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Abstract The backward chordal Schramm–Loewner evolution naturally defines a
conformal welding homeomorphism of the real line. We show that this homeomor-
phism is invariant under the automorphism x �→ −1/x , and conclude that the asso-
ciated solution to the welding problem (which is a natural renormalized limit of the
finite time Loewner traces) is reversible. The proofs rely on an analysis of the action of
analytic circle diffeomorphisms on the space of hulls, and on the coupling techniques
of the second author.
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1 Introduction

1.1 Introduction and results

TheSchramm–Loewner evolutionSLEκ , first introduced in [16], is a stochastic process
of random conformal maps that has received a lot of attention over the last decade.
We refer to the introductory text [7] for basic facts and definitions. In this paper
we are largely concerned with chordal SLEκ , which can be viewed as a family of
random curves γ that join 0 and ∞ in the closure of the upper half plane H. A
fundamental property of chordal SLE is reversibility: The law of γ is invariant under
the automorphism z �→ −1/z of H, modulo time parametrization. This has first been
proved by the second author in [20] for κ ≤ 4, and recently by Miller and Sheffield
for 4 < κ ≤ 8 in [11]. It is known to be false for κ > 8 [15,21].

In the early years of SLE, Oded Schramm, Wendelin Werner and the first author
made an attempt to prove reversibility along the following lines: The “backward” flow

∂t ft (z) = −2

ft (z) − √
κBt

, f0(z) = z, 0 ≤ t ≤ T,

generates curves βT = β[0, T ] whose law is that of the chordal SLE trace γ [0, T ]
(up to translation by

√
κBT ). When κ ≤ 4, these curves are simple, and each point

of β (with the exception of the endpoints) corresponds to two points on the real line
under the conformal map ft . The conformal welding homeomorphism φ of βT is the
auto-homeomorphism of the interval f −1

T (βT ) that interchanges these two points. In
other words, it is the rule that describes which points on the real line are to be identified
(laminated) in order to form the curve βT . It is known [15] that, for κ < 4, the welding
almost surely uniquely determines the curve. The welding homeomorphism can be
obtained by restricting the backward flow to the real line: Two points x �= y on the
real line are to be welded if and only if their swallowing times coincide, φ(x) = y
if and only if τx = τy , see Sect. 3.5. An idea to prove reversibility was to prove the
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Backward SLE and the symmetry of the welding 817

invariance of φ under x �→ −1/x , and to relate this to reversibility of a suitable limit
of the curves βT . But the attempts to prove invariance of φ failed, and this program of
proving reversibility was never completed successfully.

Instead, other methods of proving reversibility became available. In this paper, we
turn the above strategy around: We use the coupling techniques of the second author,
introduced in [20] for his proof of reversibility of (forward) SLE traces, to prove the
invariance of the welding. The main result of this paper is the following:

Theorem 1.1 Let κ ∈ (0, 4], and φ be a backward chordal SLEκ welding. Let h(z) =
−1/z. Then h ◦ φ ◦ h has the same distribution as φ.

As a consequence, in the range κ ∈ (0, 4) where the SLE trace is conformally
removable, we obtain the reversibility of suitably normalized limits of the βT (see
Sect. 6 for details):

Theorem 1.2 Let κ ∈ (0, 4), and β be a normalized global backward chordal SLEκ

trace. Let h(z) = −1/z. Then h(β\{0}) has the same distribution as β\{0} as random
sets.

In the important paper [18], Sheffield obtains a representation of the SLE weld-
ing in terms of a quantum gravity boundary length measure, and also relates it to a
simple Jordan arc, which differs from our β only through normalization. However,
Theorems 1.1 and 1.2 do not follow easily from his work. A similar random weld-
ing homeomorphism is constructed in [3], where the main point is the very difficult
existence of a curve solving the welding problem. Our approach to the welding is
different: In order to prove Theorem 1.1, in Sect. 2 we develop a framework to study
the effect of analytic perturbations of weldings on the corresponding hulls. We show
in Sect. 4 that a Möbius image of a backward chordal SLEκ process is a backward
radial SLE(κ,−κ − 6) process, and the welding is preserved under this conformal
transformation. In Sect. 5 we apply the coupling technique to show that backward
radial SLE(κ,−κ − 6) started from an ordered pair of points (a, b) commutes with
backward radial SLE(κ,−κ − 6) started from (b, a), and use this in Sect. 6 to prove
Theorem 1.1.

In a subsequent paper [25] of the second author, Theorem 1.1 is used to study the
ergodic properties of a forward SLEκ trace near the tip at a fixed capacity time.

1.2 Notation

Let ̂C = C ∪ {∞}, D = {z ∈ C : |z| < 1}, D
∗ = ̂C\D, T = {z ∈ C : |z| = 1},

and H = {z ∈ C : Im z > 0}. Let IR(z) = z and IT(z) = 1/z be the reflections
about R and T, respectively. Let ei denote the map z �→ eiz . Let cot2(z) = cot(z/2)
and sin2(z) = sin(z/2). For a real interval J , let C(J ) denote the space of real
valued continuous functions on J . An increasing or decreasing function in this paper
is assumed to be strictly monotonic. We use B(t) to denote a standard real Brownian

motion. By f : D Conf
� E we mean that f maps D conformally onto E . By fn

l.u.−→ f
in U we mean that fn converges to f uniformly on every compact subset of U . We

will frequently use the notation Dn
Cara−→ D as in Definition 7.1.
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818 S. Rohde, D. Zhan

The outline of this paper is the following. In Sect. 2, we derive some fundamental
results in Complex Analysis, which are interesting on their own. In Sect. 3, we review
the properties of forward Loewner processes, and derive some properties of backward
Loewner processes. In Sect. 4, we discuss how are backward Loewner processes
transformed by conformal maps. In Sect. 5, we present and prove certain commutation
relations between backward SLE(κ; ρ) processes. In the last section, we prove the
reversibility of backward chordal SLEκ processes for κ ∈ (0, 4] and propose questions
in other cases. In the appendix, we discuss some results on the topology of domains
and hulls.

2 Extension of conformal maps

2.1 Interior hulls in C

An interior hull (in C) is a nonempty compact connected set K ⊂ C such that C\K is
also connected. For every interior hull K in C, there are a unique r ≥ 0 and a unique

φK : ̂C\K Conf
� ̂C\rD such that φK (∞) = ∞ and φ′

K (∞) := limz→∞ z/φK (z) = 1.
We call rad(K ) := r the radius of K and cap(K ) := ln(r) the capacity of K . The radius
is 0 iff K contains only one point. In general, we have rad(K ) ≤ diam(K ) ≤ 4 rad(K ).
We call K nondegenerate if it contains more than one point. For such K , there is

a unique ϕK : ̂C\K Conf
� D

∗ such that ϕK (∞) = ∞ and ϕ′
K (∞) > 0. In fact,

ϕK = φK / rad(K ). Let ψK = ϕ−1
K for such K .

For any Jordan curve J in C, let DJ denote the Jordan domain bounded by J , and

let D∗
J = ̂C\(DJ ∪ J ). Suppose f J : D

Conf
� DJ and f ∗

J = ψDJ
: D

∗ Conf
� D∗

J .
Then both f J and f ∗

J extend continuously to a homeomorphism from T onto J . Let
h = ( f ∗

J )−1◦ f J . Then h is an orientation-preserving automorphism ofT.We call such
h a conformal welding. Not every homeomorphism of T is a conformal welding, but
it is well-known (and an easy consequence of the uniformization theorem) that every
analytic automorphism is a conformal welding, and that the associated Jordan curve
is analytic (c.f. [2, Chapter II, Section 1, 3D]). Also see [10] for the quasiconformal
theory of conformal welding, and [4] for deep generalizations and further references.

Lemma 2.1 Let β be an analytic Jordan curve. Let � ⊂ C be a neighborhood of
T. Suppose W is a conformal map defined in �, maps T onto T, and preserves the
orientation of T. Let �β = β ∪ Dβ ∪ ψDβ

(� ∩ D
∗). Then there is a conformal map

V defined in �β such that V ◦ ψDβ
= ψDV (β)

◦ W in � ∩ D
∗ (Fig. 1).

Proof Fix a conformal map fβ : D
Conf
� Dβ and let hβ = ϕDβ

◦ fβ be the associated
conformal welding homeomorphism. Define h = W ◦ hβ. Since β is analytic, h is

analytic and there is an analytic Jordan curve γ and a conformal map fγ : D
Conf
� Dγ

such that h = hγ = ϕDγ
◦ fγ . Define V = fγ ◦ f −1

β on Dβ. Since β and γ are analytic
curves, V extends conformally to a neighborhood of β with V (β) = γ . On β, this
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Ω
W

ΩH

V

ψH
ψV (H)

H
V (H)

T

Fig. 1 The situation of Theorem 2.2 and Lemma 2.1. Given H andW , V can be constructed to be analytic
in H . In Lemma 2.1, the boundary of H is assumed to be an analytic Jordan curve, while in Theorem 2.2,
no regularity assumption is made

extension (still denoted V ) satisfies V = (ψDγ
◦hγ )◦ (h−1

β ◦ψ−1
Dβ

) = ψDγ
◦W ◦ψ−1

Dβ
.

Therefore V extends conformally to all of �β and satisfies the desired property. ��

Theorem 2.2 Let H be a nondegenerate interior hull. Let � ⊂ C be a neighborhood
of T. Suppose W is a conformal map defined in �, maps T onto T, and preserves
the orientation of T. Let �H = H ∪ ψH (� ∩ D

∗). Then there is a conformal map V
defined in �H such that V ◦ ψH = ψV (H) ◦ W in � ∩ D

∗. If another conformal map
˜V satisfies the properties of V , then ˜V = aV + b for some a > 0 and b ∈ C (Fig. 1).

Proof First, define a sequence of analytic Jordan curves (βn) by

βn = ψH ({e 1
n +iθ : 0 ≤ θ ≤ 2π}), n ∈ N.

Then βn ∪ Dβn → H in dH (see Appendix B). From Lemma 2.1, for each n ∈ N,
there is a conformal map Vn defined in �βn := βn ∪ Dβn ∪ ψβn (� ∩ D

∗) such that
Vn ◦ ψβn = ψVn(βn) ◦ W in � ∩ D

∗. Note that for any an > 0 and bn ∈ C, anVn + bn
satisfies the same property as Vn . Thus, we may assume that 0 ∈ Vn(βn) ⊂ D and
Vn(βn) ∩ T �= ∅. Let γn = Vn(βn), n ∈ N. Then each γn is an interior hull contained
in the interior hull D, and diam(γn) ≥ 1. So rad(γn) ≥ 1/4. From Corollary 8.2,
(γn) contains a subsequence which converges to some interior hull K contained in D

with radius at least 1/4. So K is nondegenerate. By passing to a subsequence, we may

assume that γn → K . From βn → H and γn → K we getψβn

l.u.−→ ψH in�∩D
∗ and

ψγn

l.u.−→ ψK in W (� ∩ D
∗). Thus, ψβn (� ∩ D

∗) Cara−→ ψH (� ∩ D
∗) by Lemma 7.2.
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820 S. Rohde, D. Zhan

SinceVn◦ψβn = ψγn◦W in�∩D
∗, wefind thatVn = ψγn◦W◦ψ−1

βn
inψβn (�∩D

∗).

Let V = ψK ◦W ◦ψ−1
H inψH (�∩D

∗). Then Vn
l.u.−→ V inψH (�∩D

∗). Wemay find
r > 1 such that for any s ∈ (1, r ], sT ⊂ � ∩ D

∗. Then ψH (rT) is a Jordan curve in
ψH (�∩D

∗) surrounding H , and the Jordan domain bounded byψH (rT) is contained
in �H = H ∪ ψH (� ∩ D

∗). Since ψH (rT) is a compact subset of ψH (� ∩ D
∗), we

have Vn → V uniformly on ψH (rT). It is easy to see that �βn
Cara−→ �H . For n big

enough, ψH (rT) together with its interior is contained in �βn . From the maximum
principle, Vn converges uniformly in the interior of ψH (rT) to a conformal map
which extends V . We still use V to denote the extended conformal map. Then V is a

conformal map defined in �H , and Vn
l.u.−→ V in �H . Letting n → ∞ in the equality

Vn ◦ ψβn = ψγn ◦ W in � ∩ D
∗, we conclude that V ◦ ψH = ψV (H) ◦ W in � ∩ D

∗.
So the existence part is proved.

If ˜V = aV + b for some a > 0 and b ∈ C, then ψ
˜V (H) = aψV (H) + b, which

implies ˜V ◦ ψH = ψ
˜V (H) ◦ W . Finally, suppose ˜V satisfies the properties of V .

Then ˜V ◦ V−1 is a conformal map in V (�H ). Since V ◦ ψH = ψV (H) ◦ W and
˜V ◦ ψH = ψ

˜V (H) ◦ W in � ∩ D
∗, we find that ˜V ◦ V−1 = ψ

˜V (H) ◦ ψ−1
V (H) in

ψV (H)(W (� ∩ D
∗))=V (�H )\V (H). Note that ψ

˜V (H) ◦ ψ−1
V (H) is a conformal map

defined in ̂C\V (H). Since V (�H ) ∪ (̂C\V (H)) = ̂C, we may define an analytic
function h inC such that h = ˜V ◦V−1 in V (�H ) and h = ψ

˜V (H)◦ψ−1
V (H) inC\V (H).

From the properties of ψ
˜V (H) and ψV (H), we have h(∞) = ∞ and h′(∞) > 0. Thus,

h(z) = az + b for some a > 0 and b ∈ C, which implies that ˜V = aV + b. ��
Now we obtain a new proof of the following well-known result about conformal

welding.

Corollary 2.3 Let W be conformal in a neighborhood of T, maps T onto T, and
preserves the orientation of T. If h is a conformal welding, then W ◦ h and h ◦ W are
also conformal weldings.

Proof Apply Theorem 2.2 to H = DJ , where J is the Jordan curve for the conformal
welding h. We find a conformal map V defined in �H = DJ ∪ f ∗

J (� ∩ D
∗) such that

V ◦ f ∗
J = ψV (H) ◦ W in � ∩ D

∗. Let J ′ = V (J ). Then J ′ is also a Jordan curve,

V (H) = DJ ′ , and ψV (H) = f ∗
J ′ . Let f J ′ = V ◦ f J . Then f J ′ : D

Conf
� DJ . Thus,

W ◦ h = W ◦ ( f ∗
J )−1 ◦ f J = ψ−1

H(H) ◦ V ◦ f J = ( f ∗
J ′)−1 ◦ f J ′ ,

which implies thatW ◦h is a conformal welding. As for h ◦W , note that (h ◦W )−1 =
W−1 ◦ h−1 and that h is a conformal welding if and only if h−1 is a conformal
welding. ��

2.2 Hulls in the upper half plane

Let H = {z ∈ C : Im z > 0}. A subset K of H is called an H-hull if it is bounded,
relatively closed in H, and H\K is simply connected. For every H-hull K , there are a
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Backward SLE and the symmetry of the welding 821

unique c ≥ 0 and a unique gK : H\K Conf
� H such that gK (z) = z + c

z + O( 1
z2

) as
z → ∞. The number c is called the H-capacity of K , and is denoted by hcap(K ). Let
fK = g−1

K . The empty set is an H-hull with hcap(∅) = 0 and g∅ = f∅ = idH.

Definition 2.4 Let K1 and K2 be H-hulls.

1. If K1 ⊂ K2, define K2/K1 = gK1(K2\K1). We call K2/K1 a quotient hull of K2,
and write K2/K1 ≺ K2.

2. The product K1 · K2 is defined to be K1 ∪ fK1(K2).

The following facts are easy to check.

1. K2/K1 and K1 · K2 in the definition are also H-hulls.
2. For any twoH-hulls K1 and K2, K1 ⊂ K1 ·K2 and K2 = (K1 ·K2)/K1 ≺ K1 ·K2.

If K1 ⊂ K2, then K1 · (K2/K1) = K2.
3. The space of H-hulls with the product “·” is a semigroup with identity element ∅,

and “≺” is a transitive relation of this space.
4. fK1·K2 = fK1 ◦ fK2 in H; gK1·K2 = gK2 ◦ gK1 in H\(K1 · K2).
5. hcap(K1 ·K2) = hcap(K1)+hcap(K2). If K1 ⊂ K2 or K1 ≺ K2, then hcap(K1) ≤

hcap(K2).

From fK1·K2 = fK1 ◦ fK2 in H we can conclude that fK1 = fK1·K2 ◦ gK2 in H\K2.
So fK1 is an analytic extension of fK1·K2 ◦ gK2 , which means that K1 is uniquely
determined by K1 · K2 and K2. So the following definition makes sense.

Definition 2.5 Let K1 and K2 be H-hulls such that K1 ≺ K2. We use K2 : K1 to
denote the unique H-hull K ⊂ K2 such that K2/K = K1.

For an H-hull K , the base of K is the set BK = K ∩ R. Let the double of K be
defined by K db = K∪ IR(K )∪BK , where IR(z) := z. Then gK extends to a conformal
map (still denoted by gK ) in ̂C\K db, which satisfies gK (∞) = ∞, g′

K (∞) = 1, and
gK ◦ IR = IR ◦ gK . Moreover, gK (̂C\K db) = ̂C\SK for some compact SK ⊂ R,
which is called the support of K . So fK extends to a conformal map from ̂C\SK onto
̂C\K db.

Lemma 2.6 fK can not be extended analytically beyond ̂C\SK .
Proof Suppose fK can be extended analytically near x0 ∈ R, then the image of fK
contains a neighborhood of fK (x0) ∈ R. So fK (H) = H\K contains a neighborhood
of fK (x0) in H. This then implies that fK (x0) ∈ R\BK . Thus, there is y0 ∈ R\SK
such that fK (y0) = fK (x0). Since fK is conformal in H, we must have x0 = y0 ∈ R\
SK . ��
Lemma 2.7 If K1 = K2/K0 ≺ K2, then SK1 ⊂ SK2 , fK2 = fK0 ◦ fK1 in ̂C\SK2 ,
and gK2 = gK1 ◦ gK0 in ̂C\K db

2 .

Proof Since K2 = K0 · K1, we have fK2 = fK0 ◦ fK1 in H, which implies that
gK0 ◦ fK2 = fK1 in H. Since fK2 maps ̂C\SK2 conformally onto ̂C\K db

2 ⊂ ̂C\K db
0 ,

and gK0 is analytic in ̂C\K db
2 , we see that gK0 ◦ fK2 is analytic in ̂C\SK2 . Since

gK0 ◦ fK2 = fK1 in H, from Lemma 2.6 we have SK1 ⊂ SK2 , and gK0 ◦ fK2 = fK1 in
̂C\SK2 . Composing fK0 to the left of both sides, we get fK2 = fK0 ◦ fK1 in ̂C\SK2 .
Taking inverse, we obtain the equality for gK ’s. ��
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Definition 2.8 S ⊂ ̂C is called R-symmetric if IR(S) = S. An R-symmetric map
W is a function defined in an R-symmetric domain �, which commutes with IR, and
maps � ∩ H into H.

Remarks

1. For any H-hull K , gK and fK are R-symmetric conformal maps.
2. Let W be an R-symmetric conformal map defined in �. If an H-hull K satisfies

K db ⊂ � and ∞ /∈ W (K db), then W (K ) is also an H-hull and W (K )db =
W (K db).

Definition 2.9 Let � be an R-symmetric domain and K be an H-hull. If K db ⊂ �,
we write �K or (�)K for SK ∪ gK (�\K db), and call it the collapse of � via K . If
SK ⊂ �, we write �K or (�K ) for K db ∪ fK (�\SK ), and call it the lift of � via K .

Remarks

1. In the definition, �K is an R-symmetric domain containing SK ; �K is an
R-symmetric domain containing K db.

2. (�K )K = � and (�K )K = � if the lefthand sides are well defined.
3. �K1·K2 = (�K1)K2 and �K1·K2 = (�K2)K1 if either sides are well defined.

Definition 2.10 Let W be an R-symmetric conformal map with domain �. Let K
be an H-hull such that K db ⊂ � and ∞ /∈ W (K db). We write WK or (W )K for the
conformal extension of gW (K ) ◦ W ◦ fK to �K , and call it the collapse of W via K .

Remarks

1. Since gW (K ) ◦W ◦ fK : �K \SK Conf
� W (�)\SW (K ), the existence of WK follows

from the Schwarz reflection principle.WK is an R-symmetric conformal map, and
WK (SK ) = SW (K ).

2. The gK and fK defined at the beginning of this section should not be understood
as the collapse of g and f via K .

3. WK1·K2 = (WK1)K2 if either side is well defined.
4. VW (K )◦WK = (V ◦W )K if either side is well defined. In particular, (W−1)W (K ) =

(WK )−1.

Let Bcv
K and ScvK be the convex hulls of BK and SK , respectively. Let K db,cv =

K db ∪ Bcv
K . Then gK : ̂C\K db,cv Conf

� ̂C\ScvK . If K �= ∅, then ScvK is a bounded closed
interval, K db,cv is a nondegenerate interior hull, and ψK db,cv = fK ◦ψScvK

. If ScvK ⊂ �,

then �K = K db,cv ∪ fK (�\ScvK ). The lemma below is a part of Lemma 5.3 in [19],
where ScvK was denoted by [cK , dK ].
Lemma 2.11 If K1 ⊂ K2, then ScvK1

⊂ ScvK2
.

Theorem 2.12 Let W be an R-symmetric conformal map with domain �. Let K be
an H-hull such that SK ⊂ � and ∞ /∈ W (SK ). Then there is a unique R-symmetric
conformal map V defined in �K such that VK = W (Fig. 2).
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K

SK

Ω

ΩK

gK

W

V

gV (K)

W ∗(K)

Fig. 2 The situation of Theorem 2.12. Given K and W , there is a unique V , also denoted WK , which is
analytic across K and its reflection IR(K ), see Definition 2.13

Proof We first consider the existence. If K = ∅, since f∅ = id and �∅ = �, V = W
is what we need. Now suppose K �= ∅ and ScvK ⊂ �. Note that ScvK is a bounded
closed interval, and so is W (ScvK ). Let �T = ψ−1

ScvK
(�\ScvK ). Define a conformal map

WT in �T by WT = ψ−1
W (ScvK )

◦ W ◦ ψScvK
. Then WT(z) → T as �T � z → T. Thus,

WT extends conformally across T, maps T onto T, and preserves the orientation of T.
Apply Theorem 2.2 to WT and K db,cv. We find a conformal map ̂V defined in

K db,cv ∪ ψK db,cv(�T) = K db,cv ∪ fK (�\ScvK ) = �K

such that ̂V ◦ψK db,cv = ψ
̂V (K db,cv)◦WT in�T. Let ˜V = IR◦̂V ◦ IR. Then ˜V (K db,cv) =

IR ◦ ̂V (K db,cv). Soψ
˜V (K db,cv) = IR ◦ψ

̂V (K db,cv) ◦ IR. Since IR commutes withψK db,cv

and WT, we see that ˜V also satisfies the properties of ̂V . So ˜V = âV + b for some
a > 0 and b ∈ C. Thus, IR ◦ ̂V ◦ IR = âV + b. Considering the values of ̂V on
�K ∩ R, we find that a = 1 and Re b = 0. Note that ̂V − b

2 satisfies the property of
̂V , and commutes with IR. By replacing ̂V with ̂V − b

2 , we may assume that ̂V is an
R-symmetric conformal map.

Since ̂V ◦ψK db,cv = ψ
̂V (K db,cv) ◦WT in�T, fromψK db,cv = fK ◦ψScvK

,ψ
̂V (K db,cv) =

f
̂V (K ) ◦ ψScv

̂V (K )
, and the definitions of WT and �T, we have

̂V ◦ fK = f
̂V (K ) ◦ ψScv

̂V (K )
◦ ψ−1

W (ScvK )
◦ W (2.1)

on�\ScvK . Let h = ψScv
̂V (K )

◦ψ−1
W (ScvK )

. Since Scv
̂V (K )

andW (ScvK ) are both bounded closed

intervals, we have h(z) = az+b for some a > 0 and b ∈ R. Let V = h−1◦̂V . Then V
is also an R-symmetric conformal map defined on �K , and fV (K ) = h−1 ◦ f

̂V (K ) ◦ h.
From (2.1) we have
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824 S. Rohde, D. Zhan

fV (K ) ◦ W = h−1 ◦ f
̂V (K ) ◦ h ◦ W = h−1 ◦ ̂V ◦ fK = V ◦ fK .

This finishes the existence part in the case that K �= ∅ and ScvK ⊂ �.
Now we still assume that K �= ∅ but do not assume that ScvK ⊂ �. Let �0 = �

and W0 = W . We will construct H-hulls K1, . . . , Kn and R-symmetric domains

�1, . . . , �n such that Kn · Kn−1 · · · K1 = K , � j = �
K j
j−1, and ScvK j

⊂ � j−1, 1 ≤
j ≤ n. When they are constructed, using the above result, we can obtain R-symmetric
conformalmapsWj defined on� j , 1 ≤ j ≤ n, such that (Wj )K j = Wj−1, 1 ≤ j ≤ n.

Let V = Wn . Then V is defined in �n = �
Kn ···K1
0 = �K , and VK = (Wn)Kn ···K1 =

W0 = W . So V is what we need.
It remains to construct K j and � j with the desired properties. Since � ∩ R is a

disjoint union of open intervals, and SK is a compact subset of � ∩ R, we may find
finitely many components of � ∩ R which cover SK . There exist mutually disjoint
R-symmetric Jordan curves J1, . . . , Jn in� such that their interiors DJ1 , . . . , DJn are
mutually disjoint and contained in �, and SK ⊂ ⋃n

k=1 DJk . Then J K
j := fK (J j ),

1 ≤ j ≤ n are R-symmetric Jordan curves, which together with their interiors are
mutually disjoint, and K db ⊂ ⋃n

k=1 D fK (Jk). Let Hj = K ∩ ⋃n
k= j DJ Kj

, 1 ≤ j ≤ n.

Then each Hj is an H-hull, and K = H1 ⊃ H2 ⊃ · · · ⊃ Hn . Let K j = Hj/Hj+1,
1 ≤ j ≤ n − 1, and Kn = Hn . Then we have Kn · · · K1 = H1 = K .

Construct � j , 1 ≤ j ≤ n, such that � j = �
K j
j−1, 1 ≤ j ≤ n. Then

� j−1 = (�0)
K j−1···K1 = (�Kn ···K1)Kn ···K j = (�K )Hj , 1 ≤ j ≤ n.

It suffices to show that ScvK j
⊂ � j−1. We have

K j = Hj/Hj+1 = gHj+1(Hj\Hj+1) = gHj+1(K ∩ DJKj
).

Thus, K db
j ⊂ DgHj+1 (J Kj ), which implies that SK j ⊂ DgHj (J

K
j ). Since R ∩ DgHj (J

K
j )

is an interval, we have ScvK j
⊂ DgHj (J

K
j ). Since DJKj

⊂ �K , and J K
j has positive

distance from Hj , we have DgHj (J
K
j ) ⊂ (�K )Hj = � j−1. So K j and � j satisfy the

properties we need. This finishes the proof of the existence part.
Now we prove the uniqueness. Suppose ˜V is another R-symmetric conformal map

defined on �K such that ˜VK = W . Then

gV (K ) ◦ V = W ◦ gK = g
˜V (K ) ◦ ˜V

on �\K db. Thus, ˜V ◦ V−1 = f
˜V (K ) ◦ gV (K ) on V (�\K db) = V (�)\V (K db). We

know that ˜V ◦ V−1 is a conformal map defined on V (�), while f
˜V (K ) ◦ gV (K ) is

a conformal map defined on ̂C\V (K )db = ̂C\V (K db). Since V (�) and ̂C\V (K db)

cover ̂C, we may define an analytic function h on C such that h = ˜V ◦ V−1 on V (�)

and h = f
˜V (K ) ◦ gV (K ) on ̂C\V (K db). From the properties of f

˜V (K ) and gV (K ), we
see that h(z) − z → 0 as z → ∞. So h = id, which implies that ˜V = V . So the
uniqueness is proved. ��
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Backward SLE and the symmetry of the welding 825

Definition 2.13 We use WK to denote the unique V in Theorem 2.12, and call it the
lift of W via K . Let WH be the map defined by WH(K ) = WK (K ).

Remarks

1. (WK )K = W and (WK )K = W .
2. The range of WK is WK (�K ) = (W (�))W

H(K ).
3. WK1·K2 = (WK2)K1 , VWK (K ) ◦ WK = (V ◦ W )K , and (WK )−1 = (W−1)W (K ).
4. The domain (resp. range) ofWH is the set ofH-hulls whose supports are contained

in the domain (resp. range) of W ; and SWH(K ) = W (SK ).

5. VH ◦ WH = (V ◦ W )H; (WH)−1 = (W−1)H.

Lemma 2.14 Suppose K1 ≺ K2, SK2 lies in the domain of anR-symmetric conformal
map W, and ∞ /∈ W (SK2). Then WH(K1) ≺ WH(K2), and

WH(K2) : WH(K1) = WK2(K2 : K1). (2.2)

Proof From Lemma 2.7, SK1 ⊂ SK2 . So WK1 and WK2 exist. Let K0 = K2 : K1 ⊂
K2. Then WK2(K0) ⊂ WK2(K2) and

WK2(K2)/W
K2(K0) = gWK2 (K0)

◦ WK2(K2\K0)

= gWK2 (K0)
◦ WK2 ◦ fK0(K2/K0) = (WK2)K0(K2/K0)

= (WK0·K1)K0(K1) = WK1(K1).

Thus, WK1(K1) ≺ WK2(K2) and WK2(K2) : WK1(K1) = WK2(K0). ��
Definition 2.15 Let P∗ denote the set of pair of H-hulls (H1, H2) such that Hdb

1 ∩
Hdb
2 = ∅. Let P∗ denote the set of pair of H-hulls (K1, K2) such that SK1 ∩ SK2 =

∅. Define gP on P∗ by gP (H1, H2) = (gH2(H1), gH1(H2)). Define f P on P∗ by
f P (K1, K2) = ( f H

K2
(K1), f H

K1
(K2)) (Fig. 3).

Remarks

1. gP is well defined on P∗ because for j = 1, 2, K db
3− j is contained in the domain

of gK j : ̂C\K db
j . The value of gP is a pair of H-hulls.

2. f P is well defined on P∗ because for j = 1, 2, SK3− j is contained in the domain

of fK j : ̂C\SK j . The value of f P is a pair of H-hulls.

Theorem 2.16 gP and f P are bijections betweenP∗ andP∗, and are inverse of each
other. Moreover, if (H1, H2) = f P (K1, K2), then

(i) H1 · K2 = H2 · K1 = H1 ∪ H2;
(ii) fK2(SK1) = SH1 and fK1(SK2) = SH2 ;
(iii) SH1∪H2 = SK1 ∪ SK2 .
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gH2 gH1

H1 H2

K1
K2

gK1 gK2

Fig. 3 The pair (H1, H2) uniquely determines the pair (K1, K2), and vice versa, see Definition 2.15 and
Theorem 2.16

Proof Let (H1, H2) ∈ P∗ and (K1, K2) = gP (H1, H2). Then (̂C\Hdb
1 )H2 = ̂C\K db

1 ,

SH1 ⊂ ̂C\K db
2 , and (̂C\SH1)K2 = ̂C\gK2(SH1). Since gH1 : ̂C\Hdb

1
Conf
� ̂C\SH1 and

gH1(H2) = K2, we get (gH1)H2 : ̂C\K db
1

Conf
� ̂C\gK2(SH1). From the normalization

of gH1, gH2 , gK2 at ∞, we conclude that

(gH1)H2 = gK1, gK2(SH1) = SK1 . (2.3)

From SH1 ⊂ ̂C\K db
2 and gK2(SH1) = SK1 , we see that SK1 ∩SK2 = ∅, i.e., (K1, K2) ∈

P∗. Since fH1 = g−1
H1

, fK1 = g−1
K1

, and gH1(H2) = K2, from (2.3) we get ( fH1)K2 =
fK1 , which implies that ( fK1)

K2 = fH1 . Thus, f
H
K1

(K2) = fH1(K2) = H2. Similarly,

f H
K2

(K1) = H1. Thus, f P (K1, K2) = (H1, H2). So f P ◦ gP = idP∗ .

Let (K1, K2) ∈ P∗ and H1 = f H
K2

(K1). Then SH1 = fK2(SK1) is disjoint from

K db
2 . Thus, we may define another H-hull H2 := fH1(K2). Then Hdb

2 ⊂ ̂C\Hdb
1 . So

(H1, H2) ∈ P∗. We have (̂C\SK2)
K1 = ̂C\ fK1(SK2) and (̂C\K db

2 )H1 = ̂C\Hdb
2 .

Since fK2 : ̂C\SK2

Conf
� ̂C\K db

2 and f H
K2

(K1) = H1, we see that ( fK2)
K1 :

̂C\ fK1(SK2)
Conf
� ̂C\Hdb

2 . From the normalization of fK1 , fH1 , fK2 at∞, we conclude
that

( fK2)
K1 = fH2 , fK1(SK2) = SH2 . (2.4)

Since H1 = f H
K2

(K1), we get fK2 = gH1 ◦ fH2 ◦ fK1 on (̂C\SK2)\SK1 , which implies

that fH1 ◦ fK2 = fH2 ◦ fK1 on ̂C\(SK1 ∪ SK2). So

H2 · K1 = H1 · K2 = H1 ∪ fH1(K2) = H1 ∪ H2. (2.5)

Thus, K1 = gH2(H1) and K2 = gH1(H2), i.e., (K1, K2) = gP (H1, H2). This shows
that the range of gP is P∗, which combining with f P ◦ gP = idP∗ shows that
f P = (gP )−1 and gP = ( f P )−1.
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Backward SLE and the symmetry of the welding 827

In the previous paragraph, since (K1, K2) = gP (H1, H2), f P (K1, K2) =
(H1, H2). Thus, (i) follows from (2.5); the second parts of (ii) follow from (2.4), and
the first part follows from symmetry. Finally, since gK2 ◦ gH1 = gH1·K2 = gH1∪H2 ,

from gH1 : ̂C\(Hdb
1 ∪ Hdb

2 )
Conf
� ̂C\(SH1 ∪ K db

2 ), gK2 : ̂C\(SH1 ∪ K db
2 )

Conf
�

̂C\(gK2(SH1) ∪ SK2), and (2.3), we get (iii). ��

Definition 2.17 For (K1, K2) ∈ P∗, we define the quotient union of K1 and K2 to be
K1 ∨ K2 = H1 ∪ H2, where (H1, H2) = f P (K1, K2).

Remark From Theorem 2.16, K1, K2 ≺ K1 ∨ K2 and SK1∨K2 = SK1 ∪ SK2 .
The space of H-hulls has a natural metric dH described in Appendix C. Let HS

denote the set of H-hulls whose supports are contained in S. From Lemma 9.2, if F

is compact, (HF , dH) is compact, and Hn → H in HF implies that fHn

l.u.−→ fH in
C\F .

Theorem 2.18 (i) Let F ⊂ R be compact. Let W be an R-symmetric conformal map
whose domain contains F. Then WH : HF → HW (F) is continuous.

(ii) Let E and F be two nonempty compact subsets of R with E ∩ F = ∅. Then f P
and (K1, K2) �→ K1 ∨ K2 are continuous on HE × HF .

Proof (i) First, WH is well defined onHF , and the range of WH isHW (F). Suppose
(Hn) is a sequence in HF and Hn → H0 ∈ HF . To prove the continuity of WH, we
need to show thatWH(Hn) → WH(H0). Suppose this is not true. SinceHW (F) is com-
pact, by passing to a subsequence, we may assume thatWH(Hn) → K0 �= WH(H0).

For each nk , W
Hnk = fWH(Hnk ) ◦ W ◦ gHnk

on fHnk
(�\F). We have gHnk

l.u.−→ gH0

in fH0(�\F) and fWH(Hnk )

l.u.−→ fK0 in W (�)\W (F). Thus, WHnk
l.u.−→ fK0 ◦ W ◦

gH0 =: V in fH0(�\F). The domain ofWHnk is�Hnk = Hdb
nk ∪ fHnk

(�\SHnk
), which

converges to�H0 = Hdb
0 ∪ fH0(�\SH0) ⊃ fH0(�\F). It is clear that�H0\ fH0(�\F)

is compact. Since WHnk
l.u.−→ V in fH0(�\F), from the maximum principle, WHnk

converges locally uniformly in �H0 . We still let V denote the limit function. Since
Hnk → H0 andW

Hnk (Hnk ) → K0, we have V (H0) = K0. Since fK0 ◦W ◦ gH0 = V
in fH0(�\F), we see that fV (H0) ◦ W ◦ gH0 = V in fH0(�\SH0). Thus, V = WH0 .
So K0 = WH0(H0) = WH(H0). This is the contradiction we need.

(ii) To show f P is continuous, it suffices to show that, if (Kn
1 , Kn

2 ) is a sequence
in HE × HF which converges to (K 0

1 , K 0
2 ) ∈ HE × HF , then it has a subse-

quence (K (nk)
1 , K (nk )

2 ) such that f P (K (nk)
1 , K (nk )

2 ) → f P (K 0
1 , K 0

2 ). Let (Hn
1 , Hn

2 ) =
f P (Kn

1 , Kn
2 ), n ∈ N. From Theorem 2.16 (iii), SHn

1 ∪Hn
2

= SKn
1

∪ SKn
2

⊂ E ∪ F .
From Lemma 9.2, (Hn

1 ∪ Hn
2 ) has a convergent subsequence with limit in HE∪F .

From Lemma 2.11, SHn
1

⊂ ScvHn
1 ∪Hn

2
⊂ A, where A is the convex hull of E ∪ F .

From Lemma 9.2, (Hn
1 ) has a convergent subsequence. For the same reason, (Hn

2 )

also has a convergent subsequence. By passing to subsequences, we may assume that
Hn
1 ∪ Hn

2 → M0 ∈ HE∪F and Hn
j → H0

j , j = 1, 2.
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FromTheorem 2.16 (i) and the continuity of the dot product, we get H0
1 ·K 0

2 = H0
2 ·

K 0
1 = M0. This implies thatM0 = H0

1 ∪ fH0
1
(K 0

2 ). Themeasures (μHn
1
) (seeAppendix

C) converges to μH0
1
weakly. Each μHn

1
is supported by SHn

1
. From Theorem 2.16 (ii),

SHn
1
= fKn

2
(SKn

1
) ⊂ fKn

2
(E). Since E is a compact subset ofC\F ,wehave fKn

2
→ fK 0

2
uniformly on E . Thus, fKn

2
(E) → fK 0

2
(E) in the Hausdorff metric. So μH0

1
is sup-

ported by fK 0
2
(E), which implies that SH0

1
⊂ fK 0

2
(E). Hence fH0

1
(K 0

2 ) is another H-

hull, which is bounded away from H0
1 . From Kn

2 → K 0
2 we have H\Kn

2
Cara−→ H\K 0

2 .

From (9.1) we get fHn
1

l.u.−→ fH0
1
in C\SH0

1
. Thus, H\ fHn

1
(Kn

2 )
Cara−→ H\ fH0

1
(K 0

2 ).

Since Hn
2 = fHn

1
(Kn

2 ), we have H\Hn
2

Cara−→ H\ fH0
1
(K 0

2 ). On the other hand,

H\Hn
2

Cara−→ H\H0
2 . Since H\H0

2 and H\ fH0
1
(K 0

2 ) both contain a neighborhood

of ∞ in H, they must be the same domain. Thus, H0
2 = fH0

1
(K 0

2 ) is bounded

away from H0
1 , i.e., (Hn

1 , Hn
2 ) ∈ P∗. For the same reason, H0

1 = fH0
2
(K 0

1 ). Thus,

(Hn
1 , Hn

2 ) → (H0
1 , H0

2 ) = f P (K 0
1 , K 0

2 ). This shows that f P is continuous. Finally,
since K1∨K2 = H1·K2 if (H1, H2) = f P (K1, K2), we see that (K1, K2) �→ K1∨K2
is also continuous. ��

Corollary 2.19 (i) Let W be an R-symmetric conformal map with domain �. Then
WH is measurable onH�∩R.

(ii) f P and (K1, K2) �→ K1 ∨ K2 are measurable on P∗.

Proof (i) We may find an increasing sequence of compact subsets (Fn) of �∩R such
that H�∩R = ⋃∞

n=1HFn . From Theorem 2.18 (i), WH is continuous on each HFn .
Thus, WH is measurable on H�∩R.

(ii) We may find a sequence of pairs of disjoint bounded closed intervals of R:
(En, Fn), n ∈ N, such that P∗ = ⋃∞

n=1HEn ×HFn . From Theorem 2.18 (ii), f P and
(K1, K2) �→ K1∨K2 are continuous on eachHEn ×HFn , and so they are measurable
on P∗. ��

2.3 Hulls in the unit disc

A subset K of D = {|z| < 1} is called a D-hull if D\K is a simply connected domain

containing 0. For every D-hull K , there is a unique gK : D\K Conf
� D such that

gK (0) = 0 and g′
K (0) > 0. Then ln g′

K (0) ≥ 0 is called the D-capacity of K , and is
denoted by dcap(K ). Let fK = g−1

K .
We may define K1 · K2, K2/K1 (when K1 ⊂ K2), and K1 ≺ K2 on the space

of D-hulls as in Definition 2.4. Then the remarks after Definition 2.4 still hold if H

is replaced by D and hcap is replaced by dcap. Then we may define K2 : K1 (when
K1 ≺ K2) as in Definition 2.5. For a D-hull K , the base BK of K is K ∩ T, and the
double of K is K db = K ∪ IT(K ) ∪ BK , where IT(z) := 1/z. Then gK extends to a
conformal map (still denoted by gK ) on ̂C\K db, which commutes with IT. Moreover,
gK (̂C\K db) = ̂C\SK for some compact SK ⊂ T, which is called the support of K .
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Backward SLE and the symmetry of the welding 829

So fK extends to a conformal map from ̂C\SK onto ̂C\K db, which commutes with
IT. Then Lemmas 2.6 and 2.7 still hold here.

We may define T-symmetric sets and T-symmetric conformal maps using Defini-
tion 2.8 with R and H replaced by T and D, respectively. For a T-symmetric domain
� and a D-hull K , we may define domains �K (when K db ⊂ �) and �K (when
SK ⊂ �) using Definition 2.9. If W is a T-symmetric conformal map with domain
�, and if �K is defined, we may then define WK using Definition 2.10, which is a
T-symmetric conformal map on �K . The remarks after Definitions 2.8, 2.9, and 2.10
hold here with minor modifications. We claim that Theorem 2.12 holds here with
modifications. We need several lemmas.

The theorem below relates the H-hulls with D-hulls. To distinguish the two set of
symbols, we use f HK , gHK , B

R
K , S

R
K , and KR db for H-hulls, and f DK , gDK , B

T
K , S

T
K , and

KT db for D-hulls.

Theorem 2.20 (i) Let W be a Möbius transformation that maps D onto H, and K be
aD-hull such that W−1(∞) /∈ STK . Then there is a unique Möbius transformation
W K that mapsD ontoH such that W K (K ) is anH-hull, gH

WK (K )
◦WK ◦ f DK = W

in ̂C\STK , and SR
WK (K )

= W (STK ).
(ii) Let W be a Möbius transformation that maps H onto D, and K be an H-hull.

Then there is a unique Möbius transformation W K that maps H onto D such that
W K (K ) is a D-hull, gD

WK (K )
◦WK ◦ f HK = W in ̂C\SRK , and ST

WK (K )
= W (SRK ).

Proof (i) Let z0 = W−1(∞) ∈ T\STK . Then w0 := f DK (z0) ∈ T\BT
K is well defined.

Let WK
0 (z) = i w0+z

w0−z . Then WK
0 is a Möbius transformation that maps D onto H and

takesw0 to∞. Let L0 = WK
0 (K ). Sincew0 is bounded away from K , we see that L0 is

an H-hull. We haveWK
0 : ̂C\KT db Conf

� ̂C\LR db
0 . Define G = gHL0

◦WK
0 ◦ f DK ◦W−1

on ̂C\W (STK ). Then G : ̂C\W (STK )
Conf
� ̂C\SRL0

, fixes ∞, and maps H onto H. So

G(z) = az + b for some a > 0 and b ∈ R. Let WK = G−1 ◦ WK
0 . Then WK is

also a Möbius transformation that maps D onto H, andWK (K ) is also an H-hull with
SR
WK (K )

= G−1(SRL0
) = W (STK ) and gH

WK (K )
= G−1 ◦ gHL0

◦ G. Thus,

gHWK (K )
◦ WK ◦ f DK ◦ W−1 = G−1 ◦ gHL0

◦ G ◦ G−1 ◦ WK
0 ◦ f DK ◦ W−1

= G−1 ◦ gHL0
◦ WK

0 ◦ f DK ◦ W−1 = G−1 ◦ G

= id
̂C\W (SK ) .

This implies that gHL ◦ WK ◦ f DK = W in ̂C\SK . So we proved the existence. On the
other hand, if WK satisfies the desired property, then from WK = f HL ◦ W ◦ gDK we
get WK (w0) = ∞. So WK = G0 ◦ WK

0 , where G0(z) = az + b for some a > 0 and
b ∈ R. The above argument shows that G0 = G−1. So we get the uniqueness.

(ii) We may use the proof of (i) with slight modifications: replace ∞ by 0, swap H

and D, swap R and T, and define WK
0 (z) = z−w0

z−w0
. ��
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We also useWH(K ) to denote the hullWK (K ) in the above lemma. The following
lemma is similar to Lemma 2.14.

Lemma 2.21 Let K1 and K2 be two H-(resp. D-)hulls such that K1 ≺ K2. Let W
be a Möbius transformation that maps H onto D (resp. maps D onto H) such that
∞ /∈ W (SK2). Then WH(K1) ≺ WH(K2) and (2.2) still holds.

The following lemma is used to treat the case SK = T in Theorem 2.23.

Lemma 2.22 Let W be a T-symmetric conformal map with domain � ⊃ T. Let (Kn)

be a sequence of D-hulls which converges to K . Suppose that for each n, there is a
T-symmetric conformal map V 〈n〉 defined on �Kn such that V 〈n〉

Kn
= W. Then there is

a T-symmetric conformal map V defined on �K such that VK = W. Moreover, V (K )

is a subsequential limit of (V 〈n〉(Kn)).

Proof Since Kn → K , �Kn
Cara−→ �K . Since V 〈n〉 maps �Kn ∩ D into D, the family

(V 〈n〉|�Kn∩D) is uniformly bounded. Thus, (V 〈n〉) contains a subsequence, which con-
vergence locally uniformly in �K ∩ D. To save the symbols, we assume that (V 〈n〉)
itself converges locally uniformly in �K ∩ D. Since each V 〈n〉 is T-symmetric, the
sequence also converges locally uniformly in �K ∩ D

∗. From the maximum prin-
ciple, (V 〈n〉) converges locally uniformly in �K . Let V be the limit function. Since
each V 〈n〉 maps T onto T, and V 〈n〉 → V uniformly on T, V can not be constant.
From Lemma 7.2, V is a conformal map. It is T-symmetric because each V 〈n〉 is T-
symmetric. Since Kn → K , we have V 〈n〉(Kn) → V (K ). From V 〈n〉

Kn
= W we have

gV 〈n〉(Kn)
◦ V 〈n〉 ◦ fKn = W in �\T. Letting n → ∞ we get gV (K ) ◦ V ◦ fK = W in

�\T. By continuation, this equality also holds on �\SK . Thus, VK = W . ��
Theorem 2.23 Let W be a T-symmetric conformal map with domain �. Let K be
a D-hull such that SK ⊂ �. Then there is a unique T-symmetric conformal map V
defined on �K such that VK = W.

Proof We first consider the existence. Case 1. STK �= T. We will apply Theorems 2.12
and 2.20 for this case. Pick z0 ∈ T\STK and let h(z) = i z0+z

z0−z . From Theorem 2.20 (i),

there is a Möbius transformation hK that maps D onto H such that L := hK (K ) is
an H-hull, and gHL ◦ hK ◦ f DK = h in ̂C\STK . Since W is a homeomorphism on SK ,
W (SK ) �= T. So there is zW ∈ T\W (SK ). Let hW (z) = zW · z−i

z+i . Then hW is aMöbius

transformation thatmapsH ontoD and takes∞ to zW . Let ˜W = h−1
W ◦W◦h−1. Then ˜W

is an R-symmetric conformal map with domain h(�), and ˜W (SRL ) = h−1
W ◦W (STK ) ��

∞. From Theorem 2.12, there is an R-symmetric conformal map ˜V with domain
LR db ∪ f RL (h(�)\SRL ) such that L∗ := ˜V (L) is an H-hull, and ˜V = f HL∗ ◦ ˜W ◦ gHL in
̂C\LR db. From Theorem 2.20 (ii), there is a Möbius transformation hL

∗
W that maps H

onto D such that K ∗ := hL
∗

W (L∗) is a D-hull, and gDK ∗ ◦ hL
∗

W ◦ f HL∗ = hW in ̂C\SRL∗ .
Finally, let V = hL

∗
W ◦ ˜V ◦ hK . Then

V (K ) = hL
∗

W ◦ ˜V (L) = hL
∗

W (L∗) = K ∗,
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and

gK ∗ ◦ V ◦ fK = gK ∗ ◦ hL
∗

W ◦ ˜V ◦ hK ◦ fK

= gK ∗ ◦ hL
∗

W ◦ f HL∗ ◦ ˜W ◦ gHL ◦ hK ◦ fK
= hW ◦ ˜W ◦ h = W

in ̂C\KT db. This finishes the existence part for Case 1.
Case 2. SK = T. First, we may approximate K using D-hulls bounded by T and a

Jordan curve inD. For example, let Jn = fK ({|z| = 1−1/(2n)}), and let Kn = D\DJn .
Then each Kn is aD-hull, and Kn → K . Second, if K ′ has the form ofD\DJ for some
Jordan curve J , then we may define a curve β, which starts from β(0) = z0 ∈ T, then
follows a simple curve in D ∩ D∗

J to a point on J , and then follows J in the clockwise
direction, and ends when it finishes one round. Suppose the domain of β is [0, 1].
Then β is simple on [0, 1− ε] for any ε > 0. Let Kn = β((0, 1− 1/n]), n ∈ N. Then
each Kn is a D-hull with SKn �= T, and Kn → K ′. Thus, K can be approximated by
a sequence of D-hulls (Kn) such that SKn �= T for each Kn . Then the existence of V
follows from Case 1 and Lemma 2.22.

Now we prove the uniqueness. Suppose ˜V is another T-symmetric conformal map
defined on �K such that ˜VK = W . We may use the argument in the proof of Theo-
rem 2.12 to construct an analytic function h on C such that h = ˜V ◦ V−1 on V (�)

and h = f
˜V (K ) ◦ gV (K ) on C\V (K db). Then h is T-symmetric. From the properties

of f
˜V (K ) and gV (K ), we see that h(0) = 0 and h′(0) > 0. So h = id, which implies

that ˜V = V . ��
Wemay then defineWK andWH using Definition 2.13 with Theorem 2.23 in place

of Theorem 2.12 and D in place of H. The remarks after Definition 2.13 hold here
with minor modifications, and so does Lemma 2.14. Then we define P∗, P∗, gP , and
f P using Definition 2.15 with H replaced by D. Then Theorem 2.16 still holds here,
and we may define the quotient union K1 ∨ K2 for (K1, K2) ∈ P∗.

The space of D-hulls has a natural metric dH described in Appendix D. Let HS

denote the set of D-hulls whose supports are contained in S. We claim that Theo-
rem 2.18 still holds here if every R is replaced by T. For part (i), if F �= T, then the
proof of Theorem 2.18 (i) still goes through with Lemma 10.2 in place of Lemma 9.2;
if F = T, then the continuity of WH follows from Lemma 2.22. For part (ii), the
proof of Theorem 2.18 still goes through with some modifications. The relatively
compactness of (Hn ∪ Jn) follows from Lemma 10.2 instead of Lemma 9.2 because
SHn∪Jn ⊂ E∪F � T. To show the relatively compactness of (Hn) and (Jn), instead of
applying Lemma 2.11, we now apply Lemma 10.1, and use the relatively compactness
of (Hn ∪ Jn) and the inequalities dcap(Hn), dcap(Jn) ≤ dcap(Hn ∪ Jn). In addition,
(10.2) will be used in place of (9.1). This finishes the proof of Theorem 2.18 in the
radial case. Then Corollary 2.19 in the radial case immediately follows.

The proof of Theorem 2.18 (i) may also be used to show that themap K �→ WK (K )

in Theorem 2.20 (i) (resp. (ii)) is continuous if restricted to HD
F (resp. HH

F ), where
F is a compact subset of T\W−1(∞) (resp. R). We then can conclude that the maps
K �→ WK (K ) in Theorem 2.20 (i) and (ii) are both measurable.
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3 Loewner equations and Loewner chains

3.1 Forward Loewner equations

We review the definitions and basic facts about (forward) Loewner equations. The
reader is referred to [7] for details. Let λ ∈ C([0, T )), where T ∈ (0,∞]. The chordal
Loewner equation driven by λ is

∂t gt (z) = 2

gt (z) − λ(t)
, g0(z) = z.

We assume that gt (∞) = ∞ for 0 ≤ t < ∞. For z ∈ C, suppose that the maximal
interval for t �→ gt (z) is [0, τz). Let Kt = {z ∈ H : τz ≤ t}, i.e., the set of z ∈ H such
that gt (z) is not defined. Then gt and Kt , 0 ≤ t < T , are called the chordal Loewner
maps and hulls driven by λ. It is known that each Kt is an H-hull with hcap(Kt ) = 2t ,
and for 0 < t < T , gt = gKt with exactly the same domain:̂C\K db

t . At t = 0, K0 = ∅
and g0 = id

̂C\{λ(0)}.
We say that λ generates a chordal trace β if

β(t) := lim
H�z→λ(t)

g−1
t (z) ∈ H

exists for 0 ≤ t < T , and β is a continuous curve. We call such β the chordal trace
driven by λ. If the chordal trace β exists, then for each t , H\Kt is the unbounded
component of H\β((0, t]), and ft extends continuously from H to H ∪ R. The trace
β is called simple if it is a simple curve and β(t) ∈ H for 0 < t < T , in which case
Kt = β((0, t]) for 0 ≤ t < T .

The radial Loewner equation driven by λ is

∂t gt (z) = gt (z)
eiλ(t) + gt (z)

eiλ(t) − gt (z)
, 0 ≤ t < T ; g0(z) = z.

We assume that gt (∞) = ∞ for 0 ≤ t < ∞. For each t ∈ [0, T ), let Kt be the set of
z ∈ D := {|z| < 1} at which gt is not defined. Then gt and Kt , 0 ≤ t < T , are called
the radial Loewner maps and hulls driven by λ. It is known that, each Kt is a D-hull
with dcap(Kt ) = t , and for 0 < t < T , gt = gKt with exactly the same domain:
̂C\K db

t . At t = 0, K0 = ∅ and g0 = id
̂C\{eiλ(0)}.

We say that λ generates a radial trace β if

β(t) := lim
D�z→eiλ(t)

g−1
t (z) ∈ D

exists for 0 ≤ t < T , and β is a continuous curve. We call such β the radial trace
driven by λ. If the radial trace β exists, then for each t , D\Kt is the component of
D\β((0, t]) that contains 0. The trace β is called simple if it is a simple curve and
β(t) ∈ D for 0 < t < T , in which case Kt = β((0, t]) for 0 ≤ t < T .
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Let cot2(z) = cot(z/2). The covering radial Loewner equation driven by λ is

∂t g̃t (z) = cot2(g̃t (z) − λ(t)), 0 ≤ t < T, g̃0(z) = z.

For each t ∈ [0, T ), let ˜Kt be the set of all z ∈ H at which g̃t is not defined. Then g̃t
and ˜Kt , 0 ≤ t < T , are called the covering radial Loewner maps and hulls driven by

λ. We have g̃t : H\˜Kt
Conf� H. If gt and Kt , 0 ≤ t < T , are the radial Loewner maps

and hulls driven by λ, then ˜Kt = (ei )−1(Kt ) and ei ◦ g̃t = gt ◦ ei , where ei denotes
the map z �→ eiz .

For κ > 0, chordal (resp. radial) SLEκ is defined by solving the chordal (resp.
radial) Loewner equation with λ(t) = √

κB(t). Such driving function a.s. generates a
chordal (resp. radial) trace, which is simple if κ ∈ (0, 4].

3.2 Backward Loewner equations

Let λ ∈ C([0, T )). The backward chordal Loewner equation driven by λ is

∂t ft (z) = −2

ft (z) − λ(t)
, f0(z) = z. (3.1)

We assume that ft (∞) = ∞ for 0 ≤ t < T . Let Lt = H\ ft (H). We call ft and Lt ,
0 ≤ t < T , the backward chordal Loewner maps and hulls driven by λ.

Define a family of maps ft2,t1 , t1, t2 ∈ [0, T ), such that, for any fixed t1 ∈ [0, T )

and z ∈ ̂C\{λ(t1)}, the function t2 �→ ft2,t1(z) is the maximal solution of the ODE

∂t2 ft2,t1(z) = −2

ft2,t1(z) − λ(t2)
, ft1,t1(z) = z.

Note that ft,0 = ft and ft,t = id
̂C\{λ(t)}, 0 ≤ t < T . If t1 ∈ (0, T ), then t2 could be

bigger or smaller than t1. Some simple observations give the following lemma.

Lemma 3.1 (i) For any t1, t2, t3 ∈ [0, T ), ft3,t2 ◦ ft2,t1 is a restriction of ft3,t1 . In
particular, this implies that ft1,t2 = f −1

t2,t1 .
(ii) For any fixed t0 ∈ [0, T ), ft0+t,t0 , 0 ≤ t < T − t0, are the backward chordal

Loewner maps driven by λ(t0 + t), 0 ≤ t < T − t0.
(iii) For any fixed t0 ∈ [0, T ), ft0−t,t0 , 0 ≤ t ≤ t0, are the (forward) chordal Loewner

maps driven by λ(t0 − t), 0 ≤ t ≤ t0.

Let Lt2,t1 = H\ ft2,t1(H) for 0 ≤ t1 ≤ t2 < T . From (i), (iii), and the properties
of forward chordal Loewner maps, we see that, if 0 ≤ t1 < t2 < T , then Lt2,t1 is an
H-hull with hcap(Lt2,t1) = 2(t2 − t1), and ft2,t1 = fLt2,t1

. If t1 = t2, this is almost
still true except that ft1,t1 = id

̂C\{λ(t1)} and fLt1,t1
= f∅ = id

̂C
. Since Lt,0 = Lt ,

and λ(t) ∈ R does not lie in the range of ft , which is ̂C\Ldb
t for t > 0, we get the

following lemma.
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Lemma 3.2 For 0 ≤ t < T , Lt is an H-hull with hcap(Lt ) = 2t . If t ∈ (0, T ), then
ft = fLt with the same domain: ̂C\SLt , and λ(t) ∈ BLt .

If t2 ≥ t1 ≥ t0, from ft2,t1 ◦ ft1,t0 = ft2,t0 we get Lt2,t0 = Lt2,t1 · Lt1,t0 . From
Lemmas 2.7 and 3.1, we obtain the following lemma.

Lemma 3.3 For any 0 ≤ t1 < t2 < T , Lt1 ≺ Lt2 and SLt1
⊂ SL2(t2). For any fixed

t0 ∈ [0, T ), the family Lt0 : Lt0−t = Lt0,t0−t , 0 ≤ t ≤ t0, are the chordal Loewner
hulls driven by λ(t0 − t), 0 ≤ t ≤ t0.

Note that SL0 = S∅ = ∅, and its is easy to see that, for 0 < t0 < T , SLt0
is the set of x ∈ R such that the solution ft (x) to (3.1) blows up before or at t0,
i.e., SLt0

= {x ∈ R : τx ≤ t0}. So every SLt , 0 < t < T , is a real interval, and
⋂

0<t<T SLt = {λ(0)}.
If for every t0 ∈ [0, T ), λ(t0 − t), 0 ≤ t ≤ t0, generates a (forward) chordal trace,

which we denote by βt0(t0 − t), 0 ≤ t ≤ t0, then we say that λ generates backward
chordal traces βt0 , 0 ≤ t0 < T . If this happens, then for any 0 ≤ t1 ≤ t2 < T ,H\Lt2,t1
is the unbounded component of H\βt2([t1, t2)), and ft2,t1 extends continuously from
H to H such that

ft2,t1(λ(t1)) = βt2(t1), 0 ≤ t1 ≤ t2 < T . (3.2)

Here we still use ft2,t1 to denote the continuation if there is no confusion. For 0 ≤
t0 ≤ t1 ≤ t2 < T , the equality ft2,t0 = ft2,t1 ◦ ft1,t0 still holds after continuation,
which together with (3.2) implies that

ft2,t1(βt1(t)) = βt2(t), 0 ≤ t ≤ t1 ≤ t2 < T . (3.3)

RemarkOne should keep inmind that eachβt is a continuous function defined on [0, t],
βt (0) is the tip of βt , and βt (t) is the root of βt , which lies on R. The parametrization
is different from a forward chordal trace β, of which β(0) is the root.

The backward radial Loewner equations and the backward covering radial Loewner
equation driven by λ ∈ C([0, T )) are the following two equations respectively:

∂t ft (z) = − ft (z)
eiλ(t) + ft (z)

eiλ(t) − ft (z)
, f0(z) = z;

∂t ˜ft (z) = − cot2( ˜ft (z) − λ(t)), ˜f0(z) = z.

We have ft ◦ ei = ei ◦ ˜ft . Let Lt = D\ ft (D). We call ft and Lt , 0 ≤ t < T , the
backward radial Loewner maps and hulls driven by λ, and call ˜ft , 0 ≤ t < T , the
backward covering radial Loewner maps driven by λ.

By introducing ft2,t1 in the radial setting, we find that Lemma 3.1 holds if the word
“chordal” is replaced by “radial”. The following lemma is similar to Lemma 3.2.

Lemma 3.4 For 0 ≤ t < T , Lt is a D-hull with dcap(Lt ) = t . If t ∈ (0, T ), then
ft = fLt with the same domain: ̂C\SLt , and eiλ(t) ∈ BLt .

We find that Lemma 3.3 holds here if the word “chordal” is replaced by “radial”.
So we may define backward radial traces βt , 0 ≤ t < T , in a similar manner.

The following lemma holds only in the radial case.
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Lemma 3.5 If T = ∞, then T\ ⋃

0<t<∞ SLt contains at most one point.

Proof Let S∞ = ⋃

0<t<∞ SLt . FromKoebe’s 1/4 theorem, as t → ∞, dist(0, Lt ) →
0, which implies that the harmonic measure of T\BLt in D\Lt seen from 0 tends to

0. Since ft : D
Conf
� D\Lt , ft (0) = 0, and ft (T\SLt ) = T\BLt , the above harmonic

measure at time t equals to |T\SLt |/(2π). Thus, |T\S∞| = limt→∞ |T\SLt | = 0. ��
For κ > 0, the backward chordal (resp. radial) SLEκ is defined by solving backward

chordal (resp. radial) Loewner equation with λ(t) = √
κB(t), 0 ≤ t < ∞. Since for

any fixed t0 > 0, (λ(t0 − t) − λ(t0), 0 ≤ t ≤ t0) has the distribution of (
√

κB(t), 0 ≤
t ≤ t0), using the existence of forward chordal (resp. radial) SLEκ traces, we conclude
that λ a.s. generates a family of backward chordal (resp. radial) traces.

3.3 Normalized global backward trace

First we consider a backward chordal Loewner process generated by λ(t), 0 ≤ t < T .
Let St = SLt , 0 ≤ t < T , and ST = ⋃

0≤t<T St . Then (St ) is an increasing family,
and ST is an interval. The following Lemma is similar in spirit to Proposition 5.1 in
[18].

Lemma 3.6 There exists a family of conformal maps FT,t , 0 ≤ t < T , on H such
that FT,t1 = FT,t2 ◦ ft2,t1 in H if 0 ≤ t1 ≤ t2 < T . Let Dt = FT,t (H), 0 ≤ t < T ,
and DT = ⋃

t<T Dt . If (̂FT,t ) satisfies the same property as (FT,t ), then there is a
conformal map hT defined on DT such that ̂FT,t = hT ◦ FT,t , 0 ≤ t < T . If there is
z0 ∈ H such that

lim
t→T

Im ft (z0)

| f ′
t (z0)|

= ∞, (3.4)

then we may construct (FT,t ) such that DT = C, and we have ST = R.

Proof Fix z0 ∈ H. Let zt = ft (z0) and ut = f ′
t (z0), 0 ≤ t < T . For t ∈ [0, T ),

let Mt (z) = z−zt
ut

and Ft = Mt ◦ ft . Then Ft maps z0 to 0 and has derivative 1 at
z0. For 0 ≤ t1 ≤ t2 < T , define Ft2,t1 = Mt2 ◦ ft2,t1 . Then Ft2,t1 ◦ ft1,t0 = Ft2,t0 if
t0 ≤ t1 ≤ t2. Setting t0 = 0 we get Ft2,t1 ◦ ft1 = Ft2 . Thus, Ft2,t1 is a conformal map
on H with Ft2,t1(zt1) = 0 and F ′

t2,t1(zt1) = 1/ut1 . By Koebe’s distortion theorem, for
any t1 ∈ [0, T ), {Ft2,t1 : t2 ∈ [t1, T )} is uniformly bounded on each compact subset
of H. This implies that every sequence in this family contains a subsequence which
converges locally uniformly, and the limit function is also conformal on H, maps zt1
to 0, and has derivative 1/ut1 at zt1 .

From a diagonal argument, we can find a sequence (tn) in [0, T ) such that tn → T
and for any q ∈ Q ∩ [0, T ), (Ftn ,q) converges locally uniformly on H. Let FT,q , q ∈
Q∩[0, T ), denote the limit functions,which are conformal onH. Since Ftn ,q2◦ fq2,q1 =
Ftn ,q1 for each n, we have FT,q2 ◦ fq2,q1 = FT,q1 . For t ∈ [0, T ), choose q ∈ Q∩[t, T )

and define the conformal map FT,t = FT,q ◦ fq,t on H. If q1 ≤ q2 ∈ Q ∩ [t, T ), then
FT,q1 ◦ fq1,t = FT,q2 ◦ fq2,q1 ◦ fq1,t = FT,q2 ◦ fq2,t . Thus, the definition of FT,t does
not depend on the choice of q. If 0 ≤ t1 ≤ t2 < T , by choosing q ∈ Q ∩ [0, T ) with
q ≥ t1 ∨ t2, we get FT,t2 ◦ ft2,t1 = FT,q ◦ fq,t2 ◦ ft2,t1 = FT,q ◦ fq,t1 = FT,t1 .
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If (3.4) holds, then we start the construction of (FT,t ) with such z0. Since

FT,t : (H; zt ) Conf
� (Dt ; 0) and F ′

T,t (zt ) = 1/ut , Koebe’s 1/4 theorem implies that

dist(0, ∂Dt ) ≥ 1
4 Im zt/|ut | = 1

4
Im ft (z0)
| f ′

t (z0)| , which tends to ∞ as t → T . So DT has to

be C.
Suppose ̂FT,t , 0 ≤ t < T , satisfies the same property as FT,t , 0 ≤ t < T . Let

ht = ̂FT,t ◦ F−1
T,t , 0 ≤ t < T . Then each ht is a conformal map defined on Dt . If

0 ≤ t1 < t2 < T , then

ht1 ◦ FT,t1 = ̂FT,t1(z) = ̂FT,t2 ◦ ft2,t1 = ht2 ◦ FT,t2 ◦ ft2,t1 = ht2 ◦ FT,t1

in H, which implies that ht1 = ht2 |Dt1
. So we may define a conformal map hT on DT

such that ht = hT |Dt for 0 ≤ t < T . Such hT is what we need.
Suppose that (3.4) holds but ST �= R. Since ST is an interval, ST �= R. Choose

ẑ0 ∈ R\ST , and start the construction with ẑ0 in place of z0 at the beginning of this
proof. Let ̂FT,t , 0 ≤ t < T , denote the family of maps constructed in this way. Then
each ̂FT,t is an R-symmetric conformal map, which implies that ̂DT ⊂ H. However,

now DT = C and hT : DT
Conf� ̂DT , which is impossible. Thus, ST = R when (3.4)

holds. ��
Let (FT,t ), Dt , and DT be as in Lemma 3.6. Let FT = FT,0. Suppose λ generates

backward chordal traces βt0 , 0 ≤ t0 < T , which satisfy

∀t0 ∈ [0, T ), ∃t1 ∈ (t0, T ), βt1([0, t0]) ⊂ H. (3.5)

We may define β(t), 0 ≤ t < T , as follows. For every t ∈ [0, T ), pick t0 ∈ (t, T )

such that βt0(t) ∈ H, which is possible by (3.5), and define

β(t) = FT,t0βt0(t) ∈ Dt0 ⊂ DT . (3.6)

Since FT,t1 = FT,t2 ◦ ft2,t1 in H, from (3.3) we see that the definition of β does not
depend on the choice of t0. Let t0 ∈ [0, T ). From (3.5), there is t1 > t0 such that
βt1([0, t]) ∈ H. Since β(t) = FT,t0(βt0(t)), 0 ≤ t ≤ t0, we see that β is continuous
on [0, t0]. Thus, β(t), 0 ≤ t < T , is a continuous curve in DT .

Fix any x ∈ ST . Then x ∈ St0 for some t0 ∈ (0, T ). So ft0(x) lies on the outer
boundary of Lt0 , which implies that ft0(x) ∈ βt0(t) for some t ∈ [0, t0]. From (3.5),
there is t1 ∈ (t0, T ) such that βt1([0, t0]) ⊂ H. Then ft1(x) = ft1,t0(βt0(t)) = βt1(t) ∈
H. From the continuity of ft1 on H∪R, there is a neighborhoodU of x in H∪R such
that ft1(U ) ⊂ H. This shows that U ∩ R ⊂ St1 ⊂ ST . Since FT = FT,t1 ◦ ft1 in H,
we find that FT has continuation on U . Since x ∈ ST is arbitrary, we conclude that
ST is an open interval, and FT has continuation to H ∪ ST .

Now we assume that λ generates backward chordal traces, and both (3.4) and (3.5)
hold. Then DT = C, ST = R, a continuous curve β(t), 0 ≤ t < T , is well defined, and
FT extends continuously toH∪R. Moreover, FT is unique up to a map z �→ az+b for
some a, b ∈ C, a �= 0. With some suitable normalization condition, the family FT,t

and the curve β will be determined by λ. We will use the following normalization:
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Backward SLE and the symmetry of the welding 837

FT (λ(0)) = λ(0), FT (λ(0) + i) = λ(0) + i. (3.7)

If (3.7) holds, we call β the normalized global backward chordal trace generated by
λ. From (3.7) we see that β(0) = λ(0), and β does not pass through λ(0) + i .

For the radial case, Lemma 3.6 still holds with H replaced by D, and (3.4) replaced
by T = ∞. For the construction, we choose z0 = 0 and let Ft2,t1(z) = et2 ft2,t1(z). If
λ generates backward radial traces βt , 0 ≤ t < T , which satisfy

∀t1 ∈ [0, T ), ∃t2 ∈ (t1, T ), βt2(t1) ∈ D, (3.8)

then we may define a continuous curve β(t), 0 ≤ t < T , in DT using (3.6). If T = ∞,
then DT = C, and such β is determined by λ up to a map z �→ az + b for some
a, b ∈ C, a �= 0, which means that we may define a normalized global backward
radial trace once a normalization condition is fixed.

3.4 Forward and backward Loewner chains

In this section, we review a condition on a family of hulls that corresponds to contin-
uously driven (forward) Loewner hulls, and discuss the corresponding condition for
backward Loewner chains.

Let D ⊂ ̂C be a simply connected domain such that ̂C\D contains more than one
point. A relatively closed subset H of D is called a (boundary) hull in D if D\H is
simply connected. For example, a hull in H is an H-hull iff it is bounded; a hull in
D is a D-hull iff it does not contain 0. Let T ∈ (0,∞]. A family of hulls in D: Kt ,
0 ≤ t < T , is called a Loewner chain in D if

1. K0 = ∅ and Kt1 � Kt2 whenever 0 ≤ t1 < t2 < T ;
2. for any fixed a ∈ [0, T ) and a compact set F ⊂ D\Ka , the extremal length (c.f.

[1]) of the family of curves in D\Kt that separate F from Kt+ε\Kt tends to 0 as
ε → 0, uniformly in t ∈ [0, a].

If Kt , 0 ≤ t < T , is a Loewner chain in D, and a ∈ [0, T ), then we also call the
restriction Kt , 0 ≤ t ≤ a, a Loewner chain in D.

There are two important properties for Loewner chains. If Kt , 0 ≤ t < T , is a
Loewner chain in D, and u is a continuous increasing function defined on [0, T ) with
u(0) = 0, then Ku−1(t), 0 ≤ t < u(T ), is also a Loewner chain in D, which is called a
time-change of (Kt ) via u. IfW maps D conformally onto E , thenW (Kt ), 0 ≤ t < T ,
is a Loewner chain in E .

AnH-(resp.D-)Loewner chain is a Loewner chain inH (resp.D) such that each hull
is an H-(resp. D-)hull. An H-(resp. D-)Loewner chain (Kt ) is said to be normalized
if hcap(Kt ) = 2t (resp. dcap(Kt ) = t) for each t .

The conditions for the conformal invariance property of H-(resp. D-)Loewner
chains can be slightly weakened as below.

Proposition 3.7 If Kt , 0 ≤ t < T , is an H-(resp. D-)Loewner chain, and W is an
R-(resp. T-)symmetric conformal map, whose domain contains K db

t for each t and
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whose image does not contain∞ (resp. 0), then W (Kt ), 0 ≤ t < T , is also anH-(resp.
D-)Loewner chain.

The following proposition combines some results in [8,12].

Proposition 3.8 Let T ∈ (0,∞]. The following are equivalent.

(i) Kt , 0 ≤ t < T , are chordal (resp. radial) Loewner hulls driven by some λ ∈
C([0, T )).

(ii) Kt , 0 ≤ t < T , is a normalized H-(resp. D-)Loewner chain.

If either of the above holds, with λ̊(t) = λ(t) (resp. λ̊(t) = eiλ(t) in the radial case)
we have

{λ̊(t)} =
⋂

ε>0

Kt+ε/Kt , 0 ≤ t < T .

In addition, if Kt , 0 ≤ t < T , is any H-(resp. D-)Loewner chain, then the function
u(t) := hcap(Kt )/2 (resp. u(t) := dcap(Kt )), 0 ≤ t < T , is continuous increasing
with u(0) = 0, which implies that Ku−1(t), 0 ≤ t < u(T ), is a normalized H-(resp.
D-)Loewner chain.

Definition 3.9 A family of H-(resp. D-)hulls: Lt , 0 ≤ t < T , is called a backward
H-(resp. D-)Loewner chain if they satisfy

1. L0 = ∅ and Lt1 ≺ Lt2 if 0 ≤ t1 ≤ t2 < T ;
2. Lt0 : Lt0−t , 0 ≤ t ≤ t0, is an H-(resp. D-)Loewner chain for any t0 ∈ (0, T ).

If u is a continuous increasing function defined on [0, T ) with u(0) = 0, then
Lu−1(t), 0 ≤ t < u(T ), is also a backward H-(resp. D-)Loewner chain, and is called a
time-change of (Lt ) via u. A backward H-(resp. D-)Loewner chain (Lt ) is said to be
normalized if hcap(Lt ) = 2t (resp. dcap(Lt ) = t) for any t ∈ [0, T ).

Using Lemma 3.3 and Proposition 3.8, we obtain the following.

Proposition 3.10 Let T ∈ (0,∞]. The following are equivalent.

(i) Lt , 0 ≤ t < T , are backward chordal (resp. radial) Loewner hulls driven by
some λ ∈ C([0, T )).

(ii) Lt , 0 ≤ t < T , is a normalized backward H-(resp. D-)Loewner chain.

If either of the above holds, with λ̊(t) = λ(t) (resp. λ̊(t) = eiλ(t) in the radial case)
we have

{λ̊(t)} =
⋂

ε>0

Lt : Lt−ε, 0 < t < T, (3.9)

In addition, if Lt , 0 ≤ t < T , is any backward H-(resp. D-)Loewner chain, then the
function u(t) := hcap(Kt )/2 (resp. u(t) := dcap(Kt )), 0 ≤ t < T , is continuous
increasing with u(0) = 0, which implies that Lu−1(t), 0 ≤ t < u(T ), is a normalized
backward H-(resp. D-)Loewner chain.
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We say that ft and Lt , 0 ≤ t < T , are backward chordal (resp. radial) Loewner
maps and hulls, via a time change u, driven byλ, if u is a continuous increasing function
defined on [0, T ) with u(0) = 0, such that fu−1(t) and Lu−1(t), 0 ≤ t < u(T ), are
backward chordal (resp. radial) Loewner maps and hulls driven by λ ◦ u−1. From the
above proposition, if (Lt ) is any H-(resp. D-)Loewner chain, then Lt , 0 ≤ t < T , are
backward chordal (resp. radial) Loewner hulls, via a time change u(t) := hcap(Lt )/2
(resp. dcap(Lt )), driven by λ, which satisfies (3.9).

3.5 Simple curves and weldings

An H-simple (resp. D-simple) curve is a half-open simple curve in H (resp. D\{0}),
whose open side approaches a single point on R (resp. T). Every H (resp. D)-simple
curve β is an H (resp. D)-hull, whose base Bβ is a single point, and whose support Sβ

is an R (resp. T-)interval. Here an T-interval is an arc on T. The function fβ extends
continuously fromH (resp.D) toH (resp.D),whichmaps Sβ ontoβ, sends the two ends
of Sβ to Bβ , and sends a unique point, say zβ ∈ Sβ to the tip of β. The point zβ divides
Sβ into two R(resp. T-)intervals such that the restriction of fβ to either interval is a
homeomorphism onto β. Thus, there is a unique involution (an auto homeomorphism
whose inverse is itself) φβ of Sβ , which fixes only one point: zβ , swaps the two end
points of Sβ , and satisfies that y = φβ(x) implies that fβ(x) = fβ(y). We call φβ the
welding induced by β.

Suppose K is anH- orD-simple curve. LetW be as in Theorems 2.12, 2.20, or 2.23.
ThenWH(K ) is also an H- or D-simple curve. The equalityWK ◦ fK = fWH(K ) ◦W
holds after continuous extension from H or D to its closure. So the weldings induced
by K and WH(K ) satisfy φWH(K ) = W ◦ φK ◦ W−1.

Suppose the hulls (Lt ) generated by a backward chordal (resp. radial) Loewner
process driven by λ are all H(resp. D)-simple curves. Then the process generates
backward chordal (resp. radial) traces (βt ) such that every βt is a simple curve, and
Lt = βt ([0, t)), 0 ≤ t < T .

Let φt be the welding induced by Lt , which is an involution of St := SLt . Recall
that (St ) is an increasing family because Lt1 ≺ Lt2 for t1 < t2. If 0 ≤ t1 < t2 < T ,
then from ft2,t1 ◦ ft1 = ft2 we see that φt2 |St1 = φt1 . Thus, there is a unique involution
φ of ST := ⋃

t St such that φ|St = φt for each t ∈ [0, T ). In other words, y = φ(x)
implies that ft (x) = ft (y) for some t ≥ 0, where ft is the continuous extension of the
Loewner map at time t from H(resp. D) to H (resp. D). We say that φ is the welding
induced by this process. In the case that ST = R (resp. T\{z0} for some z0 ∈ T), we
will extend φ to an involution of ̂R := R ∪ {∞} (resp. T) such that ∞ (resp. z0) is the
other fixed point of φ.

Here is another way to view the welding φ. For every t ∈ (0, T ), φ swaps the two
end points of St . Let λ̊(0) = λ(0) (resp. eiλ(0)). Since ft (λ̊(0)) = βt (0) is the tip of
Lt for each t , we see that λ̊(0) is the only fixed point of φ. On the other hand, it is
easy to see that, x and y are end points of St if and only if τx = τy = t , 0 < t < T ;
and every point on ST \{λ̊(0)} is an end point of some St , 0 < t < T . Thus, for
x �= y ∈ ST \{λ̊(0)}, y = φ(x) if and only if τx = τy , i.e., x and y are swallowed at
the same time.
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Let κ ∈ (0, 4]. Since the backward chordal (resp. radial) SLEκ traces are H(resp.
D-)simple curves, so the process induces a randomwelding, which we call a backward
chordal (resp. radial) SLEκ welding. In the chordal case, For any x ∈ R\{λ(0)} =
R\{0}, the process Xx

t := λ(t) − ft (x) is a rescaled Bessel process of dimension
1− 4

κ
< 1, which implies that a.s. Xx

t → 0 at some finite time. Thus, S∞ = R. which
implies that a chordal SLEκ welding is an involution of ̂R with two fixed points:
λ(0) = 0 and ∞. In the radial case, since T = ∞, Lemma 3.5 says that S∞ = T

or T\{z0} for some z0 ∈ T. The first case can not happen since φ has only one fixed
point on S∞. Thus, a radial SLEκ welding is an involution of T with two fixed points,
one of which is eiλ(0) = 1.

Suppose a backward chordal (resp. radial) Loewner process generates H (resp. D)-
simple backward traces βt , 0 ≤ t < T . Then (3.5) (resp. (3.8)) is satisfied because
βt2(t1) lies in H (resp. D) if t2 > t1. It is clear that the curve β defined by (3.6) is
simple, and Dt = DT \β([t, T )) for 0 ≤ t < T . Let φ be the welding induced by the
process. If y = φ(x), there is t ∈ [0, T ) such that y, x ∈ St and ft (y) = ft (x). From
FT,t ◦ ft = FT , we get FT (y) = FT (x). This means that φ can be realized by the
conformal map FT .

If a backward chordal (resp. radial) Loewner chain (Lt ) is composed of H (resp.
D)-simple curves, then (Lt ) induces a welding φ, which is an involution of

⋃

SLt , and
agrees with φLt on SLt for each t . To see this, one may first normalized the backward
Loewner chain so that it is generated by a backward Loewner process.

4 Conformal transformations

In this section, we will study how a backward SLE(κ; ρ) process changes under a
Möbius transformation, and derive the backward SLE counterpart of the results of
[17]. For this purpose, we will first define the conformal transformation of a backward
Loewner chain. The rest of the arguments are the same as the ones for forward SLE,
up to negating κ . We will use the ideas in [17] and some results in [8].

Proposition 4.1 Suppose Lt , 0 ≤ t < T , is a backward H-(resp. D-)Loewner chain,
W is an R-(resp. T-)symmetric conformal map whose domain contains every SLt , and
∞ /∈ W (SLt ) for 0 ≤ t < T . Then WH(Lt ), 0 ≤ t < T , is also a backward H-(resp.
D-)Loewner chain.

Proof From Theorem 2.12, WLt and WH(Lt ) are well defined. Since L0 = ∅,
WH(L0) = ∅. Let 0 ≤ t1 ≤ t2 < T . Since Lt1 ≺ Lt2 , from Lemma 2.14,
WH(Lt1) ≺ WH(Lt2). Fix t0 ∈ (0, T ). Since Lt0 : Lt0−t , 0 ≤ t ≤ t0, is an H-
(resp. D-)Loewner chain, from Lemma 2.14 and Proposition 3.7 we see that

WH(Lt0) : WH(Lt0−t ) = WLt0 (Lt0 : Lt0−t ), 0 ≤ t ≤ t0,

is also an H-(resp. D-)Loewner chain. This finishes the proof. ��
We call WH(Lt ), 0 ≤ t < T , the conformal transformation of Lt , 0 ≤ t < T ,

under W . Using Lemma 2.21 instead of Lemma 2.14, we can show that a similar
proposition holds.
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Proposition 4.2 Suppose Lt , 0 ≤ t < T , is a backward H-(resp. D-)Loewner chain,
W is a Mobius transform that maps H onto D (resp. maps D onto H) such that
∞ /∈ W (SLt ) for 0 ≤ t < T . Then WH(Lt ), 0 ≤ t < T , is a backward D-(resp.
H-)Loewner chain.

Suppose (Lt ) is composed of H- or D-simple curves. Then (WH(Lt )) is also
composed of H or D-simple curves. Let φ and φW be the weldings induced by these
two chains, which are involutions of

⋃

SLt and
⋃

SWH(Lt )
, respectively. Since for

each t ∈ (0, T ), φ|SLt = φLt , φW |SWH(Lt )
= φWH(Lt )

, SWH(Lt )
= W (SLt ), and

φWH(Lt )
= W ◦ φLt ◦ W−1, we see that

⋃

SWH(Lt )
= W (

⋃

SLt ) and

φW = W ◦ φ ◦ W−1. (4.1)

This means that the conformal transformation preserves the welding.
The following proposition is essentially Lemma 2.8 in [8].

Proposition 4.3 Let W be an R-symmetric conformal map, whose domain contains
z0 ∈ R, such that W (z0) �= ∞. Then

lim
H→z0

hcap(W (H))

hcap(H)
= |W ′(z0)|2,

where H → z0 means that diam(H ∪ {z0}) → 0 with H being a nonempty H-hull.

Using the integral formulas for capacities of H-hulls and D-hulls, it is not hard to
derive the following similar proposition.

Proposition 4.4 (i) Let W be a conformal map on a T-symmetric domain �, which
satisfies IR ◦ W = W ◦ IT and W (� ∩ D) ⊂ H. Let z0 ∈ � ∩ T be such that
W (z0) �= ∞. Then

lim
H→z0

hcap(W (H))

dcap(H)
= 2|W ′(z0)|2,

where H → z0 means that diam(H ∪ {z0}) → 0 with H being a nonempty
D-hull.

(ii) Proposition 4.3 holds with R replaced by T, hcap replaced by dcap, and H → z0
understood as in (i).

4.1 Transformations between backward H-Loewner chains

Suppose Lt and ft , 0 ≤ t < T , are backward chordal Loewner hulls and maps driven
by λ ∈ C([0, T )). FromProposition 3.10, (Lt ) is a backwardH-Loewner chain. LetW
be anR-symmetric conformal map, whose domain� contains the support of every Lt .
WriteWt forWLt . The domain ofWt is�Lt , which contains Ldb

t . If t > 0, λ(t) ∈ Ldb
t ,

so λ(t) is contained in the domain of Wt . This is also true for t = 0 because W0 = W
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and {λ(0)} = S0 ⊂ St = SLt ⊂ � for any t ∈ (0, T ). Let L∗
t = WH(Lt ) = Wt (Lt ),

0 ≤ t < T . From Proposition 4.1, (L∗
t ) is a backward H-Loewner chain, and

Wt (Lt : Lt−ε) = L∗
t : L∗

t−ε, 0 ≤ t − ε < t < T . (4.2)

From Proposition 3.10, L∗
t , 0 ≤ t < T , are backward chordal Loewner hulls via a

time change u(t) := hcap(L∗
t )/2, driven by some λ∗, which satisfies

{λ∗(t)} =
⋂

ε>0

L∗
t : L∗

t−ε, 0 < t < T .

From (3.9), (4.2), and continuity, we find that

λ∗(t) = Wt (λ(t)), 0 ≤ t < T . (4.3)

Since (Lt ) and (L∗
u−1(t)

) are normalized, we know that hcap(Lt : Lt−ε) = 2ε and
hcap(L∗

t : L∗
t−ε) = 2u(t) − 2u(t − ε). From (4.2) and Proposition 4.3, we find that

u′(t) = W ′
t (λ(t))2, 0 ≤ t < T . (4.4)

Let f ∗
t = fL∗

t
. From the definition of Wt = WLt , we have the equality

Wt ◦ ft = f ∗
t ◦ W, (4.5)

which holds in �\SLt . Differentiating (4.5) w.r.t. t , and using (4.3) and (4.4), we get

[∂tWt ]( ft (z)) + W ′
t ( ft (z))

−2

ft (z) − λ(t)
= −2u′(t)

f ∗
t (W (z)) − λ∗(t)

= −2W ′
t (λ(t))2

Wt ( ft (z)) − Wt (λ(t))
.

Thus, for any w = ft (z) ∈ ft (�\SLt ) = �Lt \Ldb
t ,

∂tWt (w) = −2W ′
t (λ(t))2

Wt (w) − Wt (λ(t))
− W ′

t (w)
−2

w − λ(t)
. (4.6)

By analytic extension, the above equality holds for any w ∈ �Lt \{λ(t)}. Letting
w → λ(t), we find that

∂tWt (λ(t)) = 3W ′′
t (λ(t)), 0 ≤ t < T . (4.7)

Differentiating (4.6) w.r.t. w and letting w → λ(t), we get

∂tW ′
t (λ(t))

W ′
t (λ(t))

= −1

2

(W ′′
t (λ(t))

W ′
t (λ(t))

)2 + 4

3

W ′′′
t (λ(t))

W ′
t (λ(t))

. (4.8)
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4.2 Transformations involving backward D-Loewner chains

Now suppose Lt , 0 ≤ t < T , are backward radial Loewner hulls driven by λ. Let ft
and ˜ft be the corresponding radial Loewner maps and covering maps. SupposeW is a
T-symmetric conformal map, whose domain � contains the support of every Lt . Let
Wt = WLt , L∗

t = Wt (Lt ) = WH(Lt ), and u(t) = dcap(L∗
t ), 0 ≤ t < T . Then L∗

t ,
0 ≤ t < T , are backward radial Loewner hulls via a time change u(t) := dcap(L∗

t ),
driven by some λ∗, which satisfies

{eiλ∗(t)} =
⋂

ε>0

L∗
t : L∗

t−ε, 0 < t < T .

Let f ∗
t (resp. ˜f ∗

t ), 0 ≤ t < T , denote the backward radial (resp. covering radial)
Loewner hulls via the time change u driven by λ∗. The argument in the last subsection
still works with Proposition 4.4 in place of Proposition 4.3.We can conclude that eiλ(t)

lies in the domain of Wt for 0 ≤ t < T ; Wt (eiλ(t)) = eiλ
∗(t); u′(t) = |W ′

t (e
iλ(t))|2;

and (4.5) still holds. Suppose ˜W is an R-symmetric conformal map defined on ˜� =
(ei )−1(�), which satisfies ei ◦ ˜W = W ◦ ei . Define ˜Wt to be the analytic extension of
˜f ∗
t ◦ ˜W ◦ ˜f −1

t to ˜�t := (ei )−1(�Lt ). Then we get

˜Wt ◦ ˜ft = ˜f ∗
t ◦ ˜W ; (4.9)

Comparing this with (4.5) we find ei ◦ ˜Wt = Wt ◦ ei . So λ(t) lies in the domain of
˜Wt , and

u′(t) = ˜W ′
t (λ(t))2, 0 ≤ t < T . (4.10)

Since Wt (eiλ(t)) = eiλ
∗(t), from the continuity, there is n ∈ N such that ˜Wt (λ(t)) =

λ∗(t) + 2nπ for 0 ≤ t < T . Since λ∗ and λ∗ + 2nπ generate the same backward
radial Loewner objects via the time change u, by replacing λ∗ with λ∗ +2nπ , we may
assume that

˜Wt (λ(t)) = λ∗(t), 0 ≤ t < T . (4.11)

Differentiating (4.9) w.r.t. t and letting w = ˜ft (z), we get

∂t ˜Wt (w) = − ˜W ′
t (λ(t))2 cot2( ˜Wt (w) − ˜Wt (λ(t))) + ˜W ′

t (w) cot2(w − λ(t)), (4.12)

which holds for w ∈ (ei )−1(�Lt \{eiλ(t)}). Letting w → λ(t), we get

∂t ˜Wt (λ(t)) = 3˜W ′′
t (λ(t)), 0 ≤ t < T . (4.13)

Differentiating (4.12) w.r.t. w and letting w → λ(t), we get

∂t ˜W ′
t (λ(t))

˜W ′
t (λ(t))

= −1

2

(

W ′′
t (λ(t))

W ′
t (λ(t))

)2

+ 4

3

W ′′′
t (λ(t))

W ′
t (λ(t))

+ 1

6
˜W ′
t (λ(t))2 − 1

6
. (4.14)

The number 1
6 comes from the Laurent series of cot2(z): 2

z − z
6 + O(z3).
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Let (Lt ), ( ft ), and ( ˜ft ) be as above.Now supposeW is aMöbius transformation that
maps D onto H such thatW−1(∞) /∈ SLt for every t . LetW

Lt be as in Theorem 2.20.
Let Wt = WLt and L∗

t = Wt (Lt ) = WH(Lt ), 0 ≤ t < T . Then L∗
t , 0 ≤ t < T , are

backward chordal Loewner hulls via a time change u(t) := hcap(L∗
t )/2, driven by

some λ∗. Let f ∗
t = fL∗

t
. Then (4.5) still holds, and we have u′(t) = |W ′

t (e
iλ(t))|2 and

Wt (eiλ(t)) = eiλ
∗(t). Let ˜W = W ◦ ei and ˜Wt = Wt ◦ ei . We get (4.10), (4.11), and

˜Wt ◦ ˜ft = f ∗
t ◦ ˜W . Differentiating this equality w.r.t. t and letting w = ˜ft (z) tend to

λ(t), we find that (4.13) still holds.

4.3 Möbius invariance of backward SLE(κ; ρ) processes

We now define backward chordal and radial SLE(κ; ρ) processes, where ρ =
(ρ1, . . . , ρn) ∈ R

n . Let x0, q1, . . . , qn ∈ R such that qk �= x0 for all k. Let
λ(t), 0 ≤ t < T , be the maximal solution of the equation

dλ(t) = √
κdB(t) +

n
∑

k=1

−ρk

λ(t) − f λ
t (qk)

dt; λ(0) = x0. (4.15)

Here f λ
t , 0 ≤ t < T , are the backward chordal Loewner maps driven by λ. Then we

call the backward chordal Loewner process driven by λ the chordal SLE(κ; ρ) process
started from x0 with force points (q1, . . . , qn), or simply started from (x0; q1, . . . , qn).
We allow some qk to be ∞. In that case, f λ

t (qk) is always ∞, and the term −ρk
λ(t)− f λ

t (qk)
vanishes.

Let x0, q1, . . . , qn ∈ R be such that qk /∈ x0 + 2πZ for all k. Let λ(t), 0 ≤ t < T ,
be the maximal solution of the equation

dλ(t) = √
κdB(t) +

n
∑

k=1

−ρk

2
cot2(λ(t) − ˜f λ

t (qk)) dt; λ(0) = x0. (4.16)

Here ˜f λ
t , 0 ≤ t < T , are the covering backward radial Loewner maps driven by λ.

Then the backward radial Loewner process driven by λ is called the radial SLE(κ; ρ)

process started from eix0 with marked points (eiq1 , . . . , eiqn ), or simply started from
(eix0; eiq1 , . . . , eiqn ).

The existence of backward chordal (resp. radial) SLEκ traces and Girsanov’s The-
orem imply the existence of a backward chordal (resp. radial) SLE(κ; ρ) traces. The
traces are H(resp. D)-simple curves if κ ∈ (0, 4].

The following lemma is easy to check.

Lemma 4.5 Let W be a Möbius transformation. Then the following hold.

(i) For any z ∈ C ∩ W−1(C) and w ∈ ̂C,

2W ′(z)
W (z) − W (w)

− 2

z − w
= W ′′(z)

W ′(z)
.
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Backward SLE and the symmetry of the welding 845

(ii) Let ˜W = W ◦ ei . For any z ∈ C ∩ ˜W−1(C) and w ∈ C,

2˜W ′(z)
˜W (z) − ˜W (w)

− cot2(z − w) = ˜W ′′(z)
˜W ′(z)

.

(iii) Suppose an analytic function ˜W : � → C satisfies ei ◦ ˜W = W ◦ ei in �. Then
for any z, w ∈ �,

˜W ′(z) cot2( ˜W (z) − ˜W (w)) − cot2(z − w) = ˜W ′′(z)
˜W ′(z)

.

Theorem 4.6 Let Lt , 0 ≤ t < T , be the backward chordal SLE(κ; ρ) hulls started
from (x0; q1, . . . , qn). Suppose ∑

ρk = −κ − 6. Let W be a Möbius transforma-
tion from H onto H such that {∞,W−1(∞)} ⊂ {q1, . . . , qn}. Then, after a time
change, WH(Lt ), 0 ≤ t < T , are the backward chordal SLE(κ; ρ) hulls started from
(W (x0);W (q1), . . . ,W (qn)).

Proof Since W−1(∞) is a force point, it is not contained in the support of any Lt . So
∞ /∈ W (SLt ), 0 ≤ t < T . Let λ be the driving function, and ft = f λ

t , 0 ≤ t < T ,
be the corresponding maps. We may and now adopt the notation in Sect. 4.1. Let
(Ft ) be the complete filtration generated by B(t) in (4.15). Then (λt ) and (Lt ) are
(Ft )-adapted. From Corollary 2.19 (i), (WH(Lt )) is also (Ft )-adapted. Since Wt =
WLt = fWH(Lt )

◦ W ◦ gLt on �Lt \Ldb
t , (Wt ) is (Ft )-adapted. So we may apply Itô’s

formula (c.f. [14]). From (4.3) and (4.7), we get

dλ∗(t) = W ′
t (λ(t))dλ(t) +

(κ

2
+ 3

)

W ′′
t (λ(t))dt, 0 ≤ t < T .

Applying (4.15) and Lemma 4.5 (i), and using the condition that
∑

ρk = −κ − 6, we
find that

dλ∗(t) = W ′
t (λ(t))

√
κdB(t) +

n
∑

k=1

−ρkW ′
t (λ(t))2

Wt (λ(t)) − Wt ◦ f λ
t (qk)

dt

= W ′
t (λ(t))

√
κdB(t) +

n
∑

k=1

−ρkW ′
t (λ(t))2

λ∗(t) − f ∗
t ◦ W (qk)

dt, 0 ≤ t < T .

From (4.3)wegetλ∗(0) = W0(λ(0)) = W (x0). Since L∗
t = WH(Lt ) and f ∗

t are back-
ward chordal Loewner hulls and maps via the time change u driven by λ∗, from (4.4)
and the above equation, we conclude that, after a time change, WH(Lt ), 0 ≤ t < T ,
are the backward chordal SLE(κ; ρ) hulls started from (W (x0);W (q1), . . . ,W (qn))
and stopped at some time.

It remains to show that the above process is completed. If not, the process can be
extendedwithout swallowing the force pointsW (q1), . . . ,W (qn). From the condition,
W (∞) is among these force points. So (W−1)H is well defined at the hulls of the
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846 S. Rohde, D. Zhan

extended process. From Propositions 4.1 and 3.10, this implies that the backward
chordal Loewner hulls Lt , 0 ≤ t < T , can be extended without swallowing any of
q1, . . . , qn , which is a contradiction. ��

The following theorem can be proved using the above proof with minor modifica-
tions:wenowuse the argument in Sect. 4.2 instead of that in Sect. 4.1, applyLemma4.5
(ii) and (iii) instead of (i), and use Proposition 4.2 in addition to Proposition 4.1.

Theorem 4.7 Suppose
∑

ρk = −κ − 6. Let (Lt ) be the backward radial SLE(κ; ρ)

hulls started from (eix0; eiq1 , . . . , eiqn ). Let W map D conformally onto H (resp.
D) such that {W−1(∞)} ∩ T ⊂ {eiq1 , . . . , eiqn }. Then, after a time change,
(WH(Lt )) are the backward chordal (resp. radial) SLE(κ; ρ) hulls started from
(W (eix0);W (eiq1), . . . ,W (eiqn )).

Corollary 4.8 Let (Lt ) be the backward radial SLE(κ;−κ − 6) hulls started from
(eix0; eiq0). Let W map D conformally onto H such that W (eix0) = 0 and W (eiq0) =
∞. Then, after a time change, (WH(Lt )) are the backward chordal SLEκ hulls started
from 0.

Remarks

1. The above theorems are the backward SLE counterpart of the work in [17] for
forward SLE(κ; ρ) processes. The condition in their paper for Möbius invariance
is

∑

ρk = κ −6. This is one reason why we may view backward SLEκ as SLE−κ .
2. The definition of backward SLE(κ; ρ) process differ from Sheffield’s definition in

[18] by a minus sign in (4.15) and (4.16) before the ρk’s. If Sheffield’s definition
were used, the condition for conformal invariance would be

∑

ρk = κ +6 instead
of

∑

ρk = −κ − 6.
3. We may allow interior force points as in [17]. For the chordal (resp. radial)

SLE(κ; ρ) process, if qk ∈ H (resp. eiqk ∈ D) is a force point, we use Re f λ
t (qk)

(resp. Re ˜f λ
t (qk)) instead of f λ

t (qk) (resp. ˜f λ
t (qk)) in (4.15) (resp. (4.16)). In the

radial case, adding 0 to be a force point or change the force for 0 does not affect
the process. Theorems 4.6 and 4.7 still hold if some or all force points lie inside H

or D. For the proofs, we apply Lemma 4.5 with real parts taken on the displayed
formulas. One particular example is the following corollary.

Corollary 4.9 Let Lt , 0 ≤ t < ∞, be a backward radial SLEκ process. Let W be
a Möbius transformation that maps D onto H such that W (1) �= ∞. Let T be the
maximum number such that W−1(∞) /∈ SLt , 0 ≤ t < T . Then, after a time change,
WH(Lt ), 0 ≤ t < T , are the backward chordal SLE(κ;−κ − 6) hulls started from
(W (1);W (0)).

4. Using the properties of Bessel process and applying Girsanov’s theorem, one may
definebackward chordal or radial SLE(κ; ρ)processeswith exactly one degenerate
force point, if the corresponding force ρ1 satisfies ρ1 < −2 (which corresponds to
a Bessel or Bessel-like process of dimension d = 1 − 4+2ρ1

κ
> 1). Theorems 4.6

and 4.7 still hold when a degenerate force point exists. Unlike forward SLE(κ; ρ)

process, it is impossible to define a backward SLE(κ; ρ) process with two different
degenerate force points.
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Backward SLE and the symmetry of the welding 847

5. Consider the radial case with one force point. Suppose the force ρ1 ≤ − κ
2 − 2.

Let Xt = λ(t) − ˜f λ
t (q1). Then Xt is a Bessel-like process with dimension d =

1 − 4+2ρ1
κ

≥ 2, which implies that Xt never hits 2πZ. So T = ∞ and eiq1 /∈ St
for any t . From Lemma 3.5, S∞ = T\{eiq1}. If, in addition, κ ∈ (0, 4], then
a backward radial SLE(κ; ρ1) process induces a random welding φ, which is a
involution of T with exactly two fixed point, eiλ(0) and eiq1 , which are the initial
point and the force point of the process.

5 Commutation relations

Definition 5.1 Let κ1, κ2 > 0, n ∈ N, and ρ1, ρ2 ∈ R
n . Let z1, z2, wk , 2 ≤ k ≤

n, be distinct points on R (resp. T). We say that a backward chordal (resp. radial)
SLE(κ1; ρ1) started from (z1; z2, w2, . . . , wn) commutes with a backward chordal
(resp. radial) SLE(κ2; ρ2) started from (z2; z1, w2, . . . , wn) if there exists a coupling
of two processes (L1(t); 0 ≤ t < T1) and (L2(t); 0 ≤ t < T2) such that

(i) For j = 1, 2, (L j (t), 0 ≤ t < Tj ) is a complete backward chordal (resp. radial)
SLE(κ j ; ρ j ) process started from (z j ; z3− j , w2, . . . , wn).

(ii) For j �= k ∈ {1, 2}, if t̄k < Tk is a stopping time w.r.t. the complete filtra-
tion (Fk

t ) generated by (Lk(t)), then conditioned on Fk
t̄k
, after a time change,

fk(t̄k, ·)H(L j (t j )), 0 ≤ t j < Tj (t̄k), has the distribution of a partial backward
chordal (resp. radial) SLE(κ j ; ρ j ) process started from

( fk(t̄k, (z j )); λ̊k(t̄k), fk(t̄k, w2), . . . , fk(t̄k, wn)),

where fk(t̄k, ·) := fLk (t̄k ), Tj (t̄k) := sup{t j < Tj : SL j (t j ) ∩ SLk (t̄k ) = ∅},
λ̊k(t̄k) = λk(t̄k) in the chordal case (resp. eiλk (t̄k ) in the radial case), and λk is the
driving function for (Lk(t)).

Here a partial backward SLE(κ; ρ j ) process is a complete SLE(κ; ρ j ) process stopped
at a positive stopping time. If the commutation holds for any distinct points z1, z2, wk ,
2 ≤ k ≤ n on R (resp. T), then we simply say that backward chordal (resp. radial)
SLE(κ1; ρ1) commutes with backward chordal (resp. radial) SLE(κ2; ρ2).

Remark The definition is similar to the definition of the commutation relation
between forward SLE(κ; ρ) processes that first appeared in [5], where implicitly
gk(t̄k, L j (t j )) = gLk(t̄k )(L j (t j )) was used instead of the fk(t̄k, ·)H(L j (t j )) here, and
Tj (t̄k) was defined to be the first t j such that L j (t j )db intersects Lk(t̄k)db.

Theorem 5.2 For any κ > 0, backward chordal (resp. radial) SLE(κ;−κ − 6) com-
mutes with backward chordal (resp. radial) SLE(κ;−κ − 6).

We will prove this theorem in the next two subsections.
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5.1 Ensemble

In this subsection we will study how two backward SLE processes interact with each
other. The argument relies extensively on ideas and techniques from [9]. We first
consider the radial case. Fix κ > 0 and z1 �= z2 ∈ T. Write z j = ei z̃ j , j = 1, 2.
For j = 1, 2, let L j (t), 0 ≤ t < Tj , be a backward radial SLE(κ;−κ − 6) process
started from (z j ; z3− j ); let λ j be the driving function, and let f j (t, ·) and ˜f j (t, ·),
0 ≤ t < Tj , be the corresponding maps and covering maps. At first, we suppose that
the two processes are independent. Then for j = 1, 2, λ j satisfies λ j (0) = z̃ j and the
SDE:

dλ j (t) = √
κdB j (t) − −κ − 6

2
cot2(λ j (t) − ˜f j (t, z̃3− j ))dt, 0 ≤ t < Tj , (5.1)

where B1(t) and B2(t) are independent standard Brownian motions. For j = 1, 2, let
(F j

t ) denote the complete filtration generated by Bj (t).
DefineD = {(t1, t2) ∈ [0, T1) × [0, T2) : SL1(t1) ∩ SL2(t2) = ∅}. Then for (t1, t2) ∈

D, we have (L1(t1), L2(t2)) ∈ P∗. So we may define

(L1,t2(t1), L2,t1(t2)) = f P (L1(t1), L2(t2)).

Let f1,t2(t1, ·) = fL1,t2 (t1) and f2,t1(t2, ·) = fL2,t1 (t2). From a radial version of Theo-
rem 2.16, we see that

f1,t2(t1, ·) ◦ f2(t2, ·) = fL1(t1)∨L2(t2) = f2,t1(t2, ·) ◦ f1(t1, ·). (5.2)

Recall that L1(t1) ∨ L2(t2) is the quotient union of L1(t1) and L2(t2), i.e., the
unique hull which is the disjoint union of two hulls such that the corresponding two
quotient hulls are L1(t1) and L2(t2). Fix j �= k ∈ {1, 2}. From a radial version of
Corollary 2.19 (ii), the randommap f j,tk (t j , ·) isF j

t j ×Fk
tk -measurable. Let u j,tk (t j ) =

dcap(L j,tk (t j )). From Propositions 3.10 and 4.1, for any fixed tk ∈ [0, Tk), f j,tk (t j , ·)
are backward radial Loewner maps via the time change u j,tk . Let ˜f j,tk (t j , ·) be the
corresponding covering maps. So ei ◦ ˜f j,tk (t j , ·) = f j,tk (t j , ·) ◦ ei . From continuity,

we see that ˜f j,tk (t j , ·) is also F j
t j × Fk

tk -measurable, and from (5.2) we have

˜f1,t2(t1, ·) ◦ ˜f2(t2, ·) = ˜f2,t1(t2, ·) ◦ ˜f1(t1, ·). (5.3)

Define m on D by m(t1, t2) = dcap(L1(t1) ∨ L2(t2)). From (5.2) we get

m(t1, t2) = u1,t2(t1) + t2 = u2,t1(t2) + t1. (5.4)

Apply the argument in the first paragraph of Sect. 4.2 with λ = λ j , Lt j = L j (t j ),
W = fk(tk, ·), and ˜W = ˜fk(tk, ·), where tk ∈ [0, Tk) is fixed. Then we have corre-
spondence: L∗

t j = L j,tk (t j ), u = u j,tk , and ˜f ∗
t j = ˜f j,tk (t j , ·). Since ˜Wtj is an analytic
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Backward SLE and the symmetry of the welding 849

extension of ˜f ∗
t j ◦ ˜W ◦ ˜f −1

t j , from (5.3), we find that ˜Wtj = ˜fk,t j (tk, ·). Thus, eiλ j (t j )

(resp. λ j (t j )) lies in the domain of fk,t j (tk, ·) (resp. ˜fk,t j (tk, ·)) as long as (t1, t2) ∈ D.
Write ˜Fk,tk (t j , ·) = ˜fk,t j (tk, ·). We will use ∂t to denote the partial derivative w.r.t.

the first variable inside the parentheses, and use ′ and the superscript (h) to denote the
partial derivatives w.r.t. the second variable inside the parentheses. For h = 0, 1, 2, 3,
define A j,h on D by

A j,h(t1, t2) = ˜f (h)
k,t j

(tk, λ j (t j )) = ˜F (h)
k,tk

(t j , λ j (t j )). (5.5)

Use S f to denote the (partial) Schwarzian derivative of f . Define A j,S on D by

A j,S(t1, t2) = S ˜fk,t j (tk, λ j (t j )) = S˜Fk,tk (t j , λ j (t j )) (5.6)

From Sect. 4.2, we know that L j,tk (t j ) are backward radial Loewner hulls via the time
change u j,tk driven by λ j,tk , which can be chosen such that

λ j,tk (t j ) = A j,0(t1, t2). (5.7)

Moreover, from (4.10), (4.13), and (4.14), we have

u′
j,tk (t j ) = A2

j,1, (5.8)

∂t ˜Fk,tk (t j , λ j (t j )) = 3A j,2, (5.9)

∂t ˜F ′
k,tk

(t j , λ j (t j ))

˜F ′
k,tk

(t j , λ j (t j ))
= −1

2

( A j,2

A j,1

)2 + 4

3

A j,3

A j,1
+ 1

6
A2
j,1 − 1

6
, (5.10)

where all A j,h are valued at (t1, t2).
From now on, we fix an (Fk

t )-stopping time tk with tk < Tk . Then the process of

conformal maps (˜Fk,tk (t j , ·)) is (F j
t j × Fk

tk )t j≥0-adapted. Let Tj (tk) be the maximal

number such that for any t j < Tj (tk), we have (t1, t2) ∈ D. Then Tj (tk) is an (F j
t j ×

Fk
tk )t j≥0-stopping time. Recall that (λ j (t)) is an (F j

t j )-adapted local martingale with
〈λ j 〉t = κt . From now on, we will apply Itô’s formula repeatedly. All SDEs below are

(F j
t j × Fk

tk )t j≥0-adapted, and t j runs in the interval [0, Tj (tk)).
From (5.7), (5.5), and (5.9), we get

dλ j,tk (t j ) = A j,1dλ j (t j ) +
(κ

2
+ 3

)

A j,2dt, 0 ≤ t < Tj (tk). (5.11)

From (5.5) and (5.10) we get

∂t j A j,h

A j,h
= A j,2

A j,1
dλ j +

[

−1

2

(

A j,2

A j,1

)2

+
(

κ

2
+ 4

3

)

A j,3

A j,1
+ 1

6
A2
j,1 − 1

6

]

dt j .

(5.12)
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Let

α = 6 − (−κ)

2(−κ)
, c = (8 − 3(−κ))(−κ − 6)

2(−κ)
.

Note that if −κ is replaced by κ , then c becomes the central charge for forward SLEκ ,
which runs in the interval (−∞, 1]. The c here falls in the interval [25,∞). Since
A j,S = A j,3

A j,1
− 3

2 (
A j,2
A j,1

)2, from (5.12) we get

∂t j A
α
j,1

Aα
j,1

= α
A j,2

A j,1
dλ j +

[

− c

6
A j,S + α

6
A2
j,1 − α

6

]

dt j . (5.13)

Now we study ∂t j Ak,h and ∂t j Ak,S . From (5.5) we have Ak,h(t1, t2) =
˜F (h)
j,t j

(tk, λk(tk)). Recall that ˜Fj,t j (tk, ·) = ˜f j,tk (t j , ·), and ˜f j,tk (t j , ·) are backward
covering radial Loewner maps via the time change u j,tk driven by λ j,tk . From (5.7)
and (5.8), we get

∂t ˜f j,tk (t j , z) = −A2
j,1 cot2( ˜f j,tk (t j , z) − A j,0). (5.14)

Differentiate the above formula w.r.t. z, we get

∂t ˜f ′
j,tk

(t j , z)

˜f ′
j,tk

(t j , z)
= −A2

j,1 cot
′
2(

˜f j,tk (t j , z) − A j,0). (5.15)

Differentiating the above formula w.r.t. z, we get

∂t

˜f ′′
j,tk

(t j , z)

˜f ′
j,tk

(t j , z)
= −A2

j,1 cot
′′
2(

˜f j,tk (t j , z) − A j,0) ˜f ′
j,tk (t j , z).

Since S f = (
f ′′
f ′ )′ − 1

2 (
f ′′
f ′ )2, from the above formula, we get

∂t S ˜f j,tk (t j , z) = −A2
j,1 cot

′′′
2 ( ˜f j,tk (t j , z) − A j,0) ˜f ′

j,tk (t j , z)
2. (5.16)

Letting z = λk(tk) in (5.14), (5.15), and (5.16), we get

∂t j Ak,0 = −A2
j,1 cot2(Ak,0 − A j,0)dt j ; (5.17)

∂t j Ak,1

Ak,1
= −A2

j,1 cot
′
2(Ak,0 − A j,0)dt j ; (5.18)

∂t j Ak,S = −A2
j,1A

2
k,1 cot

′′′
2 (Ak,0 − A j,0)dt j . (5.19)

Define X j onD such that X j = A j,0−Ak,0. Then X1+X2 = 0. Since eiλ j (t j ) lies in
the domain of fk,t j (tk, ·), ei A j,0 = fk,t j (tk, e

iλ j (t j )) lies in the range of fk,t j (tk, ·), i.e.,
̂C\Lk,t j (tk). On the other hand, since via a time change, Lk,t j (tk) are backward radial
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Loewner hulls driven by λk,t j (tk) = Ak,0, from Lemma 3.4 we have ei Ak,0 ∈ Lk,t j (tk)
when tk > 0. Thus, ei A j,0 �= ei Ak,0 if tk > 0. Switching j and k, the inequality
also holds if t j > 0. If t j = tk = 0, then ei A j,0 = ei z̃ j �= ei z̃k = ei Ak,0 . Thus,
X j , Xk /∈ 2πZ. So we may define

Y = | sin2(X1)|−2α = | sin2(X2)|−2α.

From (5.7), (5.11), and (5.17), we get

∂t j X j = A j,1dλ j +
(κ

2
+ 3

)

A j,2dt − A2
j,1 cot2(X j )dt.

From Itô’s formula, we get

∂t j Y

Y
= −α cot2(X j )A j,1dλ j − α

(κ

2
+ 3

)

A j,2 cot2(X j )dt j

−α

2
A2
j,1 cot

2
2(X j )dt j + ακ

4
A2
j,1dt j . (5.20)

Define Q and F on D such that Q = cot′′′2 (X1) = cot′′′2 (X2) and

F(t1, t2) = exp

(∫ t2

0

∫ t1

0
A1,1(s1, s2)

2A2,1(s1, s2)
2Q(s1, s2)ds1ds2

)

. (5.21)

Since S˜Fk,tk (0, ·) = id, from (5.6) we have A j,S = 0 when t j = 0. From (5.19) we
get

∂t j F

F
= −A j,Sdt j . (5.22)

Define a positive function ̂M on D by

̂M = Aα
1,1A

α
2,1Y F− c

6 e
c
12 m. (5.23)

From (5.4), (5.8), (5.13), (5.18), (5.20), and (5.22), we have

∂t j
̂M

̂M
= α

A j,2

A j,1
dλ j − α cot2(X j )A j,1dλ j − α

6
dt j . (5.24)

When tk = 0, we have A j,1 = 1, A j,2 = 0, m = t j , and X j = λ j (t j ) − ˜f j (t j , z̃k), so
the RHS of (5.24) becomes

1

κ

(κ

2
+ 3

)

cot2(λ j (t j ) − ˜f j (t j , z̃k))dλ j − α

6
dt j . (5.25)

Define another positive function M on D by

M(t1, t2) = ̂M(t1, t2) ̂M(0, 0)
̂M(t1, 0) ̂M(0, t2)

. (5.26)
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Then M(·, 0) ≡ M(0, ·) ≡ 1. From (5.1), (5.24), and (5.25), we have

∂t j M

M
=

[

−
(

3 + κ

2

)

A j,2

A j,1
− −κ − 6

2
cot2(X j )A j,1

+−κ − 6

2
cot2(λ j (t j ) − ˜f j (t j , z̃k))

]

dB j (t j )√
κ

. (5.27)

So when tk ∈ [0, p) is a fixed (Fk
t )-stopping time, M as a function in t j is an (F j

t j ×
Fk
tk )t j≥0-local martingale.

5.2 Coupling measures

Let JP denote the set of disjoint pairs of closed arcs (J1, J2) on T such that z j = ei z̃ j

is contained in the interior of J j , j = 1, 2. Let Tj (J j ) denote the first time that SL j (t)

intersects T\J j . Then for every (J1, J2) ∈ JP, if t j ≤ Tj (J j ), then SL j (t j ) ⊂ J j ,
which implies that L j (t j ) ∈ HJ j . So [0, T1(J1)] × [0, T2(J2)] ⊂ D.

Proposition 5.3 (Boundedness) For any (J1, J2) ∈ JP, | ln(M)| is uniformly bounded
on [0, T1(J1)] × [0, T2(J2)] by a constant depending only on J1 and J2.

Proof Fix (J1, J2) ∈ JP. In this proof, all constants depend only on (J1, J2), and
we say a function is uniformly bounded if its values on [0, T1(J1)] × [0, T2(J2)] are
bounded in absolute value by a constant. From (5.23) and (5.26), it suffices to show
that ln(A1,1), ln(A2,1), ln(Y ), ln(F), and m are all uniformly bounded.

Note that if t j ≤ Tj (J j ), then L j (t j ) ∈ HJ j . From a radial version of Theorem 2.16
(iii), we have

{L1(t1) ∨ L2(t2) : t j ∈ [0, Tj (J j )], j = 1, 2} ⊂ HJ1∪J2 . (5.28)

Since J1 ∪ J2 � T, from Lemma 10.2, the righthand side is a compact set. So
the lefthand side is relatively compact. Since H �→ dcap(H) is continuous, and
m(t1, t2) = dcap(L1(t1)∨ L2(t2)), we see that m is uniformly bounded. For j = 1, 2,
since t j ≤ m, Tj (J j ) is also uniformly bounded.

Let S1 and S2 be the two components of T\(J1 ∪ J2). For s = 1, 2, let Es ⊂ Ss

be a compact arc. From Lemma 10.3, Ln → L in HJ1∪J2 implies that fLn

l.u.−→ fL

in C\(J1 ∪ J2), which then implies that f ′
Ln

l.u.−→ f ′
L in C\(J1 ∪ J2). From (5.28),

the compactness of HJ1∪J2 , and that E1 ∪ E2 are compact subsets of C\(J1 ∪ J2),
we conclude that there is a constant c1 > 0 such that | f ′

L1(t1)∨L2(t2)
(z)| ≥ c for any

t j ≤ Tj (J j ), j = 1, 2, and z ∈ E1 ∪ E2. Thus, for t j ∈ [0, Tj (J j )], j = 1, 2,
the length of fL1(t1)∨L2(t2)(Es), s = 1, 2, is bounded below by a constant c2 > 0.
Suppose t j ∈ (0, Tj (t j )], j = 1, 2. From Lemma 3.4, ei A j,0 ∈ BL j,t3− j (t j )

, j = 1, 2.
Note that fL1(t1)∨L2(t2)(E1∪E2) disconnects BL1,t2 (t1) from BL2,t1 (t2) onT. Thus, there

is a constant c3 > 0 such that |ei A1,0(t1,t2) − ei A2,0(t1,t2)| ≥ c3 for t j ∈ (0, Tj (t j )],
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j = 1, 2. From continuity, this still holds if t j ∈ [0, Tj (J j )], j = 1, 2. Thus, ln(Y ) =
−2α ln | sin2(X j )|, | cot′2(X j )|, and | cot′′′2 (X j )|, j = 1, 2, are all uniformly bounded.

We may find a Jordan curve σ , which is disjoint from J1 ∪ J2, such that its interior
contains J1 and its exterior contains J2. From compactness, supz∈σ ln | f ′

j (t j , z)| and
supz∈σ ln | f ′

L1(t1)∨L2(t2)
(z)| are both uniformly bounded. From (5.2) we see that the

value supw∈ f j (t j ,σ ) ln | f ′
3− j,t j

(tk, w)| is also uniformly bounded. Note that the inte-

rior of f j (t j , σ ) contains L j (t j )db, which contains eiλ j (t j ) if t j > 0. From maximum
principle, there is c4 ∈ (0,∞) such that A j,1(t1, t2) = | f ′

3− j,t j
(t3− j , eiλ j (t j ))| ≤ c4

if t j ∈ (0, Tj (J j )] and t3− j ∈ [0, T3− j (J3− j )]. From continuity, A j,1 is uniformly
bounded, j = 1, 2. From (5.18) and the uniformly boundedness of | cot′2(X j )| we see
that ln(A j,1) is uniformly bounded, j = 1, 2. From (5.21) and the uniformly bound-
edness of | cot′′′2 (X j )| we see that ln(F) is also uniformly bounded, which completes
the proof. ��

Let μ j denote the distribution of (λ j ), j = 1, 2. Let μ = μ1 × μ2. Then
μ is the joint distribution of (λ1) and (λ2), since λ1 and λ2 are independent. Fix
(J1, J2) ∈ JP. From the local martingale property of M and Proposition 5.3, we
have E μ[M(T1(J1), T2(J2))] = M(0, 0) = 1. Define νJ1,J2 by dνJ1,J2/dμ =
M(T1(J1), T2(J2)). Then νJ1,J2 is a probability measure. Let ν1 and ν2 be the two
marginal measures of νJ1,J2 . Then dν1/dμ1 = M(T1(J1), 0) = 1 and dν2/dμ2 =
M(0, T2(J2)) = 1, so ν j = μ j , j = 1, 2. Suppose temporarily that the joint distribu-
tion of (λ1) and (λ2) is νJ1,J2 instead of μ. Then the distribution of each (λ j ) is still
μ j .

Fix an (F2
t )-stopping time t2 ≤ T2(J2). From (5.1), (5.27), and Girsanov theorem

(c.f. [14]), under the probability measure νJ1,J2 , there is an (F1
t1 ×F2

t2)t1≥0-Brownian
motion ˜B1,t2(t1) such thatλ1(t1), 0 ≤ t1 ≤ T1(J1), satisfies the (F1

t1×F2
t2)t1≥0-adapted

SDE:

dλ1(t1) = √
κd˜B1,t2(t1) −

(

3 + κ

2

) A1,2

A1,1
dt1 − −κ − 6

2
cot2(X1)A1,1dt1,

which together with (5.5), (5.7), (5.9), and Itô’s formula, implies that

dλ1,t2(t1) = A1,1
√

κd˜B1,t2(t1) − −κ − 6

2
cot2(X1)A

2
1,1dt1.

From (5.5) and (5.7) we get X1 = A1,1− A2,1 = λ1,t2(t1)− ˜f1,t2(t1, λ2(t2)). Note that
λ1,t2(0) = ˜f2,0(t2, z̃1) = ˜f2(t2, z̃1). Since L1,t2(t1) and ˜f1,t2(t1, ·) are backward radial
Loewner hulls and covering maps via the time change u1,t2 , from (5.8) and the above
equation, we find that, under the measure νJ1,J2 , conditioned on F1

t2 for any (F2
t )-

stopping time t2 ≤ T2(J2), via the time change u1,t2 , L1,t2(t1) = f2(t2, ·)H(L1(t1)),
0 ≤ t1 ≤ T1(J1), is a partial backward radial SLE(κ; −κ−6

2 ) process started from
ei◦ ˜f2(t2, z̃1) = f2(t2, z1)withmarked point ei (λ2(t2)). Similarly, the above statement
holds true if the subscripts “1” and “2” are exchanged.

The joint distribution νJ1,J2 is a local coupling such that the desired properties in
the statement of Theorem 5.2 holds true up to the stopping times T1(J1) and T2(J2).

123



854 S. Rohde, D. Zhan

Then we can apply the maximum coupling technique developed in [20] to construct a
global coupling using the local couplings within different pairs (J1, J2). To be more
specific, the construction is composed of two steps:

1. Prove that for any finite sequence (J (k)
1 , J (k)

2 ), 1 ≤ k ≤ n, in JP, there is a global
coupling, say ν(n), of (L1(t1)) and (L2(t2)), such that for every 1 ≤ k ≤ n, if the
two processes in the coupling are stopped at T1(J

(k)
1 ) and T2(J

(k)
2 ), respectively,

then we get the joint distribution νJ1,J2 . Such coupling is obtained by doing oper-
ations on the process M . From Theorem 4.5 in [21], we see that there is a bounded
positive process M (n) defined on [0, T1] × [0, T2] such that
(a) When t1 is fixed, M (n) is a martingale in t2, and vice versa.
(b) When t1 or t2 equals 0, M (n) is constant 1.
(c) For every 1 ≤ k ≤ n, M (n) agrees with M on [0, T1(J (k)

1 )] × [0, T2(J (k)
2 )].

Then the ν(n) is defined by weighting the independent coupling of (L1(t1)) and
(L2(t2)) by M (n)(T1, T2).

2. Choose a dense sequence (J (k)
1 , J (k)

2 ), k ∈ N, in JP. For each n ∈ N, we get a

global coupling ν(n) using the previous step for the pairs (J (k)
1 , J (k)

2 ) up to n. Then
we choose a suitable topology such that the space of coupling measures is tight.
Then the desired commutation coupling is any subsequential limit of the sequence
(ν(n)).

The reader is referred to Section 4.3 in [21] for more details of the technique. This
finishes the proof of Theorem 5.2 in the radial case.

Now we briefly describe the proof for the chordal case. The proof in this case
is simpler because there are no covering maps. Suppose the two backward chordal
SLE(κ;−κ − 6) processes start from (z j ; zk), where z1 �= z2 ∈ R. Formula
(5.1) holds with all tildes removed and the function cot2 replaced by z �→ 2

z . The
domain D and the H-hulls L1,t2(t1) and L2,t1(t2) are defined in the same way. Then
(5.2) still holds. From Corollary 2.19 (ii), f1,t2(t1, ·) and f2,t1(t2, ·) are F1

t1 × F2
t2 -

measurable. Define m(t1, t2) = hcap(L1(t1) ∨ L2(t2))/2. Then (5.4) holds with
u j,tk (t j ) := hcap(L j,tk (t j ))/2.

Nowwe apply the argument in Sect. 4.1 withW = fk(tk, ·). ThenWt = fk,t j (tk, ·).
Let Fk,tk (t j , ·) = fk,t j (tk, ·), and define A j,h and A j,S using (5.5) and (5.6) with
all tildes removed. Using (4.3), (4.4), (4.7), and (4.8), we see that (5.7) still holds
here; (5.8) and (5.9) hold with all tildes removed; and (5.10) holds without the tildes
and the terms + 1

6 A
2
j,1 − 1

6 . Then we get the SDEs (5.11) and (5.13) without the

terms +α
6 A

2
j,1 − α

6 . Formulas (5.17), (5.18), and (5.19) hold with cot2 replaced by

z �→ 2
z . We still define X j = A j,1 − Ak,1. Then X j �= 0 in D. Define Y on D by

Y = |X1|−2α = |X2|−2α . Then (5.20) holds with cot2 replaced by z �→ 2
z and the

term +ακ
4 A2

j,1dt j removed. Define F using (5.21) with Q = − 12
X4
1

= − 12
X4
2
. Then

(5.22) still holds. Define ̂M using (5.23) without the factor e
c
12 m. Then (5.24) holds

with cot2 replaced by z �→ 2
z and the term −α

6 dt j removed. Define M using (5.26).

Then (5.27) holds with all tildes removed and cot2 replaced by z �→ 2
z .

We define JP to be the set of disjoint pairs of closed real intervals (J1, J2) such that
z j is contained in the interior of J j . Then Proposition 5.3 holds with a similar proof,
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where Lemma 9.2 is applied here, and we can show that |X1| is uniformly bounded
away from 0. The argument on the local couplings hold with all tildes and ei removed
and cot2 replaced by z �→ 2

z . Finally, we may apply the maximum coupling technique
to construct a global coupling with the desired properties. This finishes the proof in
the chordal case.

5.3 Other results

Besides Theorem 5.2, one may also prove the following two theorems, which are
similar to the couplings for forward SLE that appear in [5,21].

Theorem 5.4 Let κ1, κ2 > 0 satisfy κ1κ2 = 16, and c1, . . . , cn ∈ R satisfy
∑n

k=1 ck = 3
2 . Let ρ j = (

κ j
2 , c1(−κ j − 4), . . . , cn(−κ j − 4)), j = 1, 2. Then

backward chordal (resp. radial) SLE(κ1; ρ1) commutes with backward chordal (resp.
radial) SLE(κ2; ρ2).

Theorem 5.5 Let κ > 0 and ρ ∈ R
n, whose first coordinate is 2. Then backward

chordal (resp. radial) SLE(κ; ρ) commutes with backward chordal (resp. radial)
SLE(κ; ρ).

6 Reversibility of backward chordal SLE

Theorem 6.1 Let κ ∈ (0, 4] and z1 �= z2 ∈ T. Suppose a backward radial
SLE(κ;−κ − 6) process (L1(t)) started from (z1; z2) commutes with a backward
radial SLE(κ;−κ − 6) process (L2(t)) started from (z2; z1). Then a.s. they induce
the same welding.

Proof For j = 1, 2, let S j
t = SL j (t) and f j

t = fL j (t). Let Tj (·), j = 1, 2, be as in
Definition 5.1. Let φ j be the welding induced by (L j (t)). Since −κ − 6 ≤ −κ/2− 2,

from the last remark in Sect. 4.3, we see that, for j = 1, 2, a.s. Tj = ∞, S j∞ =
T\{z3− j }, and φ j is an involution of T with exactly two fixed points: z1 and z2.

Fix t2 > 0. Since (L1(t)) and (L2(t)) commute, the following is true. Condi-
tioned on (L2(t))t≤t2 , ( f 2t2)

H(L1(t1)), 0 ≤ t1 < T1(t2), is a partial backward radial
SLE(κ;−κ − 6) process, after a time change, started from ( f 2t2(z1); eiλ2(t2)), where
λ2 is a driving function for (L2(t2)). We have

S :=
⋃

0≤t1<T1(t2)

S( f 2t2 )H(L1(t1))
= f 2t2

⎛

⎝

⋃

0≤t1<T1(t2)

S1t1) = f 2t2(S
1
T1(t2)−

⎞

⎠ . (6.1)

Recall that f 2t2 is a homeomorphism from T\S2t2 onto T\BL2(t2) = T\{eiλ2(t2)}. From
the definition of T1(t2), we see that S1T1(t2) intersects S

2
t2 �= ∅ at one or two end points

of both arcs. If they intersect at only one point, then S1T1(t2)− is a proper subset ofT\S2t2 ,
and these two arcs share an end point. From (6.1), this then implies that the arc S is a
proper subset of T\BL2(t2), and BL2(t2) is an end point of S. Recall that, after a time
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change, ( f 2t2)
H(L1(t1)), 0 ≤ t1 < T1(t2), is a partial backward radial SLE(κ;−κ −6)

process. Since S �= T\BL2(t2), the process is not complete. Then we conclude that S
is contained in a closed arc on T that does not contain BL2(t2) because the force point
is not swallowed by the process at any finite time, which contradicts that BL2(t2) is an
end point of S. Thus, a.s. S1T1(t2) and S2t2 share two end points. Since φ j swaps the two

end points of any S j
t , j = 1, 2, we see that a.s. φ2 = φ1 on ∂TS2t2 . Let t2 > 0 vary

in the set of rational numbers, we see that a.s. φ2 = φ1 on
⋃

t∈Q>0
∂TS2t2 , which is a

dense subset of T. The conclusion follows since φ1 and φ2 are continuous. ��
We now state the reversibility of backward chordal SLEκ for κ ∈ (0, 4] in terms of

its welding. Recall that a backward chordal SLEκ welding is an involution of ̂R with
two fixed points: 0 and ∞.

Theorem 6.2 Let κ ∈ (0, 4], and φ be a backward chordal SLEκ welding. Let h(z) =
−1/z. Then h ◦ φ ◦ h has the same distribution as φ.

Proof Let (L1(t)) and (L2(t)) be commuting backward radial SLE(κ;−κ − 6)
processes as in Theorem 5.2, which induce the weldings ψ1 and ψ2, respectively.
The above theorem implies that a.s. ψ1 = ψ2. For j = 1, 2, let Wj be a Möbius
transformation that maps D onto H such that Wj (z j ) = 0 and Wj (z3− j ) = ∞, and
W2 = h ◦ W1. From Corollary 4.8, K j (t) := WH

j (L j (t)), 0 ≤ t < ∞, is a back-
ward chordal SLEκ , after a time change, which then induces backward chordal SLEκ

welding φ j , j = 1, 2. Then φ1 and φ2 have the same law as φ. From (4.1), we get
φ j = Wj ◦ψ j ◦W−1

j , j = 1, 2, which implies that a.s. φ2 = h◦φ1◦h. The conclusion
follows since φ1 and φ2 has the same distribution as φ. ��
Lemma 6.3 Let κ > 0. Let ft , 0 ≤ t < ∞, be backward chordal SLEκ maps. Then
for every z0 ∈ H, a.s. (3.4) holds.

Proof Let Zt = ft (z0) − λ(t), Xt = Re Zt , and Yt = Im Zt . Then

dXt = −√
κdB(t) − 2Xt

X2
t + Y 2

t
dt, dYt = 2Yt

X2
t + Y 2

t
dt

Let Rt = | f ′
t (z0)|. Then dRt

Rt
= 2(X2

t −Y 2
t )

(X2
t +Y 2

t )2
dt . Let Nt = Yt/Rt and At = Xt/Yt . Then

dNt

Nt
= 4Y 2

t

(X2
t + Y 2

t )2
dt, d At = −

√
κdB(t)

Yt
− 4At

X2
t + Y 2

t
dt.

Let u(t) = ln(Yt ). Then u′(t) = 2
X2
t +Y 2

t
. Let T = sup u([0,∞)) and define ̂Ns =

Nu−1(s) and ̂As = Au−1(s) for 0 ≤ s < T . Then

d̂Ns

̂Ns
= 2

̂A2
s + 1

ds, d̂As = −
√

1 + ̂A2
s

√

κ/2d̂B(s) − 2̂Asds,
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where ̂B(s) is another Brownian motion. We claim that T = ∞. Suppose T < ∞.
Then limt→∞ Y (t) = eT ∈ R. From the SDE for As , we see that a.s. lims→T As ∈ R,
which implies that limt→∞ At ∈ R and limt→∞ Xt ∈ R as Xt = Yt At . Then we have
a.s. s′(t) = 2

X2
t +Y 2

t
tends to a finite positive number as t → ∞, which contradicts that

T = sup{s(t), 0 ≤ t < ∞} < ∞. So the claim is proved. Using Itô’s formula, we see
that ̂As , 0 ≤ s < ∞, is recurrent. Since (ln(̂Ns))

′ = 2
̂A2
s+1

, we see that a.s. ̂Ns → ∞
as s → ∞. So a.s. Nt = Im ft (z0)

| f ′
t (z0)| → ∞ as t → ∞, i.e., (3.4) holds. ��

If κ ∈ (0, 4], then since the backward chordal traces are simple, (3.5) holds. From
the above lemma and Sect. 3.3, we see that, for κ ∈ (0, 4], the backward chordal
SLEκ a.s. generates a normalized global backward chordal trace β, which we call a
normalized global backward chordal SLEκ trace. Recall that β(t), 0 ≤ t < ∞, is

simple with β(0) = 0, and i /∈ β; and there is F∞ : H
Conf
� C\β, whose continuation

maps R onto β such that (3.7) holds, and for any x ∈ R, F∞(x) = F∞(φ(x)) ∈ β.
Now we state the reversibility of the backward chordal SLEκ for κ ∈ (0, 4) in terms
of β.

Theorem 6.4 Let κ ∈ (0, 4), and β be a normalized global backward chordal SLEκ

trace. Let h(z) = −1/z. Then h(β\{0}) has the same distribution as β\{0} as random
sets.

Proof For j = 1, 2, let φ j be a backward chordal SLEκ welding and β j be the
corresponding normalized global trace. Then β j is a simple curve with one end point

0, and there exists Fj : H
Conf
� C\β j such that Fj (i) = i , Fj (0) = 0, and Fj (x) =

Fj (φ j (x)) for x ∈ R. From Theorem 6.2 we may assume that φ2 = h ◦φ1 ◦h−1. Now
it suffices to show that h(β2\{0}) = β1\{0}.

Define G = h ◦ F2 ◦ h ◦ F−1
1 . Then G is a conformal map defined on C\β1.

It has continuation to β1\{0}. In fact, if z ∈ C\β1 and z → z0 ∈ β1\{0}, then
F−1
1 (z) → {x, φ1(x)} for some x ∈ R\{0}, which then implies that h ◦ F−1

1 (z) →
{h(x), h ◦ φ1(x)}; since φ2 ◦ h = h ◦ φ1, we find that F2 ◦ h ◦ F−1

1 (z) tends to some
point on β2\{0}, so G(z) tends to some point on h(β2\{0}). It was proved in [15]
that a forward SLEκ trace is the boundary of a Hölder domain. Then the same is true
for backward chordal SLEκ traces and the normalized global trace. From the results
in [6], we see that β1\{0} is conformally removable, which means that G extends to
a conformal map from (C\β1) ∪ (β1\{0}) = C\{0} onto C\{0}, and maps β1\{0}
to h(β2\{0}). Since G(i) = i , either G = id or G = h. Suppose G = h. Then
F1 = F2 ◦ h. Since F1(0) = F2(0) = 0, for j = 1, 2, Fj maps a neighborhood of
0 in H onto a neighborhood of 0 in C without a simple curve. Since F1 = F2 ◦ h,
F1 also maps a neighborhood of ∞ in H onto a neighborhood of 0 without a simple
curve, which contradicts the univalent property of F1. Thus, G = id, and we get
h(β2\{0}) = G(β1\{0}) = β1\{0}, as desired. ��

Nowwe propose a couple of questions. First, let’s consider backward chordal SLEκ

for κ > 4. Since the process does not generate simple backward chordal traces, the
random welding φ can not be defined. However, the lemma below and the discussion
in Sect. 3.3 show that we can still define a global backward chordal SLEκ trace.
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Lemma 6.5 Let κ ∈ (0,∞). Suppose βt , 0 ≤ t < ∞, are backward chordal traces
driven by λ(t) = √

κB(t). Then a.s. (3.5) holds.

Proof If κ ∈ (0, 4], a.s. the traces are simple, so (3.5) holds. Now suppose κ > 4.
Let ft and Lt be the corresponding maps and hulls. It suffices to show that, for any
t0 > 0, a.s. there exists t1 > t0 such that βt1([0, t0]) ⊂ H.

Let gt and Kt , 0 ≤ t < ∞, be the forward chordal Loewner maps and hulls driven
by

√
κB(t). From Theorem 6.1 in [22], for any deterministic time t1 ∈ (0,∞), the

continuation of g−1
t1 a.s. maps the interior of SKt1

into H. From Lemma 3.1 and the
property of Brownian motion, we see that, for any t1 ∈ (0,∞), ft1 has the same
distribution as λ(t1) + g−1

t1 (· − λ(t1)), which implies that the continuation of ft1 a.s.
maps the interior of SLt1

into H.
Since a.s.

⋃∞
n=1 Sn = S∞ = R ⊃ λ([0, t0]), and (St ) is an increasing family of

intervals, we see that a.s. there is N ∈ N such that the interior of SN contains λ([0, t0]).
Let t1 = N . Then ft1 mapsλ([0, t0]) intoH, which implies thatβt1(t) = ft1(λ(t)) ∈ H

for 0 ≤ t ≤ t0. ��
Question 6.6 Do we have the reversibility of the global backward chordal SLEκ trace
for κ > 4?

Second, let’s consider backward radial SLEκ processes. One can show that (3.8)
a.s. holds. Since T = ∞, we may define a global backward radial SLEκ trace.

Question 6.7 Does a global backward radial SLEκ trace satisfy some reversibility
property of any kind?

Recall that the forward radial SLEκ trace does not satisfy the reversibility property
in the usual sense. However, it’s proved in [24] that, for κ ∈ (0, 4], the whole-plane
SLEκ , as a close relative of radial SLEκ , satisfies reversibility.

Finally, it is worth mentioning the following simple fact. Recall that, if κ ∈ (0, 4],
a backward radial SLEκ welding is an involution of T with two fixed points, one of
which is 1. The following theorem gives the distribution of the other fixed point ζ ,
and says that a backward radial SLEκ process conditioned on ζ is a backward radial
SLE(κ;−4) process with force point ζ . It is similar to Theorem 3.1 in [22], and we
omit its proof.

Theorem 6.8 Let κ ∈ (0, 4]. Let μ denote the distribution of a backward radial
SLEκ process. For θ ∈ (0, 2π), let νθ denote the distribution of a backward radial
SLE(κ;−4) process started from (1; eiθ ). Let f (θ) = C sin2(θ)4/κ , where C > 0 is
such that

∫ 2π
0 f (θ)dθ = 1. Then

μ =
∫ 2π

0
νθ f (θ)dθ.

Acknowledgments We would like to thank the referee for his/her valuable comments, which improve
the readability of the paper.
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Appendices

Appendix A: Carathéodory topology

Definition 7.1 Let (Dn)
∞
n=1 and D be domains in C. We say that (Dn) converges to

D, and write Dn
Cara−→ D, if for every z ∈ D, dist(z, C\Dn) → dist(z, C\D). This is

equivalent to the following:

(i) every compact subset of D is contained in all but finitely many Dn’s;
(ii) for every point z0 ∈ ∂D, there exists zn ∈ ∂Dn for each n such that zn → z0.

RemarkA sequence of domains may converge to two different domains. For example,

let Dn = C\((−∞, n]). Then Dn
Cara−→ H, and Dn

Cara−→ −H as well. But two different
limit domains of the same domain sequence must be disjoint from each other, because
if they have nonempty intersection, then one contains some boundary point of the
other, which implies a contradiction.

Lemma 7.2 Suppose Dn
Cara−→ D, fn : Dn

Conf
� En, n ∈ N, and fn

l.u.−→ f in D.
Then either f is constant on D, or f is a conformal map on D. In the latter case, let

E = f (D). Then En
Cara−→ E and f −1

n
l.u.−→ f −1 in E.

Remark The above lemma resembles the Carathéodory kernel theorem [13, Theorem
1.8], but the domains here don’t have to be simply connected. The main ingredients
in the proof are Rouché’s theorem and Koebe’s 1/4 theorem. The lemma also holds
in the case that Dn and D are domains of any Riemann surface, if the metric in the
underlying space is used in place of the Euclidean metric for Definition 7.1 and locally
uniformly convergence. In particular, if we use the spherical metric, then Lemma 7.2
holds for domains of ̂C.

Appendix B: Topology on interior hulls

Let H denote the set of all interior hulls in C. Recall that for any H ∈ H, φ−1
H is

defined on {|z| > rad(H)}, and for a nondegenerate interior hull, ψH (z) = ϕ−1
H (z) =

φ−1
H (rad(H)z) is defined on {|z| > 1}. It’s shown in Section 2.5 of [23] that there is a

metric dH on H such that for any Hn, H ∈ H, the followings are equivalent:

1. dH(Hn, H) → 0

2. rad(Hn) → rad(H) and φ−1
Hn

l.u.−→ φ−1
H in {|z| > rad(H)}.

3. C\Hn
Cara−→ C\H .

In particular, we see that rad is a continuous function on (H, dH). Thus, for nonde-

generate interior hulls, dH(Hn, H) → 0 iff ψHn

l.u.−→ ψH in {|z| > 1}. The following
lemma is Lemma 2.2 in [23].

Lemma 8.1 For any F ∈ H, the set {H ∈ H : H ⊂ F} is compact.
Corollary 8.2 For any F ∈ H and r > 0, the set {H ∈ H : H ⊂ F, rad(H) ≥ r} is
compact.
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Appendix C: Topology on H-hulls

From Section 5.2 in [19], there is a metric dH on the space of H-hulls such that

dH(Hn → H∞) iff fHn

l.u.−→ fH∞ inH. FromLemma 7.2, this implies thatH\Hn
Cara−→

H\H∞. ButH\Hn
Cara−→ H\H∞ does not imply dH(Hn → H∞). A counterexample is

Hn = {z ∈ H : |z − 2n| ≤ n} and H∞ = ∅. Since H1 · H2 = H3 iff fH1 ◦ fH2 = fH3 ,
the dot product is continuous.

Formula (5.1) in [19] states that for any H-hull H , there is a positive measure μH

supported by ScvH , the convex hull of SH , such that for any z ∈ C\ScvH ,

fH (z) = z +
∫ −1

z − x
dμH (x). (9.1)

In particular, if H is bounded by a crosscut, then μH is absolutely continuous w.r.t.
the Lebesgue measure, and dμH/dx = 1

π
Im fH (x), where the value of fH on ScvH is

the continuation of fH from H. If H is approximated by a sequence of H-hulls (Hn),
then μH is the weak limit of (μHn ). We may choose each Hn to be bounded by a
crosscut, whose height is not bigger than h + 1/n, where h is the height of H . Then
each μHn has a density function, whose L∞ norm is not bigger than (h + 1/n)/π .
Thus, μH also has a density function, whose L∞ norm is not bigger than h/π . We

use ρH to denote the density function of μH . Since fH : C\ScvH
Conf
� C\Hdb,cv and

f ′
H (∞) = 1, we see that rad(Hdb,cv) = rad(ScvH ) = |ScvH |/4. Thus, diam(Hdb,cv) ≤

4 rad(Hdb,cv) = |ScvH |. On the other hand, the diameter of Hdb,cv is at least twice the

height of H . So ‖ρH‖∞ ≤ |ScvH |
2π .

By approximating any H-hull H using a sequence of H-hulls (Hn), each of which
is the union of finitely many mutually disjoint H-hulls bounded by crosscuts in H,
we see that μH is in fact supported by SH . By continuation, (9.1) holds for any
z ∈ C\SH . Furthermore, the support of μH is exactly SH because from (9.1) fH
extends analytically to the complement of the support ofμH , while fromLemma2.6 fH
can not be extended analytically beyond C\SH . So we obtain the following lemma.

Lemma 9.1 For any H-hull H, μH has a density function ρH , whose support is SH ,

and whose L∞ norm is no more than
|ScvH |
2π . Moreover, (9.1) holds for any z ∈ C\SH .

The following lemma extends Lemma 5.4 in [19], and we now give a proof.

Lemma 9.2 For any compact F ⊂ R, HF := {H : SH ⊂ F} is compact, and

Hn → H inHF implies that fHn

l.u.−→ fH in C\F.
Proof Suppose (Hn) is a sequence in HF . Let |Fcv| denote the length of the convex
hull of F . Then for each n, ρHn is supported by SHn ⊂ F , and the L∞ norm of ρHn

is no more than
|ScvHn |
2π ≤ |Fcv|

2π . Thus, (ρHn ) contains a subsequence (ρHnk
), which

converges in the weak-∗ topology to a function ρ supported by F . From (9.1) we see
that fHnk

converges uniformly on each compact subset of C\F , and if f is the limit

function, then f (z) − z = ∫

F
−1
z−x ρ(x)dx , z ∈ C\F . So f (z) − z → 0 as z → ∞.

This means that f can not be constant. From Lemma 7.2, f is a conformal map on
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C\F . Since f (z) − z → 0 as z → ∞, ∞ is a simple pole of f . Thus, f (C\F)

contains a neighborhood of ∞. Let G = C\ f (C\F). Then G is compact. Since every
fHnk

is R-symmetric, so is f . Let H = G ∩ H. Then f maps H conformally onto
H\H . This implies that H is an H-hull and f = fH on H because f (z) − z → 0 as
z → ∞. Since f extends fH |H, from Lemma 2.6, we see that SH ⊂ F and f = fH

in C\F . Since fHnk

l.u.−→ fH in H, we get Hnk → H ∈ HF . This shows that HF is

compact. The above argument also gives fHnk

l.u.−→ fH in C\F . If Hn → H , then any

subsequence (Hnk ) of (Hn) contains a subsequence (Hnkl
) such that fHnkl

l.u.−→ fH in

C\F , which implies that fHn

l.u.−→ fH in C\F . ��

Appendix D: Topology on D-hulls

Define a metric dH on the space of D-hulls such that

dH(H1, H2) =
∞
∑

n=1

1

2n
sup

|z|≤1−1/n
{| fH1(z) − fH2(z)|}. (10.1)

It is clear that dH(Hn, H) → 0 iff fHn

l.u.−→ fH in D. From Lemma 7.2, this implies

that D\Hn
Cara−→ D\H . On the other hand, from Lemma 10.1 below, one see that

D\Hn
Cara−→ D\H also implies that Hn → H . Since fHn

l.u.−→ fH in D implies that
f ′
Hn

(0) → f ′
H (0), we see that dcap is a continuous function.Moreover, the dot product

is also continuous.

Lemma 10.1 For any M < ∞, {H : dcap(H) ≤ M} is compact.
Proof Suppose (Hn) is a sequence of D-hulls with dcap(Hn) ≤ M for each n. Then
f ′
Hn

(0) = e− dcap(Hn) ≥ e−M . Since ( fHn ) is uniformly bounded in D, it contains a
subsequence ( fHnk

), which converges locally uniformly inD. Let f be the limit. Then

f ′(0) = limk→∞ f ′
Hnk

(0) ≥ e−M . Thus, f is not constant. From Lemma 7.2, f is

conformal inD. Since f (0) = limk→∞ fHnk
(0) and f ′(0) > 0, we see that f = fH |D

for some D-hull H . Since f ′(0) ≥ e−M , dcap(H) ≤ M . From fHnk

l.u.−→ fH in D we
get Hnk → H . ��
RemarkWemay compactify the space of D-hulls by adding one element H∞ with the
associated function fH∞ ≡ 0 in D, and defining the metric dH in the extended space
using (10.1).

Lemma 10.2 For any compact F � T, HF := {H : SH ⊂ F} is compact.
Proof Let H ∈ HF . From conformal invariance, the harmonic measure of T\Hdb in
D\H seen from 0 equals to the harmonic measure of T\SH in D seen from 0, which
is bounded below by |T\F |/|T| > 0. This implies that the distance between 0 and H
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is bounded below by a positive constant r depending on F , which then implies that
dcap(H) is bounded above by − ln(r) < ∞. From Lemma 10.1, we see that HF is
relatively compact.

It remains to show that HF is bounded. Let (Hn) be a sequence in HF , which
converges to H . We need to show that H ∈ HF . Since Hn ∈ HF , each fHn is analytic

in ̂C\F . We have fHn

l.u.−→ fH in D. From T-symmetry, fHn

l.u.−→ fH in D
∗. Let

J = {|z| = 2} ⊂ D
∗. Then fHnk

→ fH uniformly on J . Sine fHn maps {|z| < 2}\F
into the Jordan domain bounded by fHn (J ), we see that the family ( fHn ) is uniformly
bounded in {|z| < 2}\F . So it contains a subsequence ( fHnk

), which converges locally
uniformly in {|z| < 2}\F . The limit function is analytic in {|z| < 2}\F and agrees
with fH on D, which implies that fH extends analytically across T\F . So SH ⊂ F ,
i.e., H ∈ HF . ��

There is an integral formula for D-hulls which is similar to (9.1). For any D-hull
H , there is a positive measure μH with support SH such that

f (z) = z · exp
(∫

T

− x + z

x − z
dμH (x)

)

, z ∈ C\SH , (10.2)

and Hn → H iff μHn → μH weakly. Moreover, μH is absolutely continuous w.r.t.
the Lebesgue measure on T, and the density function is bounded. From this integral
formula, it is easy to get the following lemma.

Lemma 10.3 For any compact F ⊂ T, Hn → H inHF implies that fHn

l.u.−→ fH in
C\F.
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