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Abstract We prove that random-cluster models with q ≥ 1 on a variety of planar
lattices have a sharp phase transition, that is that there exists some parameter pc below
which the model exhibits exponential decay and above which there exists a.s. an
infinite cluster. The result may be extended to the Potts model via the Edwards–Sokal
coupling. Our method is based on sharp threshold techniques and certain symmetries
of the lattice; in particular it makes no use of self-duality. Part of the argument is
not restricted to planar models and may be of some interest for the understanding of
random-cluster and Potts models in higher dimensions. Due to its nature, this strategy
could be useful in studying other planar models satisfying the FKG lattice condition
and some additional differential inequalities.

Mathematics Subject Classification 60K35 · 82B20

1 Introduction

Main statement The random-cluster model (or FK percolation) was introduced by
Fortuin and Kasteleyn in 1969 as a class of models satisfying specific series and
parallel laws. It is related to many other models, including the q-state Potts models
(q = 2 being the particular case of the Ising model). In addition to this, the random-
cluster model exhibits a variety of interesting features, many of which are still not
fully understood.

Consider a finite graph G = (VG , EG). The random-cluster measure with edge-
weight p ∈ [0, 1] and cluster-weight q > 0 onG is ameasureφp,q,G on configurations
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ω ∈ {0, 1}EG . An edge is said to be open (in ω) if ω(e) = 1, otherwise it is closed.
The configuration ω can be seen as a subgraph of G with vertex set VG and edge-set
{e ∈ EG : ω(e) = 1}. A cluster is a connected component of ω. Let o(ω), c(ω) and
k(ω) denote the number of open edges, closed edges and clusters in ω, respectively.
The probability of a configuration is then equal to

φp,q,G(ω) = po(ω)(1 − p)c(ω)qk(ω)

Z(p, q,G)
,

where Z(p, q,G) is a normalizing constant called the partition function.
Consider a connected planar locally-finite doubly periodic graph G , i.e. a graph

which is invariant under the action of some lattice � � Z ⊕ Z. The model can be
extended to G by taking limits of measures on finite graphs Gn tending to G (with
certain boundary conditions, see Sect. 2.2 for details). We call such limits infinite-
volumemeasures. As discussed later, for any pair of parameters p ∈ [0, 1] and q ≥ 1,
at least one infinite-volume measure exists, but it is not necessarily unique. For q ≥ 1,
the infinite-volume model exhibits a phase transition at some critical parameter pc(q)

(depending on the lattice). The aim of the present paper is to give a proof of the
sharpness of this phase transition.

Theorem 1.1 Fix q ≥ 1. Let G be a planar locally-finite doubly periodic connected
graph invariant under reflection with respect to the line {(0, y), y ∈ R} and rotation
by some angle θ ∈ (0, π) around 0. There exists pc = pc(G ) ∈ [0, 1] such that

• for p < pc, there exists c = c(p,G ) > 0 such that for any x, y ∈ G ,

φp,q [x and y are connected by a path of open edges] ≤ exp(−c|x − y|), (1.1)

• for p > pc, there exists a.s. an infinite open cluster under φp,q ,

where φp,q is the unique infinite-volume random-cluster measure on G with edge-
weight p and cluster-weight q.

Remark 1.2 The fact that, for p �= pc, there exists a unique infinite-volume measure
with edge-weight p may easily be shown by adapting [13, Theorem 6.17].

The sharpness of the phase transition was proved in arbitrary dimension for perco-
lation in [1,16] and for the Ising model in [2]. For planar random-cluster models with
arbitrary cluster-weight q ≥ 1, the sharpness had been previously derived only in the
case of the square, triangular and hexagonal lattices, see [3]. A similar result is proved
for so-called isoradial graphs in [9]. It may be worth mentioning that, contrary to the
present work, [3] and [9] are both based on integrability properties of the model.

The exponential decay of the two-point function is key to the study of the subcritical
phase. It implies properties such as exponential decay of the cluster-size, finite sus-
ceptibility, Ornstein–Zernike estimates and mixing properties, to mention but a few.
We do not go into details here, but rather refer the reader to the monographs [12,13]
for further reading.

Our method is based on the sharp threshold property and on certain symmetries of
the lattice. A corollary of our results is that self-dual models are critical.
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Corollary 1.3 The critical parameters pc(q) of the square, triangular and hexagonal
lattices satisfy

on the square lattice: pc(q) = √
q/(1 + √

q),

on the triangular lattice: pc(q) is the unique solution p in [0, 1]
of p3 + 3p2(1 − p) = q(1 − p)3,

on the hexagonal lattice: pc(q) is the unique solution p in [0, 1]
of p3 − 3qp(1 − p)2 = q2(1 − p)3.

The model on the square lattice with the above parameter is indeed self-dual; the ones
on the triangular and hexagonal lattices are not per se. They are dual to each other,
but also related through the star–triangle transformation (see [13, Sect. 6.6]).

As mentioned above, the previous corollary was obtained in [3]. Nevertheless, the
present method has the advantage of using self-duality for the identification of the
critical point only, and not for the proof of sharpness (in [3], the self-duality is used
in the proof of a Russo–Seymour–Welsh type estimate leading to the sharpness of the
phase transition).

Extensions of Theorem 1.1 We discuss several (potential) generalisations of the pre-
vious theorem.

First, the biperiodic graphG = (VG , EG )may be replaced by aweighted biperiodic
graph (G , J ), where J is a family of strictly positive weights on edges. For any
subgraph G = (VG , EG) of G and β ≥ 0, we define

φβ,q,G,J (ω) =
( ∏

e∈EG
(eβ Je − 1)ω(e)

)
· qk(ω)

Z(β, q,G, J )
, (1.2)

where Z(β, q,G, J ) is a normalizing constant. One may easily see that in the case of
Je = J for any e ∈ EG , we obtain the previous definition with p = 1 − e−Jβ. As
before, infinite-volume measures may be defined on G by taking limits.

Theorem 1.4 Fix q ≥ 1. Let G be a planar locally-finite doubly periodic connected
weighted graph invariant under reflection with respect to the line {(0, y), y ∈ R} and
rotation by some angle θ ∈ (0, π) around 0. There exists βc = βc(G , J ) ≥ 0 such
that

• for β < βc, there exists c = c(β,G , J ) > 0 such that for any x, y ∈ G ,

φβ,q,J [x and y are connected by a path of open edges] ≤ exp(−c|x − y|),

• for β > βc, there exists a.s. an infinite open cluster under φβ,q,J ,

where φβ,q,J is the unique infinite-volume random-cluster measure on G with para-
meters q and β.

The proof of this theorem follows exactly the same lines as the one of Theorem 1.1
except that the notation becomes heavier. Thus we will only focus on Theorem 1.1.
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A second potential extension is to planar random-cluster models with finite range
interactions. Consider a planar graph G = (VG , EG ) with the properties of Theo-
rem 1.1. For some R ≥ 1 define a modified graph G̃ = (VG , EG̃ ), with same vertex
set as G but with (u, v) ∈ EG̃ if the graph distance between u and v in G is less than

or equal to R. (For R = 1, G̃ = G ).
We believe that our methods may be modified to prove Theorem 1.1 (and its inho-

mogeneous version Theorem 1.4) for G̃ . In particular we expect that Theorem 1.1
also applies to the random-cluster model on slabs, i.e. on the graphs of the form
G × {0, . . . , R}d with d, R ≥ 1. We discuss this further in a forthcoming article.

A final potential extension is to models other than the random-cluster model. Our
arguments are somewhat generic, and one can try to use them for models similar to
those studied here. More precisely, to obtain our result, we only need the model to
satisfy the conditions listed in Sect. 6. We discuss this point further in Sect. 6, when
the appropriate notation is in place.

Consequences for the Potts model Fix some finite weighted graph (G, J ), where
J = (Je)e∈EG is a family of positive real numbers. Also fix a set of parameters
β ≥ 0 and q ∈ N with q ≥ 2. The Potts model on G with q states and inverse
temperature β is a probability measureμβ,q,G,J on {1, . . . , q}VG , for which the weight
of a configuration σ is given by

μβ,q,G,J (σ ) = e−βHq,G,J (σ )

ZPotts
β,q,G,J

,

where

Hq,G,J (σ ) = −
∑

e=(x,y)∈EG

Je1σx=σy

and ZPotts
β,q,G,J is a normalizing constant. The sum in the second equation is taken over

all unordered pairs of neighbours x, y.
A well-known coupling (sometimes called the Edwards-Sokal coupling) links the

Potts and random-cluster models. We only briefly describe how to obtain the former
from the latter. For details see [13, Theorem 4.91].

Choose a random-cluster configuration ω according to φβ,q,G,J , where φβ,q,G,J is
defined as in (1.2). Assign to each cluster of ω a state (or colour) chosen uniformly in
{1, . . . , q}, independently for different clusters. This generates a random configuration
σ ∈ {1, . . . , q}VG . (Note the two sources of randomness used in generating σ : the
randomness in the choice of ω and that in the colouring of the clusters of ω.) Then σ

follows the Potts measure μβ,q,G,J .
Consider now a planar locally-finite doubly periodic weighted graph (G , J ). As for

the random-cluster, infinite-volume Potts measures may be defined. The phase transi-
tion in this case is decided by the existence of long-range correlations. In particular,
if βc is the critical parameter, then

• for β < βc, there exists a unique infinite-volumemeasure (long-range correlations
vanish),
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• for β > βc, there exist multiple infinite-volumemeasures (long-range correlations
exist).

It follows trivially from the above coupling that

μβ,q,G,J (σx = σy)

= 1

q
+ q − 1

q
φβ,q,G,J (x and y are connected by a path of open edges),

hence the phase transition of the Potts model can be linked to that of the associated
random-clustermodel. In particular,when Je = J for all e ∈ EG ,βc(q) = − 1

J log(1−
pc(q)).

Our main result may be translated as follows.

Theorem 1.5 Fix q ≥ 2. Let G be a planar locally-finite doubly periodic connected
weighted graph invariant under reflection with respect to the line {(0, y), y ∈ R} and
rotation by some angle θ ∈ (0, π) around 0. There exists βc = βc(G , J ) ≥ 0 such
that,

• for β < βc, there exists a unique infinite-volume Potts measure μβ,q,J with para-
meters β and q on (G , J ). Moreover there exists c = c(β,G ) > 0 such that for
any x, y ∈ G ,

μβ,q,J [σx = σy] − 1

q
≤ exp(−c|x − y|),

• for β > βc, there exist multiple infinite-volume Potts measures with parameters β

and q on (G , J ).

Strategy of the proof Let φ0
p,q be the infinite-volumemeasure onG with free boundary

conditions (see the next section for a precise definition). It is obtained as the limit of
random-cluster measures φp,q,Gn on finite subgraphs Gn of G that tend increasingly
to G . Define

pc := inf
{
p ∈ (0, 1) : φ0

p,q(x is connected by a path of open edges to infinity)>0
}

p̃c := sup
{
p ∈ (0, 1) : lim

n→∞ − 1
n

log
[
φ0
p,q(0 and ∂�n are connected by a path of open edges)

]
> 0

}
.

Note that p̃c ≤ pc. We wish to prove that pc = p̃c (this is simply another way of
stating the main result), and we therefore focus on the inequality p̃c ≥ pc. The proof
of the latter is based on the study of probabilities of crossing rectangles. For the sake
of simplicity, let us restrict our attention in this introduction to rectangles of width
2n and height n, i.e. translates of [0, 2n] × [0, n]. A rectangle is crossed horizontally
(vertically) if it contains a path of open edges going from its left side to its right side
(respectively from the bottom side to the top side). The strategy follows three main
steps:
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Step 1. We first prove that for any p > p̃c, the probability of crossing vertically (i.e.
in the “easy direction”) a rectangle of size 2n × n is bounded away from 0
uniformly in n.
We show this by proving that for any 0 < ε < p, if the φ0

p,q -probability of
crossing vertically a rectangle of size 2n×n drops below a certain benchmark
(even for a single value of n), then the φp−ε,q,G -probability that two points
are connected by an open path decays exponentially fast (see Proposition 3.1
for the precise statement). A similar (but stronger) statement was proved by
Kesten for percolation [15]. He proved that, given a percolationmeasure, if the
probability of crossing the rectangle vertically is too small, then exponential
decay follows for that measure. The difference with our result is that, in the
case of percolation, one does not need to alter the parameter of the measure
(see Remark 1.6 for more details).
We highlight the fact that this part of the proof is not specific to the planar
case.

Step 2. Using the first step, we show that for any p > p̃c, the probability of crossing
horizontally (i.e. in the “hard direction”) a rectangle of size 2n×n is bounded
away from 0 uniformly in n.
This step is the most difficult. It corresponds to proving a “Russo–Seymour–
Welsh” (RSW) type result: if crossing probabilities in the easy direction are
bounded away from 0, then it is the same in the hard direction. Such results
were first proved in the context of Bernoulli percolation on the square lattice
[17,18]. Similar statements have been recently obtained for the Ising model
[5,8] and the random-cluster models with cluster-weight 1 ≤ q ≤ 4 [10],
but only for the square lattice. These results usually represent the first step
towards a deep understanding on the critical phase.
In the present paper we prove a weaker statement than these RSW results:
we show that, if crossing probabilities in the easy direction are bounded away
from 0 for some edge-weight p, then it is the same in the hard direction for
any p′ > p. As in the first step, the difference with previous results is that we
need to increase the edge-weight to obtain the desired conclusion.

Step 3. We show that if p < p′ < pc are such that the φ0
p,q -probability of crossing

horizontally a rectangle of size 2n × n is bounded away from 0 uniformly in
n, then the φ0

p′,q-probability of these events tends to 1 as n tends to ∞.
This step is based on an argument from [11] that combines an influence theorem
and a coupling argument to obtain a sharp threshold inequality (see Corollary 5.2).

Observe that these steps combine together to give the proof of the theorem. Indeed
suppose p̃c < pc and take p̃c < p0 < p1 < p2 < pc. By steps 1 and 2, the
probabilities under φ0

p0,q of crossing in the hard direction rectangles of size 2n×n are
bounded away from 0, uniformly in n. By step 3 these crossing probabilities tend to 1
under φ0

p1,q . As a consequence the probability of a dual crossing in the easy direction
of a 2n by n rectangle tends to 0. But step 1 also applies to dual measures, hence, for
the edge-weight p2, the two-point function of the dual model decays exponentially
fast. This implies via a classical argument that there exists an infinite-cluster in the
primal model, and this is a contradiction.
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Remark 1.6 The proofs of Steps 1 and 2 require varying the edge-weight p. Never-
theless, we expect that this is not indispensable. Bernoulli percolation is an example
for which the proofs of Steps 1 and 2 are valid without changing p, but the known
proofs of this fact rely heavily on independence. In order to tackle more general mod-
els (in particular those having long-range dependence), we employ the differential
inequality (2.6) invoking the Hamming distance, which entails altering p. The related
differential inequality (2.5) is used in Step 3. Exploiting them to their full strength is
the main novelty of this article.

Open questionsWe end this introduction by mentioning three related open questions.
The first is to investigate to which other models the methods of this paper may be

adapted. We discuss this in Sect. 6, where we identify specific conditions for such
models.

The second is to obtain results similar to Theorem 1.1 for lattices in dimensions
d > 2.We believe that some of the techniques presented in this article can be harnessed
in more general dimensions [we think in particular of Step 1 and inequalities (2.5)
and (2.6)]. Nevertheless, the methods of Steps 2 and 3 are based on certain features
of planarity, and we are currently unable to extend Theorem 1.1 to higher dimension.

Finally we mention a broader direction of research. Just as the method of [3], our
article provides very little information on the critical phase of the random-cluster
model. Recent results (for instance [6,7,10,19]) have illustrated that it is possible
extract knowledge of the critical phase of random-cluster models from the theory
of discrete holomorphic observables. But this theory is often based on integrabil-
ity properties of the model, properties which are not true for general random-cluster
models on planar locally-finite doubly periodic graphs. Therefore, it is very chal-
lenging to understand how to extend our knowledge of the critical random-cluster
model on the square lattice to more general settings. A first step towards this goal
is to prove that the results of Steps 1 and 2 are valid without changing the edge-
parameter.

Organisation of the paper Section 2 is dedicated to defining the model and explaining
the properties needed in the proof of Theorem 1.1. The next sections follow the steps
described above: in Sects. 3 and 4 we prove two finite size criteria for exponential
decay (corresponding to Steps 1 and 2) that we then use in Sect. 5 to prove our main
theorem (this corresponds to Step 3). In Sect. 6 we investigate a possible extension of
the result to more general models.

2 Notations and basic facts on the model

2.1 Graph definitions

The lattice G Fix for the rest of the paper a locally-finite planar connected graph
G = (VG , EG ) embedded in the plane R

2 (in such a way that edges are straight
lines intersecting at their end-points only) and assume there exist u and v ∈ R

2 non
collinear, and θ ∈ (0, π) such that the following maps are graphs automorphisms of
the embedded graph G :
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• the translations by vectors u and v,
• the rotation of angle θ around 0,
• the orthogonal reflection with respect to the vertical line {(0, y), y ∈ R}.

It may be seen that, since G is required to be locally finite, there are only two possible
values for θ , namely π

3 and π
2 . The triangular lattice is an example corresponding

to the first case, while the square lattice corresponds to the second (obviously, other
examples may be given in both cases). For simplicity, we will only treat the case
θ = π

2 in the following; the results also hold in the case θ = π
3 , with some standard

adjustments of the proofs. It may be shown that, if we allow some rescaling, we may
consider the lattice to be invariant by

• the translations by (1, 0) and (0, 1),
• rotation by π

2 around the origin,
• the orthogonal symmetry with respect to the vertical line {(0, y), y ∈ R}.

In the rest of this article, the graph G will be referred to as the lattice. Two vertices x
and y of VG are said to be neighbours if (x, y) ∈ EG . We then write x ∼ y.

The graph G = (VG , EG) will always denote a finite subgraph of G , i.e. EG is
a finite subset of EG and VG is the set of end-points of EG . We denote by ∂G the
boundary of G, i.e.

∂G = {x ∈ VG : ∃y /∈ VG with x ∼ y}.

For a < b and c < d, let R = [a, b] × [c, d] be the subgraph of G induced by
the vertices of VG in [a, b] × [c, d]. This type of graph will be called a rectangle. For
n ≥ 0, let �n = [−n, n]2.
Dual lattice and dual graphs Let G ∗ be the dual lattice of G , obtained by placing a
vertex in each face of G and joining two vertices of G ∗ if the corresponding faces of
G are adjacent. Note that G ∗ enjoys the same symmetries as G . For e ∈ EG , set e∗
for the edge of G ∗ intersecting e. For a finite graph G, define G∗ to be the graph with
edge-set EG∗ := {e∗, e ∈ EG}, and vertex-set VG∗ given by the end-points of edges
in EG∗ .

The space of configurations Let G = (VG , EG) be a subgraph of G . We will always
work with elements ω of � = {0, 1}EG , called configurations. Edges e with ω(e) = 1
are called open (in ω), while others are closed (in ω). As mentioned above, ω can be
seen as a subgraph of G whose vertex-set is VG and edge-set is {e ∈ EG : ω(e) = 1}.

A path on G is a sequence of vertices u0, . . . , un ∈ VG with (ui , ui+1) ∈ EG for
i = 0, . . . , n − 1. It is called open if (ui , ui+1) is open in ω for every i . Two vertices
a and b are said to be connected (in ω on G), if there exists an open path connecting

them. The event that a and b are connected is denoted by a
ω,G←−→ b (or simply a

G←→ b
or even a ←→ b when no confusion is possible). Two sets A and B are connected
(denoted A ←→ B) if there exists a pair of connected vertices (a, b) ∈ A × B. A
maximal set of connected vertices is called a cluster.

When G = [a, b]× [c, d] is a rectangle and A = {a}× [c, d] and B = {b}× [c, d]
(respectively A = [a, b] × {c} and B = [a, b] × {d}), the event A

ω,G←−→ B is also
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denoted Ch([a, b] × [c, d]) (respectively Cv([a, b] × [c, d])) and if it occurs we say
that G is crossed horizontally (respectively vertically). An open path from A to B is
called a horizontal crossing (respectively vertical crossing). When a = 0 and c = 0,
we simply write Ch(b, d) and Cv(b, d) for the events above. When b − a > d − c,
horizontal crossings are called crossings in the hard direction, while vertical ones are
crossings in the easy direction. The terms are exchanged when b − a < d − c.

To each configuration ω ∈ � is associated a dual configuration ω∗ on G∗ defined
by ω∗(e∗) = 1−ω(e). A dual-path on G∗ is a sequence of vertices u0, . . . , un ∈ VG∗
with (ui , ui+1) ∈ EG∗ for i = 0, . . . , n−1. It is called dual-open if ω∗(ui , ui+1) = 1

for all i . Two dual-vertices u and v are said to be dual-connected (written u
ω∗,G∗←−−→ v or

simply u
∗←→ v when no confusion is possible) if there is a dual-open path connecting

them.Amaximal set of connected dual-vertices is called a dual-cluster. The definitions
of crossings extend to dual configurations in the obvious way.

2.2 Basic properties of the random-cluster model

For more details and proofs we direct the reader to [13] or [7].

Boundary conditions LetG = (VG, EG) be a finite subgraph of G . A boundary condi-
tion ξ is a partition of ∂G.We denote byωξ the graph obtained from the configurationω

by identifying (or wiring) the vertices in ∂G that belong to the same element of the
partition ξ . Boundary conditions should be understood as encoding how vertices are
connected outside G. The probability measure φ

ξ
p,q,G of the random-cluster model

on G with parameters p ∈ [0, 1], q ≥ 0 and boundary condition ξ is defined on � by

φ
ξ
p,q,G(ω) := po(ω)(1 − p)c(ω)qk(ω

ξ )

Z ξ (p, q,G)
, (2.1)

where Z ξ (p, q,G) is a normalizing constant referred to as the partition function.
Above, o(ω), c(ω) and k(ωξ ) correspond to the number of open and closed edges of
ω, and the number of clusters of ωξ .

Two specific boundary conditions are particularly important. The free boundary
condition, denoted 0, correspond to the partition composed of singletons only (no
wiring between boundary vertices). The wired boundary condition, denoted 1, cor-
respond to the partition {∂G} (all vertices are wired together). In addition to these
two, we will sometimes consider boundary conditions induced by a configuration ξ

outside G: two vertices are wired together if there exists a path between them in ξ .
We will identify ξ with the induced boundary condition and simply write φ

ξ
p,q,G for

the corresponding measure.

Domain Markov property Let G ⊂ F be two finite subgraphs of G . A configuration ω

on F may be viewed as a configuration onG by taking its restrictionω|G to edges ofG.
The restriction of the configuration ω to edges of F\G induces boundary conditions
on G as explained below. The domain Markov property states that for any p, q, any
boundary condition ξ on F and any ψ ∈ {0, 1}EF\EG ,
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φ
ξ
p,q,F (ω|G = · |ω(e) = ψ(e), e ∈ EF\EG) = φ

ψξ

p,q,G(·), (2.2)

where ψξ is the partition induced by the equivalence relation xRy if x and y are
connected in ψξ .

The domain Markov property implies the following finite-energy property. For any
ε > 0, the conditional probability for an edge to be open, knowing the states of all
the other edges, is bounded away from 0 and 1 uniformly in p ∈ [ε, 1 − ε] and in
the state of other edges. This property extends to finite sets of edges (with a constant
which gets worse and worse as the cardinality of the set increases).

Stochastic ordering for q ≥ 1 For any G, the set {0, 1}EG has a natural partial order.
An event A is increasing if for anyω ≤ ω′,ω ∈ A impliesω′ ∈ A. The random-cluster
model satisfies the following properties:

1. (FKG inequality) Fix p ∈ [0, 1], q ≥ 1 and some boundary condition ξ . Let A
and B two increasing events, then φ

ξ
p,q,G(A ∩ B) ≥ φ

ξ
p,q,G(A)φ

ξ
p,q,G(B).

2. (comparison between boundary conditions) Fix p ∈ [0, 1], q ≥ 1 and ξ andψ two
boundary conditions. Assume that ξ ≤ ψ , meaning that the partition ψ is coarser
than ξ (there are more wirings in ψ than in ξ ), then for any increasing event A,
φ

ξ
p,q,G(A) ≤ φ

ψ
p,q,G(A).

3. (comparison between different edge parameters) Fix p1 ≤ p2, q ≥ 1 and some
boundary condition ξ . Then for any increasing event A, φξ

p1,q,G(A) ≤ φ
ξ
p2,q,G(A).

Infinite-volume measures for q ≥ 1 We will consider measures on infinite-volume
configurations, i.e. on {0, 1}EG . Recall that for any finite subgraph G of G , a config-
uration ω ∈ {0, 1}EG induces a boundary condition on G that we will exceptionally
write in this paragraph χ(ω). Under χ(ω), two vertices x, y ∈ ∂G are wired if and
only if they are connected in ω on G \G. An infinite-volume random-cluster measure
on G with parameters p and q is a measure φp,q on {0, 1}EG with the property that,
for all finite subgraphs G of G ,

φp,q(ω|G = · | χ(ω) = ξ) = φ
ξ
p,q,G(·), (2.3)

for all boundary conditions ξ for which the conditioning is not degenerate.
The properties of the previous paragraph extend to infinite-volume measures

by (2.3).
One may prove that for any pair of parameters (p, q), there exists at least one such

measure. When q ≥ 1, one may for instance take the limit of measures with wired
(resp. free) boundary conditions on�n . The measure obtained in the limit is called the
infinite-volume measure with wired (resp. free) boundary conditions and is denoted
by φ1

p,q (resp. φ0
p,q ).

In general there is no reason that, for a given pair of parameters (p, q), there is a
unique infinite-volume measure. Nevertheless, for q ≥ 1, the setDq of values of p for
which there exist at least two distinct infinite-volume measures is at most countable,
see [13, Theorem 4.60]. This property can be combined with the stochastic ordering
between different edge-weights to show the existence of a critical point pc ∈ [0, 1]
such that:
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Sharp phase transitions of planar random-cluster and Potts models 875

• for any infinite-volume measure with p < pc, there is almost surely no infinite
cluster,

• for any infinite-volume measure with p > pc, there is almost surely an infinite
cluster.

When the planar, locally finite, doubly-periodic graph is non-degenerate, pc can be
proved to be different from 0 and 1 using a variant of the classical Peierls argument.

While the above is true also for lattices in higher dimensions, for planar lattices
such as G an additional argument shows thatDq ⊆ {pc} (in fact in any dimension one
has Dq ⊆ [pc, 1], see [13, Theorem 5.16]). See the discussion following Remark 2.1
for details.

Planar duality Let G be a finite graph and ξ ∈ {0, 1}EG \EG . If ω is distributed accord-
ing toφ

ξ
p,q,G , the configurationω∗ is also distributed as a random-cluster configuration

on G∗ with different parameters. More precisely, we find that

φ
ξ
p,q,G(ω) = φ

ξ∗
p∗,q∗,G∗(ω∗),

where
pp∗

(1 − p)(1 − p∗)
= q and q∗ = q

and ξ∗ is the boundary condition on ∂G∗ induced by the dual-configuration ξ∗ ∈
{0, 1}EG ∗\EG∗ . For instance, dual measures extend to the whole ofG ∗ and, ifω follows
φ1
p,q,G (respectivelyφ0

p,q,G ), thenω∗ is distributed asφ0
p∗,q,G ∗ (respectivelyφ1

p∗,q,G ∗ ).

Remark 2.1 As a consequence of Theorem 1.1, for q ≥ 1 and p > pc, there exists
c = c(p, q) > 0 such that

φp,q(u
∗←→ v) ≤ exp(−c|u − v|), for all u, v ∈ VG ∗ . (2.4)

Indeed, an adaptation of Zhang’s argument (as that of [13, Theorem 6.17]) shows that,
for any values of q ≥ 1 and p /∈ Dq , it is impossible to have with positive probability
infinite clusters in both ω and ω∗. Thus, if p > pc, there is no infinite cluster in ω∗,
and Theorem 1.1 applied to the dual random-cluster model implies (2.4).

Differential inequalities The two following theorems are essential to our study. The
first is a direct adaptation of the more general statement of Graham and Grimmett [11,
Theorem 5.3].

Theorem 2.2 ([11]) For any q ≥ 1 there exists a constant c > 0 such that, for any
p ∈ (0, 1), any finite graph G, any boundary condition ξ and any increasing event A,

d

dp
φ

ξ
p,q,G(A) ≥ c φ

ξ
p,q,G(A)(1 − φ

ξ
p,q,G(A)) log

(
1

2mA,p

)
, (2.5)

where mA,p = maxe∈EG

(
φ

ξ
p,q,G(A | ω(e) = 1) − φ

ξ
p,q,G(A | ω(e) = 0)

)
.

The original result concerns a more general class of measures than that of the
random-cluster model, hence the slightly morecomplicated statement of [11, Theorem
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876 H. Duminil-Copin, I. Manolescu

5.3]. The above formulation is easily deduced using an explicit bound for the finite
energy property of the random-cluster model:

p

q
≤ φ

ξ
p,q,G

(
ω(e) = 1 | ω( f ), f �= e

) ≤ p, for all G, e, ξ, p and q ≥ 1.

In order to state the second result, we introduce the notion ofHamming distance. For
an event A and a configurationω, define HA(ω) as the graph distance in the hypercube
{0, 1}EG (or Hamming distance) between ω and the set A. When A is increasing, it
corresponds to the minimal number of edges that need to be turned to open in order
to go from ω to A. The following may be found in [13, Theorem 2.53] or [14].

Theorem 2.3 ([14]) For any q ≥ 1, any p ∈ (0, 1), any finite graph G and boundary
condition ξ , we have that for any increasing event A,

d

dp
log(φξ

p,q,G(A)) ≥ φ
ξ
p,q,G(HA)

p(1 − p)
. (2.6)

In the above φ
ξ
p,q,G(HA) is the expectation of HA under φ

ξ
p,q,G .

Remark 2.4 In this article (2.6) will be used in its integrated form. Consider two
values p′ < p and an increasing event A. Since HA is a decreasing function, by
integrating (2.6) between p′ and p we find

φ
ξ

p′,q,G(A) ≤ φ
ξ
p,q,G(A) exp

[ − 4(p − p′)φξ
p,q,G(HA)

]
. (2.7)

Now, consider an event A depending on a finite set of edges E and assume that the
infinite-volume measures at p′ and p are unique. By taking ξ = 1 and taking the limit
in (2.7) as G tends to G (both sides of the inequality converge) we obtain

φp′,q(A) ≤ φp,q(A) exp
[ − 4(p − p′)φp,q(HA)

]
. (2.8)

From now on, we fix q ≥ 1 and G . For ease, we drop them from the notation. We
will frequently work with infinite-volume measures for different values of p and will
always assume that these values are not in Dq . In such case, φp means the unique
infinite-volume measure with parameter p.

Remark 2.5 Since Dq is countable, the different claims could be easily extended to
values of p in Dq by density (φp simply denotes any infinite-volume measure in this
case). Also note that we are mainly interested in p < pc for which p /∈ Dq anyway
(we prefer to state the claims in full generality since they may be of some use in other
contexts).

3 Crossings in the easy direction

The goal of this section is to prove the following result, which corresponds to Step 1.

123



Sharp phase transitions of planar random-cluster and Potts models 877

Proposition 3.1 If p0 ∈ (0, 1) is such that there exists an infinite-volume measure
φp0 with

lim inf
n→∞ φp0(Cv(2n, n)) = 0,

then for any p < p0 there exists c = c(p) > 0 such that for any x, y ∈ G

φp(x ←→ y) ≤ exp(−c|x − y|).

Remark 3.2 This proposition can be proved in any dimension d ≥ 2. The claim
should be adapted as follows: if the liminf of probabilities of crossing sets of the form
[0, 2n]d−1 × [0, n] from [0, 2n]d−1 × {0} to [0, 2n]d−1 × {n} is equal to 0 for some
edge-weight p0, then there is exponential decay for any p < p0 [(i.e. (1.1) holds for
p < p0].

The proof of the proposition is based on the following two lemmas. Let Cx be the
cluster of the site x . For simplicity we will henceforth assume 0 ∈ VG .

Lemma 3.3 Let p0 > 0. If there exists an infinite-volume measure φp0 and κ > 0
such that φp0(|C0|4+κ) < ∞, then for any p < p0, there exists c = c(p) > 0 such
that for any n ≥ 0,

φp(0 ←→ ∂�n) ≤ exp(−cn). (3.1)

It is easy to see that (3.1) is equivalent to exponential decay, as defined in (1.1). The
previous lemma is classical, see [14] or [13, Theorem 5.64]. We only mention that its
proof is based on the differential inequality (2.6).

Lemma 3.4 Let p > p′. For any N ≥ n,

φp′(Cv(2N , N )) ≤ exp

[
−(p − p′) Nn

(
1 − φp(Cv(2n, n))

)2N/n
]
.

Proof Consider the event Cv(2N , n). Any vertical open crossing of [0, 2N ] × [0, n]
contains at least one of the following:

• a vertical crossing of a rectangle [kn, (k+2)n]×[0, n], for some 0 ≤ k < �N/n�,
• a horizontal crossing of a square [kn, (k+1)n]×[0, n], for some 0 ≤ k < �N/n�.

All the events above have probability bounded from below by φp(Cv(2n, n)). Using
the FKG inequality for the complements of these events, we obtain

1 − φp(Cv(2N , n)) ≥ (
1 − φp(Cv(2n, n))

)2N/n
. (3.2)

As a consequence, we deduce that

φp(HCv(2N ,n)) ≥ φp(HCv(2N ,n) ≥ 1)! = 1 − φp(Cv(2N , n))

≥ (
1 − φp(Cv(2n, n))

)2N/n
.
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Since Cv(2N , N ) is included in the intersection of � N
n � translates of Cv(2N , n), it

follows that

φp
(
HCv(2N ,N )

) ≥ ⌊ N
n

⌋ (
1 − φp(Cv(2n, n))

)2N/n
.

By (2.8) for p′ < p we find the result (we have ignored the integer parts in the lemma
since 1

p(1−p)�N/n� ≥ N/n). ��

The idea of the proof of Proposition 3.1 goes as follows. Assuming that
φp(Cv(2n, n)) is small for some n, we apply Lemma 3.4 repeatedly, and obtain a
bound on the decay of φp−ε(Cv(2N , N )) as N increases. A bound on the moments of
|C0| follows.

Proof of Proposition 3.1 Fix some ε > 0 and p0 > ε. Let α > 2 be a (large) constant,
we will see later how to choose it. (We prefer not to give an explicit value for α now,
though the requirements for it are universal.) Consider a small constant δ0 > 0, we
will see in the proof how to choose δ0 (its value only depends on α and ε). Assume
that there exists a positive integer n0 such that φp0(Cv(2n0, n0)) ≤ δα

0 and define
recursively, for k ≥ 0,

δk+1 = δ2k ,

nk+1 = nk/δ
2
k ,

pk+1 = pk − δk .

Assuming δ0 is sufficiently small, the inequality φpk (Cv(2nk, nk)) ≤ δα
k and

Lemma 3.4 imply

φpk+1(Cv(2nk+1, nk+1))≤exp

(
−(pk − pk+1)

nk+1

nk

(
1−φpk (Cv(2nk, nk))

)2nk+1/nk
)

≤ exp
(

− (1 − δα
k )2δ

−2
k

δk

)
≤ δ2αk = δα

k+1.

Further assume that δ0 is chosen small enough that limk→∞ pk ≥ p0 − ε. We deduce
that for any k ≥ 0,

φp0−ε(Cv(2nk, nk)) ≤ δα
k . (3.3)

Let us extend the previous bound to values of N different from the {nk : k ≥ 0}. For
nk ≤ N < nk+1, by (3.2) or by a simple union bound,

φp0−ε(Cv(2N , N )) ≤ φp0−ε(Cv(2N , nk)) ≤ 2nk+1

nk
δα
k ≤ 2

(n0
N

) α−2
4

.
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In the last inequality we have used that δi = δ
1/2k−i

k for any i ≤ k, and therefore

δ4k ≤
k∏

i=0

δ2i = n0
nk+1

≤ n0
N

.

It easily follows that φp0−ε(0 ↔ ∂�N ) ≤ 8
( n0
N

) α−2
4 for any N . Since a cluster of

cardinality larger than N has diameter at least a constant times
√
N , we find easily

that φp−ε(|C0|5) < ∞ provided that α is chosen large enough (α > 42 suffices). By
Lemma 3.3, the above implies that for any p < p0 − ε, there exists c = c(p) > 0
such that for any n ≥ 0,

φp(0 ←→ ∂�n) ≤ exp(−cn).

Now, if lim inf φp0(Cv(2n, n)) = 0, then for any ε > 0, there exists n0 such that
φp0(Cv(2n0, n0)) ≤ δα

0 , where α and δ0 = δ0(ε, α) are chosen as above. By the
argument above φp exhibits exponential decay for any p < p0. ��

4 Crossing probabilities in the hard direction

The object of this section is the following result.

Proposition 4.1 If p ∈ (0, 1) is such that there exists an infinite-volume measure φp

with

lim inf
n→∞ φp(Cv(2n, n)) > 0, (4.1)

then for any p0 > p,

lim inf
n→∞ φp0(Ch(2n, n)) > 0.

In light of Proposition 3.1, the above result has the following immediate corollary,
which is exactly the claim mentioned in Step 2 of the introduction.

Corollary 4.2 If p0 ∈ (0, 1) is such that there exists an infinite-volume measure φp0
with

lim inf
n→∞ φp0(Ch(2n, n)) = 0,

then for any p < p0 there exists c = c(p) > 0 such that for any n ≥ 0,

φp(0 ←→ ∂�n) ≤ e−cn .
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The proof of Proposition 4.1 is based on the following lemma and its corollary.
Some terminology is needed for their statement. Let γ 1, . . . , γ K be open paths in
some rectangle [a, b] × [c, d]. We say they are separated in [a, b] × [c, d] if they are
contained in distinct clusters of [a, b]× [c, d] (beware of the fact that we are speaking
of clusters in [a, b] × [c, d]). In other words, no two are connected by open paths
inside [a, b] × [c, d].
Lemma 4.3 Let p ∈ (0, 1) and n ∈ N. There exist universal constants c0, c1 > 0
such that, if 1 ≤ I ≤ n/400 is an integer that satisfies

I 2 ≤ c0
φp

(
Cv(2n, n)

)

φp(Ch(2n, n))c1/I
, (4.2)

then

φp

(
[0, 2n] × [0, n/2] has 2I separated vertical crossings

)
≥ 1

2φp
(
Cv(2n, n)

)
.

(4.3)

The statement above may seem cryptic. Here are a few observations that may help
the reader assimilate the lemma. First of all, the conclusion (4.3) is strongest when
I is large, but the hypothesis (4.2) is effectively an upper bound on I . Moreover it
may even be that there exists no I with the properties required in the lemma. The
lemma will be applied in situations where φp

(
Cv(2n, n)

)
is bounded below by some

constant. Then it states that, if φp(Ch(2n, n)) is close to 0 [so that I may be large
and satisfy (4.2)], the rectangle [0, 2n] × [0, n/2] contains many separated vertical
crossings with positive probability. Furthermore, the smaller φp(Ch(2n, n)), the larger
the number of separated vertical crossings.

In words, this statement asserts that if typically [0, 2n]×[0, n] is crossed vertically,
but the probability of crossings in the hard direction is very small, then any vertical
crossing needs to twist substantially, creating many separated crossings of a slightly
smaller (in height) rectangle (see the discussion preceding the proof of Lemma 4.3).

The proof of Lemma 4.3 represents the major difficulty of this article. We postpone
it to the end of the section and first explain how it implies Proposition 4.1. A key
observation is that the existence of separated vertical crossings of [0, 2n] × [0, n/2]
[as in (4.3)] implies a lower bound on the Hamming distance to the event Ch(2n, n).
Using (2.6), this yields an explicit lower bound on crossing probabilities in the hard
direction. We formalize this next.

For x ∈ (0, 1), set

f (x) :=
{

log(1/x)
log log(1/x) if x < 1/e

−∞ otherwise
.

Corollary 4.4 Let δ > 0. There exist constants c2 = c2(δ) > 0 and c3 = c3(δ) > 0
such that for any p > p′ and n withφp

(
Cv(2n, n)

) ≥ δ and n ≥ c2 f
[
φp

(
Ch(2n, n)

)]
,

the following holds:
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φp′
(
Ch(n, n/2)

) ≤ exp
[

− c3(p − p′)δ exp
(
c3 f

[
φp

(
Ch(2n, n)

)])]
.

Proof Fix δ > 0 and p > p′. Let n be an integer such that φp
(
Cv(2n, n)

) ≥
δ and n ≥ c2 f

[
φp

(
Ch(2n, n)

)]
, for a constant c2 specified later. Define I =

�cf f [φp(Ch(2n, n))]�, where cf = cf (δ) is some large constant to be specified. It
is easy then to see that, for this choice of I , we have

I 2 ≤ c0
φp

(
Cv(2n, n)

)

φp(Ch(2n, n))c1/I

for every n ≥ 1, provided that cf is large enough (where c0, c1 are the universal
constants of Lemma 4.3). Furthermore, we find that I ≤ n/400 by setting c2 = 400cf .
Finally, we may limit ourselves to the case where φp (Ch(2n, n)) is small enough to
have I ≥ 1 (the constant c3 may be chosen so that the conclusion holds trivially
otherwise).

The previous paragraph shows that with these choices of cf and c2, I satisfies the
assumptions of Lemma 4.3, and we find

φp

(
[0, 2n] × [0, n/2] contains 2I separated vertical crossings

)

≥ 1

2
φp

(
Cv(2n, n)

) ≥ δ

2
.

Since the crossings in (4.3) are separated, there exist also at least 2I − 1 ≥ 2I−1

disjoint dual vertical crossings of [0, 2n] × [0, n/2]. This generates a lower bound on
the expected Hamming distance to the event Ch(2n, n/2):

φp
(
HCh(2n,n/2)

) ≥ 2I · δ

4
. (4.4)

Inequality (2.8) [the integrated form of (2.6)] implies that

φp′(Ch(2n, n/2)) ≤ φp(Ch(2n, n/2)) exp
(

− 1

p(1 − p)
· (p − p′) · 2I · δ

4

)

≤ exp
[

− (p − p′)δ exp
(
c3 f

[
φp

(
Ch(2n, n)

)])]
,

where the constant c3 > 0 depends on cf and therefore on δ only. In the last inequality,
we used the choice of I proposed at the very beginning of the proof. Finally, by
combining crossings in the hard direction of five rectangles with side lengths n and
n/2, we may obtain a crossing of [0, 2n] × [0, n/2]. Thus,

φp′ (Ch(n, n/2))5 ≤ φp′ (Ch(2n, n/2)),

and the result follows. ��
Let us now prove Proposition 4.1 using Corollary 4.4.
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Proof of Proposition 4.1 Fix p0 > p and assume that infn≥0 φp(Cv(2n, n)) = δ > 0.
Let c2, c3 be the constants given by Corollary 4.4 for δ given above. For integers n0
and 0 ≤ k ≤ log2

√
n0, define

nk = 2−kn0,

pk = p0 − (p0 − p)
k∑

i=1

2−i ,

βk = φpk (Ch(2nk, nk)).

We aim to apply Corollary 4.4 with the above values of n and p. We start by a simple
verification of the hypothesis.

Claim For n0 large enough and for any integer 0 ≤ k ≤ log2
√
n0,

nk > c2 f (βk).

Proof of the Claim Assume that there exists an integer 0 ≤ k ≤ log2
√
n0 such that

nk ≤ c2 f (βk). We have

φp(Ch(2nk, nk)) ≤ φpk (Ch(2nk, nk)) = βk ≤ exp
(

− nk
c2

)
≤ n−10

k , (4.5)

where the second inequality uses that f (x) ≤ log(1/x). In the last inequality we have
supposed that nk is larger than some rank depending only on c2. We may assume this
since nk ≥ √

n0 and we may take n0 as large as we wish.
Consider x ∈ {0}× [0, nk] and y ∈ { 12nk}× [0, nk] maximizing (among such pairs

of vertices) the probability that they are connected in [0, 1
2nk] × [0, nk]. Then

φp

(
x

[0,nk/2]×[0,nk ]←−−−−−−−→ y

)
≥ 1

n2k
φp

(
Ch(

1
2nk, nk)

)
.

Combining four times the above (also using reflection symmetry) we obtain

φp(Ch(2nk, nk)) ≥ 1

n8k
φp(Ch(

1
2nk, nk))

4.

Confronting this to (4.5) implies

φp
(
Ch(

1
2nk, nk)

) ≤ n−1/2
k ≤ n−1/4

0 .

But φp
(
Ch(

1
2nk, nk)

) ≥ δ by assumption and symmetry under π
2 -rotation. This leads

to a contradiction for n0 large enough.
The argument that (4.5) contradicts φp

(
Ch(

1
2nk, nk)

) ≥ δ will be used several
times in the rest of the paper. ��
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We now fix n0 large, in particular large enough for the property of the claim to be
satisfied. Then we may apply Corollary 4.4 to each triplet (nk, pk, pk+1) to obtain

βk+1 ≤ exp
(

− c32
−(k+1)(p0 − p)δ exp

(
c3 f (βk)

))
.

Hence, there exist constants � ≥ e40 and c� > 0, depending on p0 − p, c3 and δ

only, such that if we assume βk ≤ c��−k , the previous displayed equation implies
that

c3 f (βk) ≥ 2k log 2 and βk+1 ≤ exp

[
− c3(p0 − p)δ exp

(c3
2

f (βk)
)]

≤ βk

�

≤ c��−(k+1).

Assume now that β0 ≤ c�. Then, by the above, βk ≤ c��−k for any k ≤ log2
√
n0.

Therefore, there exists m ∈ [√n0, n0] (m = n�log2 √
n0�) such that

φp (Ch(2m,m)) ≤ c�e
−40�log2 √

n0� ≤ c�m
−10.

Using the same procedure as at the end of the proof of the previous claim we obtain
a contradiction for n0 large enough, since m ≥ √

n0 and φp (Ch(2m,m)) ≥ δ by
definition.

Therefore, the assumption φp0(Ch(2n0, n0)) = β0 ≤ c� can not hold for n0 large
enough. This implies that

lim inf
n→∞ φp0(Ch(2n, n)) ≥ c� > 0.

��
We now turn to the core of the argument, namely the proof of Lemma 4.3. The

proof is inspired by the work of Bollobás and Riordan on Bernoulli percolation on
Voronoi tessellations [4] (even though it makes use of different ingredients, and that
the claim is not the same). We start with a brief description.

Fix I as in Lemma 4.3 and let v = 1
100I . First we obtain an upper bound, as a

function of φp(Ch(2n, n)), for the probability of crossing horizontally rectangles of
height k and width (1 + v)k for k ∈ [ n4 , n]. Using this bound, we show that one
vertical crossing of [0, 2n] × [0, n] contains, with high probability, three crossings of
the slightly thinner rectangle [0, 2n] × [23vn, (1 − 23v)n]. Repeating the procedure,
we finally obtain 2I crossings of [0, 2n] × [ n4 , 3n

4 ]. Moreover, these crossings are
separated by dual paths. See Fig. 4.

Proof of Lemma 4.3 Fix p, n and I satisfying the assumptions of the lemma and set
v = 1

100I (we will specify the values of the universal constants c0 and c1 later in the
proof). Define

α = sup
{
φp

(
Ch(�(2 + v)k�, 2k)) : k ∈ [ n8 , n

2 ]
}
. (4.6)
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Fig. 1 In the black rectangle
R(k), a path γ 1 connects
[−(1 + u)k, −3uk] × {0} to the
top side. Except on an event of
probability α, γ 1 crosses the
vertical line
{(1 − 2u)k} × [0, 2k] (grey). By
reflection we may construct a
path γ 2, contained in
[−(1+4u)k, (1−5u)k]×[0, 2k],
and connecting
[−3uk, (1 − 5u)k] × {0} and
{−(1+ 4u)k} × [0, 2k]. The two
induce a horizontal crossing of
the grey rectangle
[−(1+4u)k, (1−2u)k]×[0, 2k]

(1− 2u)k

(2 + 2u)k

(1− 2u)k

O

3uk

2k

γ1

γ2

3uk

For any k ∈ [ n8 , n
2 ], we may combine 32/v crossings in the hard direction of

rectangles with sides of length 2k and �(2 + v)k� (both horizontal and vertical) to
create a horizontal crossing of [0, 2n] × [0, n]. Choosing k ∈ [ n8 , n

2 ] achieving the
maximum in (4.6), we conclude that

α ≤ φp(Ch(2n, n))v/32 ≤ φp(Ch(2n, n))2c1/I , (4.7)

by setting c1 = 1/6400.
We start by proving a series of claims that will then be used to prove the lemma. For

these claims, fix an integer k ∈ [ n4 , n
2 ] and u ∈ [v, 1/11) such that ku ∈ Z. The first

three claims are concerned with crossings of the rectangle R(k) = [−(1 + u)k, (1 +
u)k] × [0, 2k].
Claim 1 Let E (k) be the event that there exists a vertical open crossing of R(k), with
the lower endpoint not contained in [−3uk, 3uk] × {0}, or the higher endpoint not
contained in [−3uk, 3uk] × {2k}. Then

φp(E (k)) ≤ 4(α + √
α).

Proof of Claim 1 Let β be the φp-probability that there exists a vertical open crossing
of R(k), with the lower endpoint in [−(1 + u)k,−3uk] × {0}.

The probability of crossing [−(1 + u)k, (1 − 2u)k] × [0, 2k] vertically is at most
α (by definition of α). Thus, with probability β − α, there exists a vertical crossing of
R(k) with an endpoint in [−(1 + u)k,−3uk] × {0} which intersects the vertical line
{(1− 2u)k}× [0, 2k]. See Fig. 1. By reflection with respect to {−3uk}× [0, 2k], with
probability β − α, there exists an open path in [−(1 + 4u)k, (1 − 5u)k] × [0, 2k],
between [−3uk, (1 − 5u)k] × {0} and {−(1 + 4u)k} × [0, 2k].

When combining the two events above using the FKG inequality, we obtain that,
with probability at least (β − α)2, there exists a horizontal open crossing of [−(1 +
4u)k, (1−2u)k]× [0, 2k]. This event has probability less than α, hence β ≤ α +√

α.

123



Sharp phase transitions of planar random-cluster and Potts models 885

(1− 2u)k(1− 8u)k

(2−
11u) k

6uk

Fig. 2 The two possibilities for the path γ . The black rectangle R(k) is depicted for scaling purposes, and
the strip R× [0, (2− 11u)k] is delimited by the top grey line. The origin is marked by a disk. Left The first
situation, the path γ crosses the vertical line {−(1−8u)k}× [0, (2−11u)k]. Right Two occurrences of the
second situation may be used to create a horizontal crossing of [−(1− 8u)k, (1− 2u)k] × [0, (2− 11u)k]

By considering the other possibilities for the lower and higher endpoints, the claim
follows. ��

Claim 2 LetF (k) be the event that there exists a vertical open crossing of R(k) that
does not intersect the vertical line {(1 − 2u)k} × [0, 2k]. Then

φp(F (k)) ≤ 2α.

Proof of Claim 2 Any vertical crossing of R(k) not touching {(1− 2u)k} × [0, 2k] is
either contained in [−(1+u)k, (1−2u)k]×[0, 2k] or [(1−2u)k, (1+u)k]×[0, 2k].
Both these rectangles are crossed vertically with probability less than α, and the claim
follows. ��

Claim 3 Let G (k) be the event that there exists an open path in R × [0, (2 − 11u)k]
between [−3uk, 3uk] × {0} and the vertical segment {(1 − 2u)k} × [0, (2 − 11u)k].
Then

φp(G (k)) ≤ α + √
α.

Proof of Claim 3 Letβ = φp(G (k)). SupposeG (k)occurs and letγ be anopenpath in
R×[0, (2−11u)k] between [−3uk, 3uk]×{0} and {(1−2u)k}×[0, (2−11u)k]. There
are two possibilities for γ . Either γ crosses the line {−(1 − 8u)k} × [0, (2 − 11u)k],
or it does not.

The first situation arises with probability at most α, since it induces a horizontal
crossing of the rectangle [−(1 − 8u)k, (1 − 2u)k] × [0, (2 − 11u)k]. See the left
diagram in Fig. 2.
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Thus the second situation arises with probability at least β −α. Then, by symmetry
with respect to {3uk} ×R and the FKG inequality, with probability at least (β − α)2,
[−(1 − 8u)k, (1 − 2u)k] × [0, (2 − 11)k] contains two open paths:

• one connecting [−3uk, 3uk] × {0} to {(1 − 2u)k} × [0, (2 − 11u)k],
• one connecting [3uk, 9uk] × {0} to {−(1 − 8u)k} × [0, (2 − 11u)k].

These two paths induce an open horizontal crossing of [−(1 − 8u)k, (1 − 2u)k] ×
[0, (2 − 11u)k], thus (β − α)2 ≤ α, and the claim follows. ��

In the claims above we have defined the events E (k),F (k) and G (k). In addition,
define G̃ (k) as the symmetric of G (k) with respect to the line R × {k}, i.e. the event
that there exists an open path in R × [11uk, 2k] between [−3uk, 3uk] × {2k} and
{(1 − 2u)k} × [11uk, 2k]. The bound of Claim 3 applies to G̃ (k) as well.

All four events revolve around the rectangle R(k). In the following, we will use
translates of these events, and we will say for instance that E (k) occurs in some
rectangle R(k) + z if E (k) occurs for the translate of the configuration by −z.

Claim 4 Except on an event H (k) of probability at most 100
√

α

u , any open vertical
crossing of S(k) = [0, 2n] × [−k, k], contains two separated vertical crossings of
S((1 − 11u)k) = [0, 2n] × [−(1 − 11u)k, (1 − 11u)k].
Proof of Claim 4 The rectangle [0, 2n] × [−k, k] is the union of the rectangles R j =
[ juk, (2 + ( j + 2)u)k] × [−k, k], for 0 ≤ j ≤ J , where

J := ⌊ 1
u ( nk − 2)

⌋ − 2 ≤ 6/u.

Let H (k) be the union of the following events for 0 ≤ j ≤ J :

• the rectangle [ juk, (2+( j+1)u)k]×[−k, k] contains a horizontal open crossing,
• E (k) occurs in the rectangle R j ,
• F (k) occurs in the rectangle R j ,
• at least one of G (k) and G̃ (k) occurs in the rectangle R j .

Using a simple union bound and the estimates of Claims 1–3, we obtain

φp(H (k)) ≤ 1

u
(54α + 36

√
α) ≤ 100

√
α

u
. (4.8)

Consider a configuration not in H (k) containing a vertical open crossing γ of S(k).
We are now going to explain why such a crossing necessarily contains two (in fact
even three but we will not use this fact here) separated crossings of S((1 − 11u)k).
We recommend that the reader takes a look at Fig. 3 first.

Since none of the rectangles [ juk, (2+( j+1)u)k] × [−k, k] is crossed horizontally,
γ is contained in one of the rectanglesR j . Fix the corresponding index j . Parametrize
γ by [0, 1], with γ0 being the lower endpoint.

Since E (k) does not occur inR j , γ0 and γ1, are contained in [(1+ ( j −2)u)k, (1+
( j+4)u)k]×{−k} and [(1+( j−2)u)k, (1+( j+4)u)k]×{k}, respectively.Moreover,
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Fig. 3 The path γ under the
assumption that E (k), F (k),
G (k) and G̃ (k) do not occur in
R j . The endpoints are contained
in segments of length 6uk
around the centres of the top and
bottom sides. A first crossing of
the strip S((1 − 11u)k) occurs
between γ0 and γt , and a second
between γs and γ1. The two
crossings γ 1, γ 2 need to be
separated to ensure that F (k),
G (k) and G̃ (k) do not occur

γ1
γ2

γt

γs

sinceF (k) does not occur inR j , γ crosses the vertical line {(2+( j−1)u)k}×[−k, k].
Let t and s be the first and last times that γ intersects this vertical line.

Since G (k) does not occur inR j , γ intersects the line [0, 2n]×{(1−11u)k} before
time t . Likewise, since G̃ (k)does not occur,γ intersects the line [0, 2n]×{−(1−11u)k}
after time s. This implies thatγ contains at least twodisjoint crossings ofS((1−11u)k).
Call γ 1 the first one (in the order given by γ ) and γ 2 the last one.

The above holds for any vertical crossing γ of S(k), hence the crossings γ 1 and
γ 2 are necessarily separated in S((1 − 11u)k). Indeed, if they were connected inside
S((1 − 11u)k), then F (k) would occur. ��

Remark 4.5 It is actually possible to prove that, in the situation described above, γ

contains at least three separated vertical crossings of S((1− 11u)k). We do not detail
this as it is not essential for our proof, but the situation will be depicted in the relevant
figures.

Getting back to the proof of the lemma. Let ki = �(1 − 22vi)n/2� for 0 ≤ i ≤ I .
We will investigate vertical crossings of the nested strips S(ki ) = [0, 2n] × [−ki , ki ].
Note that S(k0) is contained in a translation of the rectangle [0, 2n] × [0, n], and that
S(kI ) contains a translation of the rectangle [0, 2n] × [0, n/2].

Fix a sequence (ui )i , with ui ∈ [v, 2v] and kiui ∈ Z for 0 ≤ i < I . The existence
of ui is due to the fact that v ≥ 4

n (since I ≤ n/400). Define the events H (ki )

of Claim 4 for these values of ui . Except on the event
⋃I−1

i=0 H (ki ), any vertical
crossing of S(k0) generates 2I vertical open crossings of S(kI ) which are separated
in S(kI ). Indeed, by Claim 4, every crossing of S(ki ) contains two separate crossings
of S(ki+1) ⊂ S((1 − 11ui )ki ). See Fig. 4. By the union bound and Claim 4,

φp

(
I−1⋃
i=0

H (ki )

)
≤ 100

√
α

u
I ≤ 10 000

√
α I 2 ≤ φp

(
Cv(2n, n)

)

2
,
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S (
k
0
)

S(
k
2
)

Fig. 4 Under
(
∪I−1
i=0H (ki )

)c
, one vertical crossing of S(k0) contains two (in fact even three) separated

crossings of S(k1) (with marked endpoints). Each such crossing contains in turn two (in fact even three)
separated crossings of S(k2). This generates four (in fact even nine) separated crossings in S(k2), and thus
three (in fact even eight) dual crossings between them

where the second inequality is due to the choice of I and the fact that we may assume
c0 ≤ 1

20 000 [see (4.2) and (4.7)]. But S(k0) is crossed vertically with probability at
least φp

(
Cv(2n, n)

)
. Thus, with probability at least φp

(
Cv(2n, n)

)
/2, S(kI ) contains

2I separated vertical crossings. The claim follows from the fact that S(kI ) contains a
translate of [2n, n/2]. ��

5 Proof of Theorem 1.1

The following coupling argument may be used in conjunction with Theorem 2.2 of
Graham and Grimmett to obtain sharp threshold results, as in [11, Lemma 6.3]. In
our case the desired result is stated subsequently as a corollary. For an edge e and a
configuration ω, write Ce(ω) for the open cluster of e in ω, i.e. for the union of the
open clusters of the endpoints of e.

Proposition 5.1 Let G be a finite graph, e ∈ EG be an edge and ξ be a boundary
condition. For q ≥ 1 and p ∈ (0, 1) there exists a measure � on � × � such that, if
(π, ω) is distributed according to �,

• π is distributed according to φ
ξ
p,q,G(. | π(e) = 0),

• ω is distributed according to φ
ξ
p,q,G(. | ω(e) = 1),

• �-almost surely π ≤ ω and π( f ) = ω( f ) for edges f /∈ Ce(ω).

Corollary 5.2 For any 0 < p0 < p1 < 1, there exists c = c(p0) > 0 such that, for
n ≥ 1,

φp0(Ch(2n, n))
(
1 − φp1(Ch(2n, n))

) ≤ (
φp1(0 ↔ ∂�n)

)c(p1−p0). (5.1)

The proposition may be proved by an exploration argument as sketched in [11]
(see also references therein). For completeness we provide a proof, then we prove the
corollary.

Proof of Proposition 5.1 Fix G, e, ξ, p and q as in the proposition. We follow the
coupling between measures presented in the proof of [13, Proposition 3.28].
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For f ∈ EG and ω ∈ � let ω f and ω f be the configurations equal to ω on edges
different from f , and equal to 1 and 0, respectively, on f . Also define D f (ω) to be the
indicator function of the event that the endpoints of f are not connected in ωξ \ { f }.

Define a continuous time Markov chain on

S :=
{
(π, ω) ∈ � × � : π(e) = 0, ω(e) = 1, π ≤ ω and π( f )

= ω( f ) for all f /∈ Ce(ω)
}

with generator J given by

J (π f , ω;π f , ω f ) = 1,

J (π, ω f ;π f , ω f ) = 1 − p

p
qD f (ω),

J (π f , ω f ;π f , ω
f ) = 1 − p

p
(qD f (π) − qD f (ω)),

for all f ∈ EG\{e}. All other non-diagonal elements of J are 0 and the diagonal ones
are such that

∑
(π ′,ω′)∈S

J (π, ω;π ′, ω′) = 0.

It is easy to check that the formula above ensures that, for any (ω, π) ∈ S,
J (ω, π;π ′, ω′) �= 0 only if (ω′, π ′) ∈ S. Hence the Markov chain is indeed defined
on S. It is proved in [13] that this Markov chain has a unique invariant measure which
is the desired coupling �. ��

Proof of Corollary 5.2 Fix 0 < p0 < p1 < 1 and suppose that there exists a unique
infinite-volumemeasure for each edge-weight p0, p1.We prove the statement for such
values of p0, p1; it extends to all other values by monotonicity.

Let n ≥ 1 and p ∈ [p0, p1]. Fix a finite subgraphG of G containing [0, 2n]×[0, n]
and let e = (u, v) be an edge of G. Consider the coupling � of φ0

p,q,G(. | ω(e) = 0)

and φ0
p,q,G(. | ω(e) = 1) given by Proposition 5.1. Then

φ0
p,q,G

(
Ch(2n, n) | ω(e) = 1

) − φ0
p,q,G

(
Ch(2n, n) | ω(e) = 0

)

= �
(
ω ∈ Ch(2n, n); π /∈ Ch(2n, n)

)
.

For the event in the right-hand side of the above to occur, Ce(ω) must contain a
horizontal crossing of [0, 2n]× [0, n]. For any choice of e, this implies that Ce(ω) has
a radius of at least n around u. In particular
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φ0
p,q,G

(
Ch(2n, n) | ω(e) = 1

) − φ0
p,q,G

(
Ch(2n, n) | ω(e) = 0

)

≤ �
(
u

ω,G←−→ �n + u
) + �

(
v

ω,G←−→ �n + u
)

≤ c′φ0
p,q,G

(
u ↔ ∂�n + u

)
.

For the second inequality we have used the finite-energy property of φ0
p,q,G . The

inequality of Theorem 2.2 may then be written for p ∈ [p0, p1] as

d

dp
log

[
φ0
p,q,G(Ch(2n, n))

1 − φ0
p,q,G(Ch(2n, n))

]
≥ c log

[
1

maxu∈VG φ0
p,q,G(u ↔ ∂�n + u)

]
,

where c > 0 depends on p0 only. Integrating the above between p0 and p1 and keeping
inmind that the right-hand side is decreasing in p, we obtain, after a short computation,

φ0
p0,q,G(Ch(2n, n))

(
1−φ0

p1,q,G(Ch(2n, n))
)≤

(
max
u∈VG

φ0
p1,q,G(u ↔∂�n+u)

)c(p1−p0)

Now as G tends to G , both sides of the above converge and we obtain the desired
result. ��

The following proposition is standard and will be proved at the end of this section.

Proposition 5.3 Let p ∈ (0, 1) andφp be a random-clustermeasurewith edge-weight
p. Suppose there exists c = c(p) > 0 such that for any u, v ∈ G ∗,

φp(u
∗←→ v) ≤ exp(−c|u − v|). (5.2)

Then φp(0↔∞) > 0 and p ≥ pc.

Proof of Theorem 1.1 Recall the definition of the following two quantities:

pc = inf{p ∈ (0, 1) : φ0
p(0 ↔ ∞) > 0},

p̃c = sup
{
p ∈ (0, 1) : lim

n→∞ − 1
n log[φ0

p(0 ←→ ∂�n)] > 0
}
.

The claim of the theorem is that pc = p̃c. Obviously, pc ≥ p̃c and we only need to
prove the reverse inequality.

We proceed by contradiction and assume pc > p̃c. Then there exist p̃c < p0 <

p1 < p2 < pc. Corollary 4.2 implies that φp0(Ch(2n, n)) is bounded away from 0,
uniformly in n. But since p1 < pc, φp1(0 ↔ ∂�n) → 0 as n → ∞, and Corollary 5.2
yields

φp1

(
Ch(2n, n)

) −−−→
n→∞ 1.

In the dual model that translates to φp1(ω
∗ ∈ Cv(2n, n)) → 0. By Proposition 3.1

applied to the dual random-cluster measure, there exists c > 0 such that φp2(u
∗←→
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v) ≤ exp(−c|u − v|) for all u, v ∈ G ∗. By Proposition 5.3 this contradicts p2 < pc.
��

Proof of Proposition 5.3 Let p, φp and c > 0 be as in the proposition. For v ∈ G ∗, let
A(v) be the event that there exists a dual-open circuit on G ∗ (i.e. a path of dual-open
edges of G ∗ starting and ending at the same vertex of G ∗) passing through v and
surrounding the origin. Such a circuit has radius at least |v| when regarded as part of

the dual cluster of v. Thus, if A(v) occurs, there exists a vertex u such that u
∗←→ v

and |v| ≤ |u−v| ≤ |v|+1. Since G ∗ is locally-finite and doubly-periodic, there exists
a constant C = C(G ∗) < ∞ not depending on v such that the number of possible
vertices u is bounded by C |v|. A trivial union bound and (5.2) imply that

φp(A(v)) ≤ C |v| exp(−c|v|).
The Borel–Cantelli lemma implies that there are almost surely only finitely many v

such that A(v) holds, and therefore finitely many dual-open circuits in G ∗ surrounding
the origin. This implies that φp(0 ←→ ∞) > 0 and therefore p ≥ pc. ��

6 Discussion of a possible extension

The arguments we use in the proof of Theorem 1.1 are based on certain specific prop-
erties of themodel. In addition to the symmetries mentioned explicitly in Theorem 1.1,
these are:

1. positive association (i.e. the FKG inequality), the comparison between boundary
conditions and the stochastic ordering;

2. the domain Markov property (2.2);
3. the differential inequalities of Theorems 2.2 and 2.3.

Onemay hope to adapt the result and its proof to other models with these, or similar,
properties.We discuss these three conditions next. For illustration consider a family of
measuresμp on configurations on edges, indexed by some parameter p ∈ [0, 1] called
the edge-weight (alternatively they could be parametrized by an inverse temperature
β ≥ 0, as in Theorem 1.4).

The first condition is classical and also paramount for our approach, we could not
hope to proceed without it.

The second, also fairly classical, is necessary to prove the existence of infinite-
volume random-cluster measures, and hence of a critical point. But in this paper it is
essentially only used in the proofs of Lemma 3.3 and Proposition 5.1. One may hope
to modify these arguments so as to replace the domain Markov property by alternative
properties. We do not have clear candidates.

The last condition is more particular and may seem specific to the random-cluster
model. Nevertheless, both Theorems 2.2 and 2.3 follow from rather general arguments.
A main ingredient for such inequalities is the existence of a “Russo-type” formula of
the form

d

dp
μp(A) � μp(1Aη) − μp(A)μp(η)
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892 H. Duminil-Copin, I. Manolescu

for any increasing event A, where η is the number of open edges and � means that the
ratio of the two quantities is bounded away from 0 and 1 uniformly in A. As observed
in [13], measures of the form

μp(ω) = 1

Z p
po(ω)(1 − p)c(ω)μ(ω),

withμ a strictly positive measure satisfying the FKG inequality do satisfy the first and
third conditions.
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