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Abstract We study a particular class of complex-valued random variables and their
associated random walks: complex obtuse random variables. They generalize, to the
complex case, the real-valued obtuse random variables introduced in Equations de
structure pour des martingales vectorielles. (Séminaire de Probabilités, XXVIII, p.
256278. Lecture Notes in Math., vol. 1583. Springer, Berlin (1994)) in order to under-
stand the structure of normal martingales in R

N . The extension to the complex case
is motivated by Quantum Statistical Mechanics, in particular for characterizing those
quantum baths acting as classical noises. The extension of obtuse random variables
to the complex case is far from obvious and makes use of very interesting algebraical
structures. We show that complex obtuse random variables are characterized by a 3-
tensor which admits certain symmetries; we show that these symmetries are the exact
3-tensor analogue of the normal character for 2-tensors (i.e. matrices), that is, a neces-
sary and sufficient condition for being diagonalizable in some orthonormal basis. We
discuss the passage to the continuous-time limit for these randomwalks and show that
they converge in distribution to normal martingales in CN . We show that the 3-tensor
associated to these normal martingales encodes their behavior, in particular the diag-
onalization directions of the 3-tensor indicate the directions of the space where the
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martingales behaves like a diffusion and those where it behaves like a Poisson process.
We finally prove the convergence, in the continuous-time limit, of the corresponding
multiplication operators on the canonical Fock space, with an explicit expression in
terms of the associated 3-tensor again.

Mathematics Subject Classification 60G46 · 60J10
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1 Introduction and motivations

1.1 Generalities

Real obtuse random variables are a particular family of random variables which were
defined in [4] in order to understand the discrete-time analogue of normal martingales
in R

N . They were shown to be deeply connected to the Predictable Representation
Property and the Chaotic Representation Property for discrete-time martingales in
R

N . They are kind of minimal, centered and normalized random variables in RN and
they exhibit a very interesting underlying algebraic structure. This algebraic struc-
ture is carried by a certain natural 3-tensor associated to the random variable. This
3-tensor has exactly the necessary and sufficient symmetries for being diagonaliz-
able in some orthonormal basis (that is, they obtained the extension to 3-tensors
of the condition of being real symmetric for 2-tensors). The corresponding ortho-
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Complex obtuse random walks and their continuous-time limits 67

normal basis carries the behavior of the associated random walk and in particular
of its continuous-time limit. It is shown in [4] that, for the continuous-time limit,
in the directions associated to the null eigenvalue, the limit process behaves like a
diffusion process, while it behaves like a pure jump process in the directions asso-
ciated to non-null eigenvalues. In [6] it is concretely shown how the 3-tensor of
the discrete-time obtuse random walks converges to the one of normal martingales
in RN .

Since this initial work of [4] was onlymotivated by Probability Theory and Stochas-
tic Process considerations, there was no real need for an extension of this notion to the
complex case. The need for such an extension has appeared naturally through consid-
erations in Quantum Statistical Mechanics. More precisely, the underlying motivation
is to characterize the onset of classical noises emerging from quantum baths, in the
so-called model of Repeated Quantum Interactions.

Repeated quantum interactions are physical models, introduced and developed
in [5], which consist in describing the Hamiltonian dynamics of a quantum system
undergoing a sequence of interactions with an environment made of a chain of iden-
tical systems. These models were developed for they furnish toy models for quantum
dissipative systems, they are at the same time Hamiltonian and Markovian, they spon-
taneously give rise to quantum stochastic differential equations in the continuous time
limit. It has been proved in [7,8] that they constitute a good toy model for a quantum
heat bath in some situations and that they can also give an account of the diffusive
behavior of an electron in an electric field, when coupled to a heat bath. When adding
to each step of the dynamics a measurement of the piece of the environment which
has just interacted, one recovers all the discrete-time quantum trajectories for quantum
systems [15–17]. Physically this model corresponds exactly to physical experiments
such as the ones performed by Haroche et al., on the quantum trajectories of a photon
in a cavity [9–11].

The discrete-time dynamics of these repeated interaction systems, as well as their
continuous-time limit, give rise to time evolutions driven by quantum noises coming
from the environment. These quantum noises emerging from the environment describe
all the possible actions inside the environment (excitation, return to ground state, jumps
in between two energy levels, ...). It is a remarkable fact that these quantum noises can
also be combined together in order to give rise to classical noises. In discrete-time they
give rise to any random walk, in continuous-time they give rise to many well-known
stochastic processes among which are all Levy processes.

The point is that complex obtuse random variables and their continuous-time limit
are the key for understanding what kind of classical noise is appearing at the end from
the quantum bath. The 3-tensor helps to read directly from the Hamiltonian which
kind of classical noise will be driving the evolution equation. This was our initial
motivation for developing the complex theory of obtuse random variables and normal
martingales in C

N .

Surprisingly, the extension of obtuse random variables, obtuse random walks and
their continuous-time limits, to the complex case is far from obvious. The algebraical
properties of the associated 3-tensors give rise to the same kind of behaviors as in the
real case, but, as we shall see in this article, many aspects (such as the diagonalization
theorem) become now really non-trivial.
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1.2 Examples

Let us have here a more detailed discussion on these physical motivations underlying
our study. These motivations do not appear anymore in the rest of the article which
is devoted entirely to the probabilistic properties of complex obtuse random walks
and their continuous-time limit, but we have felt that it could be of interest for the
reader to have a clearer picture of the physical motivations which have brought us to
consider the complex case extension of obtuse randomwalks. This part can be skipped
by the reader, it has no influence whatsoever on the rest of the article, these physical
applications are developed in detail in [2].

Let us illustrate this situation with concrete examples. Consider a quantum system,
with state spaceHS , in contact with a quantum bath of the formHE = ⊗NC

2, that is,
a spin chain. Let us denote by aij , i, j ∈ {0, 1}, the usual basis of elementary matrices

on C
2 and by aij (n) the corresponding matrix but acting only on the nth copy of C2.

The Hamiltonian for the interaction betweenHS and one copy of C2 is of the typical
form

Htot = HS ⊗ I + I ⊗ HE + V ⊗ a01 + V ∗ ⊗ a10 .

Assume that the interaction between these two parts lasts for a small amount of time
h, then the associated unitary evolution operator isU = e−ihHtot which can be decom-
posed as U =∑1

i, j=0U
i
j ⊗ aij for some operators Ui

j onHS .

The action of the environment (the spin chain) by acting repeatedly on the system
HS , spin by spin, each time for a time duration h, gives rise to a time evolution driven
by a unitary group (Vn) which satisfies (cf [5] for details)

Vn+1 =
1∑

i, j=0

(Ui
j ⊗ I ) Vn (I ⊗ aij (n + 1)).

This describes a rather general discrete time evolution for a quantum system and the
operators aij (n) here play the role of discrete time quantum noises, they describe all
the possible innovations brought by the environment.

In [5] it is shown that if the total Hamiltonian Htot is renormalized under the form

Htot = HS ⊗ I + I ⊗ HE + 1√
h

(
V ⊗ a01 + V ∗ ⊗ a10

)

then the time evolution (Vnh) converges, when h tends to 0, to a continuous-time
unitary evolution (Vt ) satisfying an equation of the form

dVt = K Vt dt + L Vt da
∗(t) − L∗ Vt da(t),

which is a quantum stochastic differential equation driven by quantum noises da(t)
and da∗(t), on some appropriate Fock space. In other words, we obtain a perturbation
of a Schrödinger equation by some additional quantum noise terms.
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Complex obtuse random walks and their continuous-time limits 69

The point now is that, in the special case where V = V ∗, the discrete-time evolution
and its continuous-time limit are actually driven by classical noises, for some of the
terms in the evolution equation factorize nicely and make appearing classical noises
instead of quantum noises (the noises get grouped in order to furnish a family of
commuting self-adjoint operators, that is, a classical stochastic process). Indeed, one
can show (cf [3] and [6]) that the discrete time evolution can be written under the form
of a classical random walk on the unitary group U(HS):

Vn+1 = A Vn + B Vn Xn+1,

where (Xn) is a sequence of i.i.d. symmetric Bernoulli random variables. The con-
tinuous time limit, with the same renormalization as above, gives rise to a unitary
evolution driven by a classical Brownian motion (Wt ):

dVt =
(

i H − 1

2
L2
)

Vt dt + L Vt dWt .

The equation above is the typical one for the perturbation of a Schrödinger equation
by means of a Brownian additional term.

This example is very simple and already well-known (cf [6]); it involves real obtuse
random variables and real normal martingales. The point now is that one can consider
plenty ofmuchmore complicated examples of a choice for theHamiltonian Htot , which
would give rise to classical noises instead of quantum noises. Our motivation was to
understand and characterize when such a situation appears and to read on the Hamil-
tonian which kind of noise is going to drive the dynamics. Let us illustrate this with a
more complicated example. Assume now that the environment is made of a chain of 3-
level quantum systems, that is,HE = ⊗NC

3. For the elementary interaction between
the quantum system HS and one copy of C3 we consider a Hamiltonian of the form

Htot = H ⊗ I + A ⊗
⎛

⎝
0 5 0

−1 + 2i 0 4 − 2i
−2 + 4i 0 2i

⎞

⎠+ B ⊗
⎛

⎝
0 0 5

−2 + 4i 0 2 + i
1 − 2i −i −1 + 2i

⎞

⎠ ,

which is self-adjoint under the condition B = −(1/2)(A + (1 + 2i)A∗).
In this case the quantum dynamics in discrete time happens to be driven by a

classical noise too. We shall understand, with the tools developed in this article, that
it is of the form

Vn+1 = A Vn + B Vn Xn+1 + C Vn Yn+1,

where the random variables (Xn,Yn) are i.i.d. in C
2 taking the values

v1 =
(
i
1

)

, v2 =
(

1
−1 + i

)

, v3 = −1

5

(
3 + 4i
1 + 3i

)

with probabilities p1 = 1/3, p2 = 1/4 and p3 = 5/12 respectively.
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70 S. Attal et al.

Putting a 1/
√
h normalization factor in front of A and B and taking the limit h goes

to 0, we shall show in this article, that this gives rise to a continuous time dynamics

dVt = L0 Vt dt + L1 Vt dZ
1
t + L2 Vt dZ

2
t ,

where (Z1, Z2) is a normal martingale in C2 given by

⎧
⎨

⎩

Z1
t = 2+i√

10
W 1

t + i√
2
W 2

t

Z2
t = −1+2i√

10
W 1

t + 1√
2
W 2

t ,

where (W 1,W 2) is a 2-dimensional real Brownian motion.
We shall also see in this article how to produce any kind of example in C

N which
mixes Brownian parts and Poisson parts.

The way these random walks and their characteristics are identified, the way the
continuous-time limits and their characteristics are identified, are highly non-trivial
and make use of all the tools we shall develop along this article: associated doubly-
symmetric 3-tensor, diagonalisation of the 3-tensor, probabilistic characteristics of
the associated random walk, passage to the limit on the tensor, passage to the limit
on the discrete-time martingale, identification of the law of the limit martingale,
etc.

1.3 Structure of the article

This article is structured as follows. In Sect. 2 we introduce the notions of complex
obtuse systems, complex obtuse random variables and their associated 3-tensors. We
connect complex obtuse systems to real ones. We show a kind of uniqueness result
and we show that they generate all finitely supported random variables in C

N .
In Sect. 3 we establish the important symmetries shared by the 3-tensors of obtuse

randomvariables andwe show one of ourmain results: these symmetries are the neces-
sary and sufficient conditions for the 3-tensor to be diagonalizable in someorthonormal
basis. We show how to recover the real case, which remarkably does not correspond
to the real character of the 3-tensor but to a certain supplementary symmetry.

In Sect. 4 we recall basic results on real normal martingales and deduce the corre-
sponding ones for the complex normal martingales. In particular we establish what is
the complex extension of a structure equation.We connect the behavior of the complex
normal martingale to the diagonalization of its associated 3-tensor.

In Sect. 5 we finally prove our continuous-time convergence theorems. First of
all, via the convergence of the tensors, exploiting the results of [19], we prove a
convergence in law for the processes. Secondly, in the framework of Fock space
approximation by spin chains developed in [1], we prove the convergence of the
associatedmultiplication operators, with explicit formulas in terms of quantum noises.

We finally illustrate our results in Sect. 6 through 2 examples, showing up the
different types of behavior.
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Complex obtuse random walks and their continuous-time limits 71

2 Complex obtuse random variables

2.1 Complex obtuse systems

Definition 2.1 Let N ∈ N
∗ be fixed. An obtuse system in C

N is family of N + 1
vectors {v1, . . . , vN+1} in CN such that

〈
vi , v j

〉 = −1,

for all i �= j.
In that case we put

v̂i =
(
1
vi

)

∈ C
N+1,

so that {̂v1, . . . , v̂N+1} forms an orthogonal basis of CN+1. We put

pi = 1

‖̂vi‖2
= 1

1 + ‖vi‖2
,

for i = 1, . . . N + 1.

Lemma 2.2 With the definition and notations above we have

N+1∑

i=1

pi = 1 (1)

and
N+1∑

i=1

pi vi = 0. (2)

Proof We have, for all j ,

〈
N+1∑

i=1

pi v̂i , v̂ j

〉

= p j
∥
∥v̂ j
∥
∥2 = 1 =

〈(
1
0

)

, v̂ j

〉

.

As the v̂ j ’s form a basis, this means that

N+1∑

i=1

pi v̂i =
(
1
0

)

.

This gives the two announced equalities. �	
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Lemma 2.3 We also have

N+1∑

i=1

pi |vi 〉〈vi | = ICN . (3)

Proof As the vectors (
√
pi v̂i )i∈{1,...,N+1} form an orthonormal basis of CN+1 we

have

ICN+1 =
N+1∑

i=1

pi |̂vi 〉〈̂vi |.

Now put

u =
(
1
0

)

and ṽi =
(
0
vi

)

,

for all i = 1, . . . , N + 1. We get

ICN+1 =
N+1∑

i=1

pi |u + ṽi 〉〈u + ṽi |

=
N+1∑

i=1

pi |u〉〈u| +
N+1∑

i=1

pi |u〉〈̃vi | +
N+1∑

i=1

pi |̃vi 〉〈u| +
N+1∑

i=1

pi |̃vi 〉〈̃vi |.

Using (1) and (2), we get

ICN+1 = |u〉〈u| +
N+1∑

i=1

pi |̃vi 〉〈̃vi |.

In particular we have

N+1∑

i=1

pi |vi 〉〈vi | = ICN ,

that is, the announced equality. �	
Let us just show one example now. On C2 the 3 vectors

v1 =
(
i
1

)

, v2 =
(

1
−1 + i

)

, v3 = −1

5

(
3 + 4i
1 + 3i

)

form an obtuse system of C2. The associated pi ’s are then respectively

p1 = 1

3
, p2 = 1

4
, p3 = 5

12
.
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We end this subsection with some useful properties of obtuse systems. First, we
prove an independence property for obtuse systems.

Proposition 2.4 Every strict sub-family of an obtuse family is linearly free.

Proof Let {v1, . . . , vN+1} be an obtuse family ofCN . Let us show that {v1, . . . , vN } is
free,whichwould be enough for our claim. IfwehadvN =∑N−1

i=1 λi vi then, taking the
scalar product with vN we would get ‖vN‖2 =∑N−1

i=1 −λi , whereas taking the scalar
product with vN+1 would give −1 = ∑N−1

i=1 −λi . This would imply ‖vN‖2 = −1,
which is impossible. �	

Now we prove a kind of uniqueness result for obtuse systems.

Proposition 2.5 Let {v1, . . . , vN+1} be an obtuse system of CN having {p1, . . . ,
pN+1} as associated probabilities. Then the following assertions are equivalent.

(i) The family {w1, . . . , wN+1} is an obtuse system on C
N with same respective

probabilities {p1, . . . , pN+1}.
(ii) There exists a unitary operator U on C

N such that wi = Uvi , for all i =
1, . . . , N + 1.

Proof One direction is obvious. If wi = Uvi , for all i = 1, . . . , N + 1 and for some
unitary operatorU , then the scalars products

〈
vi , v j

〉
and

〈
wi , w j

〉
are equal, for each

pair (i, j). This shows that {w1, . . . , wN+1} is obtuse with the same probabilities.
In the converse direction, if v1, . . . , vN+1 and w1, . . . , wN+1 are obtuse systems

associated to the same probabilities p1, . . . , pN+1, then

〈
vi , v j

〉 = 〈wi , w j
〉

for all i, j . The sub-family {v1, . . . , vN } is a basis of CN , by Proposition 2.4. The
map U : C

N → C
N such that Uvi = wi for all i = 1, . . . , N is clearly unitary,

by the conservation of scalar products. Finally, the vector vN+1 is a certain linear
combination of the vi ’s, i = 1, . . . , N , but wN+1 is the same linear combination of
the wi ’s, i = 1, . . . , N , by the conservation of scalar products. HenceUvN+1 is equal
to wN+1 and the proposition is proved. �	

Finaly, we prove that every complex obtuse system is obtained by a unitary trans-
form of CN applied to some real obtuse system. This result will be used many times
in the article.

Theorem 2.6 For every obtuse family {v1, . . . , vN+1} of C
N there exists a unitary

operatorU of C
N such that the vectorswi = Uvi all have real coordinates. The family

{w1, . . . , wN+1} of R
N forms a real obtuse system of R

N , with same probabilities
as the initial family {v1, . . . , vN+1}.
Proof Consider the (N + 1) × (N + 1) Gram matrix G such that Gi j = 〈vi , v j

〉
for

all i, j . This matrix is real symmetric and positive. The rank of G is N exactly, as was
already noticed in Proposition 2.4. As a consequence G can be written as G = A∗A,
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where A is a real (N )× (N + 1) matrix. Hence G is the Gram matrix Gi j = 〈wi , w j
〉

for some real vectors wi ∈ R
N , i, j = 1, . . . , N + 1. As the two families have the

sameGrammatrix, we conclude, as in Proposition 2.5, with the existence of the unitary
operator U such as announced. �	

2.2 Obtuse random variables

Obtuse families of vectors are actually deeply connected to particular centered and
normalized random variables.

Definition 2.7 Consider a random variable X , with values in C
N , which can take

only N + 1 different non-null values {v1, . . . , vN+1} with strictly positive probability
p1, . . . , pN+1 respectively.

We shall denote by X1, . . . , XN the coordinates of X in C
N . We say that X is

centered if its expectation is 0, that is, if E[Xi ] = 0 for all i . We say that X is
normalized if its covariance matrix is I , that is, if

cov(Xi , X j ) = E[Xi X j ] − E[Xi ]E[X j ] = δi j ,

for all i, j = 1, . . . N .

Definition 2.8 We consider the canonical version of X , that is, we consider the prob-
ability space (�,F ,P) where � = {1, . . . , N + 1}, where F is the full σ -algebra
of � and where the probability measure P is given by P ({i}) = pi and the random
variable X is given by X (i) = vi , for all i ∈ �. The coordinates of vi are denoted by
vki , for k = 1, . . . , N , so that Xk(i) = vki .

We shall also consider the deterministic random variable X0 on (�,F ,P) which
is constant equal to 1.

With these notations the following result is obvious.

Proposition 2.9 A randomvariable X, taking N+1 different values inCN , is centered
and normalized if and only if the family {X0, X1, . . . , XN } forms an orthonormal basis
of L2 ((�,F ,P); C) .

We shall now connect these random variables to obtuse systems.

Definition 2.10 In the same way as above we put

v̂i =
(
1
vi

)

∈ C
N+1,

for all i = 1, . . . , N + 1. For i = 0, . . . , N let X̃ i be the random variable defined by

X̃ i ( j) = √
p j X

i ( j)

for all i = 0, . . . , N and all j = 1, . . . , N + 1.
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Proposition 2.11 The following assertions are equivalent.

(1) X is centered and normalized.
(2) The (N + 1) × (N + 1)-matrix

(
X̃ i ( j)

)
i, j is a unitary matrix.

(3) The (N + 1) × (N + 1)-matrix
(√

pi v̂
j
i

)

i, j
is a unitary matrix.

(4) The family {v1, . . . , vN+1} is an obtuse system with

pi = 1

1 + ‖vi‖2 ,

for all i = 1, . . . , N + 1.

Proof 1) ⇒ 2): Since the random variable X is centered and normalized, each
component Xi has a zero mean and the scalar product between two components
Xi , X j is given by the matrix I . Hence, for all i in {1, . . . , N }, we get

E

[
Xi
]

= 0 ⇐⇒
N+1∑

k=1

pk vik = 0, (4)

and for all i, j = 1, . . . N ,

E[Xi X j ] = δi j ⇐⇒
N+1∑

k=1

pk vik v
j
k = δi j . (5)

Now, using Eqs. (4) and (5), we get, for all i, j = 1, . . . , N

〈
X̃0 , X̃0

〉
=

N+1∑

k=1

pk = 1,

〈
X̃0 , X̃ i

〉
=

N+1∑

k=1

√
pk

√
pk vik = 0,

〈
X̃ i , X̃ j

〉
=

N+1∑

k=1

√
pk v

j
k

√
pkv

i
k = δi, j .

The unitarity follows immediately.
2) ⇒ 1): Conversely, if the matrix

(
X̃ i ( j)

)
i, j is unitary, the scalar products of

column vectors give the mean 0 and the covariance I for the random variable X .

2)⇔ 3): The matrix
(√

p j v̂
j
i

)

i, j
is the transpose matrix of

(
X̃ i ( j)

)
i, j . Therefore,

if one of these two matrices is unitary, its transpose matrix is unitary too.

3) ⇔ 4): The matrix
(√

p j v̂
i
j

)

i, j
is unitary if and only if

〈√
pi v̂i ,

√
p j v̂ j

〉 = δi, j ,
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for all i, j = 1, . . . , N +1. On the other hand, the condition
〈√

pi v̂i ,
√
pi v̂i

〉 = 1
is equivalent to pi (1+ ‖vi‖2) = 1, whereas the condition

〈√
pi v̂i ,

√
p j v̂ j

〉 = 0
is equivalent to

√
pi

√
p j (1 + 〈vi , v j

〉
) = 0, that is,

〈
vi , v j

〉 = −1. This gives
the result.

This result motivates the following definition.

Definition 2.12 Random variables inCN which take only N +1 different values with
strictly positive probability, which are centered and normalized, are called obtuse
random variables in C

N .

Theorem 2.6 extends in the following way to obtuse random variables.

Theorem 2.13 Let X be an obtuse random variable inCN . Then there exists an obtuse
random variable Y in CN , taking only real values, but with the same probabilities as
those of X, there exists a unitary map U on C

N , such that

X = UY.

Proof Theorem 2.6 shows that there exists a unitary operator V of CN which trans-
forms the values of X into a real obtuse system. The random variable Y = V X is then
a real-valued obtuse random variable in C

N . �	

2.3 Generic character of obtuse random variables

We shall here apply the properties of obtuse systems to obtuse random variables, in
order to show that these random variables somehow generate all the finitely supported
probability distributions on C

N .

First of all, an immediate consequence of Proposition 2.5 is that obtuse randomvari-
ables on CN with a prescribed probability distribution {p1, . . . , pN+1} are essentially
unique.

Proposition 2.14 Let X be an obtuse random variable ofCN having {p1, . . . , pN+1}
as associated probabilities. Let Y be aCN -valued random variable. Then the following
assertions are equivalent.

(i) The random variable Y is an obtuse random variable on C
N with same proba-

bilities {p1, . . . , pN+1}.
(ii) There exists a unitary operator U on C

N such that Y = UX in distribution.

Having proved that uniqueness, we shall now prove that obtuse random variables
generate all the random variables (at least with finite support). First of all, a rather
simple remark which shows that the choice of taking N + 1 different values is the
minimal one for centered and normalized random variables in C

N .

Proposition 2.15 Let X be a centered and normalized random variable inCd , taking
n different values. Then we must have

n ≥ d + 1.
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Proof Let X be centered and normalized in C
d , taking the values v1, . . . , vn with

probabilities p1, . . . , pn . The relation

0 = E[X ] =
n∑

i=1

pivi

shows that Rank{v1, . . . , vn} < n. On the other hand, the relation

ICd = E [|X〉〈X |] =
n∑

i=1

pi |vi 〉〈vi |

shows that Rank{v1, . . . , vn} ≥ d. This gives the result. �	
We can now state the theoremwhich shows how general, finitely supported, random

variables on C
d are generated by the obtuse ones. We concentrate only on centered

and normalized random variables, for they obviously generate all the others, up to an
affine transform of Cd .

Theorem 2.16 Let n ≥ d+1 and let X be a centered and normalized random variable
inCd , taking n different values v1, . . . , vn, with probabilities p1, . . . , pn respectively.

If Y is any obtuse random variable on C
n−1 associated to the probabilities

p1, . . . , pn, then there exists a partial isometry A fromC
n−1 toCd , withRan A = C

d ,
such that

X = AY

in distribution.

Proof Assume that the obtuse randomvariableY takes the valuesw1, . . . , wn inCn−1.
The family {w1, . . . , wn−1} is obviously linearly independent, hence there exists a
linear map A : Cn−1 → C

d such that Awi = vi for all i < n. Now we have

pn vn = −
∑

i<n

pi vi = −
∑

i<n

pi Awi = A

(

−
∑

i<n

pi wi

)

= pn Awn .

Hence the relation Awi = vi holds for all i ≤ n.

We have proved the relation X = AY in distribution, with A being a linear map
from C

n−1 to Cd . The fact that X is normalized can be written as E[XX∗] = Id . But

E[XX∗] = E[AYY ∗A∗] = AE[YY ∗]A∗ = A In A∗ = AA∗.

Hence A must satisfy AA∗ = Id , which is exactly saying that A is a partial isometry
with range Cd . �	
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2.4 Associated 3-tensors

Obtuse random variables are naturally associated to some 3-tensors with particular
symmetries. This is what we shall prove here.

Definition 2.17 In this article, a 3-tensor on CN is an element of (CN )∗ ⊗C
N ⊗C

N ,
that is, a linear map from C

N to C
N ⊗ C

N . Coordinate-wise, it is represented by a
collection of coefficients (Si jk )i, j,k=1,...,N . It acts on CN as

(S(x))i j =
N∑

k=1

Si jk xk .

We shall see below that obtuse random variables on C
N have a naturally associated

3-tensor on C
N+1. Note that, because of our notation choice X0, X1, . . . , XN , the

3-tensor is indexed by {0, 1, . . . , N } instead of {1, . . . , N + 1}.

Proposition 2.18 Let X be an obtuse random variable in C
N . Then there exists a

unique 3-tensor S on C
N+1 such that

Xi X j =
N∑

k=0

Si jk Xk, (6)

for all i, j = 0, . . . , N. This 3-tensor S is given by

Si jk = E[Xi X j Xk], (7)

for all i, j, k = 0, . . . N .

We also have the relation, for all i, j = 0, . . . , N

Xi X j =
N∑

k=0

Sikj Xk . (8)

Proof We know, from Proposition 2.9 that the random variables {X0, X1, . . . , XN }
form an orthonormal basis of L2(�,F ,P). These random variables being bounded,
the products Xi X j are still elements of L2(�,F ,P), hence they can be written, in
a unique way, as linear combinations of the Xk’s. As a consequence, there exists a
unique 3-tensor S on C

N+1 such that

Xi X j =
N∑

k=0

Si jk Xk
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for all i, j = 0, . . . , N . In particular we have

E[Xi X j Xk] =
N∑

l=0

Si jl E[Xl Xk] = Si jk .

This shows Identity (7).
Finally, we have, by the orthonormality of the Xk’s

Xi X j =
N∑

k=0

E[Xi X j Xk] Xk,

that is,

Xi X j =
N∑

k=0

Sikj Xk,

by (7). This gives Identity (8). �	
The 3-tensor S has quite some symmetries, let us detail some of them.

Proposition 2.19 Let S be the 3-tensor associated to an obtuse random variable X on
C

N . Then the 3-tensor S satisfies the following relations, for all i, j, k, l = 0, . . . N

Si0k = δik, (9)

Si jk is symmetric in (i, j), (10)
N∑

m=0

Simj Sklm is symmetric in (i, k), (11)

N∑

m=0

Simj Slmk is symmetric in (i, k). (12)

Proof The relation (9) is immediate for

Si0k = E[Xi Xk] = δik .

Equation (10) comes directly from Formula (7) which shows a clear symmetry in
(i, j).

By (8) we have

Xi X j =
N∑

m=0

Simj Xm,
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whereas

Xk Xl =
N∑

n=0

Skln Xn .

Altogether this gives

E

[
Xi X j Xk Xl

]
=

N∑

m=0

Simj Sklm .

But the left hand side is clearly symmetric in (i, k) and (11) follows.
In order to prove (12), we write, using (8)

Xi X j =
N∑

m=0

Simj Xm

and

Xl Xk =
N∑

n=0

Slmk Xn .

Altogether we get

E

[
Xi X j Xl Xk

]
=

N∑

m=0

Simj Slmk .

But the left hand side is clearly symmetric in (i, k) and (12) is proved. �	

2.5 Representation of multiplication operators

Let X be an obtuse random variable in C
N , with associated 3-tensor S and let

(�,F ,PS) be the canonical space of X . Note that we have added the dependency
on S for the probability measure PS . The reason is that, when changing the obtuse
random variable X on CN , the canonical space � and the canonical σ -field F do not
change, only the canonical measure P changes.

Definition 2.20 We have seen that the space L2(�,F ,PS) is a N + 1-dimensional
Hilbert space and that the family {X0, X1, . . . , XN } is an orthonormal basis of that
space. Hence for every obtuse random variable X , with associated 3-tensor S, we have
a natural unitary operator

US : L2(�,F ,PS) −→ C
N+1

Xi �−→ ei ,
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where {e0, . . . , eN } is the canonical orthonormal basis of CN+1. The operator US is
called the canonical isomorphism associated to X.

The interesting point with the isomorphisms US is that they canonically transport
all the obtuse random variables ofCN onto a common canonical space. But the point is
that the probabilistic informations concerning the random variable X are not correctly
transferred via this isomorphism: all the informations about the law, the independen-
cies, etc. are lost when identifying Xi to ei . The only way to recover the probabilistic
informations about the Xi ’s onCN+1 is to consider themultiplication operator by Xi ,
defined as follows. On the space L2(�,F ,PS), for each i = 0, . . . , N , we consider
the multiplication operator

MXi : L2(�,F ,PS) −→ L2(�,F ,PS)

Y �−→ Xi Y,

These multiplication operators carry all the probabilistic informations on X , even
through a unitary transform such as US , for we have, by the usual functional calculus
for normal operators

E[ f (X1, . . . , XN )] = 〈X0 , f (MX1 , . . . ,MXN ) X0
〉
L2(�,F ,PT )

= 〈e0 , US f (MX1 , . . . ,MXN )U∗
S e0
〉
CN+1

= 〈e0 , f (US MX1U∗
S , . . . ,US MXN U∗

S ) e0
〉
CN+1 .

Definition 2.21 On the space CN+1, with canonical basis {e0, . . . , eN } we consider
the basic matrices aij , for i, j = 0, . . . , N defined by

aij ek = δik e j .

We shall see now that, when carried out on the same canonical space by US , the
obtuse random variables of CN admit a simple and compact matrix representation in
terms of their 3-tensor.

Theorem 2.22 Let X be an obtuse random variable on CN , with associated 3-tensor
S and canonical isomorphism US . Then we have, for all i, j = 0, . . . , N

US MXi U∗
S =

N∑

j,k=0

Si jk a j
k . (13)

for all i = 0, . . . , N .

The operator of multiplication by Xi is given by

US MXi U
∗
S =

N∑

j,k=0

Sikj a j
k . (14)
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Proof We have, for any fixed i ∈ {0, . . . , N }, for all j = 0, . . . , N

US MXi U∗
S e j = US MXi X j

= US X
i X j

= US

N∑

k=0

Si jk Xk

=
N∑

k=0

Si jk ek .

Hence the operator US MXi U∗
S has the same action on the orthonormal basis

{e0, . . . , eN } as the operator
N∑

k=0

Si jk a j
k .

This proves the representation (13).
The last identity is just an immediate translation of the relation (8). �	

2.6 Back to the example

Let us illustrate the previous subsections with our example. To the obtuse system

v1 =
(
i
1

)

, v2 =
(

1
−1 + i

)

, v3 = −1

5

(
3 + 4i
1 + 3i

)

of C2 is associated the random variable X on C
2 which takes the values v1, v2, v3

with probability p1 = 1/3, p2 = 1/4 and p3 = 5/12, respectively. The 3-tensor
S associated to X is directly computable. We present S as a collection of matrices

S j =
(
Si jk

)

i,k
, which are then the matrices of multiplication by X j :

S0 =
⎛

⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟
⎠ , S1 =

⎛

⎜
⎝

0 1 0

− 1
5 (1 − 2i) 0 − 2

5 (2 + i)

− 2
5 (1 − 2i) 0 1

5 (2 + i)

⎞

⎟
⎠

S2 =
⎛

⎜
⎝

0 0 1

− 2
5 (1 − 2i) 0 1

5 (2 + i)
1
5 (1 − 2i) −i − 1

5 (1 − 2i)

⎞

⎟
⎠ .

These matrices are not symmetric (we shall see in Sect. 3.3 what the symmetry of the
matrices S j corresponds to).We recognize the particular form of S0, for it corresponds
toMX0 = I.
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3 Complex doubly-symmetric 3-tensors

We are going to leave for a moment the obtuse random variables and concentrate on
the symmetries we have obtained above. The relation (9) is really specific to obtuse
random variables, we shall leave it for a moment. We concentrate on the relation (10),
(11) and (12) which have important consequences for the 3-tensor.

3.1 The main diagonalization theorem

Definition 3.1 A 3-tensor S on C
N+1 which satisfies (10), (11) and (12) is called a

complex doubly-symmetric 3-tensor on C
N+1.

The main result concerning complex doubly-symmetric 3-tensors in C
N+1 is that

they are the exact generalization for 3-tensors of normal matrices for 2-tensors: they
are exactly those 3-tensors which can be diagonalized in some orthonormal basis of
C

N+1.

Definition 3.2 A3-tensor S onCN+1 is said to be diagonalizable in someorthonormal
basis (am)Nm=0 of C

N+1 if there exist complex numbers (λm)Nm=0 such that

S =
N∑

m=0

λm a∗
m ⊗ am ⊗ am . (15)

In other words

S(x) =
N∑

m=0

λm 〈am , x〉 am ⊗ am (16)

for all x ∈ C
N+1.

Note that, as opposed to the case of 2-tensors (that is, matrices), the “eigenvalues”
λm are not completely determined by the representation (16). Indeed, if we put ãm =
eiθm am for all m, then the ãm’s still form an orthonormal basis of CN+1 and we have

S(x) =
N∑

m=1

λm eiθm 〈̃am , x〉 ãm ⊗ ãm .

Hence the λm’s are only determined up to a phase; only their modulus is determined
by the representation (16).

Definition 3.3 Actually, there are more natural objects that can be associated to
diagonalizable 3-tensors; they are the orthogonal families in C

N . Indeed, if S is
diagonalizable as above, for all m such that λm �= 0 put vm = λm am . The fam-
ily {vm; m = 1, . . . , K } is then an orthogonal family in CN+1 and we have

S(vm) = vm ⊗ vm
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for all m. In terms of the vm’s, the decomposition (16) of S becomes

S(x) =
K∑

m=1

1

‖vm‖2 〈vm , x〉 vm ⊗ vm . (17)

This is the form of diagonalization we shall retain for 3-tensors. Be aware that in the
above representation the vectors are orthogonal, but not normalized anymore. Also
note that they represent the eigenvectors of S associated only to the non-vanishing
eigenvalues of S.

We can now state the main theorem.

Theorem 3.4 A 3-tensor S on C
N+1 is diagonalizable in some orthonormal basis if

and only if it is doubly-symmetric.
More precisely, the formulas

V =
{
v ∈ C

N+1\{0}; S(v) = v ⊗ v
}

,

and

S(x) =
∑

v∈V

1

‖v‖2 〈v , x〉 v ⊗ v,

establish a bijection between the set of orthogonal systems V in C
N+1 and the set of

complex doubly-symmetric 3-tensors S.

Proof First step: let V = {vm; m = 1, . . . , K } be an orthogonal familly inCN+1\{0}.
Put

Si jk =
K∑

m=1

1

‖vm‖2 vim v
j
m vkm,

for all i, j, k = 0, . . . , N . We shall check that S is a complex doubly-symmetric 3-
tensor in C

N+1. The symmetry of Si jk in (i, j) is obvious from the definition. This
gives (10).

We have

N∑

m=0

Simj Sklm =
N∑

m=0

K∑

n,p=1

1

‖vn‖2
1

∥
∥vp
∥
∥2

vin v
j
n vmn vmp vkp vlp

=
K∑

n,p=1

1

‖vn‖2
1

∥
∥vp
∥
∥2

vin v
j
n
〈
vp , vn

〉
vkp vlp

=
K∑

n=1

1

‖vn‖2
vin v

j
n vkn vln
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and the symmetry in (i, k) is obvious. This gives (11).
We have

N∑

m=0

Simj Slmk =
N∑

m=0

K∑

n,p=1

1

‖vn‖2
1

∥
∥vp
∥
∥2

vin vmn v
j
n vlp vmp vkp

=
K∑

n,p=1

1

‖vn‖2
1

∥
∥vp
∥
∥2

vin v
j
n 〈vn , vm〉 vkp vlp

=
K∑

n=1

1

‖vn‖2
vin v

j
n vkn vln

and the symmetry in (i, k) is obvious. This gives (12).
We have proved that the formula

S(x) =
∑

v∈V

1

‖v‖2 〈v , x〉 v ⊗ v (18)

defines a complex doubly-symmetric 3-tensor if V is any family of (non-vanishing)
orthogonal vectors.

Second step: now given a complex doubly-symmetric 3-tensor S of the form (18),
we shall prove that the set V coincides with the set

V̂ = {v ∈ C
N\{0}; S(v) = v ⊗ v}.

Clearly, if y ∈ V we have by (18)

S(y) = y ⊗ y.

This proves that V ⊂ V̂ . Now, let v ∈ V̂ . On one side we have

S(v) = v ⊗ v,

on the other side we have

S(v) =
∑

z∈V

1

‖z‖2 〈z , v〉 z ⊗ z.

In particular, applying 〈y| ∈ V∗ to both sides, we get

〈y , v〉 v = 〈y , v〉 y

and thus either v is orthogonal to y or v = y. This proves that v is one of the elements
y of V , for it were orthogonal to all the y ∈ V we would get v ⊗ v = S(v) = 0 and v

would be the null vector.
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We have proved that V coincides with the set

{v ∈ C
N\{0}; S(v) = v ⊗ v}.

Third step: now we shall prove that all complex doubly-symmetric 3-tensors S on
C

N+1 are diagonalizable in some orthonormal basis. The property (10) indicates that
the matrices

Sk = (Si jk )i, j=0,...,N

are symmetric. But, as they are complex-valued matrices, this does not imply any
property of diagonalization. Rather we have the following theorem [12].

Theorem 3.5 (Takagi Factorization) LetM be a complex symmetric matrix, there exist
a unitary U matrix and a diagonal matrix D such that

M = UDUt = UD(U )−1. (19)

Secondly, we shall need to simultaneously “factorize” the Sk’s as above. We shall
make use of the following criteria (same reference).

Theorem 3.6 (Simultaneous Takagi factorization) Let F = {Ai ; i ∈ J } be a family
of complex symmetric matrices in Mn(C). Let G = {

Ai A j ; i, j ∈ J }. Then the
following assertions are equivalent.

(i) There exists a unitary matrix U such that, for all i in J , the matrix U AiUt is
diagonal.

(ii) The family G is commuting.

This is the first part of Step three: proving that in our case the matrices Si S j

commute. Using the 3 symmetry properties of S we get

(
Si S j Sk Sl

)
m,n =

N∑

x,y,z=0

Smx
i Sxyj Syzk Sznl =

N∑

x,y,z=0

Smx
y Sxij Syzk Sznl

=
N∑

x,y,z=0

Szxy Sxij Symk Sznl =
N∑

x,y,z=0

Szxn Sxij Symk Szyl

=
N∑

x,y,z=0

Szxi Sxnj Symk Szyl =
N∑

x,y,z=0

Smy
k Syzl Szxi Sxnj

= (Sk Sl Si S j
)
m,n .

This proves that Si S j Sk Sl = Sk Sl Si S j . The family
{
Si S j ; i, j = 0, . . . , N

}
is

commuting. Thus, by Theorem 3.6, the matrices Sk can be simultaneously Takagi-
factorized. There exists then a unitary matrix U = (ui j )i, j=0,...,N such that, for all k
in {0, . . . , N },

Sk = U Dk U
−1

, (20)

123



Complex obtuse random walks and their continuous-time limits 87

where the matrix Dk is a diagonal matrix, Dk = diag(λ0k, . . . , λ
N
k ). Thus, the coeffi-

cient Si jk can be written as

Si jk =
N∑

m=0

λmk uim u jm .

Let us denote by am themth columnvector ofU , that is, am = (ulm)l=0,...,N .Moreover,
we denote by λm the vector of λmk , for k = 0, . . . , N . Since the matrix U is unitary,
the vectors am form an orthonormal basis of CN+1. We have

Si jk =
N∑

m=0

aim λmk akm .

Our aim now is to prove that λm is proportional to am . To this end, we shall use the
symmetry properties of S. From the simultaneous reduction (20), we get

S j Sq = U Dj Dq U
t .

Thus, we have

(S j Sq)i,r =
N∑

m=0

Simj Smr
q =

N∑

m=0

aim λmj λmq arm .

In particular we have, for all p ∈ {0, . . . , N }
N∑

i, j,q,r=0

(S j Sq)i,r a
i
p λ

p
j λ

p
q arp

=
N∑

m=0

〈
am , ap

〉 〈
λm , λp〉 〈λp , λm

〉 〈
ap , am

〉 = ∥∥λp
∥
∥4 . (21)

An immediate consequence of (12) is that

N∑

m=0

Simj Slmk

is also symmetric in ( j, l). Applying this, the expression (21) is also equal to

N∑

i, j,q,r=0

N∑

m=0

aqm λmj λmi arm aip λ
p
j λ

p
q arp =

N∑

m=0

〈
ap , λm

〉 〈
λm , λp〉 〈am , λp

〉 〈
ap , am

〉

= ∣∣〈ap , λp〉∣∣2
∥
∥λp

∥
∥2.
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This gives

∣
∣
〈
ap , λp〉∣∣ = ∥∥λp

∥
∥ = ∥∥ap

∥
∥
∥
∥λp

∥
∥ .

This is a case of equality in Cauchy–Schwarz inequality, hence there exists μp ∈ C

such that λp = μp ap, for all p = 0, . . . , N . This way, the 3-tensor T can be written
as

Si jk =
N∑

m=0

μm aim a j
m akm . (22)

In other words

S(x) =
N∑

m=0

μm 〈am , x〉 am ⊗ am .

We have obtained the orthonormal diagonalization of S. The proof is complete. �	

3.2 Back to obtuse random variables

The theorem above is a general diagonalization theorem for 3-tensors. For the moment
it does not take into account the relation (9). When we make it enter into the game,
we see the obtuse systems appearing.

Theorem 3.7 Let S be a doubly-symmetric 3-tensor on C
N+1 satisfying also the

relation

Si0k = δik

for all i, k = 0, . . . , N. Then the orthogonal system V such that

S(x) =
∑

v∈V

1

‖v‖2 〈v , x〉 v ⊗ v (23)

is made of exactly N + 1 vectors v1, . . . , vN+1, all of them satisfying v0i = 1. In
particular the family of N + 1 vectors of CN , obtained by restricting the vi ’s to their
N last coordinates, forms an obtuse system in C

N .

Proof First assume that V = {v1, . . . , vK }. By hypothesis, we have

Si jk =
K∑

m=1

1

‖vm‖2 vim v
j
m vkm,
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for all i, j, k = 0, . . . , N . With hypothesis (9) we have in particular

Si0k =
K∑

m=1

1

‖vm‖2 vim v0m vkm = δik

for all i, k = 0, . . . , N .

Consider the orthonormal family of CN+1 made of the vectors em = vm/ ‖vm‖ .

We have obtained above the relation

K∑

m=0

v0m |em〉〈em | = I

as matrices acting onCN+1. The above is thus a spectral decomposition of the identity
matrix, this implies that the em’s are exactly N +1 vectors and that all the v0m are equal
to 1.

This proves the first part of the theorem. The last part concerning obtuse systems
is now obvious and was already noticed when we have introduced obtuse systems.

In particular we have proved the following theorem.

Theorem 3.8 The set of doubly-symmetric 3-tensors S on C
N+1 which satisfy also

the relation

Si0k = δik

for all i, k = 0, . . . , N, is in bijection with the set of distributions of obtuse random
variables X on C

N . The bijection is described by the following, with the convention
X0 = 1:

– The random variable X is the only (in distribution) random variable satisfying

Xi X j =
N∑

k=0

Si jk Xk,

for all i, j = 1, . . . , N.
– The 3-tensor S is obtained by

Si jk = E[Xi X j Xk],

for all i, j, k = 0, . . . , N .

In particular the different possible values taken by X in CN coincide with the vectors
wn ∈ C

N , made of the last N coordinates of the eigenvectors vn associated to S in
the representation (23). The associated probabilities are then pn = 1/(1+‖wn‖2) =
1/‖vn‖2.
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3.3 Recovering the real case

In [4] have been introduced the notions of real obtuse random variables and their
associated real doubly-symmetric 3-tensors. In the same way as we did here, they
obtained certain symmetries on the tensor which corresponded exactly to the condition
for being diagonalizable in some real orthonormal basis. Note that in [4] the situation
for the diagonalization theorem was much easier, for the symmetries associated to the
3-tensor came down to simultaneous diagonalization of commuting symmetric real
matrices.

The question we want to answer here is: How do we recover the real case from the
complex case? By this wemean: Onwhat condition does a complex doubly-symmetric
3-tensor correspond to a real one, that is, corresponds to real-valued random variables?
Surprisingly enough, the answer is not: “When the coefficients Si jk are all real”! We
shall see later on that this condition is necessary, but it is not sufficient as is shown by
the following counter-example.

Let us consider the one dimensional random variable X which takes values i , −i
with probability 1/2. As usual denote by X0 the constant random variable equal to 1
and by X1 the random variable X. We have the relations

X0X0 = X0

X0X1 = X1

X1X0 = X1

X1X1 = −X0

which give us the following matrices for the associated 3-tensor S:

S0 = (Si0k )i,k = MX0 =
(
1 0
0 1

)

S1 = (Si1k )i,k = MX1 =
(
0 −1
1 0

)

.

They are real-valued matrices, but they are associated to a complex (non real) random
variable.

In fact, the major difference between a complex (non real) doubly-symmetric 3-
tensor and a real doubly-symmetric 3-tensor lies in the commutationproperty of indices
i and k in the coefficients Si jk . Let us make this more precise.

Definition 3.9 A doubly symmetric 3-tensor S on C
N is said to be totally real if the

associated orthogonal system V is made of real vectors.
Note that if the 3-tensor S also satisfies (9) then the condition “S is totally real”

means that the associated obtuse random variable X on C
N is real-valued.

We have the following algebraic characterization of totally real tensors.

Proposition 3.10 Let S bea complex doubly symmetric tensor onCN+1. The following
assertions are equivalent.
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(1) The 3-tensor S is totally real.
(2) For all i, j, k = 0, . . . , N the coefficients Si jk are real and we have

Si jk = Skji .

If S also satisfies the condition (9) then Condition (2) may be reduced to
(2’) For all i, j, k = 0, . . . , N we have

Si jk = Skji .

In particular obtuse random variables X in C
N are real-valued if and only if

their associated 3-tensor S satisfy (2’).

Proof If the tensor S is totally real we then recover the usual definition and properties
of real orthogonal families, real obtuse systems and real obtuse random variables. The
condition (1) is then an easy consequence.

Conversely, assume that (1) is satisfied. As we have

Si jk =
K∑

m=1

1

‖vm‖2 vim v
j
mvkm,

the commutation relation implies that

K∑

m=1

1

‖vm‖2 vim v
j
mvkm =

K∑

m=1

1

‖vm‖2 vkm v
j
mvim .

Considering

N∑

j=1

Si jk v
j
n

with the two different expressions above, gives

vin vkn = vkn vin .

In particular vin vkn is real for all i, k = 0, . . . , N , all n = 1, . . . , K .

Now, each vm in the associated orthogonal family V satisfies

S(vm) = vm ⊗ vm .

In particular, we have

N∑

i,k=0

Si jk vkm vim = ‖vm‖2 v
j
m .
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As the Si jk ’s and all the vkm vim’s are real numbers, we get that all the v
j
m’s are real

numbers. We have proved the first equivalence.
If one knows that the tensor S satisfies (9), the proof starts in the same way as

above, obtaining the relation

vin vkn = vkn vin .

At that stage, as we have already noticed in Theorem 3.7, the relation (9) gives v0m = 1
for all m. Taking k = 0 in the equality above proves that the coordinates vim are all
real. The equivalence at the end of the proposition is now immediate. �	

In the counter-example above, one can check that S011 = 1 and S110 = −1. The
commutation condition is not satisfied and the associated random variable is not real.

We know from Theorem 2.13 that there exists a unitary operator of CN that can
transform a given complex obtuse random variable into a real one. For the moment
we have not been very explicit on the construction of this unitary operator, we shall
show that the appropriate transform is nicely carried by the associated 3-tensor.

First of all, we establish a general decomposition result for unitary symmetric
matrices.

Proposition 3.11 A matrix S on C
N is unitary and symmetric if and only if it can be

written as

S = VV t

for some unitary matrix V .

The map S �→ V can be chosen to be Borel.

Proof One direction is obvious, if S is of the form VV t for some unitary V then S is
obviously symmetric and unitary.

Conversely, let us assume that S is unitary and symmetric. As it is symmetric, by
Takagi Theorem 3.5, the matrix S can be decomposed as U DUt for some unitary U
and some diagonal matrix D. But as S is unitary we have

I = S∗ S = U DU∗ U DUt ,

hence

|D|2 = Ut U = I

and thematrix D is unitary too. In particular its entries aremodulus 1 complexnumbers.
Let L be the diagonal matrix whose entries are a square root of the entries of D, they
are also of modulus 1, so that L L = I.

Put V = U L , then

V V t = U L L Ut = U DUt = S,
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but also

V V ∗ = U L L U∗ = U U∗ = I.

We have proved the announced decomposition of S.

The assertion on the Borel character of themap S �→ V comes from the fact that the
map V �→ VV t is obviously continuous, hence Borel. It is is a surjection between the
space of unitary matrices on C

n and the space of unitary and symmetric matrices on
C
n . Both spaces are compact and metrizable. Hence Uniformization Theorems apply

and there exists a Borel section of this mapping, that is, a Borel choice for the inverse
mapping (cf [18], Corollary 5.2.6). This proves the last claim. �	

We can now show how to obtain a real obtuse random variable associated to a
complex one.

Theorem 3.12 Let X be an obtuse random variable inCN with associated 3-tensor S.
Then the matrix S0 = (Si j0 )i, j=0,...,N is symmetric and unitary, it can be decomposed
as V V t for some unitary matrix V ofCN .For any such unitary operator V the random
variable R = V ∗ X is a real obtuse random variable of CN .

Proof By definition we have Si j0 = E[Xi X j ] and hence it is symmetric in (i, j). Let
us check it is a unitary matrix. We have

N∑

m=0

Sim0 S jm
0 =

N∑

m=0

E[Xi Xm]E[Xm X j ]

=
N∑

m=0

〈
Xi , Xm

〉

L2(�,F ,P)

〈
Xm , X j

〉

L2(�,F ,P)

=
〈
Xi , X j

〉

L2(�,F ,P)

= E[Xi X j ] = δi j .

This proves the unitarity.
By Proposition 3.11, there exists a decomposition S0 = VV t for some unitary

matrix V .

We now check the Y = V ∗X is real-valued. Recall that, by definition, we have
S0 = E[XXt ]. We then have

E[YY t ] = E[V ∗XXt V ] = V ∗
E[XXt ]V = V ∗S0V t = I.

But as X is an obtuse random variable, then so is Y and in particular we haveE[YY t ] =
I , also. This shows that the coordinates Y i of Y satisfy

E

[
(Y i )2

]
= E

[∣
∣
∣Y i
∣
∣
∣
2
]

,
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which means that Y i is real-valued. �	
Speaking of unitary transforms of obtuse random variables, we shall need later on to
recall how is transformed the associated 3-tensor under a unitary map of the random
variable. The following lemma is just an obvious application of the change of basis
formula for 3-tensors, we do not prove it.

Lemma 3.13 Let X and Y be two obtuse random variables on C
N such that there

exist a unitary operator U on C
N satisfying X = UY . We extend C

N to C
N+1 by

adding some e0 vector to the orthonormal basis; we extend U to a unitary operator
on CN+1 by imposing Ue0 = e0. Let (ui j )i, j=0,...,N be the coefficients of U on CN+1.

If S and T are the 3-tensors of X and Y respectively, we then have

Si jk =
N∑

m,n,p=0

uim u jn ukp T
mn
p , (24)

for all i, j, k = 0, . . . , N .

Conversely, the tensor T can be deduced from the tensor S by

T i j
k =

N∑

m,n,p=0

umi unj u pk S
mn
p .

Definition 3.14 In the following if two 3-tensors S and T are connected by a formula
of the form (24) we shall denote it by

S = U ◦ T .

4 Complex normal martingales

The aim of next section is to give explicit results concerning the continuous-time limit
of randomwalksmade of sums of obtuse random variables. The continuous time limits
will give rise to particular martingales onCN . In the real case, the limiting martingales
are well-understood, they are the so-called normal martingales of RN satisfying a
structure equation (cf [4]). In the real case the stochastic behavior of these martingales
is intimately related to a certain doubly symmetric 3-tensor and to its diagonalization.
To make it short, the directions corresponding to the null eigenvalues of the limiting
3-tensor are those where the limit process behaves like a Brownian motion; the other
directions (non-vanishing eigenvalues) correspond to a Poisson process behavior. This
was developed in details in [4] and we shall recall their main results below.

In the next section of this article we wish to obtain two types of time-continuous
results:

– a limit in distribution for the processes, for which we would like to rely on the
results of [19] where is proved that the convergence of the 3-tensors associated
to the discrete time obtuse random walks implies the convergence in law of the
processes;
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– a limit theorem for the multiplication operators, for which we would like to rely on
the approximation procedure developed in [1], where is constructed an approxima-
tion of the Fock space bymeans of spin chains andwhere is proved the convergence
of the basic operators aij (n) to the increments of quantum noises.

When considering the complex case we had two choices: either develop a complex
theory of normal martingales and structure equations, extend all the results of [4],
of [19] and of [1] to the complex case and prove the limit theorems we wished to
obtain; or find a way to connect the complex obtuse random walks to the real ones
and rely on the results of the real case, in order to derive the corresponding one for
the complex case. We have chosen the second scenario, for we have indeed the same
connection between the complex obtuse random variables and the complex ones as
we have obtained in the discrete time case. In this section we shall present, complex
normal martingales and their structure equations, the connection between the complex
and the real case, together with their consequences. Only in next section we shall apply
these results in order to derive the continuous-time limit theorems.

4.1 A reminder of normal martingales in R
N

We now recall the main results of [4] concerning the behavior of normal martingales
in RN and their associated 3-tensor.

Definition 4.1 A martingale X = (X1, . . . , XN ) with values in R
N is a normal

martingale if X0 = 0 a.s. and if its angle brackets satisfy

〈Xi , X j 〉t = δi j t, (25)

for all t ∈ R
+ and all i, j = 1, . . . , N .

This is equivalent to saying that the process (Xi
t X

j
t − δi j t)t∈R+ is a martingale, or

else that the process ([Xi , X j ]t −δi j t)t∈R+ is a martingale (where [ ·, · ] here denotes
the square bracket).

Definition 4.2 A normal martingale X in RN is said to satisfy a structure equation if
there exists a family {�i j

k ; i, j, k = 1, . . . , N } of predictable processes such that

[Xi , X j ]t = δi j t +
N∑

k=1

∫ t

0
�

i j
k (s) dXk

s . (26)

Note that if X has the predictable representation property (i.e. every local integrable
martingale is a stochastic integral with respect to X ), then X satisfies a structure
equation, for (26) is just the integral representation of the square integrable martingale
([Xi , X j ]t − δi j t)t∈R+.

The following theorem is proved in [4]. It establishes the fundamental link between
the 3-tensors �(s) associated to the martingale X and the behavior of X.
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Theorem 4.3 Let X be a normal martingale in RN satisfying the structure equation

[Xi , X j ]t = δi j t +
N∑

k=1

∫ t

0
�

i j
k (s) dXk

s ,

for all i, j. Then for almost all (s, ω) the quantities �(s, ω) are valued in doubly
symmetric 3-tensors in R

N .

If one denotes by Vs(ω) the orthogonal family associated to the non-vanishing
eigenvalues of �(s, ω) and by 	s(ω) the orthogonal projector onto Vs(ω)⊥, that is,
on the null-egeinvalue subspace of �(s, ω), then the continuous part of X is

Xc
t =

∫ t

0
	s(dXs),

the jumps of X only happen at totally inaccessible times and they satisfy


Xt (ω) ∈ Vt (ω).

The case we are concerned with is a simple case where the process � is actually
constant. In that case, things can bemademuchmore explicit, as is proved in [4] again.

Theorem 4.4 Let � be a doubly-symmetric 3-tensor in R
N , with associated orthog-

onal family V. Let W be a Brownian motion with values in the space V⊥. For every
v ∈ V , let N v be a Poisson process with intensity ‖v‖−2 . We suppose W and all the
N v to be independent processes.

Then the martingale

Xt = Wt +
∑

v∈V

(

N v
t − 1

‖v‖2 t
)

v (27)

satisfies the structure equation

[Xi , X j ]t − δi j t =
N∑

k=1

�
i j
k Xk

t , (28)

Conversely, any solution of (28) has the same law as X.

The martingale X solution of (28) possesses the chaotic representation property.

4.2 Normal martingales in C
N

Definition 4.5 We consider a martingale X , defined on its canonical space (�,F ,P),
with values in C

N , satisfying the following properties (similar to the corresponding
definition in R

N ):

– the angle bracket 〈Xi , X j 〉t is equal to δi j t ,

123



Complex obtuse random walks and their continuous-time limits 97

– themartingale X has thePredictableRepresentationProperty; by thiswemean that
every centered local martingale on the the canonical space of X can be represented
as a stochastic integral with respect to X.

Amartingale X inCN satisfying these properties is called a normal martingale inCN

satisfying the PRP.

A direct consequence of the (complex) Kunita–Watanabe Inequality and of the first
condition above, is that the processes 〈Xi , X j 〉 are also absolutely continuous with
respect to the Lebesgue measure.

Applying all these conditions, we get that, for all i, j, k = 1, . . . , N , there exist
predictable processes (�

i j
t )t∈R+, (Si jk (t))t∈R+ and (T i j

k (t))t∈R+, such that

[Xi , X j ]t =
∫ t

0
�

i j
s ds +

N∑

k=1

∫ t

0
Si jk (s) dXk

s , (29)

[Xi , X j ]t = δi j t +
N∑

k=1

∫ t

0
T i j
k (s) dXk

s . (30)

Note that the family of coefficients �t = (�
i j
t )i, j=1,...,N defines a 2-tensor (a

matrix), the family S(t) = (Si jk (t))i, j,k=1,...,N defines a 3-tensor, in the sense defined

in the article, but that the family T (t) = (T i j
k (t))i, j,k=1,...,N defines a 3-tensor of a

slightly different nature, that is, it appears here as a natural element ofH∗ ⊗H⊗H∗,
instead as ofH ⊗ H ⊗ H∗ with our definition. The process (�t )t∈R+ is locally time-
integrable, the processes (S(t))t∈R+ and (T (t))t∈R+ are locally square integrable.

Let us recall here awell-known and useful result on uniqueness of stochastic integral
representations.

Lemma 4.6 Let X be a normal martingale. Let A and Bk, k = 1, . . . , N be pre-
dictable processes on (�,F ,P) which are locally integrable with respect to dt and
dX, respectively. If we have

∫ t

0
As ds +

N∑

k=1

∫ t

0
Bk
s dX

k
s = 0 (31)

for all t ∈ R
+, then At = Bk

t = 0 almost surely, for almost all t ∈ R
+, for all

k = 1, . . . , N .

We now detail the symmetry properties of S, T and �, together with some inter-
twining relations between S and �.

Theorem 4.7 (1) The processes (S(t))t∈R+ and (T (t))t∈R+ are connected by the
relation

T i j
k (s) = Sikj (s), (32)

almost surely, for a.a. s ∈ R
+and for all i, j, k = 1, . . . , N .
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(2) The process (S(t))t∈R+ takes its values in the set of doubly-symmetric 3 tensors
of CN .

(3) The process (�t )t∈R+ takes its values in the set of complex symmetric matrices.
(4) We have the relation

N∑

m=1

Si jm (s)�mk
s =

N∑

m=1

Skjm (s)�mi
s , (33)

almost surely, for a.a. s ∈ R
+and for all i, j, k = 1, . . . , N .

(5) We have the relation
N∑

m=1

Skmj (s) �im
s = Si jk (s), (34)

almost surely, for a.a. s ∈ R
+and for all i, j, k = 1, . . . , N .

(6) The process (Xi
t )t∈R+ has the predictable representation

Xi
t =

N∑

m=1

∫ t

0
�im

s dXm
s .

(7) The matrices �t are unitary for a.a. t ∈ R
+.

Proof The proof is a rather simple adaptation of the arguments used in Proposition 2.18
and Proposition 2.19. First of all, the symmetry [Xi , X j ]t = [X j , Xi ]t gives

∫ t

0
�

i j
s ds +

N∑

k=1

∫ t

0
Si jk (s) dXk

s =
∫ t

0
�

j i
s ds +

N∑

k=1

∫ t

0
S ji
k (s) dXk

s

for all t . By the uniqueness Lemma 4.6 this gives the symmetry of the matrices �s

and the first symmetry relation (10) for the 3-tensors S(s).
Computing [[Xi , X j ], Xk]t we get

[[Xi , X j ], Xk]t =
N∑

m=1

∫ t

0
Si jm (s) d[Xm, Xk]s

=
∫ t

0
Si jk (s) ds +

N∑

m,n=1

∫ t

0
Si jm (s) T km

n (s) dXn
s .

123



Complex obtuse random walks and their continuous-time limits 99

But this triple bracket is also equal to

[Xi , [X j , Xk]]t =
N∑

m=1

∫ t

0
T jk
m (s) d[Xi , Xm]s

=
∫ t

0
T jk
i (s) ds +

N∑

m,n=1

∫ t

0
T jk
m (s) Tmi

n (s) dXn
s .

Again, by the uniqueness lemma, and the symmetry (10), we get the relation (32).
Now, in the same way as in the proof of Proposition 2.19, we compute

[[Xi , X j ], [Xk, Xl ]]t

in two ways, using the symmetry in (i, k) of that quadruple bracket:

[[Xi , X j ], [Xk, Xl ]]t =
N∑

m,n=1

∫ t

0
T i j
m (s) Skln (s) d[Xm, Xn]s,

[[Xk, X j ], [Xi , Xl ]]t =
N∑

m,n=1

∫ t

0
T kj
m (s) Siln (s) d[Xm, Xn]s .

By uniqueness again, the time integral part gives the relation

N∑

m=1

T i j
m (s) Sklm (s) =

N∑

m=1

T kj
m (s) Silm(s),

that is,

N∑

m=1

Simj (s) Sklm (s) =
N∑

m=1

Skmj (s) Silm(s),

which is the relation (11).
The relation (12) is obtained exactly in the same way, from the symmetry of

[[Xi , X j ], [Xl , Xk]]t

in (i, k). We have proved that the 3-tensors S(s) are doubly-symmetric.
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Computing [Xi , [X j , Xk]]t in two different ways we get

[Xi , [X j , Xk]]t =
N∑

m=1

∫ t

0
S jk
m (s) d[Xi , Xm]s

=
N∑

m=1

∫ t

0
S jk
m (s)�im

s ds +
N∑

m,n=1

∫ t

0
S jk
m (s) Simn (s) dXn

s ,

on one hand, and

[[Xi , X j ], Xk]t =
N∑

m=1

∫ t

0
Si jm (s) d[Xm, Xk]s

=
N∑

m=1

∫ t

0
Si jm (s)�mk

s ds +
N∑

m,n=1

∫ t

0
Si jm (s) Smk

n (s) dXn
s ,

on the other hand. Identifying the time integrals, we get the relation (33).
Finally, computing [Xi , [X j , Xk]]t in two different ways we get

[Xi , [X j , Xk]]t =
N∑

m=1

∫ t

0
Skmj (s) d[Xi , Xm]s

=
N∑

m=1

∫ t

0
Skmj (s) �im

s ds +
N∑

m,n=1

∫ t

0
S jm
k (s) Simn (s) dXn

s ,

on one hand, and

[[Xi , X j ], Xk]t =
N∑

m=1

∫ t

0
Si jm (s) d[Xm, Xk]s

=
N∑

m=1

∫ t

0
Si jm (s) δmk ds +

N∑

m,n=1

∫ t

0
Si jm (s) Smn

k (s) dXn
s ,

on the other hand. Identifying the time integrals, we get the relation (34).

Let us prove the result (6). The process (Xi
t )t∈R+ is obviously a square integrable

martingale and its expectation is 0. Hence it admits a predictable representation of the
form

Xi
t =

N∑

k=1

∫ t

0
Hik
s dXk

s
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for some predictable processes Hik . We write

[Xi , X j ]t = [Xi , X j ]t
=
∫ t

0
�

i j
s ds +

N∑

k=1

∫ t

0
Si jk (s) dXk

s

=
∫ t

0
�

i j
s ds +

N∑

k,l=1

∫ t

0
Si jk (s) Hkl

s dXl
s

and

[Xi , X j ]t =
N∑

k=1

∫ t

0
Hik
s d[Xk, X j ]s

=
N∑

k=1

∫ t

0
Hik
s δk j ds +

N∑

k,l=1

∫ t

0
Hik
s S jl

k (s) dXl
s .

The uniqueness lemma gives the relation Hi j
s = �

i j
s , almost surely, for a.a. s.

We now prove (7). We have

[Xi , X j ]t =
N∑

k=1

∫ t

0
Hik
s d[Xk, X j ]s

=
N∑

k=1

∫ t

0
Hik
s �

k j
s ds +

N∑

k,l=1

∫ t

0
Hik
s Sk jl (s) dXl

s,

but also

[Xi , X j ]t = δi j t +
N∑

k=1

∫ t

0
Sikj (s) dXk

s .

Again, by the uniqueness lemma we get

δi j =
N∑

k=1

Hik
s �

k j
s =

N∑

k=1

�ik
s �

k j
s .

This proves the announced unitarity. �	
In the same way as for obtuse random variables, complex normal martingales can

be brought back to real ones, with the help of a unitary transform which is hidden in
the structure equation.
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Theorem 4.8 Let Y be a normal martingale in CN satisfying the structure equations

[Y i , Y j ]t =
∫ t

0
�

i j
s ds +

N∑

k=1

∫ t

0
Si jk (s) dXk

s

[Y i , Y j ]t = δi j t +
N∑

k=1

∫ t

0
Sikj (s) dXk

s .

Then the matrices �s admit a decomposition of the form

�s = Vs V
t
s

for some predictable process (Vs)s∈R+, valued in the set of unitary matrices of CN .

The process

Zt =
∫ t

0
V ∗
s dYs,

t ∈ R
+, is then a real normal martingale.

Proof By the Theorem above, almost all the �s are symmetric and unitary matrices.
The decomposition of each �s into a product VsV t

s is then an immediate consequence
of Proposition 3.11. The Borel character of the map S �→ V in Proposition 3.11 gives
the predictable character of the process (Vs)s∈R+.

Consider the stochastic integral

Zt =
∫ t

0
V ∗
s dYs,

which is obviously well-defined. Computing the angle bracket of Z we get

<Z , Zt>t =
∫ t

0
V ∗
s d<Y,Y t>s Vs =

∫ t

0
V ∗
s �s ds Vs

=
∫ t

0
I ds = t I = <Z , Zt>t .

Taking expectation of both sides shows that Z is real-valued. �	

4.3 Complex unitary transforms of real normal martingales

From the result above concerning real normal martingales, we shall deduce easily
the corresponding behavior of complex normal martingales, as they are obtained by
unitary transforms of real normal martingales.

In the following we shall be interested in the following objects. Let Y be a normal
martingale onRN , satisfying a structure equation with constant 3-tensor T . LetU be a
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unitary operator on C
N . Injecting canonically R

N into C
N , we consider the complex

martingale Xt = UYt , t ∈ R
+. We consider the 3-tensor

S = U ◦ T .

We also put

� = U Ut .

We choose the following notations. Let W = {w1, . . . , wk} ⊂ R
N be the orthogonal

system associated to T , that is, the directions of non-vanishing eigenvalues of T . Let
W⊥ be its orthogonal space in R

N , that is the null space of T , and let us choose an
orthonormal basis {ŵ1, . . . , ŵN−k}ofW⊥. LetV = UW = {Uw1, . . . ,Uwk} ⊂ C

N ,
this set coincides with the orthogonal system associated to S that is, the directions of
non-vanishing eigenvalues of S. We consider the set V̂ = {̂v1, . . . , v̂N−k}, where
v̂i = U ŵi , for all i = 1, . . . , N − k. We denote by VR and V̂R the following real
subspaces of CN seen as a 2N -dimensional real vector space:

VR = R v1 ⊕ · · · ⊕ R vk

V̂R = Rv̂1 ⊕ · · · ⊕ Rv̂N−k .

In particular note that VR ⊕ V̂R = U R
N is a N -dimensional real subspace of CN .

Finally we denote by 	S the orthogonal projector from C
N onto V̂R where both

spaces are seen as real vector spaces.

Theorem 4.9 With the notations above, the complex martingale X satisfies the fol-
lowing two “structure equations”

[Xi , X j ]t = �i j t +
N∑

k=1

Si jk Xk
t , (35)

[Xi , X j ]t = δi j t +
N∑

k=1

Sikj Xk
t . (36)

The solutions to both Eqs. (35) and (36) are unique in distribution. This distribution is
described as follows. The process X is valued in U R

N = VR ⊕ V̂R. The continuous
part of X is

Xc
t =

∫ t

0
	S(dXs),

which lives in V̂R. The jumps of X only happen at totally inaccessible times and they
satisfy, almost surely


Xt (ω) ∈ VR.
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In other words, let W be a N − k dimensional Brownian motion with values in the
real space V̂R. For every v ∈ V , let N v be a Poisson process with intensity ‖v‖−2 .

We suppose W and all the N v to be independent processes. Then the martingale

Xt = Wt +
∑

v∈V

(

N v
t − 1

‖v‖2 t
)

v (37)

satisfies the structure Eqs. (35) and (36).
The process X possesses the chaotic representation property.

Proof The martingale Y satisfies the structure equation

[Y i , Y j ]t = δi j t +
N∑

k=1

T i j
k Y k

t .

The process Xt = U Yt , t ∈ R
+, is a martingale with values in C

N . By a standard
change of coordinate computation, we have

[Xi , X j ]t = Si j0 t +
N∑

k=1

Si jk Xk
t .

This gives (35).
With a similar computation, we get

[Xi , X j ]t = δi j t +
N∑

k=1

Sikj Xk
t .

This gives (36).
Let us now prove uniqueness in law for the solutions of (35) and (36). Let Z be

another solution of the two equations. Consider the unitary operator U associated to
the 3-tensor S, that is, for which the 3-tensor T = U∗◦S is real and doubly-symmetric.
Put At = U∗

t Zt for all t ∈ R
p. Then we get

[Ai , A j ]t = δi j t +
N∑

k=1

Ri j
k Ak

t

and

[Ai , A j ]t = δi j t +
N∑

k=1

Rik
j Ak

t .
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But as R is a real-valued 3-tensor, symmetric in i, j, k, the last expression gives

[Ai , A j ]t = δi j t +
N∑

k=1

Ri j
k Ak

t .

Decomposing each A j
t as B

j
t + iC j

t (real and imaginary parts), the last two relations
ought to

[Bi , B j ]t = δi j t +
N∑

k=1

Ri j
k Bk

t ,

[Ci , C j ]t = 0,

[Bi , C j ]t =
N∑

k=1

Ri j
k Ck

t .

This clearly implies that theC j ’s vanish, the processes A j are real-valued. They satisfy
the same structure equation as the real process Y underlying the definition of X. By
Theorem 4.4 the processes A and Y have same law. Thus so do the processes Z = U A
and X = UY. This proves the uniqueness in law for the processes in C

N satisfying
the two Eqs. (35) and (36).

The projector 	S onto V̂R is given by 	S = U 	T U∗, as can be checked easily,
even though we are here considering the vector spaces as real ones. The continuous
part of X and the jumps of X are clearly the ones of Y but mapped by U. Hence,
altogether we get

Xc
t = UYc

t =
∫ t

0
U 	T (dYs) =

∫ t

0
U U∗	S U (U∗dXs) =

∫ t

0
	S(dXs).

The part (37) of the theorem is obvious, again by application of the map U.

Finally, let us prove the chaotic representation property. The chaotic representation
property for Y says that every random variable F ∈ L2(�,F ,P), the canonical space
of Y , can be decomposed as

F = E[F] +
∞∑

n=1

N∑

i1,...,in=1

∫

0≤t1<...<tn
fi1,...,in (t1, . . . , tn) dY

i1
t1 . . . dY in

tn ,

for somedeterministic functions fi1,...,in ’s.But decomposing eachY j
t as

∑N
m=1 umj Xm

t
shows clearly that F can also be decomposed as

F = E[F] +
∞∑

n=1

N∑

i1,...,in=1

∫

0≤t1<...<tn
gi1,...,in (t1, . . . , tn) dX

i1
t1 . . . dXin

tn ,

where the gi1,...,in ’s are linear combinations of the fi1,...,in ’s. This proves the chaotic
representation property for X and the theorem is completely proved. �	
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5 Continuous-time limit of complex obtuse random walks

We are now ready to consider the convergence theorem for complexe obtuse random
walks.

5.1 Convergence of the tensors

We are now given a time parameter h > 0 which is meant to tend to 0 later on. This
time parameter is the time step of the obtuse random walk we want to study, but note
that hmay also appear in the internal parameters of thewalk, that is, in the probabilities
pi and the values vi of X.

Hence, we are given an obtuse random variable X (h) in C
N , with coordinates

Xi (h), i = 1, . . . , N and together with the random variable X0 = 1. The associated
3-tensor of X (h) is given by

Xi (h) X j (h) =
N∑

k=0

Si jk (h) Xk(h).

Considering the random walk associated to X (h), that is, consider a sequence
(Xn(h))n∈N∗ of i.i.d. random variables in C

N all having the same distribution as
X (h), the random walk is the stochastic process with time step h:

Zh
nh =

n∑

i=1

√
h Xn(h).

This calls for defining

X̂0 = h X0 and X̂ j (h) = √
h X j (h)

for all j = 1, . . . , N . Putting ε0 = 1 and εi = 1/2 for all i = 1, . . . , N , we then have,
for all i, j = 0, . . . , N

X̂i (h) X̂ j (h) =
N∑

k=0

Ŝi jk (h) X̂ k(h),

where

Ŝi jk (h) = hεi+ε j−εk Si jk .

Finally, we put

Mi j
k = lim

h→0
Ŝi jk (h),

if it exists.
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Lemma 5.1 We then get, for all i, j, k = 1, . . . N

M00
0 = 0,

M00
k = 0,

M0k
0 = 0,

Mk0
0 = 0,

Mi j
0 = lim

h→0
Si j0 (h) (if it exists),

Mi0
k = 0,

M0 j
k = 0,

Mi j
k = lim

h→0
h1/2 Si jk (h) (if it exists).

Proof These are direct applications of the definitions and the symmetries verified by
the Si jk (h)’s. For example:

Ŝ 0 j
k (h) = h S0 jk (h) = h S j0

k = h δ jk .

This gives immediately that M0 j
k = 0. And so on for all the other cases. �	

Proposition 5.2 Under the hypothesis that the limits above all exist, the 3-tensor M,
restricted to its coordinates i, j, k = 1, . . . , N, is a doubly-symmetric 3-tensor ofCN .

Proof Let us check that (Mi j
k )i, j,k=1,...,N satifies the three conditions for being a

doubly-symmetric 3-tensor. Recall that for these indices, we have

Mi j
k = lim

h→0
h1/2 Si jk (h).

The first condition Mi j
k = Mkj

i is obvious from the same property of Si jk (h) and
passing to the limit.

We wish now to prove that
∑N

m=1 M
im
j Mkl

m is symmetric in (i, k). The correspond-
ing property for S(h) gives

Si0j (h) Skl0 (h) +
N∑

m=1

Simj (h) Sklm (h) = Sk0j (h) Sil0 (h) +
N∑

m=1

Skmj (h) Silm(h).

In particular, multiplying by h, we get

h δi j S
kl
0 (h) +

N∑

m=1

Ŝimj (h) Ŝklm (h) = h δk j S
il
0 (h) +

N∑

m=1

Ŝkmj (h) Ŝilm(h).
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By hypothesis limh→0 Skl0 (h) and limh→0 Sil0 (h) exist hence, passing to the limit, we
get

N∑

m=1

Mim
j Mkl

m =
N∑

m=1

Mkm
j Mil

m ,

which is the second symmetry asked to M for being doubly-symmetric.
The third symmetry is obtained in a similar way. Indeed, we have

Si0j (h) Sl0k (h) +
N∑

m=1

Simj (h) Slmk (h) = Sk0j (h) Sl0i (h) +
N∑

m=1

Skmj (h) Slmi (h).

This gives, multiplying by h again

h δi j δlk +
N∑

m=1

Ŝimj (h) Ŝlmk (h) = h δk j

dli +
N∑

m=1

Ŝkmj (h) Ŝlmi (h).

Now, passing to the limit as h tends to 0, we get

N∑

m=1

Mim
j Mlm

k =
N∑

m=1

Mkm
j Mlm

i .

This gives the last required symmetry. �	

5.2 Convergence in distribution

We can now prove a convergence in distribution theorem.

Theorem 5.3 Let X (h) be an obtuse random variable onCN , depending on a parame-
ter h > 0, let S(h) be its associated doubly symmetric 3-tensor. Let (Xn(h))n∈N∗ be a
sequence of i.i.d. random variables with same law as X (h). Consider the discrete-time
random walk

Zh
nh =

n∑

i=1

√
h Xn(h).

If the limits

Mi j
0 = lim

h→0
Si j0 (h)
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and

Mi j
k = lim

h→0

√
h Si jk (h)

exist for all i, j, k = 1, . . . , N, then the process Zh converges in distribution to the
normal martingale Z in CN solution of the structure equations

[Zi , Z j ]t = Mi j
0 t +

N∑

k=1

Mi j
k Zk

t , (38)

[Zi , Z j ]t = δi j t +
N∑

k=1

Mik
j Zk

t . (39)

Proof For each h > 0, the random variables X (h) can be written U (h) Y (h) for a
unitary operatorU (h) on CN and a real obtuse random variable Y (h) in RN . In terms
of the associated 3-tensors, recall that this means

S(h) = U (h) ◦ T (h)

or else

T (h) = U (h)∗ ◦ S(h).

Consider any sequence (hn)n∈N which tends to 0. By hypothesis S(hn) converges to
M. Furthermore, as the sequence (U (hn))n∈N lives in the compact group U(CN ) it
admits a subsequence (hnk )k∈N converging to some unitary V . As a consequence the
sequence (T (hnk ))k∈N converges to a real 3-tensor N = V ◦ M.

The convergence of the 3-tensors (T (hnk ))k∈N to N imply the convergence in
distribution of the associated real martingales Yhnki

, for a subsequence (hnki )i∈N, by

Taviot’s Thesis (cf [19, Proposition 4.2.3, Proposition 4.3.2., Proposition 4.3.3]). The
limit is a real normal martingale Y whose associated 3-tensor is N .

Applying theunitary operatorsUhnki
,which converge toV ,wehave the convergence

in law of the process Z
hnki to the process Z = VY . By Theorem 4.9 the process Z is

solution of the complex structure equations associated to the tensor S.

For the moment we have proved that for every sequence (hn)n∈N there exists a
subsequence (hn j ) j∈N such that Zhn j converges in law to Z solution of the complex
structure equations associated to S. As we have proved that the solutions to these
equation are unique in law, the limit in law is unique. Hence the convergence is true
not only for subsequences, but more generally for h tending to 0. The convergence in
law is proved. �	
5.3 Convergence of the multiplication operators

Let us first recall very shortly themain elements of the construction and approximation
developed in [1], which will now serve us in order to prove the convergence of the
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multiplication operators. This convergence of multiplication operators is not so usual
in a probabilistic framework, but it is the one interesting in the framework of applica-
tions in Quantum Statistical Mechanics, for it shows the convergence of the quantum
dynamics of repeated interactions towards a classical Langevin equation, when the
unitary interaction is classical (cf [2]).

In Sect. 2.5 we have seen the canonical isomorphism of the canonical space
L2(�,F ,PS) of any obtuse random variable X , with the space C

N+1. Recall the
basic operators aij that were defined there.

When dealing with i.i.d. sequences (Xn)n∈N of copies of X , the canonical space is
then isomorphic to the countable tensor product

T� =
⊗

n∈N
C

N+1.

When dealing with the associated random walk with time step h

Zh
nh =

n∑

i=1

√
h Xnh

the canonical space is naturally isomorphic to

T�(h) =
⊗

n∈hN
C

N+1.

There, natural ampliations of the basic operators aij are defined: the operators a
i
j (nh)

is the acting as aij of the copy nh of CN+1 and as the identity of the other copies.

On the other hand, when given a normal martingale A in RN with the chaotic rep-
resentation property, its canonical space L2(�′,F ′,P′) is well-known to be naturally
isomorphic to the symmetric Fock space

� = 
s(L
2(R+; CN )),

via a unitary isomorphism denoted by UA. This space is the natural space for the
quantum noises aij (t), made of the time operator a00(t) = t I , the creation noises a0i (t),

the annihilation noises ai0(t) and the exchange processes aij (t), with i, j = 1, . . . N
(cf [14]).

The main constructions and results developed in [1] are the following:

– each of the spaces T�(h) can be naturally seen as concrete subspace of �;
– when h tends to 0 the subspace T�(h)fills in thewhole space�, that is, concretely,
the orthogonal projector Ph onto T�(h) converges strongly to the identity I ;

– the basic operators aij (nh), now concretely acting on �, converge to the quantum
noises, that is, more concretely the operator

∑

n; nh≤t

hεij aij (nh)
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converges strongly to aij (t) on a certain domain D (which we shall not make
explicit here, please cf [1]), where

eij =

⎧
⎪⎨

⎪⎩

1 if i = j = 0,

1/2 if i = 0, j �= 0 or i �= 0, j = 0,

0 if i, j �= 0.

Finally recall the representation of the multiplication operators for real-valued nor-
mal martingales in RN (cf [6]).

Theorem 5.4 If A is a normal martingale in R
N with the chaotic representation

property and satisfying the structure equation

[Ai , A j ]t = δi j t +
N∑

k=1

Ni j
k Ak

t ,

then its multiplication operator acting of � = 
s(L2(R+, CN )) is equal to

UA MAi
t
U∗

A = a0i (t) + a0i (t) +
N∑

j,k=1

Ni j
k a j

k (t)

or else

UA MAi
t
U∗

A =
N∑

j,k=0

Ni j
k a j

k (t)

if one extends the coefficients Ni j
k to the 0 index, by putting Ni j

0 = δi j .

Once this is recalled, the rest is now rather easy. We can prove the convergence
theorem for the multiplication operators.

Theorem 5.5 The operators of multiplicationM(Zh
t )i , acting of�, converge strongly

on D to the operators

Z i
t =

n∑

j,k=0

Mi j
k a j

k (t). (40)

These operators are the operators of multiplication by Z, the complex martingale
satisfying

[Zi , Z j ]t = Mi j
0 t +

N∑

k=1

Mi j
k Zk

t (41)

and

[Zi , Z j ]t = δi j t +
N∑

k=1

Mik
l Zk

t . (42)

123



112 S. Attal et al.

Proof The convergence toward the operator Zt given by (40) is a simple application
of the convergence theorems of [1], let us detail the different cases.

If j, k �= 0, we know that
√
h Si jk converges to Mi j

k and by [1] we have that
∑[t/h]

m=1 a
j
k (m) converges to a j

k (t).

If j = 0 and k �= 0, we know that Si j0 converges to Mi j
0 and that

∑[t/h]
m=1

√
h a j

0 (m)

converges to a j
0 (t).

If k = 0 and j �= 0, we know that Si0k converges to Mi0
k (actually their are all equal

to δik) and that
∑[t/h]

m=1

√
h a0k (m) converges to a0k (t).

The fact that Zt is indeed the multiplication operator by the announced normal
martingale comes as follows. The martingale Z is the image U A, under a unitary
operator U of some real normal martingale A. The 3-tensor M is the image U ◦ N ,
under the unitary operator U , of some real tensor N . The real normal martingale A
associated to the real 3-tensor N has its multiplication operator equal to

UA MAi
t
U∗

A =
N∑

j,k=0

Ni j
k a j

k (t)

by Theorem 5.4. As Zt is equal to U At , its canonical space is the same as the one of
A, only the canonical isomorphism is modified by a change of basis. The rest of the
proof follows now easily. �	

6 Examples

We shall detail 2 examples in dimension 2, showing up typical different behaviors.
The first one is the one we have followed along this article, let us recall it. We are

given an obtuse random variable X in C2 taking the values

v1 =
(
i
1

)

, v2 =
(

1
−1 + i

)

, v3 = −1

5

(
3 + 4i
1 + 3i

)

,

with probabilities p1 = 1/3, p2 = 1/4 and p3 = 5/12 respectively. Then the 3-tensor
S associated to X is given by

S0 =
⎛

⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟
⎠ , S1 =

⎛

⎜
⎝

0 1 0

− 1
5 (1 − 2i) 0 − 2

5 (2 + i)

− 2
5 (1 − 2i) 0 1

5 (2 + i)

⎞

⎟
⎠ ,

S2 =
⎛

⎜
⎝

0 0 1

− 2
5 (1 − 2i) 0 1

5 (2 + i)
1
5 (1 − 2i) −i − 1

5 (1 − 2i)

⎞

⎟
⎠ .
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Now, considering the random walk

Zh
nh =

n∑

i=1

√
h Xn,

where (Xn)n∈N is a sequence of i.i.d. random variables with same law as X , the
continuous-time limit of Zh is the normal martingale in C

2 with associated tensor
given by the limits of Lemma 5.1. Here we obtain, for all i, j, k = 1, 2

Mi j
k = 0

and

M0 =
(− 1

5 (1 − 2i) − 2
5 (1 − 2i)

− 2
5 (1 − 2i) 1

5 (1 − 2i)

)

.

The limit process (Zt )t∈R+ is a normal martingale in C
2, solution of the structure

equations

[Zi , Z j ]t = Mi j
0 t,

[Zi , Z j ]t = δi j t.

It is then rather easy to find a unitary matrix V such that V V t = M0, we find

V =
⎛

⎝

2+i√
10

i√
2

−1+2i√
10

1√
2

⎞

⎠ ,

for example. Following our results on complex normal martingales, this means that
the process Z has the following distribution: given a 2-dimensional real Brownian
motion W = (W 1, W 2) then

⎧
⎨

⎩

Z1
t = 2+i√

10
W 1

t + i√
2
W 2

t ,

Z2
t = −1+2i√

10
W 1

t + 1√
2
W 2

t .

For the second example, we consider a fixed parameter h > 0. We consider the
obtuse random variable X (h) in C2 whose values are

v1 = 1√
2

(
i

1

)

, v2 = 1√
2h

(
1 − i

√
h

i − √
h

)

, v3 = 1√
2

(
−2

√
h − i

−1 − 2i
√
h

)

,

with probabilities p1 = 1/2, p2 = h/(1 + 2h) and p3 = 1/(2 + 4h) respectively.
Then the 3-tensor S associated to X is given by the following, where we have only
detailed the leading orders in h
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S0 =
⎛

⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟
⎠ , S1 =

⎛

⎜
⎜
⎝

0 1 0

0 1
2
√
2h

+ O(1) −i
2
√
2h

+ O(1)

i i
2
√
2h

+ O(1) 1
2
√
2h

+ O(1)

⎞

⎟
⎟
⎠ ,

S2 =

⎛

⎜
⎜
⎝

0 1 0

i i
2
√
2h

+ O(1) 1
2
√
2h

+ O(1)

0 −1
2
√
2h

+ O(1) i
2
√
2h

+ O(1)

⎞

⎟
⎟
⎠ .

The renormalized 3-tensor converges to the 3-tensor

M1 = 1

2
√
2

(
1 −i

i 1

)

,

M2 = 1

2
√
2

(
i 1

− 1 i

)

and the matrix

M0 =
(
0 i

i 0

)

.

In order to diagonalize the 3-tensor, we solve

(Mi j
1 x + Mi j

2 y)i, j=1,2 =
(
x

y

)

⊗
(
x

y

)

=
(
x2 xy

xy y2

)

.

There is a unique solution

v =
√
2

2

(
1

i

)

.

This means that the continuous-time limit process Z is a compensated Poisson process
in the direction v.

This is all for the information which is given by the 3-tensor. If we want to know
the direction where the process is Brownian, we need to look at the decomposition of
M0 as V V t for a unitary V . We easily find

V = 1√
2

(
i 1

1 i

)

.

This unitary operator is the one from which has been rotated a real Brownian motion

in order to land in the orthogonal space of

(
1
i

)

. That is we seek for a direction w in
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R
2 such that V w is proportional to

(
i
1

)

. We find w =
(
1
0

)

and the process Z is a

Brownian motion in the direction

(
i
1

)

.

The process Z is finally described as follows, let N and W be a standard Poisson
process and a Brownian motion, respectively, independant of each other. Then

⎧
⎨

⎩

Z1
t = 1√

2
(Nt − t) + iWt

Z2
t = i√

2
(Nt − t) + Wt .

By choosing an example with two directions whose probabilities are of order h
and one direction’s probability is of order 1 − 2h, we shall end up with a 3-tensor M
that can be completely diagonalized and a process which is made of two compensated
Poisson processes on two orthogonal directions of C2 (cf the example at the end of
[6] for an example in R2).
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