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Abstract We construct a sequence of Markov processes on the set of dominant
weights of an affine Lie algebra g considering tensor product of irreducible highest
weight modules of g and specializations of the characters involving the Weyl vector
ρ. We show that it converges towards a space-time Brownian motion with a drift,
conditioned to remain in a Weyl chamber associated to the root system of g. This
extends in particular the results of Defosseux (arXiv:1401.3115, 2014) to any affine
Lie algebras, in the case with a drift.

Mathematics Subject Classification 17B67 · 35R37 · 60J65

1 Introduction

In [2] we have studied a conditioned space-time Brownian motion which appears
naturally in the framework of representation theory of the affine Lie algebra ˆsl2: a
space-time Brownian motion (t, Bt )t≥0 conditioned (in Doob’s sense) to remain in a
moving boundary domain

D = {(r, z) ∈ R+ × R+ : 0 < z < r},
which can be seen as the Weyl chamber associated to the root system of the affine
Lie algebra ˆsl2. The present paper deals with the case of any affine Lie algebras. Let
us briefly describe the framework of the paper. First we need an affine Lie algebra g.
As in the finite dimensional case, for a dominant integral weight λ of g one defines
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650 M. Defosseux

the character of an irreducible highest-weight representation V (λ) of g with highest
weight λ, as a formal series defined for h in a Cartan subalgebra h of g by

chλ(h) =
∑

μ

dim(V (λ)μ)e〈μ,h〉,

where V (λ)μ is the weight space of V (λ) corresponding to the weight μ. This formal
series converges for every h in a subset of the Cartan subalgebra which doesn’t depend
on λ. A particular choice of an element h ∈ h in the region of convergence of the
characters is called a specialization. Let us fix a dominant weight ω once for all. For
a dominant weight λ, the following decomposition

chωchλ =
∑

β∈P+
Mλ(β)chβ,

where Mλ(β) is the multiplicity of the module with highest weight β in the decom-
position of V (ω) ⊗ V (λ), allows to define a transition probability Qω on the set of
dominant weights, letting for β and λ two dominant weights of g,

Qω(λ, β) = chβ(h)

chλ(h)chω(h)
Mλ(β), (1)

where h is chosen in the region of convergence of the characters. Such aMarkov chain
has been recently considered by C. Lecouvey, E. Lesigne, and M. Peigné in [4].

It is a natural question to ask if there exists a sequence (hn)n of elements of h such
that the corresponding sequence of Markov chains converges towards a continuous
process and what the limit is. One could show that there are basically three cases
depending on the scaling factor. Roughly speaking the three cases are the following.
When the scaling factor is n−α , with α ∈ (0, 1) (resp. α > 1), the limiting process
has to do with a Brownian motion conditioned—in Doob’s sense—to remain in a
Weyl chamber (resp. an alcove) associated to the root system of an underlying finite
dimensional Lie algebra. When α = 1, the limiting process has to do with a space
time Brownian motion conditioned to remain in aWeyl chamber associated to the root
system of the affine Lie algebra. Figure 1 below illustrates three distinct asymptotic
behaviors in the case when the affine Lie algebra is ˆsl2. The Weyl chamber C is the
area delimited by gray and light gray half-planes. Essentially, when the scaling factor
is n−α with α ∈ (0, 1), one could show that the �0-component of the limiting process
is +∞ and that its projection on Rα1 is a Brownian motion conditioned to remain
positive.When the scaling factor is n−α withα > 1, one could show that the projection
of the limiting process on R+�0 + Rα1 lives in an interval (dashed interval within
Fig. 1) and that its projection on Rα1 is a Brownian motion conditioned to remain
in an interval. When the scaling factor is n−1, the projection of the limiting process
on R+�0 + Rα1 is a space-time Brownian motion conditioned to remain in C, the
time axis being R+�0 and the space axis being Rα1. This is this last case which is
considered in the paper, for any affine Lie algebras. The convergence for the other
values of α could be obtained with similar arguments as the ones developed in this
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Affine Lie algebras and a conditioned space-time Brownian motion 651

Fig. 1 The affine Weyl
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paper. Nevertheless the casewhenα = 1 seems themost interesting case in our context
as the limiting process in this case, is the only one that is really specific to the affine
framework. Thus we prefer to focus on this case. In this way we lose in generality but
hope to win in clarity.

The paper is organized as follows. In Sect. 2 we describe the conditioned process
occuring in our setting when representations of affine Lie algebra ˆsl2 are considered.
This is a space-time Brownian motion with a positive drift conditioned (in Doob’s
sense) to remain forever in the time-dependent domain D. We show by purely proba-
bilistic arguments that the theta functions play a crucial role in the construction of the
process, which is unlighted by the algebraic point of view developed in the following
sections. The vocation of this section is to give an idea of the probabilistic aspects of
mathematical objects occuring in the paper. In Sect. 3 we briefly recall the necessary
background on representation theory of affine Lie algebras. We introduce in Sect. 4
random walks on the set of integral weights of an affine Lie algebra g, and Markov
chains on the set of its dominant integral weights, considering tensor products of irre-
ducible highest weight representations of g. We show that the Weyl character formula
implies that they satisfy a reflection principle. In Sect. 5 we consider a sequence of
random walks obtained for particular specializations involving the Weyl vector ρ of
the affine Lie algebra, and prove that its scaling limit is a space-time standard Brown-
ian motion with drift ρ, living on the Cartan subalgebra of g. We introduce in Sect. 6
a space-time Brownian motion with drift ρ, conditioned to remain in an affine Weyl
chamber and prove that it satisfies a reflection principle. We prove in Sect. 7 that this
conditioned space-time Brownian motion is the scaling limit of a sequence of Markov
processes constructed in Sect. 4 for particular specializations involving ρ.

2 A moving boundary problem

Let γ ∈ R, and (Xt , t ≥ 0) = ((τt , B
γ
t ), t ≥ 0) be a space-time Brownian motion.

For (u, x) ∈ R × R, P(u,x) denotes a probability under which (Bγ
t )t≥0 is a standard

Brownian motion with drift γ , starting from x , and τt = u + t , for all t ≥ 0. Consider
the subset D of R

2 defined by
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652 M. Defosseux

D = {(r, z) ∈ R+ × R+ : 0 < z < r},
and consider an application h defined on the closure D̄ of D by

h(u, x) := P(u,x)(∀t ≥ 0, 0 < Bγ
t < τt ),

(u, x) ∈ D̄. When γ ∈ (0, 1), a classical martingale argument shows that the function
h is the unique bounded harmonic positive function for the space-time Brownian
motion killed on the boundary ∂D, i.e.

∀(t, x) ∈ D,

(
1

2
∂xx + γ ∂x + ∂t

)
h(t, x) = 0,

which satisfies the following boundary conditions

∀t ≥ 0, h(t, 0) = h(t, t) = 0,

and the condition at infinity

lim
(t, x) → +∞ :
x
t → γ

h(t, x) = 1.

Such a problem is usually referred to as a moving boundary problem (see for instance
[1] for a reviewof various problems specifically related to time-dependent boundaries).
Actually the function h can be determined using a reflection principle involving the
group of tranformations W generated by linear transformations sk , k ∈ Z, defined on
R
2 by

sk(t, x) = (t, 2kt − x), (t, x) ∈ R
2.

Let us explain how. For k ∈ Z, define tk as the transformation on R
2 given by

tk(t, x) = (t, 2kt + x),

(t, x) ∈ R
2. The group W is actually a semi-direct product

{Id, s0} � {tk, k ∈ Z},
and D̄ is a fundamental domain for the action of W on R

2. The following proposition
is immediate.

Proposition 2.1 For (u, x), (u + t, y) ∈ R
2,

Ps0(u,x)(Xt = s0(u + t, y)) = e−2γ (y−x)
P(u,x)(Xt = (u + t, y))

Ptk (u,x)(Xt = tk(u + t, y)) = e−2k(y−x)−2k2t+2kγ t
P(u,x)(Xt = (u + t, y)),

for k ∈ Z, where P(u,x)(Xt = (u + t, y)) stands, by a usual abuse of notation, for the
probability semi-group of (Xt )t≥0.
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Affine Lie algebras and a conditioned space-time Brownian motion 653

The probability semi-group of the space-timeBrownianmotion killed on the bound-
ary of D satisfies a reflection principle. Let {e1, e2} be the canonical basis of R

2 and
(., .) be the usual inner product on R

2. Let T denote the first exit time of D. The
reflection principle is the following.

Proposition 2.2

P(u,x)(Xt = (u + t, y), T ≥ t) = e−γ x
∑

det(r)e−2k2u−2kx+(γ r tk (u,x),e1)

× Pr tk (u,x)(Xt = (u + t, y)),

where the sum runs over r ∈ {Id, s0}, k ∈ Z.

Proof As XT ∈ D̄, one obtains using a strong Markov property and Proposition 2.1
that for (u, x), (u + t, y) ∈ D,

e−γ x
∑

r∈{Id,s0},k∈Z
det(r)e−2k2u−2kx+(γ r tk (u,x),e1)Pr tk (u,x)(Xt = (u + t, y), T ≤ t)

equals 0. Moreover

e−γ x
∑

r∈{Id,s0},k∈Z
det(r)e−2k2u−2kx+(γ r tk (u,x),e1)Pr tk (u,x)(Xt = (u + t, y), T > t)

equals

P(u,x)(Xt = (u + t, y), T ≥ t).

Proposition follows by summing the two identities. ��
One obtains for the function h the following expression.

Proposition 2.3 For (u, x) ∈ D,

h(u, x) = 2
∑

k∈Z
sh(γ (x + 2ku))e−2(kx+k2u)−γ x .

Proof Summing over y such that (t + u, y) ∈ D in Proposition 2.2 and letting t go to
infinity gives the proposition. ��

ActuallyW can be identifiedwith theWeyl group associated to an affine Lie algebra
ˆsl2. Writing Xt = τt�0 + Bγ

t
α1
2 , t ≥ 0, where �0 and α1 are defined below, the

Doob’s h-transform of (Xt )t≥0 is a Markov process conditioned to remain in a Weyl
chamber associated to the root system of the affine Lie algebra ˆsl2. The following
sections extend this construction to any affine Lie algebras and relate identities from
Propostions 2.2 and 2.3, which are particular cases of Propositions 6.4 and 6.1, to
representations theory of affine Lie algebras.
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654 M. Defosseux

3 Affine Lie algebras and their representations

In order to make the reading more pleasant, we have tried to emphasize only on
definitions and properties that we need for our purpose. For more details, we refer the
reader to [3], which is our main reference for the whole paper.

3.1 Affine Lie algebras

The following definitions mainly come from chapters 1 and 6 of [3]. Let A =
(ai, j )0≤i, j≤l be a generalized Cartan matrix of affine type. That is all the proper prin-
cipal minors of A are positive and det A = 0. Suppose that rows and columns of A are
ordered such that det Å 
= 0, where Å = (ai, j )1≤i, j≤l . Let (h,�,�∨) be a realization
of A with � = {α0, . . . , αl} ⊂ h∗ the set of simple roots, �∨ = {α∨

0 , . . . , α∨
l } ⊂ h,

the set of simple coroots, which satisfy the following condition

α j (α
∨
i ) = ai, j , i, j ∈ {0, . . . , l}.

Let us consider the affine Lie algebra g with generators ei , fi , i = 0, . . . , l, h and the
following defining relations:

[ei , fi ] = δi jα
∨
i , [h, ei ] = αi (h)ei , [h, fi ] = −αi (h) fi ,

[h, h′] = 0, for h, h′ ∈ h,

(adei )
1−ai j e j = 0, (ad fi )

1−ai j f j = 0,

for all i, j = 0, . . . , l. Let 
 (resp. 
+) denote the set of roots (resp. positive roots)
of g, Q and Q∨ the root and the coroot lattices. We denote ai , i, . . . , l the labels of
the Dynkin diagram of A and a∨

i , i = 0, . . . , l the labels of the Dynkin diagram of
t A. The numbers

h =
l∑

i=0

ai and h∨ =
l∑

i=0

a∨
i ,

are called, respectively, theCoxeter number and the dual Coxeter number. The element

K =
n∑

i=0

a∨
i α∨

i ,

is called the canonical central element. The element δ defined by

δ =
n∑

i=0

aiαi ,
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Affine Lie algebras and a conditioned space-time Brownian motion 655

is the smallest positive imaginary root. Fix an element d ∈ h which satisfies the
following condition

αi (d) = 0, for i = 1, . . . , l, α0(d) = 1.

The elements α∨
0 , . . . , α∨

l , d, form a basis of h. We denote hR the linear span over R

of α∨
0 , . . . , α∨

l , d. We define a nondegenerate symmetric bilinear C-valued form (.|.)
on h as follows

⎧
⎪⎨

⎪⎩

(α∨
i |α∨

j ) = a j

a∨
j
ai j i, j = 0, . . . , l

(α∨
i |d) = 0 i = 1, . . . , l

(α∨
0 |d) = a0 (d|d) = 0.

We define an element �0 ∈ h∗ by

�0(α
∨
i ) = δ0i , i = 0, . . . , l; �0(d) = 0.

The linear isomorphism

ν : h → h∗,
h �→ (h|.)

identifies h and h∗. We still denote (.|.) the induced inner product on h∗. We record
that

(δ|αi ) = 0, i = 0, . . . , l, (δ|δ) = 0, (δ|�0) = 1

(K |αi ) = 0, i = 0, . . . , l, (K |K ) = 0, (K |d) = a0.

The form (.|.) is W -invariant, for W the Weyl group of the affine Lie algebra g, i.e.
the subgroup of GL(h∗) generated by fundamental reflections sα , α ∈ �, defined by

sα(β) = β − β(α∨)α, β ∈ h∗.

We denote h̊ (resp. h̊R) the linear span over C (resp. R) of α∨
1 , . . . , α∨

l . The dual

notions h̊∗ and h̊∗
R
are defined similarly. Then we have an orthogonal direct sum of

subspaces:

h = h̊R ⊕ (CK + Cd); h∗ = h̊∗
R

⊕ (Cδ + C�0).

We set hR = h̊R + RK + Rd, and h∗
R

= h̊∗
R

+ Rδ + R�0.

Notation For λ ∈ h∗ such that λ = a�0 + z + bδ, a, b ∈ C, z ∈ h̊∗
R
, denote λ̄ the

projection of λ on C�0 + h̊∗ defined by λ̄ = a�0 + z, and by ¯̄λ its projection on h̊∗
defined by ¯̄λ = z.
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656 M. Defosseux

We denote W̊ the subgroup of GL(h∗) generated by fundamental reflections sαi ,
i = 1, . . . , l. Let Z(W̊ .θ∨) denote the lattice in h̊R spanned over Z by the set W̊ .θ∨,
where

θ∨ =
l∑

i=1

a∨
i α∨

i ,

and set M = ν(Z(W̊ .θ∨)). Then W is the semi-direct product T � W̊ (Proposition
6.5 chapter 6 of [3]) where T is the group of transformations tα , α ∈ M , defined by

tα(λ) = λ + λ(K )α −
(

(λ|α) + 1

2
(α|α)λ(K )

)
δ, λ ∈ h∗.

3.2 Weights, highest-weight modules, characters

The following definitions and properties mainly come from chapter 9 and 10 of [3].
We denote P (resp. P+) the set of integral (resp. dominant) weights defined by

P = {λ ∈ h∗ : 〈λ, α∨
i 〉 ∈ Z, i = 0, . . . , l},

(resp. P+ = {λ ∈ P : 〈λ, α∨
i 〉 ≥ 0, i = 0, . . . , l}),

where 〈., .〉 is the pairing between h and its dual h∗. The level of an integral weight
λ ∈ P , is defined as the integer (δ|λ). For k ∈ N, we denote Pk (resp. Pk+) the set of
integral (resp. dominant) weights of level k defined by

Pk = {λ ∈ P : (δ|λ) = k}.
(resp. Pk+ = {λ ∈ P+ : (δ|λ) = k}.)

Recall that a g-module V is called h-diagonalizable if it admits a weight space decom-
position V = ⊕λ∈h∗Vλ by weight spaces Vλ defined by

Vλ = {v ∈ V : ∀h ∈ h, h.v = λ(h)v}.

The categoryO is defined as the set of g-modules V which are h-diagonalizable with
finite dimensional weight spaces and such that there exists a finite number of elements
λ1, . . . , λs ∈ h∗ such that

P(V ) ⊂ ∪s
i=1{μ ∈ h∗ : λi − μ ∈ N
+},

where P(V ) = {λ ∈ h∗ : Vλ 
= {0}}. One defines the formal character ch(V ) of a
module V from O by

ch(V ) =
∑

μ∈P(V )

dim(Vμ)eμ.
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Affine Lie algebras and a conditioned space-time Brownian motion 657

For λ ∈ P+ we denote V (λ) the irreducible module with highest weight λ. It belongs
to the category O. The Weyl character’s formula (Theorem 10.4, chapter 10 of [3])
states that

ch(V (λ)) =
∑

w∈W det(w)ew(λ+ρ)−ρ

∏
α∈
+(1 − e−α)mult(α)

, (2)

where mult(α) is the dimension of the root space gα defined by

gα = {x ∈ g : ∀h ∈ h, [h, x] = α(h)x},

for α ∈ 
 and ρ ∈ h∗ is chosen such that ρ(α∨
i ) = 1, for all i ∈ {0, . . . , l}. In

particular

∏

α∈
+
(1 − e−α)mult(α) =

∑

w∈W
det(w)ew(ρ)−ρ. (3)

Letting eμ(h) = eμ(h), h ∈ h, the formal character ch(V (λ)) can be seen as a function
defined on its region of convergence. Actually the series

∑

μ∈P

dim(V (λ)μ)e〈μ,h〉

converges absolutely for every h ∈ h such thatRe(δ(h)) > 0 (see chapter 11of [3]).We
denote chλ(h) its limit. For β ∈ h such that Re(β|δ) > 0, let chλ(β) = chλ(ν

−1(β)).

3.3 Theta functions

Connections between affine Lie algebras and theta functions are developed in chapter
13 of [3]. We recall properties that we need for our purpose. For λ ∈ P such that
(δ|λ) = k one defines the classical theta function �λ of degree k by the series

�λ = e− (λ|λ)
2k δ

∑

α∈M
etα(λ).

This series converges absolutely on {h ∈ h : Re(δ(h)) > 0} to an analytic function.
As

e
(λ|λ)
2k δ

∑

w∈W̊
det(w)�w(λ) =

∑

w∈W
det(w)ew(λ),

this last series converges absolutely on {h ∈ h : Re(δ(h)) > 0} to an analytic function
too.
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658 M. Defosseux

4 Markov chains on the sets of integral or dominant weights

Let us choose for this section a dominant weight ω ∈ P+ and h ∈ hR such that
δ(h) ∈ R

∗+.

Random walks on P We define a probability measure μω on P letting

μω(β) = dim(V (ω)β)

chω(h)
e〈β,h〉, β ∈ P. (4)

Remark 4.1 If (X (n), n ≥ 0) is a randomwalk on P whose increments are distributed
according to μω, keep in mind that the function

z ∈ h̊R �→
(chω(i z + h)

chω(h)

)n
,

is the Fourier transform of the projection of X (n) on h̊∗
R
.

Markov chains on P+ Given two irreducible representations V (λ) and V (ω), the
tensor product of g-modules V (λ)⊗V (β) decomposes has a direct sum of irreducible
modules. The following decomposition

V (λ) ⊗ V (ω) =
∑

β∈P+
Mλ(β)V (β),

where Mλ(β) is the multiplicity of the module with highest weight β in the decompo-
sition of V (ω)⊗V (λ), leads to the definition a transition probability Qω on P+ given
by

Qω(λ, β) = chβ(h)

chλ(h)chω(h)
Mλ(β), λ, β ∈ P+. (5)

For n ∈ N, ω ∈ P+, β ∈ P, denote mω⊗n (β) the multiplicity of the weight β in
V (ω)⊗n . For n ∈ N, λ, β ∈ P+, denote Mλ,ω⊗n (β) the multiplicity defined by

V (λ) ⊗ V (ω)⊗n =
∑

β∈P+
Mλ⊗ω⊗n (β)V (β).

The Weyl character formula implies the following lemma, which is known as a con-
sequence of the Brauer-Klimyk rule when g is a complex semi-simple Lie algebra.

Lemma 4.2 For n ∈ N, λ, β ∈ P+ one has

Mλ⊗ω⊗n (β) =
∑

w∈W
det(w)mω⊗n (w(β + ρ) − (λ + ρ)),

123



Affine Lie algebras and a conditioned space-time Brownian motion 659

Proof See Proposition 2.1 of [5] and remark below. The proof is exactly the same in
the framework of Kac-Moody algebras.

Let us consider the random walk (X (n))n≥0 defined above and its projection
(X̄(n))n≥0 on (R�0 + h̊∗

R
). Denote P̄ω the transition kernel of this last random walk.

The next property is immediate.

Lemma 4.3 Let β0, λ0 be two weights in (R�0 + h̊∗
R
). The transition kernel P̄ω

satisfies for every n ∈ N,

P̄n
ω(λ0, β0) =

∑

β∈P:β̄=β0

e〈β−λ0,h〉mω⊗n (β − λ0)

chnω(h)

Let us consider a Markov process (�(n))n≥0 whose Markov kernel is given by
(5). If λ1 and λ2 are two dominant weights such that λ1 = λ2 (mod δ) then the
irreducible modules V (λ1) and V (λ2) are isomorphic. Thus if we consider the random
process (�̄(n), n ≥ 0), where �̄(n) is the projection of �(n) on (R�0 + h̊∗

R
), then

(�̄(n), n ≥ 1) is a Markov process whose transition kernel is denoted Q̄ω.

Proposition 4.4 Let β0, λ0 be two dominant weights in (R�0 + h̊∗
R
), and n be a

positive integer. The transition kernel Q̄ω satisfies

Q̄n
ω(λ0, β0) = chβ0(h)e−〈β0,h〉

chλ0(h)e−〈λ0,h〉
∑

w∈W
det(w)e〈w(λ0+ρ)−(λ0+ρ),h〉 P̄n

ω(w(λ0 + ρ) − ρ, β0)

Proof Using Lemma (4.2), one obtains for any dominantweightλ0, β0 ∈ (R�0+g̊∗
R
),

Q̄n
ω(λ0, β0) = chβ0(h)

chλ0(h)chnω(h)

∑

β∈P+:β̄=β0

e〈β−β̄,h〉Mλ,ω⊗n (β)

= chβ0(h)

chλ0(h)chnω(h)

∑

β∈P:β̄=β0

e〈β−β̄,h〉 ∑

w∈W
det(w)mω⊗n (w(β + ρ) − (λ + ρ)).

= chβ0(h)e−〈β0,h〉

chλ0(h)e−(λ0,h)

∑

w∈W
det(w)e〈w(λ0+ρ)−(λ0+ρ),h〉 P̄n

ω(w(λ0 + ρ) − ρ, β0).

5 Scaling limit of Random walks on P

Let us fix ρ = h∨�0 + ¯̄ρ, where ¯̄ρ is half the sum of positive roots in h̊∗. For n ∈ N
∗,

we consider a random walk (Xn(k), k ≥ 0) starting from 0, whose increments are
distributed according to a probability measure μω defined by (4) with ω ∈ Ph∨

+ and
h = 1

n ν−1(ρ). In particular Xn(k) is an integral weight of level h∨k for k ∈ N.

Proposition 5.1 gives the scaling limit of the process ( ¯̄Xn(k), k ≥ 0),
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660 M. Defosseux

Proposition 5.1 The sequence of processes ( 1n
¯̄Xn([nt]), t ≥ 0)n≥0 converges towards

a standard Brownian motion on h̊∗
R
with drift ¯̄ρ.

Proof The key ingredients for the proof are Theorems 13.8 and 13.9 of [3], which
provide a transformation law for normalized characters. The two theorems deal with
two different classes of affine Lie algebras. Let us make the proof in the framework of
Theorem 13.8. The proof is similar in the framework of Theorem 13.9. For the affine
Lie algebras considered in Theorem 13.8 one has that for n ≥ 1 and z ∈ h̊∗,

chω

(
1

n
(ρ + z)

)

= Cne
1
2n || ¯̄ρ+z||2 ∑

�∈Ph∨
+ modCδ

Sω,�e
−m�

4π2n
h∨ ch�

(
4π2n

h∨ �0 + 2iπ
¯̄ρ + z

h∨

)
,

whereCn is a constant independent of z,m� = ||�+ρ||2
4h∨ − ||ρ||2

2h∨ and Sω,� is a coefficient

independent of z and n, for � ∈ Ph∨
+ . Notice that the sum is well-defined as for

λ1 = λ2 modCδ one has

e−mλ1
4π2n
h∨ chλ1

(
4π2n

h∨ �0 + 2iπ
¯̄ρ + z

h∨

)
= e−mλ2

4π2n
h∨ chλ2

(
4π2n

h∨ �0 + 2iπ
¯̄ρ + z

h∨

)
.

Let us prove the convergence. Let i ∈ {1, . . . , l}. One has 〈h∨�0, α
∨
i 〉 = 0, which

implies that V (h∨�0)h∨�0−αi = {0}. Consequentely,

if β ∈ P and dim(V (h∨�)β) 
= 0, then β = h∨�0 −
l∑

k=0

ikαk,

where ik is a nonnegative integer, for k ∈ {1, . . . , l}, and i0 is a positive integer,
which implies that (β|�0) ≤ −1. Moreover, the action of fk , for k ∈ {0, . . . , l}, on
an integrable highest weight module being locally nilpotent, the number of weights
β such that dim(V (h∨�0)β) 
= 0 and (β|�0) = −1 is finite. As the characters are
defined on the set

{λ ∈ h∗ : Re(λ|δ) > 0},

by absolutely convergent series, it implies that

chh∨�0

(
4π2n

h∨ �0 + 2iπ
¯̄ρ + z

h∨

)

is equal to

1 + (1 + ε(n))e− 4nπ2

h∨
∑

β:(β|�0)=−1

dim V (h∨�0)βe

(
β|2iπ ¯̄ρ+z

h∨
)

,
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where limn→∞ ε(n) = 0. Thus

lim
n→∞

(
chh∨�0(

4π2n

h∨ �0 + 2iπ
¯̄ρ + z

h∨ )
)[nt] = 1. (6)

Let� ∈ Ph∨
+ such that (�|�0) = 0. As previously, if β ∈ P and dim(V (�)β) 
= 0

then (β|�0) ≤ 0, and the number of weights β such that dim(V (�)β) 
= 0 and
(β|�0) = 0 is finite. Thus,

ch�

(
4π2n

h∨ �0 + 2iπ
¯̄ρ + z

h∨

)
,

is bounded independently of n. Besides, one easily verifies that for such a � one has
m� ≥ mh∨�0 and that m� = mh∨�0 implies � = h∨�0. Thus

⎛

⎜⎝1 +
∑

�∈Ph∨
+ \{h∨�0}modCδ

Sω,�

Sω,h∨�0

e−(m�−mh∨�0
) 4π

2n
h∨ ch�( 4π

2n
h∨ �0 + 2iπ

¯̄ρ+z
h∨ )

chh∨�0(
4π2n
h∨ �0 + 2iπ

¯̄ρ+z
h∨ )

⎞

⎟⎠

[nt]

converges towards 1 when n goes to infinity. The last convergence and Theorem 13.8
of [3], recalled at the beginning of the proof, imply

lim
n→∞

⎛

⎝ chω( 1n (ρ + z))

CnSω,h∨�0e
−mh∨�0

4π2n
h∨ chh∨�0(

4π2n
h∨ �0 + 2iπ

¯̄ρ+z
h∨ )

⎞

⎠
[nt]

= e
t
2 || ¯̄ρ+z||2 .

Finally, using convergence (6) one obtains

lim
n→∞

(
chω( 1n (ρ + z))

chω( 1nρ)

)[nt]
= e

t
2 (|| ¯̄ρ+z||2−|| ¯̄ρ||2),

which achieves the proof by remark (4.1). ��

6 A conditioned space-time Brownian motion

Denote C the fundamental Weyl chamber defined by

C = {x ∈ h∗ : 〈x, α∨
i 〉 ≥ 0, i = 0, . . . , l}.

Let us consider a standard Brownian motion (Bt )t≥0 on h̊∗
R
. We consider a random

process (τt�0 + Bt )t≥0 on (R�0 + h̊∗
R
). For x ∈ (R�0 + h̊∗

R
), denote P

0
x (resp.

P
ρ
x ), a probability under which τt = (x |δ) + th∨, ∀t ≥ 0, and (Bt )t≥0 is a standard

Brownian motion (resp. a standard Brownian motion with drift ¯̄ρ) starting from ¯̄x .
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662 M. Defosseux

Under P
0
x (resp. P

ρ
x ), the stochastic process (τt�0+ Bt )t≥0 has a transition probability

semi-group (pt )t≥0 (resp. (p
ρ
t )t≥0) defined by

pt (x, y) = 1

(2π t)
l
2

e− 1
2t ||y−x ||21(y|δ)=th∨+(x |δ), x, y ∈ (R�0 + h̊∗

R
).

(resp. pρ
t (x, y) = 1

(2π t)
l
2

e− 1
2t ||y− ¯̄ρt−x ||21(y|δ)=th∨+(x |δ), x, y ∈ (R�0 + h̊∗

R
).)

Let Xt = τt�0 + Bt , for t ≥ 0, and consider the stopping time T defined by

T = inf{t ≥ 0 : Xt /∈ C}.

The following proposition gives the probability for (Xt )t≥0 to remain forever in C,
under P

ρ
x , for x ∈ C.

Proposition 6.1 Let x ∈ (R�0 + h̊∗
R
) ∩ C. One has

P
ρ
x (T = +∞) =

∑

w∈W
det(w)e(x,w(ρ)−ρ).

Proof If we consider the function h defined on (R�0 + h̊∗
R
) by

h(λ) = P
ρ
λ(T = ∞), λ ∈ (R�0 + h̊∗

R
) ∩ C,

usual martingal arguments state that h is the unique bounded harmonic function for
the killed process (Xt∧T )t≥0 under P

ρ
x such that

h(λ) = 0, for λ ∈ ∂C, (7)

and

lim
t→∞ h(Xt∧T ) = 1T=∞. (8)

Let us proves that the function defined by the sum satisfies these properties. First
notice that the boundary condition (7) is satisfied. Moreover, as x is in the interior of
C, formula (3) implies that

∑

w∈W
det(w)e(x,w(ρ)−ρ)

is positive and bounded by 1. Choose an orthonormal basis v1, . . . , vl of h̊∗
R

and
consider for w ∈ W a function gw defined on R

∗+ × R
l by

gw(t, x1, . . . , xl) = e(t�0+x,w(ρ)−ρ),
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where x = x1v1 + · · · + xlvl . Letting 
 = ∑l
i=1 ∂xi xi , the function gw satisfies

(
1

2

 + h∨∂t +

l∑

i=1

(ρ, vi )∂xi

)
gw = 1

2
||w(ρ) − ρ||2 + (ρ|w(ρ) − ρ) = 0. (9)

As the function g = ∑
w det(w)gw is analytic on R

∗+ × R
l , it satisfies (9) too. Ito’s

Lemma implies that (g((τt∧T , Bt∧T ))t≥0 is a local martingale. As the function g is
bounded by 1 on {(t, x) ∈ R

∗+×R
l : t�0+x1v1+· · ·+xlvl ∈ C}, (g((τt∧T , Bt∧T ))t≥0

is a martingale, i.e. g is harmonic for the killed process under P
ρ
x . It remains to prove

that the condition (8) is satisfied. For this, we notice that for any w ∈ W distinct
from the identity, ρ − w(ρ) = ∑l

i=0 kiαi , where the ki are non negative integers not
simultaneously equal to zero. As almost surely

lim
t→∞

Xt

t
= ρ,

one obtains

lim
t→∞ gw(Xt ) = 0

for every w ∈ W distinct from the identity. As the function g is analytic on R
∗+ × R

l ,
the expected convergence follows. ��

The following lemma is needed to prove a reflection principle for a Brownian
motion killed on the boundary of the affine Weyl chamber.

Lemma 6.2 For x, y ∈ h∗
R
, t ∈ R+, w ∈ W, one has

p0t (wx, wy) = e(w(y−x)−(y−x),h∨�0) p0t (x̄, ȳ).

Proof Notice that wx = wx̄ . For w ∈ W̊ , wx = wx̄ , p0t (w(x̄), w(ȳ)) = p0t (x, y)
and (wx−x |�0) = (wy− t |�0) = 0, which implies the identity. Forw = tα, α ∈ M ,
one has

p0t (wx, wy) = p0t (h
∨uα + x̄, h∨(u + t)α + ȳ)

= 1

(2π t)
l
2

e− 1
2t ||ȳ+th∨α−x̄ ||21(y|δ)=th∨+(x |δ)

= p0t (x̄, ȳ)e
− 1

2t ((h
∨)2t2(α|α)+2h∨t (α|y−x))

= e(w(y−x)−(y−x),h∨�0) p0t (x̄, ȳ).

��
In the following, by a classical abuse of notation,

P
ρ
x (Xt = y, T ≥ t), or P

0
x (Xt = y, T ≥ t),
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664 M. Defosseux

x, y ∈ (R�0 + h̊∗
R
), t ≥ 0, stands for the semi-group of the process (Xt )t≥0, with

drift or not, killed on the boundary of C. We first prove a reflection principle for a
Brownian motion with no drift.

Lemma 6.3 For x, y ∈ (R�0+h̊∗
R
) in the interior of C, such that (y|δ) = (x |δ)+th∨,

we have

P
0
x (Xt = y, T > t) =

∑

w∈W
det(w)e(wx−x,h∨�0) p0t (wx, y),

=
∑

w∈W
det(w)e(y−w(y),h∨�0) p0t (x, w(y)).

Proof Lemma 6.2 implies in particular that we need to prove only one of the two
identities. Let us prove the second one. Actually Lemma 6.2 implies that for α ∈ �

such that sα(XT ) = 0

EXT (1Xr=wy) = e(wy−sαwy|h∨�0)EXT (1Xr = sαwy),

which implies that

Ex

(
∑

w∈W
det(w)e(y−wy,h∨�0)1T≤t, Xt=wy

)
= 0.

Then lemma follows from the fact that

Ex

(
∑

w∈W
det(w)e(y−w(y),h∨�0)1T>t, Xt=wy

)
= Ex (1Xt=y, T>t ).

��
Proposition 6.4 For x, y ∈ (R�0 + h̊∗

R
) in the interior of C, such that (y|δ) =

(x |δ) + th∨, we have

P
ρ
x (Xt = y, T > t) =

∑

w∈W
det(w)e(w(x)−x,ρ) pρ

t (w(x), y)

=
∑

w∈W
det(w)e(y−w(y),ρ) pρ

t (x, w(y)),

Proof The result follows in a standard way from Lemma 6.3 from a Girsanov’s theo-
rem. ��

7 Scaling limit of the Markov chain on P+

For x ∈ (R�0 + h̊∗
R
), Proposition 6.1 and identity (3) imply in particular that the

probability Pρ
x (T = +∞) is positive when x is in the interior of C. Let (Ft )t≥0 be
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the natural filtration of (Xt )t≥0. Let us fix x ∈ (R�0 + h̊∗
R
) in the interior of C. One

considers the following conditioned process.

Definition 7.1 One defines a probability Q
ρ
x letting

Q
ρ
x (A) = Ex

(
P

ρ
Xt

(T = +∞)

P
ρ
x (T = +∞)

1T≥t, A

)
, for A ∈ Ft , t ≥ 0.

Under the probability Q
ρ
x , the process (Xt )t≥0 is a space-time Brownian motion

with drift ρ, conditioned to remain forever in the affineWeyl chamber. Let (xn)n≥0 be a
sequence of elements of P+ such that the sequence ( xnn )n≥0 converges towards x when
n goes to infinity. For any n ∈ N

∗, we consider a Markov process (�n(k), k ≥ 0)
starting from xn , with a transition probability Qω defined by (5), with ω ∈ Ph∨

+
and h = 1

n ν−1(ρ). Notice that for n, k ∈ N, �n(k) is a dominant weight of level
kh∨ + (xn|δ). Then the following convergence holds.

Theorem 7.2 The sequence of processes ( 1n �̄n([nt]), t ≥ 0) converges when n goes
to infinity towards the process (Xt , t ≥ 0) under Q

ρ
x .

Proof Propositions 4.4 and 5.1 imply that the sequence of processes ( 1n �̄n([nt]), t ≥
0) converges when n goes to infinity towards a Markov process with transition prob-
ability semi-group (qt )t≥0 defined by

qt (x, y) = ψ(y)

ψ(x)

∑

w∈W
det(w)e(w(x)−x |ρ) pρ

t (w(x), y), x, y ∈ (R�0 + h̊∗
R
),

where ψ(x) = ∑
w∈W det(w)e(x |w(ρ)−ρ). Propositions 6.1 and 6.4 imply that

qt (x, y) = P
ρ
y (T = +∞)

P
ρ
x (T = +∞)

Px (Xt = y, T > t), x, y ∈ (R�0 + h̊∗
R
),

which achieves the proof. ��
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