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Abstract We consider loop-erased random walk (LERW) running between two
boundary points of a square grid approximation of a planar simply connected domain.
The LERW Green’s function is the probability that the LERW passes through a given
edge in the domain. We prove that this probability, multiplied by the inverse mesh
size to the power 3/4, converges in the lattice size scaling limit to (a constant times)
an explicit conformally covariant quantity which coincides with the SLE2 Green’s
function. The proof does not use SLE techniques and is based on a combinatorial
identity which reduces the problem to obtaining sharp asymptotics for two quantities:
the loop measure of random walk loops of odd winding number about a branch point
near the marked edge and a “spinor” observable for random walk started from one of
the vertices of the marked edge.
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1 Introduction and outline of proof

1.1 Introduction

In this paper we consider loop-erased random walk, LERW, on a square grid. This
measure on self-avoiding paths is obtained by running a simple random walk and
successively erasing loops as they form.Weworkwith a chordal version in a smallmesh
lattice approximation of a simply connected domain: given two boundary vertices,
we chronologically erase the loops of a random walk started at one of the vertices
conditioned to take its first step into the domain (along a prescribed edge) and then
exit at the other vertex (along a prescribed edge). By linear interpolation this gives
a random continuous curve—the LERW path. It is known that the LERW path has
a conformally invariant scaling limit in the sense that it converges in law as a curve
up to reparameterization to the chordal SLE2 path as the mesh size goes to zero. For
details, see [20]. We will not use any results about SLE in this paper.

The main theorem of this paper is a different conformal invariance result which
does not follow from the convergence of LERW to SLE. We are interested in the
probability that the LERW passes through a given edge of a grid approximation of a
simply connected domain D and we call this probability the LERW (edge) Green’s
function in D. We show that for edges away from the boundary, this probability, when
normalized by the inverse mesh size to the power 3/4, converges as the mesh size
gets smaller to an explicit (up to an unknown lattice-dependent constant) conformally
covariant function which coincides with the SLE2 Green’s function, G D(z; a, b). This
function is defined as the limit as ε → 0 of ε−3/4 times the probability that the chordal
SLE2 path in D between a ∈ ∂ D and b ∈ ∂ D visits the ball of radius ε around z. As
is shown in [23], a formula for G D can be written using a covariance rule and the fact
that GD(0, e2iθa , e2iθb ) equals | sin3(θa − θb)| up to a constant. Several related results
have been obtained previously, see below for further discussion.

Let us be more precise. Let D be a simply connected bounded Jordan domain
containing 0. Write rD for the conformal radius of D seen from 0. Let Dn ⊂ D
be an approximating simply connected domain obtained by taking a largest union of
squares of side-length 1/n centered at vertices of n−1Z2 (see Sect. 1.2 for details.)
Given suitable boundary points an, bn ∈ ∂ Dn tending to a, b as n tends to∞, we let
ηn be a LERW in Dn from an to bn (these points are chosen so that there is a unique
edge of n−1Z2 which contains them) and write e = en for the edge [0, 1/n]. Our main
result may then be stated as follows:

Theorem 1.1 There exists 0 < c0 <∞ such that for all D, a, b, as above there exists
a sequence of approximating domains Dn ↑ D with boundary points an → a, bn → b
such that
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Scaling limit of the loop-erased random walk Green’s function 273

lim
n→∞ c0 n3/4 P (e ⊂ ηn) = r−3/4D sin3 (π hmD (0, (ab))),

where rD is the conformal radius of D from 0, hm denotes harmonic measure, and
(ab) ⊂ ∂ D is either of the subarcs from a to b.

The convergence of the domains Dn ⊂ D is in the Carathéodory sense. We do not
determine the value of the lattice dependent constant c0. We do give bounds on the
rate of convergence, but it will be easier to describe them in terms of the discrete result
of Theorem 1.2. There are two sources of error. For the discrete approximation Dn

there is an error in the LERW probability compared to the SLE2 Green’s function for
Dn ; we give a uniform bound on this error. There is also an error coming from the
approximation of D by Dn ; this error depends on the domain D. If ∂ D is nice, say
piecewise analytic (analytic close to a, b), the first error term is larger.

Several authors have studied the LERW Green’s function (or “intensity” as it is
sometimes called) and the closely related growth exponent, that is, the polynomial
growth rate exponent as n → ∞ of the expected number of steps of a LERW of
diameter n. Lawler computed these exponents in dimensions d � 4 in [15], where
they turn out to be the same as for simple randomwalk with a logarithmic correction in
d = 4. Kenyon estimated the asymptotics (up to subpower corrections) of the LERW
Green’s function in the half-plane setting, thus proving that the growth exponent equals
5/4, see [9]. We will only discuss the planar case in the rest of the paper. Masson gave
a different proof of Kenyon’s result using the convergence to SLE2 and known results
on SLE exponents [19] and obtained second moment estimates in collaboration with
Barlow [1,25]. Kenyon and Wilson computed several exact numeric values for the
Green’s function of the whole-plane LERW on Z

2 in the vicinity of the starting point,
see [10]. In [16] Lawler recently estimated up to constants the decay rate of theGreen’s
function for a chordal LERW in a square domain and the main result of this paper is
obtained by refining the arguments of that paper. Our use of a branch cut is based on
an idea of Kenyon’s [9], as discussed in Section 5.7 of [10].

The present paper is, to our knowledge, the first that treats general simply connected
domains and obtains asymptotics. This is critical for the principal application we have
in mind, see below. Some of the quantities we consider (and the scaling limit result
itself) are related to ones appearing in the analysis of the Ising model, see, e.g., the
papers by Hongler and Smirnov and Chelkak and Izyurov [4,8], but we will not use
discrete complex analysis techniques here.

The LERW path is known to converge to the SLE2 path when parameterized by
capacity, a parameterization which is natural from the point of view of conformal
geometry. An important question is whether the LERW path also converges when
parameterized in the natural Euclidean sense so that, roughly speaking, it takes the
same number of steps in each unit of time. The conjecture is that one has convergence
in law of LERW to SLE2 with a particular parameterization, the Natural Parameter-
ization, which can be given as a multiple of the 5/4-dimensional Minkowski content
of the SLE2 curve. See [18] and the references therein. One motivation for studying
the problem of the present paper is that we believe it to be a critical step in the proof
of this conjecture. See also [7] for some results for the corresponding question in the
case of percolation interfaces converging to SLE6.
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The starting point of our proof is a combinatorial identity that factors the LERW
Green’s function, just as in [16]. We give here a new proof using Fomin’s identity [6]
which makes more explicit the connection with determinantal formulas. We actually
prove a generalization which considers a LERW path containing as a subset a pre-
scribed self-avoiding walk (SAW) away from the boundary. (A given edge is clearly
a special case of such a SAW.) From this it follows that there are two factors whose
asymptotics need to be understood. The first is the squared exponential of the random
walk loop measure of loops of odd winding number about a dual vertex next to the
marked edge. We obtain asymptotics by comparing this quantity with the correspond-
ing conformally invariant Brownian loop measure quantity which can be computed
explicitly. The second factor can be written in terms of a “signed” randomwalk hitting
probability or alternatively as an expectation for a random walk on a branched double
cover of the domain (the branch point is the dual vertex mentioned above). After some
preliminary reductions the required estimates are proved using coupling techniques
that include the KMT strong approximation (see [11]) and results from [3,13]. Some
of the auxiliary results in this paper may be of independent interest. For instance, we
compare various discrete boundary Poisson kernels and Green’s functions (near the
boundary) with their continuous counterparts in slit square domains and we obtain
sharp asymptotics for Beurling-type escape probabilities for randomwalk started near
the slit.

1.2 Notation and set-up

The proof of Theorem 1.1 has three principal building blocks. Althoughwe formulated
the theorem for a fixed domain being approximated with a grid of small mesh size
we prefer to work with discrete domains in Z

2 and let the inner radius from 0 tend to
infinity. Let us set some notation.

– We write the planar integer lattice Z
2 as Z × iZ ⊂ C. Throughout this paper we

fix

w0 = 1

2
− i

2
,

and note that the dual lattice to Z
2 is Z

2 + w0.
– A subset of A ⊂ Z

2 is called simply connected if both A and Z
2\A are connected

subgraphs of Z
2. LetA denote the set of simply connected, finite subsets A of Z

2

that contain the origin.

– Let
−→E = {[z, w] : z, w ∈ V} be the directed edge set of the graph Z

2 = Z+ iZ.
– Let ∂e A denote the edge boundary of A, that is, the set of ordered pairs [a−, a+]
of lattice points with a− ∈ A, a+ ∈ Z

2\A, |a− − a+| = 1. We sometimes write
∂ A for the set of such a+ and A = A ∪ ∂ A. We will use the symbol a both for the
point (a− + a+)/2 ∈ ∂ DA and for the edge [a−, a+]. It will be clear from context
which of the two is meant.
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Scaling limit of the loop-erased random walk Green’s function 275

– For each z ∈ Z
2, let Sz denote the closed square region of side length one centered

at z,

Sz =
{

z + (x + iy) ∈ C : 0 � |x |, |y| � 1

2

}
.

Note that the corners of Sz are on the dual lattice Z
2 + w0.

– If A ∈ A, let DA ⊂ C be the simply connected domain

DA = int

[⋃
z∈A

Sz

]
.

This is a Jordan domain such that A ⊂ DA and ∂ DA is a subset of the edge set of the
dual lattice Z

2 + w0. Note that (the midpoint of) each such dual edge determines
an edge of ∂e A; indeed, the midpoint of the dual edge is also the midpoint of a
unique edge in ∂e A.

– Let f = f A denote the unique conformal map f : DA → D with

f (w0) = 0, f ′(w0) > 0.

– For a ∈ ∂ DA, we define θa ∈ [0, π) by

f A(a) = ei2θa ,

which can be defined by extension by continuity, since DA is a Jordan domain.
Note the factor of 2 in the definition, which is included in order to make later
formulas cleaner.

– Let

rA = rA(w0) = f ′(w0)
−1

be the conformal radius of DA with respect to w0. If rA(0) denotes the conformal
radius from 0, then one can use Koebe’s 1/4 theorem and the distortion theorem
(see [14]) to verify that rA(0) = rA [1+ O(r−1A )].

– We write

ω = [ω0, . . . , ωτ ]

for nearest neighbor walks in Z
2 and simply call them walks or paths. We write

|ω| = τ for the length of the path and p(ω) = 4−|ω| for the simple random walk
probability of ω.

– We write⊕ for concatenation of paths. That is to say if ω1 = [ω1
0, . . . , ω

1
k ], ω2 =

[ω2
0, . . . , ω

2
j ], the concatenation ω1 ⊕ ω2 is defined if ω1

k = ω2
0, in which case

ω1 ⊕ ω2 =
[
ω1
0, . . . , ω

1
k , ω

2
1, . . . , ω

2
j

]
.
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276 C. Beneš et al.

– If a, b are distinct elements of ∂e A, we let

W =W(A; a, b)

be the set of walks

ω = [ω0, . . . , ωτ ],

with [ω0, ω1] = [a+, a−], [ωτ−1, ωτ ] = [b−, b+], and ω1, . . . , ωτ−1 ∈ A.
– We sometimes write

ω : x → y,

where ω is a walk and where x and y can be edges or vertices, to mean that ω is a
walk starting at x , ending at y.

– For a, b ∈ ∂e A, we write

H∂ A(a, b) =
∑
ω∈W

p(ω)

for the corresponding (boundary) Poisson kernel. If x ∈ Z
2\A and dist(x, A) = 1,

then we will similarly write H∂ A(x, b) =∑
a:a+=x H∂ A(a, b).

– If ω ∈ W(A; a, b) with |ω| = τ , we will also write ω(t), 1
2 � t � τ − 1

2 , for
the continuous path of time duration τ − 1 that starts at a and goes to b along the
edges of ω at speed one. Note that ω(t) ∈ DA for 1

2 < t < τ − 1
2 .

– LetWSAW =WSAW(A; a, b) denote the set of walks η ∈W that are self-avoiding
walks, that is, such that η(s) 
= η(t) for s < t . Note that a path ω is self-avoiding
if and only if f ◦ ω is a simple curve.

– For each ω ∈ W there exists a unique η = L(ω) ∈ WSAW obtained by chrono-
logical loop-erasing. (But L−1(η) may have many elements.) See Sect. 2.

– LetWSAW
+ (resp.,WSAW

−) denote the set of η ∈WSAW that include the ordered
edge [0, 1] (resp., [1, 0]) andWSAW

∗ =WSAW
+ ∪WSAW

−. LetW∗ be the set of
ω ∈W such that L(ω) ∈WSAW

∗. Set

H∗
∂ A(a, b) :=

∑
ω∈W∗

p(ω).

If e is the unordered edge [0, 1] and η is a LERW from a to b in A, then we can
write

P(a, b; A) := P (e ⊂ η) = H∗
∂ A(a, b)

H∂ A(a, b)
; (1.1)

this is the LERW Green’s function at the edge e.

Our main result is a consequence of the following theorem.
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Scaling limit of the loop-erased random walk Green’s function 277

Theorem 1.2 There exist u > 0 and 0 < c0 < ∞ such that the following holds.
Suppose A ∈ A and suppose a, b ∈ ∂e A with |sin(θa − θb)| � r−u

A . Then,

P(a, b; A) = c0 r−3/4A | sin3 (θa − θb) |
[
1+ O

(
r−u

A |sin (θa − θb)|−1
)]

.

Let us explain how to derive Theorem 1.1 from Theorem 1.2. Along the way we
will comment on convergence rate bounds. Suppose D is a Jordan domain containing
the origin with dist(0, ∂ D) = 1. For each n, let An be the largest simply connected
subset of Z

2 containing the origin such that DAn ⊂ nD. Let Dn = n−1DAn , wn =
n−1w0 = n−1(1/2− i/2). Let f An be the corresponding uniformizing conformal map
as above and Fn(z) = f An (nz). Then Fn : Dn → D with Fn(wn) = 0, F ′n(wn) > 0.
Let F : D → D be the conformal transformation with F(0) = 0, F ′(0) > 0. Since D
is a Jordan domain, F extends to a homeomorphism, F : D → D. Note that Dn ⊂ D
and for each n we can write

Fn(z) = Mn ◦ ψn ◦ F(z), z ∈ Dn,

where ψn : F(Dn) → D with ψn(0) = 0, ψ ′n(0) > 0 and Mn(z) = kn(z − un)/(1−
unz) is the Möbius transformation of D taking un = ψn ◦ F(wn) = O(1/n) to 0
with kn ∈ ∂D chosen so that [Mn ◦ ψn ◦ F]′(wn) > 0. We have [ψn ◦ F]′(wn) =
ψ ′n(0)F ′(0)(1 + O(1/n)) and consequently |kn − 1| = O(1/n). It follows that if
|z| > c for some constant c, then Mn(z) = z(1 + O(1/n)), where the error depends
on c.

If z ∈ ∂ Dn , let w be a point in ∂ D such that |z − w| = dist(z, ∂ D). Since z is
contained in a closed square of side length n−1 that intersects ∂ D, we have |z−w| �√
2/n. By the Beurling estimate (see, e.g., [14]), we can see that there is a universal

constant c such that |F(z) − F(w)| � c n−1/2. In other words, there exists c1 such
that

F(∂ Dn) ⊂
{

z ∈ D : |z| � 1− c1n−1/2
}

. (1.2)

Also, by the Beurling estimate, if e is an edge on the boundary of An (and diam e = 1),
then diam F(n−1e) = O(n−1/2). Let a ∈ ∂ D be arbitrary. We will choose a particular
point an ∈ ∂ Dn so that |F(a) − Fn(an)| is small. Let vn ∈ D be a point on F(∂ Dn)

with the same argument as F(a) and with minimal radius. Then as we showed above
|vn| � 1 − c1n−1/2 and there exists an edge e ⊂ ∂ DAn (this is an edge of the dual
to Z

2) such that vn ∈ F(n−1e). We take an ∈ ∂ Dn to be the midpoint of n−1e. Note
that nan then determines an element of ∂e An by virtue of being its midpoint. We have
|F(an)− F(a)| = O(n−1/2). It is not hard to show that if c1 is as in (1.2) then for z
with |z| � 1− 2c1n−1/2,

|ψn(z)− z| � c2n−1/2 log n,

where c2 is universal. See, e.g., Section 3.5 of [14].Using this and theBeurling estimate
we see that |ψn ◦ F(an) − F(a)| = O(n−1/5). (We are not attempting to optimize
exponents here.) Using the estimate on Mn it follows that
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|Fn(an)− F(a)| = O(n−1/5).

Also, rD = n−1rAn [1 + O(n−1/2)]. Hence, given a, b ∈ ∂ D, we would like to
choose an, bn ∈ ∂ Dn to approximate a, b, and then apply Theorem 1.2 to An with
boundary edges determined by nan, nbn , to get a uniform error term in Theorem 1.1.

Unfortunately, although there is a uniform bound on |F(a) − F(an)|, there is no
uniform bound on |a − an| without additional assumptions on the regularity of ∂ D.
However, since |F(a)− F(an)| � c2 n−1/2, we certainly have

|a − an| � δn := sup
{
|F−1(z)− F−1(w)| : |z − w| � c2 n−1/2

}
.

Since D is a Jordan domain F−1 is uniformly continuous and hence δn → 0 as
n →∞ and so an → a and bn → b and this is all we need for Theorem 1.1 without
a convergence rate estimate.

If ∂ D is, e.g., locally analytic at a and b, or more generally, if the map F is bi-
Lipschitz in neighborhoods of a and b, then one can improve these estimates giving
|a − an| = O(n−1), |F(a) − F(an)| = O(n−1). Analogous estimates under weaker
conditions on ∂ D can also be given. The conclusion is that for sufficiently “nice”
domains the biggest error term in our result comes from the discrete result, Theo-
rem 1.2.

1.3 Outline of proof and an important idea

The first step of the proof of Theorem 1.2 rewrites (1.1) as a product of three factors
which will then be estimated in the remainder of the paper. Before stating the main
estimates we will introduce an idea which is further discussed in Sect. 5.1.

Suppose ω(t), t ∈ [0, T ], is a curve in DA that avoids w0. Let t �→ Θt =
arg[ f (ω(t))] be a continuous version of the argument. Define

Jt =
⌊

Θt

2π

⌋
−

⌊
Θ0

2π

⌋
;

Qt = Q(ω[0, t]) = (−1)Jt .

Although the argument is only defined up to an integer multiple of 2π , the value of Jt ,
and hence the value of Qt are independent of the choice of Θ0. If ω has time duration
τ , we write Q(ω) = Qτ . Note that if ω = ω1 ⊕ ω2, then

J (ω) = J (ω1)+ J (ω2), Q(ω) = Q(ω1) Q(ω2). (1.3)

In particular, if ω = [ω0, . . . , ωτ ] is a path lying in A, then

Q(ω) =
τ∏

j=1
Q(e j ), e j = [ω j−1, ω j ].
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Scaling limit of the loop-erased random walk Green’s function 279

Roughly speaking Q(e) = −1 if and only if the edge e crosses the branch cut β :=
f −1A ([0, 1]). We note the following:

– Q(
−→e ) is a function of the undirected edge e.

– If e = [0, 1], then Q(e) = 1 assuming rA is sufficiently large. We will assume
this throughout the paper.

– if 
 is a loop in A, then Q(
) = −1 if and only if the winding number of 
 about
w0 is odd.

We define (signed) weights by

q(e) = p(e) Q(e) = 1

4
Q(e), (e edge),

and if ω is a walk as above,

q(ω) = p(ω) Q(ω) =
τ∏

j=1
q(e j ).

Let S j be simple random walk starting in A, and let τ = τA = inf{k � 0 : S(k) /∈
A} be the first time that the walk leaves A. As a slight abuse of notation, we write
Sτ = a to mean that the walk exits A through the ordered edge [a−, a+]. If Sτ = a, we
associate to the random walk path the continuous path in DA of time duration τ − 1

2
ending at a ∈ ∂ DA.

Let
Ia = 1{S[1, τ ] ∩ {0, 1} = ∅; Sτ = a} (1.4)

be the indicator of the event that S leaves A at the boundary edge a and never visits
the points 0, 1 before leaving A. Let

RA(z, a) = Ez
[
(−1)J (S[0,τ− 1

2 ]) Ia

]
= Ez

[
Q

(
S

[
0, τ − 1

2

])
Ia

]
,

ΦA(a, b) = |RA(0, a)RA(1, b)− RA(0, b)RA(1, a)|
H∂ A(a, b)

.

Let Gq
A(z, w) denote the random walk Green’s function in A using the signed

weight q,

Gq
A(z, w) =

∑
ω:z→w
ω⊂A

q(ω).

Here the sum is over all walks in A from z to w. From the definition, we can write

Gq
A(0, 0) =

∞∑
j=0

E0 [Q (S[0, j]); S j = 0; j < τA
]
,
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280 C. Beneš et al.

Gq
A\{0}(1, 1) =

∞∑
j=0

E1 [Q (S[0, j]); S j = 1; j < τA\{0}
]
,

We define

q̄A = 1

4
Gq

A(0, 0) Gq
A\{0}(1, 1).

We can also interpret 4 q̄A as the random walk loop measure using the weight q of
loops in A that intersect {0, 1}.

We write JA for the set of unrooted random walk loops 
 ⊂ A with Q(
) = −1.
(See Sect. 2 for precise definitions.) The following is the combinatorial identity central
to our proof:

Theorem 1.3 Let A ∈ A and a, b ∈ ∂e A. Then,

P(a, b; A) = q̄A exp {2m(JA)} ΦA(a, b), (1.5)

where m is the random walk loop measure and JA is the set of unrooted random walk
loops 
 ⊂ A with Q(
) = −1.

Proof See Sect. 3. ��
It is not hard (see [16, Section 2]) to see that there exists q̄ ∈ (0,∞) and u > 0

such that
q̄A = q̄ + O(r−u

A ). (1.6)

To obtain Theorem 1.2, the remaining work is then to estimate the other two factors
on the right-hand side of (1.5). In Sect. 4 we compare the random walk loop measure
with the Brownian loop measure to prove the following. Our proof does not yield the
value of the lattice-dependent constant c1.

Theorem 1.4 There exist u > 0 and 0 < c1 <∞ such that if A ∈ A,

exp{2m(JA)} = c1 r1/4A

[
1+ O

(
r−u

A

)]
.

Proof See Sect. 4. ��
The last factor in (1.5) is estimated using the following result, the proof of which

is the main technical hurdle of the paper. For z ∈ A and b ∈ ∂e A, let

HA(z, b) = Pz(Sτ−1 = b−, Sτ = b+) (1.7)

be the discrete Poisson kernel and

ΛA(z, a) = RA(z, a)

HA(z, a)
.
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Scaling limit of the loop-erased random walk Green’s function 281

Theorem 1.5 There exists u > 0 and 0 < c2 <∞ such that if A ∈ A,

ΛA(0, a) = c2r−1/2A

[
sin θa + O

(
r−u

A

)] ; (1.8)

ΛA(1, a) = c2 r−1/2A

[
cos θa + O

(
r−u

A

)]
. (1.9)

Proof See Sect. 5. ��
Proof of Theorem 1.2 assuming Theorems 1.3, 1.4, and 1.5 By Theorem 1.5,

|ΛA(0, a)ΛA(1, b)−ΛA(1, a)ΛA(0, b)|
= c3r−1A |sin(θa) cos(θb)− cos(θa) sin(θb)| + O

(
r−1−u

A

)

= c3r−1A |sin (θa − θb)|
[
1+ O

(
|sin (θa − θb)|−1 r−u

A

)]
.

We can then use Theorem 1.1 of [13] which implies that if | sin(θa − θb)| � r−1/20A ,
then

HA(0, a) HA(0, b) = 2

π
sin2(θa − θb) H∂ A(a, b)

[
1+ O(r−u

A )
]
.

But a difference estimate for discrete harmonic functions (see for instance Theorem
1.7.1 in [15]) shows that HA(0, a) = HA(1, a)(1 + O(r−1A )) and so by combining
these estimates we see that

ΦA(a, b) = |ΛA(0, a)ΛA(1, b)−ΛA(1, a)Λ(0, b)| HA(0, a) HA(0, b)

H∂ A(a, b)

[
1+ O(r−1A )

]

= c4r−1A | sin3(θa − θb)|
[
1+ O

(|sin (θa − θb)|−1 r−u
A

)]
,

and consequently Theorem 1.2 follows from Theorem 1.3 combined with (1.6), The-
orem 1.4, and the last equation. ��

2 Preliminaries

This section sets more notation and collects some background material primarily on
loop measures and loop-erased walks.

2.1 Green’s functions and Poisson kernels

We summarize here some definitions and facts about discrete and continuum Green’s
functions and Poisson kernels.

– The (Dirichlet) Green’s function (or Green’s function for Brownian motion) in a
simply connected domain D ⊂ C, with pole at w, is the positive symmetric func-
tion gD(z, w) such that gD(z, w)+ log |z−w| is harmonic in D and gD(z, w) = 0
if w ∈ ∂ D.

123



282 C. Beneš et al.

– For a domain D ⊂ C if w ∈ D, z ∈ ∂ D, and ∂ D is locally analytic at z,
the Poisson kernel hD(w, z) is the density of harmonic measure with respect to
Lebesgue measure and can be given as a normal derivative of gD . In particular, for
any piecewise locally analytic arc F ⊂ ∂ D,

Pw(B(T ) ∈ F) =
∫

F
hD(w, z) d|z|.

– If w, z,∈ ∂ D and ∂ D is locally analytic at both w and z, then it is useful to define
the excursion Poisson kernel

h∂ D(w, z) = lim
ε→0+

ε−1 hD(w + εnw, z),

where nw is the unit vector normal to ∂ D at w, pointing into D. Note that h∂ D

can be directly defined as a constant times the repeated normal derivatives in both
variables of the Green’s function, and we see that it is symmetric and conformally
covariant.

– One can define the excursion Poisson kernel at points where ∂ D is not locally
analytic, such as at the tip of the slit of (smoothly) slit domains. The slit we
consider in this paper is the positive real half-line and so the tip is the origin.
Applying a conformal map to the unit disk, say, we can see that at such points, the
derivative grows exactly like the inverse of the square root of the distance to the
tip. So for such slit domains we may define

h∂ D(0, z) = lim
ε→0+

ε−1/2hD(−ε, z).

– Similar objects are useful in the discrete setting. Let A � Z
2 be connected. Recall

the definition for w, z ∈ Ā of the random walk Green’s function:

G A(z, w) =
∑

ω:z→w,
ω⊂A

p(ω), z, w ∈ A,

and G A(z, w) = 0 if z ∈ ∂ A or w ∈ ∂ A, as well as the random walk q-Green’s
function of A, given in Subsect. 1.3:

Gq
A(z, w) =

∑
ω:z→w,

ω⊂A

q(ω), z, w ∈ A,

and Gq
A(z, w) = 0 if z ∈ ∂ A or w ∈ ∂ A, where the sums are over walks starting

at z and ending at w and staying in A.
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– Let A ∈ A be given. Another way to define the Green’s function is to let S j be a
simple random walk in A, τ = τA = min{ j � 0 : S j /∈ A}, and

G A(z, w) = Ez

⎡
⎣τ−1∑

j=0
1{S j = w}

⎤
⎦ , z, w ∈ A.

Using a last-exit decomposition, one can see that the Green’s function is related
to the Poisson kernel defined in (1.7) as follows:

HA(z, a) = 1

4
G A(z, a−). (2.1)

It is known [13, Theorem 1.2] that there exists a lattice-dependent constant C0 and
c <∞ such that

∣∣∣∣G A(0, 0)− 2

π
log rA − C0

∣∣∣∣ � c
log rA

r1/3A

.

For our purposes, it will suffice to use

G A(0, 0) = 2

π
log rA + O(1),

where, as before, rA is the conformal radius of DA.
– We will need the following result which follows from [13, (40)–(41)]. An explicit

u can be deduced from these estimates, but it is small and not optimal so we will
not give it here.

Theorem 2.1 There exists u > 0 such that if z ∈ A with | f (z)| � 1− r−u
A , then

HA(z, a) = HA(0, a)
1− | f (z)|2
| f (z)− ei2θa |2

[
1+ O

(
r−u

A

)]
.

and hence,
h A(z, a)

h A(0, a)
= HA(z, a)

HA(z, 0)

[
1+ O

(
r−u

A

)]
. (2.2)

Moreover, if |θa − θb| � r−1/20A ,

H∂ A(a, b) = π

2

HA(0, a) HA(0, b)

sin2(θa − θb)

[
1+ O

(
r−u

A

)]
.
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2.2 Loops and loop measures

We will consider oriented rooted loops on Z
2, that is, walks starting and ending at the

same vertex:


 = [
0, 
1, . . . , 
τ ], 
0 = 
τ .

(Unless otherwise stated, we will simply say “loop”.) The length of a loop, |
| = τ ,
is clearly an even integer. The vertex 
0 is the root of 
. The edge representation of a
rooted loop is the sequence of directed edges

e(
) = [−→e 1, . . . ,
−→e τ ], −→e j = [
 j−1, 
 j ].

Note that each vertex in 
 occurs in an even number of edges in e(
).
Let L∗(A) be the set of discrete (rooted) loops contained in A and write L∗ =

L∗(Z2). The rooted loop measures, m∗, mq∗ , associated with p, q, respectively are the
measures on rooted loops and are defined by m∗(
) = mq∗(
) = 0 if |
| = 0, and
otherwise

m∗(
) = p(
)

|
| , 
 ∈ L∗.

mq∗(
) = q(
)

|
| =
p(
) Q(
)

|
| , 
 ∈ L∗.

An unrooted loop [
] is an equivalence class of rooted loops where two rooted loops
are equivalent if and only if the edge representation of one can be obtained from that
of the other by a cyclic permutation of indices. Clearly the lengths of two equivalent
loops are the same, so we can write |[
]| for this number. We write #[
] for the number
of equivalent rooted loops in [
]; this is always an integer dividing |[
]|. Moreover, the
weights of all equivalent loops in a given class are the same so we may write p([
])
and q([
]).

WewriteL(A) for the set of unrooted loops whose representatives are inL∗(A) and
L = L(Z2). The loop measures, m, mq , are the measure on unrooted loops induced
by m∗, mq∗ :

m([
]) =
∑

∈[
]

m∗(
) = #[
]
|
| p(
), [
] ∈ L,

mq([
]) =
∑

∈[
]

mq∗(
) = #[
]
|
| q(
), [
] ∈ L,

and where the sums are over the representatives of [
]. If 
 is a rooted loop, we write
m(
), mq(
) for m([
]), mq([
]).
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Suppose that V ⊂ A ⊂ Z
2, where A is finite. Consider the set of loops contained

in A that meet V :

L(V ; A) = {[
] ∈ L(A) : 
 ∩ V 
= ∅},

and define L∗(V ; A) similarly using rooted loops. Let

F(V ; A) = exp {m [L(V ; A)]} = exp {m∗ [L∗(V ; A)]} ,
Fq(V ; A) = exp

{
mq [L(V ; A)]

} = exp
{
mq∗ [L∗(V ; A)]

}
.

It follows from the second equality that if V = ∪k
i=1Vi , with the Vi disjoint and

A j = A\(∪ j
i=1Vi ), then

Fq(V ; A) = Fq(V1; A)Fq(V2; A1) · · · Fq(Vk; Ak−1), (2.3)

and similarly for F(V ; A). In particular, the right-hand side of (2.3) is independent of
the order of the Vi partitioning V .

If V = {z} is a singleton set, we write just L(z; A), L∗(z; A), F(z; A), and
Fq(z; A).

Lemma 2.1 Suppose that z ∈ A � Z
2. Then

G A(z, z) =
∑


∈L∗(A): 
0=z

p(
) = em[L(z;A)] = F(z; A),

Gq
A(z, z) =

∑

∈L∗(A): 
0=z

q(
) = emq[L(z;A)] = Fq(z; A).

Proof See [17, Lemma 9.3.2]. Although that book only studies positive measures, the
proof is entirely algebraic and holds when using the weight q as well. Let us generalize
the proof here.

Suppose L is a set of nontrivial loops rooted at a point z ∈ A with the property that
if 
1, 
2 ∈ L , then 
1 ⊕ 
2 ∈ L . Let L1 be the set of elementary loops, that is, the set
of loops in L that cannot be written as 
1 ⊕ 
2 with 
1, 
2 ∈ L . Let Lk denote the set
of loops of the form


 = 
1 ⊕ · · · ⊕ 
k, 
 j ∈ L1.

Then L = ⋃∞
k=1 Lk . Suppose now, as is true in the case we will be considering,

that every loop in L admits a unique (up to translation) such decomposition into
concatenated elementary loops. In this case there is a unique k such that 
 ∈ Lk .
We may then consider the measure λ on loops in L that assigns measure k−1q(
) to

 ∈ Lk . Let L ′ denote the set of unrooted loops that have at least one representative in
L . Then the measure λ viewed as a measure on unrooted loops is the same as the loop
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measure of unrooted loops [
] restricted to L ′. Indeed, this measure assigns measure
( j/k) q([
]) to [
] where j is the number of distinct loops among


1 ⊕ 
2 ⊕ · · · ⊕ 
k, 
2 ⊕ 
3 ⊕ · · · ⊕ 
k ⊕ 
1, . . . , 
k ⊕ 
1 ⊕ · · · ⊕ 
k−1.

If |q(L1)| < 1, as in our particular case, then

mq [L ′] =
∞∑

k=1

1

k
q(Lk) =

∞∑
k=1

1

k
q(L1)

k = − log [1− q(L1)] . (2.4)

In our particular case, if L1 is the set of nontrivial loops 
 starting and ending at z,
staying in A and otherwise not visiting z, then it is not hard to see that

Gq(z, z; A) = 1

1− q(L1)
. (2.5)

Combining (2.4) and (2.5) concludes the proof. ��

2.3 Loop-erased random walk

Let ω = [ω0, . . . , ωτ ] be a walk with τ <∞. We say that ω is self-avoiding if i 
= j
implies that ωi 
= ω j . The loop-erasure of ω, LE[ω], is a self-avoiding walk defined
as follows:

– If ω is self-avoiding, set LE[ω] = ω.
– Otherwise, set s0 = max{ j � τ : ω j = ω0} and let LE[ω]0 = ωs0 ;
– For i � 0, if si < τ , set si+1 = max{ j � τ : ω j = ωsi } and let LE[ω]i+1 = ωsi+1.

We can now define the “loop-erased q-measure” of walks η staying in A:

q̂(η; A) :=
∑

ω⊂A:LE[ω]=η

q(ω) = q(η)Fq(η; A), (2.6)

and we define p̂ in the same manner, replacing q by p. (We will often omit writing
out A explicitly so that q̂(η) = q̂(η; A) where no confusion is possible.) Note that
this quantity is zero if η is not self-avoiding. The second identity in (2.6) is proved in
[17, Proposition 9.5.1] by observing that one can write any walk ω as a concatenation
of the loops erased by the loop-erasing algorithm and the self-avoiding segments of
LE[ω] “between” the loops, and then using (2.3) and Lemma 2.1. Again, although
[17] deals with positive weights, the proof is equally valid when using the weight q.

2.4 Fomin’s identity

What we call Fomin’s identity is a generalization for LERW of a well-known result
of Karlin–McGregor. It is a combinatorial identity that, informally speaking, allows
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one to express a loop-erased quantity as a determinant of random walk quantities, the
latter being easier to estimate. See [6] or Chapter 9.6 of [17] for more information
and additional references. We state here the particular case of Fomin’s identity which
we will need. Let A ∈ A with two marked edges a, b ∈ ∂e A, and set K = A\[0, 1].
The idea of the proof of the lemma below is to construct a bijection between the set of
(pairs of) walks that run from b to 1 and intersect the loop-erasure of a walk from a to
0 and the set of (pairs of) walks that run from b to 0 and intersect the loop-erasure of a
walk from a to 1. The existence of this bijection implies that the corresponding terms
cancel in the expression on the right-hand side of (2.7) and the result is the expression
on the left-hand side.

Lemma 2.2 If A ∈ A, a, b ∈ ∂e A, and K = A\[0, 1], then for walks ω1, ω2 that
start and end on the boundary of K and otherwise stay in K , we have

∑
ω1:a→0

∑
ω2:b→1

ω2∩LE[ω1]=∅

p(ω1)p(ω2)−
∑

ω1:a→1

∑
ω2:b→0

ω2∩LE[ω1]=∅

p(ω1)p(ω2)

=
∑

ω1:a→0

∑
ω2:b→1

p(ω1)p(ω2)−
∑

ω1:a→1

∑
ω2:b→0

p(ω1)p(ω2). (2.7)

2.5 Brownian loop measure

The random walk loop measure m defined in a previous section has a conformally
invariant scaling limit, the Brownian loop measure μ. It is a sigma-finite measure on
equivalence classes of continuous loops ω : [0, tω] → C, ω(0) = ω(tω), with the
equivalence relation given by ω1 ∼ ω2 if there is s such that ω1(t) = ω2(t + s)
(with addition modulo tω2 ); see [22]. One can construct μ via the Brownian bubble
measure μbub: a bubble in a domain D, rooted at a ∈ ∂ D, is a continuous function
ω : [0, tω] → C with ω(0) = ω(tω) = a ∈ ∂ D and ω(0, tω) ⊂ D. The bubble
measure is conformally covariant (with scaling exponent 2, see (2.10)) so it is enough
to specify the scaling rule and give the definition in one reference domain, say D. Let

hD(z, a) = 1

2π

1− |z|2
|z − a|2 (2.8)

be the Poisson kernel of D. Note that the Poisson kernel is conformally covariant
(which is easily checked, but see Section 2.3 of [14] for a proof). Let Pz,a be the law
of an h-process derived from Brownian motion and the harmonic function hD(z, a)

(see below); informally, this h-process is a Brownian motion from z conditioned to
exit D at a. We define

μbub
D

(1) = π lim
ε→0

ε−1hD(1− ε, 1)P1−ε,1. (2.9)

The π factor is present to match the notion of [22] and is chosen so that the measure
of bubbles in H rooted at 0 that intersect the unit circle equals 1. See also Chapter 5
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of [14] for a discussion of the suitable metric spaces on which these measures are
defined. Suppose ϕ : D → D is a conformal map and that ∂ D is locally analytic at
ϕ(1). Then if we write

ϕ ◦ μbub
D

(1)[A] := μbub
D

(1)[{ω : ϕ ◦ ω ∈ A}],

we have the following scaling rule

ϕ ◦ μbub
D

(1) = |ϕ′(1)|2μbub
D (ϕ(1)). (2.10)

We can now define the Brownian loop measure restricted to loops in D as the measure
on unrooted loops induced by

μ = 1

π

∫ 2π

0

∫ 1

0
μbub

rD (reiθ )rdrdθ. (2.11)

The Brownian loopmeasure in other domains can then be defined by conformal invari-
ance.

The next lemma makes precise that the random walk and Brownian loop measures
are close on large enough scales.

Lemma 2.3 There exist constants θ > 0 and c1 < ∞ and for all n sufficiently large
a coupling of the Brownian and random walk loop measures, μ and m, respectively,
in which the following holds. There is a set E whose complement has measure at most
e−θn and on E we have that all pairs of loops (ω, 
) (ω Brownian loop and 
 random
walk loop) with

diamω � en(1−2θ) or diam 
 � en(1−2θ)

satisfy

||ω − 
|| � c1n,

where ||ω− 
|| = infα ||ω ◦ α− 
||∞ with the infimum taken over increasing repara-
meterizations.

This result can be derived from themain theorem of [21]. However, let us sketch the
argument. Another way to construct the Brownian loop measure is by the following
rooted measure. Suppose ω : [0, tω] → C is a loop, that is, a continuous function with
ω(0) = tω. We can describe any loop ω as a triple (z, tω, ω̃) where z ∈ C, tω > 0
and ω̃[0, tω] → C is a loop with ω̃(0) = ω̃(tω) = 0. The loop ω is obtained from
(z, tω, ω̃) by translation. We consider the measure on (z, tω, ω̃) given by

area × (2π t)−2 dt × (bridget ) (2.12)

where bridget means the probabilitymeasure associated to two-dimensional Brownian
motions Bt , 0 � s � t conditioned so that B0 = Bt = 0. The factor (2π t)−2 can
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be considered as t−1 pt (0, 0). where pt is the transition kernel for a two-dimensional
Brownian motion. This measure, considered as a measure on unrooted loops, is the
same as the measure

μ = 1

π

∫ 2π

0

∫ ∞

0
μbub

rD (reiθ )rdrdθ.

The expression for μ associates to each unrooted loop the rooted loop obtained by
choosing the point farthest from the origin. The expression (2.12) chooses the root
using the uniform distribution on [0, tω].

Similarly, a rooted random walk loop can be written as (z, 2n, l) where l is a loop
with 
(0) = 0 and |
| = 2n. Then the measure on such triples is

(counting measure)× (2n)−1 P{S2n = 0} × (bridgen).

Here Sn is a simple random walk starting at the origin, and bridgen denotes the prob-
ability measure on [S0, S1, . . . , S2n] conditioned that S2n = 0. Using the relation
P{S2n = 0} = (πn)−1 + O(n−2), we can now see our coupling of the two com-
ponents. For the first component, the root, we couple Brownian loops rooted at Sz

with random walk loops rooted at z. We couple Brownian loops with time duration
n− 1

2 � t
 < n+ 1
2 with randomwalk loops of time duration 2n. Thenwe use a version

of the KMT coupling (see Theorem 2.2) of the random walk and Brownian loops to
couple the paths. One can then check that this coupling has the desired properties.

2.6 KMT coupling

Wewill use in a number of places the Komlós,Major, and Tusnády (KMT) coupling of
random walk and Brownian motion. For a proof of the one-dimensional case, see [12]
or [17] and the two-dimensional case follows using a standard trick [17, Theorem
7.6.1].

Theorem 2.2 There exists a coupling of planar Brownian motion B and two-
dimensional simple random walk S with B0 = S0, and a constant c > 0 such that for
every λ > 0, every n ∈ R+,

P

(
sup

0�t�n∨Tn∨τn

|S2t − Bt | > c(λ+ 1) log n

)
� cn−λ.

where Tn = min{t : |S2n| � n}, τn = min{t : |Bt | � n}.

3 The combinatorial identity: proof of Theorem 1.3

This section states and proves Theorem 3.1 which is a more general version of Theo-
rem 1.3. For the statement of the theorem some more notation is needed.
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Fix a discrete domain A ∈ A. Recall the definition of J, Q and q from Sect. 1.3
and that our branch cut is β = f −1A ([0, 1]) which runs from w0 to ∂ DA in DA. We
will assume that rA is sufficiently large so that [0, 1] ∩ β = ∅. This is possible, since
f ′A(w0) > 0.
Let

λ = [x0, . . . , xk] ⊂ A

be a self-avoiding walk (SAW) containing the ordered edge [0, 1] with dist(0, ∂ D) �
2 diam λ. Given λ write

λR = [xk, . . . , x0]

for its time-reversal. Note that λR contains the ordered edge [1, 0]. For given a =
[a−, a+], b = [b−, b+] ∈ ∂e A we make the following definitions.

– Let WSAW(λ)+ = WSAW
+(a, b; λ, A) be the set of SAWs from a to b in A that

contain the walk λ. That is,WSAW(λ)+ consists of walks η ∈WSAW
+ that can be

written as η1 ⊕ λ⊕ η2, where η1, η2 are SAWs connecting a with x0 and xk with
b, respectively.

– LetWSAW(λ)− =WSAW
+(a, b; λR, A) be the set of SAWs from a to b in A that

contain the reversal of λ.
– Let WSAW(λ) =WSAW(a, b; λ, A) =WSAW(λ)+ ∪WSAW(λ)−.

Wewill sometimes suppress the dependence on λ andwrite justWSAW
+,WSAW

−, and
WSAW for WSAW

+(λ),WSAW
−(λ), and WSAW(λ); this should not cause confusion.

For topological reasons (see [16] for a detailed argument), every self-avoiding path η

from a to b traversing the ordered edge [0, 1] yields the same value of Q(η). Moreover,
if η′ is another SAW from a to b traversing [1, 0], then Q(η′) = −Q(η). Indeed,
consider ζ to be any boundary arc connecting a to b. Then one of the loops η⊕ ζ and
η′⊕ζ winds aroundw0 exactly once and the other does not, so Q(η⊕ζ )+Q(η′⊕ζ ) =
0, implying (see (1.3)) that Q(ζ )(Q(η)+ Q(η′)) = 0. Without loss of generality, we
will assume that a, b are labelled in such a way that

η ∈WSAW(λ)+ �⇒ Q(η) = +1; η ∈WSAW(λ)− �⇒ Q(η) = −1.

Recall that JA is the set of unrooted random walk loops in A with odd winding
number about w0.

Set K = A\λ and define

ΔK (x0 → a, xk → b) = H∂K (x0, a)H∂K (xk, b)− H∂K (x0, b)H∂K (xk, a)

Δ
q
K (x0 → a, xk → b) = Hq

∂K (x0, a)Hq
∂K (xk, b)− Hq

∂K (x0, b)Hq
∂K (xk, a),

where

H∂K (x, a) =
∑

ω:x→a
ω⊂K

p(ω), Hq
∂K (x, a) =

∑
ω:x→a
ω⊂K

q(ω),
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are the boundary Poisson kernels with the sums taken over walks started from the
vertex x , taking the first step into K and then exiting K using the edge a ∈ ∂e A.
Notice that ΔK ,Δ

q
K can be written as determinants.

Theorem 3.1 Under the assumptions above,∑
η∈WSAW

p̂(η) = p(λ)e2m[JA]Fq(λ; A)
∣∣Δq

K (x0 → a, xk → b)
∣∣ ,

where WSAW =WSAW(λ). In fact,

∑
η∈WSAW

+
p̂(η) = p(λ)

2

[
e2m[JA]Fq(λ; A)|Δq

K (x0 → a, xk → b) |

+F(λ; A)ΔK (x0 → a, xk → b)
]

and
∑

η∈WSAW
−

p̂(η) = p(λ)

2

[
e2m[JA]Fq(λ; A)|Δq

K (x0 → a, xk → b) |

−F(λ; A)ΔK (x0 → a, xk → b)
]
,

where WSAW
+ =WSAW

+(λ) and WSAW
− =WSAW

−(λ).

We will use this theorem only in the special case when λ = [0, 1] where in the
notation of the introduction the theorem gives

∑
η∈WSAW

p̂(η) = 1

4
Fq([0, 1]; A) e2m[JA] |RA(0, a)RA(1, b)− RA(0, b)RA(1, a)| .

If we divide both sides of this equation by H∂ A(a, b) we get (1.5) as stated in the
introduction.

Before proving Theorem 3.1 we need a lemma.

Lemma 3.1 Let η : a→b, a, b ∈ ∂e A, be a SAW in A containing the (unordered)
edge [0, 1]. Then

Fq(η; A) = F(η; A) exp{−2m[JA]},

where JA is the set of unrooted loops in A with odd winding number about w0.

Proof For a random walk loop 
, let wind(
) denote its winding number about w0.
Then the definition of q implies that

mq ({
 ⊂ A : 
 ∩ η 
= ∅}) =m ({
 ⊂ A : 
 ∩ η 
= ∅, wind(
) even})
− m ({
 ⊂ A : 
 ∩ η 
= ∅, wind(
) odd})
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=m ({
 ⊂ A : 
 ∩ η 
= ∅})
− 2m ({
 ⊂ A : 
 ∩ η 
= ∅, wind(
) odd}) .

But any loop with odd winding number must separate w0 from ∂ A, and so intersect
every SAW η : a→b containing [0, 1]. This implies that

mq ({
 ⊂ A : 
 ∩ η 
= ∅}) = m ({
 ⊂ A : 
 ∩ η 
= ∅})− 2m ({
 ⊂ A : wind(
) odd}).

By exponentiating both sides we get the lemma. ��
Proof of Theorem 3.1 Fix λ as in the statement for the rest of the proof. We write
W,W± for WSAW(λ),WSAW

±(λ). The idea is to write the sums
∑

η∈W+ p̂(η) and∑
η∈W− p̂(η) in terms of both random walk and q-random walk quantities via the

formulas (see (2.6) and Lemma 3.1)

p̂(η) = p(η)F(η; A), F(η; A) = e2m(JA)Fq(η; A),

and the facts that p(η) = ±q(η), η ∈ W±. After resummation, when we add and
subtract the resulting expressions, a determinant identity due to Fomin (see Sect. 2.4)
can be used to write the expressions in terms of random walk determinants ΔA\λ and
Δ

q
A\λ that do not involve loop-erased walk quantities.

Now we turn to the details. Write K = A\λ,Δ = ΔK ,Δq = Δ
q
K . First observe

that any η ∈W+ can be written as

η = (η1)R ⊕ λ⊕ η2,

where η1, η2 are nonintersecting SAWs in K connecting x0 with a and xk with b,
respectively. Note that any loop intersecting η either intersects λ ⊂ η or it does not.
Consequently, by (2.3) and (2.6), we can write

p̂(η) = p(η)F(η; A) = p(η)F(λ; A)F(η; K ).

Using this and the above decomposition, we see that

∑
η∈W+

p̂(η) =
∑

η∈W+
p(η)F(η; A)

= p(λ)F(λ; A)
∑

η1:x0→a
η2:xk→b
η1∩η2=∅

p(η1)p(η2)F(η1 ∪ η2; K ), (3.1)

where the sum is over all pairs of nonintersecting SAWs η1 : x0→a and η2 : xk→b
in K . Similarly, any η ∈W− can be decomposed

η = (η2)R ⊕ (λ)R ⊕ η1,

123



Scaling limit of the loop-erased random walk Green’s function 293

where η2 : xk→a and η1 : x0→b are nonintersecting SAWs in K . We see that

∑
η∈W−

p̂(η) = p(λ)F(λ; A)
∑

η1:x0→b
η2:xk→a
η1∩η2=∅

p(η1)p(η2)F(η1 ∪ η2; K ). (3.2)

(We are only summing over paths in K .) Let us now consider the sum on the right-hand
side of (3.1). Then using (2.3) we have

∑
η1:x0→a
η2:xk→b
η1∩η2=∅

p(η1)p(η2)F(η1 ∪ η2; K ) =
∑

η1:x0→a
η2:xk→b
η1∩η2=∅

p(η1)F(η1; K )p(η2)F(η2; K\η1)

=
∑

ω1:x0→a

∑
ω2:xk→b

ω2∩LE[ω1]=∅

p(ω1)p(ω2),

where ω1 : x0 → a and ω2 : xk → b are SAWs in K . An identical argument proves
the corresponding identity (interchanging x0 and xk) starting from the sum in the right-
hand side of (3.2). If we take the difference of the two expressions, Fomin’s identity
implies that we may drop the non-intersection condition:

∑
ω1:x0→a

∑
ω2:xk→b

ω2∩LE[ω1]=∅

p(ω1)p(ω2)−
∑

ω1:xk→a

∑
ω2:x0→b

ω2∩LE[ω1]=∅

p(ω1)p(ω2)

=
∑

ω1:x0→a
ω2:xk→b

p(ω1)p(ω2)−
∑

ω1:xk→a
ω2:x0→b

p(ω1)p(ω2)

= H∂K (x0, a)H∂K (xk, b)− H∂K (xk, a)H∂K (x0, b)

= Δ(x0 → a, xk → b) .

(Again, we are only considering paths in K .) In other words, subtracting (3.2) from
(3.1) gives

∑
η∈W+

p̂(η)−
∑

η∈W−
p̂(η) = p(λ) F(λ; A)Δ (x0 → a, xk → b) (3.3)

and the right-hand side involves only randomwalk quantities with no non-intersection
conditions. Up to now we have not used the signed weights. The idea is to express the
sum

∑
η∈W+ p̂(η)+∑

η∈W− p̂(η) as a difference involving q̂ to which we can apply
the Fomin argument.

We first claim that
∑

η∈W+
p̂(η) = ΓA

∑
η∈W+

q̂(η), where ΓA = exp{2m[JA]}. (3.4)

123



294 C. Beneš et al.

To see this, recall that q̂(η) = q(η)Fq(η; A). We already noted that q(η) = p(η) for
η ∈W+, so Lemma 3.1 gives (3.4). Using that p(η) = −q(η) for η ∈W−, a similar
argument shows that ∑

η∈W−
p̂(η) = −ΓA

∑
η∈W−

q̂(η). (3.5)

Hence, adding (3.4) and (3.5) gives

∑
η∈W+

p̂(η)+
∑

η∈W−
p̂(η) = ΓA

⎛
⎝ ∑

η∈W+
q̂(η)−

∑
η∈W−

q̂(η)

⎞
⎠ .

We can now argue exactly as in the proof of (3.3) replacing p by q; it makes no
difference, and in this way we get

∑
η∈W+

p̂(η)+
∑

η∈W−
p̂(η) = q(λ)ΓA Fq(λ; A)Δq(x0 → a, xk → b)

= p(λ) ΓA Fq(λ; A)
∣∣Δq(x0 → a, xk → b)

∣∣ , (3.6)

where the last step uses that the left-hand side of (3.6) is positive and that |q(λ)| =
p(λ). The theorem follows by adding and subtracting (3.3) and (3.6). ��

4 Comparison of loop measures: proof of Theorem 1.4

In this section we prove the main estimate on the random walk loop measure by
comparing it with the corresponding quantity for the Brownian loop measure.

We recall some notation. Given A ∈ A,JA is the set of unrooted randomwalk loops
in A with odd winding number about w0. Given a simply connected domain D � 0
we write J̃D for the set of unrooted Brownian loops with odd winding number about
0. Let ψD : D → D be the conformal map with ψD(0) = 0, ψ ′D(0) > 0 and ψ ′(0) is
the conformal radius of D from 0. Given a lattice domain A ⊂ A with corresponding
D = DA we define rA = rDA . For R > 0, set

B(R) = {z ∈ C : |z| < R}, B(R) = {z ∈ Z
2 : |z| < R}.

Theorem 4.1 There exist 0 < u, c0, c <∞ such that the following holds. Let A ∈ A
and let DA be the associated simply connected domain. Then

∣∣∣∣m (JA)− 1

8
log rA − c0

∣∣∣∣ � c r−u
A .

Our proof does not determine the value of c0. Before giving the proof we need a
few lemmas.
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Lemma 4.1 There exists c < ∞ such that if D is a simply connected domain con-
taining the origin with conformal radius r � 5, then

∣∣∣∣μ
(
J̃D\J̃D

)
− log r

8

∣∣∣∣ � c r−1.

Proof For t > 1, let φ(t) = μ
(
J̃tD\J̃D

)
. Note that if 1 < t < s, then conformal

invariance of μ implies that φ(s) = φ(t) + φ(s/t), that is, φ(t) = α log t for some
α. The constant α can be computed, see Proposition 4.1 of [16],

μ
(
J̃tD\J̃D

)
= 1

8
log t. (4.1)

Distortion estimates imply that there is a universal c such that

ψD

(
B(r−1 − cr−2)

)
⊂ D ⊂ ψD

(
B(r−1 + cr−2)

)

Hence, by conformal invariance and (4.1),

μ
(
J̃D\J̃D

)
= 1

8
log [r ± c] = 1

8
log r + O(r−1).

��
Given Lemma 4.1 and the fact that the conformal radius of DA with respect to 0

and w0 are the same up to a multiplicative error of magnitude 1+O(r−1A ), we see that
to prove Theorem 4.1, it suffices to prove that there exists c0 such that

m(JA) = μ
(
J̃D\J̃D

)
+ c0 + O(r−u

A ), D = DA.

If we let k be the largest integer such that ek+1
D ⊂ D, then we can write

m(JA)− μ
(
J̃D\J̃D

)

=
[
m(JA\JBk )− μ(J̃D\J̃Bk )

]
+

k∑
j=1

[
m(JB j \JB j−1)− μ(J̃B j \J̃B j−1)

]
,

where B j = B(e j ),B j = B(e j ). (There are no random walk loops of odd winding
number which stay in D.) The Koebe-1/4 theorem implies that (C\D) ∩ {|z| = r} is
nonempty; we write r = rD . Note that this implies that any loop in D (either random
walk or Brownian motion) with odd winding number must intersect rD.

The theorem then follows from the following estimate. The phrasing of the lemma is
rather technical but the basic idea is that the measures of the set of random walk loops
and Brownian loops with odd winding number that are in D and are not contained in
a smaller disk δrD are almost the same.
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We use the coupling of random walk and Brownian loops and note that the pairs
of coupled loops will have these properties unless one of the following possibilities
occur, each of which will be proven to have small measure.

– The Brownian loop and the random walk loop are not very close. The loops are
coupled in such a way that this happens with small measure.

– One of the loops (in a coupled pair) is contained in D but the other is not. If
the loops are close this would require the loop that is inside D to be close to the
boundary without intersecting it. The measure of such loops can be controlled
using Beurling-type estimates.

– Similarly, one loop can intersect rD or be contained in δrD while the other is not.
Again, this requires one of the loops to be near a circle without intersecting the
circle.

– The final “bad” possibility is that the loops are close but they are so close to the
origin that the winding numbers can differ. The measure of walks that are close
to the origin is sufficiently large that we cannot just ignore this term. However,
if a loop (random walk or Brownian motion) gets close to the origin it is almost
equally likely to have an odd number as an even winding number. This allows us to
show that the random walk and Brownian loop measures of such loops are nearly
the same.

Lemma 4.2 There exist u > 0, c <∞ such that the following holds for all δ � 1/10.
Suppose D is a simply connected domain containing the origin and let r = rD. Let μ

denote the Brownian loop measure and m the random walk loop measure.

– Let I (
) (resp., Ĩ (ω)) be the indicator function of the event that a random walk
loop 
 (resp., a Brownian loop ω) is a subset of D, intersects rD, is not a subset
of δrD.

– Let U (
) (resp., Ũ (ω)) denote the indicator function that the winding number of

 (resp., ω) about w0 (resp., 0) is odd.

Then,

∣∣∣μ[ Ĩ (ω) Ũ (ω)] − m[I (
) U (
)]
∣∣∣ � c r−u .

Here we are writing μ[·] for the integral with respect to μ and similarly for m[·]
and ν[·] in the proof below.
Proof We will be doing detailed estimates for the random walk loop measure; the
Brownian loop measure estimates are done similarly. We will, however, prove one
estimate for the Brownian loop measure in order to explicitly illustrate this point. The
proof of this lemma will complete the proof of Theorem 4.1.

It will be useful to fix an enumeration {z0, z1, . . .} of Z
2 such that |z j | is nonde-

creasing and we let Vj = {z0, . . . , z j }. In particular, z0 = 0. We will first consider
loops that do not lie in r1+u

D for some u > 0. As already noted, any loop in D with
odd winding number must intersect rD.

– Claim 1 The random walk and Brownian loop measures of loops that intersect
both rD and the circle of radius r1+u is O(r−u).
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rD

δrD

rD

r1+u
D r1+u

D

D D

zj

Fig. 1 Proof of Lemma 4.2. Left Proof of Claim 1. If 
 is a good loop starting from z j , then it must first

exit the disk of radius 2|z j |without hitting Vj−1 (represented by the smallest disk), get to ∂rD, exit r1+u
D,

then get back to rD all while not exiting D, and finally return to z j avoiding Vj−1. Right Proof of Claim

2. A random walk and Brownian loop are coupled and close, inside r1+u
D but |I − Ĩ | > 0. One of three

possibilities why the latter may hold is that exactly one of the loops exits D. In that case the other loop must
get near ∂ D without exiting D

We will prove this for the random walk measure; the Brownian loop estimate is
done similarly (Fig. 1). Let L denote the set of random walk loops in D that intersect
both rD and the circle of radius r1+u . Then

L =
⋃
|z j |<r

L∗j ,

where L∗j denotes the set of such loops [
] such that z j ∈ 
 and 
 ∩ Vj−1 = ∅. For
any [
] ∈ L∗j we call a rooted representative


 = [
0, 
1, . . . , 
2n]

good if 
0 = z j and if we define k to be the first index with |
k | � r1+u , then

s 
= z j , 1 � s � k. Let Li

j denote the set of unrooted loops that have i good

representatives. Then L1
j is a set of elementary loops as in the proof of Lemma 2.1. In

particular,

m(L∗j ) = − log
[
1− p(L1

j )
]

For j = 0, a good loop must start from 0, then reach the disk of radius r without
returning to 0. This has probability O(1/ log r). Given this, the Beurling estimate
implies that the probability of reaching the disk of radius r1+u without leaving D is
O(r−u/2). Given this, the probability to return to the disk of radius r without leaving
D is O(r−u/2). Given this, the expected number of returns to the origin before leaving
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D is O(1). Combining all of these estimates, we see that p(L1
0) = O(r−u/ log r) and

hence m(L∗0) = O(r−u/ log r).

Let us now consider elementary loops for j > 0. Let x = |z j |. Using the gambler’s
ruin estimate, the probability that the random walk reaches the circle of radius 2x
without hitting Vj−1 is O(1/x). Given this, the probability that the walk reaches the
circle of radius r without hitting Vj−1 is O(1 ∧ [log(r/x)]−1). Given this, as above,
the probability to reach the circle of radius r1+u and return to the circle of radius r
without leaving D is O(r−u). Given this, the probability to reach within distance 2x
of z j is O(1 ∧ [log(r/x)]−1). Given this, the probability that the next visit to Vj is at
z j is O(x−1). Given this, the expected number of visits to z j before leaving D\Vj−1
is O(1). Combining all of these estimates, we see that

m(L∗j ) = p(L1
j )

[
1+ O(p(L1

j ))
]

� c

|z j |2 ru

[
1 ∧ 1

log2(r/|z j |)

]
. (4.2)

By summing over |z j | � r , we get m(L) = O(r−u) which establishes Claim 1.
We will now use the coupling as described in Lemma 2.3. Let us write (ω, 
) for

a Brownian motion/random walk loop pair. This coupling defines (ω, 
) on the same
measure space (M, ν) such that

– The marginal measure on ω restricted to nontrivial loops is μ.
– The marginal measure on 
 restricted to nontrivial loops is m.
– Let E denote the set of (ω, 
) such that at least one of the paths has diameter greater
than r1−u and is contained in the disk of radius r1+u and such that ‖ω − 
‖∞ �
c0 log r . (Here by ‖ · ‖∞ we mean the infimum of the supremum norm over all
parametrizations.) Then ν(E) � O(r−u).

Given Claim 1, we see that it suffices to show that |ν( Ĩ Ũ − I U )| = O(r−u). We will
write E for 1E . Let K (
) (resp., K̃ (ω)) denote the indicator function that dist(0, 
) �
r1/2 (resp., dist(0, ω) � r1/2). Note that

U I − Ũ Ĩ = U I K − Ũ Ĩ K̃ + Ũ Ĩ (K̃ − K )+ (U I − Ũ Ĩ ) (1− K ).

Note that if K = 0 and ‖ω − 
‖∞ � c0 log r , then (for r sufficiently large) U = Ũ .
Therefore,

|ν( Ĩ Ũ − I U )| � |ν( Ĩ Ũ K̃ )− ν(IU K )| + ν[ Ĩ Ũ |K̃ − K |]
+ν[| Ĩ − I | (Ũ +U )] + ν(E).

Therefore it suffices to establish

– Claim 2

ν[( Ĩ + I ) |K̃ − K |] + ν[| Ĩ − I |] � O(r−u),

and
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– Claim 3

|ν( Ĩ Ũ K̃ )− ν(IU K )| � O(r−u).

To prove Claim 2, we first note that if the loops are coupled, and IU (
) 
= 0, then
diam(
) � δr and similarly for the Brownian motion loops (Fig. 1). Also, if (ω, 
)

are in the disk of radius r1+u with E(ω, 
) = 0 and I 
= Ĩ , then either the random
walk loop or the Brownian loop does one of the following:

– gets within distance c0 log r of ∂ D without leaving D
– gets within distance c0 log r of the circle of radius r without hitting the circle
– gets within distance c0 log r of the circle of radius δr without hitting the circle.

We can estimate the measure of loops that satisfy this as well as diam � δr , by
using the rooted loop measure. We will do the random walk case for the first bullet;
the Brownian motion case and the other two bullets are done similarly. Let ε be any
positive number. Note that the root must be in the disk of radius r1+u and hence there
are O(r2(1+u)) choices for the root. Using standard large deviations estimates, except
for a set of loops of measure o(r−5), these loops must have time duration at least
r2−ε . We consider the probability that a random walk returns to the origin at time 2n
after getting within distance O(log r) of ∂ D but not leaving D. We claim that this
is O(log r/n5/4). To see this, first note that by considering the reversal of the walk,
we can see this is bounded above by the probability that the random walk gets within
distance O(log r) in the first n steps, stays in ∂ D, and then returns to the original point
at time 2n. Given that thewalk is within distance O(log r) of ∂ D, the Beurling estimate
implies that the probability of not leaving D in the next n/2 steps is O(log r/n1/4).
Given this, the probability of being at the origin at time 2n is O(n−1). The rooted
loop measure puts an extra factor of (2n)−1 in. Therefore the rooted loop measure
of loops rooted at z of time duration 2n � r2−ε that have diameter at least δr , and
get within distance c0 log r of ∂ D but stay in D is O(log r/n9/4). By summing over
2n � r2−ε , we see that the rooted loop measure of loops rooted at z that have diameter
at least δr , get within distance c0 log r of ∂ D but stay in D is O(r−(2−2ε)5/4). If we
sum over |z| � r1+u , we get that the loop measure (rooted or unrooted) of such loops

is O(r2u+ 5ε
2 − 1

2 ) � O(r−1/4) for u sufficiently small. This gives the upper bound on
ν[| Ĩ − I |].

Similarly, if E(ω, 
) = 0 , K (
) 
= K̃ (ω), and I (
)+ Ĩ (ω) � 1, then

r1/2 − c0 log r � dist(0, 
) � r1/2 + c0 log r.

and for r sufficiently large,

diam(
) � δr

3
.

Therefore ν[(I + Ĩ )|K − K̃ | (1 − E)] is bounded above by twice the m measure of
the set of loops 
 that satisfy these conditions. This can be estimated as in the previous
paragraph (or using an unrooted loop measure estimate as in the beginning of this
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proof); we omit the details since we have already written out analogous estimates.
This finishes the proof of Claim 2.

For the final claim, first note that

|ν( Ĩ K̃ )− ν(I K )| � ν[( Ĩ + I ) |K̃ − K |] + ν[| Ĩ − I |],

and hence by Claim 2,

|ν( Ĩ K̃ )− ν(I K )| = O(r−u).

Therefore to prove Claim 3 it suffices to show that

|ν( Ĩ Ũ K̃ )− ν(IU K )| = 1

2
|ν( Ĩ K̃ )− ν(I K )| + O(r−u).

We will prove that the Brownian loop measure of loops of odd and even winding
numbers, respectively, that intersect r1/2D and δrT (we write T = ∂D), are the same
up to a small error (Fig. 2). (This estimate for Brownian loops can be done by explicit
computation, but we give an argument that also works for random walk.) Recalling
(2.11) and (2.9) we see that it will be enough to prove this for the Brownian bubble
measure of bubbles in Δs = {|z| > s} that are attached at 0 < s � r1/2 and
intersect δrT; it will be enough to do the argument for s = r1/2. Choose ζ ∈ δrT

arbitrarily. Consider a Brownian bubble in Δr1/2 attached at r1/2 that intersects δrT

for the first time at ζ . The initial part of the bubble, the part which connects r1/2

with ζ , has the distribution of a Brownian excursion between these points in the
annulus δrD\r1/2D. We will show that this path is about as likely to have odd as even
winding number. For k = 1, 2, . . . , �log r1/2−2�, let Ak be the annuluswith boundary
components δr2−(k+1)

T and δr2−k
T. Note that the probability that an excursion as

above separates the two boundary components of Ak between its first hitting times
of the boundary components is uniformly bounded away from 0 independently of
k, r . (This follows from a harmonic measure estimate for Brownian motion and for
the excursion by comparing Poisson kernels.) This means the excursion has positive
probability (independent of r, k) to change winding number parity when crossing each
annulus Ak and that the hitting distributions of the outer boundary of Ak for excursions
of odd and even winding number (up to that hitting time) are uniformly comparable.
We may therefore couple two excursions from r1/2 in such a way that with probability
1 − O(r−u) they have different winding number parity when arriving at ζ , e.g., as
follows: first couple the two sequences of annulus hitting points (in decreasing k
order). This can be done so that the sequences eventually agree with large probability.
(See [24, Section 1.5].) Then given the hitting points, sample the subpaths connecting
these hitting points. The paths couple (and run together) after the point at which the
hitting points agree and the winding number parities (at the hitting time) are different.
Since constants are independent of r, k, the excursions couple with probability c > 0
(independent of r, k) in each of the annuli, and so the paths couple with probability
1−O((1−c)log r1/2) = 1−O(r−u) for u = u(c) > 0. This shows that the probability
of the loop attached at r1/2 having odd winding number equals the probability of the
loop having even winding number up to an error of O(r−u). The analogous argument
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δrD

r1/2D

ζ

Fig. 2 Proof of Claim 3 of Lemma 4.2. We consider loops that get close to 0, that is, enter r1/2D and
that are not contained in δrD. Starting from inside r1/2D, the first part of such a loop (which is the only
part shown in the diagram) can be written as an h-process aiming at ζ ∈ δr∂D. In each dyadic annulus
the probability to change parity of the winding number is uniformly bounded from below. Hence the exit
distributions (at the annulus boundary component of larger radius) of conditioned random walks/Brownian
h-processes of odd and even winding number are uniformly comparable. This implies that the paths of
odd/even winding number can be coupled with positive probability in each annulus

works for the randomwalk loops and sowe have established Claim 3, which completes
the proof of the lemma as well as Theorem 4.1. ��

5 Asymptotics of Λ: proof of Theorem 1.5

In this section we study the asymptotics of ΛA(z, a) = RA(z, a)/HA(z, a), as rA →
∞. We recall that RA(z, a) = Ez[Q(S[0, τ ])Ia]where S = Sz is simple randomwalk
from z, Ia is as defined in (1.4), and that HA(z, a) = Pz (Sτ = a) is discrete harmonic
measure. Consequently we have

ΛA(z, a) = RA(z, a)

HA(z, a)
= Ez,a[Q(S[0, τ ])I ], z ∈ A, (5.1)

where I = 1{S[1, τ ] ∩ {0, 1} = ∅} and Ez,a denotes expectation with respect to the
measure under which S is a simple random walk from z conditioned to exit A at a.

5.1 Continuum functions

Given (5.1) and the fact that simple random walk converges to Brownian motion, we
would expect any scaling limit of ΛA(0, a) to be the corresponding quantity with
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0 β

0 2π 4π

H

a

α
D ẑ

z

â â + 2π

β̂ α̂

Fig. 3 The construction of the continuum observable λ(z, a) in D. Left We consider a Brownian h-process
W inD from z conditioned to exitD at a.Right W is lifted to a continuous process Ŵ inH by themultivalued
function F(w) = −i logw starting from ẑ, the point in F(z) with real part in [0, 2π). The random variable
Q equals +1 if Ŵ exits H in {â + 4kπ, k ∈ Z} and −1 otherwise and λ is the expected value of Q with
respect to the law of W . By symmetry λ(z, a) = 0 for z ∈ α, the antipodal line relative to a. For paths
avoiding α, the value of Q depends only on whether α ∪ β separates z from a in D

random walk replaced by an h-transformed Brownian motion conditioned to exit D
at a ∈ ∂ D. Here we describe the quantity in the continuum (Fig. 3).

We will do the construction in the unit disk D; we can use conformal invariance
to define the functions in other simply connected domains. Let β denote the line
segment [0, 1) ⊂ D. Let a = e2iθa , 0 < θa < π , and let α = α(a) = {w : w =
rei(2θa+π), r ∈ (0, 1)} be the antipodal radius relative to a. Let Pz,a be a probability
measure under which the process Wt , t ∈ [0, T ], is a Brownian h-process inD started
from z conditioned to exitD at a. Here T is the hitting time of ∂D. For each realization
of the process W , we, roughly speaking, let Q equal±1 depending onwhether the path
W [0, T ] intersects β an even or an odd number of times. This is a bit imprecise since
there are an infinite number of intersections. One way to make it precise by lifting by
the multi-valued logarithm F(z) = −i log z. The image of β, F(β), is the union of
the 2π -translates of the positive imaginary axis. If we choose a particular image of z,
say ẑ, then there is a corresponding image â of a such that â is on the boundary of the
connected component of H\F(β) that contains ẑ. Once ẑ is given, the h-process is
mapped to an h-process Ŵt in H conditioned to leave H at F(a) = {â+2πk : k ∈ Z}.
Then Q = +1 if Ŵ exits H at {â + 4πk : k ∈ Z}, and Q = −1 if Ŵ exits H at
{â + 4π(k + 1/2) : k ∈ Z}. For z ∈ D, a ∈ ∂D, let

λ(z, a) = λD(z, a) = Ez,a[Q].

For the simply connected domain DA, we define for z ∈ DA and a ∈ ∂ DA

λA(z, a) = λ( f A(z), f A(a)), (5.2)

where we recall f A : DA → D with f A(w0) = 0, f ′A(w0) > 0.

Remark 5.1 We can also equivalently consider a function λ̂ living on the Riemann
surface given by the branched two-cover of D with branch cut β. We lift the h-process
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inD so that it starts on the top sheet of the two-cover. The observable is the expectation
of the random variable giving +1 if the h-process reaches the boundary on the top
sheet and −1 if it reaches it on the bottom sheet. Then λ̂ only changes sign when
evaluated at the two different points in the fiber of z ∈ D and so could in physics
language be called a “spinor”. See [5] for a similar construction in a related context.

Note that symmetry implies that λ(z; a) = 0 for z ∈ α. Let τ = inf{t : Wt ∈ α}. If
τ > T , then the value of Q is determined: it is+1 if z and a are in the same component
of D\(α ∪ β) and −1 if they are in different components. Therefore,

|λ(z, a)| = |Ez,a[Q; τ > T ]| = Pz,a (W [0, T ] ∩ α = ∅) = hD\α(z, a)

hD(z, a)
, (5.3)

the last expression being a quotient of Poisson kernels.

Lemma 5.1 If 0 � θ < π , then as ε ↓ 0,

λ(−ε; a) = 2 ε1/2 sin θa + O(ε).

Proof The map

φ(z) = 2
√

z

z + 1
, φ′(z) = 1− z√

z (z + 1)2

is a conformal transformation of D\[0, 1) onto the upper half plane H with

φ(e2iθ ) = 1

cos θ
, |φ′(e2iθ )| = sin θ

2 cos2 θ
, φ(εe2iμ) = 2 ε1/2 eiμ [1+ O(ε)].

The scaling rule for the Poisson kernel implies that

π hD\[0,1)(z, ei2θ ) = π |φ′(ei2θ )| hH(φ(z), φ(ei2θ ))

= |φ′(ei2θ )| Im[φ(z)]
[φ(ei2θ )− Re φ(z)]2 + [Im φ(z)]2 .

In particular,

2π hD\[0,1)(εei2μ, ei2θ ) = 2ε1/2 sinμ sin θ + O(ε).

Therefore, by rotational symmetry, with a = e2iθa ,

2πhD\α(−ε, a) = 2πhD\[0,1)(εei2θa ,−1) = 2ε1/2 sin θa + O (ε) .

Using in (5.3) the fact that for any a ∈ ∂D, λ(−ε, a) > 0 and that 2πhD(−ε, ei2θa ) =
1+ O (ε) now concludes the proof. ��
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5.2 Asymptotics of ΛA(0, a)

Our construction will be somewhat neater if we start with the observation in the next
lemma.

Lemma 5.2 There exists ε > 0 such that the following holds. Suppose D is a simply
connected domain containing the origin and f : D → D is a conformal transforma-
tion with f (0) = 0. Let S = {x + iy : |x |, |y| < | f ′(0)|ε} be a square centered at
the origin and for 0 � t < 1, let γ (t) = f (t). Let σ = inf{t : γ (t) ∈ ∂S}. Then
γ [σ, 1) ∩ S = ∅.

Proof This can be proved using standard distortion estimates for conformal maps. ��
We now set some notation.

– Let Un = {(x, y) ∈ Z
2 : |x | < n, |y| < n} denote the discrete square centered at

0 of side length 2n and U−
n = Un\{0, . . . , n} be the slit discrete square.

– Let V = Vn, V− = V−n be the corresponding continuum domains

Vn = {x + iy : |x |, |y| < n}, V−n = V \(0, n].

– Let ε be a fixed positive number as in Lemma 5.2. For every A, let n A = �εrA� =
ε rA + O(1) and let UA, U−

A , VA, V−A denote Un A , U−
n A

, Vn A , V−n A
, respectively.

– Let β∗ = (0, w0] ∪ f −1A (β). The curve β∗ goes from 0 to f −1A (1) ∈ ∂ DA. By
Lemma 5.2 we can see that after the curve β∗ hits ∂VA it does not return to VA.
We will also write β∗ for the arc β∗ ∩ VA.

– For z, w ∈ V−A \β∗ we define Qz,w = −1 if β∗ separates z from w in V−A and +1
otherwise.

– We use S j and Bt , respectively, to denote random walk and Brownian motion, as
well as the h-processes defined from them. The probability measure will always
make it clear whether we are dealing with the unconditioned or the conditioned
process. We use Pz,a, Ez,a to denote probabilities and expectations with respect
to an h-process conditioned to leave the domain at a. We will use this notation
for both S j and Bt . This should not cause confusion. All h-processes in this paper
will be those given by boundary points, that is, where the harmonic function is the
Poisson kernel. We recall that

Pz,a{(S0, . . . Sk) = (ω0, . . . , ωk)} = HA(ωk, a)

HA(z, a)
Pz{(S0, . . . Sk) = (ω0, . . . , ωk)},

(5.4)
with a similar formula for the Brownian h-process.

Lemma 5.3 We have

ΛA(0, a) =
∑

w∈∂UA

H∂U−
A
(0, w)

HA(w, a)

HA(0, a)
Q0,wΛA(w, a).

Proof We write U, U− for UA, U−
A . Let σ = min{k � 1 : Sk ∈ N ∪ {0}} (Fig. 4).

Since Sτ∧σ ∈ {0, 1} implies that I = 0, using (5.1) and the strong Markov property
applied at the stopping time ρ = inf{k � 0 : Sk ∈ ∂U−} gives
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a−a+

0

w0

f−1(β)

V −0

w0
f−1(β)

V −

Fig. 4 Proofs of Lemma 5.3 and Lemma 5.4. Left Paths that hit the horizontal slit before the boundary of
the square can be reflected and coupled. Since these paths have winding number of different parity, the total
contribution to ΛA of these paths is 0. Right Only paths reaching ∂V before the horizontal slit contribute
to ΛA , which can then be written as a sum/integral over the first visited point w of the boundary of the
square. The asymptotics of ΛA(0, a) can therefore be found by separately considering the probability of
a random walk from 0 reaching ∂V before hitting the horizontal slit (Theorem 5.1), and by using strong
approximation to compare the discretewith the continuumPoisson kernels andΛwithλ on ∂V (Theorem2.1
and Proposition 5.1, respectively)

ΛA(0, a) = E0,a[Q(S[0, ρ]) I ΛA(Sρ, a)]
= E0,a[Q(S[0, ρ])ΛA(Sρ, a); Sρ ∈ {2, . . . , n}]
+E0,a[Q(S[0, ρ])ΛA(Sρ, a) ; Sρ ∈ ∂U ]. (5.5)

Suppose ω is a nearest-neighbor path from 0 to w ∈ {2, . . . , n}, and otherwise
staying in U−. Then if ω̄ is the reflection of ω about the real axis we have Q(ω) =
−Q(ω̄). Indeed, ω ⊕ ω̄ is a loop rooted at 0 intersecting N exactly once and it is
symmetric about the real axis and so has winding number 1 about w0. Moreover, by
(5.4) ω and ω̄ have the same distribution. This implies that Q(ω) = −Q(ω̄). Since
the (reflected) paths can be coupled after the first visit to {2, . . . , n} we conclude that
the first expectation in (5.5) vanishes.

If there exists a nearest neighbor path in Ū from 0 to w ∈ ∂U that does not
intersect β∗ ∪ {0, . . . , n} except at its starting and endpoint, then any path from 0 to
w that avoids {0, . . . , n} will intersect β∗ an even number of times, yielding a value
of Q0,w = 1. Similarly, for all other w ∈ ∂U , Q0,w = −1. We then see that,

ΛA(0, a) = E0,a[Q(S[0, ρ])ΛA(Sρ, a); Sρ ∈ ∂U ]
=

∑
w∈∂U

P0,a(Sρ = w) Q0,wΛA(w, a)

=
∑

w∈∂U

H∂U−(0, w)
HA(w, a)

HA(0, a)
Q0,w ΛA(w, a).

��
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Lemma 5.4 If z = zn = −n1/2, then

λA(z, a) = O(n−3/4)+
∫

∂VA

hV−A
(z, w)

h A(w, a)

h A(z, a)
Qz,wλA(w, a) |dw|

= O(n−3/4)+
∑

w∈∂UA

hV−A
(z, w)

h A(w, a)

h A(z, a)
Qz,wλA(w, a).

Proof The proof of the first expression is similar to that of the last lemma (Fig. 4).
Note, however, since the winding is measured around w0 it is possible that when we
concatenate a path from z to the positive real axis with its reflection about the real axis
we could get a loop whose winding number about w0 is even. By topology we can see
this can only happen if the path hits η := [0, w0] ∪ [0, w0] before hitting [0,∞). By
the Beurling estimate, the probability of hitting η before hitting the positive real axis
is O(|z|−1/2). Also the value of λ on η is O(n−1/2). Therefore, this term produces an
error of size O(n−3/4) , which yields the first equality of the lemma.

For the second estimate we first note that the Beurling estimate and the covariance
rule for the Poisson kernel show that ∀w ∈ ∂V

|hV−(z, w)
h A(w, a)

h A(z, a)
Qz,w λA(w, a)| � c|hV−(z, w)| � c′|z|1/2n−3/2.

Let E be the set obtained by removing from ∂V its intersection with the six balls of
radius n1/2 centered at the four corners of V , the point at which the slit meets ∂V , and
the point at which β∗ meets ∂V . Then by the last estimate

∫
∂V

hV−(z, w)
h A(w, a)

h A(z, a)
Qz,wλA(w, a) |dw|

=
∫

E
hV−(z, w)

h A(w, a)

h A(z, a)
Qz,wλA(w, a)|dw| + O(|z|1/2n−1).

Notice that Qz,w is constant on each component of E . Derivative estimates for positive
harmonic functions show that if u, v are in the same component of E and |u− v| � 1
then

h A(u, a)

h A(z, a)
= h A(v, a)

h A(z, a)
(1+ O(n−1)).

Finally, since each point on E is distance at least n1/2 from a corner one can map to
the unit disk and compare the Poisson kernels there (using, e.g., Schwarz reflection
and the distortion theorem to compare the derivatives) to see that

hV−(z, u) = hV−(z, v)(1+ O(n−1/2)).

These estimates imply the lemma. ��
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We proceed to show that each of the factors in the expression for ΛA(0, a) in
Lemma 5.3 is close to its continuum counterpart in the decomposition of Lemma 5.4
and then appeal to Lemma 5.4 to go back to the continuum function. The estimates
naturally split into two parts. The first deals with fine asymptotics close to the tip of
the slit in the slit square and the second with what happens between the boundary of
the slit square and the boundary of A. We state the results here, but postpone the proofs
to the two subsequent subsections. We then combine them to prove Theorem 1.5.

We define

H̄n(0, b) = H∂U−
n
(0, b)∑

z∈∂Un
H∂U−

n
(0, z)

, b ∈ ∂Un,

This is the conditional probability that an excursion starting at 0 in U−
n exits ∂U−

n
at b given that it exits at a point in ∂Un . We also define the analogous quantity for
Brownian motion,

h̄n(−1, b) = hV−n (−1, b)∫
∂Vn

hV−n (−1, w) |dw| , b ∈ ∂Vn .

Theorem 5.1 If b ∈ ∂Un,

H̄n(0, b) = h̄n(−1, b)
[
1+ O(n−1/20)

]
.

Proof See Sect. 5.3. ��
We do not believe that this error term is optimal, but this suffices for our needs and

is all that we will prove. We will also need the following corollary, which in particular
implies the sharpness of the Beurling estimate.

Corollary 5.1 There exist c, u > 0 such that

∑
b∈∂Un

H∂U−
n
(0, b) = c n−1/2 [1+ O(n−u)].

Proof Let

K (n) =
∑

b∈∂Un

H∂U−
n
(0, b),

K̃ (n) =
∫

∂Vn

hV−n (−1, w) |dw|.

and note that for r � 1 (we write Urn = U�rn�)

K (rn) = K (n)
∑

b∈∂Un

Hn(0, b) HU−
rn

(b, ∂Urn),
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K̃ (rn) = K̃ (n)

∫
∂Vn

hn(−1, w) hmV−rn
(w, ∂Vrn) |dw|.

Using the previous theorem and strong approximation, we can see that for 1 � r � 2,

K (rn)

K (n)
= K̃ (rn)

K̃ (n)
+ O(n−u).

By direct calculation using conformal mapping,

K̃ (rn)

K̃ (n)
= r−1/2 + O(n−u).

Therefore, allowing a different u,

K (rn)

K (n)
= r−1/2 + O(n−u),

and the result easily follows from this. ��
Given the corollary we can restate Theorem 5.1 as: there exists c > 0, u > 0 such

that
H∂U−

n
(0, b) = c hV−n (−1, b)

[
1+ O(n−u)

]
. (5.6)

We will also need that

HA(w, a)

HA(0, a)
= h A(w, a)

h A(0, a)
+ O(n−u), w ∈ ∂U−

n , a ∈ ∂ A (5.7)

which is a direct consequence of Theorem 2.1. This handles the first part of the argu-
ment of Theorem 1.5. The second part is handled in the next proposition. Note that
for w ∈ ∂UA the quantities ΛA(w, a) and λA(w, a) are “macroscopic” quantities for
which one would expect Brownian motion and random walk to give almost the same
value.

Proposition 5.1 There exist u > 0, c <∞ such that if A ∈ A, a ∈ ∂ A, and w ∈ ∂UA,

|ΛA(w, a)− λA(w, a)| � c r−u
A . (5.8)

Proof See Sect. 5.4. ��
Proof of Theorem 1.5 assuming Theorem 5.1 and Proposition 5.1 We will first show
(1.8), that is, there is a constant 0 < c2 <∞ such that

ΛA(0, a) = c2r−1/2A

[
sin θa + O

(
r−u

A

)]
.
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We write U, U−, V, V−, H̄ , h̄ for UA, U−
A , VA, V−A , H̄n A , h̄n A . Using Lemma 5.3,

(5.6), (5.7), and (5.8) we see that there is a constant 0 < c0 <∞ such that

ΛA(0, a) =
∑

w∈∂U

H∂U−(0, w)
HA(w, a)

HA(0, a)
Qz,wΛA(w, a)

= c0
∑

w∈∂U

hV−(−1, w)
h A(w, a)

h A(0, a)
Qz,w λA(w, a)

[
1+ O(r−u

A )
]
.

We note that if f A : DA → D with f A(w0) = 0, f ′A(w0) > 0, then for z with

|z| � n1/2
A ,

f A(z) = r−1A z + O(r−1A ),

and hence, by (5.2) and Lemma 5.1,

λA(−n1/2
A , a) = 2 r−1/2A n1/4

A sin θa + O(r−1/2A ) (5.9)

and there exists some c > 0 such that for all z with |z| � n1/2
A ,

λA(z, a) � c r−1/2A |z|1/2. (5.10)

A simple argument, using conformal mapping say, shows that

hV−(−n1/2
A , w) = n1/4

A hV−(−1, w)
[
1+ O(n−1/4)

]
.

We now use Lemma 5.4 and (5.9) to conclude that

n1/4
A c−10 ΛA(0, a) = O(r−3/4A )+ λA(−n1/2

A , a)
[
1+ O(n−u)

]
= 2 r−1/2A n1/4

A

[
sin θa + O(n−u)

]
.

Since n A = ε rA + O(1), we get (1.8). We will give a symmetry argument here to
deduce (1.9) from (1.8). Suppose we replace Jt with

J̃t =
⌊

Θt + π

2π

⌋
−

⌊
Θ0 + π

2π

⌋
.

In other words, we place the discontinuity of the argument at f −1A ((−1, 0]) rather than
at f −1A ([0, 1)). Then we can see that if Sτ = a, then Q̃(ω[0, τ ]) = ±Q(ω[0, τ ]) with
the minus sign appearing if and only if π/2 � θa < π .

Now given A, consider its reflection along the line {Re(z) = 1/2}, that is, let
ρ(z) = 1− z, A′ = ρ(A). Let a′ = ρ(a) and define θ ′ by f A′(a′) = ei2θ ′ . Note that

ρ(DA′) = DA, f A′(z) = − f A(ρ(z)), f −1A ([0, 1)) = ρ
[

f −1A′ ((−1, 0])
]
, and
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f A(a) = − f A′(a′) = −e2iθ ′ = exp
{
2i

(π

2
− θ ′

)}
.

In otherwords, θa = π
2−θ ′ (mod π). If θa, θ ′ ∈ [0, π), then θa = π

2−θ ′ if 0 � θ ′ � π
2

and θa = 3π
2 − θ ′ if π

2 < θ ′ < π , and hence

cos θa =
{
sin θ ′ 0 � θ ′ � π/2
− sin θ ′ π/2 < θ ′ < π.

From the previous paragraph and (1.8), we see that

Λ(1, a) = ΛA′(0, a′) = c2r−1/2A

[
sin θ ′ + O

(
r−u

A

)]
, 0 � θ ′ � π

2
,

Λ(1, a) = −ΛA′(0, a′) = c2r−1/2A

[− sin θ ′ + O
(
r−u

A

)]
,

π

2
< θ < π.

��

5.3 Poisson kernel convergence in the slit square: proof of Theorem 5.1

The rate of convergence of the discrete Poisson kernel to the continuous kernel is very
fast in the case of rectangles aligned with the coordinate axes.

Lemma 5.5 There exists c <∞ such that if n/10 � m � 10n, and

A = A(n, m) = { j + ik : 1 � j � n − 1, 1 � k � m − 1},
R = R(n, m) = {x + iy : 0 < x < n, 0 < y < m},

then

∣∣4 h∂ R(ik, n + ik′)− H∂ A(ik, n + ik′)
∣∣ � c

min{k, m − k}min{k′, m − k′}
n5

.

In particular,

H∂ A(ik, n + ik′) = 4 h∂ R(ik, n + ik′)
(
1+ O

(
n−2

))
.

Proof We write v = ik, w = n + ik′, and d = min{k, m − k}, d ′ = min{k′, m − k′}.
Using separation of variables (see Section 6 of [2] or [17, Chapter 8] for more details),
one can find h R(1+ ik, w) exactly as an infinite series

h R(1+ ik, w) = 2

m

∞∑
l=1

sinh(lπ/m)

sinh(lπn/m)
sin

(
lkπ

m

)
sin

(
lk′π

m

)
.
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Similarly one can find the discrete Poisson kernel by separation of variable as a finite
Fourier series; more specifically,

HA(1+ ik, w) = 2

m

m−1∑
l=1

sinh(αlπ/n)

sinh(αlπ)
sin

(
lkπ

m

)
sin

(
lk′π

m

)
,

where αl is the solution to

cosh
(αlπ

n

)
+ cos

(
lπ

m

)
= 2.

Note that Lemma 6.1 in [2] implies that

αl = ln

m

[
1+ O(l2/n2)

]
. (5.11)

One can find c1 > 0 and c2 > 0 such that for all m, n in the statement of the lemma,

sinh(lπ/m)

sinh(lπn/m)
� c1e−c2l and

sinh(αlπ/n)

sinh(αlπ)
� c1e−c2l .

Using this and the inequality | sin x | � |x |, we can see that there exists c <∞ such
that

|h R(1+ ik, w)− HA(1+ ik, w)|

� c

⎡
⎣ 1

n6 +
dd ′

n3

∑
l�c log n

l2
∣∣∣∣ sinh(lπ/m)

sinh(lπn/m)
− sinh(αlπ/n)

sinh(αlπ)

∣∣∣∣
⎤
⎦ .

Note that the 6 is arbitrary and can be made arbitrarily large by increasing c. Using
(5.11) we can see that for l � c log n,

sinh(αlπ/n)

sinh(αlπ)
= sinh(lπ/m)

sinh(lπn/m)

[
1+ O(l3/n2)

]
,

and hence the sum is O(n−3) giving

|h R(1+ ik, w)− HA(1+ ik, w)| � cdd ′

n6 .

This implies that

H∂ A(ik, w) = 1

4
HA(1+ ik, w) = 1

4
h R(1+ ik, w)+ O(dd ′n−6).

We now assume that k � m/2. We can extend the function h(z) = h R(z, w) to
{x + iy : −n < x < n,−m < y < m} by Schwarz reflection. (If k > m/2, we
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instead extend the function to {x + iy : −n < x < n, 0 < y < 2m}.) Note that on
{z : |z − ik| � min{m, n}/4},

|h(z)| � c dd ′/n3.

Since min{m, n}  n, estimates for derivatives of harmonic functions (see, for
instance, Section 2.3 in [14]) then imply that

|∂k
x h(z)| � c dd ′/n3+k (5.12)

Using the definition of the boundary Poisson kernel (see Sect. 2.3) and (5.12) in a
Taylor expansion of h at ik, we see that

h R(ik + 1, w) = h∂ R(ik, w)+ O(dd ′/n5).

��
Let us abuse notation slightly and write

GU−
n
(0, ζ ) = 1

4

∑
|e|=1

GU−
n
(e, ζ ).

Lemma 5.6 For every n, there exists cn such that for all |ζ | � n/2,

GU−
n
(0, ζ ) = cn gV−n (−1, ζ )

[
1+ O(n−1/20)

]
.

Moreover, the constant cn is uniformly bounded away from 0 and∞.

Proof Let z0 = −�n/8� and Fn : V−n → D be the conformal transformation with
Fn(z0) = 0, Fn(0) = 1. Note that for all z ∈ V−n , Fn(z) = F(z/n) where F = F1. It
is easy to see that |Fn(ζ )− 1| = |F(ζ/n)− 1| is uniformly bounded away from 0 for
|ζ | � n/2.

Let Hn be the restriction to V−n of the Schwarz–Christoffel transformation from
Vn to nD, that sends the origin to the origin and (n, 0) to (n, 0). Then the image
of Hn is nD\[0, n]. We can see, e.g., from the explicit form of Hn that Hn(z0) =
−cn(1+O (1/n)) for some 0 < c < 1. Moreover, Hn(−1) = −H ′

n(0)(1+O (1/n))

and H ′
n(−1) = c′(1+ O (1/n)) for some c′ > 0.

We can then write Fn = Gn ◦ Hn , where Gn(z) = (1− za)(
√

z/n+√n/z)+ (1+
za)i/(1− za)(

√
z/n +√n/z)− (1+ za)i (za is some real in [0, 1] that depends on

Hn(z0) and can be computed explicitly) maps nD\[0, n] to D, Hn(z0) to 0 and 0 to
1. Then G ′n(Hn(−1)) = c′′ n−1/2 [1 + O(n−1/2)] for some c′′, so that the chain rule
implies that F ′n(−1) = c0 n−1/2 [1+ O(n−1/2)] for some constant c0.

Using the explicit form of the Green’s function and Poisson kernel in the disk, we
can see that

gV−(−1, ζ ) = gD(Fn(−1), Fn(ζ ))

= gD(1− c0 n−1/2(1+ O(n−1/2)), F(ζ/n))
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= 2π c0 n−1/2 hD(F(ζ/n), 1) [1+ O(n−1/2)]
= 2π c0 [1− |F(ζ/n)|2]

n1/2 |F(ζ/n)− 1|2 [1+ O(n−1/2)].

By equation (40) of [13], we can see that

GU−(0, ζ ) = GU−(0, z′)1− |F(ζ/n)|2
|F(ζ/n)− 1|2 [1+ O(n−1/20)].

Here we are using the uniform bound on |F(ζ/n) − 1|. All one needs now is that
GU−(0, z0)  n−1/2, which follows from Proposition 1.5.9 and (2.40) in [15]. ��
Proof of Theorem 5.1 Let us first consider the case b = n + ik′ with 0 < k′ < n, Let
m = �3n/4� and let R = Rn be the rectangle in the top right corner of U :

R = {x + iy : m < x < n, 0 < y < n}.

As an abuse of notation we will also write R for R ∩ Z
2. A last-exit decomposition

shows that

H∂U−(0, b) =
n−1∑
j=1

GU−
n
(0, m + j i) H∂ R(m + j i, b).

A similar decomposition shows that

hV−(−1, b) = 1

2π

∫ n

0
gV−(−1, m + iζ ) h∂ R(m + iζ, b) |dζ |.

This latter equality is perhaps better seen by writing

hV−(−1, b) = lim
ε↓0

1

2πε
gV−(−1, b − ε) = lim

ε↓0
1

2πε
gV−(b − ε,−1),

and using the strong Markov property. Lemma 5.5 shows that

H∂ R(m + j i, b) = h∂ R(m + j i, b)

4
+ O(d/n4), (5.13)

where d = min{k′, n− k′}. For A ∈ Z
2, we let τA = inf{n � 1 : S(n) ∈ A} and write

τx when x is just a point. Then, using again Proposition 1.5.9 and (2.40) in [15], for
1 � j � n − 1,

GU−(0, m + i j) = P0(τm+i j < τ∂U−)GU−(m + i j, m + i j)

� cn−1/2GU−(m + 1+ i j, m + i j) � cn−1/2,
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so

n−1∑
j=1

GU−(0, m + j i) � cn1/2.

Therefore, using (5.13),

H∂U−(0, b) =
n−1∑
j=1

GU−
n
(0, m + j i)

[
H∂ R(m + j i, b)− 1

4
h∂ R(m + j i, b)

]

+1

4

n−1∑
j=1

GU−
n
(0, m + j i) h∂ R(m + j i, b)

= O(d/n7/2)+ 1

4

n−1∑
j=1

GU−
n
(0, m + j i) h∂ R(m + j i, b).

By Lemma 5.6, we can write

H∂U−(0, b) = O(d/n7/2)+ [1+ O(n−1/20)]
n−1∑
j=1

cn gV−n (−1, m + j i) h∂ R(m + j i, b),

where this cn is 1/4 times the value in that lemma. The sum above is greater than
a constant times d/n3/2. Indeed, the probability that a Brownian motion from −1
reaches a point in (say) the middle half of the left side of R before exiting Vn is at
least cn−1/2. Moreover, the function h∂ R(·, b) at such points is at least cd/n. (Recall
that d = min{k′, n − k′} and b = n + ik′.) Hence we can write this as

H∂U−(0, b) = [1+ O(n−1/20)]
n−1∑
j=1

cn gV−n (−1, m + j i) h∂ R(m + j i, b).

Routine estimates allow us to approximate the sum by an integral,

H∂U−(0, b) = [1+ O(n−1/20)]
∫ n

0
cn gV−n (−1, ζ ) h∂ R(ζ, b) |dζ |

= 2π cn hV−(−1, b) [1+ O(n−1/20)].

We assumed that b = n+ ik′ with k′ > 0. There are four other cases. For example,
if b = k + ni with k > 0 we replace the rectangle R with the rectangle

{x + iy : −n < x < n, m < y < n}.
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We do the other three cases similarly. In all cases we choose z0 = −�n/8�. The same
argument gives us

H∂U−(0, b) = 2π cn hV−(−1, b) [1+ O(n−1/20)],

with the same value of cn . From this we conclude that

H∂U−(0, b)∑
y∈∂U H∂U−(0, y)

= hV−(−1, b)∫
∂V hV−(−1, y)|dy|

[
1+ O(n−1/20)

]
.

��

5.4 From the slit square to ∂A: proof of Proposition 5.1

To prove Proposition 5.1, we need a version of Theorem 2.2 for the h-processes. We
will however use slightly different stopping times. We will write f for f A and for
u > 0 consider Brownian and random walk paths B and S with measure either Pz or
Pz,a (for the unconditioned and conditioned paths, respectively). We let

τu = inf{t � 0 : d( f (S2t ), ∂D) � n−u}, Tu = inf{t � 0 : d( f (Bt ), ∂D) � n−u},
σu = τu ∧ Tu .

Let τ, T be the times that the paths reach ∂D (of course, under the measure Pz,a , this
is the time at which they reach a).

Intuitively, knowing that S and B will exit at the same point a should only make it
easier under the measure Pz,a than under Pz to find a coupling that ensures that B and
S are close with high probability. Indeed, this is the case. We will prove the following
result which does not give the optimal bounds.

Theorem 5.2 There exist u, u′ > 0, c < ∞ such that if n � dist(z, ∂ A) � n + 1,
a ∈ ∂ A, and z ∈ A with |z| � 3n/4 then one can construct a probability space
containing two processes B and S such that the probability of the event that

sup
0�t�σu

|S2t − Bt | � c log n,

and

diam ( f ◦ S[σu, τ ])+ diam ( f ◦ B[σu, T ]) � c n−u′

is bounded above by cn−u′ . Here B and S have the distribution of a Brownian, respec-
tively random walk h-process started at z and conditioned to leave DA at a.

Proof We use the KMT coupling of Theorem 2.2 to put the unconditioned paths B and
S on a probability space in such a way that if K = {sup0�t�σu

|S2t − Bt | � c log n},
we have
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Pz(Kc) � cn−2.

To obtain the corresponding result for the h-processes, we note that the fact that there
is a point v with |v| = 1 − n−u and d(v, f (B(σu)) � c log n, together with the
distortion theorem, implies that there exists a constant c such that d( f (B(σu)), ∂D) ∈
[c−1n−u, cn−u], which, using the explicit form of the Poisson kernel in the unit disk
in (2.8), implies that h(B(σu), a) ∈ [c−1n−u, cnu]. Similarly, using Theorem 4.1 in
[3] and (40) in [13], we see that, with a possibly different constant c, H(S(σu), a) ∈
[c−1n−u, cnu]. Moreover, by Harnack estimates h(z, a)  1 and H(z, a)/H(0, a)  
1 for z with |z| � 3n/4. The fact that the measure for the Brownian h-process is
obtained by weighing the Brownian paths by a factor of h(B(σu), a)/h(z, a) and that
the measure for the random walk h-process is obtained by weighing the random walk
paths by a factor of H(S(σu), a)/H(z, a) now implies that

Pz,a(Kc) � cn−2+u .

It remains to show that there is u′ > 0 such that

Pz,a(diam ( f ◦ S[σu, τ ])+ diam ( f ◦ B[σu, T ]) � c n−u′) � cn−u′ .

In order to split this into separate estimates for S and B, we have to deal with the
technical issue that the joint process (S, B) doesn’t satisfy the strongMarkov property
in the coupling. To get around this, one can use a standard tool (see, for instance, the
proof of Theorem 3.1 in [3]) which consists in introducing stopping times τu for S
and Tu for B such that

max{τu, Tu} � σu

and
f (S(τu)) ∈ Ac,u, (5.14)

where Ac,u = {z ∈ D : |z| ∈ [1 − c−1n−u, 1 − cn−u] and, similarly, | f (B(Tu))| ∈
Ac,u , and applying the strongMarkovproperty at those times. Let us just consider theh-
process S, as conformal invariancemakes the estimate for the h-process B considerably
simpler. Write r = n−u . For simplicity we assume without loss of generality that
f A(a) = 1.
Using the expression for the Poisson kernel in the disk in (2.8) we see that for

R1 � 1, h((1 − r)ei R1r , 1) = (R−11 ). We can use this and (2.2) to see that if w is
a lattice point within one unit of f −1((1 − c′r)ei R1r ) with c′ ∈ [c−1, c] and c as in
(5.14), and if |z| � 3n/4,

H(w, a)

H(z, a)
= O

(
R−11

)
.
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Therefore,

P(F) := Pz,a(|Arg( f (S(τu)))| � R1)

= O
(

R−11

)
Pz(|Arg( f (S(τu)))| � R1)

= O
(

R−11

)
.

Now let R1 = r−1/4 and R2 = r−3/4 and note that r−1 � R2 � R1 � 1.

Pz,a(diam ( f ◦ S[τu, τ ]) � R2r) � sup
v,w

H(v, a)

H(w, a)
· Pz(Fc; diam ( f ◦ S[τu, τ ]) � R2r)

+ O
(

R−11

)

� C
1

R2

R1

R2r
+ O

(
R−11

)
= O

(
R−11

)
,

where the sup is over w ∈ f −1(Ac,u ∩ D(1, R1r)) and v /∈ f −1(D(1, R2r)) and we
used in the first inequality (40) and (41) of [13] and in the second inequality Proposition
3.1 in [3], letting a point in Ac,u play the role of the origin in that Proposition. Noting
that we can let u′ = u1/4 concludes the more difficult part of the proof. ��
Proof of Proposition 5.1 We choose constants c, u, u′ so that the conclusion of Theo-
rem 5.2 holds: We couple the h-processes Ba and Sa , started at a point z ∈ ∂UA using
the coupling of that theorem and let K be the event that

sup
0�t�σu

|Sa
2t − Ba

t | � c log n,

and

diam
(
ψ ◦ Sa[σu, τ ])+ diam

(
ψ ◦ Ba[σu, T ]) � c n−u′ ,

so that
P(Kc) � cn−u′ . (5.15)

We define

ξb = inf{t : |Bt | � n1/2 + bc log n}, ζb = inf{t : |S2t | � n1/2 + bc log n},

where c is the same constant as in K and write ξ for ξ0 and ζ for ζ0. Let Q B =
Q[Ba[0, T ]), QS = Q[Sa[0, τ ]].Note that Q B = QS Ia provided that ξ > T, ζ > τ ,
and K holds. Therefore, if z ∈ ∂U , the fact that |Q B − QS Ia | � 2 implies that

∣∣∣Ez,a
[

Q B − QS Ia

]∣∣∣ �
∣∣∣Ez,a

[
Q B; ξ < T

]∣∣∣+ ∣∣∣Ez,a
[

QS Ia; ζ < τ
]∣∣∣

+2[Pz,a(ξ < T ; τ < ζ ;K)+ Pz,a(ζ < τ ; T < ξ ;K)+ P(Kc)].
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Since we know from (5.10) that |λA(z, a)| � c n−1/4 for |z| � n−1/2, we can use
the strong Markov property to see that

∣∣∣Ez,a
[

Q B; ξ < T
]∣∣∣ �

∣∣∣Ez,a
[

Q B | ξ < T
]∣∣∣ � cn−1/4, (5.16)

and similarly, ∣∣∣Ez,a
[

QS Ia; ζ < τ
]∣∣∣ � cn−1/4. (5.17)

If we let σ = inf{t � ζ1 : |S2t | � 2n1/2}, we see that

Pz,a(ξ < T ; ζ > τ ;K) � Pz,a(ζ1 < τ < ζ) � c log n/n1/2, (5.18)

by the strong Markov property and the planar gambler’s ruin estimate (the gambler’s
ruin estimate is for simple random walk, but this close to the origin the h-process is
mutually absolutely continuous with respect to the simple walk.) We can show in the
same way that

Pz,a(ζ < τ ; T < ξ ;K) � c log n/n1/2 (5.19)

Combining (5.15)–(5.19) completes the proof. ��
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