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Abstract The Liouville Brownian motion (LBM), recently introduced by Garban,
Rhodes and Vargas and in a weaker form also by Berestycki, is a diffusion process
evolving in a planar random geometry induced by the Liouville measure M, , formally
written as M, (dz) = eV X@=VEIX@Y/2 g7 1) € (0,2), for a (massive) Gaussian
free field X. It is an M, -symmetric diffusion defined as the time change of the two-
dimensional Brownian motion by the positive continuous additive functional with
Revuz measure M, . In this paper we provide a detailed analysis of the heat kernel
p:(x, y) of the LBM. Specifically, we prove its joint continuity, a locally uniform sub-
Gaussian upper bound of the form p,(x, y) < Cit! log(t’l) exp(—Cz((|x —yI#A
1
1)/t)71) for t € (0, 5] for each B > %(y + 2)%, and an on-diagonal lower bound
of the form p;(x,x) > C3t_1(10g(t_1))_" for t € (0, t;(x)], with £,;(x) € (O, %]
heavily dependent on x, for each n > 18 for M, -almost every x. As applications,

we deduce that the pointwise spectral dimension equals 2 M, -a.e. and that the global
spectral dimension is also 2.
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1 Introduction

One of the main mathematical issues in the theory of two-dimensional Liouville quan-
tum gravity is to construct a random geometry on a two-dimensional manifold (say
R? equipped with the Euclidian metric dx?) which can be formally described by a
Riemannian metric tensor of the form

e’ X0 gx?, (1.1)

where X is a massive Gaussian free field on R? defined on a probability space (2, A, IP)
and y € (0, 2) is a parameter. The study of Liouville quantum gravity is mainly moti-
vated by the so-called KPZ-formula (for Knizhnik, Polyakov and Zamolodchikov),
which relates some geometric quantities in a number of models in statistical physics to
their formulation in a setup governed by this random geometry. In this context, by the
KPZ relation the parameter y can be expressed in terms of a certain physical constant
called the central charge of the underlying model. We refer to [12] and to the survey
article [15] for more details on this topic.

However, to give rigorous sense to the expression (1.1) is a highly non-trivial
problem. Namely, as the correlation function of the Gaussian free field X exhibits
short scale logarithmically divergent behaviour, the field X is not a function but only
a random distribution. In other words, the underlying geometry is too rough to make
sense in the classical Riemannian framework, so some regularisation is required. While
it is not clear how to execute a regularisation procedure on the level of the metric, the
method performs well enough to construct the associated volume form. More precisely,
using the theory of Gaussian multiplicative chaos established by Kahane in [20] (see
also [25]), by a certain cutoff procedure one can define the associated volume measure
M, for y € (0, 2), called the Liouville measure. It can be interpreted as being given
by

2
Y 2
M, (A) = / X EX@
A

but this expression for M,, is only very formal, for M, is known to be singular with
respect to the Lebesgue measure by a result [20, (141)] by Kahane (see also [25,
Theorems 4.1 and 4.2]). Recently, in [17] Garban, Rhodes and Vargas have constructed
the natural diffusion process B = (B;);>0 associated with (1.1), which they call the
Liouville Brownian motion (LBM). Similar results have been simultaneously obtained
in a weaker form also by Berestycki [4]. On a formal level, B is the solution of the
SDE
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“IX B EX B
dBt =e 2 ' 4 ! dBt,

where B = (l_?,) (>0 1s a standard Brownian motion on R2 independent of X. In view
of the Dambis—Dubins—Schwarz theorem this SDE representation suggests defining
the LBM B as a time change of another planar Brownian motion B = (B;);>0. This
has been rigorously carried out in [17], and then by general theory the LBM turns out
to be symmetric with respect to the Liouville measure M,,. In the companion paper
[18] Garban, Rhodes and Vargas also identified the Dirichlet form associated with B
and they showed that the transition semigroup is absolutely continuous with respect to
M, , meaning that the Liouville heat kernel p; (x, y) exists. Moreover, they observed
that the intrinsic metric di generated by that Dirichlet form is identically zero, which
indicates that

_dp(x.y)?

0, ,y € R,
2 %y

lim 71 Jy) =
[1301 og pi(x,y)

and therefore some non-Gaussian heat kernel behaviour is expected. This degeneracy
of the intrinsic metric is known to occur typically for diffusions on fractals, whose
heat kernels indeed satisfy the so-called sub-Gaussian estimates; see e.g. the survey
articles [3,23] and references therein.

In this paper we continue the analysis of the Liouville heat kernel, which has been
initiated simultaneously and independently in [24]. As our first main results we obtain
the continuity of the heat kernel and a rough upper bound on it.

Theorem 1.1 Let y € (0, 2). Then P-a.s. the following hold: A (unique) jointly con-
tinuous version p = p;(x,y) : (0,00) x R? x R* — [0, 00) of the Liouville heat
kernel exists and is (0, 0co)-valued, and in particular the Liouville Brownian motion
B is irreducible. Moreover; the associated transition semigroup (Py;);~q defined by

P f(x) := Ex[f(B)] = /RZ P, () My (dy),  x €R?,

is strong Feller, i.e. P, f is continuous for any bounded Borel measurable f : R*> — R.

Theorem 1.2 Let y € (0, 2). Then P-a.s., for any B > %(y + 2)? and any bounded
U C R? there exist random constants Ci=Ci(X,y,U,B) >0,i =1,2, such that

x —yIB AT\ g
P, y) = pi(y,x) < Cur”™! log(r—bexp(—cz(%)‘* ) (1.2)

forallt € (0, %] x € R%and y € U, where | - | denotes the Euclidean norm on R>.
1
Since f > 1(y +2)? > 2, the off-diagonal part exp(—Ca((]x — y|# A 1)/1)7T)

of the bound (1.2) indicates that the process diffuses slower than the two-dimensional
Brownian motion, which is why such a bound is called sub-Gaussian. We do not expect
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that the lower bound %(y +2)? for the exponent f is best possible. Unfortunately, The-
orem 1.2 alone does not even exclude the possibility that 8 could be taken arbitrarily
close to 2, which in the case of the two-dimensional torus has been in fact disproved in
a recent result [24, Theorem 5.1] by Maillard, Rhodes, Vargas and Zeitouni showing
that 8 satisfying (1.2) for small 7 must be at least 2 + y2 /4. In this sense the Liouville
heat kernel does behave anomalously, which is natural to expect from the degeneracy
of the intrinsic metric associated with the LBM.

From the conformal invariance of the planar Brownian motion B it is natural to
expect that the LBM B as a time change of B admits two-dimensional behaviour, as
was observed by physicists in [1] and in a weak form proved in [26] (see Remark 1.5
below). The on-diagonal part r~! log(r~!) in (1.2) shows a sharp upper bound in this
spirit except for a logarithmic correction, and we will also prove the following on-
diagonal lower bound valid for M, -a.e. x € R2, which matches (1.2) besides another
logarithmic correction.

Theorem 1.3 Let y € (0, 2). Then P-a.s., for My,-a.e. x € R2, for any n > 18 there
exist random constants C3 = C3(X, y, |x|,n) > 0 and t9(x) = 1p(X,y,n,x) €
(O, %] such that

pi(x,x) > C3t M (log(t™H) ™", Vi € (0, to(x)]. (1.3)

Combining the on-diagonal estimates in Theorems 1.2 and 1.3, we can immediately
identify the pointwise spectral dimension as 2.

Corollary 1.4 Lety € (0,2). Then P-a.s., for My -a.e. x € R?,
21
lim 2logpx. X)
110 —logt

Essentially from Theorems 1.2 and 1.3 we shall further deduce that the global
spectral dimension, that is the growth order of the Dirichlet eigenvalues of the generator
on bounded open sets, is also 2; see Sect. 6.2 for details.

Remark 1.5 In [26, Theorem 3.6] the following result on the spectral dimension has
been proved: P-a.s., for any & > 0 and for all x € R?,

o0

lim e Mt%p,(x, y)dt < oo, Vi>0, (1.4)
y=x Jo
and
o0
lim e Mp(x,y)dt =00, Vi>0. (1.5)
y—>x 0

In [26] the left hand sides were interpreted as the integrals in ¢ of the on-diagonal
heat kernel p;(x, x), which was needed due to the lack of the knowledge of the con-
tinuity of p;(x, y). By Theorem 1.1 this interpretation can be made rigorous now,
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and moreover, (1.4) follows immediately from Theorem 1.2. On the other hand, (1.5)
is actually an easy consequence of the Dirichlet form theory. Indeed, by [14, Exer-
cises 2.2.2 and 4.2.2] fooo e M pi(x, x) dt is equal to the reciprocal of the A-order
capacity of the singleton {x} with respect to the LBM, and this capacity is zero by [14,
Lemma 6.2.4 (i)] and the fact that the same holds for the planar Brownian motion.

The proofs of our main results above are mainly based on the moment estimates
for the Liouville measure M, by [20,27] and those for the exit times of the LBM B
from balls by [17], together with the general fact from time change theory that the
Green operator of the LBM has exactly the same integral kernel as that of the planar
Brownian motion (see (2.6) below). To turn those moment estimates into P-almost
sure statements, we need some Borel-Cantelli arguments that cannot provide us with
uniform control on various random constants over unbounded sets. For this reason we
can expect the estimate (1.2) to hold only locally uniformly, so that in Theorem 1.2 we
cannot drop the dependence of the constants Cy, C» on U or the cutoff of |[x — y| at 1
in the exponential. Also to remove the logarithmic corrections in (1.2) and (1.3) and
the restriction to My, -a.e. points in Theorem 1.3 and Corollary 1.4 one would need to
have good uniform control on the ratios of the M, -measures of concentric balls with
different radii. However, we cannot hope for such control in view of [5, Remark A.2],
where it is claimed that

. M, (B(x,2r))
limsup sup —— " =
10 xeB(0,1) My (B(x,r))' 1

forany n € (—oo, ﬁ) P-as., with B(x, R) :== {y € R? : |x — y| < R} forx € R?
and R > 0.

The LBM can also be constructed on other domains like the torus, the sphere
or planar domains D C R? equipped with a log-correlated Gaussian field like the
(massive or massless) Gaussian free field (cf. [17, Section 2.9]). In fact, Theorem 1.1
has been simultaneously and independently obtained in [24] for the LBM on the
torus, where thanks to the boundedness of the space one can utilise the eigenfunction
expansion of the heat kernel to prove its continuity and the strong Feller property of
the semigroup. On the other hand, in our case of R? the Liouville heat kernel p, (x, y)
does not admit such an eigenfunction expansion and the proof of its continuity and the
strong Feller property requires some additional arguments. Therefore, although the
proofs of our results should directly transfer to the other domains mentioned above,
we have decided to work on the plane R? in this paper for the sake of simplicity and
in order to stress that our methods also apply to the case of unbounded domains.

In [24] Maillard, Rhodes, Vargas and Zeitouni have also obtained upper and lower
estimates of the Liouville heat kernel on the torus. Their heat kernel upper bound in
[24, Theorem 4.2] involves an on-diagonal part of the form Ct~(*% for any § > 0

1
and an off-diagonal part of the form exp(—C(|x - y|ﬁ/t)ﬁ) for any 8 > Bo(y),

where By(y) is a constant larger than our lower bound %(y +2)2 on the exponent f3
and satisfies lim, 42 Bo(y) = oo. Thus Theorem 1.2 gives a better estimate, and we
prove it by self-contained, purely analytic arguments while the proof in [24] relies on
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(1.4), whose proof in [26] is technically involved. Concerning lower bounds, an on-
diagonal lower bound as in Theorem 1.3 is not treated in [24]. On the other hand, their
off-diagonal lower bound [24, Theorem 5.1], which implies the bound 8 > 2 + y2/4
for any such exponent § as in (1.2) (in the case of the torus) as mentioned above after
Theorem 1.2, is not covered by our results.

The rest of the paper is organised as follows. In Sect. 2 we recall the construction
of the LBM in [17] and introduce the precise setup. In Sect. 3 we prove preliminary
estimates on the volume decay of the Liouville measure and on the exit times from
balls needed in the proofs. In Sect. 4 we show that the resolvent operators of the LBM
killed upon exiting an open set have the strong Feller property, which is needed in
Sect. 5 to prove Theorems 1.1 and 1.2. In Sect. 5.1 we show the continuity of the
Dirichlet heat kernel associated with the killed LBM on a bounded open set by using
its eigenfunction expansion, and in Sect. 5.2 we then deduce the continuity of the heat
kernel and the strong Feller property on unbounded open sets, as well as Theorem 1.2,
using a recent result in [19]. Finally, in Sect. 6 we show the on-diagonal lower bound
in Theorem 1.3 and thereby identify the pointwise and global spectral dimensions as 2.

Throughout the paper, we write C for random positive constants depending on
the realisation of the field X, which may change on each appearance, whereas the
numbered random positive constants C; will be kept the same. Analogously, non-
random positive constants will be denoted by ¢ or ¢;, respectively. The symbols C and
D for set inclusion allow the case of the equality. We denote by |- | the Euclidean norm
on R? and by B(x, R) :=={y € R? . x —y| < R}, x € R2, R > 0, open Euclidean
balls in R? and for abbreviation we set B(R) := B(0, R). Lastly, for non-empty
UcCR?and f: U — R wewrite || f oo := I flloo,u :=sup,egy | f(X)].

2 Liouville Brownian motion
2.1 Massive Gaussian free field and Liouville measure
Consider a massive Gaussian free field X on the whole plane R?, i.e. a Gaussian Hilbert

space associated with the Sobolev space ), defined as the closure of C>°(R?) with
respect to the inner product

(fs 8)m = mz/ f(x)g(x)dx+/ V) - Vg(x)dx,
R2 R2

where m > 0 is a parameter called the mass. More precisely, ((X, f)n) feHL is a
family of Gaussian random variables on a probability space (2, A, IP) with mean 0
and covariance

EX, f)m(X, 8)m]l =27 (f, &)m-

In other words, the covariance function of X is given by the massive Green function
g(’") associated with the operator m? — A, which can be written as
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Continuity and estimates of the Liouville heat kernel 719

[} 1 m 2 o0 k(m) _
= [ e T = [T g o
0 1

2u u

with
00 2
k™ (z) = l/ e~ 515 g,
2 Jo

Following [17] we now introduce an n-regularised version of X. To that aim let
(an)n>0 C R be an unbounded strictly increasing sequence with ap = 1 and let
(Y3)n>1 be a family of independent continuous Gaussian fields on R? defined also on
(22, A, P) with mean 0 and covariance

dn (m) —
E[Y, (1) Yo (y)] = / KU =y) 4,

Ap—1 u

=g (x, ) (2.2)

here, such Y,, can be constructed by applying a version [22, Problem 2.2.9] of the
Kolmogorov—Centsov continuity theorem to a Gaussian field on R? with mean 0 and
covariance g,(,m), which in turn exists by the Kolmogorov extension theorem (see e.g.
[11, Theorems 12.1.2 and 12.1.3]) since (g,(,m)(x, ) is a non-negative definite

real symmetric matrix for any finite € C R?. Then for each n > 1, the n-regularised
field X, is defined as

X,yeE

n
Xu(0) =D Vi), xeR%
k=1

and the associated random Radon measure M, = M,, ,, on RR? is given by
v 2
My(dx) = exp(y Xa () = SE[X,(0)7]) dx 2.3)

with a parameter y > 0. By the classical theory of Gaussian multiplicative chaos
established in Kahane’s seminal work [20] (see also [25]) we have the following:
P-a.s. the family (M,),>1 converges vaguely on R? to a random Radon measure
M = M, called the Liouville measure, whose law is uniquely determined by y and
the covariance function g™ of X, and M has full support P-a.s. for y € [0, 2) and
is identically zero P-a.s. for y > 2. Throughout the rest of this paper, we assume
that y € (0, 2) is fixed and we will drop it from our notation, although the quantities
defined through the Liouville measure M = M,, will certainly depend on y.

2.2 Definition of Liouville Brownian motion

The Liouville Brownian motion has been constructed by Garban, Rhodes and Vargas
in [17] as the canonical diffusion process under the geometry induced by the measure
M. More precisely, they have constructed a positive continuous additive functional
F = (F;)t>0 of the planar Brownian motion B naturally associated with the measure
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720 S. Andres, N. Kajino

M and they have defined the LBM as B; = B F In this subsection we briefly recall
the construction.

Let Q' := C([0, 00), R?), let B = (By);>0 be the coordinate process on €’ and set
(]go = 0 (By; s < 00) and Q? i=0(Bs; s <t),t > 0.Let {Py}, g2 be the family
of probability measures on (£, ng) such that for each x € R?, B = (B:t)r>0 under
P, is a two-dimensional Brownian motion starting at x. We denote by {G;};c[0,00] the
minimum completed admissible filtration for B withrespectto { Py}, g2 asdefinede.g.
in [14, Section A.2]. Moreover, let {6;};>¢ be the family of shift mappings on €', i.e.
By = B; 00, s, t > 0. Finally, we write ¢;(x, y) := (271[)_l exp(—|x — y|2/(2t)),
t>0,x,y € R2, for the heat kernel associated with B.

Definition 2.1 (i) A [—o0, co]-valued stochastic process A = (A;);>0 on (', Gso)
is called a positive continuous additive functional (PCAF) of B in the strict sense, if
A; is G;-measurable for every ¢ > 0 and if there exists a set A € G, called a defining
set for A, such that

(a) forall x € R, P,[A] =1,

(b) forallt >0, 6;(A) C A,

(c) forallw € A, [0,00) 5t +— A;(w) is a [0, oo)-valued continuous function with
Ap(w) = 0 and

Arys(@) = Aj(w) + Ag o Oi(w), Vs, 1=0.

(ii) Two such functionals A and A? are called equivalent if P,[A] = A?] = 1 for
allt > 0, x € R?, or equivalently, there exists A € G, which is a defining set for
both A! and A? such that A[1 (w) = A,2(a)) forall > 0, w € A. Equivalent PCAFs in
the strict sense will always be identified hereafter.

(iii) For any such A, a Borel measure ;14 on R? satisfying

1 t
/ S () pa(dy) =lim —/ Ey [/ f(Bs)dAsi| dx
R2 t}0 1 JR2 0

for any non-negative Borel function f : R* — [0, oo] is called the Revuz measure of
A, which exists uniquely by general theory (see e.g. [6, Theorem A.3.5]).

For every n € Nlet now F/' : Q X Q' — [0, 0o) be defined as

t
F" ;=/ exp(an(Bs) - VTZE[X,,(BS)Z]) ds, >0, (2.4)
0

which is strictly increasing in . Note that for every n the functional F" = (F}');>0
considered as a process defined on (£, ng) is a PCAF of B in the strict sense with
defining set 2’ and Revuz measure M,,.

Theorem 2.2 ([17, Theorem 2.7]) P-a.s. the following hold:

(1) There exists a unique PCAF F in the strict sense whose Revuz measure is M.
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Continuity and estimates of the Liouville heat kernel 721

(i) Forall x € R%, P.-a.s., F is strictly increasing and satisfies lim;_, o, F; = o0.
(iii) Forall x € R, F" converges to F in Px-probability in the space C ([0, 00), R)
equipped with the topology of uniform convergence on compact sets.
The process (B, { Py} cr2), P-a.s. defined by B; := B-1,t > 0, is called the (massive)
1
Liouville Brownian motion (LBM).

Thanks to Theorem 2.2, we can apply the general theory of time changes of Markov
processes to have the following properties of the LBM: First, it is a recurrent diffusion
on R? by [14, Theorems A.2.12 and 6.2.3]. Furthermore by [14, Theorem 6.2.1 (i)]
(see also [17, Theorem 2.18]), the LBM is M-symmetric, i.e. its transition semigroup
(P;)s=0 given by

Pi(x, A) := E;[B; € A]

forr € (0, 0), x € R? and a Borel set A C R?, satisfies
/ P,f-ng:/ f-PgdM
R2 R2

for all Borel measurable functions f, g : R> — [0, oc]. Here the Borel measurability
of P;(-, A) can be deduced from [17, Corollary 2.20] (or from Proposition 2.4 below).

Remark 2.3 [17, Corollary 2.20] states that (P;);~¢ is a Feller semigroup, meaning
that Py preserves the space of bounded continuous functions. Note that this is different
from the notion of a Feller semigroup as for instance in [6, 14], i.e. a strongly continuous
Markovian semigroup on the space of continuous functions vanishing at infinity. It is
not known whether (P;);~¢ is a Feller semigroup in the latter sense.

It is natural to expect that the LBM can be constructed in such a way that it depends
measurably on the randomness of the field X. However, this measurability does not
seem obvious from the construction in [17], since there the existence of the PCAF F
has been deduced from some general theory on the Revuz correspondence for P-a.e.
fixed realisation of M. To overcome this issue, in the following proposition we show
for P-a.e. environment the pathwise convergence of F” towards F' in an appropriate
{ Py}, cr2-a.s. sense which also ensures the measurability of F; and 3, with respect to
the product o-field A ® ggo for all + > 0. The proof is given in Appendix A.

Proposition 2.4 There existsaset A € A® ng such that the following hold:
() For P-ae. w € Q, Pi[A®] = 1 for any x € R? where A® = {0 € Q' :
(w, @) € A}.
(ii) For every (w, ') € A the following limits exist in R for all 0 < s < t:

Fyi(@,0) = lim (F(©,o) = F}(©,o),

Fi(w, o) = Ef& Fui(w, o).

Moreover, with Fo(w, @) := 0, [0,00) 3 t = Fi(w, ®') € [0, 00) is continu-
ous, strictly increasing and satisfies lim,_ oo F;(w, ®") = 0.
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722 S. Andres, N. Kajino

(iii) Lett > 0 and set F; .=t on A°. Then Fy is A ® ggo—measurable.
(iv) For P-a.e. w € Q, the process (F;(w, -))>0 is a PCAF of B in the strict sense
with defining set A“.

The previous proposition implies easily that F indeed has the Revuz measure M.
More strongly, we have the following proposition valid for any starting point x € R?
P-a.s., which we prove in Appendix B in a slightly more general setting for later use.

Proposition 2.5 P-a.s., for all x € R* and all Borel measurable functions n :
[0, 00) — [0, 0o] and f : R* — [0, 00],

Ex[/ n(t)f(Bz)sz}=/ /n(t)f(y)th(x,y)M(dy)dt,
0 o Jr?

and in particular, for any t > 0,

1 t
/f(y)M(dy)z—/ Ex[/ f(Bs)dFs}dx.
R2 t JRr2 0

2.3 The Liouville Dirichlet form
By virtue of Propositions 2.4 and 2.5, we can apply the general theory of Dirichlet
forms to obtain an explicit description of the Dirichlet form associated with the LBM,
as it has been done in [17,18].
Denote by H'(R?) the standard Sobolev space, that is
H'(R?) = {f € L*(R*,dx) : Vf € L*(R?, dx)},

on which we define the form
1
g(f,g):E Vf-Vgdx. 2.5)
RZ

Recall that (£, H'(R?)) is the Dirichlet form of the planar Brownian motion B. By
H) (R?) we denote the extended Dirichlet space, that is the set of dx-equivalence
classes of Borel measurable functions f on R? such that lim,, . f, = f € Rdx-a.e.
for some (f,)n>1 C H'(R?) satisfying limg ;00 E(fk — fi. fv — fi) = 0. By [6,
Theorem 2.2.13] we have the following identification of H!(R?):

H!(R*) ={f € L}, (R*,dx) : Vf e L*(R? dx)}.

The capacity of a set A C R? is defined by

Cap(A) = inf inf [5(f, f)+/ fzdx}.
BcR?open feH'(R?) R2
ACB  flp=ldx-ae.
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Continuity and estimates of the Liouville heat kernel 723

A set A C R? is called polar if Cap(A) = 0. We call a function f quasi-continuous
if for any & > 0 there exists an open U C R? with Cap(U) < & such that f IR2\p 18
real-valued and continuous. By [14, Theorem 2.1.7] any f € H, el (R?) admits a quasi-
continuous dx-version f, which is unique up to polar sets by [14, Lemma 2.1.4].

Then, as the Liouville measure M is a Radon measure on R? and does not charge
polar sets by [17, Theorem 2.2] (or by Propositions 2.4, 2.5 and [6, Theorem 4.1.1 (1)]),
the Dirichlet form (£, F) of the LBM Biis a strongly local regular symmetric Dirichlet
form on L2 (IR{Z, M) which takes on the following explicit form by [14, Theorem 6.2.1]:
The domain is given by

F={ueLl*R* M): u= f M-ae.forsome f € H)(R%},

which can be identified with {f € He1 (R?) : f e L*(R?, M)} by [14, Lemma 6.2.1],
and for f, g € F the form £(f, g) is given by (2.5).

2.4 The Kkilled Liouville Brownian motion

Let U be a non-empty open subset of R and let U U {9y} be its one-point compact-
ification. We denote by Ty := inf{s > 0 : By ¢ U} the exit time of the Brownian
motion B from U and by 7y := inf{s > 0 : By ¢ U} that of the LBM 5, where
inf # := oo. Since by definition B; = BF[—I, t > 0, and F is a homeomorphism on
[0, o0), we have Ty = F7y,. Let now BY = (B,U),zo and BY = (B[U),zo denote the
Brownian motion and the LBM, respectively, killed upon exiting U. That is, they are
diffusions on U defined by

BU . B, ift < Ty, BU . B, ifr <1y,
! oy ift > Ty, dy ift>1y.

Then for ¢, A € (0, co), the semigroup operator P,U and the resolvent operator R)lf
associated with the killed LBM BY are expressed as, for each Borel function f : U —
[—o0, oo] and with the convention f(dy) := 0,

PUF() = E[fBY)] and RV f(x) = E, [ /0 Yo f(B,)dt], xR,

provided the integrals exist. If U is bounded, as a time change of BV the killed LBM
BY has the same integral kernel for its Green operator Gy as BY, namely for any
non-negative Borel function f : U — [0, 0o] and x € R2,

(144 Ty
GUf<x>:=Ex[/0 f(Bt>dr]=Ex[/o f(Bz)de]= /U g0 (ra ) () M(dy)
(2.6)
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724 S. Andres, N. Kajino

(cf. Proposition B.1). Here gy denotes the Euclidean Green kernel given by
* 2
gU(X7Y)=/ qu(x,)’)dt, vaeR ’ (27)
0

for the heat kernel ¢! (x, y) of BV: ¢V = gV (x,y) : (0,00) x U x U — [0, o0) is
the jointly continuous function such that PX[B,U edy]l = th (x,y)dy fort > 0and
x € U, and we set th(x, y) :=0fort > 0and (x, y) € (U x U)*. Finally, we recall
(see e.g. [14, Example 1.5.1]) that the Green function gg(x,, g) over a ball B(xp, R) is
of the form

+"IJX(),R(-X7 y)a x,y € B(-an R)’ (28)

1 1
,y)=—1lo
8B(o.R) (X, y) = —log P~

for some continuous function Wy g : B(xg, R) x B(xp, R) — R.

3 Preliminary estimates
3.1 Volume decay estimates

For our analysis of the Liouville heat kernel some good control on the volume of
small balls under the Liouville measure is needed. An upper estimate has already
been established in [17], and we provide a similar lower bound in the next lemma.
The argument is based on some bounds on the negative moments of the measure of
small balls. Such bounds have been proved in [27] in the case where the limiting
random measure is obtained through approximation of the covariance kernel of the
Gaussian free field by convolution. Since it is not clear to the authors whether the
cutoff procedure producing the approximating measures M,, is covered by the results
in [27], we give a comparison argument in Lemma C.1.

In the rest of this section, we write &(g) := (2 + V;)q + y;q2 forg > 0.

Lemma 3.1 Let oy := %(y +2)? and ay = %(2 — )2, Then P-a.s., for any ¢ > 0
and any R > 1 there exist C; = C; (X, y, R,¢) > 0,1 = 4,5, such that

Cyr®1® < M(B(x,r)) < Csr®>™%,  Vx € B(R), r € (0, 1]. 3.

Proof By the monotonicity of (3.1) in € and R it suffices to show (3.1) P-a.s. for each
¢ and R. The upper bound is proved in [17, Theorem 2.2]. We show the lower bound
in the same manner. Let ¢ := 2/y, so thata; = (2 4+ £(¢))/q. Lete > Oand R > 1
be fixed, and forn > 1 we setr,, := 27" R and

[l

Rn={(%R, %R): k1 €Z, |k|,|l| <2"} C [-R, RT*. (3.2)
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Continuity and estimates of the Liouville heat kernel 725

Then for each n > 1, by Cebysev’s inequality and Lemma C.1,
]P’|: min M(B(x, ry)) < 2—”<“1+5>]
XEER

= IF’[ max M(B(x,r,))" > 2"(“‘“)‘?] < > P[M(B(x.ry) 1 = 2"@t9]

XEER reE
SR.n

< g—nlai+e)q Z E[M(B(X, rﬂ))*q] < 27n(a1+£)q22n+362n§(q) = eI

XEERM

for some ¢ = ¢(y, R) > 0. Thus >_p° | P[minyez,, M(B(x, ry)) < 27"@1+9] <
00, so that by the Borel-Cantelli lemma P-a.s. for some C = C(X, y, R, ¢) > 0 we
have that M (B(x, ry)) > C27"@1+8) foralln > 1 and all x € E R . Since for every
y € B(R) and r € (0, 1] we have B(y,r) D B(x,rp) for some x € Eg, with n
satisfying %r <r < %r, the claim follows. O

3.2 Exit time estimates

In this subsection we provide some lower estimates on the exit times from balls which
are needed in the proof of Theorems 1.1 and 1.2. More precisely, we establish estimates
on the tail behaviour at zero of these exit times by showing certain [P-a.s. local uniform
bounds on their negative moments.

Let {8;};>0 denote the family of shift mappings for the LBM B, which is defined
by % (o) := GF;l(w,)(a/) fort > 0and o’ € Q' and satisfies F;rl, =F '+ F,_l ot
and hence B,y = B; o9, fors, t > 0 on A® by virtue of Fy43 = Fy+ Fs06;,5,t >0
(cf. [6, Subsection A.3.2]).

Proposition 3.2 Let g > 0. Then P-a.s., for any k > 2 + £(q) and any R > 1 there
exists a random constant C¢ = Ce(X, v, R, q, k) > 0 such that

Ex[t;g(’r)] <Ce¢r™®, VxeB(R), re(01], (3.3)

Proof Since (3.3) is weaker for larger « and smaller R, it suffices to show (3.3) P-a.s.
for each k and R. First we note that, letting » — oo in [17, Proposition 2.12] by using
[17, Lemma 2.8] (see also Theorem A.1 below) and Fatou’s lemma, we get

RE[tpl ] <cr @, VxeR? re1], (3.4)

for some ¢ = c(y,q) > 0. As in the proof of Lemma 3.1 above let r, := 27"R
and Eg , be defined as in (3.2) for any n > 1. In the sequel we write E,, for the
expectation operator associated with the law P, of a Brownian motion with initial
distribution u. Let x € R2 and let Hx.r, = Py [Brs(x.rn) € -] be the distribution of the
LBM upon exiting B(x, r,,). For any z € dB(x, ry,), since B(z, r,) C B(x, 2r,) and
hence 73(;,r,) < TB(x,2r,)» DY Using (3.4) we get
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726 S. Andres, N. Kajino

EE [tpd ,, | <EE[epd, ] <cra®@,

provided r is large enough so that r, < 1. By Fubini’s theorem, the (i, , (dz)-integral
of this inequality becomes

S(q)
EEy,,, [TB(x 2 )] = Cry

Letnow k > 2+§(q) and ng > 1 satisfying r,,, € [%, 1] be fixed. Then for all n > ng
we obtain by Cebysev’s inequality,

]P)|: max E/l.x n [TB(x 2rn)] = rn Ki| S r:l( Z IEEl‘vx,rn [T;(zc,zrn)]

XEER n+1

S - = __
2n(k—£(q)=2)

for some ¢ = c¢(y, R, g, k) > 0. Hence by our choice of «,

Z ]P’|: max E,, [T I;&’Zrn)] > rn"} < 00

Xe€
n>ng HR n+1

and we apply the Borel-Cantelli lemma to obtain that IP-a.s. for all n > n( and for all
X € ERntl,

Ep, [T;gc,zr,,)] <Cr,* (3.5)

for some random constant C = C(X, y, R, ¢q,«) > 0.

Now for any r € (0, 1] we choose n > ng such that r, < %r < 2rn For all
y € B(R), by construction there exists x € Eg ,+] such that |x — y| < 5r,. Fur-
thermore, from B(x,r,) C B(x,2r,) C B(y,r) we have tp(,,) =< TB(x,zr,,) =
TB(x,rn) T TB(x,2ry) © z?,B(”n) < TB(y,r) and therefore by the strong Markov property
[6, Theorem A.1.21] of B,

Ey[fz;&,r)] = EV[TB(x 2rn)] Ey[(tBGry) + TG 20) © Orgiey) ]

= Ey[(TB(x,Zrn) ° ﬁTB(x,rn)) ] [EBTB(A..,”) [TB(x,zr,,)]] = Eui’,rn [f;({fc,zm]’

where ) s = PylBry -]. Since ,ux re = PylBry,,, € 1by Bry. . =

Bry,.,,» the exact formula for the distribution of a Brownian motion upon exiting

balls (see e.g. [22, Exercise 4.2.24]) implies that /Lx’rn < ¢y, for some explicit

constant ¢ > 0 (this can be regarded as an application of the scale-invariant elliptic
. . —-q —q —-q

Harnack inequality). Thus E, [z ] < E. (8 2ry] < €Epri[T5(er,)] and

the claim follows from (3.5). O
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Continuity and estimates of the Liouville heat kernel 727

Proposition 3.3 P-a.s., for any B > a1 and any R > 1 there exist random constants
Ci=Ci(X,y,R,B)>0,i =17,8, such that

1
Pyt <t1 < C7 exp(—Cg(rﬂ/t)m), Vx € B(R), r € (0, 1], t > 0.

Proof LetB > ajand R > 1.By[19, Theorem 7.2] itis enough to show that there exist
¢ € (0,1) and 6 > O such that Py[tp(x ) < §rP] < eforallx € B(R) and r € (0, 1].
Indeed, let & € (0, 1) and set ¢ := 2/y, k = 3(ay + B)g and § := (¢/Cg)"/4, so
that k > ajg =2 +&(q) by B > a1 = (24 £(q))/q. Then for any x € B(R) and
r € (0, 1], by Cebysev’s inequality and Proposition 3.2 we have

Pty < 8rP1 = P (tpir) ™ = (8rF) 7] < Co87 rPI™% < e,

proving the claim. O

4 Strong Feller property of the resolvents

In this section we prove that the resolvent operator of the killed LBM BY has the
strong Feller property. We will mainly follow the arguments in [18, Theorem 2.4],
where the strong Feller property of the original LMB B is established. The essential
ingredients are a coupling lemma and the following lemma.

Lemma 4.1 ([16, Lemma 2.19]) P-a.s., for all R > 0,

limsup sup E([F/']=0.
140 n>1xeB(R)

Remark 4.2 The article [16] is an earlier version of [17], but Lemma 4.1 has been
removed from the latter, which is why we still cite [16] in this paper.

Proposition 4.3 P-a.s., for any non-empty open set U C R?* and for any » > 0
the resolvent operator Rij is strong Feller, i.e. it maps Borel measurable bounded
functions on U to continuous bounded functions on U.

Proof Throughout this proof, we fix any environment w € €2 such that all the conclu-
sions of Proposition 2.4 (i), (iv) and Lemma 4.1 hold. Note that by Proposition 2.4,
Lemma 4.1 and Fatou’s lemma we have

lim sup E,[F;]=0, VR > 1. “4.1)
140 xeB(R)

Let U be a non-empty open subset of R?, let A > 0 and let f : U — R be Borel
measurable and bounded. Recall that Ty = inf{s > 0 : By ¢ U} denotes the exit
time of the Brownian motion B from U. Since 1y = Fry,, Ri’ f can be written as
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728 S. Andres, N. Kajino

(14 Ty
Rﬁ’f(x>=Ex[ /0 e‘“f(&)dt}:Ex[ /0 e‘”ff(B»dFt}

TuNe Ty
—E, [/ e f(B,)dF,] + E, [/ e—”tf(B,)dF,]
0 Ty ne

=: Ne(x) + R}"* f(x) 4.2)
for any x € R? and any ¢ > 0. It is immediate that

[Ne(O)| < [ flloo Ex[Fel, 4.3)

whereas for Rg " f(x) the Markov property of B gives

Ty
R)lujygf(x) =Ey IL{Tz/>s}/ e_Ath(Bt)dFt]
P

Ty
= E | 1(1y=e1e Mo Ep, [/ €_AF’f(Bt)dFtﬂ
0

= E |17~y RV f(BS)]. (4.4)

To estimate Rij’ef(x) - Rij’sf(y) we use the coupling lemma [17, Lemma 2.9],
which allows to construct for any x, y € R2a couple (B*, BY) of Brownian motions
B* = (B}");>0 and B = (B;');>0 with (B}, Bj) = (x, y) such that B = B; for any
t € [Ty, oo) for a random time 7 satisfying

lim sup Py y[Tyy >€]=0 4.5)
810 x,yeR2, |x—y|<8

forany ¢ > 0, where P, , denotes the law of (B*, B”). Let E, , denote the expectation
under Py y and set T} := Ty (BY), T}, := Ty(B?), F := F,(B¥)and F; := F,(B”),
with Ty and F, fort > 0 regarded as functions on the path space ' = C ([0, 00), R2).
Then according to [18, Proof of Theorem 2.4], for any ¢ > 0,

lim sup Ex,y[|e_kFSX - e_’\ny[I =0, VR=>1, (4.6)
840 x yeB(R), |x—y|<§

whose proof we repeat here for the sake of completeness. Indeed, for any ¢’ € (0, ],
since Ff — Fj = F] — F%;v > 0 P, y-a.s. on {Ty, < &} by Proposition 2.4 (i), (ii),

]

—AFY —\F) —AFY —\F)
Evy|le7 = || < 2P [Ty 2 el 4 By [1ig, <o e ™ =

—W(Ff—F%

X M
Toy) e—AF —AFy

fo = e

= sz,y[Txy > 8] + Ex,y I:IL{TX),<8}€

< 2Py[Ty = el + B[ [AFf, = 3F}, | A1]
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Continuity and estimates of the Liouville heat kernel 729

< 2Py [Ty > €] + P y[Tay = 14 AEx y[Lir, <o) (F3 + F2)]
= 3Px,y[Txy >¢e'l+ )\(Ex[Fs/] + Ey[Fs’])

and taking lim,/ o lim SUPs |0 SUPy yeB(R), [x—y|<6 yields (4.6) by (4.5) and (4.1).
Now let x, y € R? and ¢ > 0. From (4.4) we obtain

IRV fx) — RV ()| =

—\F* - Y y
Evy[Liggone ™™ RY FBH =1 gy _e 7 RY (B ]|
Evy[rganie™ " (RY £(BD — RY £(BY)]|

Ex,yl:(IL{Tl);>g}e_ Fe_ II-{T5>6}€_)LFé )R)(‘]f(Bg)iH
4.7

=

+

Since on the event {Ty, < &} we have B} = B} and hence RY f(BY) = RY f(B),
the first term in (4.7) can be estimated from above by

Ex’y[iRgf(Bg) - Rgf(BM] = Ex,y[ﬂ{Txyzs}|R§]f(B;‘) - Riff(Bg)|]
= 2||R)l»]f||oopx,y[Txy > 8]
< 227 flloo Py [Tay > el 4.8)

where we used the trivial bounds 0 < 1{T§>8}e—”§ <land |RY f| . <271 fllco-
On the other hand, the second term in (4.7) is less than or equal to

-1 —AFX —AFX Y
A7 S oo Ex[ [Lirg=e) = Lirgoaple ™ + gy e = e

<27 flloo Ex,y[\(l - ]l{Tgsg}) —(1- ]l{T[y/-SS})’ + ]e—AFg _ oM ]

=3 oo (PeslTg < o1+ PyITy < el + Exy [ e = e ]]). 49)

Noting Px,y[T{} < ¢l = P [Ty < ¢] and Px,y[Tg < el = Py[Ty < ¢], from (4.2),
(4.3), (4.7), (4.8) and (4.9) we get
IRY f(x) — RY f(»)]
< N flloo(Ex[Fel + Ey[Fe]) + A7 flloo (Px[Ty < €] + Py[Ty < €])
47! ”f”oo(ZPx,y[Txy > 6] + Ex,y[|e—”3 e ]) (4.10)

Finally, let x € U and choose r, > 0 so that B(x,2r,) C U. Then for any
y € B(x,ry), Tg(y,r) < Tu by B(y,ry) C B(x,2ry) C U and hence

Py[Ty < €] < Py[Tgy.r) < €] < 2exp(—r2/(4e)) (4.11)

(seee.g. [22, Proposition 2.6.19] for the latter inequality). Now we can easily conclude
lim supy,_, R)E/f(x) — Rgf(y)| = 0 by taking the supremum in y € B(x, ry) of
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the second line of (4.10), using (4.5) and (4.6) to let y — x and then using (4.1) and
4.11)tolete | 0. Thus Ri’f is continuous on U. O

5 Continuity and upper bounds of the heat kernels

Throughout Sects. 5 and 6 we fix any environment w € €2 such that all the conclusions
of Proposition 2.4 (i), (iv), Lemma 3.1, Propositions 3.3, 4.3 and B.1 hold.

The purpose of this section is to prove Theorem 5.1 below on the continuity of the
heat kernels as well as Theorem 1.2. Recall that F equipped with the norm || f ||§: =
E(Sf, )+ ||f||iz(]R2 M) is a Hilbert space. For any open set U C R?, we define Fy
to be the closure in ’(‘7-" , I - l7) of the set of all functions in F whose M-essential
supports in R? are compact subsets of U. It is well known that (£, Fy/) is the Dirichlet
form associated with the killed Liouville Brownian motion BV and that it is regular
on L2(U, M) (see e.g. [14, Theorems 4.4.2 and 4.4.3]). The associated non-positive
self-adjoint operator on L2(U, M) is denoted by Ly, its domain by D(Ly/), and the
associated semigroup and resolvent operators by (T,U) +~0 and (ng )2>0, respectively.

Theorem 5.1 For any non-empty open set U C R? the following hold:

(i) There exists a (unique) jointly continuous function pY = p,U (x,y) :(0,00) x
U x U — [0, 00) such that for all (t,x) € (0,00) x U, P,[BY € dy] =
th (x, y) M(dy), which we refer to as the Dirichlet Liouville heat kernel on U.
(ii) The semigroup operator P,U is strong Feller, i.e. it maps Borel measurable
bounded functions on U to continuous bounded functions on U.
(iii) If U is connected, then p,U (x,y) € (0,00) forany (t,x,y) € (0,00) x U x U,
and in particular the Dirichlet form (€, Fy) of BY is irreducible.

See [14, Section 1.6, p. 55] for the definition of the irreducibility of a symmetric
Dirichlet form and [14, Theorem 4.7.1 (i) and Exercise 4.7.1] for its probabilistic
consequences.

From now on we will write p;(-,-) instead of p}Rz(-, -) and call it the (global)
Liowville heat kernel. Note that Theorem 1.1 follows directly from Theorem 5.1 by
choosing U = R2.

5.1 The heat kernel on bounded open sets

In this subsection we will prove Theorem 5.1 for a fixed non-empty bounded open set
U C R?. The case of unbounded open sets will be treated later in Sect. 5.2. We denote
by || fll, the L? (U, M)-norm for p > 1 and by (-, -) the L*(U, M)-inner product. Let
R > 1be such that U C B(R).

Proposition 5.2 (Faber—Krahn-type inequality) The spectrum of — Ly is discrete, and
for its smallest eigenvalue )1 (U) there exists Cg = Co(X, y, R) > 0 such that

Cy

M(U)log(2 + %)'

M) = 5.1
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Proof First, it is elementary to verify that sup . llgu (x, )|l < oo by (2.8) and a
calculation similar to (B.6) based on Lemma 3.1, so that gy € L*(U x U, M x M),
Gyf(x) = (gux,-),f) € Rforx € U for any f € L*(U, M), and Gy
defines a bounded linear operator on L2(U, M) which is Hilbert-Schmidt and hence
(see e.g. [10, Theorem 4.2.16]) compact. Then in view of [14, (1.5.3) and Theo-
rem 4.2.3 (ii)] the Dirichlet form (£, Fy) of BY is transient in the sense of [14,
(1.5.4)], or equivalently in the sense of [14, (1.5.6)] by [14, Theorem 1.5.1], which
implies that {# € Fy : Ew,u) = 0} = {0}, namely Ly is injective. Now by
[14, Theorem 4.2.6, Theorem 1.5.4 (i) and Theorem 1.5.2 (iii)], Gy f € D(Ly) and
—LyGyf = f forany f € L>(U, M), which together with the injectivity of Ly
yields (=Ly) '=Gy. In particular, (—LZU)’1 is compact, and therefore the spec-
trum of — Ly is discrete by [9, Corollary 4.2.3].

For the proof of (5.1), note that by the spectral decomposition of the compact
self-adjoint operator (—Ly)~! = Gy (see e.g. [9, Theorem 4.2.2]) and gy > 0,

M) =swp{{Guf. f): feL* U, M), f=0,|fl=1} (5.2)

Let f € L>(U, M) satisfy f > 0 and || f|l» = 1. Setting v := wan/2 = %(2 —p)?
and noting that gy < gp(r+1) by U C B(R) C B(R + 1), we have

(Guf, ) =(Gpwsn /> [)
< /U/UCXP(VgB(R+1)(xv ¥)) M(dy) M(dx)

+// F®FG) 1og(1+M) M(dy) M(dx),  (53)
vJu v v

where we used the elementary inequality ab < alog(l + a) + ¢”, valid for any
a,b € [0, 00], witha = M and b = vgpr+1)(x, y). For the first integral in
(5.3), we have

//GXP(vgmH)(x,y)) M(dy)M(dx)S//;v/nM(dy)M(dx)
vJu vJu lx =yl

with ¢ = c(y, R) > 0 by (2.8) and U C B(R), and then using Lemma 3.1 with
e =ar/4 € (0,ar —v/m), we further obtain

/ / L M@y M) < / / — ' M@y M@
uJu lx —yM/E U JBee2r) 1X = y|VT

o0
< Z/ / Q"RY™™ M(dy) M(dx) < CM(U)
=0/U B2 R\B(x. 27" R)
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for some C = C(X, y, R) > 0. On the other hand, setting My := M(-NU)/MU),
we can write the second term in (5.3) as

M(U)z// ffH) 10g(1+ f(x)f(y))MU(dy)MU(dx).
vJu v v

For the homeomorphisms H, I : [0,00) — [0, co) defined by H(s) := s2 and
I(s) := slog(1 +s), we easily see that the function H o I ! is convex, and we apply
Jensen’s inequality to get

H 01_1(/ / S fB) log(l n f(x)f(y)) Wy (dy) MU(dx))
UJU %

Vv

2 _ _
< / / (L9200 1 ayy ity i) =
UJuU v

where we used || || = 1. Hence

[ [ L9000 (1 LOIO) g1y ity
vJu v v

SIOH’]<

vVIM(U)?’

| | 1
sz(U)z) = VM) log(l + vM(U))'

Finally, we combine the above considerations to conclude that

< CMU) 1og(2 + L)

1 1
(Gu f. f) = CMWU) + ~M(U) log(1+ 1)M(U)) < YT

for some constants C large enough, which together with (5.2) yields the claim. O

In the next proposition we derive from the above Faber—Krahn inequality a Nash-
type inequality and thereby an on-diagonal estimate on (7;V);~¢ of the same form as
stated for p; = p;(x, y) in Theorem 1.2. In particular, (TtU),>0 turns out to be ultra-
contractive, i.e. TV (L>(U, M)) C LU, M) and TV : L>(U, M) — L®(U, M) is
abounded linear operator for all # > 0. Recall that for each t > 0, T,V is a self-adjoint
Markovian operator on L*(U, M) and hence canonically extends to a bounded lin-
ear operator on LY(U, M) with operator norm at most 1 (see e.g. [14, (1.5.2)]). For
a bounded linear operator A : LY (U, M) = LU, M), its operator norm will be
denoted by [|Allz1¢)— L)

Proposition 5.3 There exists a constant C1o = C19(X, y, R) > 0 such that

170,y Loy < Crot™ M log™h, Vi€ (0, 3] (5.4)

; U B(R) ..
Proof Since |, ||L1(U)—>L°°(U) < |z ||L1(B(R))—>L°°(B(R)) by U C B(R), itis
enough to show (5.4) for (T,B(R)) .~ - Recall that for any non-empty open subset V' of
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B(R), the smallest eigenvalue A1 (V) of —Ly admits the variational expression

EUS)
1715

(V) = inf : fe]-‘v,f;éo}

(see e.g. [9, Theorems 4.5.1 and 4.5.3]), so that we can rewrite the Faber—Krahn
inequality of Proposition 5.2 for V as

1F15 < Co ' W MVDES, ). Vf € Fv, (5.5)
where ¥ (s) := s log(2 + s™1 (¥ (0) := 0). Next we will verify that

I£13 < Co ' v (M@supplfD)ECS, ), Yf € Fpwrys (5.6)

where supp[ /] := supppgg)[f] denotes the M-essential support of f in B(R). First,
for f € Fp(r) withsupp[ f ] compact, (5.6) follows by choosing a decreasing sequence
(Vi)n=1 of open subsets of B(R) with (),.; V., = supplf], applying (5.5) with
V =V, and letting n — oo. Next, for geﬁeral f € Fpwy, as | f| € Fpr) and
ENfLIfD < E(f, ) we may assume f > 0. Let (f,).>1 C Fp(r) be a sequence
with suppl[ f,,] compact and lim,_,« || f» — fllz = 0, where by f > 0 and [14,
Theorem 1.4.2 (v)] we may assume that f, > 0 for all n. Then since f A f, € Fp(r),
supp[f A fn]is a compact subset of supp[ f] and

n—oo

If = F A fallr =1 = )T llr <1 f = fullr — 0,
we conclude (5.6) for all f € Fp(g) by letting n — oo in (5.6) for f A f.

Now, since ¥ : [0, 00) — [0, 00) is strictly increasing, [2, Proposition 10.3] and
(5.6) together imply that

I£113 < 8Cy ' (4/1FI3)ECS, £)  forall f € Fpry with0 < ||l < 1.

In particular, for such f we have 6(|| f13) < E(f. f) with 6(s) := 55Cos?/log(2 +
s/4), and then by [7, Proposition II.1] we obtain

” TtB(R) “LI(B(R))—>L°0(B(R)) = m(1), vt >0, (CH))

for the unique differentiable function m : (0, co) — (0, o) satisfying

m'(t) = —0(m(r)), limm(r) = oo. (5.8)
t0

It is immediate that m = ®~!, where @ : (0, 00) — (0, 00) is a decreasing diffeo-
morphism defined by ®(s) := f YOO 0 (u)~" du, and furthermore for all s € (0, 00),

% 32¢5! 80Cy !
D(s) =/ u29 log(2 + u/4) du < sg log(2 + 5/4) =: W(s),
N
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734 S. Andres, N. Kajino

which means that W~1(z) > ®~1(¢) for all r € (0, c0) since ¥ : (0, c0) — (0, 00)
is also a decreasing diffeomorphism. Finally, for all ¢ € (O, %] we easily see that
\IJ(z‘_l log(t_l)) < Ct and hence that

m(Cr) = d~1(Cr) < w1 (Cr) <t 'log(t™ ),

and the claim then follows from (5.7). O

Now we prove Theorem 5.1 for bounded open sets U. Given the ultracontractivity
of (TZU)1>0 in Proposition 5.3 and the strong Feller property in Proposition 4.3, a
general result in [8] provides the existence of a continuous kernel pY = p,U (x,y) for
(TtU) +~0, but we still have to identify this kernel as the transition density of BY.

Proof of Theorem 5.1 for bounded U We divide the proof of (i) into several steps.

Step 1: In the first step we show the existence of a jointly continuous integral kernel
pY = pY(x,y) for (TV),~o. Being discrete by Proposition 5.2, the spectrum of
—Ly takes the form of an unbounded non-decreasing sequence (A,),>1 C [0, 00) of
eigenvalues repeated according to multiplicity, and there exists a complete orthonormal
system (¢,),>1 C D(Ly) of L*(U, M) such that —Ly @, = A, forany n > 1 (see
e.g. [9, Corollary 4.2.3]). Then ¢, = ehn TIUgon € L*°(U, M) by Proposition 5.3, so
that we may choose a bounded Borel measurable version of ¢, for each n. Further,
since Rij ¢, 1s continuous on U for any A > 0 by Proposition 4.3 and

RVg, =GV, =042 "0,  M-ae.onU (5.9)

by [14, Theorem 4.2.3 (ii)], there exists a continuous version of ¢,,, which is unique,
bounded, and still denoted by ¢,,. Then by [8, Theorem 2.1.4], the series

Pl y) =D e M 0u(x)pn(y) (5.10)
n=1

absolutely converges uniformly on [g, 00) x U x U for any ¢ > 0, from which the
joint continuity of pY = pY (x, y) follows, and (5.10) defines an integral kernel for
(TIU),>0, namely for eacht > O and f € LU, M),

TV f(x) =/Up,U(x,y)f(y)M(dy) for M-a.e. x € U. (5.11)

Note that the boundedness of ¢, together with the uniform convergence of (5.10)
implies the boundedness of plU (x,y) on [g,00) x U x U for each ¢ > 0, and also
that pV (x, y) > 0 by a monotone class argument based on (5.11) and the fact that
TV f >0 M-ae. forany f € L>(U, M) with f > 0.

Step 2: In this step we show that Rij is absolutely continuous with respect to the
Liouville measure M forany A > 0.Let A be aBorel subset of U with M (A) = 0. Then
R)[L] 14 is continuous on U by Proposition 4.3, and we also have R/{]]l A= Gf\]]l A=0
M-a.e.on U by 14 = 0 M-a.e. Since M has full support, it follows that R)lhj]lA isa
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continuous function on U which is equal to 0 on a dense subset of U and hence it is
identically zero on U, proving the absolute continuity of R)Lf.
Step 3: Next we will show that for any x € U,

| e (/ P’ (x,y)f(y)M(dy)) ar= [T eHE a6
0 U 0

forall A > 0 and all bounded Borel functions f : U — [0, 00). Recall that PtU fx) =
E, [ f (B,U )] denotes the transition semigroup of BY. Then for any ¢ > 0, since
PUf =TV f M-ae., by the absolute continuity of R with respect to M we have

/ e MPYf()dt = e MR (PY f)(x) = e RUT f)(x)
= R] (Z e (gn, f><on)<x)
n=1

—Z T T (e Do),

n=1

where we also used (5.9) and the uniform convergence of the series in (5.10). Setting
al = e e L — fsoo —O+4)" gt and applying dominated convergence again
on the basis of the uniform convergence of (5.10) on [¢, 00) x U x U, we further get

/ eHPY F0dt = aton) (o, f)

n=1

N o
= Jm > / e O g () . £ i
&

N—>oo —

/ (Ze " 0u (%) (n- f>)e‘“ di

=/ (/U pfj(x,y)f(y)M(dy))e_“dt,

and we obtain (5.12) by using monotone convergence to lete | O.

Step 4: Finally, we now prove that P, [B edyl = p; Ux, y) M(dy) forall (¢, x) €
(0,00) x U.Letx € U. Applying to (5.12) the uniqueness of Laplace transforms for
positive measures on [0, 0o) (see e.g. [13, Section XIII.1, Theorem la]), we get for
all bounded Borel functions f : U — [0, 00),

/Up,U(x,y)f(y)M(dy)=Ex[f(BtU)] for dt-a.e. t € (0, 00). (5.13)
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If in addition f is continuous, then we easily see from dominated convergence using
the continuity and boundedness of pU established in Step 1 that (5.13) holds for all
t > 0. Finally a monotone class argument gives the claim, proving (i).

For (ii), the claim is immediate from dominated convergence in view of the conti-
nuity and boundedness of pU for each t > 0 and the fact that M(U) < oo. Finally,
(iii) follows by [21, Proposition A.3 (2)]. O

5.2 The heat kernel on unbounded open sets

The proof of Theorem 5.1 for unbounded U is based on the following lemma, which
essentially contains Theorem 1.2 already.

Lemma 5.4 For any § > o) and any R > 1 there exist C; = Ci(X,y, R, ) > 0,
i = 11, 12, such that for any non-empty bounded open subset U of R?,

_ _ lx — yIP AT\ 7E
Pl y) = pf'(v.x) = Cuir~log(t I)CXP(—C12(+)ﬂ 1

forallt € (0, %], x € R?andy € B(R), where we extend pY = plU (x, y) to afunction
on (0, 00) x R? x R? by setting p,U(x, y):=0fort > 0and (x,y) € (U x U)".
(R) —1 —1 1

< Ciot~'log(t~") forany ¢ € (0, 5] for
Cio = C19(X, y, R) > 0 by Proposition 5.3 and the continuity of ptB(R), given the
exit time estimates in Proposition 3.3, the result follows from [19, Theorem 1.1]. O

Proof Since for every R > 1 we have p,B

Remark 5.5 The constants appearing in the upper bound in Lemma 5.4 do not depend
on the set U. Therefore, for any R > 1 there exists C13 = C13(X, y, R) > 0, also

not depending on U, such that plU/z(x, y) < Ciz forall x € R? and y € B(R). In

particular, by the semigroup property we have for all ¢ € (%, oo) and such x and y,

p,"(x,y>=/ Pl D pla y) M(dz) < cla/ Pl (. 2) M(dz) < Ca.
R2 R2

Lemma 5.6 For any increasing sequence (Uy),>1 of open subsets of R? satisfying
Unzl U” = RZ’

lim Py[ry, <t]=0
n—oo

uniformly in (t, x) over each compact subset of [0, c0) x R2.

Proof 1t suffices to prove the uniform convergence in (¢, x) over [0, T] x B(R) for
any T, R € (0, co). By monotonicity we may assume ¢ = 7. Then for any x € B(R)
and n > 1 with B(2R) C U,, noting that tp2r) < Ty, = TB2R) + U, © ﬁTB(ZR)’ by
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the strong Markov property [6, Theorem A.1.21] of B we obtain

Pilty, < T1= P[tBeRr) + U, © Vrgor, < T] < Pe[tu, 0 Prpor, < T
= E[Ps,, [, <T1] = Py, [, <T1, (5.14)

TB(2R)

where “5,21{ = Py [Brmm € -] = Px[Bryy € -las in the proof of Proposition 3.2
above. Setting (o 2r 1= Hg,z  and arguing precisely as there, from an explicit formula
for the exit distribution of a Brownian motion (see e.g. [22, Exercise 4.2.24]) we get
“3,21% < cno,2r for some explicit ¢ > 0. Thus by (5.14), forany n > 1 with B(2R) C
U, we obtain sup, ¢ g(g) Pxltu, < T1 =< cPy,zlty, < T1, which converges to 0 as
n — oo by dominated convergence since the trajectory of {53;};¢[0,7] is bounded and
hence contained in U,, for n large enough, completing the proof. O

Proof of Theorem 5.1 for unbounded U (i) Let R > 1 and let f : R*> — [0, o) be
bounded and Borel measurable with f|pr)c = 0.Letk,! € Nsatisfyl >k > R+1,
let t > 0 and x € B(k). Noting that Tpx) < Tpq) = TBWk) + TBQ) © Vg by
B(k) C B(l) and that Ex[]l{rg(k)=r}f(31)] = 0 by Px[Bry,, € B(k)] = 0 and
flB@ye = 0, we see from the strong Markov property [19, Proposition 3.4] of B that

1 k
PPO 1) = PPO f(x) + Ex[Lirgg <t <epon) f(BD)]
k 1
= PP® £ () + Ex[Ligo<n PPO o By (5.15)

Recall that by Theorem 5.1 (i) for U = B(I) proved in Sect. 5.1,
B(l B(l
PED o FBryy) = /B w0 DLy Beyy» ). () M(@y).

We have

sup sup  pP(,) <Ci3 <0
nz111 co)xR2x B(R)

by Remark 5.5 and

sup sup pPM(, ) < Cia < o0
n=1(0,5)x B(R+1)* x B(R)

for some C14 = C14(X, y, R) > 0 by dist(B(R + 1), B(R)) > 1 and Lemma 5.4.
We see therefore from (5.15) that

0< PPYfrx) — PP® f(x) < (Ci3 v Cra) Peltag < 1] /B oy 0 M@),

and since f > 0 with f|ggyc = 0 is arbitrary we obtain

0<p/ V@ - p!Pa.y) < (Ci3v CWPltsey <11 (5.16)
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for all t € (0,00), x € B(k) and y € B(R) by virtue of the continuity of
ptB ® (x,-) and ptB &) (x, -) proved in the last subsection. Thus it follows from (5.16)
and Lemma 5.6 that the limit p;(x, y) := lim,— ptB(")(x, y) € [0, 0o) exists and
is continuous on (0, 00) x R2 x B(R). Since R > 1 is arbitrary and the relation
P.(B; € dy] = p;(x,y) M(dy) can be obtained from that for B2 and p8™ by
monotone convergence, statement (i) follows for the global heat kernel p;(x, y), i.e.
for the case U = R?. For a general unbounded open set U C R?, statement (i) can be
obtained by similar arguments and the fact that for any k,/ € N with k < [,

UNB(l UNB(k B(l B(k
0<p’ ™V, y) = p! PP <pPP @ —pP Py, 150, x, yeR2

In order to see the latter inequality, notice that for (x, y) € ((U NBk)) x (UN B(k)))c
this inequality holds trivially, and for (x, y) € (U N B(k)) x (U N B(k)),

B(l B(k UNB(l UNB(k
P00,y = pP P y) = pl P00,y + p! PP, )

P.|B;, € B(y,r), Ty vVt <t<rt
— lim [ B (y,7r), v VvV TBK) 3(1)]20

0 M(B(y,r))

by the continuity of the Dirichlet heat kernels on bounded open sets.
(i) Let x € U and ¢, ¢ > 0. Since

/]Rz pi(x, y) M(dy) = Py[B, e R* ] =1
by Py [lims_, » Fs = 0o] = 1, we can choose n € N such that x € B(n) and
/ pe(x, y) M(dy) > 1 —e.
B(n)
Then by the continuity of p; there exists » > 0 such that B(x,r) C U and
/ pi(z, Y)Y M(dy) >1—¢, VzeB(x,r),
B(n)
and hence
/ pY (z,y) M(dy) 5/ pi(z, y) M(dy) <e, Vze B(x,r). (5.17)
U\B(n) B(n)©
Now, for any bounded Borel function f : U — R and z € B(x, r), writing

PV f(2) =/U\B( )p,U(z,y)f(y)M(dy)Jr/U Yz, y) f () M(dy)

NB(n)
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and applying (5.17), we obtain
[PV f(x)— PV F(2)
< 2| flloot + ‘/ U Geuy) £ () M(dy) —/
UNB(n)

Yz, y) f () M(dy)
UNB(n)

= @l flloc + De

provided |x — z| is sufficiently small, which proves the continuity of PV f at x. In the
last step we used the fact that, since 0 < p[U < pron B(x,r) x (UN B(n)) where p;
is bounded and pY is continuous, the function z fUnB(n) pU(z, y) f(y) M(dy) is
continuous on B(x, r) by dominated convergence.

(iii) Since U is connected, for any x, y € U there exists a connected bounded open
set V. C U with x, y € V and then by the corresponding result for bounded open sets
we have th(x, y) > p,V(x, y) > 0 for any ¢ > 0. m|

Proof of Theorem 1.2 This is immediate from Lemma 5.4 since, as shown in the above
proof, p;(x,y) =lim, ptB(”)(x, y) forany ¢ > 0 and x, y € R%. O

6 On-diagonal lower bounds and spectral dimensions

In this section we prove the on-diagonal lower bound in Theorem 1.3. Indeed, we
will show a more general result (Theorem 6.1 below) that also covers the Dirichlet
Liouville heat kernels and thereby, in combination with Theorem 1.2, enables us to
identify the pointwise and global spectral dimensions as 2. Recall that we have fixed
an environment @ € €2 as declared at the beginning of Sect. 5.

Theorem 6.1 For M-a.e.x € R? foranyn > 18 and any opensetU C R? containing
x there exist C15 = Ci5(X, y, |x],n) > 0and to(x,U) = to(X, y,n,x,U) € (0, %]
such that

pY(x,x) = Cist™ (log(t™H) ™", Vi € (0, 10(x, U)]. (6.1)

In particular, Theorem 6.1 immediately implies Theorem 1.3 by choosing U = R2.
Furthermore we can deduce the following result on pointwise spectral dimension.

Corollary 6.2 For M-a.e. x € R?, for any open set U C R? containing x,

2log pY (x,

lim 21082 (00, 62)
110 —logt

Proof This is immediate from the lower bound in Theorem 6.1 and the on-diagonal

part of the upper bound in Theorem 1.2 together with th (x,x) < pe(x, x). O

The proof of Theorem 6.1 is given in Sect. 6.1, and then the application to the
identification of the global spectral dimension is presented in Sect. 6.2.
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6.1 Proof of Theorem 6.1

In order to show Theorem 6.1 we need further moment and tail estimates on the exit
times from balls. First, we recall the representation of the expected exit time in terms
of the Green kernel.

Lemma 6.3 For any non-empty open set U C R? and any x € U,

E,[ty] =/Ugu(x,y) M(dy).

Proof This follows immediately from Proposition B.1. O

Lemma 6.4 Forany R > 1 there existc; = ci(y) > 0and C16 = C16(X, ¥, R) > 0
such that

EiltBee.n] < M(B(x,)(Ci6 + c1log(r™),  ¥x € B(R), r € (0, 1].

Proof Since gpx,r) < gB(R+2) by B(x,r) C B(R + 2), we see from Lemma 6.3,
(2.8) and B(x,r) C B(R + 1) that

Ey[tB(x,n] =/( )gB(x,r>(x,y)M(dy) 5/ gB(R+2)(x, y) M(dy)
B(x,r

B(x,r)
1 1
5/ (—log +c) M(dy)
B(x,r) \TT lx — vl

with ¢ = ¢(R) > 0. Setting D, (x) := B(x, 211y \ B(x,27"r) forn > 1 and noting
that M ({x}) = 0 by Lemma 3.1, we further obtain

oo

1 -1
Ex[tx,n] < cM(B(x,r)) + = Z(n + log(r ))M(Dn(X)). (6.3)

n=1

On the other hand, Lemma 3.1 implies that for € := oy /2,

M(B(x,2'7"r))

< an—n(aQ—a)r(xz—(xl—Zs < C2—not2/4
M(B(x,r)) — B

(n + log(r_l))
provided n > clog(r—!) with ¢ = ¢(y) > 0, which together with (6.3) yields
Exltpu.n] < cM(B(x, 1) +C Y 27" M(B(x. 1))

n>clog(r—1)

-1
+ CM(U1§n<clog(r‘1) Dn(X)) log(r )

< M(B(x,1))(C + clog(r™)),

completing the proof. O
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Lemma 6.5 There exists a constant co > O such that
Ex[taan] = caM(B(x,7/2)), Vx e R% r > 0.
Proof By using Lemma 6.3 and the translation and scale invariance of the Green kernel
8B(xe,r) (X, ¥) = gB0,r (0, y —x) = gB0,1r) (0, A(y — X))

forx,y € R2,r>0andA >0 (see e.g. [14, Example 1.5.1]), we obtain

Exltpen] = / B (5, ) M(dY)
B(x,r)

> / ¢80 (0.7 (v — ) M(dy) = xM(B(x. r/2))
B(x,r/2)

with ¢ :=infyep(0,1/2) €8(0,1)(0, ) > 0, which is the claim. O
Proposition 6.6 For any R > 1 there exists C17 = C17(X, ¥, R) > 0 such that

M(B(x,r/2))

P <t]l<1-C
[Ther <1< "M (B(x, 3r)) log(r—1)

forallx € B(R), r € (0, %] and (0 <t < %Ex[tg(x,r)].

Proof For any t > 0, by the obvious relation T, ) <t + ]l{rs(x_,~>>t}(TB(x,r) —1) =
t + iz, >0} (TB(x.r) © ¥1) and the Markov property [6, Theorem A.1.21] of B,

Ex[TB(x,r)] <t+ Ex [Il{'L’B(xyr)>l}(TB(X,r) o 19t)] =1+ Ex [Il{rg(xv,)>t}EB, [TB(x,r)]]

<it+ P [fB(x,r) > t] sup Ey[TB(x,r)]a
yeB(x,r)

which implies that for 0 <t < L E [tp(.n],

1
t — Ex[tp,n] <1— 5 Ex[tB(x,m]

SupyEB(x,r) Ey[TB(x,r)] B SupyeB(x,r) Ey[TB(x,r)] .
(6.4)

Px[TB(x,r) = t] < 14

Then since B(x,r) C B(y,2r) C B(x,3r) and hence tp(x,;) < TB(y,2r) fOr any
y € B(x, r), from Lemma 6.4 we obtain

sup Eyltpen] < sup Eyltppon] <C sup M(B(y,2r))log(r™")
yeB(x,r) yeB(x,r) yeB(x,r)

< CM(B(x,3r) log(r™ "),

and the claim follows by applying this estimate and Lemma 6.5 to (6.4). O
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We are now in the position to show an on-diagonal lower bound on the Dirichlet
Liouville heat kernels.

Proposition 6.7 For any R > 1 there exists C13 = C13(X, ¥, R) > 0 such that

PP (x,

s Cis ( M(B(x,r/2) )2
~ M(B(x,r)) \M(B(x, 3r))log(r—1)

forallx € B(R), r € (0, %] and0 <t < coM(B(x,r/2)) (with c; as in Lemma 6.5).

Proof Let 0 < t < $caM(B(x,r/2)). Since }Ex[tp(x.r)] = 3c2M(B(x,r/2)) > t
by Lemma 6.5, we see from Proposition 6.6, the Cauchy—Schwarz inequality and the
symmetry and semigroup property of the Dirichlet heat kernel pB(") that

(C M(B(x,r/2))

2
<P L=
v M(B(x,3r))log(r1)) < PiltB.r) > 1]

2
= P[B, € B(x.r), T > 1> = ( / PP (x, y) M(dy))
B

(x,r)

< M(B(x,r)) . )(pf”’”(x,y))zM(dw = M(B(x, ))pE2*" (x, x),

which gives the result. O

Corollary 6.8 Letcz > 0, x € R?, 5 > 18 and set k := %(n —2).Ifrg € (O, %] and
M(B(x,2r)) <c3 (log(r_l))KM(B(x, r)), ¥Yr e (0,rpl, (6.5)

then for any open set U C R2 containing x there exist C15 = Ci15(X, y, |x|,n,¢3) >0
and to(x,U) =to(X, y,x,U, 1r9) € (O, %] such that (6.1) holds.

Proof Let U be an open subset of R2withx € U andletr; = ri(x, U, ro) € (0, ro/2]
be such that B(x,r;) C U. Also, noting that lim, o M (B(x,r)) = M({x}) = 0 by
Lemma 3.1, for0 <t < c;M(B(x,r1/2)) letn = n(t) > 1 be such that

czM(B(x, 2_”_1r1)) <t < czM(B(x, 2_"r1))
and set r = r(¢z) := 2'""r;. Then by Proposition 6.7,

tp (e, x) = tp " (x, x) = tp ) (x, x)

M(B(x,r/4)) ( M(B(x,r/2))
- M(B(x,r)) (M(B(x,3r))

2
) (log(r™)) 2. (6.6)

On the other hand, we see from (6.5) that

M(B(x,r/4) _ M(B(x,r/4) M(B(x,r/2)) _
M(B(x,r)) — M(B(x,r/2)) M(B(x,r)) ~

c(logr=")) ™

@ Springer



Continuity and estimates of the Liouville heat kernel 743

and

M(B(x,r/2)) - M(B(x,r/2)) - c(lo (r—l))—3/(
M(B(x.3r)) — M(B(x.4r)) — \°8

with ¢ = ¢(c3, n) > 0. Now (6.1) follows by combining these estimates with (6.6) and
noting that clog(t_l) < log(r_l) = log(r(t)_l) <c log(t_l) with c = ¢(y) > 0
and ¢’ = ¢/(y) > 0 provided t < #, for some #;, = t)(X,y,|x]) € (0, 3] by
Lemma 3.1. O

Now Theorem 6.1 follows by Lemma 3.1, Corollary 6.8 and the following result.
Proposition 6.9 Let v be a Borel measure on R? satisfying w(B(x,r)) € (0, 00)

for all x € R? and r > 0. Then for u-a.e. x € R?, for any k > 2 there exists
ro(x) = ro(u, k. x) € (0, 3] such that

1(B(x,2r)) < 8(log(r ) w(B(x,r)),  Vr e (0, ro(x)]. (6.7)

Proof Since (6.7) is weaker for larger «, it suffices to show (6.7) for u-a.e. x € R?
for each ¥ € (2, %] Fix an arbitrary xo € RZ. Setry := 2% fork € Z, Hxg =
u(-N B(xg, 1)) and, forn € N,

An = {x € B(xo, 1) 1 w(B(x,ra—1)) = n*?u(B(x, )},
Eni={x0+ (37, 3) : k. L €Z, |k|, |[| <2"}.

Thensince B(xg, 1) C Uxes”“ B(x, r,41) and furthermore B(x, r,41) C B(y,ry) C
B(y,rn—1) C B(x,ry—2) forx € E,41 and y € B(x, r,+1), we have

J(B(y. ra_1)) / W(B(, Fn1))
—————— Uy, (dy) < — " u(d
/B@m,]) LBy, ry) Mol = 2 semn 1By M)

XEEn+1

w(B(x, rp—2))
——u(d
= ; /B(x,r,,+1) w(B(x,rp11)) wldy)
XE&n+1
=/ > LB, ) 1(dy)
R2

XEEp41

< cp(B(xo, 4))

for some ¢ > 0. By Cebyéev’s inequality this implies fty, (A,) < cpu(B(xo, 4))n=x/2,

hence z;’lozl Mxo(Ap) < o0, and therefore by the Borel-Cantelli lemma for p-a.e.
x € B(xg, 1) there exists no(x) = no(u, k, x) € N such that

W(B(xX, 1p—1)) < n*?u(B(x, 1)), ¥n > no(x). (6.8)
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Now let x € B(xg, 1) satisfy (6.8), let r € (0, ry(x)] and let n > no(x) be such that
ra+1 < r < ry. Then by applying (6.8) twice,

W(B(x,2r)) < pw(B(x, rp—1)) < n*/?(n 4+ 1)/ 1(B(x, rat1)) < 2320 w(B(x, 1))

with n < @ log(r_l). Finally, since xq is arbitrary, the claim follows. O

6.2 Global spectral dimension

Let U C R? be non-empty, open and bounded. As in Sect. 5.1 above, let (A, (U))n>1
be the eigenvalues of —Ly written in increasing order and repeated according to
multiplicity, and define

oo
Zy (1) :=/ pl e x) M(dx) =D e 1> 0.
v n=1

Then we obtain the following estimates of Zy (¢) from Theorems 1.2 and 6.1 and
conclude in particular that the global spectral dimension is 2.

Corollary 6.10 Let R > 1 andlet U C B(R) be a non-empty open subset of R%. Then
for any n > 18 there exist C19 = C19(X, v, R) > 0, Coo = C2o(X, v, R, n) > 0 and
t(U) =t(X,y,n,U) € (0, 1] such that

Zy(t) < CroM (Ut log(t™"), vt € (0, 1], (6.9)
Zy(t) = CooM(U)t ™ (log(t™)) ™", Vr € (0,1(U)]. (6.10)

In particular,

Jim 2108 Zu®) _ 5 6.11)
1,0 —logt

Proof (6.11) is a direct consequence of (6.9) and (6.10), and (6.9) is immediate from

the inequality th (x,x) < p:(x,x) and the on-diagonal part of the upper bound in

Theorem 1.2. Thus it remains to verify (6.10). We may assume that R = R(U) :=

sup,cy 1x|. Let n > 18, let C15 = Cy5(X, v, R,n) > 0 be as in Theorem 6.1 and

define an upper semi-continuous function 7y : U — [O, %] by

ty(x) :=inf{r € (0, ] : t(logt™"))"pY (x.x) < C1s}  (inf¥:=1). (6.12)
Then fy(x) > 0 for M-a.e. x € U by Theorem 6.1 and therefore there exists 1| =
n(X,y.,n,U) € (0, %] such that M(;' ([t1. }])) = 1M (U). Now for each ¢ €

O, 111, th(x, x) > C15t_1(10g(t_1))_'7 for any x € t;l([tl, %]) byt <t <tyx)
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and (6.12), and hence

A%

ZU(t)z/l([ ll)th(x,x)M(dx) Cist" (logt™) "M (15 ([1r. 1]))
tU l],j

v

1CisM Ut (logt™h) ™",

proving (6.10). O

Remark 6.11 Tt is unknown to the authors whether the eigenvalue counting function
Ny(h) :=#{n € N: X,(U) < A} satisfies the counterparts of (6.9), (6.10) and (6.11).
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Appendix A: Proof of Proposition 2.4

The proof will be based on Lemma 4.1 and the following result proved in [17].

Theorem A.1 For each x € R?, P x Py-a.s. the following hold:
(i) Forallt > 0, F; :=1lim,_,  F}* exists in R.
(ii) The mapping [0, 00) > t +— F; € [0, 00) is continuous, strictly increasing and
satisfies Fo = 0 and lim;—. o Fy = 00.
Proof See [17, Lemma 2.8 and Proof of Theorem 2.7]. O

We start with a preparatory lemma.

Lemma A.2 P-a.s., for all x € R?,

limliminf F' =0  Py-a.s.
tJ0 n—o0

Proof Fix any environment w € €2 such that the conclusion of Lemma 4.1 holds,
and let x € R2. Then since F" for n € N are non-decreasing in ¢ and hence so is
liminf, o F/', we see from Fatou’s lemma and Lemma 4.1 that

0 < E, [lim lim inf F;*] < lim E [lim inf F;’] < lim lim inf E,[F"] = 0,
t

t}0 n—o0 n—00 t}J0 n—>o00

which implies that lim; o liminf,, . o F;' =0 Py-as. O

For each r > 0 we denote by A, the set of all (w, @) € Q x Q' such that:

(i) Forallu € [z, 00), Fy y(w, o) := limn_mo(F,;’(a), ') — F' (o, a)/)) exists in R.
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746 S. Andres, N. Kajino

(ii) The mapping [#, 00) > u — F; ,(w, ®') € [0, 00) is continuous, strictly increas-
ing and satisfies F; ;(w, ®’) = 0 and lim,_, » F; (@, @) = oo.

We also set AY := {0’ € Q'@ (w, @) € A} for w € Q. Note that AP = 9;1(A8})
thanks to the fact that for all » € N and o’ € @/,

Fl' (. 0) = Fl(@0,0) + Fl (@, 6,@)),  Vs,12 0. (A1)

Furthermore we have A; € A® GJ, since F! is A ® G%-measurable for any n € N
and s > 0 and A; is easily seen to be equal to

Frsi (0, @) = limy— o (F!y (0, @) — F/'(w, ®)) exists in R
(.0)eQxQ forallseQ N[0, 00), QN[0, N1 > s — Foys(w, @) €0, 00) is
’ " uniformly continuous and strictly increasing for any N € N,

hm@aseoo Fy sy (w,0) =00

by virtue of the monotonicity of F' in s. Finally, recall that P x P [A¢] = 1 for all
x € R? by Theorem A.1.

Lemma A.3 For P-a.e. v € Q, Py[A?] = 1forallt > 0and x € R%.
Proof Let u(dy) := (27{)’1e’|y‘2/2 dy. By Fubini’s theorem, we have EP[A{] =

P x P.[Ag] = 1 for all x € R? and then its u(dx)-integral results in EP,[Ag] = 1
with P[] := fRz P[] (dx). Thus for P-ae. w € Q, Py [(Ag)°] = 0, namely

Py(AD]=0 fordy-ae. ye R (A2)
Now for any such w € Q and forall > 0 and x € R2, we have
PIAYY = P67 (AQ)] = Ex[llag 06,] = Ex[Pp, [A§]]
— [ Paglacdy =1

by the Markov property of B and (A.2), completing the proof. O

Proof of Proposition 2.4 Set Q4 := QN (0, co) and
L ’ /AT I n N o
A= [(a),a)) €Qx Q' limliminf (0, ) _o} n N A
q€Q4
Then clearly A € A® ng, and (i) follows immediately from Lemmas A.2 and A.3.
Let (w, ") € A. Then for each g € Q4, (w, @) € Ay, so that forall t € [g, o)

the limit F, ;(w, ') exists in R, [¢, 00) 3 t = F, (w, ') € [0, 00) is continuous
and strictly increasing and lim; ., oo Fy (, ') = 0o. Thus for all 0 < s < ¢t the limit

Foi(@,0) = Tim (F'(@,0) = F(@,0)) = Fi(@,0) = Fp@,0) (A3)

@ Springer



Continuity and estimates of the Liouville heat kernel 747

exists in R, where g € QN (0, s], and [s, 00) 3 ¢ > F ;(w, @) € [0, 00) is a strictly
increasing continuous function satisfying lim;_, o F (@, ®’) = co. Moreover, for
anyt >0and 0 <u <s <t,

0<Fui(w,0)— Fy(w,0)= lim (F(0, ») — F}(», »)) <liminf F' (0, »),
n—00 n— 00

which tends to 0 as s | 0 and thereby verifies Cauchy’s convergence criterion for
(Fs1(w, @"))se,1 as s | 0. Hence the finite limit F; (0, @) = lim, o Fy ; (0, ®)
exists, and then recalling (A.3), we easily obtain

0
0 < Fi(w, ®) =lim lim (Ft”(a), ') — F'w, a)/)) < liminf F/' (0, o) 29 0
3¢0 n—o0o h n—o0o

(A4)
and, forall0 < s <1,

Fi(w,0) = Fy(w, ') = lifg(Fu,z(w, @) = Fus(@,0)) = Fy (0, 0).  (AS5)
u

Now by (A.4), (A.5) and the properties of the function 7 + Fj ;(w, »") mentioned
above after (A.3), the mapping [0, 00) 3 7 > F;(w, @) € [0, 00) with Fy(w, o) :=
0 is continuous, strictly increasing and satisfies lim;_, oo F; (@, ®’) = 0o, proving (ii).

Statement (iii) is clear, so it remains to show (iv). Let w € 2 satisfy the property in
statement (i). First, Fo(w, -) = 0 is Gg-measurable, and for any ¢ > 0, by (i) we have
A® € Gy C G, which together with the gto-measurability of F'(w, -) forn € N and
s € [0, t] implies the G,-measurability of F;(w, -). Nextletw' € A®. (A.1) withr =0
results in F/'(w, Op(0')) = F'(w, @'), s > 0, and then by (w, @) € A we easily see
Oo(@") € A® and Fy(w, ') = Fy(w, @) + Fs(w, Oy(@')), s > 0. Fort > 0, by (A.1),
(w, w) € A, (A.3) and (A.5) we have

0
liminf F' (@, 6;(0) = lim (F, (0, 0") — F(, ) = F; s41(0, @) RLA
n—0o0 n— 00

and, forany s > O and u € [s, 00),

F(@,6,(0) — F' (0, 6,(0) = F (0, 0) = F (0, )

272 Fovturt (@, @) = Fupi(0, @) — Fop (0, @), (A.6)

where the limit is a strictly increasing continuous function of u € [s, oo) tending to
00 as u — 0o, proving in particular (w, 0;(0’)) € A, i.e. 0;(0’) € A®. Finally, for
t,u > 0ands € (0, u], (A.6) shows F , (w, 6; (@) = Fyys (@, @)= Fs4(w, @), and
letting s | Oyields Fy4 (0, @) = Fy(w, o)+ Fy(w, 6;(@")). Therefore (F; (@, -))i>0
is a PCAF of B in the strict sense with defining set A®. O
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Appendix B: The Revuz correspondence between M and F

The purpose of this section is to give a proof of the following proposition, which
generalises Proposition 2.5 to the LBM BY killed upon exiting an open set U C R?,

Proposition B.1 P-a.s., for any non-empty open set U C R2, for all x € R? and all
Borel measurable functions n : [0, 00) — [0, 00] and f : U — [0, o],

TU o0
E[/O n(t)f(B,>dF,]= /0 /U w0 f gl e ) M@y)di,  (B.1)

where th (x, y) denotes the jointly continuous transition density ofBU asin (2.7).

We need to prepare a few preliminary facts. First, by [17, Theorem 2.2], P-a.s., for
any ¢ > 0 and any R > 1 there exists C21 = C21(X, ¥, R, €) > 0 such that

My (B(x,1)) < Coyyr*?™°, Vx € B(R), r € (0,1], n e N. (B.2)

In the rest of this section, we fix any environment @ € 2 such that (M,),>1
converges to M vaguely on R?, the conclusions of Proposition 2.4 (i), (iv) hold and
(B.2) is valid for all ¢ > 0 and R > 1. Then by Proposition 2.4 (i), (ii), for all x € R?,

(dF}"),>1 converges to d Fy weakly on [¢, u] forany 0 <t <u, Py-as. (B.3)

Lemma B.2 For any non-empty open set U C R?, any x € R?, any t > 0 and any
bounded Borel measurable function f : U — [0, 00) with f~1((0, 00)) bounded,
{fOTUM f(By)dF]'} _ | isuniformly Py-integrable.

Proof 1t suffices to prove that

Ty nt 2
sup Ex[(/ f(BS)dFS”) } < 0. (B.4)
0

n>1

For any Borel measurable i : U — [0, oo], the Markov property of B yields

Ty At 2 t ot
E[(/ h(B»ds”sz / / hO)R() / / 45 (62 V) s (v, 2) du ds dz dy.
0 UJU 0 Js

Then since

t t t t
//qs(x,y)qu—s(y,z)dudSS/ qs(x,y)dS/ qu(y,z)du
0 Js 0 0

1= =y
=-—— s e ds/ u e 2udu
47 0 0

1 t t
— (1+1ogt )(1+1o + )
4n2( SR SR P

IA
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wherelog™ = log(-V1),setting 1(y) := f () exp(an(y)—VTZ]E[Xn (»)?]). recalling
(2.4) and (2.3) and choosing R > 1 such that {x} U f_1 ((0, 20)) C B(R), we obtain

([ o] ([ ne)

<5 2//h(y)h(z) I+ log* | x|2)(1+10g - |2)dzdy

||f||2/ / Lt

< H—lo 1+log M, (dz) M,(dy).

272 Jpr) JB(R) |2)( |Z—y|2) " "
(B.5)

Using (B.2) with e = «p/2, forall y € B(R) and n > 1 we further get

t
/ (1 + logJr 2) M, (dz)
B(R) |z =yl

< M8+ 3 / b Ma(d2)

0og
B(y.2!=¥R)\B(y,2=*R) (27%R)?

<C+CZ(2k+log = )(21 kRY2/2 —. C'(X,y, R,1) <00 (B.6)

for some constant C = C(X, y, R) > 0. (B.6)isinfact valid withy = x by x € B(R),
and then (B.4) is immediate from (B.5) and (B.6), completing the proof. ]

Now we prove Proposition B.1 on the basis of (B.3), Lemma B.2 and the vague
convergence on R? of M), to M.

Proof of Proposition B.1 By a monotone class argument it suffices to consider con-
tinuous functions n and f with compact supports in (0, co) and U, respectively. First
note that by (2.4), Fubini’s theorem and (2.3) we have for every n € N,

Ty 00
Ey |:/0 U(f)f(Bt)dFtn:| 2/0 /Uﬁ(t)f()’)th(X’ y) My (dy)dt, (B.7)

and we need to show that letting n — o0 on both sides of (B.7) results in (B.1). The
left-hand side of (B.7) indeed converges to that of (B.1) by (B.3) and the uniform
P,-integrability of {fOTU n(t)f(B;)dF/'}, _, implied by Lemma B.2. On the other
hand, the convergence of the right-hand side of (B.7) to that of (B.1) follows from
the vague convergence on R? of M, to M together with the fact that the function
Usymr— fooo n(t)f(y)q[U (x, y)dt is continuous with compact support in U by
v1rtue of dominated convergence using the continuity of q, (x,)on U and 0 <

(x y) < ¢¢(x, y). Thus the proof of Proposition B.1 is complete. O
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Appendix C: Negative moments of the Liouville measure

~ 2 2
Lemma C.1 Let g > 0 and set £(q) := (2 + %)q + %qz. Then there exists c4 =
ca(y, q) > 0 such that for any x € R? and any r € (0, 1],

E[M(B(x, )] Vv sup E[M,(B(x, )] < car¥@, (C.1)

n>1

Proof Since the left-hand side of (C.1) is independent of x € R? by the translation
invariance of the laws of M and M,,, n > 1, it suffices to show (C.1) for x = 0.

The proof is based on a comparison with the moment estimates established in [27],
where the random Radon measure M? = M ,9 on R? associated with the covariance
function y2g™ has been constructed as follows. Note that g™ can be written as
g™ (x,y) = " (x — y) with R := g™ (., 0), which is easily seen from (2.1) to
be of the form 2 (x) = log* (|x|~") + ¥ (x) for some bounded continuous func-
tion U™ : R? — R.Define ¢/ : R?> — [0, 00) by ¥ (x) 1= usu(x) = fRz u(y)u(x—
y)dy with u(x) = 3 =(1— |x|)T, so that v is Lipschitz continuous, ¥|g(,2)c = 0,
fRz Yx)dx =1 and it is positive definite, i.e. such that (3 (x — y))x,yez is a non-
negative definite real symmetric matrix for any finite £ C R?. Now for each ¢ > 0,
let X? be a continuous Gaussian field on R? with mean 0 and covariance

E[X2()X2(0)] = ¥ A (x — y)

for ¥, := 8_21//‘(8_1 (+)), where such Xg can be constructed in exactly the same way
as that described after (2.2) since v/, * h"™ is easily shown to be positive definite and
Lipschitz continuous. Then [27, Theorem 2.1] (see also [25, Theorem 3.2]) states that,
as ¢ |, 0, the associated random Radon measure M? = M)(,)y . on R? defined by

Mo(dx) —exp(yX (x) — — [Xo(x) ])

converges to some M = MB in law in the space M (R?) of Radon measures on
R? equipped with the topology of vague convergence, and MY satisfies the moment
estimates as in (C.1) by [27, Proposition 3.7].

Returning to (2.2), for each n > 1 define 2" := i1 8 ,((m)( 0), which is the
covariance kernel of X, = > 7_, Yk, and let R > 1 and n € N. Then h,g"fl —pm
is (0, 00)-valued and continuous, limg o ¥, * h( 0= =" it 1 uniformly on R2 by the

uniform continuity of h(m)] on R?%, and h’(ﬁr)l (x) < K™ (x) for any x € R2, so that
there exists &g > 0 such that for all ¢ € (0, &g],

R (x) < Yo % WD (0) < e xR (x),  Vx € B(0,2R). (C2)

Let f : R? — [0, oo) be continuous and satisfy flBo,rye = 0andletn : [0,00) = R
be bounded, continuous and convex. Also let e € (0, g9]. Then by (C.2), we can apply
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Kahane’s convexity inequality (see [25, Theorem 2.1] or [20]) to get

y2
]E[n( > %eyxnm—TE[xn(x)z])]

xek—172

V2
g, fpotonen)

xek—172

for all k € N, and by using dominated convergence to let k — oo, we obtain

2
E[n ( / £y Xn =B (67 dx)}
R2
yz
o[ oo B
—_— Rz 9

which means that E[(® £ (M,,))] < E[n(® ¢ (M?))] for the continuous function ® s :
M(Rz) — [0, 00) given by @ ¢ (1) := fIR2 f du. Now since Mg converges in law to
M%ase | Oand o b M (R?) — Risbounded and continuous, letting ¢ |, 0 yields

E[n(®(My))] < lim E[n(®,M))] =E[n(®,M°)]. VneN, (C3)
whose limit as n — oo results in
E[n(®;(M))] < E[n(®;(M)] (C4)

by dominated convergence together with the fact that lim,_, oo M,, = M in M (R?)

P-a.s. Finally, letting (1) = %q))ﬂ’] e~ with A > 0 and taking the dA-integrals on

(0, 00) in (C.3) and (C4), by 5 Jo~ 49~ e dr = =7 we conclude that

E[® (M)~ ] v supE[® (M) "] < E[® (M) 4], (C.5)
n>1

and (C.1) for x = 0 follows from (C.5) with f(y) = (2 —2|y|/r)* A 1 and the
corresponding bound for E[M°(B(0, r/2))~¢] implied by [27, Proposition 3.7]. O
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