∫
T
p�(r, s) ds = log |β(e2π ir )| + log |w+(e2π ir )|, (66)

where pint� was evaluated by a standard contour deformation argument, recalling (62)
and our choice of branch cut for the logarithm. Then

log�V = n
∑

r∈L1
μ
[Ah pavg� (r) − Ih pint� (r)]

= n
∑

r∈L1
μ
Ah(pavg� − pint� )(r)

︸ ︷︷ ︸
≡log�ϑ

+ n
∑

r∈L1
μ
(Ah − Ih)pint� (r)

︸ ︷︷ ︸
≡log�cts

. (67)

Lemma 6.4 Let −ζ = e2π iφ� with 2πφ� ∈ (−π, π ]. Then

log�cts = (− 1
6 + 2φ2

� ) log q + O(n−1) with q ≡ |qτ | = e−πτim .

Proof Abbreviate f ≡ pint� , regarded as a Z-periodic function of s ∈ R. It follows
from (66) that f is analytic except at r ∈ Z where the roots w+ and w− cross one
another. Recalling (60), let r� ≡ hφ�, so that r− ≡ r� − h

2 and r+ ≡ r� + h
2 , are the

unique pair of adjacent points in Lμ with r− ≤ 0 < r+. Let t− ≡ r−−h, t+ ≡ r++h:

n−1 log�cts = O(n−3) + (Ah − Ih) f (r−) + (Ah − Ih) f (r+) (Simpson’s rule)

= O(n−3) + 1
6 f (t−) + 5

6 f (r−) + 5
6 f (r+) + 1

6 f (t+)

− 1
2h

∫ r−

t−
f ds − 1

2h

∫ t+

r+
f ds − 1

h

∫ r+

r−
f ds

= O(n−2) − 1
12 [ f (t−) + f (t+)] + 7

12 [ f (r−) + f (r+)]
− |r−|

2h [ f (r−) + f (0)] − |r−|
2h [ f (r−) + f (0)] (trapezoid rule).

From (66) and (63), near s = 0 we have f (s) = log Aw + 2πτim|s| + O(s2).
Substituting into the above and simplifying gives

log�cts + O(n−1) = 2πτim[ 13 − 1
2h2

[r2− + r2+]] = −πτim[− 1
6 + 2(r�/h)2],

concluding the proof. ��
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Recall P�(z, w) = β(z)w−1(w −w+(z))(w −w−(z)), with w+(z)w−(z) = 1 for
z ∈ T (cf. (62)). Combining with (66) gives (with z ≡ e2π ir )

exp{npavg� (r)}=
∏

wn=ξ
P�(z, w)=[−β(z)w+(z)]n(1−ξw+(z)−n)(1−ξ−1w−(z)n)

= exp{npint� (r)} (1 − ξw+(z)−n)(1 − ξ−1w−(z)n),

where we used that −β(z)w+(z) = |β(z)w+(z)| for z ∈ T. It is clear from (63) that
|w+(z)|−n = |w−(z)|−n ≤ exp{−�[(log n)2]} for z ∈ T with |z − 1| � n−1(log n)2,
so we can ignore the effect of Ah in the definition (67) of �ϑ , giving

�ϑ exp{o(n−2)} = exp{n∑r∈L1
μ
(pavg� − pint� )(r)} = ∏

r∈L1
μ

|1 − ξ−1w−(e2π ir )n|2.

The following lemma computes �ϑ . Up to now the error estimates hold uniformly
over ζ, ξ ∈ T, even allowing for dependence on n. In the following, the error blows
up if (ζ, ξ) approaches too closely to a singularity of PE .

Lemma 6.5 Let (e2π iφ, e2π iψ) ≡ (ζ, ξ), (e2π iφ�, e2π iψ�) ≡ (−ζ,−ξ), and write r
for the Euclidean distance between (ζ, ξ) and (1, 1). Then

�ϑ = exp{O(n−2/5r−1)}
∣∣∣
ϑ00(φ�τ − ψ�|τ)

G(qτ )

∣∣∣
2

Proof For r ≡ j/n ∈ Lμ with μ ≡ n−4/5, it follows from (63) that

w−(e2π ir )n = exp{2π iτre j − 2πτim| j | + O(n−3/5)}.

Thus the closest approach of the points ξ−1w−(e2π ir )n to 1 as r varies over Lμ is
asymptotically lower bounded by

lim inf
n→∞ inf

r∈Lμ

|1 − ξ−1w−(e2π ir )n| ≥ |1 − exp{2π i(|ψ | − |τreφ|) − 2πτim|φ|}| � r.

Combining with the preceding estimate gives

�ϑ exp{O(n−2/5r−1)} = ∏
r≡ j/n∈Lμ

|1 − ξ−1 exp{2π iτre j − 2πτim| j |}|2.

Clearly we can replace the product over Lμ by the product over L∞ ≡ h[φ +Z] with
no effect on the overall O(n−2/5r−1) error bound. From straightforward computation,
the product over L∞ is exactly the right-hand side: that is

�ϑ exp{O(n−2/5r−1)} = |πϑ |2

where, writing π( j) ≡ 1 − ξ−1 exp{2π iτre j − 2πτim| j |},
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πϑ ≡
∏

j∈N−1/2
π(φ� + j)π(φ� − j)

=
∏

j∈N−1/2
(1 + q2 jτ exp{2π i(τφ� − ψ�)})(1 + q2 jτ exp{−2π i(τφ� − ψ�)}),

which equals G(qτ )
−1ϑ00(τφ� − ψ�|τ) by (27). ��

Proof of Theorem 1 Recall that we assumed throughout this section that P has a node
at (1, 1). By the argument of Lemma 6.3 applied to (z, w) �→ P(z j z, w jw), PE (ζ, ξ)

is (up to exp{O(n−2/5)}multiplicative error) e(det E) 2f0 times a product of factors�
j
V ,

one for each node (z j , w j ) (1 ≤ j ≤ �) of P on T
2. We decomposed �V = �cts�ϑ

(67); combining Lemmas 6.4 and 6.5 then gives

PE (ζ, ξ) = exp{O(n−2/5r−1)} exp{(det E) 2f0} ∏�
j=1 �(ζ, ξ |τ j )2,

with r ≡ min1≤ j≤� ‖(ζ, ξ) − (zujw
v
j , z

x
jw

y
j )‖, concluding the proof. ��
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Appendix 1: Dimers on the Fisher and 3.4.6.4 graph

Recall the quantities κa, κb, κc, κ◦ defined in (16). Since the weights a, b, c are
assumed to be strictly positive, clearly −κ◦ < κa, κb, κc; also, any two elements
of {κa, κb, κc} have positive sum, proving that no two of the κ ′s can vanish simulta-
neously. The vanishing of any κ imposes some further constraints:

κ◦ = 0 implies a = b+c
bc−1 so bc > 1, and (by symmetry) ac > 1, ab > 1;

κc = 0 implies c = a + b + abc > a + b, and c = a+b
1−ab so ab < 1, (68)

and the constraints arising from κa = 0 or κb = 0 are symmetric to that of κc = 0.

1.1 Fisher graph

The fundamental domain together with the matrix K (z, w) is shown in Fig. 17. Apply-
ing (23) to the fundamental domain gives

⎛

⎜⎜⎝

−Pf K (+1,+1)
+Pf K (+1,−1)
+Pf K (−1,+1)
+Pf K (−1,−1)

⎞

⎟⎟⎠ = S

⎛

⎜⎜⎝

Z00 = abc
Z10 = a
Z01 = b
Z11 = c

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

κ◦
κa
κb
κc

⎞

⎟⎟⎠
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a a

c b

bc c

4

6

3

1 2

5

z

w

Fig. 17 Fisher or 3.12.12 graph with fundamental domain inside the dashed lines, shown with correspond-
ing matrix K (z, w)

(which can also be verified by direct calculation). The characteristic polynomial is

P(z, w) ≡ det K (z, w) = β(z)w + β(1/z)1/w − 2γ (z), where

β(z) = a(c − b)(1 + bc) + ab(1 − c2)(1 + 1/z),

γ (z) = −(1 − a2)bcx1 − 1
2 (a

2 + b2 + c2 + (abc)2) with x1 ≡ 1
2 (z + 1/z).

Note that it is clear from the lattice symmetry that the polynomial must transform in
a simple manner under permutations of the weights a, b, c; indeed we can also write

P(z, w) = a2 + b2 + c2 + (abc)2 + 2bc(1 − a2)x1 + 2ac(1 − b2)x2
+2ab(1 − c2)x3
with x1 ≡ 1

2 (z + 1/z), x2 ≡ 1
2 (w + 1/w), and x3 ≡ 1

2 (z/w + w/z).

As (z, w) varies over the unit torus, (x1, x2, x3) traces out a Cayley surface in R3.

Proof of Proposition 1.1 (Fisher graph) Wenow show that the spectral curve can only
intersect the unit torus at a single real node. The argument is similar to the one for
the polynomial P�(z, w) defined in (61). Throughout the proof we write x for x1 ≡
1
2 (z + 1/z); there should be no confusion with the entry x appearing in (4). Since γ

is linear in x , evaluating at the extremes

−2γ (+1) = a2(1 − bc)2 + (b + c)2 > 0,

−2γ (−1) = a2(1 + bc)2 + (b − c)2 > 0

proves that γ is negative on all of T. If at any z ∈ Twe have β(z) = 0 then P(z, w) =
−2γ (z) > 0, so clearly the spectral curve cannot intersect the unit torus at this value
of z.

We claim that the discriminant δ(z) ≡ γ (z)2 − β(z)β(1/z) is non-negative for all
z ∈ T, and can vanish only at z = ±1, corresponding to the vanishing of one of the
κ’s. If a = 1 then δ(z) is linear in x ≡ 1

2 (z + 1/z), and evaluating at the extremes
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x = ±1 shows clearly that δ is strictly positive on T. If a �= 1 then δ(z) is convex
quadratic in x ; from the symmetry (ab)−2P(z, w)|(a,b,c) = P(−z,−w)|1/a,1/b,c we
hereafter assume a < 1. To prove the claim it suffices to show either that the global
minimum δ� of δ(z) over x ∈ R is non-negative, or that the global minimizer x� has
absolute value ≥ 1. Indeed, assume further that bc �= 1: then δ is minimized over all
x ∈ R at

x� = −1 + a2

1 − a2
b2 + c2

2bc

1 − 1+(bc)2

b2+c2
a2

1 − a2
≡ −1 + a2

1 − a2
R(a), with value

δ� = C(U − a)(a2 − u2) where (assuming a �= 1, bc �= 1)

C ≡ a2(a + b + c + abc)(1 + bc) (1−bc)2

(1−a2)2
> 0, U ≡ b+c

1+bc , and u ≡ | b−c
1−bc |.

One of the following occurs (recalling a < 1):

1. If U ≥ 1 (equivalently b2 + c2 ≥ 1 + (bc)2) then x� < −1.
2. If U < 1, then

u2 = b2 + c2 − 2bc

1 + (bc)2 − 2bc
<

b2 + c2

1 + (bc)2
<

b2 + c2 + 2bc

1 + (bc)2 + 2bc
= U2 < 1.

In the rangeU ≤ a < 1, |R(a)| = −R(a) is increasing in a, hence bounded below
by −R(U) which can be calculated to simply equal 1, thereby implying x� < −1.
In the range a ≤ u, |R(a)| = R(a) is increasing in a, hence bounded below by
R(u) which again equals 1, implying x� > 1. Finally in the intermediate range
u < a < U it is clear that δ� > 0.

Lastly, in the case bc = 1, δ� < 0, but |R(a)| = R(a) is increasing in the regime
a < 1, so it is bounded below by R(0) > 1 which implies x� < −1. Combining
these cases concludes the characterization of the cases where the spectral curve may
intersect the unit torus. It is straightforward to check (using (68)) that if P has a real
node it must be a positive node, concluding the proof of the proposition. ��

1.2 3.4.6.4 graph

The fundamental domain for the 3.4.6.4 graph together with the matrix K (z, w) is
shown in Fig. 18. Applying (23) to the fundamental domain gives

⎛

⎜⎜⎝

−Pf K (+1,+1)
+Pf K (+1,−1)
+Pf K (−1,+1)
+Pf K (−1,−1)

⎞

⎟⎟⎠ = S

⎛

⎜⎜⎝

Z00 = 2c
Z01 = 2b
Z10 = 2a
Z11 = 2abc

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

2κc
2κb
2κa
2κ◦

⎞

⎟⎟⎠
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c

c

c

z

w

Fig. 18 The 3.4.6.4 or rhombitrihexagonal tiling graph with fundamental domain inside the dashed lines,
shown with corresponding matrix K (z, w)

(which can also be verified by direct calculation). The characteristic polynomial
P(z, w) = det K (z, w) has the factorization

P(z, w) = −P0(z, w) P1(z, w) = −P0(z, w) [P0(z, w) − 4ρ],
Ps(z, w) ≡ β(z)w + β(1/z)1/w − 2γs(z) where

β(z) ≡ a(b/z + c), ρ ≡ [(1 + a2)(1 + b2)(1 + c2)]1/2,
γs(z) ≡ −bcx1 + 1 − (−1)sρ for s ∈ {0, 1}, with x1 ≡ 1

2 (z + 1/z).

The polynomial transforms simply under permutations of a, b, c:

− 1
2 P0(z, w) + ρ = − 1

2 P1(z, w) − ρ = 1 − bcx1 − acx2 − abx3
with x1 ≡ 1

2 (z + 1/z), x2 ≡ 1
2 (w + 1/w), and x3 ≡ 1

2 (z/w + w/z).

Proof of Proposition 1.1 (3.4.6.4 graph) Since γ0, γ1 are linear in x ≡ 1
2 (z + 1/z),

evaluating at the extremes x = ±1 shows that γ0 is negative on all of T while γ1 is
positive (where we have used the easy bound ρ > 1 + bc). If at any z ∈ T we have
β(z) = 0 then clearly the spectral curve cannot intersect the unit torus at this value of
z.

Now consider the discriminants δs(z) ≡ γs(z)2 − β(z)β(1/z) (s = 0,1) which
are convex quadratic in x : δs is minimized over all x ∈ R at

x�
s = (bc)−1(1 + a2 − (−1)sρ), with value

δ�
s = −a2(2 + a2 + b2 + c2 − (−1)s2ρ).

Again the result will follow by showing that for both s = 0,1, either δ�
s ≥ 0 or

|x�
s| ≥ 1. Clearly x�

1 > 1 so it remains to consider s = 0. Suppose

− 1 < x�
0 < 1, so that 1 + a2 − bc < ρ < 1 + a2 + bc. (69)
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The global minimum δ�
0 has the same sign as

(2ρ)2 − (2 + a2 + b2 + c2)2 = (2abc)2 + [(b + c)2 − a2][a2 − (b − c)2],

which is clearly positive for |b − c| ≤ a ≤ b + c. Also, the lower bound (69) on
ρ implies δ�

0 > a2[a2 − (b + c)2], so we also have δ�
0 > 0 for a ≥ b + c. Lastly,

we observe that a < |b − c| contradicts the upper bound (69) on ρ: the function
g(a) ≡ (1 + a2 + bc)2 − ρ2 is convex quadratic in A ≡ a2, and evaluating at the
extremes A = (b− c)2 and A = 0 shows that g(a) ≤ 0 for all a < |b− c|, giving the
contradiction. ��

We remark that after submitting our article, David Cimasoni found an interesting
alternate proof that the spectral curve intersects the unit torus in the same way for the
Fisher graph and the 3.4.6.4 graph.
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