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Abstract We consider contractivity for diffusion semigroups w.r.t. Kantorovich (L1

Wasserstein) distances based on appropriately chosen concave functions. These dis-
tances are inbetween total variation and usual Wasserstein distances. It is shown that
by appropriate explicit choices of the underlying distance, contractivity with rates of
close to optimal order can be obtained in several fundamental classes of examples
where contractivity w.r.t. standard Wasserstein distances fails. Applications include
overdamped Langevin diffusions with locally non-convex potentials, products of these
processes, and systems ofweakly interacting diffusions, both ofmean-field and nearest
neighbour type.

Keywords Couplings of diffusion processes · Wasserstein distances · Absence of
convexity · Concave distance functions · Quantitative bounds for convergence to
stationarity
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1 Introduction

Consider a diffusion process (Xt )t≥0 inRd defined by a stochastic differential equation

dXt = b(Xt ) dt + σ dBt . (1)
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852 A. Eberle

Here (Bt )t≥0 is a d-dimensional Brownian motion, σ ∈ R
d×d is a constant d × d

matrix with det σ > 0, and b : Rd → R
d is a locally Lipschitz continuous function.

We assume that the unique strong solution of (1) is non-explosive for any initial
condition, which is essentially a consequence of the assumptions imposed further
below. The transition kernels of the diffusion process on R

d defined by (1) will be
denoted by pt (x, dy).

Contraction properties of the transition semigroup (pt )t≥0 have been studied by
various approaches. In particular, L2 and entropy methods (e.g. spectral gap esti-
mates, logarithmic Sobolev and transportation inequalities) yield bounds that both are
relatively stable under perturbations and applicable in high dimensions, cf. e.g. [2–
7,38,43]. On the other hand, coupling methods provide a more intuitive probabilistic
understanding of convergence to equilibrium [13,14,16,24,25,34,35,41,43]. In con-
trast to L2 and entropy methods, bounds resulting from coupling methods typically
hold for arbitrary initial values x0 ∈ R

d . In many applications, couplings are used to
bound the total variation distances dTV (μpt , νpt ) between the laws μpt and νpt of
Xt w.r.t. two different initial distributions μ and ν at a given time t ≥ 0 , cf. [34,35].
Typically, however, the total variation distance is decaying substantially only after a
certain amount of time. This is also manifested in cut-off phenomena [12,19,20,33].

Alternatively, it is well-known that synchronous couplings [i.e., couplings given by
the flow of the s.d.e. (1)] can be used to show that the map μ �→ μpt is exponentially
contractivew.r.t. L pWasserstein distancesW p for any p ∈ [1,∞) if, for example, (Xt )

is an overdampedLangevin diffusionwith a strictly convex potentialU ∈ C2(Rd), i.e.,
σ = Id and b = −∇U/2, see e.g. [7]. This leads to an elegant and powerful approach
to convergence to equilibrium and to many related results if applicable. However, it
has been pointed out in [37] that strict convexity ofU is also a necessary condition for
exponential contractivity w.r.t.W p. This seems to limit the applicability substantially.

Here, we are instead considering exponential contractivity w.r.t. Kantorovich (L1

Wasserstein) distances W f based on underlying distance functions of the form

d f (x, y) = f (‖x − y‖) on R
d ,

and, more generally,

d f (x, y) =
n∑

i=1

fi (‖xi − yi‖) on R
d1 × · · · × R

dn ,

where f, fi : [0,∞) → [0,∞) are strictly increasing concave functions, cf. Sects.
2.1 and 3.1 below for details. For proving exponential contractivity, we will apply a
reflection coupling on R

d and an (approximate) componentwise reflection coupling
on products of Euclidean spaces. It will become clear by the proofs below, that for
distances based on concave functions f, fi , these couplings are superior to synchronu-
ous couplings, whereas the synchronuous couplings are superior w.r.t. theWasserstein
distances W p for p > 1, cf. e.g. Lemma 4.

The idea to study contraction properties w.r.t. Kantorovich distances based on
concave distance functions appears in Chen and Wang [15,16,42] and Hairer and
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Mattingly [24]. In [16], similar methods are applied to estimate spectral gaps of dif-
fusion generators on R

d and on manifolds. In [24] and [25], Hairer, Mattingly and
Scheutzow apply Wasserstein distances based on particular concave distance func-
tions to prove exponential ergodicity in infinite dimensional situations. The key idea
below is to obtain more quantitative results by “almost” optimizing the choice of the
functions f and fi to obtain large contraction rates. In the case n = 1, this idea has
also been exploited in [16] to derive lower bounds for spectral gaps. The novelty here
is that we suggest a simple and very explicit choice for f that leads to close to opti-
mal results in several examples. Furthermore, by a new extension to the product case
based on an approximate componentwise reflection coupling, we obtain dimension
free contraction results in product models and perturbations thereof without relying
on convexity.

Before stating the general results, we consider some examples illustrating the scope
of the approach:

Example 1 (Overdamped Langevin dynamics with locally non-convex potential) Sup-
pose that σ = Id and b(x) = − 1

2∇U (x) for a function U ∈ C2(Rd) that is strictly
convex outside a given ball B ⊂ R

d . Then Z := ∫
exp(−U (x))dx is finite, and the

probability measure

dμ = Z−1 exp(−U ) dx

is a stationary distribution for the diffusion process (Xt ). Corollary 2 below yields
exponential contractivity for the transition semigroup (pt ) with an explicit rate w.r.t.
an appropriate Kantorovich distance W f . As a consequence, we obtain dimension-
independent upper bounds for the standard L1 Wasserstein distances between the
laws νpt of Xt and μ for arbitrary initial distributions ν and t ≥ 0. These bounds are
of optimal order in R, L ∈ [0,∞) and K ∈ (0,∞) if (x − y) · (∇U (x) − ∇U (y)) is
bounded from below by−L|x− y|2 for |x− y| < R and by K |x− y|2 for |x− y| ≥ R.

Example 2 (Product models) For a diffusion process Xt = (X1
t , . . . , X

n
t ) in R

n·d
with independent Langevin diffusions X1, . . . , Xn as in Example 1, Theorem 7 below
yields exponential contractivity in an appropriate Kantorovich distance with rate c =
min (c1, . . . , cn) where c1, . . . , cn are the lower bounds obtained for the contraction
rates of the components.

Example 3 (Systems of interacting diffusions) More generally, consider a system

dXi
t = −1

2
∇U (Xi

t ) dt − α

n

n∑

j=1

∇V (Xi
t − X j

t ) dt + dBi
t , i = 1, . . . , n,

of n interacting diffusion processes inRd whereU ∈ C2(Rd) is strictly convex outside
a ball, V ∈ C2(Rd) has bounded second derivatives, and B1, . . . , Bn are independent
Brownian motions in Rd . Then Corollary 9 below shows that for α sufficiently small,
exponential contractivity holds in an appropriate Kantorovich distance with a rate that
does not depend on n.
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We now introduce briefly the couplings to be considered in the proofs below:
A coupling by reflection of two solutions of (1) with initial distributions μ and ν is

a diffusion process (Xt ,Yt ) with values in R
2d defined by (X0,Y0) ∼ η where η is a

coupling of μ and ν,

dXt = b(Xt ) dt + σ dBt for t ≥ 0, (2)

dYt = b(Yt ) dt + σ(I − 2et e
�
t ) dBt for t < T, Yt = Xt for t ≥ T . (3)

Here et e�
t is the orthogonal projection onto the unit vector

et := σ−1(Xt − Yt )/|σ−1(Xt − Yt )|,

and T = inf{t ≥ 0 : Xt = Yt } is the coupling time, i.e., the first hitting time of the
diagonal Δ = {(x, y) ∈ R

2d : x = y}, cf. [14,35]. The reflection coupling can be
realized as a diffusion process inR2d , and the marginal processes (Xt )t≥0 and (Yt )t≥0
are solutions of (1) w.r.t. the Brownian motions Bt and

B̌t =
∫ t

0
(Id − 2I{s<T }ese�

s ) dBs .

Notice that by Lévy’s characterization, B̌ is indeed a Brownian motion since the
process Id − 2I{s<T }ese�

s takes values in the orthogonal matrices. The difference
vector

Zt := Xt − Yt

solves the s.d.e.

dZt = (b(Xt ) − b(Yt )) dt + 2|σ−1Zt |−1Zt dWt for t < T,

Zt = 0 for t ≥ T, (4)

w.r.t. the one-dimensional Brownian motion

Wt =
∫ t

0
e�
s dBs .

A synchronuous coupling of two solutions of (1) is defined correspondingly with
et ≡ 0, i.e., the same noise is applied both to Xt and Yt . Below we will also consider
mixed couplings that are reflection couplings for certain values of Zt , synchronuous
couplings for other values of Zt , and mixtures of both types of couplings for Zt in an
intermediate region. Notice that the standard reflection coupling introduced above is
a synchronuous coupling for t ≥ T , i.e., if Zt = 0 !

More generally, we will consider couplings for diffusion processes on product
spaces (such as in Examples 2 and 3) that are approximately componentwise reflection
couplings, i.e., the i-th component (Xi

t ,Y
i
t )of the coupling (Xt ,Yt ) is defined similarly

to (2) provided |Xi
t − Y i

t | ≥ δ for a given constant δ > 0, cf. Sect. 6 below.
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Reflection couplings and contraction rates for diffusions 855

For diffusion processes with non-constant diffusion matrix σ(x), the reflection
coupling should be replaced by the Kendall-Cranston couplingw.r.t. the intrinsic Rie-

mannian metric G(x) = (
σ(x)σ (x)T

)−1
induced by the diffusion coefficients, cf.

[17,28,31,43]. Here, we restrict ourselves to the case of constant diffusion matrices
where the Kendall-Cranston coupling coincides with the standard coupling by reflec-
tion.

The main results of this paper are stated in Sect. 2 for reflection coupling, and
in Sect. 3 for componentwise reflection coupling on product spaces. The proofs are
contained in Sects. 4, 5 and 6. A part of the results in Sect. 2 have been announced in
the Comptes Rendus Note [21].

2 Main results for reflection coupling

2.1 Reflection couplings and contractivity on R
d

Lindvall and Rogers [35] introduced coupling by reflection in order to derive upper
bounds for the total variation distance of the distributions of Xt and Yt at a given time
t ≥ 0. Here we are instead considering the Kantorovich-Rubinstein (L1-Wasserstein)
distances

W f (μ, ν) = inf
η

∫
d f (x, y) η(dxdy), d f (x, y) = f (‖x−y‖) (x, y ∈ R

d), (5)

of probability measuresμ, ν onRd , where the infimum is over all couplings η ofμ and
ν, f : [0,∞) → [0,∞) is an appropriately chosen concave increasing function with
f (0) = 0, and ‖z‖ = √

z · GzwithG ∈ R
d×d symmetric and strictly positive definite.

Typical choices for the norm are the Euclidean norm ‖z‖ = |z| and the intrinsic metric
‖z‖ = |σ−1z| corresponding to G = Id and G = (σσ�)−1 respectively.

Remark 1 (Interpolating between total variation and Wasserstein distances) For the
choice of the function f there are two extreme cases with minimal and maximal
concavity:

1. Choosing f (x) = x yields the standard Kantorovich (L1 Wasserstein) distance
W f = W 1. In this case it is well known that if, for example, G = σ = Id and
b(x) = −∇U (x)/2, then the transition kernels pt (x, dy) of the diffusion process
(Xt ) satisfy

W f (μpt , νpt ) ≤ e−Kt/2 W f (μ, ν) for any μ, ν and t ≥ 0,

provided ∇2U ≥ K · Id holds globally. This condition is also sharp in the sense
that ifU is not globally strictly convex, then contractivity of pt w.r.t.W f does not
hold, cf. Sturm and von Renesse [37].

2. On the other hand, choosing f (x) = I(0,∞)(x) yields the total variation distance
W f = dTV . In this case,

W f (μpt , νpt ) ≤ P[T > t] for any μ, ν and t ≥ 0,
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but there is no strict contractivity of pt w.r.t. dTV in general. Indeed, in many
applications dTV (μpt , νpt ) only decreases substantially after a certain amount of
time (“cut-off phenomenon”).

By choosing for f an appropriate concave function, exponential contractivity w.r.t.
W f may hold evenwithout global convexity, cf. [16].We now explain how the function
f can be chosen in a very explicit way such that the obtained exponential decay rate
w.r.t. the Kantorovich distance W f differs from the maximal decay rate that we can
achieve by our approach based on reflection coupling only by a constant factor.

At first, similarly to Lindvall and Rogers [35], let us define for r ∈ (0,∞):

κ(r) = inf

{
−2

|σ−1(x − y)|2
‖x − y‖2

(x − y) · G(b(x) − b(y))

‖x − y‖2
: x, y ∈ R

d s.t. ‖x − y‖ = r
}

,

i.e., κ(r) is the largest constant such that

(x − y) · G(b(x) − b(y)) ≤ −1

2
κ(r)‖x − y‖4/|σ−1(x − y)|2 (6)

holds for any x, y ∈ R
d with ‖x − y‖ = r . Notice that if ‖ · ‖ is the intrinsic metric

then the factor |σ−1(x − y)|2/‖x − y‖2 equals 1 . In Example 1 with G = Id , we
have

κ(r) = inf

{∫ 1

0
∂2(x−y)/|x−y|U ((1 − t)x + t y) dt : x, y ∈ R

d s.t. |x − y| = r

}
.

We assume from now on that κ(r) is a continuous function on (0,∞) satisfying

lim inf
r→∞ κ(r) > 0 and

∫ 1

0
rκ(r)− dr < ∞. (7)

In Example 1 with G = Id , this assumption is satisfied if U is strictly convex outside
a ball.

Next, we define constants R0, R1 ∈ [0,∞) with R0 ≤ R1 by

R0 = inf{R ≥ 0 : κ(r) ≥ 0 ∀ r ≥ R}, (8)

R1 = inf{R ≥ R0 : κ(r)R(R − R0) ≥ 8 ∀ r ≥ R}, (9)
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Reflection couplings and contraction rates for diffusions 857

Notice that by (7), both constants are finite.We now consider the particular distance
function d f (x, y) = f (‖x − y‖) given by

f (r) =
r∫

0

ϕ(s)g(s) ds, where

ϕ(r) = exp

⎛

⎝−1

4

r∫

0

sκ(s)− ds

⎞

⎠ , Φ(r) =
r∫

0

ϕ(s) ds,

g(r) = 1 − 1

2

∫ r∧R1

0

Φ(s)

ϕ(s)
ds
/ R1∫

0

Φ(s)

ϕ(s)
ds. (10)

Let us summarize some basic properties of the functions ϕ, g and f :

– ϕ is decreasing, ϕ(0) = 1, and ϕ(r) = ϕ(R0) for any r ≥ R0,
– g is decreasing, g(0) = 1, and g(r) = 1

2 for any r ≥ R1,
– f is concave, f (0) = 0, f ′(0) = 1, and

Φ(r)/2 ≤ f (r) ≤ Φ(r) for any r ≥ 0. (11)

The last statement shows that d f and dΦ as well as W f and WΦ differ at most by a
factor 2.

We will explain in Sect. 4 below how the choice of f is obtained by trying to
maximize the exponential decay rate. Let us now state our first main result which will
be proven in Sect. 4.

Theorem 1 (Exponential contractivity of reflection coupling)Letα := sup{|σ−1z|2 :
z ∈ R

d with ‖z‖ = 1}, and define c ∈ (0,∞) by

1

c
= α

R1∫

0

Φ(s)ϕ(s)−1 ds = α

R1∫

0

s∫

0

exp

⎛

⎝1

4

s∫

t

uκ(u)− du

⎞

⎠ dt ds . (12)

Then for the distance d f given by (5) and (10), the function t �→ ectE[d f (Xt ,Yt )] is
decreasing on [0,∞).

The theorem yields exponential contractivity at rate c > 0 for the transition kernels pt
of (1) w.r.t. the Kantorovich distance W f . Moreover, it implies upper bounds for the
standard Kantorovich (L1 Wasserstein) distanceW 1 = Wid w.r.t. the distance function
d(x, y) = ‖x − y‖:
Corollary 2 For any t ≥ 0 and any probability measures μ, ν on R

d ,

W f (μpt , νpt ) ≤ exp(−ct)W f (μ, ν), and (13)

W 1(μpt , νpt ) ≤ 2ϕ(R0)
−1 exp(−ct)W 1(μ, ν). (14)
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858 A. Eberle

Note that the second estimate follows from the first, since by the properties of ϕ and
g stated above, ϕ(R0)/2 ≤ f ′ ≤ 1, and hence

ϕ(R0)‖x − y‖/2 ≤ d f (x, y) ≤ ‖x − y‖ for any x, y ∈ R
d . (15)

The corollary yields an upper bound formixing timesw.r.t. theKantorovich distance
W 1. For ε > 0 let

τW 1(ε) := inf{t ≥ 0 : W 1(μpt , νpt ) ≤ εW 1(μ, ν) ∀μ, ν ∈ M1(R
d)}.

Then by Corollary 2,

τW 1(ε) ≤ c−1 log(2/(εϕ(R0))) for any ε > 0.

The proofs of Theorem 1 and Corollary 2 are given in Sect. 4 below.

Remark 2 (Non-constant diffusion coefficients) The methods and results presented
above have natural extensions to diffusion processes with smooth non-constant dif-
fusion matrices. In that case, one possibility is to use an ad hoc coupling as in [35],
but this leads to restrictive assumptions and bounds that are far from optimal. A better
approach is to switch to a Riemannian setup where the metric is the intrinsic metric
G(x) = (σ (x)σ (x)T )−1 given by the diffusion coefficients. The diffusion process
(Xt ) can then be represented in the form

dXt = β(Xt ) dt + dBG
t (16)

where (BG
t ) is a Brownian motion on the Riemannian manifold (Rd ,G), and β is

a modified drift vector field. Now, by replacing the reflection coupling by the cor-
responding Kendall-Cranston coupling on (Rd ,G), one can expect similar results as
above with κ defined as

κ(r) = 2r−1 inf

{
− 〈γ ′

y,x (r), β(x)〉 + 〈γ ′
y,x (0), β(y)〉

+
∫ r

0
Ric(γ ′

y,x (s), γ
′
y,x (s)) ds : ‖x − y‖ = r

}
,

where γy,x : [0, r ] → R
d is the unit speed geodesic from y to x and Ric denotes the

Ricci curvature on (Rd ,G), cf. [17,43].

Remark 3 (Diffusions with reflection on smooth convex domains) The results above
also apply to diffusion processes on a smooth bounded domain D ⊆ R

d with normal
reflection at the boundary [1,10,18,36,40]. In that case the SDE (1) is replaced by

dXt = b(Xt ) dt + n(Xt ) d�t + σ dBt , (17)

where n(x) is the interior normal vector at a boundary point x , and (�t ) is the local time
of (Xt ) on the boundary ∂D, i.e., t �→ �t is a non-decreasing process that increases
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Reflection couplings and contraction rates for diffusions 859

only at times when Xt ∈ ∂D. Consequently, in the Eq. (4) for the coupling difference
Zt = Xt−Yt , additional drift terms in the directions n(Xt ) and−n(Yt ) occurwhen one
of the two copies is at the boundary. Since for a convex domain, both Zt ·n(Xt ) ≤ 0 and
−Zt ·n(Yt ) ≤ 0, the reflection at the boundary improves the upper bounds for ‖Zt‖ in
the proofs below when choosing G = Id . Therefore, the assertions of Theorem 1 and
Corollary 2 hold true without further change if we take the infimum in the definition
of κ only over x, y ∈ D and choose R0, R1 respectively equal to the diameter of D in
case the infima in (8) or (9) are over empty sets.

2.2 Consequences

We summarize some important consequences of exponential contractivity w.r.t. Kan-
torovich distances as stated in Corollary 2. These consequences are essentially
well-known, cf. e.g. Joulin [29], Joulin and Ollivier [30], and Komorowski and Wal-
czuk [32] for related results. For the reader’s convenience, the proofs are nevertheless
included in Sect. 4 below. We assume that ‖z‖ = |σ−1z| is the intrinsic metric, b is in
C1(Rd ,Rd), and ∫

|z| pt (x0, dz) < ∞ (18)

holds for some x0 ∈ R
d and any t ≥ 0. Then, equivalently to (13), Theorem 1 implies

Lipschitz contractivity for the transition semigroup

(pt g)(x) =
∫

g(z) pt (x, dz)

w.r.t. the metric d f , i.e.,

‖pt g‖Lip( f ) ≤ exp(−ct) ‖g‖Lip( f ) (19)

holds for any t ≥ 0 and any Lipschitz continuous function g : Rd → R, where

‖g‖Lip( f ) = sup

{ |g(x) − g(y)|
d f (x, y)

: x, y ∈ R
d s.t. x �= y

}

denotes the Lipschitz semi-normw.r.t. d f . An immediate consequence is the existence
of a unique stationary distribution μ with finite second moments:

Corollary 3 (Convergence to equilibrium) There exists a unique stationary distribu-
tion μ of (pt )t≥0 satisfying

∫ |y| μ(dy) < ∞ and

Varμ(g) ≤ (2c)−1‖g‖2Lip( f ) for any Lipschitz continuous g : Rd → R. (20)

Moreover, for any probability measure ν on R
d ,

W f (μ, νpt ) ≤ exp(−ct)W f (μ, ν) for any t ≥ 0. (21)
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We refer to [7,11] for other recent results on convergence to equilibriumof diffusion
processes in Wasserstein distances.

Further important consequences of (19) are quantitative non-asymptotic bounds for
the decay of correlations and the bias and variance of ergodic averages. Let x0 ∈ R

d

and suppose that (X,P) is a solution of (1) with initial condition X0 = x0.

Corollary 4 (Decay of correlations) For any Lipschitz continuous functions g, h :
R
d → R and s, t ≥ 0,

Cov (g(Xt ), h(Xt+s)) ≤ 1 − e−2ct

2c
e−cs ‖g‖Lip( f ) ‖h‖Lip( f ). (22)

Corollary 5 (Bias and variance of ergodic averages) For any Lipschitz continuous
function g : Rd → R and t ∈ (0,∞),

∣∣∣∣E
(
1

t

∫ t

0
g(Xs) ds −

∫
g dμ

)∣∣∣∣ ≤ 1 − e−ct

ct
‖g‖Lip( f )

∫
d f (x0, y) μ(dy), and

Var

(
1

t

∫ t

0
g(Xs) ds

)
≤ 1

c2t
‖g‖2Lip( f ).

In the variance estimate in Corollary 5, one of the factors 1/c is due to the variance
bound (20) w.r.t. the stationary distribution, whereas the second factor 1/c bounds the
decay rate for the correlations. Short proofs of Corollaries 3, 4, and 5 are included in
Sect. 4.

Remark 4 (CLT, Gaussian deviation inequality) The contractivity w.r.t. W f can also
be used to prove a central limit theorem for the ergodic averages [32] and a Gaussian
deviation inequality strengthening Corollary 5, cf. Remark 2.10 in [29].

2.3 Examples

In order to illustrate the quality of the bounds given in Theorem 1 and in Corollary
2, we estimate the constant c defined by (12) in different scenarios, and we study the
behaviour of c under perturbations of the drift b.

Wefirst consider the situationwhere κ is bounded frombelowby a negative constant
for any r , and by a positive constant for large r :

Lemma 1 (Contractivity under lower bounds on κ) Suppose that

κ(r) ≥ −L for r ≤ R, and κ(r) ≥ K for r > R (23)

hold with constants R, L ∈ [0,∞) and K ∈ (0,∞). If L R2
0 ≤ 8 then

α−1c−1 ≤ e − 1

2
R2 + e

√
8K−1 R + 4K−1 ≤ 3e

2
max(R2, 8K−1), (24)
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and if L R2
0 ≥ 8 then

α−1c−1 ≤ 8
√
2πR−1L−1/2(L−1 + K−1) exp

(
LR2

8

)
+ 32R−2K−2. (25)

For diffusions with reflection on a smooth convex domain corresponding bounds
with K = ∞ hold if R is the diameter of the domain, cf. Remark 3 above.

Remark 5 If L = 0 then the bound in (24) improves to

α−1c−1 ≤ 2 max(R2, 2K−1). (26)

The proofs of Lemma 1 and Remark 5 are given in Sect. 5 below.
In the first case considered in the lemma, the constant c is at least of order

min(R−2, K ). Even if L = 0 (convex case), this order can not be improved as one-
dimensional Langevin diffusions with potentialU (x) = Kx2/2, or, respectively, with
vanishing drift on (−R/2, R/2) demonstrate. In particular, for U (x) = Kx2/2 with
K > 0, the distance W f is equivalent to W 1, and the exact decay rate is K/2. This
differs from the bounds in (24) and (26) only by a factor 2, 6e respectively. Thus,
if L R2

0 is not too large, the contractivity properties are not affected substantially by
non-convexity !

In the second case (LR2
0 ≥ 8), if K ≥ const. · L then the upper bound for c−1 is

of order L−3/2R−1 exp(LR2/8). By the next example, this order in R and L is again
optimal:

Example 4 (Double-well potential with U ′′(x) = −L for |x| ≤ R/2) Consider a
Langevin diffusion in R

1 with a symmetric potential U ∈ C2(R) satisfying U (x) =
−Lx2/2 for x ∈ [−R/2, R/2], U ′′ ≥ −L , and lim inf |x |→∞ U ′′(x) > 0. If ‖ · ‖
is the Euclidean norm then κ(r) = −L for r ∈ (0, R]. On the other hand, let
τ0 = inf{t ≥ 0 : Xt = 0} denote the first hitting time of 0. Then for any initial
condition x0 > 0,

lim
t→∞ t−1 log Px0 [τ0 > t] = −λ1(0,∞) (27)

where−λ1(0,∞) is the first Dirichlet eigenvalue of the generatorLv = (v′′−U ′v′)/2
on (0,∞), cf. [23] or see Sect. 5 below for a short proof of the corresponding
lower bound that is relevant here. If LR2 ≥ 4 then by inserting the function
g(x) = min(

√
Lx, 1) into the variational characterization of the Dirichlet eigenvalue,

we obtain the upper bound

λ1(0,∞) ≤ 3

4
e1/2L3/2R exp(−LR2/8), (28)

cf. Sect. 5 below. The estimates (27) and (28) seem to indicate that for x0 > 0,
the Kantorovich distance W 1(δ−x0 pt , δx0 pt ) decays at most with a rate of order
L3/2R exp(−LR2/8). Indeed, under appropriate growth assumptions on U (x) for
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|x | ≥ R, one can prove that

PR [τ0 > t] ≥ 3/4 for any t ≤ λ1(0,∞)−1/4,

cf. Sect. 5. Hence for t ≤ 3−1e−1/2L−3/2R−1 exp(LR2/8), the Kantorovich distance
W 1(δR pt , μ) between δR pt and the stationary distribution μ is bounded from below
by a strictly positive constant that does not depend on L and R if LR2 ≥ 4.

For analyzing the behaviour of c under perturbations of the drift, we assume that
‖z‖ = |σ−1z| is the intrinsic metric corresponding to the diffusion matrix, i.e., G =
(σσ T )−1. Suppose that

b(x) = b0(x) + γ (x) for any x ∈ R (29)

with locally Lipschitz continuous functions b0, γ : Rd → R
d . For r > 0 let

κ0(r) = inf

{
−2

(x − y) · G(b0(x) − b0(y))

‖x − y‖2 : x, y ∈ R
d s.t. ‖x − y‖ = r

}
(30)

be defined analogously to κ(r) with b replaced by b0. We assume that κ0 satisfies the
assumptions (7) imposed on κ above, and we define R0 and R1 similarly to (8) and (9)
but with κ replaced by κ0. Now suppose that there exists a constant R ≤ R0 such that

(x − y) · (γ (x) − γ (y)) ≤ 0 for any x, y ∈ R
d s.t. ‖x − y‖ ≥ R. (31)

Then κ(r) ≥ κ0(r) for r ≥ R, and hence the constants R0 and R1 defined w.r.t. b are
smaller than the corresponding constants defined w.r.t. b0. In this situation, we can
compare the lower bounds c and c0 for the contraction rates w.r.t. b and b0 given by
(12):

Lemma 2 (Bounded and Lipschitz perturbations) Suppose that the drift b : Rd → R
d

is given by (29) with b0 and γ satisfying the assumptions stated above, and let c and
c0 denote the lower bounds for the contraction rates w.r.t. b and b0 given by (12).

1. If γ is bounded and (31) holds for a constant R ∈ [0, R0] then

c ≥ c0 exp(−R sup ‖γ ‖). (32)

2. If γ satisfies the one-sided Lipschitz condition

(x − y) · G(γ (x) − γ (y)) ≤ L · ‖x − y‖2 ∀ x, y ∈ R
d (33)

with a finite constant L ∈ [0,∞) and (31) holds for a constant R ∈ [0, R0] then

c ≥ c0 exp(−LR2/4). (34)
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Remark 6 The condition R ≤ R0 is required in Lemma 2. If (31) does not hold for
x, y ∈ R

d with ‖x − y‖ ≥ R0 then the constants R0(b) and R1(b) defined w.r.t. b are
in general greater than the corresponding constants defined w.r.t. b0, i.e., the region of
non-convexity increases by adding the drift γ . This will also affect the bound in (12)
significantly.

The proof of Lemma 2 is given in Sect. 5.

2.4 Local contractivity and a high-dimensional example

Consider again the setup in Sect. 2.1. In some applications, the condition
lim infr→∞ κ(r) > 0 imposed above is not satisfied, but the diffusion process will stay
inside a ball B ⊂ R

d for a long time with high probability. In this case, one can still
prove exponential contractivity up to an error term that is determined by the exit prob-
abilities from the ball. Corresponding estimates are useful to prove non-asymptotic
error bounds, i.e., for fixed t ∈ (0,∞), cf. e.g. [8,9,22].

Fix R ∈ (0,∞) and letW fR denote the Kantorovich distance based on the distance
function d fR (x, y) = fR(‖x − y‖) given by

fR(r) =
∫ r

0
ϕ(s)gR(s) ds for r ≥ 0, (35)

where ϕ and Φ are defined by (10), and

gR(r) = 1 −
∫ r∧R

0

Φ(s)

ϕ(s)
ds
/∫ R

0

Φ(s)

ϕ(s)
ds. (36)

Notice that

gR(r) = 0 and fR(r) = fR(R) for any r ≥ R,

i.e., we have cut the distance at fR(R).

Theorem 6 (Local exponential contractivity) Suppose that the assumptions from Sect.
2.1 are satisfied except for the condition lim infr→∞ κ(r) > 0. Then for any t, R ≥ 0
and any probability measures μ, ν on Rd ,

W fR (μpt , νpt ) ≤ exp(−cRt)W fR (μ, ν)

+ R · (Pμ[τR/2 ≤ t] + Pν[τR/2 ≤ t]) , (37)

where (Xt ,Pμ) is a diffusion process satisfying (1) with initial distribution μ, τR/2 =
inf{t ≥ 0 : ‖Xt‖ > R/2} denotes the first exit time from the ball of radius R/2 around
0, and

1

cR
= α

R∫

0

Φ(s)ϕ(s)−1 ds = α

R∫

0

s∫

0

exp

⎛

⎝1

4

s∫

t

uκ(u)− du

⎞

⎠ dt ds. (38)
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The proof of the theorem is given in Sect. 5. In applications, the exit probabilities
are typically estimated by using appropriate Lyapunov functions.

Example 5 (Stochastic heat equation) We consider the diffusion in R
d−1 given by

X0
t ≡ Xd

t ≡ 0 and

dXi
t =

[
d2 (Xi+1

t − 2Xi
t + Xi−1

t ) + V ′(Xi
t )
]
dt + √

d dBi
t , (39)

i = 1, . . . , d − 1, where V : R → R is a C2 function such that V ′′ ≥ −L for a
finite constant L ∈ R. The Eq. (39) is a spatial discretization at the grid points i/d
(i = 0, 1, . . . , d) of the stochastic heat equation with space-time white noise and
Dirichlet boundary conditions on the interval [0, 1] given by

du = (ΔDiru + V ′(u)
)
dt + dW (40)

with theDirichlet LaplacianΔDir on the interval [0, 1] and a cylindricalWiener process
(Wt )t≥0 over the Hilbert space L2(0, 1). We observe that (39) is of the form (1) with
σ = √

d Id−1 and b = −d∇U where

U (x) = d

2

d∑

i=1

∣∣∣xi − xi−1
∣∣∣
2 + 1

d

d∑

i=0

V (xi )

for x = (x1, . . . , xd−1) ∈ R
d−1 and x0 = xd = 0. By the discrete Poincaré inequal-

ity,

d∑

i=1

∣∣∣xi − xi−1
∣∣∣
2 ≥ 2 (1 − cos(π/d))

d−1∑

i=1

∣∣∣xi
∣∣∣
2
.

Hence for any x, ξ ∈ R
d−1 and x0 = xd = ξ0 = ξd = 0, the lower bound

∂2ξξU (x) = d
d∑

i=1

∣∣∣ξ i − ξ i−1
∣∣∣
2 + 1

d

d−1∑

i=1

V ′′(xi )
∣∣∣ξ i
∣∣∣
2 ≥ 1

d
Kd

d−1∑

i=1

∣∣∣ξ i
∣∣∣
2

holds with Kd = 2 d2 (1 − cos(π/d)) − L , and thus

(x − y) · (b(x) − b(y)) = −d (x − y) · (∇U (x) − ∇U (y)) ≤ −Kd |x − y|2

for any x, y ∈ R
d−1 where | · | denotes the Euclidean norm. Choosing for ‖ · ‖ the

intrinsic metric ‖x‖ = d−1/2|x |, we obtain

κ(r) ≥ 2 Kd for any r > 0.
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In particular, the function κ is bounded from below uniformly by a real constant that
does not depend on the dimension d since

lim
d→∞ Kd = π2 − L > −∞. (41)

Theorem 6 now shows that for any R > 0, local exponential contractivity in the sense
of (37) holds on the ball

BR/2 = {x ∈ R
d−1 : ‖x‖ ≤ R/2} = {x ∈ R

d−1 : |x | ≤ d1/2R/2}

with rate cR satisfying

1

cR
≤ 4

√
πR−1|Kd |−3/2 exp(−Kd R

2/4) for Kd R
2 ≤ −4,

1

cR
≤ (e − 1)R2/2 for − 4 ≤ Kd R

2 < 0,

1

cR
≤ R2/2 for Kd = 0 respectively.

Here the explicit upper bounds are obtained analogously as in the proof of Lemma 1.
For Kd > 0, strict convexity holds, andwe obtain global exponential contractivitywith
a dimension-independent rate. We remark that because of (41), the bounds also carry
over to the limiting SPDE (40) for which they imply local exponential contractivity
on balls w.r.t. the L2 norm.

3 Main results for componentwise reflection couplings

3.1 Componentwise reflection couplings and contractivity on product spaces

We now consider a system

dXi
t = bi (Xt ) dt + dBi

t , i = 1, . . . , n, (42)

ofn interacting diffusionprocesses takingvalues inRdi ,di ∈ N.Here Bi , i = 1, . . . , n,
are independent Brownian motions in R

di , X = (X1, . . . , Xn) is a diffusion process
taking values in R

d where d = ∑n
i=1 di , and bi : Rd → R

di are locally Lipschitz
continuous functions. We will assume that

bi (x) = bi0(x
i ) + γ i (x), i = 1, . . . , n, (43)

where the functions bi0 : Rdi → R
di are locally Lipschitz continuous, and γ i : Rd →

R
di are “sufficiently small” perturbations, cf. Theorem 7 below. In particular, for

γ i ≡ 0 the components X1, . . . , Xn are independent.
To analyse contraction properties of the process X , one could use a reflection

coupling on R
d and apply the results above based on a distance function of the form
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d f (x, y) = f (|x − y|). In some applications, this approach does indeed provide
dimension-free bounds, cf. Example 5 above. However, in the product case γ i ≡ 0
it leads in general to lower bounds for contraction rates that degenerate rapidly as
n → ∞, even though one would expect exponential contractivity with the minimum
of the contraction rates for the components. The reason is that the approach requires
convexity outside a Euclidean ball in R

d whereas in corresponding product models,
in general convexity only holds if all components are outside given balls in Rdi .

Instead, we now consider contractivity w.r.t. Kantorovich distancesW f,w based on
distance functions on R

d = R
d1+···+dn of the form

d f,w(x, y) =
n∑

i=1

fi (|xi − yi |) wi . (44)

Here fi : [0,∞) → [0,∞), 1 ≤ i ≤ n, are strictly increasing concave C1 functions
with fi (0) = 0 and f ′

i (0) = 1 that are obtained from bi0 in the same way as f has been
obtained from b above, and wi ∈ (0, 1] are positive weights. In many applications,
one can choose wi = 1 for any i . The corresponding distance will then be denoted by
d1, f . Notice that d1, f is bounded from above by the �1 distance

d�1(x, y) =
n∑

i=1

|xi − yi |.

Hence W1, f is bounded from above by the Kantorovich distance W�1 based on d�1 .
For r ∈ (0,∞) let

κi (r) = r−2 inf
{
−2 (x − y) · (bi0(x) − bi0(y)) : x, y ∈ R

d s.t. |x − y| = r
}

.

(45)
Similarly as above, we assume that for 1 ≤ i ≤ n,

κi : (0,∞) → R is continuous with lim inf
r→∞ κi (r) > 0. (46)

Moreover, we assume
lim
r→0

rκi (r) = 0. (47)

Let Ri
0, R

i
1, gi (r), ϕi (r), fi (r) and Φi (r) = ∫ r0 ϕi (s) ds be defined analogously to (8),

(9) and (10) with κ replaced by κi . Moreover, we define ci ∈ (0,∞) by

1

ci
=

Ri
1∫

0

Φi (s)ϕi (s)
−1 ds =

Ri
1∫

0

s∫

0

exp

⎛

⎝1

4

s∫

t

uκi (u)− du

⎞

⎠ dt ds . (48)

Recall that by Theorem 1 and Corollary 2, ci is a lower bound for the contraction rate
of the diffusion process X̃ i on R

di satisfying the s.d.e. d X̃ i
t = bi0(X̃

i
t ) dt + dBi

t .
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Let pt (x, dy) denote the transition kernels of the diffusion process Xt =
(X1

t , . . . , X
d
t ) on R

d satisfying (42). We now state our second main result:

Theorem 7 (Exponential contractivity on product spaces) Suppose that (46) and (47)
hold, and suppose that there exist constants εi ∈ [0, ci ), 1 ≤ i ≤ n, such that for any
x, y ∈ R

d ,
n∑

i=1

|γ i (x) − γ i (y)| wi ≤
n∑

i=1

εi fi (|xi − yi |) wi . (49)

Then for any t ≥ 0 and any probability measures μ, ν on R
d ,

W f,w(μpt , νpt ) ≤ exp(−ct)W f,w(μ, ν), and (50)

W�1(μpt , νpt ) ≤ A exp(−ct)W�1(μ, ν), (51)

where c = mini=1,...,n(ci − εi ) and A = 2
/

mini=1,...,n(ϕi (Ri
0)wi ).

Example 6 (Product model) In the product case, γ i ≡ 0 for any i . Hence Condition
(49) is satisfied with εi = 0, and, therefore,

W f,w(μpt , νpt ) ≤ exp(−ct)W f,w(μ, ν)

holds with c = min ci for any choice of the weights w1, . . . , wn .

More generally than in the example, suppose now that γ = (γ 1, . . . , γ n) satisfies
an �1-Lipschitz condition

n∑

i=1

|γ i (x) − γ i (y)| ≤ λ

n∑

i=1

|xi − yi | ∀ x, y ∈ R
d . (52)

Then exponential contractivity holds for the perturbed product model provided λ <

ciϕ(Ri
0)/2 for any i :

Corollary 8 (Perturbations of product models) Suppose that (43), (46), (47) and (52)
hold with λ ∈ [0,∞). Then for any t ≥ 0 and any probability measures μ, ν on Rd ,

W f,1(μpt , νpt ) ≤ exp(−ct)W f,1(μ, ν), and (53)

W�1(μpt , νpt ) ≤ A exp(−ct)W�1(μ, ν), (54)

where c = mini=1,...n(ci − 2λϕi (Ri
0)

−1) and A = 2maxi=1,...n ϕi (Ri
0)

−1.

The inituitive idea of proof for Theorem 7 is to construct a coupling (Xt ,Yt ) of two
solutions of (42) by applying a reflection coupling individually for each component
(Xi

t ,Y
i
t ) if X

i
t �= Y i

t , and a synchronuous coupling if Xi
t = Y i

t . In the product case
this just means that Xi

t = Y i
t for any t ≥ τ i where τ i = inf{t ≥ 0 : Xi

t = Y i
t } is

the coupling time for the i-th component. In the non-product case, however, Xi
t and

Y i
t can move apart again after the time τ i due to interactions with other components.
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868 A. Eberle

In that case it is not clear how to define a coupling as described above rigorously.
Instead we will use a regularized version where reflection coupling is applied to the
i-th component whenever |Xi

t −Y i
t | ≥ δ for a given constant δ > 0, and synchronuous

coupling is applied whenever |Xi
t − Y i

t | ≤ δ/2. A precise description of the coupling
and the proofs of Theorem 7 and Corollary 8 are given in Sects. 6 and 7 below.

3.2 Consequences

The contractivity results in Theorem 7 and Corollary 8 have corresponding conse-
quences as the contractivity results in the non-product case, cf. Sect. 2.2 above. An
important difference to be noted is, however, that on product spaces,

d f,w(x, y) ≤
n∑

i=1

|xi − yi | ≤ n1/2 |x − y|

by the Cauchy-Schwarz inequality. Therefore, an additional factor n occurs in the vari-
ance bounds from Corollaries 3, 4 and 5 on product spaces. Apart from this additional
factor, all results in Sect. 2.2 carry over to the setup considered in Sect. 3.1.

3.3 Interacting Langevin diffusions

As an illustration of the results in Sect. 3.1, we consider a system

dXi
t = −1

2
∇U (Xi

t ) dt −
n∑

j=1

ai j ∇V (Xi
t − X j

t ) dt + dBi
t (55)

of n interacting overdamped Langevin diffusions taking values in Rk for some k ∈ N.
Here B1, . . . , Bn are independent Brownian motions in R

k , U ∈ C2(Rk) is strictly
convex outside a given ball, the interaction potential V is in C2(Rk) with bounded
second derivatives, and ai j , 1 ≤ i, j ≤ n, are finite real constants. For example, we
are interested in nearest-neighbour interactions and mean-field interactions given by

ai j =
{

α/2 if i − j ≡ 1 mod n or i − j ≡ −1 mod n,

0 otherwise,
(56)

ai j = α n−1 respectively, (57)

where α ∈ R is a finite coupling constant.
Choosing bi0(x

i ) = −∇U (xi )/2 and γ i (x) = −∑n
j=1 ai j∇V (xi − x j ), we

observe that the function

κi (r) = inf

{∫ 1

0
∂2(x−y)/|x−y|U ((1 − t)x + t y) dt : x, y ∈ R

k s.t. |x − y| = r

}
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Reflection couplings and contraction rates for diffusions 869

does not depend on i . Let ϕ and f be the corresponding functions given by (10), and
consider the distance

d1, f (x, y) =
n∑

i=1

f (|xi − yi |).

Moreover, let c be given by (12)withα = 1, i.e., c is the lower bound for the contraction
rate of the diffusion process Y in R

k satisfying dY = − 1
2∇U (Y ) dt + dB. We note

that γ satisfies the �1 Lipschitz condition (52) with

λ = M · max
i

n∑

j=1

(|ai j | + |a ji |
)

where M = sup ‖∇2V ‖. Therefore, if
n∑

j=1

(|ai j | + |a ji |
) ≤ c ϕ(R0) M

−1

then by Corollary 8, contractivity in the sense of (53) holds with contraction rate

c̄ = c − 2λϕ(R0)
−1 > 0.

In particular, in the nearest neighbour and mean field case, we obtain contractivity
with a rate that does not depend on the dimension if α is small:

Corollary 9 (Mean field and nearest neighbour interactions) Let pt , t ≥ 0, denote
the transition kernels of the diffusion process on R

nk solving (55). Suppose that
sup ‖∇2V ‖ < ∞ and that ai j is given by (56) or by (57) with α ∈ R. Then there
exist finite constants c, θ, A ∈ (0,∞) that do not depend on the dimension n such
that

W f,1(μpt , νpt ) ≤ e(θα−c)t W f,1(μ, ν), and (58)

W�1(μpt , νpt ) ≤ A e(θα−c)t W�1(μ, ν), (59)

hold for any t ≥ 0 and any probabilitymeasuresμ, ν onRnk . In particular, exponential
contractivity holds for α < c/θ .

The bounds in (58) and (59) are not sharp. However, it is known that for example in
mean field models whereU is a double-well potential and V is quadratic, exponential
contractivity with a rate independent of the dimension can not be expected to hold for
large α. Indeed, in this case the corresponding McKean-Vlasov process has several
stationary distributions if α > α1 for some critical parameter α1 ∈ (0,∞), cf. [26,27].
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4 Proofs for reflection coupling

In this section, we first motivate our particular choice of the function f , and we prove
Theorem 1. Afterwards, we prove Corollaries 2, 3, 4 and 5.

Let rt = ‖Xt − Yt‖ where (X,Y ) is a reflection coupling of two solutions of (1).
Our goal is to find an explicit concave increasing function f : [0,∞) → [0,∞) with
f (0) = 0 and f ′(0) = 1 such that ect f (rt ) is a (local) supermartingale for t less
than the coupling time T with a constant c > 0 that we are trying to maximize by the
choice of f .

An application of Itô’s formula to the s.d.e. (4) satisfied by the difference process
Zt = Xt − Yt shows that the following Itô equations hold almost surely for t < T
whenever f is C1 and f ′ is absolutely continuous:

d‖Zt‖2 = 4 |σ−1Zt |−1‖Zt‖2 dWt

+ 2 Zt · G(b(Xt ) − b(Yt )) dt + 4 |σ−1Zt |−2‖Zt‖2 dt,
drt = 2 |σ−1Zt |−1rt dWt + r−1

t Zt · G(b(Xt ) − b(Yt )) dt, and

d f (rt ) = 2 |σ−1Zt |−1rt f
′(rt ) dWt

+ r−1
t Zt · G(b(Xt ) − b(Yt )) f

′(rt ) dt + 2 |σ−1Zt |−2r2t f ′′(rt ) dt.
(60)

By definition of the function κ , the drift term on the right hand side of (60) is bounded
from above by

βt := 2 |σ−1Zt |−2r2t ·
(
f ′′(rt ) − 1

4
rt κ(rt ) f

′(rt )
)

. (61)

Hence the process ect f (rt ) is a supermartingale for t < T if βt ≤ −c f (rt ). Since

|σ−1z|2 ≤ α‖z‖2 for any z ∈ R
d (62)

with α defined as in Theorem 1, a sufficient condition is

f ′′(r) − 1

4
rκ(r) f ′(r) ≤ −αc

2
f (r) for a.e. r > 0. (63)

Wenowfirst observe that this equation holdswith c = 0 (i.e., f (rt ) is a supermartingale
for t < T ) if f is chosen such that f ′(r) = ϕ(r) = exp(− ∫ r0 sκ(s)−ds/4). Indeed,
f (r) = ∫ r

0 ϕ(s) ds is the least concave among all concave functions f satisfying
βt ≤ 0.

To satisfy the stronger condition βt ≤ −c f (rt ) with c > 0, we make the ansatz

f ′(r) = ϕ(r) g(r) (64)

with a decreasing absolutely continuous function g ≥ 1/2 such that g(0) = 1. Note
that the condition g ≥ 0 is required to ensure that f is non-decreasing. By replacing
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this condition by the stronger condition g ≥ 1/2, we are loosing at most a factor 2
in the estimates below. On the other hand, the condition 1/2 ≤ g ≤ 1 has the huge
advantage of ensuring that

Φ/2 ≤ f ≤ Φ (65)

where Φ(r) = ∫ r0 ϕ(s) ds. The ansatz (64) yields

f ′′ = −1

4
rκ− f + ϕg′ ≤ 1

4
rκ f + ϕg′,

i.e., Condition (63) is satisfied if

g′ ≤ −αc

2
f/ϕ . almost surely. (66)

Wewill see in the proof below that for r ≥ R1, Condition (63) is automatically satisfied
since κ is sufficiently positive. Therefore, it is enough to assume that (66) holds on
(0, R1).

Now on the one hand, if (66) is satisfied on (0, R1) then

g(R1) ≤ 1 − αc

2

∫ R1

0
f (s)ϕ(s)−1 ds ≤ 1 − αc

4

∫ R1

0
Φ(s)ϕ(s)−1 ds.

This condition can only be satisfied with a function g taking values in [1/2, 1] if

α c ≤ 2big/
∫ R1

0
Φ(s)ϕ(s)−1 ds.

On the other hand, by choosing

g′(r) = − Φ(r)

2ϕ(r)

/∫ R1

0

Φ(s)

ϕ(s)
ds for r < R1, (67)

Condition (66) is satisfied with the constant

α c = 1
/∫ R1

0
Φ(s)ϕ(s)−1 ds.

This shows that up to a factor 2, choosing g as in (67) is the best we can do under the
assumptions that we have made.

The considerations above explain the particular choice of the function f made in
(10).Once this choice has beenmade, the proof ofTheorem1 is almost straightforward:

Proof of Theorem 1 As remarked above, the drift in the s.d.e. (60) for f (rt ) is bounded
from above by βt defined by (61). We now show that by our choice of f in (10), this
expression is smaller than −c f (rt ) where c is given by (12). Indeed, for r < R1,
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f ′′(r) = −1

4
rκ(r)−ϕ(r)g(r) − 1

2
Φ(r)

/ R1∫

0

Φ(s)ϕ(s)−1 ds

≤ 1

4
rκ(r) f ′(r) − 1

2
f (r)

/ R1∫

0

Φ(s)ϕ(s)−1 ds. (68)

For r > R1, we have f ′(r) = ϕ(r)/2 = ϕ(R0)/2 and κ(r)R1(R1 − R0) ≥ 8 by
definition of R1, whence

f ′′(r) − 1

4
rκ(r) f ′(r) = −1

8
rκ(r)ϕ(R0) ≤ − ϕ(R0)

R1 − R0
· r

R1

≤ − ϕ(R0)

R1 − R0
· Φ(r)

Φ(R1)
≤ −1

2
Φ(r)

/∫ R1

R0

Φ(s)ϕ(s)−1 ds

≤ −1

2
f (r)

/∫ R1

0
Φ(s)ϕ(s)−1 ds. (69)

Here we have used that for r ≥ R0, the function ϕ(r) is constant, and, therefore,
Φ(r) = Φ(R0) + (r − R0) ϕ(R0), and

∫ R1

R0

Φ(s)ϕ(s)−1 ds =
∫ R1

R0

(Φ(R0) + (s − R0)ϕ(R0))ϕ(R0)
−1 ds

= Φ(R0)ϕ(R0)
−1(R1 − R0) + (R1 − R0)

2/2

≥ (R1 − R0) (Φ(R0) + (R1 − R0)ϕ(R0)) ϕ(R0)
−1/2

= (R1 − R0)Φ(R1)ϕ(R0)
−1/2.

By (68) and (69), we conclude that βt ≤ −c f (rt ). Optional stopping in (60) at Tk =
inf{t ≥ 0 : rt /∈ (k−1, k)} now implies

E[ f (rt ) ; t < Tk] ≤ −c
∫ t

0
E[ f (rs) ; s < Tk] ds

for any k ∈ N and t ≥ 0. The assertion follows for k → ∞ since rt = 0 for t ≥ T ,
and T = sup Tk by non-explosiveness. ��
Proof of Corollary 2 Let (X,Y ) be a reflection coupling of two solutions of (1) with
joint initial distribution (X0,Y0) ∼ η. Then by Theorem 1,

W f (μpt , νpt ) ≤ E
[
d f (Xt ,Yt )

] ≤ e−ct
E
[
d f (X0,Y0)

]

= e−ct
∫

d f (x, y) η(dx dy)

for any t ≥ 0. The estimate (13) now follows by taking the infimum over all couplings
η of two given probability measures μ and ν onRd . Moreover, (14) follows from (13)
by (15). ��
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Next, we are going to prove the results in Sect. 2.2. Suppose that (18) holds, ‖z‖ =
|σ−1z| is the intrinsic metric, and b is in C1. Corollary 2 implies

∫
|y| pt (x, dy) ≤

∫
|y| pt (x0, dy) + W 1(pt (x, ·), pt (x0, ·)) < ∞

for any t ≥ 0 and any x ∈ R
d . In particular, (pt g)(x) = ∫ g(y) pt (x, dy) is defined

for any Lipschitz continuous function g : Rd → R, and

|(pt g)(x) − (pt g)(y)| = |E[g(Xt ) − g(Yt )]| ≤ ‖g‖Lip( f )E[d f (Xt ,Yt )]

for any coupling (Xt ,Yt ) of pt (x, ·) and pt (y, ·). Hence by Theorem 1,

|(pt g)(x) − (pt g)(y)| ≤ e−ct ‖g‖Lip( f ) d f (x, y), (70)

i.e., pt satisfies the exponential contractivity condition (19) w.r.t. ‖ · ‖Lip( f ). If pt g is
C1 then by (70) and since

d f (x, y) ≤ ‖x − y‖ = |σ−1(x − y)| ∀ x, y ∈ R
d ,

we obtain the uniform gradient bound

sup
∣∣∣σ T∇ pt g

∣∣∣ ≤ e−ct ‖g‖Lip( f ) ∀ t ≥ 0. (71)

It is well-known that this bound can be used to control variances w.r.t. the measures
pt (x, ·):
Lemma 3 For any t ≥ 0, x ∈ R

d , and any Lipschitz continuous g : Rd → R,

Var pt (x,·)(g) ≤ 1 − exp(−2ct)

2c
‖g‖2Lip( f ). (72)

Proof We may assume g ∈ C2(Rd) and t > 0. Then, by standard elliptic regularity
results, (t, x) �→ (pt g)(x) is differentiable in t and x , and

d

dt
pt g = Lpt g = ptLg

where L = 1
2

∑
ai j

∂2

∂xi ∂x j + b(x) · ∇, a = σσ T , is the generator of (Xt ), cf. e.g.
[38,39]. In particular, for s ∈ (0, t),

d

ds
ps(pt−sg)

2 = ps
(
L(pt−sg)

2 − 2pt−sgLpt−sg
)

= ps
∣∣∣σ T∇ pt−sg

∣∣∣
2 ≤ e−2c(t−s)‖g‖2Lip( f )

by (71). Integrating w.r.t. s, we obtain
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pt g
2 − (pt g)

2 ≤ 1 − exp(−2ct)

2c
‖g‖2Lip( f ),

which is equivalent to (72). ��

By Lemma 3 and (70), we can now easily prove Corollaries 3, 4 and 5:

Proof of Corollary 3 Existence and uniqueness of a stationary distribution μ for
(pt )t≥0 satisfying

∫ |y| μ(dy) < ∞ follows easily as in [32], Sect. 3: By Corol-
lary 2, the map ν �→ νp1 is a contraction w.r.t. the distance W f (equivalent to W 1) on
the complete metric space P1 of all probability measures ν on (Rd ,B(Rd)) satisfying∫ |y| μ(dy) < ∞. Hence by the Banach fixed point theorem, there exists a unique
probability measure μ0 such that μ0 p1 = μ0. It is then elementary to verify that the
measure μ = ∫ 1

0 μ0 ps ds satisfies μpt = μ for any t ∈ [0, 1], and hence for any
t ∈ [0,∞). Moreover, by Corollary 2,

W f (μ, νpt ) = W f (μpt , νpt ) ≤ e−ct W f (μ, ν)

for any ν ∈ P1. In particular, as t → ∞, pt (x, ·) → μ in P1 for any x ∈ R
d .

The variance bound for μ now follows from the corresponding bound for pt (x, ·) in
Lemma 3. ��

Proof of Corollary 4 By Lemma 3,

Cov (g(Xt ), h(Xt+s)) = E
[
g(Xt ) h(Xt+s)

] − E [g(Xt )] E
[
h(Xt+s)

]

= E [(g psh)(Xt )] − E [g(Xt )] E [(psh)(Xt )]

= Covpt (x0,·)(g, psh)

≤ (1 − exp(−2ct)) (2c)−1 ‖g‖Lip( f )‖psh‖Lip( f )

for any s, t ≥ 0. The assertion now follows by (70). ��

Proof of Corollary 5 The bound for the bias follows immediately from (70), since

∣∣∣∣E
[
1

t

∫ t

0
g(Xs) ds −

∫
g dμ

]∣∣∣∣ =
∣∣∣∣
1

t

∫ t

0

∫
(psg(x0) − psg(y)) μ(dy) ds

∣∣∣∣

≤ 1

t

∫ t

0
e−cs ds ‖g‖Lip( f )

∫
d f (x0, y) μ(dy).

Moreover, by Corollary 4,

123



Reflection couplings and contraction rates for diffusions 875

Var

(
1

t

∫ t

0
g(Xs) ds

)
= Cov

(
1

t

∫ t

0
g(Xs) ds ,

1

t

∫ t

0
g(Xs) ds

)

= 2

t2

∫ t

0

∫ t

s
Cov (g(Xs), g(Xu)) du ds

≤ 1

ct2

∫ t

0
(1 − e−2cs)

∫ t

s
e−c(u−s) du ds ‖g‖2Lip( f )

≤ 1

c2t
‖g‖2Lip( f ).

��

5 Examples

We now prove the results in Sects. 2.3 and 2.4, including in particular Lemmas 1, 2
and Theorem 6.

Proof of Lemma 1 and Remark 5 We first prove the lower bounds on the exponential
decay rate c in (12) stated in (24), (25) and (26). Notice that the constant c defined by
(12) increases if κ(r) is replaced by a greater function. Indeed, for r ≥ 0,

Φ(r)ϕ(r)−1 =
r∫

0

ϕ(t)ϕ(r)−1 dt =
r∫

0

exp

⎛

⎝1

4

r∫

t

sκ(s)− ds

⎞

⎠ dt, (73)

whence R0, R1 and c−1 = α
∫ R1
0 Φ(s)ϕ(s)−1 ds are decreasing functions of κ .

Convex Case. Suppose first that κ(r) ≥ 0 for any r ≥ 0 and κ(r) ≥ K for r ≥ R
with constants K ∈ (0,∞) and R ∈ [0,∞). Then R0 = 0, R1 ≤ max(R,

√
8/K ),

ϕ ≡ 1, and hence

c = (αR2
1/2)

−1 ≥ α−1 min(R−2/2, K/4).

Locally non-convex case. Now suppose that κ(r) ≥ −L for r ≤ R and κ(r) ≥ K
for r > R with constants K , L ∈ (0,∞) and R ∈ [0,∞]. Since ϕ(r) = ϕ(R0) and
Φ(r) = Φ(R0) + (r − R0)ϕ(R0) for r ≥ R0, we have

α−1c−1 =
R1∫

0

Φ(s)ϕ(s)−1 ds

=
R0∫

0

Φ(s)ϕ(s)−1 ds + (R1 − R0)Φ(R0)ϕ(R0)
−1 + (R1 − R0)

2/2.

(74)
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The lower curvature bounds imply the upper bounds

R0 ≤ R, R1 − R0 ≤ min(8/(K R0),
√
8/K ), and (75)

Φ(r)ϕ(r)−1 ≤
r∫

0

exp(L(r2 − t2)/8) dt

≤ min(
√
2π/L, r) exp(Lr2/8) for r ≤ R0. (76)

Since exp x ≤ 1 + (e − 1)x for x ∈ [0, 1] and
∫ x

0
exp(u2) du ≤ e +

∫ x

1
(2 − u−2) exp(u2) du = x−1 exp(x2) for x ≥ 1,

we can conclude that

R0∫

0

Φ(r)ϕ(r)−1 dr ≤
∫ R0

0
r exp(Lr2/8) dr = 4L−1(exp(LR2

0/8) − 1)

≤ (e − 1)R2
0/2 if LR2

0/8 ≤ 1, and
R0∫

0

Φ(r)ϕ(r)−1 dr ≤
√
2π

L

∫ R0

0
exp(

Lr2

8
) dr =

√
8 · 2π
L2

∫ √LR2
0/8

0
exp(u2) du

≤ 8
√
2πL−3/2R−1

0 exp(LR2
0/8) if LR2

0/8 ≥ 1.

Combining these estimates, we obtain by (74), (75) and (76),

α−1c−1 ≤ (e − 1)R2/2 + e
√
8/K R + 4/K if LR2

0/8 ≤ 1, and

α−1c−1 ≤ 8
√
2πR−1L−1/2(L−1 + K−1) exp(LR2/8) + 32R−2K−2 if LR2

0/8 ≥ 1,

where we have used that the function x �→ x−1 exp(x2) is increasing for x ≥ 1. ��
Proofs for Example 4 Consider the one-dimensional Langevin diffusion (Xt ) with
drift −∇U (x)/2 and generator

Lv = 1

2
(v′′ −U ′v′) = 1

2
eU
(
e−Uv′)′

. (77)

The assumption lim inf |x |→∞ U ′′(x) > 0 implies that there is a unique strictly positive
bounded eigenfunction v1 ∈ C2(0,∞) ∩ C([0,∞)) satisfying v1(0) = 0, v′

1(0) = 1
and Lv1 = −λ1v1, where

λ1 = λ1(0,∞) = inf
v∈C∞

0 (0,∞)

1
2

∫∞
0 v′(x)2 exp(−U (x)) dx
∫∞
0 v(x)2 exp(−U (x)) dx
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is the infimum of the spectrum of the self-adjoint realization of −L with Dirichlet
boundary conditions on (0,∞). Since Lv1 = −λ1v1 and v1 is bounded, the process
Mt = exp(λ1t)v1(Xt ) is a martingale. Optional stopping applied to the diffusion with
initial condition X0 = x0 shows that

v1(x0) = Ex0 [M0] = Ex0

[
Mτ0∧t

] = Ex0

[
exp(λ1t)v1(Xt ); τ0 > t

]

≤ exp(λ1t)Px0 [τ0 > t] sup v1 (78)

for any x0 > 0 and t ≥ 0. Since v1(x0) > 0 and sup v1 < ∞, the estimate (78) implies
the asymptotic lower bound

lim inf
t→∞ t−1 log Px0 [τ0 > t] ≥ −λ1(0,∞). (79)

Moreover, for any fixed t ≤ λ−1
1 /4,

PR [τ0 > t] ≥ e−1/4 v1(R)/ sup v1 ≥ 3/4

provided v1(R) ≥ 3
4e

1/4 sup v1 = 0.96 . . . · sup v1. By the eigenfunction equation
eU (e−Uv′

1)
′ = −λ1v1, one verifies that the latter condition is satisfied whenever U is

growing fast enough on [R,∞).
For bounding λ1(0,∞) from above let

v(x) = min(
√
Lx, 1) =

{√
Lx if x ≤ 1/

√
L,

1 if x ≥ 1/
√
L.

By the assumptions on U , the function v is contained in the weighted Sobolev space
H1,2
0 ((0,∞), e−U dx) (closure of C∞

0 (0,∞) w.r.t. the norm ‖w‖2 = ∫∞
0 (w2 +

(w′)2) e−U dx). Therefore, if LR2/4 ≥ 1 then (28) holds, since

λ1 ≤
1
2

∫
v′(x)2 exp(−U (x)) dx∫
v(x)2 exp(−U (x)) dx

≤
∫ 1/√L
0 L exp(Lx2/2) dx

∫ R/2
0 v(x)2 exp(Lx2/2) dx

= L

2

∫ 1
0 exp(y2/2) dy

∫√
LR2/4

0 min(y, 1)2 exp(y2/2) dy
≤ 3Le1/2

2

√
LR2

4
exp

(
LR2

8

)
.

Here we have used that by assumption, U (x) ≥ −Lx2/2 for any x ∈ R with equality
for |x | < R/2, and for x ≥ 1,

∫ x

0
min(y, 1)2ey

2/2 dy =
∫ 1

0
. . . +

∫ x

1
. . . ≥ 1

3
+ 1

x
ex

2/2 − 1 ≥ 1

3x
ex

2/2

as (x−1ex
2/2)′ = (1 − x−2)ex

2/2 ≤ ex
2/2. ��
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Proof of Lemma 2 Since b = b0 + γ , we have

(x − y) · G(b(x) − b(y)) = (x − y) · G(b0(x) − b0(y))

+(x − y) · G(γ (x) − γ (y))

for any x, y ∈ R
d . Therefore, by (31) and by definition of κ and κ0,

κ(r)− ≤ κ0(r)
− for any r ≤ R, and (80)

κ(r)− ≤ κ0(r)
− + 4r−1 sup ‖γ ‖ for any r ∈ (0,∞). (81)

In particular, if γ is bounded then κ satisfies the conditions in (7). Since the constant
R1(b) defined w.r.t. b is smaller than the corresponding constant R1 defined w.r.t. b0,
we obtain

1

c
≤
∫ R1

0

∫ s

0
exp

(
1

4

∫ s

t
uκ(u)− du

)
dt ds

≤
∫ R1

0

∫ s

0
exp

(
1

4

∫ s

t
uκ0(u)− du

)
exp (R sup ‖γ ‖) dt ds

≤ 1

c0
· exp (R sup ‖γ ‖) ,

i.e., (32) holds.
Similarly, if γ satisfies the one-sided Lipschitz condition (33) then

κ(r)− ≤ κ0(r)
− + 2L for any r ∈ (0,∞). (82)

Hence again the conditions in (7) are satisfied, and we obtain

1

c
≤ 1

c0
· exp

(
L

2

∫ R

0
r dr

)

similarly as above, i.e., (34) holds. ��
Proof of Theorem 6 Fix R > 0 and probability measures μ, ν on R

d . By definition
of fR ,

f ′′
R(r) ≤ 1

4
rκ(r) f ′

R(r) − fR(r)
/∫ R

0

Φ(s)

ϕ(s)
ds

for any r < R. Therefore, similarly to the proof of Theorem 1, Eq. (60) shows that
the process ecRt fR(rt ) is a local supermartingale for t < τ̂R where

τ̂R = inf{t ≥ 0 : rt > R}.
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Here rt = ‖Xt − Yt‖ again denotes the distance process for a reflection coupling
(Xt ,Yt ) of two solutions of (1) with initial distribution given by a coupling η of μ and
ν. By optional stopping and Fatou’s lemma, we thus obtain

E[ fR(rt ); τ̂R > t] ≤ E[ fR(rt∧τ̂R )] ≤ exp(−cRt)E[ fR(r0)]

for any t ≥ 0, and hence

E[ fR(rt )] ≤ exp(−cRt)E[ fR(r0)] + P[τ̂R ≤ t]
≤ e−cRt

∫
fR(‖x − y‖ η(dx dy) + Pμ[τR/2 ≤ t] + Pν[τR/2 ≤ t].

The assertion now follows as in the proof of Corollary 2 by minimizing over all
couplings η of μ and ν. ��

6 Couplings on product spaces

Let d = ∑n
i=1 di with n, d1, . . . , dn ∈ N. We now consider “componentwise” cou-

plings for diffusion processes Xt = (X1
t , . . . , X

n
t ) and Yt = (Y 1

t , . . . ,Yn
t ) on R

d

satisfying the s.d.e.

dXi
t = bi (Xt ) dt + dBi

t , i = 1, . . . , n, (83)

with initial conditions X0 ∼ μ and Y0 ∼ ν. Here Bi , i = 1, . . . , n, are independent
Brownian motions on R

di , and bi : R
di → R

di are locally Lipschitz continuous
functions such that the unique strong solution of (83) is non-explosive for any given
initial condition.

Let δ > 0. Suppose that λi , π i : Rd → [0, 1], i = 1, . . . , n, are Lipschitz contin-
uous functions such that

λi (z)2 + π i (z)2 = 1 for any z ∈ R
d , and (84)

λi (z) = 0 if |zi | ≤ δ/2, (85)

and let Bi and B̃i , 1 ≤ i ≤ n, be independent Brownian motions on R
di . Then a

coupling of two solutions of (83) with initial distributions μ and ν is given by a strong
solution of the system

dXi
t = bi (Xt ) dt + λi (Zt ) dB

i
t + π i (Zt ) d B̃

i
t ,

dY i
t = bi (Yt ) dt + λi (Zt ) (I − 2eit e

i,T
t ) dBi

t + π i (Zt ) d B̃
i
t , (86)

1 ≤ i ≤ n, with initial distribution (X0,Y0) ∼ η where η is a coupling of μ and ν.
Here we use the notation

Zt = Xt − Yt ,
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and eit is a measurable process taking values in the unit sphere in Rdi such that

eit =
{
Zi
t /|Zi

t | if Zi
t �= 0,

ui if Zi
t = 0,

where ui is an arbitrary fixed unit vector in R
di . Notice that by (85), the choice of ui

is not relevant for (86), which is a standard Itô s.d.e. in R
2d with locally Lipschitz

continuous coefficients. To see that (86) defines a coupling, we observe that (Xt ) and
(Yt ) satisfy (83) w.r.t. the processes B̂t = (B̂1

t , . . . , B̂
n
t ) and B̌t = (B̌1

t , . . . , B̌
n
t )

defined by

B̂i
t =

∫ t

0
λi (Zs) dB

i
s +

∫ t

0
π i (Zs) d B̃

i
s ,

B̌i
t =

∫ t

0
λi (Zs) (I − 2eise

i,T
s ) dBi

s +
∫ t

0
π i (Zs) d B̃

i
s .

By Lévy’s characterization and by (84), both B̂ and B̌ are indeed Brownian motions
in Rd , cp. the corresponding argument for reflection coupling.

Remark 7 (1) By Condition (85) and non-explosiveness of (83), the coupling process
(Xt ,Yt ) is defined for any t ≥ 0.

(2) By choosing λi ≡ 0 and π i ≡ 1 we recover the synchronuous coupling, i.e., the
same noise is applied to both processes X and Y .

(3) A componentwise reflection coupling would be informally given by choosing
λi (z) = 1 if zi �= 0 and λi (z) = 0 if zi = 0. As this function is not continuous
and ei (z) = zi/|zi | also has a discontinuity at zero, it is not obvious how to make
sense of this coupling rigorously. Instead, we will use below an approximate
componentwise reflection coupling where λi (z) = 1 if |zi | ≥ δ and λi (z) = 0 if
|zi | ≤ δ/2 for a small positive constant δ.

By subtracting the equations for X and Y in (86), we see that the difference process
Z = X − Y satisfies the s.d.e.

dZi
t = (bi (Xt ) − bi (Yt )) dt + 2λi (Zt ) e

i
t dW

i
t , (87)

i = 1, . . . , n, where the processes

Wi
t =

∫ t

0
eit · dBi

t , 1 ≤ i ≤ n,

are independent one-dimensional Brownian motions.
Let r it = |Xi

t − Y i
t | denote the Euclidean norm of Zi

t . The next lemma is crucial
for quantifying contraction properties of the coupling given by (86):
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Lemma 4 Suppose that f : [0,∞) → [0,∞) is a strictly increasing concave func-
tion in C1([0,∞)) such that f ′ is absolutely continuous on (0,∞). Then for any
i = 1, . . . , n, the process f (r it ) satisfies the Itô equation

f (r it ) = f (r i0) + 2
∫ t

0
λi (Xs − Ys) f ′(r is ) dWi

s

+
∫ t

0

{
eis · (bi (Xs) − bi (Ys)) f ′(r is ) + 2λi (Xs − Ys)

2 f ′′(r is )
}
ds.

(88)

Remark 8 The lemma shows in particular that the process r it satisfies

drit = eit · (bi (Xt ) − bi (Yt )) dt + 2λi (Xt − Yt ) dW
i
t . (89)

Notice that in this equation, the drift term does not depend on the choice of λ.

Proof of Lemma 4 Recall that eit = Zi
t /|Zi

t | if r it = |Zi
t | �= 0. Since the function

y �→ y/|y| is smooth on R
di \{0} and x �→ √

x is smooth on (0,∞), we can apply
Itô’s formula and (87) to show that the Itô equations

d|Zi |2 = 2Zi · (bi (X) − bi (Y )) dt + 4 λi (Z)2 dt + 4λi (Z) |Zi | dWi ,

dri = 1

2r i
d|Zi |2 − 1

8(r i )3
d[|Zi |2]

= ei · (bi (X) − bi (Y )) dt + 2λi (X − Y ) dWi (90)

hold almost surely on any stochastic interval [τ1, τ2] such that Zi
t �= 0 a.s. for τ1 ≤

t ≤ τ2.
On the other hand, suppose that |Zi | < δ/2 a.s. on a stochastic interval [τ3, τ4]. Then

on [τ3, τ4], λ(Z) ≡ 0 by (85), and hence Zi is almost surely absolutely continuous
with

dZi/dt = bi (X) − bi (Y ) a.e. on [τ3, τ4].

This implies that r i = |Zi | is almost surely absolutely continuous on [τ3, τ4] as well
with

dri/dt = ei · (bi (X) − bi (Y )) a.e. on [τ3, τ4], (91)

which is equivalent to (89) on [τ3, τ4]. Note that the value of ei for Zi = 0 is not
relevant here, since Zi can only stay at 0 for a positive amount of time if bi (X)−bi (Y )

vanishes during that time interval.
SinceR+ is the union of countably many stochastic intervals of the first and second

type considered above, the Itô equation (89) holds almost surely onR+. The assertion
(88) now follows from (89) by another application of Itô’s formula. Here it is enough
to assume that f is C1 on [0,∞) and f ′ is absolutely continuous on (0,∞) because
λi (Xs − Ys) vanishes for r is < δ/2. ��
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We now fix weights w1, . . . wn ∈ [0,∞) and strictly increasing concave functions
f1, . . . , fn ∈ C1([0,∞)) ∩ C2((0,∞)) such that fi (0) = 0 for any i . Consider

ρt =
n∑

i=1

fi (r
i
t ) wi = d f,w(Xt ,Yt ) (92)

where d f,w is defined by (44). By Lemma 4,

dρt =
n∑

i=1

(
eit · (bi (Xt ) − bi (Yt )) f ′

i (r
i
t ) + 2λi (Xt − Yt )

2 f ′′
i (r it )

)
wi dt

+2
n∑

i=1

λi (Xt − Yt ) f ′
i (r

i
t ) dW

i
t . (93)

Notice that the last term on the right hand side is a martingale since λi and f ′
i are

bounded. This enables us to control the expectation E[ρt ] if we can bound the drift in
(93) by m − cρt for constants m, c ∈ (0,∞):

Lemma 5 Let m, c ∈ (0,∞) and suppose that

n∑

i=1

(
c fi (r

i )+(xi − yi ) · (bi (x) − bi (y))
f ′
i (r

i )

r i
+2λi (x − y)2 f ′′

i (r i )

)
wi ≤ m

(94)
holds for any x, y ∈ R

d with r i := |xi − yi | > 0 ∀ i ∈ {1, . . . n}. Then

E[ρt ] ≤ e−ct
E[ρ0] + m (1 − e−ct )/c for any t ≥ 0. (95)

Proof We first note that by continuity of bi and f ′
i , (94) implies that

n∑

i=1

(
c fi (r

i ) + ei · (bi (x) − bi (y)) f ′
i (r

i ) + 2λi (x − y)2 f ′′
i (r i )

)
wi ≤ m (96)

holds for any x, y ∈ R
d (even if xi − yi = 0) provided ei = (xi − yi )/r i if r i > 0

and ei is an arbitrary unit vector if r i = 0. Indeed, we obtain (96) by applying (94)
with xi replaced by xi + hei whenever xi − yi = 0 and taking the limit as h ↓ 0. In
particular, by (96), the drift term βt in (93) is bounded from above by

βt ≤ m −
n∑

i=1

c fi (r
i
t )wi = m − cρt .

Therefore by (93) and by the Itô product rule,

d(ectρ) = ect dρ + cectρ dt ≤ ectm dt + dM
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where M is a martingale, and thus

E[ectρt ] ≤ E[ρ0] + m
∫ t

0
ecs ds for any t ≥ 0.

��

Since f ′′
i ≤ 0, the process ρt is decreasing more rapidly (or growing more slowly)

if λi takes larger values. In particular, the decay properties of ρt would be optimized
when λi (z) = 1 for any z with zi �= 0. This optimal choice of λ1, . . . , λn would
correspond to a componentwise reflection coupling, but it violates Condition (85). It
is perhaps possible to construct a corresponding coupling process by an approximation
argument. For our purpose of bounding the Kantorovich distanceW f,w(μpt , νpt ) this
is not necessary. Indeed, it will be sufficient to consider approximate componentwise
reflection couplingswhere (84) and (85) are satisfied and λi (z) = 1whenever |zi | > δ.
The limit δ ↓ 0 will then be considered for the resulting estimates of the Kantorovich
distance but not for the coupling processes.

7 Application to interacting diffusions

We will now apply the couplings introduced in Sect. 6 to prove the contraction prop-
erties for systems of interacting diffusions stated in Theorem 7 and Corollary 8. We
consider the setup described in Sect. 3.1, i.e.,

bi (x) = bi0(x
i ) + γ i (x) for i = 1, . . . , n (97)

with bi0 : Rdi → R
di locally Lipschitz such that κi defined by (45) is continuous on

(0,∞) with

lim inf
r→∞ κi (r) > 0 and lim

r→0
rκi (r) = 0 for any 1 ≤ i ≤ n. (98)

The functions fi are defined via κi , and ci is the corresponding contraction rate given
by (48).

Proof of Theorem 7 We fix δ > 0 and Lipschitz continuous functions λi , μi : Rd →
[0, 1], 1 ≤ i ≤ n, such that (84) and (85) hold and λi (z) = 1 if |zi | ≥ δ. Let
(Xt ,Yt ) denote a corresponding approximate componentwise reflection coupling of
two solutions of (42) given by (86), and let ρt = d f,w(Xt ,Yt ). We will apply Lemma
5 which requires bounding the right hand side in (94). For this purpose recall that fi
and ci have been chosen in such a way that

2 f ′′
i (r) − 1

2
rκi (r) f

′
i (r) ≤ −ci fi (r) ∀ r > 0,
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cf. (68) and (69). Therefore, by (97) and by definition of κi ,

(xi − yi ) · (bi (x) − bi (y)) f ′
i (r

i )/r i + 2λi (x − y)2 f ′′
i (r i )

≤ −1

2
r iκi (r

i ) f ′
i (r

i ) + |γ i (x) − γ i (y)| f ′
i (r

i ) + 2λi (x − y)2 f ′′
i (r i )

≤ −λi (x − y)2ci fi (r
i ) + |γ i (x) − γ i (y)| − 1

2
(1 − λi (x − y)2) r iκi (r

i ) f ′
i (r

i )

≤ −ci fi (r
i ) + |γ i (x) − γ i (y)| + ciδ + 1

2
sup
r<δ

(
rκi (r)

−) (99)

for any x, y ∈ R
d with r i = |xi − yi | > 0. Here we have used that 0 ≤ f ′

i ≤ 1, and
that λi (x − y) �= 1 only if r i < δ. In this case, fi (r i ) ≤ r i ≤ δ. By (99) and by the
assumption (49) on γ i , we obtain

n∑

i=1

(
(xi − yi ) · (bi (x) − bi (y)) f ′

i (r
i )/r i + 2λi (x − y)2 f ′′

i (r i )
)

wi

≤ m(δ) +
n∑

i=1

(−ci + εi ) fi (r
i )wi ≤ m(δ) − c

n∑

i=1

fi (r
i )wi

for x, y as above, where

m(δ) =
n∑

i=1

(ciδ + 1

2
sup
r<δ

(rκi (r)
−)

is a finite constant by (98), and c = mini=1,...n(ci − εi ). Hence (94) is satisfied with
c and m(δ) and, therefore,

E[ρt ] ≤ e−ct
E[ρ0] + m(δ) (1 − e−ct )/c. (100)

By choosing the coupling process (Xt ,Yt )with initial distribution given by a coupling
η of probability measures μ and ν on R

d , we conclude that

W f,w(μpt , νpt ) ≤ E
[
d f,w(Xt ,Yt )

] = E[ρt ]
≤ e−ct

∫
d f,w(x, y) η(dx dy) + m(δ) (1 − e−ct )/c (101)

for any t ≥ 0.Moreover, by (47),m(δ) → 0 as δ ↓ 0. Hence the assertion (50) follows
from (101) by taking the limit as δ ↓ 0 and minimizing over all couplings η of μ and
ν. Finally, (51) follows from (50) since ϕ(Ri

0)r/2 ≤ fi (r) ≤ r implies

A−1 d�1(x, y) ≤ d f,w(x, y) =
∑

fi (|xi − yi |) wi ≤ d�1(x, y).

��
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Proof of Corollary 8 The �1-Lipschitz condition (52) for γ implies that (49) holds
with wi = 1 for any i , and

λε−1
i = inf

r>0
fi (r) = f ′

i (R
i
1) = ϕi (R

i
0)/2,

i.e., εi = 2λ/ϕi (Ri
0). The assertion now follows from Theorem 7. ��
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