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Abstract Simple conformal loop ensembles (CLE) are random collections of simple
non-intersecting loops that are of particular interest in the study of conformally invari-
ant systems. Among other things related to these CLEs, we prove the invariance in
distribution of their nested full-plane versions under the inversion z �→ 1/z.
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1 Introduction

In [19,21], a one-dimensional natural class of random collections of simple loops in
simply connected domains called conformal loop ensembles (CLE) has been defined
and studied. We refer to the introduction of [21] for a detailed account of the moti-
vations that lead to their study. There are two basically equivalent (i.e. defining one
enables us to define the other one) versions of these simple CLEs, depending on
whether one allows loops to be nested (i.e. one loop can surround another loop, such
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836 A. Kemppainen, W. Werner

as sketched in Fig. 1), or not (such as in Fig. 2). Let us recall various definitions and
basic features of the latter (i.e. the non-nested) ones.

Such a CLE is defined in a simply connected planar domain D (with D �= C) and it
is a random countable collection Γ of simple loops that are all contained in D, that are
disjoint (no two loops intersect) and non-nested (no loop in this collection surrounds
another loop in this collection). Furthermore, the law of this random collection of loops
is invariant under any conformal transformation from D onto itself, and the image of
Γ under any given conformal map from D onto some other domain D′ is a CLE in D′.
The laws of CLEs can be characterized by an additional condition, called “Markovian
exploration” that is described and discussed in [21].

Alternatively [21] (see also [22,23]), one can view CLEs as the collections of outer
boundaries of outermost clusters in Poissonian collections of Brownian loops in D.
Roughly speaking, one considers a Poissonian collection of Brownian loops in D.
As opposed to the previous CLE loops, the Brownian loops are not simple, and they
are allowed to overlap and intersect (and they often do, since they are sampled in a
Poissonian—basically independent—way). Then one looks at the connected compo-

Fig. 1 Sketch of a nested CLE

Fig. 2 A simple non-nested
CLE4 in the unit disc (simulation
by D.B. Wilson): the loops are
the boundaries of the white
islands and they are not nested
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nents of the unions of all these loops (i.e. one hooks up intersecting Brownian loops
into clusters). It turns out that when the intensity of this Poisson collection of Brownian
loops is not large, then there are several (in fact infinitely many) such clusters. Then,
one only keeps the outer boundaries of these clusters (that turn out to be simple loops)
and finally only keeps the outermost ones (as some clusters can surround others), one
obtains a random collection of non-nested simple loops in D. It turns out that it is a
CLE, and that this procedure (letting the intensity of the Brownian loops vary) does
in fact construct all possible CLE laws.

A third description description relies on Oded Schramm’s SLE processes [16]. It
turns out that the loops in a CLE are very closely related to SLEκ curves, where the
parameter κ lies in the interval (8/3, 4] (there is one CLE law for each such κ , this
is called the CLEκ ), see again [21]. This relation will be also useful in the present
paper, as it is the one that exhibits some inside-outside symmetry property of the law
of the loops. The precise SLE-based construction of the CLEs goes via SLE-based
exploration tree (as explained in [19]) or via a Poisson point process of SLE bubbles
(see [21]).

Finally, there is also a close and important relation between CLEs and the Gaussian
free field (see e.g. [10–13] and the references therein) that we will briefly mention
below, but, as opposed to the previous descriptions, we will not build on it in the
present paper.

It is noteworthy to stress that these definitions of CLEs all a priori take place in
simply connected domains with boundary.

These loop models are of interest, in particular because they are the conjectural
scaling limits of various discrete lattice models. For instance, the loops of the CLE
should be the scaling limit of the outermost interfaces in variousmodels from statistical
physics (such as the critical Ising model) where some particular boundary conditions
are imposed on the boundary of the (lattice-approximation of the) domain D. Loosely
speaking, the boundary of the domain is therefore playing itself the role of an interface,
i.e., of another loop. This leads to the very natural definition of the nested CLE in
the domain D which is defined from a simple non-nested CLE in an iterative i.i.d.
fashion (like for a tree-like structure): sample first a non-nested CLE in D, then sample
independent CLEs in the inside each of this first generation CLE loops and so on. This
defines, for each κ in (8/3, 4] and each domain D, a nested CLEκ . This is again a
conformally invariant collection of disjoint loops in D as before, but where each given
point z in D is now typically surrounded by infinitely many nested loops. Conversely,
if we are given a nested CLE sample in a simply connected domain, one just has to
take its outermost loops to get a (non-nested) CLE sample. These nested CLEs are
conjecturally the scaling limits of the joint laws of all the interfaces, including all
the nested generations, of a wide class of two-dimensional models from statistical
physics, such for instance as the O(n) models. The values of the fractal dimensions of
the CLE carpets (this is the set of points surrounded by no loop) have been computed
in [15,18].

One of our goals in the present paper is to study some properties of the natural
version of these nested CLEs defined in the entire plane. As we shall see in the first
part of the present paper (this construction has been independently also written up in
[14]), the definition of the full-plane generalization of nested CLEs is not a difficult
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task (building for instance on the Brownian loop-soup approach to the simple CLEs):
one considers the limit when R → ∞ of a nested CLEκ defined in the disc of radius
R around the origin, and shows that for any fixed r , the law of the picture restricted
to this disc of radius r converges as R → ∞. More precisely, one can show that it is
possible to couple the nested CLEs in two very large discs of radius R and R′ such
that with a very large probability p, they coincide inside the disc of radius r (i.e. p
tends to 1 when R, R′ go to infinity). Note that by scale invariance, this procedure is
equivalent to looking at the picture of a nested CLE in the unit disc and zooming at
the law of the picture in the neighborhood of the origin. It is then easy to see from
this construction that the law of this “full-plane” family of nested random loops is
translation-invariant and scale-invariant.

However, with this definition, one property of this full-plane CLE turns out to
be not obvious to establish, namely its invariance (in distribution) under the inversion
z �→ 1/z. Indeed, in the nesting procedure, there is a definite inside-outside asymmetry
in the definition of CLEs. One always starts from the boundary of a simply connected
domain, and discovers the loops “from their outside” (i.e. the point at infinity in the
Riemann sphere plays a very special role in the construction).

On the other hand, invariance of the full-plane CLEs under inversion is a property
that is expected to hold. Indeed:

– The discrete O(n) models that are conjectured to converge to these CLEs have
a full-plane version, for which one expects such an inside-outside symmetry. In
the particular case of the Ising model [which is the O(1) model] that is known
to be conformally invariant in the scaling limit (see [1,2]) and should therefore
correspond to CLE3, there is a full-plane version of the discrete critical Isingmodel
that should in principle be invariant under z �→ 1/z in the scaling limit as well.

– In the case where κ = 4, the nested CLE4 can be viewed as level (or jump) lines
of the Gaussian free field, and it is possible (though we will not do this in the
present paper) to define the full-plane CLE4 in terms of a full-plane version of the
Gaussian free field (which is then defined up to an additive constant, so a little care
is needed to justify this—in particular, additional randomness is needed in order
to define the nested CLE4 from this full-plane GFF), and to see that the obtained
CLE4 is indeed invariant under z �→ 1/z, using the strong connection between
CLE4 and the GFF (in particular, the fact that CLE4 is a deterministic function of
the GFF when defined in a simply connected domain) derived in [4,17].

While the previous provable direct connections of the full-plane CLE3 and CLE4 to
the Ising model and the Gaussian free field respectively indicate quite direct roadmaps
towards establishing their invariance under inversion (the CLE4 case is actually quite
easy), it is not immediate to adapt those ideas to the case of the other CLEκ ’s for
κ ∈ (8/3, 4] (note for instance that the coupling between other CLEs and the GFF
[10,12] involves additional randomness that does not seem to behave so nicely with
respect to inversion).

One of our two main goals in this paper is to establish the following result:

Theorem 1 For any κ ∈ (8/3, 4], the law of the nested CLEκ in the full plane (as
described above) is invariant under z �→ 1/z (and therefore under any Möbius trans-
formation of the Riemann sphere).
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Since the law of nested CLE on the Riemann sphere is fully Möbius invariant and
hence the law doesn’t depend on the choice of the root point, it makes sense to call it the
CLE of the Riemann sphere with parameter 8/3 < κ ≤ 4 and denote it by CLEκ(Ĉ).
One way to characterize this family of CLE’s is that they are random collection of
loops such that the loops are nested, pair-wise disjoint and simple and that they have
the following restriction property: if A ⊂ Ĉ is a closed subset of the Riemann sphere
with simply connected complement and if z0 ∈ Ĉ\A, then define the set Ã to be the
union of A and all the loops that intersect A together with their interiors—as seen
from z0, i.e. z0 lies outside of these loops. Then the property, which we call restriction
property of CLEκ(Ĉ), is that the restriction of the CLEκ(Ĉ) to the loops that stay in
U = C\ Ã is the nested CLEκ in U .

One motivation for the present work comes from the fact that, as indicated for
instance by the papers of Doyon [3], it is possible to use such nested CLEs in order
to provide explicit probabilistic constructions and interpretations of various basic
concepts in conformal field theory (such as the bulk stress–energy tensor). The paper
[3] for instance builds on some assumptions/axioms about nested CLEs, that we prove
in the present paper.

An instrumental idea in the present paper will be to use a “full-plane” version of
a variant of the Brownian loop soup, where one only keeps the outer boundary of
each Brownian loop instead of the whole Brownian loop. It turns out (this fact had
been established in [24]) that this soup of overlapping simple loops is invariant under
z �→ 1/z, and that (as opposed to the Brownian loop soup itself) it creates more than
one cluster of loops when the intensity of the soup is subcritical. We will refer to
this loup soup as the SLE8/3 loop soup. This is a random full-plane structure that is
indirectly related to CLEs, even though it is not the nested CLE itself.

Actually, the other main purpose of the present paper will be to derive and highlight
properties of this particular full-plane structure that we think is interesting on its
own right. We shall for instance see that outer boundaries of such clusters and inner
boundaries are described by exactly the same intensity measure. More precisely, if one
considers a full-plane SLE8/3 loop soup, one can construct its clusters, and considers
those clusters of loops that surround the origin. Each one has an outside boundary and
an inside boundary (and both are simple loops that surround the origin). Then, one can
define the intensitymeasures νi and νe by defining for eachmeasurable set A of simple
loops (as the sigma algebra, we use always use the usual sigma algebra of events of
staying in annular regions, see Section 3 of [24]) the quantity νi (A) [resp. νe(A)] to
be the mean number of such inside loops (resp. outside loops) that all in A. Similarly,
for a full-plane CLE (with the κ corresponding to the intensity of the loop soup), one
can define the intensity measure νcle of the loops that surround the origin. Then,

Theorem 2 For some constant α = α(κ), one has νi = νe = α × νcle.

In fact, the proof will go as follows (even if we will not present the arguments in this
order): one first directly proves that νi = νe (which will be the core of our proofs),
and then deduce Theorem 2 from it using the inversion invariance of the SLE8/3 loop
soup, and then finally deduce Theorem 1 from Theorem 2.

This paper will be structured as follows. First, we will recall the basic properties of
the SLE8/3 loop soup, and deduce from it the definition and some first properties of the
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full-plane CLEκ ’s. Then, we will build on some aspects of the exploration procedure
described in [21] to define CLEs using SLEκ loops, and use some sample properties
of SLE paths in order to derive Theorem 2.

2 Chains of loops and clusters from the SLE8/3 loop soup

2.1 Loop soups of Brownian loops and of SLE8/3 loops

The Brownian loop soup in C with intensity c is a Poisson point process in the plane
with intensity cμ, where μ is the Brownian loop-measure defined in [8]. Recall that
a point process can be represented as a random measure which consists of the sum
of the Dirac masses at each of the points appearing in the point process. By slight
abuse of notation, we will often use the notation J to denote the set of all these points
appearing in the point process. For instance, the we will denote the Brownian loop-
soup by β = {β j , j ∈ J } (each β j being one of the Brownian loops that appears in
the point process).

A sample of the Brownian loop soup in D can be obtained from a sample of the
Brownian loop soup in the entire plane, by just keeping those loops that fully stay
in D. More precisely, using the previous notation, if JD = { j ∈ J : β j ⊂ D}, then
βD = {β j , j ∈ JD} is a sample of the Brownian loop soup with intensity c. It is
shown in [21] that when c ≤ 1, the Brownian loop-soup clusters in D are disjoint,
and that their outermost boundaries form a sample of a CLEκ (where κ depends on
c). For the rest of the present paper, the value of c ∈ (0, 1] (and the corresponding
κ(c) ∈ (8/3, 4]) will remain fixed, and we will omit them (we will just write CLE
instead of CLEκ and loop soup instead of loop soup with intensity c).

If one considers the full-plane Brownian loop soup, then because ther are too many
large Brownian loops (and the fact that infinitely many large Brownian loops in the
loop soup do almost surely intersect the unit circle), it is easy to see that there exists
almost surely only one dense cluster of loops. The Brownian loop soup does therefore
not seem so well-adapted to define a full-plane structure.

The following observations will however be useful: firstly, when D is simply con-
nected, define for each Brownian loop β j for j ∈ JD , its outer boudary η j (the outer
boundary of a Brownian loop is almost surely a simple loop, see [24] and the references
therein). Then, consider the outer boundaries of outermost clusters of loops defined by
the family of simple loops ηD = {η j , j ∈ JD} (instead of βD). Clearly, this defines the
very same collection of non-nested simple loops as the outer boundaries of outermost
clusters of βD , and it is therefore a CLE. Secondly, it is shown in [24] that the family
η = {η j , j ∈ J } is a Poissonpoint process of SLE8/3 loops, and that this randomfamily
is invariant (in law) under anyMöbius transformation of the Riemann sphere (in partic-
ular under z �→ 1/z). This yields a non-trivial “inside-outside” symmetry of Brownian
loop boundaries (the proof in [24] is based on the fact that this outer boundary can be
described in SLE8/3 terms, and on ideas related to the locality and restriction proper-
ties introduced in [6,7]). Hence, we see that the CLEκ is also the collection of outer
boundaries of outermost cluster of loops of an SLE8/3 loop soup in D (that can itself be
viewed as the restriction of a full-plane SLE8/3 loop soup to those loops that stay in D).
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Finally, we note that the outer boundary η j of the Brownian loop β j is clearly much
“sparser” than β j itself (the inside is empty). As indicated in [24], it turns out that
if one considers the soup η of SLE8/3 loops in the entire plane, then (for c ≤ 1) the
clusters will almost surely all be bounded and disjoint. Here is a brief justification of
this fact:

– Note first that if we restrict ourselves to a (subcritical i.e., c ≤ 1) loop soup ηU
in the unit disc U, then the outer boundaries of outermost loop-soup clusters do
form a CLEκ . Therefore, the outermost cluster-boundary γ (in the CLE in U) that
surrounds the origin is almost surely at positive distance of the unit circle. Hence,
for some positive ε,

P(d(γ, ∂U) > ε) ≥ 1/2.

Let us call A1 this event {d(γ, ∂U) > ε}.
– The total mass (for the SLE8/3 loop measure defined in [24]) of the set of loops
that intersect both ∂U and (1− ε)∂U is finite. This can be derived in various ways.
One simple justification uses the description of this measure as outer boundaries
of (scaling limits) of percolation clusters (see [24]), and the fact that the expected
number of critical percolation clusters that intersect both R∂U and (1 − ε)R∂U

is finite and bounded independently of R (this is just the Russo-Seymour-Welsh
estimate) and therefore also in the R → ∞ limit. Alternatively, one can do a simple
SLE8/3 computation. Hence, if we perform a full-plane SLE8/3 loop soup, thenwith
positive probability, no loop in the soup will intersect both ∂U and (1− ε)∂U . Let
us call A2 this event.

– The events A1 and A2 are independent (A1 is measurable with respect to the set of
loops in the loop soup that stay in U and A2 is measurable with respect to the set
of loops in the loop soup that intersect ∂U). Hence, the probability that A1 and A2
hold simultaneously is strictly positive. This implies that with positive probability,
there exists a cluster of loops in the full-plane SLE8/3 loop soup, that surrounds the
origin and is contained entirely in the unit disc.

– It follows immediately (via a simple 0–1 law argument, because the event that there
exists an unbounded loop-soup cluster does not depend on the set of loops that are
contained in RU for any R, and is therefore also independent of the loop soup itself)
that almost surely, all clusters in this soup are bounded (if not, the distance between
the origin and the closest infinite cluster is scale-invariant and positive).

– The fact that the clusters are almost surely all disjoint can be derived in a rather
similar way (just notice that if two different full-plane loop-clusters had a positive
probability to be at zero distance from each other, then the same would be true for
two CLE loops in the unit disc, with positive probability, and we know that this is
not the case).

To sum things up: for any given c ≤ 1, the full-plane SLE8/3 loop soup defines
a random countable set of clusters {Ki , i ∈ I } that is invariant in distribution under
any Möbius transformation of the Riemann sphere (including the inversion z �→ 1/z),
and the boundaries (inner and outer boundaries) of these clusters are closely related
to SLEκ paths for κ = κ(c) ∈ (8/3, 4].
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2.2 Markov chains of nested clusters and of nested loops

We are now going to pick two points on the Riemann sphere, namely the origin and
infinity (but by conformal invariance, this choice is not restrictive), and we are going
to focus only on those clusters that disconnect one from the other i.e. that surround
the origin. Recall that almost surely, both the origin and infinity are not part of a
cluster (and scale invariance shows that there exist almost surely a countable family
of loop-soup clusters that disconnect 0 from infinity). We can order those clusters
that disconnect infinity from the origin “from outside to inside”. We will denote this
collection by {K j , j ∈ J }where J ⊂ I is now a decreasing bijective image ofZ (each
j ∈ J has therefore a successor denoted by j + 1)—mind that this is not the same J
as in the loop-soup (it is just an abstract index set) (Fig. 3).

The boundaries of the complement of each K j consists of countably many loops,
two of which (corresponding to the connected components Oi

j and Oe
j of C\K j that

respectively contain the origin and infinity) surround the origin. We will call these
boundaries γ i

j and γ e
j . One therefore has a nested discrete sequence of loops, when j

in J , then

γ e
j � γ i

j � γ e
j+1

where γ � γ ′ means that γ surrounds γ ′ (we however allow here the possibility that
γ intersects γ ′—indeed, for small c, it happens that for a positive fraction of the j’s,
the inner and outer boundaries γ i

j and γ e
j of K j do intersect).

The scale invariance of the loop soup, as well as the fact that the expected number of
clusters that surround theorigin andhavediameter between1 and2 (say) is finite, shows
immediately that we can define three infinite measures ν, νi and νe that correspond to
the intensity measure of the families (K j ), (γ i

j ) and (γ e
j ) respectively. In other words,

for any measurable family L of loops (see e.g. [24] for details on the σ -field that one
can use),

Fig. 3 A SLE8/3 loop cluster,
with its outer and inner
boundary

γe
j

Kj

γi
j

0
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νi (L) = E
( ∑

j∈J

1γ i
j ∈L

)

(and the analogous definition for the measure νe on outer loops and for the measure
ν on clusters of loops, defined on an appropriately chosen σ -field). Clearly, these
measures are scale-invariant i.e. for any set L of loops and any positive λ,

νi (L) = νi ({γ : λγ ∈ L}).

Additionally, these measures have the following inversion relations which play an
important role later.

Proposition 1 The measure ν is invariant under z �→ 1/z and the image of the
measure νi under z �→ 1/z is νe.

Proof The claim follows from the fact that the full-plane SLE8/3 loop soup is invariant
under inversion. �


Let us define three Markov kernels that are heuristically correspond to the mapping
K j �→ K j+1, γ i

j �→ γ i
j+1 and γ i

j �→ γ e
j+1. Note that in the definition of these chains,

we always explore from outside to inside and from one cluster to the next one.
More rigorously, for any simply connected domain D �= C that contains the origin,

sample an SLE8/3 loop soup in D and denote byL K
D (respectivelyL i

D andL e
D) the

law of the outermost cluster that surrounds the boundary (resp. the inner boundary
of this outermost cluster and the outer boundary of the outermost cluster). When
A is a compact set that surrounds the origin, denote (whenever it exists) by D(A)

the connected component of the complement of K that contains the origin. Then,
the kernels are defined as follows: consider Q→K (A, ·) := L K

D(A)(·) and similarly

Q→i (A, ·) := L i
D(A)(·) and Q→e(A, ·) := L e

D(A)(·) (Fig. 4).
Let us now consider a full-plane SLE8/3 loop soup, and take two different simply

connected domains D and D′ that contain the origin. For D (respectively D′), we
restrict the full-plane loop soup to the set of loops that are contained in D (resp. D′).
Hence, we have now three families of nested clusters that surround the origin:

– The clusters (K j , j ∈ J ) of the full-plane loop soup.
– The clusters (K D

n , n ≥ 1) and (K D′
n′ , n′ ≥ 1) corresponding to the loop soups

in D and D′ respectively. These two sequences can ve viewed as Markov chains
with kernel Q→K started from ∂ D and ∂ D′ respectively. Similarly, their inner
boundaries are Markov chains with kernel Q→i .

The properties of the full-plane SLE8/3 loop soup imply immediately that almost
surely, there exists j0, n0 and n′

0 so that for all n ≥ 0,

K j0+n = K D
n0+n = K D′

n′
0+n . (1)

Indeed, almost surely, for small enough ε, no loop in the loop soup does intersect both
the circle of radius ε around the origin andC\D orC\D′, which implies that the “very
small” clusters that surround the origin are the same in all three pictures.
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Fig. 4 The Markov kernels:
Q→i and Q→e: from γ i

j−1 to

γ i
j and γ e

j respectively

Q→e

Q→i

Kj−1

Kj

2.3 Shapes of clusters and of loops

Note that one can decompose the information provided by a loop γ (or a set K ) that
surrounds the origin into two parts (we now detail this in the case of the loop):

– Its “size”, for instance via the log-conformal radius ρ(γ ) of its interior, seen from
the origin [such that the Riemann mapping Φγ from the unit disc onto the interior
of γ such that Φγ (0) = 0 and Φ ′

γ (0) ∈ (0,∞) satisfies Φ ′
γ (0) = exp(ρ(γ ))].

– Its “shape” S(γ ) i.e. its equivalence class under the equivalence relation

γ ∼ γ ′ ⇐⇒ There exists some positive λ for which γ = λγ ′.

For a shape S and a value ρ, we define γ (ρ, S) to be the only loop with shape S
and log-conformal radius ρ. The scale invariance of νi implies immediately that there
exists a constant ai and a probability measure Pi on the set of shapes so that νi is the
image of the product measure ai dρ ⊗ Pi under the mapping (ρ, S) �→ γ (ρ, S).

The same of course holds for νe, which defines a constant ae and a probability
measure Pe, and for ν that defines a constant aK and a probability measure P K . We
can note that for any R, for a full-plane SLE8/3 loop-soup sample, the number of inside
cluster boundaries and the number of exterior cluster boundaries that are included in
the annulus between the circles of radius 1 and R can differ only by at most 1 from the
number of interior cluster boundaries in this annulus (because the loops γ i

j and γ e
j are

alternatively nested). It follows (letting R → ∞ and looking at the expected number
of such respective loops) that ae = ai = aK (and we will denote this constant by a).

We can note that the three kernels Q→i , Q→K , Q→e induce kernels Q̃→i , Q̃→K

and Q̃→e on the set of shapes (because the former kernels are “scale-invariant”). The
coupling property (1) implies immediately that P K and Pi are the unique stationary
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distributions for Q̃→i and Q̃→K . It follows that νi and ν are (up to a multiplicative
constant) the only scale-invariant measures that are invariant under Q→i and Q→K

respectively.

3 Full-plane CLE and reversibility

In the next two subsections, we will describe the construction of the full-plane CLEs.
This has been independently and in parallel written up also in [14], where it is used
for another purpose.

3.1 Markov chain of nested CLE loops and its properties

In order to construct and study the nested CLEs, we will focus on the kernel Q→e

instead of Q→i . Let us first collect some preliminary simple facts:

1. Let us consider first a loop soup in the unit disc. We know a priori that the log-
conformal radius of γ e

1 is not likely to be very small: for instance, for any positive
x0, there exists c > 0 so that for all x ,

P(ρ(γ e
1 ) ≤ −x − x0) ≤ e−cx0 P(ρ(γ e

1 ) ≤ −x). (2)

Indeed, if ρ(γ e
1 ) ≤ −x −x0, then on the one hand, the annulus {z : e−x0 < |z| < 1}

does not contain an SLE8/3 loop in the loop soup (which is an event of probability
strictly smaller than one), and on the other hand, if we restrict the loop soup to
the disc e−x0U, the outermost loop-soup cluster boundary γ̃ e

1 that surrounds the
origin satisfies ρ(γ̃ e

1 ) ≤ ρ(γ e
1 ) ≤ −x − x0. But these two events are independent,

and the laws of ρ(γ̃ e
1 ) + x0 and of ρ(γ e

1 ) are identical by scale invariance, so that
(2) follows.

2. Consider a sequence (ξn, n ≥ 1) of i.i.d. positive random variables such that for
some x0 and c > 0, and for all x , P(ξ1 > x + x0) ≤ e−cx0 P(ξ1 > x). Define
Sn = ξ1 + · · · + ξn and for all y > 0, the overshoot at level y i.e. O(y) =
min{Sn − y : n ≥ 1 and Sn > y}. Then, for all M that is a multiple of x0,

P(O(y) ≥ M) ≤ e−cM . (3)

Indeed, if we suppose that M is a multiple of x0, then

P(O(y) ≥ M) =
∑
n≥0

P(Sn < y and ξn+1 ≥ M + y − Sn)

=
∑
n≥0

E[1Sn<y P(ξn+1 ≥ M + y − Sn | σ(ξ1, . . . , ξn))]

≤
∑
n≥0

e−cM E[1Sn<y P(ξn+1 ≥ y − Sn | σ(ξ1, . . . , ξn))]

= e−cM
∑
n≥0

P(Sn < y ≤ Sn+1) = e−cM
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where σ(ξ1, . . . , ξn) is the sigma algebra generated by the random variables ξk ,
k = 1, 2, . . . , n. Note that (3) shows that for a large enough given M , P(O(y) ≤
M) ≥ 1/2 (independently of y).

3. Let us briefly recall how to define a nested CLE in the simply connected domain D
(with D �= C).We first sample a simple CLE, that defines a countable collection of
disjoint and non-nested loops in D. For each z ∈ D, it is almost surely surrounded
by a loop denoted by γ1(z) in this CLE [note of course that while for each given
z, γ1(z) almost surely exists, there exists a random fractal set with zero Lebesgue
measure of points that are surrounded by no loop]. In particular, if the origin is in
the domain D, then the loop γ1(0) is distributed like the loop γ e

1 .
Then, once this first-layer CLE is defined, we repeat (conditionally on this first
generation of loops) the same experiment independently inside each of these count-
ably many loops. For each given z, this defines almost surely a second-layer loop
γ2(z) that surrounds z. We then repeat this procedure indefinitely. Hence, for any
fixed z, we get almost surely a sequence of nested loops (γn(z), n ≥ 1).
Let us now suppose that 0 ∈ D. Clearly, if we focus only the loops that surround
the origin (γ1, γ2, . . .) := (γ1(0), γ2(0), . . .), we get a Markov chain with ker-
nel Q→e. We can now define the random variables ξ1 = ρ(D) − ρ(γ1) and for
all j ≥ 2, ξ j = ρ(γ j−1) − ρ(γ j ) corresponding to the successive jumps of the
log-conformal radii. These are i.i.d. positive random variables, and combining the
previous two items, we see that there exists M and c such that, for all v < ρ(D),
if j0 is the first j for which ρ(γ j ) < v, then

P(ρ(γ j0) ≤ v − M) ≤ e−cM . (4)

In particular, for some given M ,

P(ρ(γ j0) ≤ v − M) ≤ 1/2. (5)

4. Let us now consider two bounded simply connected domains D and D′ that sur-
round the origin, and try to couple the (non-nested) CLEs in these two domains
in such a way that the first loops γ1 and γ ′

1 that surround the origin coincide. We
will assume in this paragraph that the log-conformal radii of D and D′ are not too
different i.e. that

|ρ(D) − ρ(D′)| ≤ M

(where M is chosen as in (5)).

We consider a realization of the SLE8/3 loop soup in the full-plane, and then restrict
them to D and D′ respectively. This defines a coupling of the two loops γ1 and γ ′

1.
Then, for this coupling, there exists a positive constant u that does not depend on
D and D′ so that

P(γ1 = γ ′
1) > u. (6)

Let us now briefly indicate how to prove this fact: clearly, we can assume that
ρ(D′) ≥ ρ(D) (otherwise, just swap the role of D and D′), and because of
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scale invariance, we can assume, without loss of generality that ρ(D) = 0 [i.e.
that there exists a conformal map Φ from D onto U such that Φ(0) = 0 and
Φ ′(0) = e0 = 1]. By Koebe’s 1/4 theorem, this implies that U\4 ⊂ D and simi-
larly [because ρ(D′) ≥ 0], that U/4 ⊂ D′.
Let us consider a full-plane loop soup of SLE8/3 loops. Let us first restrict this
loop soup to the disc U/8, and define the event that there exists an outer-boundary
of a cluster in this loop soup such that its outer boundary does fully surroundU/16
and such that the cluster itself does intersect U/16. If such a cluster exists, then it
is clearly unique—we denote it by K . Note that at this point, we have not required
that no other cluster of the loop soup in U/8 surrounds K .
Considerations from [21] show that such a K indeed exists with a positive proba-
bility u0. Furthermore, we can discover this event “from the inside” by exploring
all loop-clusters of the loop soup that do intersect the disc U/16. Hence, for any
simply connected domain V , the event that K ⊂ V is independent from the loops
in the full-plane loop soup that do not intersect V . It therefore follows easily that
(on the event where K exists) the conditional law of the loop soup outside of K
(given K ) is just a SLE8/3 loop soup restricted to the outer complement of K .
On the other hand, we also know (for instance from [21]) that with positive proba-
bility (that is bounded from below independently of the shape of D), the outermost
cluster K1 in the CLE in D is a subset ofU/16. It therefore follows that, condition-
ally on K , if we then sample the loops in D that lie outside of K , with a conditional
probability that is bounded uniformly away from 0 (i.e. uniformly larger than some
u1), we do not create another cluster of loops that surrounds K . Hence, the condi-
tional probability that K1 = K is greater than u0u1.
The same holds for K ′

1 [using this time the fact that 0 ≤ ρ(D′) ≤ M0], and (when
one first conditions on K ), the events K1 = K and K ′

1 = K are positively cor-
related (they are both decreasing events of the loop soup outside of K ). Hence,
we conclude that the conditional probability that K = K1 = K ′

1 is bounded away
from 0 uniformly, from which (6) follows.

With these results in hand, we can now construct a coupling between nested CLEs
between any two given simply connected domains D and D′ that surround the origin,
in such a way that they coincide in the neighborhood of the origin:

We will first only focus on the two sequences of loops that surround the origin
(γ1, γ2, . . .) and (γ ′

1, γ
′
2, . . .) that we will construct from the outside to the inside in a

“Markovian way”, and we will couple them in such a way that for some n0 and n′
0,

γn0 = γ ′
n′
0
. Then, we will choose the two nested CLEs in such a way that they coincide

within this loop γn0 .
Suppose for instance thatρ(D) ≥ ρ(D′) (the other case is treated symmetrically)—

note however that we do not assume here that ρ(D) and ρ(D′) are close. So, our first
step is to try to discover some loops γm and γ ′

m′ in the two nested CLEs that have a
rather close log-conformal radius.

We therefore first construct γ2, γ3, . . . (using the Markov chain Q→e) until γm1 ,
where

m1 = min{m ≥ 1 : ρ(γm) < ρ(D′)}.
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Two cases arise:

– Case 1: ρ(γm1) ≥ ρ(D′)− M . By (5), we know that this happens with probability
at least 1/2. In this case, these two sets have close enough conformal radii (so that
we will then be able to couple γm1+1 with γ ′

1 so that they coincide with probability
at least u) and we stop.

– Case 2: ρ(γm1) < ρ(D′)−M . Then,we start constructing the loops γ ′
1, . . . untilwe

find a loop γ ′
m′
1
such that ρ(γ ′

m′
1
) < ρ(γm1). Again, either the difference between

the conformal radii is in fact smaller than M , and we stop. Otherwise, we start
exploring the loops γm1+1, . . . until we find γm2 with ρ(γm2) < ρ(γ ′

m′
1
), and so

on. At each step, the probability that we stop is at least 1/2, so that this procedure
necessarily ends after a finite number of iterations.

In this way, we almost surely find γm and γ ′
m′ so that |ρ(γm)−ρ(γ ′

m′)| ≤ M . Further-
more, we have not yet explored/constructed the loops inside these two loops. Hence,
we can now use (6) to couple γm+1 with γ ′

m′+1 so that they are equal with probability
at least u.

On the part of the probability space where the coupling did not succeed, we start
the whole procedure again by continuing to construct loops inwards from these two
loops γm+1 and γ ′

m′+1. Again, since this coupling succeeds at each iteration with a
probability at least u, we finally conclude that almost surely, using this construction,
we will eventually find m̄ and m̄′ so that γm̄ = γ ′

m̄′ .
A final observation is that (because of (4)), for this construction

P(ρ(γm̄) < min(ρ(D), ρ(D′)) − x) → 0

as x → ∞, uniformly with respect to all choices of D and D′.
Hence, we have obtained the following result.

Proposition 2 For any D and D′, it is possible to couple the nested CLEs in D and
in D′ in such a way that:

– There almost surely exists an n0 such that the two nested CLEs coincide inside the
loop γn0 .

– Furthermore, P(n0 ≥ j) tends to zero as j tends to infinity, uniformly over all
possible sets D and D′ with ρ(D′) ≥ ρ(D).

3.2 Definition of the full-plane CLE

Proposition 2 enables us to define and state a few properties of the full-plane CLE.

– The law of the part of the nested loop soup in the disc nU that is contained in a
finite ball of radius r > 0 does converge when n → ∞ to a limit.

– For any sequence of domains Dn with ρ(Dn) → ∞, the law of the part of the
nested loop soup in the disc nU that is contained in a finite ball of radius r > 0
does converge when n → ∞ to the same limit.

The first statement is just obtained by noting that the previous proposition shows
that it is possible to couple the nested CLE in nU with the nested CLE in n′

U, so that
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with a large probability (that tends to 1 when n, n′ → ∞) they coincide inside the disc
of radius r . The second just follows from the coupling between theCLEs in Dn and nU.

The above convergence enables us to define the full-plane nested CLE (started from
∞) to be the law on nested loops in the entire plane that coincide with the limit inside
each disc of radius r . Let b ∈ C. We define the full-plane nested CLE chain to b (from
∞) to the restriction of the full-plane nested CLE to those loops that surround b. We
use the notation CLE(a → C) and CLE(a → b) for the full-plane nested CLE started
from a and the corresponding chain to b, which are defined for other a than ∞ by a
Möbius transformation.

For this last definition, we used the fact that the full-plane CLE is scale-invariant
and translation invariant in distribution in the following sense:

– If ψλ is the scaling in the plane by a factor λ > 0, then the law of CLE(∞ → 0)
is invariant under ψλ. Also CLE(∞ → C) is invariant under ψλ.

– If φb is the translation in the plane by a complex number b, then the law of
CLE(∞ → b) is the image of of the law CLE(∞ → 0) under φb. The entire
collection CLE(∞ → C) is in fact invariant under φb.

This property follows from coupling the CLEs in nUwith nλU+ b (for a given λ > 0
and b ∈ C).

In the nested CLE in a domain D, the chains of loops to distinct points
{b1, b2, . . . , bn} are coupled so that the chains to bi and b j are the same until the
loops of bi don’t any more surround b j and vice versa, after which the chains are con-
ditionally independent. This shows that the full-planeCLEs from∞ to any of the points
{b1, b2, . . . , bn} can be coupled to have the same property. Let us denote the restric-
tion of CLE(a → C) to those loops that disconnect a and a point in {b1, b2, . . . , bn}
by CLE(a → {b1, b2, . . . , bn}). In the rest of the paper, we will show that the law
of CLE(∞ → C) is fully Möbius invariant and by that result we can define the
Riemann sphere nested CLE, denoted by CLE(Ĉ), whose law doesn’t depend on the
starting point. One way to formulate this is that CLE(a → {b1, b2, . . . , bn}) and
CLE(b1 → {a, b2, . . . , bn}) have the same law, if we ignore the order of exploration
of the loops.

We can define νcle as the infinite intensity measure of CLE(∞ → 0), i.e. the set of
loops that surround the origin in the full-plane CLE, and apply the same arguments that
at the end of Sect. 2: the measure νcle is scale-invariant, invariant under Q→e, and its
shape probability measure Pcle is invariant under Q̃→e. The previous coupling result
shows that Pcle is the unique invariant shape distribution under Q̃→e, from which
one can deduce that (up to a multiplicative constant) νcle is the unique scale-invariant
measure that is invariant under Q→e.

3.3 Roadmap to reversibility of the full-plane CLE

Let us now briefly sum up the measures on translation-invariant and scale-invariant
random full-plane structures that we have defined at this point:

(i) The nested CLE in the entire plane. When one focuses at the loops surrounding
the origin, it has an intensity measure νcle that is, up to multiplicative constants,
the only scale-invariant measure that is invariant under Q→e.
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(ii) The full-plane SLE8/3 loop soup. When looking at clusters and their boundaries
that surround the origin, it defines intensity measures ν, νi and νe. The former two
are (up to multiplicative constants) the only invariant measures under Q→K and
Q→i that are scale-invariant. Furthermore Q→eνi = νe.

We recall that (as opposed to the nested CLE) we already know at this stage that the
full-plane SLE8/3 loop soup is invariant under inversion and that therefore the image
of νi under z �→ 1/z is νe, see Proposition 1.

Our roadmap is now the following: In the next section, we are going to prove
(building on the SLEκ description of CLEs and on various properties of SLE) the
following fact:

Proposition 3 The two measures νe and νi are equal.

Let us now explain how Proposition 3 implies Theorem 1 (we defer the proof of
the proposition to the next section): first, note that Proposition 3 implies immediately
that Q→eνe = Q→eνi = νe, so that νe equal to is a constant times νcle (because it
is invariant under Q→e). Let us rephrase this rather surprising fact as a corollory in
order to stress it:

Corollary 1 The kernels Q→e and Q→i have the same scale-invariant measures.

As we know that νe is the image of νi under z �→ 1/z, we can already conclude that
νcle is in fact invariant under inversion.

In order to prove Theorem 1, it is sufficient to prove the invariance in distribution
under the map z �→ 1/z of the nested family CLE(∞ → 0) of loops (γ j , j ∈ J ).
Indeed, on each of the successive annuli (in between γ j and γ j+1), the conditional
distribution [given the sequence (γ j )] of the other loops of the same “generation” as
γ j+1 in the nested CLE (that are surrounded by γ j but by no other loop in between
them and γ j ) is given by the outermost boundaries of loop-soup clusters in the annu-
lus between γ j and γ j+1, conditioned to have no cluster that surrounds γ j+1. This
description of the conditional distribution is nicely invariant under inversion (because
the loop soups are), and this proves readily that the law of the entire nested CLE
is invariant under z �→ 1/z. Since we already have translation invariance and scale
invariance, this implies Theorem 1.

It now remains to prove that the law of the nested family CLE(∞ → 0) of loops
(γ j , j ∈ J ) is invariant under inversion. Before explaining this, let us first make a little
side remark: let us define the successive concentric annuli (A j , j ∈ J ) in the nested
CLE sequence where A j denotes the annular region in between the loop γ j and its
successor γ j+1 (i.e. the next loop in the sequence, inside of γ j ). As before, one can
also define the scale-invariant “intensity measure” on the set of annuli that we call ν A.
The Markovian definition of the nested CLE sequence shows immediately that ν A can
be described from the product measure νcle ⊗ P̃ as follows:

– P̃ is the law of the outside-most loop γ̃ that contains the origin in a CLE in the
unit disc.

– Starting from a couple (γ, γ̃ ), one defines the annulus A that is between γ on the
one hand (that is therefore the outer loop of the annulus) and φγ (γ̃ ) where φγ is
the conformal map from the unit disc onto the inside of γ such that φ(0) = 0 and
φ′(0) > 0.
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But, one can observe that almost surely, in a nested CLE sequence, only one annulus
between successive loops [that we call A(1)] does contain the point 1. Hence, ν A

restricted to those annuli that contain 1 is a probability measure, and this probability
measure P A,1 is the law of A(1).

One can apply a similar construction to the full-plane SLE8/3 loop soup, focusing on
the annuli that are in between a loop γ i

j and the next outer boundary γ e
j+1. It follows

(using the fact that νcle is equal to a constant times νe) that, up to a multiplicative
constant (corresponding to the probability that a given point is in between two such
loops) the measure ν A describes also the intensity measure of such annuli in the full-
plane loop soup. We can now use the inversion-invariance of the full-plane loop soup
and the fact that νi = νe, to conclude that that ν A can also be constructed from inside-
out as follows: define the inner loop via νcle and choose the outer loop by sampling a
CLE in the outside of the inner loop, and take the innermost loop in this CLE. From
this, it follows that ν A is invariant under z �→ 1/z, and therefore P A,1 too.

In order to prove the inversion invariance of the law of the entire nested sequence
(γ j , j ∈ J ), we proceed in almost exactly the same way, except that we now focus on
the joint law of the 2n0 loops “closest” to 1 in the sequence: let us index the loops by
1/2 + Z in such a way that the point 1 is in between the two successive loops γ−1/2
and γ1/2. Let us choose any integer n0 ≥ 1, and look at the random family consisting
of the 2n0 loops nearest to the point 1 i.e.

Γ n0 := (γ−n0+1/2, . . . , γ−1/2, γ1/2, . . . , γn0−1/2).

One way to describe the law of of Γ n0 is to start with the infinite measure on
2n0 + 2-tuples of loops obtained by defining the first one according to the infinite
scale-invariant measure νcle and then to use 2n0 − 1 times the Markov kernel Q→e

in order to define its successors, and then to restrict this infinite measure to the set of
(2n0 + 2)-tuples of loops such that 1 is in between the two middle ones.

Exactly the same arguments as for n0 = 1 then show that Γ n0 can alternatively be
defined inside out, so that the law of Γ n0—and therefore of the entire sequence, as
this holds for all n0—is invariant under z �→ 1/z.

3.4 Remarks on the Markov chain of annular regions

Note that the previous annuli measure ν A is scale-invariant; we can therefore define its
associated shape probability measure P A. We will denote by m(A) the unique m < 1
such that A can be mapped conformally onto {z : m < |z| < 1}.

We can note that with the description of ν A via νcle ⊗ P̃ , the modulus m(A) of the
annulus is fully encoded by γ̃ (as it is the modulus of the part of the unit disc that
is outside of γ̃ ). In particular, restricting ν A to the set of annuli of a certain modulus
[say for m(A) ∈ (m1, m2)], one obtains a scale-invariant measure on annuli described
by the previous method from νcle ⊗ P̃m1,m2 [where P̃m1,m2 means the probability
P̃ restricted to those loops that define an annulus with modulus in (m1, m2)]. In
other words, the “marginal measure” on the outside of such annuli is just a constant
c(m1, m2) times νcle, and its shape probability is still Pcle.
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But our CLE symmetry result (Theorem 1) shows that it is also possible to view the
nested CLE sample as being defined iteratively from inside to outside. Furthermore,
the modulus of an annulus A surrounding the origin and of 1/A are identical. Hence,
it follows immediately that the marginal measure of the inside loop of the annulus
restricted to those with modulus in (m1, m2) is also c(m1, m2)ν

cle and that its shape
probability measure is again Pcle.

Hence, it follows that:

Proposition 4 If we define the Markov kernel Q→e,(m1,m2) just as Q→e except that
we condition the jumps to correspond to an annulus with modulus in (m1, m2), then
νcle is again (up to a multiplicative constant) its unique invariant measure.

The following two extreme cases are of course particularly worth stressing:

(a) When m1 = 0 and m2 gets very small, we see on the one hand by standard
distortion estimates that the shapes of the inside loop and of γ̃ become closer and
closer, and on the other hand, that shape of the inside loop is always described by
the shape of ν. Hence, this leads to the following description of the CLE shape
distribution Pcle:

Corollary 2 Consider a CLE in the unit disc and let γ̂ denote the outermost CLE loop
that surrounds the origin, and let m denote the modulus of the annulus between γ̂ and
the unit circle. Then, the law of the shape of γ̂ conditioned on the event {m < ε} does
converge to the shape distribution Pcle as ε → 0.

Loosely speaking, the very small loops in a simple non-nested CLE describe the
stationary shape Pcle.

(b) When m2 = 1 and m1 is very close to one, then when m(A) > m1, the inside and
the outside loop are (in some conformal way) conditioned to get very close to each
other. Again, both the outer and the inner shape are always described by Pcle. It
is actually possible to make sense of the limiting kernel Q→e,(m1,1) as m1 → 1.
This gives a scale-invariant measure on “degenerate” annuli where the inside and
outside loops intersect, and where the marginals of the shape measure for both the
inside and the outside loops are described via Pcle. In the case where κ = 4, this
is very closely related to the conformally invariant growing mechanism described
in [25] and to work in progress, such as e.g. [20].

4 Proof of ν i = νe

4.1 Exploring (i.e. dynamically constructing) loop-soup clusters

In the present subsection, we review some ideas and tools introduced in [21] about
simple CLEs, and discuss some consequences in the present setup.

In the sequel, we will say that a conformal transformation ϕ from H onto a subset
of the Riemann sphere defines a “marked domain” [as it gives information about the
domain ϕ(H) as well as the image of some marked points, say of i and 0].

In [21] (see also [25]), it has been studied and explained how to construct a simple
CLE in a simply connected domain D from a Poisson point process of SLE bubbles.
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Let us briefly and somewhat informally recall this construction in the case where D is
the disc of radius R around the origin. First, note that when one continuously moves
from −R along the segment [−R, 0], one encounters loops of a CLE progressively.
The CLE property loosely speaking states that if one discovers the whole loop as soon
as one encounters it, then the law of the loops in the remaining to be explored domain
is still that of a CLE in that domain. This leads to the fact that the loops that one
discovers can be viewed as arising from a Poisson point process of boundary bubbles
(that turn out to be SLEκ bubbles). And indeed, it is in fact possible to construct a CLE,
when starting from a Poisson point process of such SLEκ bubbles. More precisely (see
[21] for details):

– One first defines the infinite measure μ on SLEκ loops in the upper half-plane that
touch the real line only at the origin (that are also called bubbles in H). This is the
appropriately scaled limit when ε → 0 of the law of an SLEκ from 0 to ε in the
upper half-plane. This bubble measure is conformally covariant in the sense that
the image measure of μ under a conformal transformation from H onto itself that
preserves the origin, is a multiple of μ (the multiplicative constant being a power
of the derivative at the origin of this map).

– One can then consider a Poisson point process of such bubbles with intensity λ⊗μ,
where λ is the Lebesgue measure on [0,∞). This defines a random countably
collection of pairs (ti , βi ), that one can interpret as “the bubble βi appears at time
ti”. By appropriately composing the conformal maps associated to each of the
bubbles in their order of appearance, one can construct all the simple non-nested
CLE loops that for instance intersect a circle C that surrounds the origin (one just
replaces the previous segment by the path, which is the concatenation of [−R,−r ],
where −r ∈ C , and the circle C , along which one then moves continuously and
discovers all the CLE loops that it intersects). The bubble βi is then attached (via
conformal mapping, using a map ϕti from H onto some simply connected domain
Dti that has been defined using the collection of all β j for t j < ti ) to Dti . See [21]
for details. Let us just stress that the map ϕt is independent of ((βi , ti ), ti > t)—
so that loosely speaking, the (density of) appearance of a bubble βi at time ti is
independent of the map ϕti . Note also that if one discovers a loop that surrounds
the circle C on the way, then it is possible to continue the exploration in its inside
if one is considering a nested CLE. In this way, one can constructs in fact all the
loops that intersect C in a nested CLE. See [21] for details.

In this way, the intensity of CLE measures that one constructs in this procedure can
be viewed as the integral over time t of the image under (ϕ, β) �→ ϕ(β) of the product
measure ρt ⊗ μ, where ρt denotes the law of the conformal transformation ϕt in the
previous construction (Fig. 5).

By restricting ourselves to those CLE loops that intersect C , this procedure shows
the existence of a measure ρC

R on the set of marked domains so that the image of the
measure ρC

R ⊗μ under the map (ϕ, β) �→ ϕ(β), and restricted to those pairs for which
ϕ(β) intersects C , is equal exactly to the intensity measure of nested CLE loops in
the disc of radius R, restricted to those that intersect C . One way to express this is to
say for any set A of loops that intersect C , if ΓR denotes a nested CLE in the disc of
radius R, then
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Fig. 5 From ϕ and β to the loop
ϕ(β)

ϕ

β

ϕ(β)

ϕ(0)

E

⎛
⎝ ∑

γ∈ΓR

1γ∈A

⎞
⎠ = (ρC

R ⊗ μ)({(ϕ, β) : ϕ(β) ∈ A}). (7)

Indeed, the loops in ΓR ∩ A will appear in the previous discovery procedure as bubbles
(of the Poisson point process of bubbles) that happen to be attached to the boundary
of the already discovered domain according to some rule describing the growth mech-
anism (that henceforth describes a marked domain), and the Poissonian property of
the collection of bubbles ensures that the bubble β appears during the time interval
[t, t + dt] independently of the process (β j , t j )t j <t .

The previously described convergence and coupling arguments on nested CLEs
when R → ∞ readily show that the previous statement also holds in the full-planeCLE
setting (just continuing independently the exploration inside each of the discovered
loops). More precisely:

Lemma 1 There exists a measure ρC on the set of marked domains, so that if Γ

denotes a full-plane CLE, Eq. (7) holds when one replaces (ΓR, ρC
R ) by (Γ, ρC ).

Let us now consider a full-plane SLE8/3 loop soup instead and its clusters. One
can then apply almost the same argument as in the nested CLE to obtain the following
statement: letΓe denote the set of outer boundaries of clusters in this full-plane SLE8/3
loop soup. Then:

Lemma 2 There exists a measure ρ̃C on the set of marked domains, so that (7) holds
when one replaces (ΓR, ρC

R ) by (Γe, ρ̃
C ).

The two little modifications that are needed in order to justify this fact are:

– That one needs to replace the measure on SLEκ bubbles (i.e. boundary-touching
loops) by a measure on “boundary-touching clusters”. The existence and con-
struction of this measure is obtained in exactly the same way as the existence and
construction of the CLE bubble measure in Sections 3 and 4 of [21].

– That when one encounters a cluster that surrounds (or intersects) C , then one con-
tinues to explore inside all connected components of its complement that intersect
the circle C independently.

Recall that the full-plane SLE8/3 loop soup is invariant under any Möbius transfor-
mation of the Riemann sphere. Hence, we can reformulate the exploration property
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Fig. 6 The two types of
configurations that one can
discover

0

z0

γe
j

0

z0

γi
j

of the full-plane SLE8/3 loop soup after applying the conformal transformation
z �→ 1/(z − z0). We therefore obtain, for each point z0 in the plane with z0 �= 0,
and any (small) circle C surounding z0, a description of the measure on the set of
those boundaries of SLE8/3 clusters, that intersect C and separate z0 from the rest of
the cluster (this corresponds to the fact that the exploration from infinity to and around
the circle surrounding the origin was describing the “outer boundaries” of the clusters,
which are those that separate the cluster from infinity). In the sequel, we shall in fact in
particular focus on those loops that do disconnect the origin from infinity (i.e. the γ e

j

and γ i
j loops). Among those, the previous procedure describes/constructs (see Fig. 6):

– The loops γ e
j that do not surround z0 and intersect C .

– The loops γ i
j that do surround z0 and intersect C .

In all the remainder this section, when we will mention “the ε-neighborhood of
z0” in the plane (for z0 �= 0), this will always mean the disc of radius |z0| sinh ε

around z0 × cosh ε (i.e. with diameter [z0e−ε, z0eε]). In particular, we see that with
this definition: (i) when ε is very small, the ε-neighborhood of 1 is quite close to the
Euclidean ε-neighborhood of 1. Furthermore, (ii) for all z0 �= 1, the ε-neighborhood
of z0 is equal to the image under z �→ z0z of the ε-neighborhood of 1, and (iii), the
ε-neighborhood of z0 is invariant under the inversion z �→ z20/z.

Similarly, we will denote d(z, K ) to be the largest r such that K remains disjoint
of the r -neighborhood of z.
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If we apply the previous analysis of the SLE8/3 loop soup cluster exploration to
the case where the circle C is the boundary of the ε-neighborhood of z0, we therefore
obtain the existence of a measure ρ̃z0,ε on marked domains (here the marked domain
is simply connected in the Riemann sphere but not necessarily simply connected in
C) such that:

– The measure νe restricted to those loops that intersect C and do not surround z0,
is equal to the image of the measure ρ̃z0,ε ⊗μ under the mapping (ϕ, β) �→ ϕ(β),
when restricted to those loops that do separate 0 from infinity, and do not surround
z0.

– The measure νi restricted to those loops that intersect C and do surround z0, is
equal to the image of the measure ρ̃z0,ε ⊗ μ under the mapping (ϕ, β) �→ ϕ(β),
when restricted to those loops that do separate 0 from infinity, and do surround z0.

We can also note that inversion-invariance of the loop-soup picture shows that in
each of these two statements, it is possible to replace ρ̃z0,ε by its image ρ̂z0,ε under
z �→ z20/z (it just corresponds to exploring/constructing the image of the loop-soup
cluster boundaries under this map).

Our goal is now to build on these constructions in order to show that the measures
νe and νi are very close when ε → 0. Let us denote by V e

ε (γ ) [respectively V i
ε (γ )]

to be the the set of points that are in the ε-neighborhood of a loop γ and lie outside
of it (respectively inside of it). Clearly, for each loop γ ,

∫
C

d2z 1{z∈V e
ε (γ )}/|V e

ε (γ )| = 1,

(where |V | denotes here the Euclidean area of V ) so that it is possible to decompose
the measure νe as follows:

νe(F(γ )) = νe
(

F(γ )

∫
C

d2z 1{z∈V e
ε (γ )}/|V e

ε (γ )|
)

=
∫
C

d2z (ρ̃z,ε ⊗ μ)e(F(γ )/|V e
ε (γ )|),

where (ρ̃z,ε ⊗ μ)e denotes the measure on loops γ = ϕ(β) restricted to the configu-
rations where one constructs γ “from the outside” a loop surrounding the origin (i.e.
z lies on the outside of this loop). Rotation and scale invariance shows that

(ρ̃z,ε ⊗ μ)e(F(γ )/|V e
ε (γ )|) = (ρ̃1,ε ⊗ μ)e(F(zγ )/(|z|2|V e

ε (γ )|)).

We can now interchange again the order of integration, which leads to

νe(F(γ )) = (ρ̃1,ε ⊗ μ)e(F̃(γ )/|V e
ε (γ )|) (8)

where F̃(γ ) = ∫
C
d2z F(zγ )/|z|2 (provided that F is chosen so that the above inte-

grals all converge, for instance if it is bounded and its support is included in the set of
loops that wind around the origin and stay in some fixed annulus D(0, r2)\D(0, r1)).
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Using inversion, we get the similar expression for νi ,

νi (F(γ )) = (ρ̃1,ε ⊗ μ)i (F̃(γ )/|V i
ε (γ )|), (9)

where this time, the notation (ρ̃1,ε ⊗ μ)i means that we now restrict the measure to
the set of loops γ = ϕ(β) that surround both the origin and the point z = 1.

Let us stress that the two identities (8) and (9) hold for all ε.
In order to explain what is going to follow in the rest of the paper, let us now briefly

(in one paragraph) outline the rest of the proof: we want to prove that νe(F) = νi (F)

for a sufficiently wide class of functions F and to deduce from this that νe = νi . In
order to do so, we will show that in the limit when ε → 0, the two right-hand sides
of (8) and (9) above behave similarly. For this, we will use the results and ideas of [5]
on the Minkowski content of SLE paths, that loosely speaking will show that when
d = 1 + κ/8, for νe and νi almost all loops γ , there exists a deterministic sequence
εn that tends to 0 such that (this will be Lemma 3),

|V i
εn

(γ )| ∼ |V e
εn

(γ )| ∼ ε2−d
n L(γ ),

as n → ∞, where L(γ ) is a positive finite quantity related to the “natural” (i.e.
geometric) time-parametrization of the SLE loop (and∼ denotes now the usual equiv-
alence between sequqences i.e. the ratio of the two sides tends to 1). We will rely on
the one hand on this fact, and on the other hand, on the fact that when ε → 0, the
measure εd−2(ρ̃1,ε ⊗μ)e converges to the same measure λ on loops that pass through
1 and separate the origin from infinity as εd−2(ρ̃1,ε ⊗ μ)i does. Basically (we state
the following fact as it may enlighten things, even though we will not explicitly prove
it because it is not needed in our proof), one has an expression of the type

νi (F(γ )) = λ(F̃(γ )/L(γ )) = νe(F(γ )).

Our proof will be based on a coupling argument that enables to compare the right-hand
sides of (8) and (9). Another fact that it will be handy to use in the following steps
is the reversibility of SLEκ paths for κ ∈ (8/3, 4]. There exist now several different
proofs of this result first proved by Zhan [27], see for instance [10,26].

We now come back to our actual proof of the fact that νe = νi , and state the
following lemma; we postpone its proof to the next and final subsection of the paper,
as it involves somewhat different arguments (and results of [5] on the Minkowski
content of chordal SLE paths).

Lemma 3 There exists a sequence εn that tends to 0, such that for νe almost every
loop, there exists a finite positive L(γ ) such that

lim
n→∞ εd−2

n |V e
εn

(γ )| = lim
n→∞ εd−2

n |V i
εn

(γ )| = L(γ ). (10)

Note that this is equivalent to the fact that almost surely, for any exterior boundary of a
cluster that surrounds the origin in a full-plane loop-soup sample, Eq. (10) holds. One
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could also derive the more general statement (taking the limit when ε → 0 instead of
along some particular sequence εn) but Lemma 3 will be sufficient for our purpose.

Let us now explain how to use this lemma in order to conclude our proof. We will
couple (ρ̃z,ε ⊗ μ)e with (ρ̂z,ε ⊗ μ)i . Note first that because of inversion-invariance
of the full-plane SLE8/3 loop-soup, the total masses of the two measures (ρ̃z,ε ⊗ μ)e

and (ρ̂z,ε ⊗ μ)i are identical. In fact, these masses decay like a constant times ε2−d

as ε → 0 (but for what follows, it will be enough to note that they are bounded by a
constant times ε2−d ).

Let us now describe how we define our coupling: first, for a choice of a marked
domain by ρ̃z,ε in our first measure, we consider the one obtained by the inversion
y �→ z2/y for the “sample” of ρ̂z,ε. Hence, after mapping our marked domains onto
the unit disc in such a way that ∞ and the origin are mapped onto two real symmetric
points −a and a respectively, we have to compare/couple the following two measures
on bubbles:

– The measure on SLEκ bubbles in the unit disc, rooted at some point eiθ and
restricted to the set of bubbles that surround a and not −a.

– The measure on SLEκ bubbles in the unit disc, rooted at the point −eiθ and
restricted to the set of bubbles that surround −a and not a.

By symmetry, these twomeasures have again the samemass. The goal is now to couple
two loops β1 and β2 (each defined under these respective SLEκ bubble measures) in
such a way that when a is small, for most realizations of β1 and β2, the two loops are
in fact very similar in the neighborhood of the origin (in the disc of radius

√
a, say).

This would indeed then imply that when mapped back onto the marked domain, the
loops are very close, except in a small neighborhood of z (and therefore very close
everywhere).

Let us first sample progressively a part of β1 starting from its root eiθ in a anti-
clockwise manner. One natural way to encode this exploration in the present setting
is to always map the complement of the curve in the unit disc back to the unit disc, in
such a way that the two point −a and a are mapped onto two symmetric real values
−at and at . This fixes the conformal transformation (note also that at is increasing
with time, which can enable to use at to define a convenient time-parametrization).
The tip of the curve is mapped onto some eiϕt while the target (i.e. one of the images
of eiθ ) is mapped onto some eiθt on the unit circle. We are interested in the time T
(when it exists), which is the first time at which eiϕt = −eiθt . Then at this time, after
mapping back the complement of the already discovered part of β1 to the unit disk,
the remaining to be discovered path is an SLEκ from the random point b := eiϕT to
−b that we restrict to the event that it disconnects −aT from aT .

We shall see a little later (it will convenient to explain this in the next subsection,
together with some other result proved there) that:

Lemma 4 Consider the SLE bubble measure rooted at eiθ and restricted to those that
disconnect −a from a. When a → 0, the proportion of such loops for which T occurs
before the hitting time of the circle of radius a3/4 tends to one.

By symmetry, for the begining of the loop starting from −eiθ , we can use exactly
the symmetric path (i.e., its image under z �→ −z) to the one starting from eiθ , so
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(a) (b)

(c)

Fig. 7 The coupling idea: the initial segment in b is the rotated image of one in a, while the final segment
is in both pictures the conformal image of c, which is thus glued in different order (in the capacity time) to
a and b

that at the same time T , the configurations are exactly symmetric (see Fig. 7a and b).
In both cases, modulo the conformal transformation corresponding to the curve up to
time T , the remaining curve is just an SLE from b to −b in the unit disc, restricted
to those configurations that separate −aT from aT . Then, in our coupling we can use
the very same SLE sample (i.e. using reversibility of the SLE) in both cases for this
remaining SLE.

This therefore defines a coupling ρ̄1,ε of the two measures (ρ̃z,ε ⊗μ)e and (ρ̂z,ε ⊗
μ)i , in such a way that (γ 1, γ 2) are defined each under these twomeasures (with same
total mass) and are very close (for a large proportion of their masses). Furthermore,
with this coupling, the quantities of the type V i

ε (γ ) and V e
ε (γ ) are very close as well

(when ε is small) for γ 1 and γ 2 (because except on a small piece very close to z0,
the two loops are the conformal images of the same SLEκ path under almost the same
conformal transformation).

Let

L(γ ) := sup
n

εd−2
n max(|V i

εn
(γ )|, |V e

εn
(γ )|).
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We know that this quantity is finite for almost all loops thatwe are considering (because
of Lemma 3).

Let R > 0, and choose ΦR : [0,∞) → [0, 1] to be some smooth function that is
equal to 1 on [2/R,∞) and to 0 on [0, 1/R]. We let Φ̃R(γ ) = ΦR(L(γ )).

We can then simply estimate

|νe(F(γ )Φ̃R(γ )) − νi (F(γ )Φ̃R(γ ))|
≤ εd−2

n ρ̄1,εn

(∣∣∣∣ F̃(γ 1)Φ̃R(γ 1)

εd−2
n |V e

εn
(γ 1)| − F̃(γ 2)Φ̃R(γ 2)

εd−2
n |V i

εn
(γ 2)|

∣∣∣∣
)

.

By the bounded convergence theorem—the integrand is bounded, the total mass
remains bounded and the integrand gets close to zero except on a smaller and smaller
portion of the space—we see that this tends to 0 as n → ∞.

Since this holds for all F and R, we conclude that in fact νi = νe.

4.2 Minkowski content and symmetry

This final subsection will mostly devoted to the proof of Lemma 3. In fact, we will
deduce it from the following similar lemma concerning chordal SLE paths (and not
loops). Suppose that J is non-negative continuous compactly supported function from
H to R that is equal to 0 on a neighborhood of the origin, and that β is a simple curve
from 0 to infinity in H ∪ {0} (starting at 0, and tending to infinity at the other end).
One can then define H+(β) and H−(β), the two connected components of H\β that
respectively lie to “its right” and to “its left”, and define

vε,J (β) =
∫
H

d2z J (z)1d(z,β)<ε, v+
ε,J (β) =

∫
H+(β)

d2z J (z)1d(z,β)<ε

and v−
ε,J (β) = vε,J (β) − v+

ε,J (β).

Lemma 5 Suppose that κ ∈ (8/3, 4]. There exists a sequence εn that tends to 0, such
that for all non-negative continuous compactly supported function J defined on H,
one has for almost every chordal SLEκ path β, v+

εn ,J (β) ∼ v−
εn ,J (β) as n → ∞.

Before proving this lemma, let us first explain how one can deduce Lemma 3 from
it:

1. The arguments of [5], see analogous statement in Theorem 3.1 of [5] (preprint
version), go through with basically no modification in order to prove that for all
given J as above, for d = 1 + κ/8, and for almost all SLEκ curves β,

lim
ε→0

εd−2vε,J (β) = L J (β),

where L J (β) is positive on the set of curves that pass through the support of J . The
only difference with [5] is the presence of the weighting J (but this is in fact also
treated there in the context of the “covariant” properties of theMinkowski content).
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Combining this with Lemma 5 ensures that almost surely, for the sequence εn

defined there,

v+
εn ,J (β) ∼ v−

εn ,J (β) ∼ vεn ,J (β)/2 ∼ ε2−d
n L J (β)/2

as n → ∞.
2. Consider now instead of a chordal SLE path, an SLE bubble defined under the

infinite measure μ (its description as an SLE excursion measure is for instance
described in [21]), and keep a (compactly supported) function J as before. Let 2r
denote the distance between the origin and the support of J . We can discover a
first bit of the SLE bubble until it reaches the circle of radius r around the origin
(if it does so, which is the case for a set of bubbles with finite μ-mass). If we
renormalize the measure appropriately, we can say that “conditionally” on this
first part, the law of the remaining-to-be-discovered part of the bubble is a chordal
SLE in the slit upper half-plane joining the tip of the already-discovered part to 0.
If we map this onto the upper half-plane and the tip and 0 respectively onto 0 and
∞, we see readily that the result stated in Step 1 (applied to a random function J̃
that depends on J and the first part of the bubble) actually yields that for any J
as before, for μ-almost every bubble β,

vi
εn ,J (β) ∼ ve

εn ,J (β) ∼ ε2−d
n L J (β)/2

as n → ∞, where the superscripts i and e now stand for the “interior” and the
“exterior” of the bubble β.
We can note that for any a > 0,μ almost every bubble β stays at positive distance
from (−∞,−a) ∪ (a,∞). It therefore follows immediately that we can relax the
condition on the support of J being compactly supported in the upper half-plane:
the statement will still hold for any continuous function ofH into R that vanishes
in an entire neighborhood of the origin in H.

3. We are now going to restrict ourselves to the study of loops γ in the plane that
surround the origin and stay confined in a given annulus A = {z : r1 < |z| < r2}.
Let us define the functions f + and f − in the plane such that z �→ f +(z) =
f −(−z) is equal to 1 on {z : �(z) > r1/2}, to 0 on {z : �(z) < −r1/2} and to
1/2+(�(z))/r1) in themedial strip {�(z) ∈ [−r1/2, r1/2]}. Note that f ++ f − =
1. We claim that in order to prove Lemma 3, it is sufficient to show that for νe

almost all loop γ ,

lim
n→∞ εd−2

n |V e
εn , f +(γ )| = lim

n→∞ εd−2
n |V i

εn , f +(γ )| = L f +(γ )

as n → ∞, where L f + is positive on the set of loops under consideration (that
wind around the small disc of radius r1). Indeed, by symmetry, the same result is
then true for f −, and adding the two contributions (for f + and f −), we get that

lim
n→∞ εd−2

n |V e
εn

(γ )| = lim
n→∞ εd−2

n |V i
εn

(γ )| = (L f + + L f −)(γ ).
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4. In order to prove this statement with f +, we can consider a full-plane SLE8/3
picture, and discover all loop-soup clusters “from the outside”, by first discover-
ing (at once) all clusters that intersect the circle of radius r2, and then “moving
inwards” along the segment [−r2,−r1]. In this way, we can represent the measure
νe (restricted to the set of loops that wind around the origin in the annulus A) as
the image of a measure (ρ ⊗ μ) under a map (ϕ, β) �→ ϕ(β) as before, where
ϕ(0) is always on the segment [−r2,−r1] which is a point in the neighborhood
of which f + vanishes. Applying the result of Step 2 to the function

|(ϕ−1)′(·)|2−d f +(ϕ−1(·)),

we then immediately get the statement that is needed in Step 3.

It then remains to explain how to adapt the ideas of [5] in order to prove Lemma 5,
and to also explain how to derive Lemma 4. The results on the Minkowski content
of chordal SLE in [5] are based on the one hand on the fact that when z0 is a point
in the upper half-plane, then one has a very good control on the probability that the
SLE intersects the ε-neighborhood of z0: more precisely, if one maps the upper half-
plane onto the unit disc by the conformal transformation φ such that φ(z0) = 0 and
φ(∞) = −1, then one can view the (chordal) SLE from φ(0) to −1 in the unit disc
as a Loewner chain in the unit disc, viewed from the origin. If one re-parametrizes it
via the log-conformal radius u = u(t) seen from 0, one gets easily that the argument
θu of φt (Wt ) (where φt maps H\β[0, t] onto U with φt (∞) = −1 and φt (z0) = 0)
evolves according to the SDE

dθu = √
κ dBu + 4 − κ

2
tan

θu

2
du (11)

where B is an standard one-dimensional Brownian motion. The log-conformal radius
ofH\γ [0,∞) seen from z0 can therefore expressed as the life-time of the diffusion θ

(the time it takes before hitting −π or π ).
One can note that in this framework, it is also easy to see on which side of γ the

point z0 is. It will be in H+ if and only if the diffusion θ hits −π before π . As a
consequence, this setup and the same arguments can be used to see that when ε → 0,

P(z0 ∈ H+(β) | d(β, z0) ≤ ε|z0|) → 1/2. (12)

One can for instance use a coupling argument, at the first time at which the previous
diffusion θ hits 0 (after which one couples θ with−θ ), and to notice that the probability
that the probability that the diffusion spends a long time in (0, π) is much smaller than
the probability that it spends a long time in (−π, π), regardless of the starting point of
the diffusion. This shows that the convergence in (12) is in fact uniform with respect
to z0. In other words, there exists a function f (v) that decreases to 0 as v decreases
to 0, such that, for all z0 and all ε < |z0|/2,

∣∣∣P(
z0 ∈ H+(β)

∣∣∣ d(z0, β) < ε
)

− P
(

z0 ∈ H−(β)

∣∣∣ d(z0, β) < ε
)∣∣∣ ≤ f (ε/|z0|).

(13)
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From this, it follows in particular that (with the notations of Lemma 5) E(v+
ε,J (β)) ∼

E(v−
ε,J (β)) as ε → 0.
The second main ingredient in the proofs of [5] is a control on the second moments

of vε,J and their variation with respect to ε (i.e. of the variations of a smoothed out
version with respect to ε). One can summarize this type of result (that can be found
in [5], see also [9]) as follows: define Tε(z) as before as the hitting time of the disc of
radius ε around z by the chordal SLEκ β:

Lemma 6 For any compact subset K of the upper half-plane, for each small a > 0,
there exists a positive b = b(a) and a constant c(K ) such that for all z, y in K and
all ε1−2a < |z − y|,

P
(
Tε1−a (z) < Tε(y) < Tε(z) < ∞) ≤ c(K ) εb P (Tε(y) < Tε(z) < ∞) .

We do not repeat the proof here, but it can be found in Sections 2.3 and 4.2 of the
preprint version of [5].

This estimate means in particular, that if one conditions on Tε(y) < Tε(z) < ∞,
then with a large conditional probability, at time Tε(y), the SLE has not gotten too
close to z yet. But by the previous estimate applied to the SLE paths after this time,
the conditional probabilities that it gets then close to z and passes to its right is very
close to the conditional probability that it gets very close to z and passes to its left.

Let us be more specific: let us define the event E := {Tε(y) < Tε1−a (z)}. Note that
E ⊂ {Tε(y) < ∞} and that E is measurable with respect to β[0,Tε(y)]. Clearly,∣∣P(Tε(y) < Tε(z) < ∞, z ∈ H+(β)) − P(Tε(y) < Tε(z) < ∞, z ∈ H−(β))

∣∣
≤ P(Tε1−a (z) < Tε(y) < Tε(z) < ∞)

+
∣∣∣E[

1E

(
P
[
Tε(z) < ∞, z ∈ H+(β)

∣∣ β[0,Tε(y)]
]

−P
[
Tε(z) < ∞, z ∈ H−(β)

∣∣ β[0,Tε(y)]
] )]∣∣∣.

But on the event E , conditionally on β[0,Tε(y)], if one applies the conformal Markov
property at the time Tε(y), simple distortion estimates yield that the disc of radius ε

around z gets mapped to a shape that is very close to a disc around the image of z0, and
that the radius of this disc is much smaller than the distance of this image to the real
line. Furthermore, all these estimates are uniform enough, so that we can use (13) in
order to conclude that in fact the absolute value of the expectation in the last displayed
equation is bounded by

f1(ε)C
′(K )P(Tε(y) < Tε(z) < ∞)

and therefore

|P(Tε(y) < Tε(z) < ∞, z ∈ H+(β)) − P(Tε(y) < Tε(z) < ∞, z ∈ H−(β))|
≤ f2(ε) C ′(K )P (Tε(y) < Tε(z) < ∞)

for some functions f1 and f2 that tend to 0 at 0.
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Using reversibility of SLEκ and applying the same reasoning to the curve −1/β,
one can gets the similar bound

|P(Tε(z) < Tε(y) < ∞, z ∈ H+(β)) − P(Tε(z) < Tε(y) < ∞, z ∈ H−(β))|
≤ f2(ε) C ′′(K )P (Tε(z) < Tε(y) < ∞) .

Hence, adding up the two previous bounds, we get that

|P(Tε(y)<∞, Tε(z)<∞, z ∈ H+(β))−P(Tε(y) < ∞, Tε(z) < ∞, z ∈ H−(β))|
≤ f2(ε) C ′′′(K )P(Tε(y) < ∞, Tε(z) < ∞).

Integrating this inequality with respect to d2y d2z J (y) J (z), one gets

E(|v+
ε,J (β) − v−

ε,J (β)| × vε,J (β)) ≤ f2(ε) c(J )E((vε,J (β))2).

But clearly, the left-hand side is larger than

E((v+
ε,J (β) − v−

ε,J (β))2)

so that Lemma 5 follows via the Borel–Cantelli lemma [just choose εn such that∑
f2(εn) < ∞]. Here we used that E((vε,J (β))2) is uniformly bounded in ε, see

analogous statement in Theorem 3.1 of [5] (preprint version).
We now very briefly indicate how to prove Lemma 4. Let us come back to the

description of chordal SLE via the SDE (11)

dθu = √
κ dBu + 4 − κ

2
tan

θu

2
du

and describe briefly the outline of this rather standard argument.

1. Let σ denote the first time at which the SLE curve generated by θu (in this u-
parametrization) reaches the circle of radius a1/2 around the origin [if it does so
this time is actually deterministic and equal to log(1/a)/2, and otherwise we let
σ = ∞]. A standard Harnack inequality type argument shows that, uniformly over
the choices of the starting point θ̂ and the end-point θ̃ in (−π, π),

P
(
θ [0, σ ] ⊂ (−π, 3π/4) or θ [0, σ ] ⊂ (−3π/4, π)

∣∣∣ σ < ∞, θ0 = θ̂ , θσ = θ̃
)

tends to 0 as a → 0.
2. Since the previous statement is uniform in θ̃ , it follows also that

P
(
θ [0, σ ] ⊂ (−π, 3π/4) or θ [0, σ ] ⊂ (−3π/4, π)

∣∣∣ σ ′ < ∞, θ0= θ̂ , θσ ′ = θ̃
)

tends to 0 as a → 0, where this time σ ′ is the time at which the SLE reaches the
circle of radius 2a around the origin, if it does so.
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3. Next, we notice that there exists c > 0 so that for all a small enough, and uniformly
with respect to θ̂ ,

P
(
θσ ′ ∈ (−π/2, π/2)

∣∣∣ θ0 = θ̂ , σ ′ < ∞
)

≥ c

and

P
(
γ disconnects − a from a

∣∣∣ σ ′ < ∞, θ0 = θ̂ , θσ ′ ∈ (−π/2, π/2)
)

≥ c.

If we put the pieces together, it follows that uniformly with respect to the starting
point θ0, we have for all small a,

c2 P(σ ′ < ∞) ≤ P(γ disconnect − a from a) ≤ P(σ ′ < ∞).

4. We combine these estimates to get

P
(
θ [0, σ ] ⊂ (−π, 3π/4) or θ [0, σ ] ⊂ (−3π/4, π)∣∣∣ γ disconnects − a from a, θ0 = θ̂

)

≤ 1

c2
P
(
θ [0, σ ] ⊂ (−π, 3π/4) or θ [0, σ ] ⊂ (−3π/4, π)

∣∣∣ σ ′ < ∞, θ0 = θ̂
)

tends to 0 uniformly over the choices of the starting point θ̂ . If we let the starting
point θ0 converge to ±π , the lemma follows.
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