
Probab. Theory Relat. Fields (2016) 166:429–461
DOI 10.1007/s00440-015-0662-4

Localization in log-gamma polymers with boundaries

Francis Comets1,2 · Vu-Lan Nguyen1,2

Received: 19 September 2014 / Revised: 28 August 2015 / Published online: 19 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Consider the directed polymer in one space dimension in log-gamma
environment with boundary conditions, introduced by Seppäläinen (Ann Probab,
40(1):19–73, 2012). In the equilibrium case, we prove that the end point of the poly-
mer converges in law as the length increases, to a density proportional to the exponent
of a zero-mean random walk. This holds without space normalization, and the mass
concentrates in a neighborhood of the minimum of this random walk. We have anal-
ogous results out of equilibrium as well as for the middle point of the polymer with
both ends fixed. The existence and the identification of the limit relies on the analysis
of a random walk seen from its infimum.
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1 Directed polymers and localization

The directed polymer model was introduced in the statistical physics literature by
Huse and Henley [25] to mimic the phase boundary of Ising model in presence of ran-
dom impurities, and it is frequently used to study the roughness statistics of random
interfaces. Later, it has been mathematically formulated as a randomwalk in a random
potential by Imbrie and Spencer [26]. In the (1+1)-dimensional lattice polymer case,
the random potential is defined by a field of random variables {ω(i, j) : (i, j) ∈ Z

2}
and a polymer x = (xt ; t = 0, . . . n) is a nearest neighbor up-right path in Z

2 of
length n. The weight of a path is equal to the exponent of the sum of the potential
it has met on its way. There is a competition between the entropy of paths and the
disorder strength, i.e., the inhomogeneities of the potential. If the potential is con-
stant, the path behaves diffusively and spreads smoothly over distances of order of the
square root of its length. On the contrary, if the potential has large fluctuations, the
path is pinned on sites with large potential values, and it localizes on a few corridors
with width of order of unity. An early example where this behavior was observed is
the parabolic Anderson model yielding a rigourous framework to analyse intermit-
tency [8]. Recently, significant efforts have been focused on planar polymer models
(i.e. (1 + 1)-dimensional) which fall in the KPZ universality class (named after Kar-
dar, Parisi and Zhang), see Corwin’s recent survey [13]. In the line of specific first
passage percolation models and interacting particle systems, a few explicitly solvable
models were discovered, and they allow for detailed descriptions of new scaling limits
and statistics. We namely mention Brownian queues [30], log-gamma polymer [35],
KPZ equation [23,33]. However, the theory of universality classes does not explain
the localization phenomena. For instance, the wandering exponent 2/3 from the KPZ
class accounts for the typical transverse displacement of order n2/3 of the polymer
of length n, certainly an important information, however different in nature since it
addresses the location of the corridor but not its width.

Let us start by defining the model of directed polymers in random environment.
For each endpoint (m, n) of the path, we can define a point-to-point partition function

Zω
m,n =

∑

x

exp

{
m+n∑

t=1

ω(xt )

}
,
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Localization in log-gamma polymers with boundaries 431

where the sum is over up-right paths x that start at (0, 0) and end at (m, n). The model
does not have a temperature in the strict sense of statistical mechanics, however the
parameter μ entering below the log-gamma distribution of ω plays a similar role by
tuning the strength of the disorder. The point-to-line partition function is given by

Zω
n =

n∑

k=0

Zω
k,n−k .

The point-to-line polymer measure of a path of length n is

Qω
n (x) = 1

Zω
n
exp

{
n∑

t=1

ω(xt )

}
.

It is known that the polymer at a vanishing temperature concentrates on its geodesics.
However little information is known on the random geodesics [31], except under
assumptions which are often hard to check [15,19]. A less ambitious way to analyze
this localization phenomenon is to consider the endpoint of the path, and study the
largest probability for ending at a specific point,

In = max
x∈Z

Qω
n−1{xn = x}, (1)

which does not require any information on where the endpoint concentrates. Observe
that In is small when the measure is spread out, for example if ω is constant, but In
should be much larger when Qω

n concentrates on a small number of paths. In large
generality it is proved that the polymer is localized and it is expected from the KPZ
scaling that most of the endpoint density lies in a relatively small region around a
random point at distance n2/3 from the mid-point of the transverse diagonal. The size
of this region is much smaller than n2/3 and is believed that it is order one. Moreover,
Carmona and Hu [7] and Comets, Shiga and Yoshida [10] showed that there is a
constant c0 = c0(β) > 0 such that the event

lim sup
n→∞

In ≥ c0

has P-probability one. This property is called endpoint localization. In fact, the Césaro
mean of the sequence In is a.s. lower bounded by a positive constant. Analyzing
terms in semimartingale decompositions, the technique is quite general, but also very
circuitous and thus it only provides rough estimates. Recently, Seppäläinen has intro-
duced in [35] a new solvable polymer model with a particular choice of the law of
the potential. In this paper, we consider the log-gamma model, taking advantage of its
solvability to analyze themechanism of localization and obtain an explicit description.
The model can be defined with boundary conditions (b.c.), i.e., with a different law for
vertices inside the quadrant or on the boundary, see (2). From now, we will consider
this model. First, it is convenient to introduce multiplicative weights

Yi, j = eω(i, j), (i, j) ∈ Z
2+.
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432 F. Comets, V.-L. Nguyen

As discovered in the seminal paper [35], some boundary conditions make the model
stationary as in Burke’s theorem [32], and further, they make it explicitely sovable. In
this setting, the point-to-point partition function for the paths with fixed endpoint is
given by

Zm,n =
∑

x∈�m,n

m+n∏

t=1

Yxt ,

where �m,n denotes the collection of up-right paths x = (xt )0≤t≤m+n in the rectangle
�m,n = {0, . . . ,m} × {0, . . . , n} that go from (0, 0) to (m, n). We assign distinct
weight distributions on the boundaries (N × {0}) ∪ ({0} × N) and in the bulk N

2. In
order to make it clear, we use the symbols U and V for the weights on the horizontal
and vertical boundaries:

Ui,0 = Yi,0 and V0, j = Y0, j for i, j ∈ N := {1, 2, . . .}.

Model b.c.(θ): Letμ > 0 be fixed. For θ ∈ (0, μ), we will denote by b.c.(θ ) the model
with

{Ui,0, V0, j ,Yi, j : i, j ∈ N} are independent with distributions
U−1
i,0 ∼ Gamma(θ, 1), V−1

0, j ∼ Gamma(μ − θ, 1), Y−1
i, j ∼ Gamma(μ, 1). (2)

where Gamma(θ, r) distribution has density �(θ)−1r θ xθ−1e−r x with θ > 0, r > 0.
The polymer model with boundary condition possesses a two-dimensional station-

arity property. Using this property, Seppäläinen [35] obtains an explicit expression
for the variance of the partition function, he proves that the fluctuation exponent of
free energy is 1/3 and that the exponent for transverse displacement of the path is
2/3. This model has soon attracted a strong interest: large deviations of the partition
function [21], explicit formula for the Laplace transform of the partition function at
finite size [14], GUE Tracy-Widom fluctuations for Zn at scale n1/3 [6], computations
of Busemann functions [20].

In fact, the model of directed polymers can be defined in arbitrary dimension 1+ d
and with general environment law, see [26], and we now briefly mention some results
for comparison. In contrast with the above results for d = 1, if the space dimension is
large and the potential has small fluctuations—the so-called weak disorder regime—
this exponent is 0, and under Qω

n the fluctuation of the polymer path is orderO(n1/2)
with a Brownian scaling limit, see [5,11,26]. More precisely, if the space dimension
d ≥ 3and if the ratioE(e2ω)/(Eeω)2 is smaller than the inverse of the returnprobability
for the simple random walk, the end point, rescaled by n−1/2, converges to a centered
d-dimensional Gaussian vector. Moreover, under the previous assumptions, In → 0
a.s., at the rate n−d/2 according to the local limit theorem of [37,39].

Let us come back to the case d = 1 of up-right polymer paths, more precisely,
to the log-gamma model. We now give a flavour of our results with an explicit limit
description of the endpoint distribution under the quenched measure.
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Localization in log-gamma polymers with boundaries 433

Qω
n {xn = (k, n − k)} = Zk,n−k

Zn
, k = 0, . . . , n.

For each n, denote by

ln = argmax
{
Zk,n−k; 0 ≤ k ≤ n

}
, (3)

the location maximizing the above probability, and call it the “favourite endpoint”.

Theorem 1 Consider the model b.c.(θ ) with θ ∈ (0, μ). Define the end-point distri-
bution ξ̃ (n) centered around its mode, by

ξ̃ (n) =
(
ξ̃

(n)
k ; k ∈ Z

)
, with ξ̃

(n)
k = Qω

n {xn = (ln + k, n − ln − k)} .

Thus, ξ̃ (n) is a random element of the set M1 of probability measures on Z. Then, as
n → ∞, we have convergence in law

ξ̃ (n) L−→ ξ in the space (M1, ‖ · ‖T V ), (4)

where ‖μ − ν‖T V = ∑
k |μ(k) − ν(k)| is the total variation distance.

The definition of ξk is given as a functional of a random walk conditioned to stay
positive on Z+ and conditioned to stay strictly positive on Z−. The explicit expression
for ξ is formula (12) below. The convergence is not strong but only in distribution. The
above result yields a complete description of the localization phenomenon revealed
in [7,10]. In particular, themass of the favourite point is converging in the distributional
sense.

Corollary 1 Consider the model b.c.(θ) from (2). With In from (1), it holds

In
L−→ max

{
ξk + ξk+1

2
; k ∈ Z

}
> 0,

as n → ∞. By consequence, lim supn In > 0 P-a.s.

Moreover, we derive that the endpoint density indeed concentrates in a microscopic
region, i.e., of size O(1), around the favourite endpoint.

Corollary 2 (Tightness of polymer endpoint) Consider the model b.c.(θ) from (2)
with θ ∈ (0, μ). Then we have

lim
K→∞ lim sup

n→∞
Qω

n [‖xn − (ln, n − ln)‖ ≥ K ] = 0 in probability. (5)

Our results call for a few comments.

Remark 1 (i) Influence of high peaks in the parabolic Anderson model: it is easy to
check that the sequence Zm,n is the unique solution of the parabolic Anderson equation

Zm,n = eω(m,n)[Zm−1,n + Zm,n−1]
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434 F. Comets, V.-L. Nguyen

with initial condition Z0,0 = 1 and boundary conditions Z−1,n = Zm,−1 = 0.
Hence, Zm,n can be interpreted as the mean density at time m + n and location
(m, n) of a population starting from one individual at the origin, subject to the
following discrete dynamics: each particle splits at each integer time into a ran-
dom number (with mean 2eω(m,n) at location (m, n)) of identical individual moving
independently, and jumping instantaneously one step upwards or to the right. If
e−ω(m,n) ∼ Gamma(μ), e−ω(m,0) ∼ Gamma(θ), and e−ω(0,n) ∼ Gamma(μ − θ),
our result applies, and shows that the population concentrates around the highest peak
and spreads at distance O(1). In particular, the second high peak does not contribute
significantly to the measure, a feature which is believed to hold in small space dimen-
sion only. In large time, the population density converges, without any scaling, to a
limit distribution given by ξ .

(ii) Corollary 2 states uniqueness of the favourite endpoint, in the sense that all the
mass is concentrated in the neighborhood of the favourite point ln . This property is
analogous to uniqueness of geodesics in planar oriented last passage percolation. We
refer to [15,19] for a detailed and recent account on this and related questions.

Besides the point-to-line polymer measure, we also study in this paper the point-to-
point measure, for which the polymer endpoint is prescribed. Under this measure, we
obtain similar localization results, that we will state in the next section. They deal with
the location in the direction transverse to the overall displacement of the “point in the
middle” of the polymer chain, and with the “middle edge”. They are the first results of
this nature. The main reason is that the general approach via martingales in [7,10] fails
to apply if the endpoint of the path is fixed. We mention that the alternative method,
introduced in [40] to deal with environment without exponential moments, could be
applied to point-to-point measures. A similar comment holds for another approach,
based on integration by parts, which has been recently introduced in [9] to extend
localization results to the path itself—and then reveal the favourite corridors. So far,
it is known to apply to Gaussian environment and Poissonian environment [12], but
whether it covers the log-gamma case is still open.

As we will see in Sect. 2, the localization phenomena around the favourite point in
the log-gamma model directly relates to the problem of splitting a random walk at its
local minima. This coupling is also themain tool to study the recurrent randomwalk in
randomenvironment [18] in one dimension. In the literature, it was proved byWilliams
[41], Bertoin [1–3], Bertoin and Doney [4], Kersting and Memişoǧlu [28] that if the
random walk is split at its local minimum, the two new processes will converge in law
to certain limits which are related to a process called the random walk conditioned
to stay positive/negative. The mechanism is reminiscent of that of the localization in
the main valley of the one-dimensional random walk in random environment in the
recurrent case, discovered by Sinaï [36] and studied by Golosov [22].

Our results only hold for boundary conditions ensuring stationarity. A possible way
towards the model without boundary conditions could be via techniques of tropical
combinatorics initiated in [14].

Organization of the paper: In Sect. 2, we recall the basic facts on the log-gamma
model and state the main localization results both for point-to-line and point-to-point
measures. In Sect. 3, we introduce the important properties of the random walk con-
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Localization in log-gamma polymers with boundaries 435

ditioned to stay positive that we need to define the limits. In Sect. 4 we give the proofs
of Theorem 1, Corollaries 1 and 2. The last section contains the complete statements
for the point-to-point measure, together with their proofs.

2 Polymer model with boundary conditions and results

2.1 Endpoint under the point-to-line measure

Assume the condition (2). Define for (m, n) ∈ Z
2+,

Um,n = Zm,n

Zm−1,n
and Vm,n = Zm,n

Zm,n−1
.

We can associate the U ’s and V ’s to edges of the lattice Z2+, so that they represent
the weight distribution on a horizontal or vertical edge respectively. Let e1, e2 denote
the unit coordinate vectors in Z

2. For an horizontal edge f = {y − e1, y} we set
T f = Uy , and T f = Vy if f = {y − e2, y}. Let z = (zk)k∈Z be a nearest-neighbor
down-right path in Z

2+, that is, zk ∈ Z
2+ and zk − zk−1 = e1 or − e2. Denoting the

undirected edges of the path by fk = {zk−1, zk}, we then have

T fk =
{
Uzk , if fk is a horizontal edge
Vzk−1 if fk is a vertical edge.

Seppäläinen proved [35] that the choice of log-gamma distribution provides a sta-
tionary structure to the model:

Fact 1 (Theorem 3.3 in [35]) Assume (2). For any down-right path (zk)k∈N in Z
2+,

the variables {T fk : k ∈ Z} are mutually independent with marginal distributions

U−1 ∼ Gamma(θ, 1), V−1 ∼ Gamma(μ − θ, 1).

By considering the down-right path along the vertices x with x · (e1 + e2) = n, we
deduce the following fact, which will be a fundamental ingredient in the next two
sections.

Fact 2 For each n, the variables (Uk,n−k, Vk,n−k)0≤k≤n are independent, and

U−1
k,n−k ∼ Gamma(θ, 1) V−1

k,n−k ∼ Gamma(μ − θ, 1). (6)

Now, define for each 1 ≤ k ≤ n the random variable Xn
k

Xn
k = − log

(
Zk,n−k

Zk−1,n−k+1

)
= − log

(
Uk,n−k

Vk−1,n−k+1

)
,

123



436 F. Comets, V.-L. Nguyen

and Xn
0 = 0. By corollary 2, for each n, (Xn

k )1≤k≤n are i.i.d random variables, and
satisfy

Zk,n−k

Z0,n
= exp

(
−

k∑

i=0

Xn
i

)
. (7)

Defining Snk = ∑k
i=1 X

n
i , for 0 ≤ k ≤ n, we will express the mass at point (k, n − k)

as a function of Sn ,

Qω
n {xn = (k, n − k)} = Zk,n−k∑n

i=0 Zi,n−i
= 1∑n

i=0 exp(−(Sni − Snk ))

From (7), the favourite point ln defined in (3) is also the minimum of the random
walk,

ln = argmin
{
Snk ; 0 ≤ k ≤ n

}
. (8)

Since we are only interested in the law of Qω
n {xn = (k, n − k)}, in order to simplify

the notion, we consider a single set of i.i.d random variables (Xk)k∈Z+ , with the same
distribution under P as log(U/V ), where U and V are independent with the same
distribution as in (6). The associated random walk is given by

Sn =
n∑

i=1

Xi , (9)

and we define

ξnk = 1∑n
i=0 exp(−(Si − Sk))

.

Then one can check that for every n:

(ξnk )0≤k≤n
L= (

Qω
n {xn = (k, n − k)})0≤k≤n ,

where
L= means equality in law. Then instead of considering for each n a new set of

i.i.d random variables to calculate ξ̃
(n)
k , we just need the n first steps of the random

walk Sn to compute the law of ξnk . Hence Theorem 1 can be reformulated as follows:

{
ξn
n+k

}

k∈Z
L−→ {ξk}k∈Z, in the 
1 − norm, (10)

with


n = argmin
k≤n

Sk . (11)
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Since the environment has a continuous distribution, the minimum is a.s. unique. The
complete construction of the limit ξk will be given in Sect. 4 below in two different
caseswhen θ = μ/2 and θ 
= μ/2.However, for the convenience of the reader,we give
an informal definition, starting with the case θ = μ/2. Let (S↑

k , k ≥ 0), (S↓
k , k ≥ 0)

be two independent processes, with the first one distributed as the random walk S
conditioned to be non-negative (forever), and the second one distributed as the random
walk S conditioned to be positive (for positive k). Since we condition by a negligible
event, the proper definition requires some care, it relies on Doob’s h-transform. Then,

ξk =

⎧
⎪⎪⎨

⎪⎪⎩

exp(−S↑
k )

1+∑∞
i=1 exp(−S↑

i )+∑∞
i=1 exp(−S↓

i )
, if k ≥ 0,

exp(−S↓
k )

1+∑∞
i=1 exp(−S↑

i )+∑∞
i=1 exp(−S↓

i )
, if k < 0.

(12)

In the case θ < μ/2, then ln = O(1), but the limit is still given by the formula (12),
provided that S↓ has a lifetime (equal to the time for the walk to reach its absolute
minimum), after which it is infinite. S↑ is as before, and it is defined in a classical
manner. Thus, the concatenated process is simply equal to S with a space shift by
its minimum value, and time shift by the time to reach the minimum. The last case
θ > μ/2 is similar under the change k 
→ n − k.

In particular in the equilibrium case θ = μ/2, Sk is a randomwalk with expectation
zero. By Donsker’s invariance principle, the random walk has a scaling limit,

(
1√
n
S[nt]

)

t

L−→ (Wt )t .

with W a Brownian motion with diffusion coefficient 2�1(μ/2) (there, �1(θ) =
(log�)”(θ) is the trigamma function). By consequence, the scaling limit of the
favourite endpoint is easy to compute in the present model with boundary conditions.

Theorem 2 Consider the model b.c.(θ) from (2).

(i) When θ = μ/2, we have

ln
n

L−→ argmin
t∈[0,1]

Wt ,

where the limit has the arcsine distribution with density [π√
s(1 − s)]−1 on the

interval [0, 1].
(ii) When θ < μ/2, n − ln converges in law, so

ln
n

P−→ 1,

though when θ > μ/2, ln converges in law, so

ln
n

P−→ 0.

123



438 F. Comets, V.-L. Nguyen

In words, the favourite location for the polymer endpoint is random at a macroscopic
level in the equilibrium case, and degenerate otherwise. Further, the (doubly random)
polymer endpoint xn has the same asymptotics under Qω

n , since, by (5), xn/n and ln/n
are asymptotic as n → ∞. These results disagreewithKPZ theory, where the endpoint
fluctuates at distance n2/3 around the diagonal. A word of explanation is necessary.
The difference comes from the boundary conditions. In the equilibrium case μ/2 = θ

the direction of the endpoint has a maximal dispersion, though in non equilibrium
ones it sticks to one of the coordinate axes. In the model without boundary conditions
–that we leave untouched in this paper–, we expect an extra entropy term to come into
the play and balance the random walk Sn in the potential, a factor being of magnitude
n and quadratic around its minimum (which is the diagonal by symmetry), making the
localization happen close to the diagonal and with fluctuations of order n2/3.

Finally, we derive a large deviation principle for the endpoint distribution:

Theorem 3 Consider the model b.c.(θ) from (2).

(i) Assume θ = μ/2. In the Skorohod space D([0, 1],R+) equipped with Skorohod
topology,

(−1√
n
log Qω

n {xn = ([ns], n − [ns])}
)

s∈[0,1]
L−→

(
W (s) − min[0,1] W

)

s∈[0,1]
.

(13)

Moreover, for all segment A ⊂ {(s, 1 − s); s ∈ [0, 1]} in the first quadrant,
−1√
n
log Qω

n (xn ∈ nA)
L−→ inf

A
W − min[0,1] W. (14)

(ii) Assume θ > μ/2. Then, as n → ∞,

− 1

n
log Qω

n {xn = ([ns], n − [ns])} P−→ s|�0(θ) − �0(μ − θ)|, (15)

where �0(θ) = (log�)′(θ) is the digamma function. Similarly, if θ < μ/2,

−1

n
log Qω

n {xn = ([ns], n − [ns])} P−→ (1 − s)|�0(θ) − �0(μ − θ)|.

Then, at logarithmic scale, the large deviation probability for the endpoint is of order√
n in the equilibrium case, whereas it is of order n otherwise. This is again specific to

boundary conditions, since it is shown in [21] for the model without boundaries that
the large deviation probabilities have exponential order n with a rate function which
vanishes only on the diagonal (s = 1/2).

2.2 Middle point under the point-to-point measure

In this section, we consider the point-to-point measure with boundary conditions. Fix
μ > 0, (p, q) ∈ (Z∗+)2 and for each N ∈ N, let RN be the rectangle with vertices
(0, 0), (0, qN ), (pN , 0) and (pN , qN ). With some fixed
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Localization in log-gamma polymers with boundaries 439

θS, θN ∈ (0, μ), let θE = μ − θN , θW = μ − θS,

and denote 
 = (θN , θS, θE , θW ). To sites (i, j) strictly inside RN we assign inverse
Gamma variables Yi, j with parameter μ, whereas to sites on the boundary we assign
inverse Gamma variables with parameter θN , θS, θE or θW depending if the boundary
is north, south, east or west.

Model P2P-b.c.(
): Assume

Yi, j : (i, j) ∈ RN\{0, (pN , qN )} are independent with
Y−1
i,0 ∼ Gamma(θS, 1) for i ∈ [1, pN ], Y−1

pN , j ∼ Gamma(θE , 1) for j ∈ [1, qN − 1],
Y−1
0, j ∼ Gamma(θW , 1) for j ∈ [1, qN ], Y−1

i,qN ∼ Gamma(θN , 1) for i ∈ [1, pN − 1],
Y−1
i, j ∼ Gamma(μ, 1) for 1 ≤ i ≤ pN − 1 and 1 ≤ j ≤ qN − 1. (16)

The point-to-point polymer measure is the probability measure on �pN ,qN given
by

Qω
pN ,qN (x) = 1

Zω
pN ,qN

exp

⎧
⎨

⎩

(p+q)N−1∑

t=1

ω(xt )

⎫
⎬

⎭ .

For a path x ∈ �pN ,qN denote by

t− = max {t : xt · (qe1 + pe2) ≤ pqN }

the “time it crosses the transverse diagonal”. The coordinate of the crossing point can
be described up to a multiplicative factor by the integer

F(x) = (xt− + xt−+1) · (qe1 − pe2). (17)

Theorem 4 Consider the model P2P-b.c.(
). Then, there exist a random integer mN

depending on ω and a random probability measure ξ̂ on Z such that, as N → ∞,

(
Qω

pN ,qN (F(x) = mN + k); k ∈ Z

) L−→ ξ̂ ,

in the space (M1, ‖ · ‖T V ).

We recall that middle-point localization for the point-to-point measure is not covered
by the usual martingale approach to localization, and this result is the first one of this
nature. Here also the limit can be described in terms of the minimum of a functional
of random walks. The appropriate form of the claim and the limit itself are given in
Theorem 3, Sect. 5. We end with a complement.

Theorem 5 Consider the model P2P-b.c.(
), and recall mN from Theorem 4.
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(i) When θN = θS, as N → ∞,

mN

4Npq
+ 1

2
L−→ argmin

t∈[0,1]
Wt , (18)

where the limit has the arcsine distribution.
(ii) When θN < θS, then mN + 2pqN converges in law, so

mN

4Npq
+ 1

2
P−→ 0,

but when θN > θS, mN − 2pqN converges in law, so

mN

4Npq
+ 1

2
P−→ 1,

We stress that the equilibrium relation (18) holds whatever p and q are, provided that
θN = θS .

In order to prove all these results, the direct approach is to understand the growth
of the random walk seen from its local minima. In the next section, we will present
different results about the decomposition of random walk around its minima.

3 Splitting at the infimum and random walk conditioned to stay positive

Through this section, we will only consider the equilibrium case θ = μ/2, i.e. when
the random walk S = (Sk, k ≥ 0) in (9) has mean 0. The problem of path decom-
position for Markov chains at its infimum points is well studied in the literature by
Williams [41], Bertoin [1–4], Kersting and Memişoǧlu [28]. We will follow the fine
approach of Bertoin [3]. We mention at this point that the case of a walk drifting to
infinity was considered by Doney [16]. However for our purpose, we do not need such
sophisticated results when θ is different from μ/2.

First we will introduce the random walk conditioned to stay non negative and
explain how it relates to the decomposition of random walk at its minimum. Then we
present Tanaka’s construction and its consequence on the growth of the walk around
the minimum.

3.1 Random walk conditioned to stay non negative

Recall that S0 = 0. Define the event that the random walk stays non negative

� = {Sk ≥ 0 for all k ≥ 0}.

As the random walk does not drift to +∞ this event has probability P[�] = 0. In
order to give a meaning for the conditioning with respect to �, we can approximate
� with some other event �n . The natural choice here is
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T1 T2 T3

−H1

−H2

−H3

Fig. 1 The strict ascending ladder of the random walk −S. Line segments represent jumps. T1 is the first
time the walk is positive, −H1 = −ST1 is the value. T2 is the next time the walk takes a larger value,
denoted by −H2, etc.

�n = {Sk ≥ 0, ∀ 0 ≤ k ≤ n}.

and we would like to study the asymptotics for large n of the law of S conditioned by
�n .

Let us introduce some basic notation. For every real number x , we denote by Px the
law of the random walk S started at x , and we put P = P0. Let τ be the first entrance
time in (−∞, 0):

τ = min{k ≥ 1 : Sk < 0}.

In particular �n = {τ > n}. Let (H, T ) = ((Hk, Tk), k ≥ 0) be the strict ascending
ladder point process of the reflected random walk −S. That is, T0 = 0 and, for
k = 0, 1, . . .,

Hk = −STk , Tk+1 = min{ j > Tk : −S j > Hk},

with the convention Hk = ∞ when Tk = ∞. The variable H1 is called the first strict
ascending height of −S, they are depicted in Fig. 1. The renewal function associated
with H1 is

V (x) =
∞∑

k=0

P(Hk ≤ x).

By the duality lemma ([17], Sect. XII.2), we can rewrite the renewal function for
x ≥ 0 as

V (x) = 1 + E

⎛

⎝
σ(0)−1∑

i=1

1{−x≤Si }

⎞

⎠ , (19)
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where

σ(0) = min{k ≥ 1 : Sk ≥ 0}.

Now we define Doob’s h-transform PV
x of Px by the function V , i.e., the law of the

homogeneousMarkov chain on the nonnegative real numbers with transition function:

pV (x, y) = V (y)

V (x)
p(x, y)1{y≥0}. (20)

Here p, Px denote the transition density and the law of the chain S starting from x .
By definition, if f (S) = f (S0, S1, . . . , Sk) is a functional depending only on the k
first steps of the random walk, then

E
V
x [ f (S)] = 1

V (x)
Ex [V (Sk) f (S), k < τ ].

(We use the standard notation E[Z , A] = E[Z1A] for an integrable r.v. Z and an event
A.) We denote by (S↑

k )k≥0 the chain starting from 0,

E

(
f
(
S↑
1 , . . . , S↑

k

))
= E

V
0 ( f (S)). (21)

The following result shows that it yields the correct description of the random walk
conditioned to stay non negative.

Proposition 1 For a bounded Borel function f (S) = f (S1, . . . , Sk),

lim
n→∞E( f (S)|�n) = E

(
f
(
S↑)) .

Proof First we will prove the following lemma:

Lemma 1 For every x ≥ 0, we have

lim inf
n→∞

Px (�n)

P(�n)
≥ V (x).

Proof of Lemma 1 Recall that (Hk, Tk) denotes the kth ascending ladder point of −S.
Let an,k be the event {Hk ≤ x, Tk ≤ n, Tk+1 − Tk > n}. On the event an,k , we have
maxk∈[0,n]{−Sk} = Hk ≤ x . It implies that mink∈[0,n] Sk+x ≥ 0, and by consequence
τ > n under Px . Moreover the events an,k are clearly disjoint, then we have:

Px (τ > n) ≥
∞∑

k=0

P(an,k).
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By the Markov property at Tk , we have:

Px (τ > n) ≥ P(τ > n)

∞∑

k=0

P(Hk ≤ x, Tk ≤ n).

By monotone convergence,

lim
n→∞

∞∑

k=0

P(Hk ≤ x, Tk ≤ n) =
∞∑

k=0

P(Hk ≤ x) = V (x).

which yields the lemma. ��
Now, we can complete the proof of Proposition 1. Without loss of generality we

may assume that 0 ≤ f ≤ 1. By the Markov property, for k ≤ n,

E( f (S),�n) = E
(
f (S)PSk (�n−k), τ > k

) ≥ E
(
f (S)PSk (�n), τ > k

)
.

We deduce from Lemma 1 and Fatou’s lemma that

lim inf
n→∞ E( f (S)|�n) ≥ E( f (S)V (Sk), τ > k) = E

V
0 ( f (S))

since V (0) = 1. Replacing f by 1 − f , we get

lim sup
n→∞

E( f (S)|�n) = 1 − lim inf
n→∞ E((1 − f )(S)|�n)

≤ 1 − E
V
0 ((1 − f )(S)) = E

V
0 ( f (S)),

which completes the proof of Proposition 1. ��
Now we will show that the random walk conditioned stay non negative is the

natural limit for the randomwalk seen from its local minima. Recall 
n from (11). The
following property is crucial.

Proposition 2 For a bounded function f (x1, . . . , xk) and ε ∈ (0, 1), we have

lim
n→∞E

(
f
(
S
n+1 − S
n , . . . , S
n+k − S
n

) |n − 
n > nε
) = E

V
0 ( f (S)).

Proof We have

E
[
f
(
S
n+1 − S
n , . . . , S
n+k − S
n

)
, n − 
n > nε

]

=
�n−nε�−1∑

i=0

E
[
f (Si+1 − Si , . . . , Si+k − Si ) , 
n = i

]
. (22)

On the other hand we can write the event {
n = i} as

{
n = i} = {
S j ≥ Si ,∀ j ≤ i

} ∩ {
S j ≥ Si ,∀ j ∈ [i, n]} .
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Both randomvariables f (Si+1−Si , . . . , Si+k−Si ) and 1{S j≥Si ,∀ j∈[i,n]} aremeasurable
with respect to σ(Xi+1, . . . , Xn) and thus are independent of the event {S j ≥ Si ,∀ j ≤
i} which is in σ(X1, . . . , Xi ). Then we obtain:

E
[
f (Si+1 − Si , . . . , Si+k − Si ) , 
n = i

]

= E
(
f (Si+1 − Si , . . . , Si+k − Si ) 1{S j≥Si ,∀ j∈[i,n]}

) × P
(
S j ≥ Si ,∀ j ≤ i

)
.

Applying the Markov property at time i(0 < i < n − nε), we obtain

E
[
f (Si+1 − Si , . . . , Si+k − Si ) , 
n = i

]

= E [ f (S1, . . . , Sk) , τ > n − i] × P
(
S j ≥ Si ,∀ j ≤ i

)
. (23)

From Proposition 1, for fixed δ > 0, there exists n(δ) such that for n ≥ n(δ),

∣∣∣E [ f (S1, . . . , Sk)|τ > nε] − E
V
0 [ f (S1, . . . , Sk)]

∣∣∣ ≤ δ. (24)

Combining (22), (23) and (24), we obtain

E
[
f
(
S
n+1 − S
n , . . . , S
n+k − S
n

)
, n − 
n > nε

]

≥
(
E
V
0 [ f (S1, . . . , Sk)] − δ

)

×
�n−nε�−1∑

i=0

P
(
S j ≥ Si ,∀ j ∈ [i, n])P (

S j ≥ Si ,∀ j ≤ i
)

=
(
E
V
0 [ f (S1, . . . , Sk)] − δ

)
× P(n − 
n ≥ nε).

Thus, for n > n(δ),

E
(
f
(
S
n+1 − S
n , . . . , S
n+k − S
n

) |n − 
n > nε
) ≥ E

V
0 [ f (S1, . . . , Sk)] − δ,

and by the same argument,

E
(
f
(
S
n+1 − S
n , . . . , S
n+k − S
n

) |n − 
n > nε
) ≤ E

V
0 [ f (S1, . . . , Sk)] + δ.

This yields the desired result. ��

In the above result we proved convergence of the post-infimum process. Since the
random variables X are centered, by considering the reflected random walk −S, we
derive a similar convergence result for the pre-infimum process to a limit that we now
introduce. Since the environment has a density, the model enjoys a simplification:
conditioning the walk to be positive is the same as conditioning it to be non-negative.
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Define the process (S↓
k ) as the homogeneous Markov chain starting from 0 with tran-

sition function pV̂ given by (20) with

V̂ (x) = 1 + E

⎛

⎝
σ̂ (0)−1∑

i=1

1{Si≤x}

⎞

⎠ , x ≥ 0,

and

σ̂ (0) = min{k ≥ 1 : Sk ≤ 0}.

Corollary 3 For a bounded function f (x1, . . . , xk) and ε ∈ (0, 1), we have

lim
n→∞E

(
f
(
S
n−1 − S
n , . . . , S
n−k − S
n

) |
n > nε
) = E

(
f
(
S↓
1 , . . . , S↓

k

))
.

Since the walk is centered, the event {nε < 
n < n − nε} will happen with high
probability for ε small enough. Then Theorem 2 and Corollary 3 imply that

Corollary 4 For fixed K , the following convergence results hold as n → ∞:

(
S
n+k − S
n

)
1≤k≤K

L−→
(
S↑
k

)

1≤k≤K
,

(
S
n+k − S
n

)
−1≥k≥−K

L−→
(
S↓
k

)

1≤k≤K
,

(
K∑

k=−K

e−(Sk−S
n )

)−1
L−→

(
1 +

K∑

k=1

e−S↑
k +

K∑

k=1

e−S↓
k

)−1

. (25)

3.2 Growth of random walk conditioned to stay positive

In the literature, it is well known that the random walk conditioned to stay positive
can be constructed based on an infinite number of time reversal at the ladder time set
of the walk (S,P). The first proof is given by Golosov [22] for the case of random
walk with expectation zero and later Tanaka [38] gave a proof for more general case.
We first present Tanaka’s construction [38], and summarize the results.

Let {(H+
k , σ+

k )}k≥0 be the sequence of strictly increasing ladder heights and times
respectively of (S,P) with H+

0 = σ+
0 = 0. Define e1, e2, . . . the sequence of excur-

sions of (S,P) from its supremum that have been time reversed:

en =
(
0, Sσ+

n
− Sσ+

n −1, Sσ+
n

− Sσ+
n −2, . . . , Sσ+

n
− Sσ+

n−1+1, Sσ+
n

− Sσ+
n−1

)
,

for n ≥ 1. Write for convenience en = (en(0), en(1), . . . , en(σ+
n − σ+

n−1)) as an
alternative for the step of each en . By Markov property, e1, e2, . . . are independent
copies of e = (0, Sσ+ − Sσ+−1, Sσ+ − Sσ+−2, . . . , Sσ+ − S1, Sσ+) where σ+ =
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inf{k ≥ 0 : Sk ∈ (0,+∞)} is from (19). Tanaka’s construction for the reflected
random walk (−S) consists in the following process W↑ = {W↑

n : n ≥ 0}:

W↑
n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1(n), for 0 ≤ n ≤ σ+
1

H+
1 + e2(n − σ+

1 ) for σ+
1 < n ≤ σ+

2
. . .

H+
k−1 + ek(n − σ+

k−1) for σ+
k−1 < n ≤ σ+

k
. . .

(26)

Under the condition P{σ+ < ∞} = 1, the main theorem in [38] states that {W↑
n } is

a Markov chain process on [0,+∞) with transition function p̂(x, dy), which is given
by

p̂(x, dy) = g(y)

g(x)
P(x + X ∈ dy)1(0,+∞)(y),

where

g(x) = E

⎡

⎣
σ+∑

n=0

1{−x<Sn}

⎤

⎦ .

As we consider here log-gamma variables with θ = μ/2, then we have P-a.s σ+ =
σ(0) < 1 and g = V from (19). Therefore the process W↑ has the same law as the
random walk conditioned to stay non negative, i.e., S↑ defined above Proposition 1.
This identity provides an elegant way to determine the growth rate of the limit process
S↑.

Lemma 2 For every ε > 0, then we have:

lim
n→∞

S↑
n

n1/2−ε
= +∞, P − a.s.

As a consequence, for fixed δ > 0 there exists a constant k = k(δ) such that

P

(
S↑
n ≥ n1/2−ε,∀ n ≥ k

)
≥ 1 − δ.

Proof We follow the lines of [24]. Let {M+
k , v+

k }k≥0 be the space-time points of
increase of the future minimum of (W↑,P). That is, M+

0 = v+
0 = 0,

v+
k = inf

{
n > v+

k−1 : min
r≥n

W↑
r = W↑

n

}
and M+

k = W↑
v+
k
,

for k ≥ 1. From the construction of W↑, we can deduce that for each path, the
sequence {(M+

k , v+
k )}k≥0 corresponds precisely to {(H+

k , σ+
k )}k≥0. Let L = {Ln}n≥0

be the local time at the maximum in (S,P), that is
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Ln =
∣∣∣∣

{
k ≤ n : max

i≤k
Si = Sk

}∣∣∣∣ .

Because W↑ is obtained by time reversal from S, then L is also the local time at the
future minimum of (W↑,P). Hence it’s clear that:

Sn ≤ H+
Ln

= M+
Ln

≤ W↑
n .

Now we need the following lemma (e.g., Theorem 3 in [24]): ��
Lemma 3 Consider the random walk (S,P). Now suppose that � ↓ 0 and that
E(S1) = 0 and E(S21 ) < ∞. Then

Px

(
max
k≤n

Sk <
√
n�(n) i.o.

)
= 0 or1.

according to

∫ ∞

1

�(t)

t
dt < ∞ or = ∞.

We use the standard notations “i.o.” for “infinitely often” and “ev.” for “eventually”.
For �(n) = n−ε, the integral converges and Lemma 3 yields

1 = P

(
max
i≤n

Si ≥ √
n�(n) ev.

)

= P

(
W↑

n ≥ √
n�(n) ev.

)
.

Again using the fact that we may replace � by c� for any c > 0, and that the integral
in the lemma still converges, it follows easily that

lim inf
n→∞

W↑
n√

n�(n)
= ∞,

P-almost surely. As W↑ and S↑ have the same law under P, we get the first result.
Then it’s clear for fixed δ, there exists k such that

P

(
S↑
n ≥ n1/2−ε,∀ n ≥ k

)
= P(Ak) ≥ 1 − δ.

��
We complement Lemma 2 with the following version for the conditioned random

walk, proved by Ritter [34].

Theorem 6 [34] Fixed η < 1/2 then:

lim
δ→0

inf
n
P

[
inf
k≤n

(Sk − δkη) ≥ 0|τ > n

]
= 1.
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Note now that the time 
n of the first minimum of S on [0, n] is such that, for fixed
ε ∈ (0, 1) we have for large n,

P

[

n < (1 − ε2)n

]
> 1 − ε. (27)

Indeed, by the invariance principle of Donsker (1951), 
n/n converges in law to
the time of the global minimum of the standard Brownian motion on [0, 1], which
obeys the arcsine distribution [27, problem 8.18]. Therefore, conditionally on the
event {
n < (1 − ε2)n}, Theorem 6 gives us the growth of the random walk after the
minimum:

Corollary 5 If η ∈ (0, 1/2), then uniformly in n:

lim
δ→0

P
[
Sk+
n − S
n > δkη for all k ≤ n − 
n

] = 1.

Proof The proof is similar to the proof of Proposition 2. To simplify the notation
define

Aδ = {
Sk+
n − S
n > δkη for all k ≤ n − 
n

}
,

and

Aδ, j = {
Sk+
n − S
n > δkη for all k ≤ n − 
n, 
n = j

}
.

Then we have

P[Aδ] =
n∑

j=1

P[Aδ, j ] =
n∑

j=1

P
[
Aδ, j |
n = j

]
P[
n = j].

We know that the event {
n = i} can be written as

{
n = i} = {
S j ≥ Si ,∀ j ≤ i

} ∩ {
S j ≥ Si ,∀ j ∈ [i, n]} ,

Both random variables Aδ, j and 1{S j≥Si ,∀ j∈[i,n]} are measurable with respect to
σ(Xi+1, . . . , Xn) and are independent of the event {S j ≥ Si ,∀ j ≤ i}. By the Markov
property, it follows that

P
[
Aδ, j |
n = j

] = P
[
Sk > δkη for all k ≤ n − j |τ > n − j

]
.

For ε > 0 by using Theorem 6, there exists δε and nε such that for all δ < δε, m > nε

P

[
inf
k≤m

(Sk − δkη) ≥ 0|τ > m

]
≥ 1 − ε.
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By putting m = n − j and summing j ∈ {1, 2, . . . , [(1 − ε)n]} we obtain

P[Aδ] ≥ (1 − ε)P[
n < (1 − ε)n].

So by (27), for n large enough, we have

P[Aδ] ≥ 1 − 2ε,

which implies easily the corollary. ��

4 Proof of the main results in the point-to-line case

We split the section according to θ = μ/2 or not, starting with the first case, which
is more involved than the second one. The reason why θ = μ/2 is special is that the
random variable X in (9) is centered, and even symmetric.

4.1 Equilibrium case

In the equilibrium setting θ = μ/2, we know that the post- and pre-infimum chain con-
verge in law to the random walk conditioned to stay positive. As these limit processes
grow fast enough, we can indeed prove that the endpoint densities of the polymer
converge when its length goes to infinity. Firstly we consider the distribution at the
favourite endpoint, and we later extend the arguments to all the points:

Lemma 4 For n → ∞,

ξn
n =
(

n∑

i=0

e−(Si−S
n )

)−1
L−→ ξ0 =

(
1 +

∞∑

i=1

e−S↑
i +

∞∑

i=1

e−S↓
i

)−1

.

Proof From Lemma 2, the randomwalk conditioned to stay positive is lower bounded
by some factor of n1/2−ε, thus the random variable ξ0 is well defined and strictly
positive. By the continuous mapping theorem, the claim is equivalent to convergence
in law of the inverse random variables. Then, in order to prove the lemma, it suffices
to show that, for all bounded and uniformly continuous function f , we have

E

[
f

(
n∑

i=0

e−(Si−S
n )

)]
−→ E

[
f

(
1 +

∞∑

i=1

e−S↑
i +

∞∑

i=1

e−S↓
i

)]
, (28)

as n → ∞. By (25) in Corollary 4, we already know that, for a fixed K ,

E

⎡

⎣ f

⎛

⎝
i=
n+K∑

i=
n−K

e−(Si−S
n )

⎞

⎠

⎤

⎦ −→ E

[
f

(
1 +

K∑

i=1

e−S↑
i +

K∑

i=1

e−S↓
i

)]
. (29)
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By uniform continuity, given an ε > 0 there exists ρ > 0 such that | f (x)− f (y)| < ε

for all x, y with |x − y| < ρ. Now we will prove that, for all positive ε, we can find
finite K = K (ε) and n0(ε) such that for n ≥ n0(ε), it holds

∣∣∣∣∣∣
E

[
f

(
n∑

i=0

e−(Si−S
n )

)]
− E

⎡

⎣ f

⎛

⎝
i=
n+K∑

i=
n−K

e−(Si−S
n )

⎞

⎠

⎤

⎦

∣∣∣∣∣∣
< ε, (30)

and
∣∣∣∣∣E

[
f

(
1 +

K∑

i=1

e−S↑
i +

K∑

i=1

e−S↓
i

)]
− E

[
f

(
1 +

∞∑

i=1

e−S↑
i +

∞∑

i=1

e−S↓
i

)]∣∣∣∣∣ < ε.

(31)

Then, by combining (29), (30) and (31) we get (28) and the proof is finished.
In order to get (30), it is enough to prove that for all positive ρ, ε there exists a

finite K such that

P

⎛

⎝

n−K∑

i=0

e−(Si−S
n ) +
n∑

i=
n+K

e−(Si−S
n ) < ρ

⎞

⎠ > 1 − ε (32)

for all n large enough, while, in order to get (31), it is enough to prove that for all
positive ρ, ε there exists a finite K such that

P

⎛

⎝
∑

i≥K

e−S↑
i +

∑

i≥K

e−S↓
i < ρ

⎞

⎠ > 1 − ε (33)

for all n large enough.
To prove (32), we use Corollary 5: For any fixed η < 1/2, choose δ > 0, such that

for all n ∈ N :

P
[
Sk+
n − S
n > δkη; k = 1, 2, . . . , n − 
n

] ≥ 1 − ε/2.

Because the random variable X is symmetric, the pre-infimum process verifies the
same properties, i.e for n ∈ N:

P
[
S
n−k − S
n > δkη; k = 1, . . . , 
n

] ≥ 1 − ε/2.

Then, choosing K such that
∑∞

k=K e−δkη
< ρ/2 yields (32). A similar argument leads

to (33). This completes the proof of the lemma. ��
In the course of the proof we have discovered the limit endpoint densities (ξk)k∈Z

is given by formula (12). Repeating the argument in the proof of Lemma 4, it is
straightforward to extend the result to a finite set of points around the maximum point:
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Lemma 5 For fixed K, n → ∞:

(
ξn
n+k

)

−K≤k≤K

L−→ (ξk)−K≤k≤K

Proof of Theorem 1 in the case of θ = μ/2.
Recall that ξ̃ (n) and ξn have the same law, and that the total variation distance

between probability measures on Z coincides with the 
1-norm. Taking a function
f : 
1 → R bounded and uniformly continuous in the norm |.|1 and one needs to
prove that

E

[
f
((

ξn
n+k

)

k∈Z

)]
→ E [ f ((ξk)k∈Z)] . (34)

We will use almost the same idea as in the proof of Lemma 4. From Lemma 5 we
have, with a slight abuse of notation,

E

[
f

((
ξn
n+k

)

k∈[−K ,K ]

)]
→ E

[
f
(
(ξk)k∈[−K ,K ]

)]
(35)

Fixing ε > 0, there exists by continuity some δ > 0 such that |x − y|1 < δ implies
| f (x) − f (y)| < ε. Hence,

E

[
f

((
ξn
n+k

)

k∈[−K ,K ]

)
− f

((
ξn
n+k

)

k∈Z

)]
≤ ε (36)

provided that

E

⎡

⎣
∑

k:|k|>K

ξn
n+k

⎤

⎦ ≤ δ, (37)

and similarly for ξ instead of ξn . Since E[ξk] is a probability measure on Z, we can
take K large enough so that E[∑k:|k|>K ξk] ≤ δ. Then, from Lemma 5, we see that,
as n → ∞,

E

⎡

⎣
∑

k:|k|>K

ξn
n+k

⎤

⎦ = 1 − E

⎡

⎣
∑

k:|k|≤K

ξn
n+k

⎤

⎦ −→ E

⎡

⎣
∑

k:|k|>K

ξk

⎤

⎦

= 1 − E

⎡

⎣
∑

k:|k|≤K

ξk

⎤

⎦ ,

yielding (37). By combining (35) and (36), we obtain (34). ��

123



452 F. Comets, V.-L. Nguyen

Proof of Corollary 2 It is enough to note that

lim
n→∞ Qω

n [|xn · e1 − ln| ≥ K ] =
∑

k:|k|>K

ξk in law,

which vanishes as K → ∞. ��
Proof of Corollary 1 Recall first that under Qω

n−1, the steps after the final time n − 1
are uniformly distributed, and independent from everything else. Then, it is enough to
note that

Qω
n−1[xn = x] = Qω

n−1[xn−1 = x − e1, xn − xn−1 = e1]
+Qω

n−1[xn−1 = x − e2, xn − xn−1 = e2]
= (

Qω
n−1[xn−1 = x − e1] + Qω

n−1[xn−1 = x − e2]
) × 1

2
L−→ ξk + ξk+1

2
,

with k determined by (x − e1) · e1 = ln−1 + k. ��
Now we give the proof for Theorems 2 and 3:

Proof of Theorem 2 for θ = μ/2.
First, recall that ln and 
n have the same law, so we can focus on the latter one. By

definition of 
n and Donsker’s invariance principle, we have directly


n

n
= 1

n
argmin
i∈[0,n]

Si
L−→ argmin

t∈[0,1]
Wt .

By Lévy’s arcsine law [29], the location of the minimum of the Brownian motion,
i.e. the above limit, has the density π−1(s(1 − s))−1/2 on the interval [0, 1]. ��
Proof of Theorem 3 for θ = μ/2.

We can express the first term in (13) as

−1√
n
log Qω

n (xn = ([ns], n − [ns])) L= −1√
n
(S[ns] − S
n )+

1√
n
log

(
n∑

k=1

e−(Sk−S
n )

)
,

(38)

with
L= the equality in law. As the second term in the right-hand side is almost surely

dominated by log n√
n
, then again, Donsker’s invariance principle yields (13).

On the other hand, let A be an interval. For all s ∈ A, we have

Qω
n (xn = ([ns], n − [ns])) ≤ Qω

n (xn ∈ nA)

≤ nmax
x∈A

Qω
n (xn = ([nx], n − [nx])) ,
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which means that

max
x∈A

Qω
n (xn = ([ns], n − [ns])) ≤ Qω

n (xn ∈ nA)

≤ nmax
x∈A

Qω
n (xn = ([nx], n − [nx])) .

From Donsker’s invariance principle it follows

−1√
n
max
x∈A

log Qω
n (xn = ([ns], n − [ns]))

L= min
x∈A

S[nx] − S
n√
n

+ 1√
n
log

(
n∑

k=1

e−(Sk−S
n )

)

L−→ min
x∈A

W (x) − min[0,1] W,

which, in turn, yields (14). ��

4.2 Non-equilibrium case

Proof of Theorem 1 in the case of θ 
= μ/2.
Without loss of generality, we assume that θ < μ/2, which implies that m =

E[X ] > 0 and the random walk S drifts to +∞. By the law of large number, we have
for all a ∈ (0,m),

M = min
n

(Sn − na) > −∞ P − a.s

It follows that P-a.s for every integer n,

e−Sn ≤ e−na−M

Then the sum of e−Sn converges P-a.s and we can identify the limit distribution ξ as

ξ k = e−Sk
∑∞

i=0 e
−Si

.

Indeed, it is clear that, for k ∈ Z+,

ξnk = e−Sk
∑n

i=0 e
−Si

→ ξ k, P − a.s

Since the random walk drifts to +∞ the global minimizer


 = argmin{Sk, k ∈ Z+}
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is P-a.s finite. Moreover, for n large enough we have 
n = 
, and by centering the
measure ξn and ξ around 
n and 
 respectively, we can easily obtain that

ξ̃ (n) L−→ ξ in the space (M1, ‖ · ‖T V ),

where ξ̃ (n) is defined as in (4) and ξk = ξ
+k . This yields Theorem 1 in the case
θ < μ/2. ��
Proof of Theorem 2 for θ 
= μ/2.

It is a straightforward consequence of the above, since 
n = O(1) if θ < μ/2 or
n − 
n = O(1) if θ > μ/2. ��
Proof of Theorem 3 for θ 
= μ/2.

Though it was already proved in [21,35], we give another argument for complete-
ness. Applying the law of large numbers for i.i.d. variables in (38), we directly obtain
the claim. ��

5 Localization of the point-to-point measure

In this section, we consider the point-to-point measure with mirror boundary condi-
tions. Recall the definition of the model P2P-b.c.(
) from (16).

In this situation, beside the usual partition function Zm,n , we will also define the
reverse partition function Z̃m,n for (m, n) ∈ RN as

Z̃m,n =
∑

x∈�̃N
m,n

(p+q)N−1∏

t=m+n

Yxt , (39)

where �̃N
m,n denotes the collection of up-right paths x = (xt ;m+n ≤ t ≤ (p+q)N )

in the rectangle RN that go from (m, n) to (pN , qN ). Note that in the reverse partition
function we exclude the weight at (pN , qN ). Also, it depends on N , p and q, but we
omit to indicate it in the notation. Moreover, we can also define the ratios Ũ and Ṽ as
in the usual case,

Ũm,n = Z̃m,n

Z̃m+1,n
(40)

Ṽm,n = Z̃m,n

Z̃m,n+1
(41)

If we take the point (pN , qN ) as the initial point then the reverse environment
(Z̃ , Ũ , Ṽ ) is also a stationary log-gamma system with boundary conditions. Indeed
one sees from (39), (40) and (41) that Ũm,qN = Ym,qN and ṼpN ,v = YpN ,n .

We partition the rectangle RN according to the lower half space

H−,N
p,q =

{
(i1, i2) ∈ Z

2 : qi1 + pi2 ≤ pqN
}

123



Localization in log-gamma polymers with boundaries 455

Fig. 2 Upper and lower “transverse diagonal” with p = 5, q = 2, N = 4. Their vertices are indicated

by dots and crosses respectively. H−,N
p,q is the region below the diagonal. The boundary conditions are

indicated on the boundaries of the rectangle

and its complement. In order to simplify the notations, we denote for an edge f with
endpoints in RN ,

T f =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ux if f ∈ H−,N
p,q and f = 〈·, x〉 is horizontal

V−1
x if f ∈ H−,N

p,q and f = 〈·, x〉 is vertical
Ũ−1
x if f /∈ H−,N

p,q and f = 〈x, ·〉 is horizontal
Ṽx if f /∈ H−,N

p,q , and f = 〈x, ·〉 is vertical

(42)

FromFact 1 of Sect. 2.1 and independence of theweights in H−,N
p,q and its complement,

for every down-right path z it follows that the variables {T f : f ∈ z} are mutually
independent. We stress that independence relies also on the expressions of Zm,n and
Z̃m′,n′ , where there are no shared weights. The marginal distribution of T f is given by
the stationary structure, it is a log-gamma distribution with the appropriate parameter.
Let ∂H−,N

p,q be the transverse diagonal in RN , which is given as

∂H−,N
p,q =

{
(i1, i2) ∈ H−,N

p,q : (i1 + 1, i2 + 1) /∈ H−,N
p,q

}
.

Consider the “lower transverse diagonal” given as

LN
p,q is the down-right path x = (xi ) : (0, qN ) → (pN , 0) with xi ∈ ∂H−,N

p,q ,

and the “upper transverse diagonal”,

UN
p,q = (1, 1) + LN

p,q ,

see Fig. 2. Define also the set of up-right edges across the transverse diagonal,

AN
p,q =

{
〈z1, z2〉 : z1 ∈ H−,N

p,q , z2 /∈ H−,N
p,q , |z1 − z2|1 = 1

}
.
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Each up-right path x that goes from (0, 0) to (pN , qN ), intersects the transverse
diagonal once and only once. Precisely, the mapping

x = (x j ) j 
→ G(x) = 〈xi , xi+1〉, with 〈xi , xi+1〉 ∈ AN
p,q ,

is well defined, and it indicates where the crossing takes place. (We have i = t− in
(17).) Our main question in this section is the behaviour of the crossing edge when
N increases. By definition of the polymer measure, for 〈z1, z2〉 ∈ AN

p,q we can write,
with the notation

∑
∗ for the sum over x ∈ �pN ,qN , xt− = z1, xt−+1 = z2,

Qω
pN ,qN (G(x) = 〈z1, z2〉) = 1

Z pN ,qN

∑

∗
exp

⎧
⎨

⎩

t−∑

t=1

ω(xt ) +
(p+q)N∑

t=t−+1

ω(xt )

⎫
⎬

⎭

= 1

Z pN ,qN
Zz1 × Z̃z2 × exp{ω(pN , qN )},

where the last factor is the contribution of the last point x(p+q)N = (pN , qN ). In view
of (40), (41), (42), this term can be expressed as

Qω
pN ,qN (G(x) = 〈z1, z2〉) = 1

Z pN ,qN
Z0,qN × Z̃1,qN

× exp

⎛

⎝−
∑

�1(z1)

log(T f ) −
∑

�2(z2)

log(T f )

⎞

⎠

× exp{ω(pN , qN )},

where�1(z1) is the restriction ofLN
p,q from (0, qN ) to z1, and�2(z2) is the restriction

of UN
p,q from (1, qN ) to z2. Note that, when computing the ratio of the left-hand side

for two different values of the crossing edge 〈z1, z2〉, both the first and last lines of the
right-hand side cancel. Thus, we consider

W (〈z1, z2〉) =
∑

�1(z1)

log(T f ) +
∑

�2(z2)

log(T f ).

Observe that the variables {T f : f ∈ �1(z1)} and {T f : f ∈ �2(z2)} are independent
but not identically distributed, so that in order to apply the same method as in previous
section, we should divide UN

p,q and LN
p,q into identical blocks to obtain a centered

randomwalk. Blocks are shifts of the right triangle with vertices 0, pe1, qe2. Precisely
we denote by

zk1 = (kp, (N − k)q), for 0 ≤ k ≤ N ,

the vertices in RN which sit on the line of equation qi1 + pi2 = pqN , by

zk2 = zk1 + e1,
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Fig. 3 The set A with p = 5, q = 2 contains 7 crossing edges in the first block, indicated by solid lines

and by A the set of crossing edges in the basic block R1 shifted by qe2,

A =
{
〈z1, z2〉 up or right edge: z1 + qe2 ∈ L1

p,q , z2 + qe2 ∈ U1
p,q , 1 ≤ z2 · e1 ≤ p

}

as shown in Fig. 3. Note that 〈0, e1〉 ∈ A and the shifted edge (p,−q) + 〈0, e2〉 ∈ A
but 〈0, e2〉 /∈ A. We will use A and the set (〈zk1, zk2〉)k to parametrize the set AN

p,q

as follows. For 〈z1, z2〉 ∈ AN
p,q we can find a unique k such that, relative to any

coordinate, z1 is between zk1 and z
k+1
1 . Then by translation, there exists a unique edge

a ∈ A such that:

〈z1, z2〉 =
〈
zk1, z

k
2

〉
+ a

On the other hand, we have:

Wk = W
(〈
zk1, z

k
2

〉)
=

∑

�1(zk1)

log(T f ) +
∑

�2(zk2)

log(T f ) =
k∑

i=1

Xi

where

Xk =
∑

f ∈�1(zk1,z
k+1
1 )

log(T f ) +
∑

f ∈�2(zk2,z
k+1
2 )

log(T f ) (43)

with�1(zk1, z
k+1
1 ) the restriction ofLN

p,q from zk1 to z
k+1
1 and�2(zk2, z

k+1
2 ) the restric-

tion of UN
p,q from zk2 to zk+1

2 .
Let B = {edges f ∈ �1(z11) ∪ �2(z12)}, the edge set of the first block. Then it is

clear that the edge set of a general block is a shift of that one,

{
f ∈ �1

(
zk1, z

k+1
1

)
∪ �2

(
zk2, z

k+1
2

)}
= zk−1

1 + B
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By consequence, the variables (Xi )i≤n are i.i.d and moreover

E(Xi ) = p {�0(θS) − �0(θN )} + q {�0(θE ) − �0(θW )}⎧
⎨

⎩

= 0
> 0
< 0

if θN = θS,

if θN < θS,

if θN > θS .

We first consider the case θN = θS . Then Wk is a centered random walk and we can
define

lN = arg min
0≤k<N

Wk (44)

as in the previous section. Before presenting the key lemma, we introduce the limit
law. Denote by ν(·|u) a regular version of the conditional law of (W (a), a ∈ A) given∑

a∈A W (a) = u. Let (Xi , i ≥ 1) be an i.i.d. sequence distributed as in (43), and S↑
[resp. S↓] associated to X [resp., −X ] as in (21), and Ŝ the sequence with Ŝ0 = 0 and

Ŝk =
{
S↑
k if k > 0

S↓
k if k < 0

Consider also, on the sameprobability space, a randomsequence (Yk,a : k ∈ Z, a ∈ A)

such that the vectors Yk = (Yk,a : a ∈ A) are, for k ∈ Z, independent conditionally
on Ŝ with conditional law ν(·|Ŝk+1 − Ŝk).

Lemma 6 For fixed K ∈ Z+,

[
W

(〈
zlN+k
1 , zlN+k

2

〉
+ a

)
− W

(〈
zlN1 , zlN2

〉)]

|k|≤K ,a∈A
L−→ (Ŝk + Yk,a)|k|≤K ,a∈A.

Proof Applying Corollary 4 to the centered random walk Wk we obtain for fixed K

[
W

(〈
zlN+k
1 , zlN+k

2

〉)
− W

(〈
zlN1 , zlN2

〉)]

|k|≤K

L−→ (Ŝk)|k|≤K (45)

with lN from (44). On the other hand, by independence of the T f ’s we know that the
vectors

[
W

(
zk1 + a

)
− W

(〈
zk1, z

k
2

〉)]

a∈A are i.i.d. for k ≥ 0.

Thus, with Wk = W (〈zk1, zk2〉), their joint law, conditionally on (Wk; k ≥ 0), is
⊗kν(·|Wk+1 − Wk). Then the result follows from (45). ��

Now we can state the main result of our construction, which reformulates Theorem
4 in the equilibrium case.
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Proposition 3 Assume θN = θS. With the notations of Lemma 6, let

ξk,a = exp{−Ŝk − Yk,a}
1 + ∑∞

k=−∞
∑

a∈A exp{−Ŝk − Yk,a}
Then, as N → ∞,

(
Qω

Np,Nq(G(x) = zlN+k
1 + a)

)

k∈Z,a∈A
L−→ (ξk,a)k∈Z,a∈A. (46)

on the space (
1(Z × A), | · |1).
Proof We will use the same method as in the Sect. 4.1 to prove (46). With Lemma 6
at hand, we only need here to control the tail of sums as in (32) and (33). Define

(l∗N , a∗
N ) = arg min

(k,a)

[
W (zk1 + a)

]
for ∈ {0, . . . , N − 1} × A,

the minimum location of W . Now we consider the process (k, a) 
→ W (zk1 + a)

indexed by integer time t = kN + 
 if a is the 
 element inA, relative to its infimum,
i.e., with the shift s 
→ t = s + l∗N × N + a∗

N . Note that t 
→ W (zk1 + a) is a sum
of independent but not identically distributed random variables, it can be viewed as
a Markov chain, which is not time-homogeneous but has periodic transitions with
period equal by the cardinality of A. Then, the law of the post-infimum process

s 
→ W
(
zk1 + a

)
− min

m,b
W

(
zm1 + b

)
, s ≥ 0,

is also a Markov chain with a lifetime, i.e., a Markov chain killed at a stopping time.
Similar to Proposition 2, we can prove that the law of this post-infimum process
converges as N → ∞ to a Markov chain on R

+, with non-homogeneous transitions
but periodic with period given by the cardinality of A. The product of N consecutive
transition kernels coincides with the one of S↑, it is homogeneous. Similar to Theorem
6, we conclude that the post-infimum process grows algebraically: with probability
arbitrarily close to 1, we have for some positive δ and all large N ,

W
(
z
l∗N+k
1 + a

)
− min

m,b
W (zm1 + b) ≥ δkη, k ∈ {

1, . . . , N − 1 − l∗N
}
.

Then, it is plain to check that lN − l∗N = O(1) in probability using that the former
minimizes Wk = W (〈zk1, zk2〉), and we derive (32) and (33) as well. The rest of the
proof follows from similar arguments to those of Theorem 1 in the case of θ = μ/2
and from Lemma 6. ��
Proof of Theorem 4 In the equilibrium case θN = θS , the above proposition 3 yields
the conclusion by taking

mN =
(
zlN1 + zlN2

)
· (qe1 − pe2) ,
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so that any path x through the edge 〈zlN1 , zlN2 〉 has F(x) = mM .
Consider now the opposite case where, by symmetry, we may assume θN < θS

without loss of generality. Then, thewalk (Wk)k≥0 has a globalminimum. Interpolating
(Wk)k≥0 with independent pieces with law ν defined as above, we construct a process
ξ̂ . Repeating the arguments of Sect. 4.2, we check that it is the desired limit. ��

Similar to that of Theorem 2, the proof of Theorem 5 is straightforward and left to
the reader.

Acknowledgments We thank the referee for a careful reading, many useful comments and numerous
suggestions to improve the paper.
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