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Abstract As an extension of Polya’s classical result on random walks on the square
grids (Zd ), we consider a random walk where the steps, while still have unit length,
point to different directions. We show that in dimensions at least 4, the returning prob-
ability after n steps is at most n−d/2−d/(d−2)+o(1), which is sharp. The real surprise is
in dimensions 2 and 3. In dimension 2, where the traditional grid walk is recurrent, our
upper bound is n−ω(1), which is much worse than in higher dimensions. In dimension
3, we prove an upper bound of order n−4+o(1). We find a new conjecture concerning
incidences between spheres and points in R3, which, if holds, would improve the
bound to n−9/2+o(1), which is consistent to the d ≥ 4 case. This conjecture resembles
Szemerédi-Trotter type results and is of independent interest.

Mathematics Subject Classification 11B25

1 Introduction

In his classical paper in 1921, Polya [5] proved his famous theorem on random walks
on Zd . Consider a particle at the origin at time 0; at each tick of the clock it goes to a
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randomly selected neighbouring lattice point, uniformly at random. One is interested
in the chance that it returns to the origin at time n. Let e1, . . . , ed be the basis unit
vectors in Zd and ξi are i.i.d. symmetric Bernoulli random variables (taking values
±1 with probability 1/2). Let

Sn :=
n∑

j=1

ξ j f j

where f j is chosen uniformly from E := {e1, . . . , ed}. One would like to estimate

P(Sn = 0). (1)

Polya proved.

Theorem 1.1 For any d ≥ 1, P(Sn = 0) = �(n−d/2).

(In general, we can consider an arbitrary starting point. For the sake of presentation,
we delay the discussion of this case until the end of the section). A random walk is
said to be recurrent if it returns to its initial position with probability one. A random
walk which is not recurrent is called transient. Theorem 1.1 implies.

Corollary 1.2 The simple random walk on Zd is recurrent in dimensions d = 1, 2
and transient in dimension d ≥ 3.

The goal of this note is to show that a randomwalk with steps of the same length all
pointing in different directions behaves quite differently. As amatter of fact, dimension
2 turns out to be the worst. The intuitive reason behind this is that a circle can have
very few integral points, given by the number of representations of an integer as a
sum of two squares. In contrast, a sphere of the same radius in the euclidean space or
in higher dimensions can have many integral points, as each of its cross-sections is a
(d − 2)-sphere.

Given a fixed list of vectors, we consider the walk where, at each tick of the clock,
the particle randomly moves either in the direction of the new vector in the list or in
the opposite one. The new and critical assumption here is that the vectors are not to
be repeated.

Mathematically, we consider the random walk

Sn,V = η1v1 + η2v2 + · · · + ηnvn

where V := {v1, v2, . . . , vn} is a given set of n different unit vectors in Rd , and ηi are
again i.i.d. Bernoulli random variables. We say that V is effectively d-dimensional if
there is no affine hyperplane that contains more than 0.99n vectors in V [where 0.99
can be replaced by by any constant 0 < (1 − ε) < 1. For ease of notation we take
ε = 0.01 throughout the paper].

Notation: Here and later, asymptotic notations, such as o(), O(), ω(), and so forth,
are used under the assumption that d is fixed, and n → ∞.
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Theorem 1.3 Consider a set V of n different unit vectors which is effectively d-
dimensional. Then

• For d ≥ 4, P(Sn,V = 0) ≤ n− d
2 − d

d−2+ o(1).

• For d = 3, P(Sn,V = 0) ≤ n−4+o(1).

• For d = 2, P(Sn,V = 0) ≤ n−ω(1).

The assumption “effectively d-dimensional” is necessary, otherwise one can take
V in a lower dimensional subspace and have a better bound. The bound for d ≥ 4 is

sharp, as we can construct a set V such that P(Sn,V ) ≥ n− d
2 − d

d−2+ o(1). We conjecture
that this expression is also the sharp bound for d = 3. This conjecture would follow
from a new conjecture concerning incidences in R3, which is of independent interest
(see Sect. 4 for details).

The real surprise is the case d = 2, where no matter how one chooses the set V , the
returning probability is super polynomially small. Deciding the order of the exponent
is an interesting problem. We can construct a set V which provides P(Sn,V = 0) ≥
n−C log log n for some constant C > 0.

Theorem 1.3 holds under a weaker assumption. We can allow the vectors in V to
take different lengths and also have some multiplicities. We say that V is (L , M)-
typical if the vectors of V have lengths in a set L of size L , and each vector has
multiplicity at most M . Furthermore, we can allow the target to be any point x ∈ Rd .
(This corresponds to a walk starting at −x and ending at the origin).

Theorem 1.4 Let V be a (L , M)-typical set which is effectively d-dimensional, where
both L , M = no(1). Then the upper bounds in Theorem 1.4 holds for the probability
P(Sn,V = x), for any x ∈ Rd .

In the next section, we present our main lemmas. The proofs of the theorems follow
in Sect. 3. We conclude with an open problem in incidence geometry which would
imply the sharp bound in the case d = 3.

2 The main lemmas

In this section, we describe our main tools. Let G be an abelian group (throughout the
paper we will consider G = Rd ). A generalized arithmetic progression (GAP) in G
is a set of the form

Q(a0, a1, . . . , ar , N1, . . . , Nr ) = {a0 + x1a1 + · · · + xrar | xi = 0, 1, . . . , Ni }.

Werefer to r as the rank, and call a0, a1, . . . , ar ∈ G the generators, and N1, . . . , Nr

the dimensions of Q. It’s generally useful to think of a generalized arithmetic progres-
sion as the image of the discrete r -dimensional box [0, N1] × · · · × [0, Nr ] under the
map

� : [0, N1] × · · · × [0, Nr ] −→ G

(x1, . . . , xr ) −→ a0 + a1x1 + · · · + ar xr .
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1074 S. Herdade, V. Vu

We say that Q is proper if the above map is injective. We say that Q is symmetric
if it can also be written in the form

Q = {n1b1 + n2b2 + · · · + nrbr | − Mi ≤ ni ≤ Mi , i = 1, . . . , r}

for some b1, . . . , br ∈ R
d and M1, . . . , Mr ∈ N.

Let V be a set of n vectors in Rd , define the concentration probability

ρ(V ) = sup
x∈Rd

P(Sn,V = x). (2)

We are going to use the following result in [4, Theorem 2.1], which asserts that
a set of vectors with high concentration probability must necessarily be, up to a few
elements, a subset of a generalized arithmetic progression of small cardinality.

Theorem 2.1 (Optimal inverse Littlewood–Offord theorem) Let ε < 1 and C be
positive constants. Assume that ρ(V ) ≥ n−C . Then, there exists a proper symmetric
GAP Q in Rd , of some rank r = OC,ε(1), that contains at least (1 − ε)n elements of
V , such that

|Q| = OC,ε

(
ρ(V )−1n− r

2

)
.

Our next tool is a result of Chang [1]. For a set X and a number m, both in the
complex plane, denote by r2(m; X) the number of ways to writem as a product of two
elements of X .

Theorem 2.2 For any fixed r there is some constant Cr > 0 such that the following
holds. Let Q be a GAP of complex numbers of rank r and dimensions N1, . . . , Nr . Let
N = maxi Ni . Then for all m ∈ C,

r2(m; Q) ≤ N
Cr

log log N .

We use this theorem to prove the following corollary.

Corollary 2.3 Let Q be aGAP inR2 with constant rank r . Let S ⊆ R
2 be an arbitrary

circle. Then

|Q ∩ S| ≤ |Q|o(1).

Proof (Proof of Corollary 2.3) For any x ∈ C denote its complex conjugate by x̄ . Let
S be a circle of radius R. As we can shift Q, we can assume, without loss of generality,
that S is centered at 0. Let Q = {a0 + x1a1 + · · · + xrar |xi = 0, . . . , Ni ,∀i} ⊆ C.
Consider

P = {x0a0 + x1a1 + · · · + xrar + y0ā0 + y1ā1 + · · · + yr ār | x0, y0
∈ {0, 1}; |xi |, |yi | ≤ Ni }.
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By the above theorem,

r2(R
2; P) ≤ N

C2r+2
log log N ≤ |Q|

C2r+2
log log |Q|/r = |Q|o(1).

On the other hand, x ∈ S if and only if x · x̄ = R2. As P contains all elements of
Q and their conjugates, it follows that

|Q ∩ S| ≤ r2(R
2; P) = |Q|o(1).


�

3 Proof of Theorems 1.3 and 1.4

We first prove Theorem 1.3.

3.1 Upper bound for d ≥ 4

Consider a set V and assume, for a contradiction, thatP(Sn,V = 0) ≥ n−d/2−d/(d−2)+δ

for some constant δ > 0. By Theorem 2.1, there is a proper symmetric GAP Q of
constant rank r , which contains at least 0.99n elements of V , and

|Q| = O(nd/2+d/(d−2)−r/2−δ). (3)

In what follows, we derive a lower bound that contradicts (3). Let Q := {n1a1 +
n2a2 + · · · + nrar | |ni | ≤ Ni }, Q′ := {n3a3 + n4a4 + · · · + nrar | |ni | ≤ Ni } and
Q

′′ := {n1a1 + n2a2| |ni | ≤ Ni }. We can assume, without loss of generality, that
N1, N2 are the two largest dimensions, which implies that |Q′| ≤ |Q|(r−2)/r .

By Corollary 2.3 and the hypothesis that the vectors in V have unit length, we
conclude that for any x ∈ Q′, |(x + Q

′′
) ∩ V | ≤ |Q ′′ |o(1) ≤ |Q|o(1). Since V ∩

Q = ∪x∈Q′(x + Q
′′
) ∩ V , it follows that 0.99n ≤ |Q|o(1)|Q|(r−2)/r , or equivalently,

|Q| ≥ nr/(r−2)−o(1). This inequality relies on the hypothesis that the vectors of V are
all distinct. Together with (3), we have

nd/2+d/(d−2)−r/2−δ ≥ nr/(r−2)−o(1). (4)

On the other hand V is effectively d-dimensional, so r ≥ d. For r ≥ 4, the function
f (r) = r/2 + r/(r − 2) is strictly monotone increasing. This implies that the above
inequality cannot hold for sufficiently large n, a contradiction.

Notice that the proof does not depend on the value 0.99 given in the definition of
an effectively d-dimensional set of vectors. And that it follows exactly the same for
any other fixed constant 0 < 1 − ε < 1.

3.2 Upper bound for d = 3

One can repeat the above argument, but we can no longer use the fact that f (r) =
r/2 + r/(r − 2) is monotone. As a matter of fact f (3) = 9/2 is larger than both
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f (4) = 4 and f (5) = 25/6. As f (r) ≥ 5 for all r ≥ 6, the worst value one can take
is f (4) = 4, which results in the upper bound n−4+o(1).

3.3 Upper bound for d = 2

Consider a set V and assume, for a contradiction, that P(Sn,V = 0) ≥ n−C , for some
constant C . By Theorem 2.1, there is proper symmetric GAP Q, of some constant
rank r = OC,ε(1), that contains at least (1 − ε)n elements of V , and with

|Q| = OC,ε(ρ(V )−1n− r
2 ) .

However, by Corollary 2.3, such Q can only contain |Q|o(1) ≤ no(1) points from
the unit circle, which, in turns, contains V . This provides the desired contradiction.

3.4 Lower bounds

Let us start with the case d ≥ 3. We construct a set V such that

P(Sn,V = 0) ≥ n−d/2−d/(d−2)−o(1).

By classical results on Waring’s problem [7], the number of ways to write an
integer N as sum of d squares is at least n := N (d−2)/2+o(1), for any fixed d ≥ 4 and
all sufficiently large N . This means the sphere of radius R := N 1/2 (centered at the
origin) contains at least n lattice vectors. Let V be the set of these vectors (we can
normalize them to have unit length). An application of the Chebyshev’s inequality
shows that with probability at least 1/2, Sn,V belongs to the ball B of radius 10n1/2R
centered at the origin. By pigeonhole, and the simple fact that the number of lattice
points in the ball is comparable to its volume, we conclude that there is a lattice point
x ∈ B such that

P(Sn,V = x) ≥ 1

2
(volume B)−1 ≥ Cn−d/2−d/(d−2)−o(1)

for some positive constant C = C(d).
Let us show that the supremum of P(Sn,V = x) is attained at x = 0, for any set V

symmetric with respect to the origin. We use Gauss’ identity

IY=0 = Cd

∫

Sd−1
e(Y · t)dt,

whereY is a vector inRd , I is the indicator function,Cd is a positive constant depending
on d, e(x) = exp(2π i x) and Sd−1 is the unit sphere in Rd . By this identity, we have

P(Sn,V = x) = EISn,V −x=0 = ECd

∫

Sd−1
e((Sn,V − x) · t)dt

= Cd

∫

Sd−1
e(−x · t)Ee(Sn,V · t)dt.
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As Sn,V = ∑n
i=1 ηivi where the ηi are independent, it follows that

Ee(Sn,V · t) =
n∏

i=1

Ee(ηivi · t) =
n∏

i=1

cos(vi · t).

Since the set V is symmetric with respect to the origin,

n∏

i=1

cos(vi · t) =
n∏

i=1

| cos(vi · t)|.

Thus, by the triangle inequality

P(Sn,V = x) ≤ Cd

∫

Sd−1

n∏

i=1

| cos(vi · t)|dt = P(Sn,V = 0)

for any x ∈ Rd . This and the inequality P(Sn,V = x) ≥ n−d/2−d/(d−2)−o(1) imply the
desired lower bound.

Let us now turn to the case d = 2. Classical results in number theory show that there
are infinitely many R such that the circle centered at the origin of radius R contains
at least R1/ log log R integral points [3, Theorem 4.2.2]. Fixed one such R, let V be the
set of these points. By a similiar argument to the case d ≥ 3,

ρ(V ) = �(R−2+o(1)) ≥ |V |−C log log |V |

for a properly chosen constant C .

3.5 Proof of Theorem 1.4

Assuming for a moment that V consists of different vectors of unit length, the proof
for an arbitrary target x is the same, since in Theorem 2.1 we define ρ(V ) :=
supx P(Sn,V = x). For the general case, by the pigeon hole principle, there are at
least n/LM different vectors in V with the same length t . Let V ′ be the set of these
vectors and repeat the proof for this set, conditioning on the rest of the walk. By
the condition on L , M, |V ′| = n1−o(1) and this only influences the o(1) terms in the
bounds.

4 New problems in incidence geometry

Weconjecture that in the case d = 3 the upper bound n−d/2−d/(d−2)+o(1) = n−9/2+o(1)

also holds. Thiswould follow from the following conjectures,which are of independent
interest.

Conjecture 4.1 Let V be a set of n unit vectors in the Euclidean space, with at most
no(1) of its endpoints on any plane. Then |V + V + V | ≥ n5/2−o(1).
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Conjecture 4.2 Let P be a set of p points and B be a set of n2 unit spheres in R3.
Again assume that no plane contains more than no(1) points of P. Assume as well that
each sphere in B contains at least n points from P. Then p ≥ n5/2−o(1).

As a matter of fact, we feel that one can replace both exponents 5/2 by 3 (which
would be clearly optimal).

Notice that the second statement implies the first. By congruence of triangles, the
endopoints of all pairs of vectors with a prescribed sum lie in a same hyperplane.
Under the hypothesis above, that means the size of V + V is at least n2−o(1). Since
each element of the triple sumset of V lies in a unit sphere centered at one of those
n2−o(1) points, the conclusion follows.

It is also easy to see that Conjecture 4.1 implies the desired upper bound for the
unproved case dimension d = 3. In fact, the argument for the d ≥ 4 case carries on for
d = 3 if the generalized arithmetic progression Q containing all but a few elements of
V has rank at least 6. However, if Q has rank 4 we need its size to be at least n5/2−o(1)

(which also suffices for rank 5).
Denote by V ′ the set of (1 − ε)n elements of V contained in that GAP Q. The

elements of V ′ on any given hyperlane lie in the intersection of a circle with the
projection of Q onto the plane. This is a GAP of rank and size no greater than Q.
By Corollary 2.3, we conclude that V ′ has at most no(1) elements on any hyperplane.
Furthermore we have that V ′ + V ′ + V ′ ⊆ Q + Q + Q. Assuming Conjecture 4.1,
this implies that |Q + Q + Q| ≥ n5/2−o(1) and so, since Q is a generalized arithmetic
progression of constant rank, its size itself is at least n5/2−o(1).
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