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Abstract The backward chordal Schramm-Loewner evolution naturally defines a
conformal welding homeomorphism of the real line. We show that this homeomor-
phism is invariant under the automorphism x +— —1/x, and conclude that the asso-
ciated solution to the welding problem (which is a natural renormalized limit of the
finite time Loewner traces) is reversible. The proofs rely on an analysis of the action of
analytic circle diffeomorphisms on the space of hulls, and on the coupling techniques
of the second author.

Mathematics Subject Classification 30C - 60D

Contents

I Introduction . . . . . . . . .. 816
1.1 Introduction and results . . . . . . . . . . L 816
12 Notation . . . . .o v 817

2 Extension of conformal maps . . . . . .. ... 818
2.1 Interiorhulls in C . . . . . . . . .. 818
2.2 Hullsintheupperhalfplane . . . . ... ... ... ... ... ...... ... ..... 820
2.3 Hullsintheunitdisc . . . . . . . . . . e 828

3 Loewner equations and Loewner chains . . . . . .. ... ... ... L. 832
3.1 Forward Loewner equations . . . . . . . . . . . . .ttt 832

S. Rohde’s research was partially supported by NSF Grant DMS-1068105. D. Zhan’s research was
partially supported by NSF Grants DMS-0963733, DMS-1056840, and Sloan fellowship.

S. Rohde
University of Washington, Seattle, USA

D. Zhan (B)

Michigan State University, East Lansing, USA
e-mail: zhan @math.msu.edu

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-015-0620-1&domain=pdf

816 S. Rohde, D. Zhan

3.2 Backward Loewner equations . . . . . . . . . ... ... e 833
3.3 Normalized global backward trace . . . . . . ... ... ... ... ... ... 835
3.4 Forward and backward Loewner chains . . . . . . ... ... ... ... .......... 837
3.5 Simple curves and weldings . . . . . . . ... L 839
4 Conformal transformations . . . . . . . . . ... e 840
4.1 Transformations between backward H-Loewner chains . . . . ... ... ... ... ... 841
4.2 Transformations involving backward D-Loewner chains . . . . . . .. ... ... ... .. 843
4.3 Mobius invariance of backward SLE(k; p) processes . . . . . ... .. ... ....... 844
5 Commutation relations . . . . . . . . ... e e e 847
5.1 Ensemble . . . . . ... 848
5.2 Coupling MEASUIES . . . . . v vt vttt e e e e e e e e e 852
5.3 Otherresults . . . . . . . . o e 855
6 Reversibility of backward chordal SLE . . . . . ... ... o Lo oo 855
Appendices . ... 859
Appendix A: Carathéodory topology . . . . . . . . . ... 859
Appendix B: Topology oninteriorhulls . . . . . . .. ... ... ... L. 859
Appendix C: Topologyon H-hulls . . . . . . . ... .. .. . . .. . 860
Appendix D: TopologyonD-hulls . . . . . . . ... ... 861
References . . . . . . . . 862

1 Introduction
1.1 Introduction and results

The Schramm-Loewner evolution SLE,., firstintroduced in [16], is a stochastic process
of random conformal maps that has received a lot of attention over the last decade.
We refer to the introductory text [7] for basic facts and definitions. In this paper
we are largely concerned with chordal SLE,, which can be viewed as a family of
random curves y that join 0 and oo in the closure of the upper half plane H. A
fundamental property of chordal SLE is reversibility: The law of y is invariant under
the automorphism z +— —1/z of H, modulo time parametrization. This has first been
proved by the second author in [20] for « < 4, and recently by Miller and Sheffield
for4 < x < 8in[11]. It is known to be false for « > 8 [15,21].

In the early years of SLE, Oded Schramm, Wendelin Werner and the first author
made an attempt to prove reversibility along the following lines: The “backward” flow

o fi(2) = fox) =z, 0<t=<T,

fi(@) — fBz

generates curves Sy = B[0, T] whose law is that of the chordal SLE trace y [0, T']
(up to translation by /k Br). When k < 4, these curves are simple, and each point
of B (with the exception of the endpoints) corresponds to two points on the real line
under the conformal map f;. The conformal welding homeomorphism ¢ of Br is the
auto-homeomorphism of the interval f ! (Br) that interchanges these two points. In
other words, it is the rule that describes which points on the real line are to be identified
(laminated) in order to form the curve Sr. Itis known [15] that, for « < 4, the welding
almost surely uniquely determines the curve. The welding homeomorphism can be
obtained by restricting the backward flow to the real line: Two points x # y on the
real line are to be welded if and only if their swallowing times coincide, ¢(x) = y
if and only if 7, = 1y, see Sect. 3.5. An idea to prove reversibility was to prove the

@ Springer



Backward SLE and the symmetry of the welding 817

invariance of ¢ under x — —1/x, and to relate this to reversibility of a suitable limit
of the curves Br. But the attempts to prove invariance of ¢ failed, and this program of
proving reversibility was never completed successfully.

Instead, other methods of proving reversibility became available. In this paper, we
turn the above strategy around: We use the coupling techniques of the second author,
introduced in [20] for his proof of reversibility of (forward) SLE traces, to prove the
invariance of the welding. The main result of this paper is the following:

Theorem 1.1 Let« € (0, 4], and ¢ be a backward chordal SLE, welding. Let h(z) =
—1/z. Then h o ¢ o h has the same distribution as ¢.

As a consequence, in the range ¥ € (0,4) where the SLE trace is conformally
removable, we obtain the reversibility of suitably normalized limits of the Br (see
Sect. 6 for details):

Theorem 1.2 Let k € (0, 4), and B be a normalized global backward chordal SLE,
trace. Let h(z) = —1/z. Then h(B\{0}) has the same distribution as B\{0} as random
sets.

In the important paper [18], Sheffield obtains a representation of the SLE weld-
ing in terms of a quantum gravity boundary length measure, and also relates it to a
simple Jordan arc, which differs from our 8 only through normalization. However,
Theorems 1.1 and 1.2 do not follow easily from his work. A similar random weld-
ing homeomorphism is constructed in [3], where the main point is the very difficult
existence of a curve solving the welding problem. Our approach to the welding is
different: In order to prove Theorem 1.1, in Sect. 2 we develop a framework to study
the effect of analytic perturbations of weldings on the corresponding hulls. We show
in Sect. 4 that a Mobius image of a backward chordal SLE, process is a backward
radial SLE(k, —x — 6) process, and the welding is preserved under this conformal
transformation. In Sect. 5 we apply the coupling technique to show that backward
radial SLE(k, —k — 6) started from an ordered pair of points (a, b) commutes with
backward radial SLE(x, —« — 6) started from (b, a), and use this in Sect. 6 to prove
Theorem 1.1.

In a subsequent paper [25] of the second author, Theorem 1.1 is used to study the
ergodic properties of a forward SLE, trace near the tip at a fixed capacity time.

1.2 Notation

Let C=CU{oo},D={z€C: |zl <1},D*=C\D,T={zeC:lzl =1},
and H = {z € C : Imz > 0}. Let Ig(z) = z and IT(z) = 1/Z be the reflections
about R and T, respectively. Let ¢! denote the map z e, Let coty(z) = cot(z/2)
and sinp(z) = sin(z/2). For a real interval J, let C(J) denote the space of real
valued continuous functions on J. An increasing or decreasing function in this paper
is assumed to be strictly monotonic. We use B(¢) to denote a standard real Brownian

Conf
motion. By f : D °> E we mean that f maps D conformally onto E. By f; Loy f
in U we mean that f,, converges to f uniformly on every compact subset of U. We

will frequently use the notation D, % D as in Definition 7.1.
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818 S. Rohde, D. Zhan

The outline of this paper is the following. In Sect. 2, we derive some fundamental
results in Complex Analysis, which are interesting on their own. In Sect. 3, we review
the properties of forward Loewner processes, and derive some properties of backward
Loewner processes. In Sect. 4, we discuss how are backward Loewner processes
transformed by conformal maps. In Sect. 5, we present and prove certain commutation
relations between backward SLE(k; p) processes. In the last section, we prove the
reversibility of backward chordal SLE, processes for « € (0, 4] and propose questions
in other cases. In the appendix, we discuss some results on the topology of domains
and hulls.

2 Extension of conformal maps
2.1 Interior hulls in C

An interior hull (in C) is a nonempty compact connected set K C C such that C\K is
also connected. For every interior hull K in C, there are a unique » > 0 and a unique

ok : C\K o C\rD such that ¢ (00) = 00 and ¢ (00) := lim, 0 2/Pk (2) = 1.
We callrad(K) := r theradius of K and cap(K) := In(r) the capacity of K. The radius
is 0iff K contains only one point. In general, we have rad(K) < diam(K) < 4rad(K).
We call K nondegenerate if it contains more than one point. For such K, there is

~ Conf
a unique ¢g : C\K Y D* such that @k (00) = oo and @) (c0) > 0. In fact,
¢k = ¢k /rad(K). Let yx = (plzl for such K.

For any Jordan curve J in C, let D denote the Jordan domain bounded by J, and

" ~ . Conf N . Conf
let D} = C\(Dy U J). Suppose f; : D — Dy and f] = Vp; D* — Dj.

Then both f; and f7 extend continuously to a homeomorphism from T onto J. Let
h=( fj*)_1 o f7.Then h is an orientation-preserving automorphism of T. We call such
h a conformal welding. Not every homeomorphism of T is a conformal welding, but
it is well-known (and an easy consequence of the uniformization theorem) that every
analytic automorphism is a conformal welding, and that the associated Jordan curve
is analytic (c.f. [2, Chapter II, Section 1, 3D]). Also see [10] for the quasiconformal
theory of conformal welding, and [4] for deep generalizations and further references.

Lemma 2.1 Let B be an analytic Jordan curve. Let Q C C be a neighborhood of
T. Suppose W is a conformal map defined in 2, maps T onto T, and preserves the
orientation of T. Let QP = B U Dg U WDTQ(Q N ID*). Then there is a conformal map

V defined in QP such that V o V5, = Uy, 0 W in QN D* (Fig. 1),

Conf
Proof Fix a conformal map fz : D > Dg and let hg = ¢p, © fp be the associated

conformal welding homeomorphism. Define 7 = W o hg. Since B is analytic, & is

. . . Conf
analytic and there is an analytic Jordan curve y and a conformal map f}, : D — D,

suchthath = h), = 95, °© fy-DefineV = f, of/;1 on Dg. Since $ and y are analytic
curves, V extends conformally to a neighborhood of 8 with V() = y. On 8, this
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Backward SLE and the symmetry of the welding 819

87 Yy () )

Fig.1 The situation of Theorem 2.2 and Lemma 2.1. Given H and W, V can be constructed to be analytic
in H.In Lemma 2.1, the boundary of H is assumed to be an analytic Jordan curve, while in Theorem 2.2,
no regularity assumption is made

extension (still denoted V') satisfies V = (1//D—yo hy)o (h/g1 o 1//;7;) = wD—yo Wo 1//;)7},

Therefore V extends conformally to all of 2# and satisfies the desired property. O

Theorem 2.2 Let H be a nondegenerate interior hull. Let Q@ C C be a neighborhood
of T. Suppose W is a conformal map defined in 2, maps T onto T, and preserves
the orientation of T. Let Qf = H U ¢y (2 NID*). Then there is a conformal map V
defined in QY such that V o Yy = Vv ) o Win QN D*. If another conformal map
V satisfies the properties of V, then V.= aV + b for some a > 0 and b € C (Fig. 1).

Proof First, define a sequence of analytic Jordan curves (8,,) by

Bo=vn(ent®:0<6<21}), neN.

Then B, U Dg, — H in dy (see Appendix B). From Lemma 2.1, for each n € N,
there is a conformal map V,, defined in Qf" := B, U Dg, U ¢rg, (2 N D*) such that
Vi o g, = ¥y, g, © Win Q ND*. Note that for any a, > 0 and b, € C, a,V,, + b,
satisfies the same property as V,. Thus, we may assume that 0 € V,(8,) C D and
Vau(Br) N'T #£ @. Let y,, = V,,(Br), n € N. Then each y,, is an interior hull contained
in the interior hull D, and diam(y,) > 1. So rad(y,) > 1/4. From Corollary 8.2,
(y,) contains a subsequence which converges to some interior hull K contained in D
with radius at least 1/4. So K is nondegenerate. By passing to a subsequence, we may
assume that y, — K.From 8, — H andy, — K we get g, Loy Yy in QND* and

Cara

Yy, 1oy Yk in W(Q ND*). Thus, ¥, (2 ND*) — x (2 ND*) by Lemma 7.2.
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820 S. Rohde, D. Zhan

Since Vyog, = v, 0 W in QND*, we find that V,, = v, 0 Woyr ! in g, (QND).

LetV = vygo Wmﬂ[;l in ¥y (2ND*). Then V, L V in ¥y (2ND*). We may find
r > 1 such that for any s € (1,r], sT € N D*. Then ¥y (rT) is a Jordan curve in
Y (2ND*) surrounding H, and the Jordan domain bounded by ¥ (rT) is contained
in Qf = H Uy (QND*). Since ¥y (rT) is a compact subset of ¥z (Q ND*), we

have V,, — V uniformly on vz (rT). It is easy to see that 2P S QM For n big
enough, ¥y (rT) together with its interior is contained in f». From the maximum
principle, V,, converges uniformly in the interior of ¥z (*T) to a conformal map
which extends V. We still use V to denote the extended conformal map. Then V is a

conformal map defined in Q% and V, 1y inQH. Letting n — oo in the equality
Vi o g, = ¥y, o Win Q NID*, we conclude that V o Y = Yy gy o W in Q N ID*,
So the existence part is proved.

If V=aV +bforsomea > 0and b € C, then wV(H) = ayy(y) + b, which
1mphes Vovyy = Vi) © W. Finally, suppose V satisfies the properties of V.

Then V o V~! is a conformal map in V(QH). Since V o Y = Yym) o W and

Voyu = Yy o W in @ ND* we find that Vo V= = gy 0 Yy, in
WV(H)(W(Q N D*) =V (QF)\V(H). Note that WV(H) o wV(H) is a conformal map
defined in (C\V(H) Since V(QH) U ((C\V(H)) = C, we may deﬁne an analytic

function 4 in C such thath = VoV ~lin V(QH) andh =Y OwV(H) inC\V (H).
From the properties of Vi) and Yy (m), we have h(oc0) = oo and h/(00) > 0. Thus,
h(z) = az + b for some a > 0 and b € C, which implies that V =aV +b. m]

Now we obtain a new proof of the following well-known result about conformal
welding.

Corollary 2.3 Let W be conformal in a neighborhood of T, maps T onto T, and
preserves the orientation of T. If h is a conformal welding, then W o h and h o W are
also conformal weldings.

Proof Apply Theorem 2.2to H = D, where J is the Jordan curve for the conformal
Weldlng h. We find a conformal map V defined in Q7 = D; U f* 7(€2NDD*) such that

Vo = Yy o Win Q ND* Let J/ = V(J). Then J’ is also a Jordan curve,
l (H)

- f
V(H) = Dy, and Yy = 5. Let fr = V o f. Then fy : D ' D, Thus,

Woh=Wo(f)™"ofr=vuiyoVefr=Un"orm
which implies that W o & is a conformal welding. As for & o W, note that (h o wy I =

W~! o h~! and that & is a conformal welding if and only if #~! is a conformal
welding. O

2.2 Hulls in the upper half plane

Let H = {z € C: Imz > 0}. A subset K of H is called an H-hull if it is bounded,
relatively closed in Hl, and H\ K is simply connected. For every H-hull K, there are a
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Backward SLE and the symmetry of the welding 821

unique ¢ > 0 and a unique gg : H\K 3» H such that gx (z) = z + + 0( ) as
7 — oQ. The number c is called the H-capacity of K, and is denoted by hcap(K ). Let
fx = gK . The empty set is an H-hull with hcap(¥) = 0 and gy = f = idy.

Definition 2.4 Let K| and K, be H-hulls.

1. If K1 C K2, define K2/ Ky = g, (K2\K1). We call K> /K aquotient hull of K>,
and write K>/ K1 < K».
2. The product K - K> is defined to be K1 U fk, (K2).

The following facts are easy to check.

1. K»/K1 and K - K> in the definition are also H-hulls.

2. For any two H-hulls K1 and K», K1 C K1-Kp;and Ko = (K1-K2)/ K1 < K1 -K>.
If K1 C K, then K - (K2/K1) = K>.

3. The space of H-hulls with the product “-” is a semigroup with identity element @,
and “<” is a transitive relation of this space.

4. le-Kz = fk, o fx, mH; gg,.x, = gk, 0 gk, in H\ (K - K>).

5. hcap(K1-K»>) = hcap(K1)+hcap(K»>). If K1 C Ky or K1 < K, thenhcap(K;) <
hcap(K>).

From fk,.x, = fk, o fk, in H we can conclude that fx, = fx,.x, o gk, in H\ K>.
So fk, is an analytic extension of fx,.x, o gx,, which means that K is uniquely
determined by K - K> and K>. So the following definition makes sense.

Definition 2.5 Let K; and K, be H-hulls such that K1 < K»>. We use K> : Kj to
denote the unique H-hull K C K> such that K, /K = K.

For an H-hull K, the base of K is the set Bx = K N R. Let the double of K be
defined by K db — KUIR(K )UB, where Ig (z) := z. Then gk extends to a conformal
map (still denoted by gg) in (C\de which satisfies gx (00) = 00, g (00) = 1, and
gk o Ip = Ir o gx. Moreover, gK((C\de) = (C\SK for some compact Sx C R,
which is called the support of K. So fx extends to a conformal map from (C\S k onto
(C\de

Lemma 2.6 fx can not be extended analytically beyond @\S K-

Proof Suppose fx can be extended analytically near xo € R, then the image of fx
contains a neighborhood of fx (xo) € R. So fx (H) = H\K contains a neighborhood
of fx (xp) in H. This then implies that fx (xg) € R\Bg. Thus, there is yo € R\Sx
such that fx (yo) = fx (x0). Since fg is conformal in H, we must have xo = yp € R\
S[(. O

Lemma 2.7 If K1 = Ko/Ko < Ky, then S, C Sk fix = fio © fir in C\Sk,,
and gk, = gk, © 8K, in (C\K

Proof Since K> = Ko - Ky, we have fx, = fk, o fk, in H, which implies that
8k, © fx, = fk, in H. Since fx, maps (C\SK2 conformally onto (C\de C (C\de,
and gk, is analytic in C\de we see that gk, o fk, is analytic in (C\SK2 Since
8Ky © fk, = fk, inH, from Lemma 2.6 we have Sk, C Sk,, and gk, o fx, = fk, in
@\SK2~ Composing fk, to the left of both sides, we get fx, = fk, o fk, in @\SKZ.
Taking inverse, we obtain the equality for gg’s. O
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822 S. Rohde, D. Zhan

Definition 2.8 S C C is called R-symmetric if Ip(S) = S. An R-symmetric map
W is a function defined in an R-symmetric domain €2, which commutes with /g, and
maps 2 N H into H.

Remarks

1. For any H-hull K, gk and fx are R-symmetric conformal maps.

2. Let W be an R-symmetric conformal map defined in 2. If an H-hull K satisfies
K® c Qand co ¢ W(K®), then W(K) is also an H-hull and W (K)%® =
W (K®).

Definition 2.9 Let Q be an R-symmetric domain and K be an H-hull. If K% ¢ ©,
we write Qg or () for Sg U gx (Q\K), and call it the collapse of Q2 via K. If
Sk C €, we write QX or (QK) for K9 U fx (2\Sk), and call it the lift of  via K.

Remarks

1. In the definition, Qg is an R-symmetric domain containing Sk; QK is an
R-symmetric domain containing K 9.

2. ()X = Qand (QX)x = Q if the lefthand sides are well defined.

3. Qk,.k, = (k) k, and QK1K2 = (QK2)K1 if either sides are well defined.

Definition 2.10 Let W be an R-symmetric conformal map with domain Q2. Let K
be an H-hull such that K% ¢ € and co ¢ W (KP). We write Wx or (W)g for the
conformal extension of gw k) o W o fg to Qk, and call it the collapse of W via K.

Remarks

1. Since gwkyo Wo fk : Qk\Sk ngf W (2)\Sw k), the existence of Wi follows
from the Schwarz reflection principle. Wk is an R-symmetric conformal map, and
Wk (Sk) = Swk)-

2. The gg and fx defined at the beginning of this section should not be understood

as the collapse of g and f via K.

Wk,.x, = (Wk, )k, if either side is well defined.

4. Vwk)yoWg = (VoW)g if either side is well defined. In particular, (W_I)W(K) =

W)~
Let BY and S§’ be the convex hulls of Bg and Sk, respectively. Let K db.cv —
K% U BS'. Then gg : C\K®e¥ o C\SY'. If K # I, then S is a bounded closed
interval, K9V is a nondegenerate interior hull, and ¥ gavcv = fx o Vse I SY C Q,

then QK = gdb-evy frk (Q\SY). The lemma below is a part of Lemma 5.3 in [19],
where S was denoted by [ck, dk ].

(O8]

Lemma 2.11 If K| C K>, then Sﬁ("l C S%"z.

Theorem 2.12 Let W be an R-symmetric conformal map with domain Q2. Let K be
an H-hull such that Sy C 2 and oo ¢ W(Sk). Then there is a unique R-symmetric
conformal map V defined in QX such that Vg = W (Fig. 2).
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9v(K)

Fig. 2 The situation of Theorem 2.12. Given K and W, there is a unique V, also denoted WK, which is
analytic across K and its reflection I (K ), see Definition 2.13

Proof We first consider the existence. If K = ¢, since f =idand Q’ = Q, V =W
is what we need. Now suppose K # ¢ and S’ C . Note that S¢* is a bounded

closed interval, and so is W(S%). Let Qr = 1//5%5 (\S%). Define a conformal map

Wr in Qp by Wp = w‘;,isw) o W o ¥ger. Then Wr(z) — Tas Qr > z — T. Thus,
K

Wr extends conformally across T, maps T onto T, and preserves the orientation of T.

Apply Theorem 2.2 to W and K¢V, We find a conformal map V defined in

K®Y U pane () = KV U fr(Q\8Y) = QF

such that Vowkdb o = 'ﬂV(de ) O Wrin Q. Let V= Ipo Vo Ir. Then \7(de oy =
Ipo V(K¥v) So I/IV(de evy = IR 0P gavevy 0 [R. Since Ig commutes with ¥/ gav.cv
and Wr, we see that V' also satisfies the properties of V.SoV =aV +b for some
a > 0and b € C. Thus, Ig o Vo Ir = aV + b. Cons1der1ng the values of V on
QX NR, we find that ¢ = 1 and Re b = 0. Note that \7 - 5 satisfies the property of
V, and commutes with Ir. By replacing V with V — 2, we may assume that Vis an
R-symmetric conformal map.

Since Voyrganer = Y gab.evy 0 W in Q, from Yrgavev = fx o Wsey, Y ganevy =
fﬂ K) © WSCVV(K)’ and the definitions of W and Q7, we have

v —1
Viofk = Ffouw oVsy, °Vwesy oW 2.1)

on Q\SY. Leth = 1//5%() o I/f‘;,l(s%v) Since S;"(K) and W (S¥) are both bounded closed

intervals, we have h(z) = az+b forsomea > Oandb € R.LetV = h~lo V. Then V
is also an R-symmetric conformal map defined on QX and vy = h~to oy oh-
From (2.1) we have
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824 S. Rohde, D. Zhan

fV(K)oW=h_1ofﬁ(K)ohoW=h_loVofK=VofK.

This finishes the existence part in the case that K # ¢ and S’ C Q.

Now we still assume that K # ¢ but do not assume that S’ C Q. Let Qy =
and Wy = W. We will construct H-hulls Ky, ..., K, and R-symmetric domains
Qi,...,Qusuchthat K, - K,—1--- K1 = K, Qj = Qj 1,and S%Vj C Q1,1 <
J < n. When they are constructed, using the above result, we can obtain R-symmetric
conformal maps W; definedon 2;,1 < j < n,such that (Wj)Kj =W,_,1<j=<n
Let V = W,. Then V is defined in ©, = Q5" "% = QK and Vg = W)k, ..k, =
Wo = W. So V is what we need.

It remains to construct K; and €2; with the desired properties. Since 2 N R is a
disjoint union of open intervals, and Sk is a compact subset of 2 N R, we may find
finitely many components of 2 N R which cover Sk. There exist mutually disjoint
R-symmetric Jordan curves Ji, ..., J, in £ such that their interiors Dy, , ..., D, are
mutually disjoint and contained in €2, and Sx C UZ:] Dy, . Then JjK = fx(J)),
I < j < n are R-symmetric Jordan curves, which together with their interiors are
mutually disjoint, and K9 ¢ Ui=i Dre-Let Hy = K N UZ:/’ Djjl(, 1<j<n.
Then each H; is an H-hull, and K = Hy D Hy D --- D H,. Let K; = Hj/Hj 1,
1<j<n-1,and K,, = H,. ThenwehaveK ---Ki1=H =K.

Construct 2, 1 < j < n, such that Q; = Q/ l,1 < j < n.Then

Q1= Q)1 F =@ Eny Lk, =@y, 1<j<n
It suffices to show that S%Vj C ;1. We have
K;=Hj/Hjy1 = gn;,,(Hi\Hj11) = gn,;, (KN D).

Thus, Kj C DgHj_H(JjK), which implies that SK/. C DgHj (J_/K)' Since R N DgHj (jjx)
is an interval, we have S%Vj C DgH (JK) Since D]K c QK. and J.K has positive

distance from H;, we have D 1, (%) c QX VH; = Qj 1-So K; and ; satisfy the

properties we need. This ﬁn1shes the proof of the existence part.
Now we prove the uniqueness. Suppose V is another R-symmetric conformal map
defined on QX such that Vg = W. Then

gV(K)OV=W0gK=g\7(K)OV

on Q\K%®. Thus, Vo V~! = Tok) © gvik) on V(Q\K®) = V(Q)\V(K®). We
know that V o V~! is a conformal map defined on V (2), while fV(K) ° gV(K) 18

a conformal map defined on (C\V(K)db (C\V(de) Since V(£2) and C\V(de)
cover C, we may define an analytic function z on C such that 7 = VoV='lonV(Q)
and h = f k) © gv(k) on C\V (K %). From the properties of f9k) and gv (k). we
see that h(z) —z — 0 as z — oo. So & = id, which implies that V = V. So the
uniqueness is proved. O
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Definition 2.13 We use WX to denote the unique V in Theorem 2.12, and call it the
lift of W via K. Let W be the map defined by W' (K) = WX (K).

Remarks

(W)X = W and (WK g = W.

The range of WK is WK (QK) = (W (@)W &),

WEiK: = (WK Kt yWEE) o WK = (V o W)X, and (WK)~! = (W)W (&),
The domain (resp. range) of WH is the set of H-hulls whose supports are contained
in the domain (resp. range) of W and Sy + gy = W(Sk).

5. Vo wH = (v ow); (W)=l = (w—hH,

.

Lemma 2.14 Suppose K1 < K>3, Sk, lies in the domain of an R-symmetric conformal
map W, and 0o ¢ W (Sk,). Then WL(K1) < WH(K>), and

WH(K,) : WH(K) = WEK2(K, : Ky). (2.2)

Proof From Lemma 2.7, Sk, C Sk,. So WX and WX2 exist. Let Ko=K>: K| C
K;. Then WX2(Ko) ¢ WK2(K;,) and

W52 (K2)/ WK (Ko) = gy k) © W2 (K2\Ko)

= gk (kg © WK 0 fiy(K2/Ko) = (WK2)k, (K2 /Ko)
= (WKoKny e (K1) = WEI(KY).

Thus, WX1(K}) < WEK2(K>,) and WK2(K») : WK (K)) = WEK2(K)). m]

Definition 2.15 Let P* denote the set of pair of H-hulls (H;, H>) such that HlClb N
szb = . Let P, denote the set of pair of H-hulls (K1, K») such that S, N Sk, =
#. Define gp on P* by gp(Hi, Hy) = (gm,(H1), g, (H2)). Define f7 on P, by
ST (K1, K2) = (fIL(K), f7E(K2)) (Fig. 3).

Remarks
1. gp is well defined on P* because for j = 1,2, K gE j is contained in the domain
of gk;: @\K}lb. The value of gp is a pair of H-hulls.

2. f P is well defined on Py because for j = 1,2, Sk, i is contained in the domain
of fk;: @\SKJ.. The value of f7 isa pair of H-hulls.

Theorem 2.16 gp and f P are bijections between P* and Py, and are inverse of each
other. Moreover, if (Hy, Hy) = fP(Kl, K>), then

(i) Hi - K» = Hy- K1 = Hi U Hy;
() fk,(Sk,) = Su, and fk,(Sk,) = SH,;
(iii) SH[UHZ = SK1 U SKZ'

@ Springer



826 S. Rohde, D. Zhan
Hé Hy
9H, 9H,
K,

B =)

91(1\ 9K, /

Fig. 3 The pair (H, H>) uniquely determines the pair (K, K2), and vice versa, see Definition 2.15 and
Theorem 2.16

Proof Let (H, Hy) € P*and (K1, K2) = gp(Hy, Hy). Then (C\H™) 5, = C\K',

Con

—~ —~ —~ . —~ f ~
Su, € C\KS®, and (C\Sw, )k, = C\gk,(Sh,). Since gg, : C\HI™® — C\Sp, and

~ Conf ~
gm, (Hy) = Ko, we get (gm))m, : (C\Kiib 2 C\gk, (SH,). From the normalization
of g, gm,, 8k, at 0o, we conclude that

(ng)Hz = 8K;» ng(SHl) = SK1~ (23)

From Sy, C @\Kgb and gk, (SwH,) = Sk,, wesee that Sk, NSk, = 0,1.e, (K1, K») €
P.. Since f, = gi!s fx, = 8k, and gu, (Hy) = K, from (2.3) we get (fu,)k, =
Sk, which implies that (le)K2 = fu,. Thus, f;’f (K2) = fu,(K2) = Hp. Similarly,
fELKY) = Hy.Thus, fP(Ky, Ky) = (Hi, Hy). So f7 o gp = idp-.

Let (K{, Ky) € Py and H| = fIZ(Kl). Then Sy, = fk,(Sk,) is disjoint from
Kgb. Thus, we may define another H-hull H> := fp, (K2). Then szb C @\Hldb. So
(Hy, Hy) € P*. We have (C\Sk,)X! = C\ fk, (Sk,) and (C\K$®)1 = T\ Hg®.
Since fx, : C\Sk, — C\K® and fIH(K)) = Hi, we see that (fi,)X!

~ Conf ~
C\ fk,(Sk,) = (C\Hgb. From the normalization of fx,, fu,, fk, at oo, we conclude
that

(k)5 = fur fx,(Sky) = S, 2.4
Since Hy = fL(K1). we get fx, = g, o fu, o fx, on (C\Sk,)\Sk, . which implies
that le o sz = sz o le on (C\(S[(1 U SKZ)‘ So

Hy-Ky=H-Ky=H U fy,(K2) = H U H. (2.5)
Thus, K1 = gu,(H1) and K> = g, (Hp), i.e., (K1, K2) = gp(H1, H>). This shows

that the range of gp is P, which combining with f Po gp = idp+ shows that
fP=(gp)  andgp = (f 7).
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In the previous paragraph, since (K, K») = gp(H;, Ha), fP(Kl, Ky =
(Hy, H). Thus, (i) follows from (2.5); the second parts of (ii) follow from (2.4), and
the first part follows from symmetry. Finally, since gg, o gn, = gH,-k, = &H,UH,>

C db dby Conf = db =~ b, Conf
from gy, : C\(H;” U H;") — C\(Sm; U K3"), gk, © C\(Sy; U K37)  —
C\(gk,(SH,) U Sk,), and (2.3), we get (iii). O

Definition 2.17 For (K1, K») € P, we define the quotient union of K| and K> to be
K1V Ky = Hy U Hy, where (Hy, o) = 7 (K1, K2).

Remark From Theorem 2.16, K1, K» < K1 Vv K3 and Sk, vk, = Sk, U Sk,
The space of H-hulls has a natural metric dy described in Appendix C. Let Hg
denote the set of H-hulls whose supports are contained in S. From Lemma 9.2, if F

is compact, (HF, d) is compact, and H, — H in Hp implies that fp, 1—u> fH in
C\F.

Theorem 2.18 (i) Let F C R be compact. Let W be an R-symmetric conformal map
whose domain contains F. Then W't : Hr — Hwr) is continuous.

(ii) Let E and F be two nonempty compact subsets of R with EN F = (. Then f P
and (K1, Ky) — K Vv K> are continuous on Hg x Hp.

Proof (i) First, W is well defined on ., and the range of W77 is Hw (r). Suppose
(Hp) is a sequence in Hp and H, — Hy € Hp. To prove the continuity of WH, we
need to show that W (H,) — WH(HO). Suppose this is not true. Since Hy () is com-
pact, by passing to a subsequence, we may assume that wH(H,) — Ko 7+ wH(Hy).

Lu.
For each ny, W = fWH(an) oWogp, on ank (Q\F). We have 8H,, = &Ho

in it (\F) and figre, ) 5 fiy in WQ\W (). Thus, W % g 0w o
gH, = V in fp,(Q\F). The domain of W™ is Q" = HIU [fH,, (Q\Sg,, ), which
converges to Q0 = HIU fy (Q2\Shy) D fr, (R\F). Itis clear that R0\ fr, (Q\F)

is compact. Since whn =% v in SfHy (Q\F), from the maximum principle, W Hag

converges locally uniformly in Q0. We still let V denote the limit function. Since
H,, — Hjand w i (Hy,) — Ko, wehave V(Hy) = Ko. Since fx,oWogy, =V
in fr, (Q\F), we see that fyuy) o W o gn, = V in fu,(2\Sk,). Thus, V. = who.
So Ko = WHo(Hy) = WH(HO). This is the contradiction we need.

(i1) To show f P is continuous, it suffices to show that, if (K7, Kf) is a sequence
in Hg x Hp which converges to (KO, Kg) € Hg x Hp, then it has a subse-
quence (K", K"y such that fP (K", K\") — P (KO, K9). Let (H]', H}) =
fP(kr, K%), n € N. From Theorem 2.16 (iii), Surumy = Skr U Sgn C EUF.
From Lemma 9.2, (H{' U H}) has a convergent subsequence with limit in Hgyr.
From Lemma 2.11, SH," C S;VI'UHz" C A, where A is the convex hull of £ U F.
From Lemma 9.2, (Hl”) has a convergent subsequence. For the same reason, (H}')
also has a convergent subsequence. By passing to subsequences, we may assume that
H{'UH} — M° € Hpurp and H} — HJ, j =1,2.
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From Theorem 2.16 (i) and the continuity of the dot product, we get H; 0 Ky 0 = H, 0.
KO MPO. This implies that MY = HOUfHo (KO) The measures (/LH’! ) (see Appendlx

C) converges to i HY weakly. Each g is supported by Sy From Theorem 2.16 (ii),
SHln = fKéz (SK?) C ng (E).Since E isacompactsubsetof(C\F,wehave fKéz — ng
uniformly on E. Thus, ng (E) —> f K9 (E) in the Hausdorff metric. So u HY is sup-
ported by fKo (E), which implies that SHo - fKo (E). Hence fHo (KO) is another H-
hull, which is bounded away from H}'. 9. From K3y — K2 we have JHI\K2 ]I-]I\K2

Cara

From (9.1) we get an 1o fHo in (C\SHo Thus, H\an(K”) — H\fHo(K ).
Since H) = len(Kg), we have H\HY Carg H\fH]o(Kg). On the other hand,

Cara

H\H} — ]HI\HS. Since H\Hg and H\ leo(Kg) both contain a neighborhood
of oo in H, they must be the same domain. Thus, Hg = leo(Kg) is bounded
away from H{), ie., (H', Hf) € P*. For the same reason, Hl0 = szo(K?). Thus,
(H!', H}) — (H?, H)) = fP(KY, K9). This shows that /7 is continuous. Finally,

since K1 VK, = H-K»if (Hy, Hp) = fP(Kl, K7),weseethat (K, K») — K{VK)
is also continuous. O

Corollary 2.19 (i) Let W be an R-symmetric conformal map with domain Q2. Then
WM is measurable on Honr.
(i1) fP and (K1, Ky) — K| VvV K> are measurable on Ps.

Proof (i) We may find an increasing sequence of compact subsets (F;,) of 2 NR such
that Honr = U, HF,. From Theorem 2.18 (i), W™ is continuous on each HE,.
Thus, W is measurable on Honp.

(i) We may find a sequence of pairs of disjoint bounded closed intervals of R:
(En, Fy),n € N, such that P, = (2 H, x Hp,. From Theorem 2.18 (ii), 7 and
(K1, K2) — K1V K> are continuous on each Hg, x HF,, and so they are measurable
on Pi. O

2.3 Hulls in the unit disc

A subset K of D = {|z] < 1} is called a D-hull if D\ X is a simply connected domain

containing 0. For every D-hull K, there is a unique gg : D\K Cg:f D such that
gk (0) = 0 and g (0) > 0. Then In g% (0) > 0 is called the D-capacity of K, and is
denoted by dcap(K). Let fx = gl_(l.

We may define K - K2, K»/K1 (when K1 C K»), and K1 < K> on the space
of D-hulls as in Definition 2.4. Then the remarks after Definition 2.4 still hold if H
is replaced by DD and hcap is replaced by dcap. Then we may define K, : Ky (when
K < K>) as in Definition 2.5. For a D-hull K, the base Bg of K is K N'T, and the
double of K is K% = K U IT(K) U Bk, where IT(z) := 1/Z. Then g extends to a
conformal map (still denoted by gk ) on (C\K 4> \which commutes with IT. Moreover,
8K ((C\de) = (C\SK for some compact S C T, which is called the support of K.
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So fk extends to a conformal map from @\SK onto @\K b which commutes with
IT. Then Lemmas 2.6 and 2.7 still hold here.

We may define T-symmetric sets and T-symmetric conformal maps using Defini-
tion 2.8 with R and H replaced by T and D, respectively. For a T-symmetric domain
2 and a D-hull K, we may define domains Qg (when K d - ) and QK (when
Sk C ) using Definition 2.9. If W is a T-symmetric conformal map with domain
2, and if Qg is defined, we may then define Wg using Definition 2.10, which is a
T-symmetric conformal map on Q. The remarks after Definitions 2.8, 2.9, and 2.10
hold here with minor modifications. We claim that Theorem 2.12 holds here with
modifications. We need several lemmas.

The theorem below relates the H-hulls with D-hulls. To distinguish the two set of
symbols, we use fIH({, g}f(ﬂ, B%, S%, and KR for H-hulls, and f}?, g%, BE, S}g, and
KT for D-hulls.

Theorem 2.20 (i) Let W be a Mobius transformation that maps D onto H, and K be
a D-hull such that W~ (00) ¢ SI'H;. Then there is a unique Mobius transformation
WK that maps D onto H such that WX (K) is an H-hull, g%,( oWko f}g) =W
in C\SE, and St o = W(SE).

(i1) Let W be a Mobius transformation that maps H onto D, and K be an H-hull.
Then there is a unique Mébius transformation WX that maps H onto D such that

WK (K) isaD-hull, ¢% o o WK o f& = W inC\SE, and S;Evk(K) = W(SsR).

(K)

(K)

Proof (i) Let zo = W~ (c0) € T\Sk. Then wy := f2(z0) € T\By is well defined.
Let WOK (z) = izg—f;. Then WOK is a Mobius transformation that maps D onto H and

takes woto co. Let Ly = WOK (K). Since wy is bounded away from K, we see that L is
Conf ~

an H-hull. We have WOK : @\KTdb — (C\LE)Rdb. Define G = gHL{O o WOK o f}? ow™!
—~ —~ Conf -~

on (C\W(S}g). Then G : (C\W(S}g) ey (C\SE), fixes co, and maps H onto H. So

G(z) = az+bforsomea > 0and b € R. Let WK = G=' o WE. Then WK is

also a Mdbius transformation that maps ID onto H, and WX (K) is also an H-hull with

Swr) =G ' (SL) = W(Sp) and g o =G~ o g/ o G. Thus,

g]‘I:I{;,((K)oWKofl]]g)oW_l:G_log%ﬂooGoG_loW()KofIHg)oW_1

=GflogHL'HooW0Koflﬂ<)oW71:GfloG

= 1dg\wsy) -

This implies that gI[L41 oWko f Iﬂ() = Win @\SK. So we proved the existence. On the
other hand, if WX satisfies the desired property, then from WX = f gﬂ oWo g% we
get WK (wg) = 00. So WK = Gy o WK, where Go(z) = az + b for some a > 0 and
b € R. The above argument shows that Go = G~!. So we get the uniqueness.

(i) We may use the proof of (i) with slight modifications: replace oo by 0, swap H
and D, swap R and T, and define W({( (z) = =X O

z—wo’
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We also use WH (K) to denote the hull WX (K) in the above lemma. The following
lemma is similar to Lemma 2.14.

Lemma 2.21 Let K| and K be two H-(resp. D-)hulls such that K; < K>. Let W
be a Mobius transformation that maps H onto D (resp. maps D onto H) such that
00 ¢ W(Sk,). Then WH (K1) < WH(K>) and (2.2) still holds.

The following lemma is used to treat the case Sk = T in Theorem 2.23.

Lemma 2.22 Let W be a T-symmetric conformal map with domain Q D T. Let (K)
be a sequence of D-hulls which converges to K. Suppose that for each n, there is a
T-symmetric conformal map V™ defined on Q5 such that V;;:l) = W. Then there is
a T-symmetric conformal map V defined on QX such that Vg = W. Moreover, V (K)
is a subsequential limit of (V" (K ,)).

Proof Since K, — K, @K &% QK Since V" maps @K N D into D, the family
(vim |k Ap) 18 uniformly bounded. Thus, (V)Y contains a subsequence, which con-
vergence locally uniformly in QX N ID. To save the symbols, we assume that (V )
itself converges locally uniformly in X N D. Since each V) is T-symmetric, the
sequence also converges locally uniformly in X N D*. From the maximum prin-
ciple, (V") converges locally uniformly in QK. Let V be the limit function. Since
each V) maps T onto T, and V% — V uniformly on T, V can not be constant.
From Lemma 7.2, V is a conformal map. It is T-symmetric because each V) is T-
symmetric. Since K, — K, we have v (K,) — V(K). From VI<(}1> = W we have
gy, o V™" o fk, = Win Q\T. Letting n — 0o we get gy (k) o V o fx = Win
Q\T. By continuation, this equality also holds on Q\Sg. Thus, Vx = W. O

Theorem 2.23 Let W be a T-symmetric conformal map with domain Q2. Let K be
a D-hull such that S C Q2. Then there is a unique T-symmetric conformal map V
defined on QK such that Vg = W.

Proof We first consider the existence. Case 1. S}g # T. We will apply Theorems 2.12
and 2.20 for this case. Pick zg € 'JI‘\SI'JI; and let h(z) = iig—fi. From Theorem 2.20 (i),
there is a Mdbius transformation #X that maps ID onto H such that L := hX (K) is
an H-hull, and g%ﬂ ohK o f}? = hin @\S}E. Since W is a homeomorphism on Sk,
W(Sk) # T.Sothereiszw € T\W(Sk).Lethw(z) = zWé—;;.ThenhW is a Mobius
transformation that maps H onto D and takes co to zy . Let W= h@l oWoh~!. Then W
is an R-symmetric conformal map with domain 4 (€2), and VT/(S]lR) = h;vl o W(S}g) %
0o. From Theorem 2.12, there is an R-symmetric conformal map V with domain
LE® Y R (n(2)\SF) such that L* := V(L) is an H-hull, and V = £ o W 0 gl in
C\LE 9 From Theorem 2.20 (ii), there is a Mobius transformation hL; that maps H
onto D such that K* := hﬁ,*(L*) is a D-hull, and g%* o hl‘jv* ) fiH,IF = hwy in @\SF*.
Finally, let V = 1% o V o hX. Then

V(K) =hk o V(L) = hb (L") = K*,
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and

gK*OVOfKZgK*Oh[v;OVOhKOfK
:gK*ohﬁjofﬁoWog%HohkofK
=hyoWoh=W

in @\K Tdb_This finishes the existence part for Case 1.

Case 2. Sg = T. First, we may approximate K using D-hulls bounded by T and a
Jordan curveinD. Forexample, let J, = fx ({|z| = 1-1/(2n)}),andlet K,, = D\Dy,.
Then each K, is alD-hull, and K,, — K. Second, if K’ has the form of D\ D for some
Jordan curve J, then we may define a curve g, which starts from 8(0) = zg € T, then
follows a simple curve in D N D to a point on J, and then follows J in the clockwise
direction, and ends when it finishes one round. Suppose the domain of 8 is [0, 1].
Then B is simple on [0, 1 —¢] forany ¢ > 0. Let K,, = 8((0, 1 — 1/n]),n € N. Then
each K, is a D-hull with Sk, # T, and K,, — K’. Thus, K can be approximated by
a sequence of D-hulls (K,) such that Sk, # T for each K. Then the existence of V
follows from Case 1 and Lemma 2.22.

Now we prove the uniqueness. Suppose V is another T-symmetric conformal map
defined on X such that Vg = W. We may use the argument in the proof of Theo-
rem 2.12 to construct an analytic function 2 on C such that & = VoVv=lonV(Q)
and h = [ k) 0 gv(k) on C\V(K9%). Then & is T-symmetric. From the properties
of f\7(K) and gy k), we see that £(0) = 0 and #'(0) > 0. So & = id, which implies
that V = V. o

We may then define WX and Wt using Definition 2.13 with Theorem 2.23 in place
of Theorem 2.12 and DD in place of H. The remarks after Definition 2.13 hold here
with minor modifications, and so does Lemma 2.14. Then we define P*, P,, gp, and
f P using Definition 2.15 with H replaced by D. Then Theorem 2.16 still holds here,
and we may define the quotient union K| v K> for (K1, K») € Pi.

The space of D-hulls has a natural metric dyy described in Appendix D. Let Hg
denote the set of D-hulls whose supports are contained in S. We claim that Theo-
rem 2.18 still holds here if every R is replaced by T. For part (i), if F # T, then the
proof of Theorem 2.18 (i) still goes through with Lemma 10.2 in place of Lemma 9.2;
if F = T, then the continuity of W’ follows from Lemma 2.22. For part (ii), the
proof of Theorem 2.18 still goes through with some modifications. The relatively
compactness of (H, U J,,) follows from Lemma 10.2 instead of Lemma 9.2 because
Su,us, CEUF g T. To show the relatively compactness of (H,) and (J,,), instead of
applying Lemma 2.11, we now apply Lemma 10.1, and use the relatively compactness
of (H, U J,) and the inequalities dcap(Hp,), dcap(J,) < dcap(H, U J,). In addition,
(10.2) will be used in place of (9.1). This finishes the proof of Theorem 2.18 in the
radial case. Then Corollary 2.19 in the radial case immediately follows.

The proof of Theorem 2.18 (i) may also be used to show that the map K — WX (K)
in Theorem 2.20 (i) (resp. (ii)) is continuous if restricted to Hﬂgf (resp. H];H), where
F is a compact subset of T\ W ~!(co0) (resp. R). We then can conclude that the maps
K +— WK (K) in Theorem 2.20 (i) and (ii) are both measurable.
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3 Loewner equations and Loewner chains
3.1 Forward Loewner equations

We review the definitions and basic facts about (forward) Loewner equations. The
reader is referred to [7] for details. Let A € C([0, T')), where T € (0, oo]. The chordal
Loewner equation driven by A is

0:81(2) = go0(z) =z.

2z
§1(2) =20

We assume that g;(c0) = oo for 0 < t < oo. For z € C, suppose that the maximal
interval for r — g;(2)is [0, 7;). Let K; = {z € H : 7, < t}, i.e., the set of z € H such
that g;(z) is not defined. Then g; and K;, 0 <t < T, are called the chordal Loewner
maps and hulls driven by A. It is known that each K; is an H-hull with hcap(K;) = 2t,
andfor0 <t < T, g = gk, with exactly the same domain: @\thb. Attt =0,Ko =90
and go = 1d@\{k(0)}. ‘

We say that A generates a chordal trace g if

t) ;= lim —1 cH
B() Haﬁm)g’ (2)

exists for 0 <t < T, and B is a continuous curve. We call such 8 the chordal trace
driven by X. If the chordal trace § exists, then for each 7, H\ K, is the unbounded
component of H\B((0, 7]), and f; extends continuously from H to H U R. The trace
B is called simple if it is a simple curve and B(¢) € H for 0 < ¢ < T, in which case
K: =p(0,¢])for0<t <T.

The radial Loewner equation driven by A is

e + g,(2)

0:8:1(2) = g;(z)eiw) e’ 0<r<T; go(@=z.

We assume that g;(c0) = oo for 0 <t < oo. Foreach r € [0, T), let K; be the set of
z € D := {|z| < 1} at which g; is not defined. Then g; and K;,0 <t < T, are called
the radial Loewner maps and hulls driven by A. It is known that, each K, is a D-hull
with dcap(K;) = t, and for0 < t < T, g = gk, with exactly the same domain:
((A:\K[db. Att =0, Ko =0 and gg = id@\{em(o)}.

We say that A generates a radial trace g if

o . -1 ™
py:=_lim g7 eD

Sz—e'

exists for 0 < ¢t < T, and B is a continuous curve. We call such § the radial trace
driven by A. If the radial trace B exists, then for each ¢, D\ K; is the component of
D\B((0, ¢]) that contains 0. The trace B is called simple if it is a simple curve and
B() e Dfor0 <t < T,in which case K; = B((0,¢t]) forO <r < T.
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Let coty(z) = cot(z/2). The covering radial Loewner equation driven by A is
9,8:(z) = cotr(g,(z) — A1), 0<t<T, go(2)=xz.

For each t € [0, T), let K, be the set of all z € H at which g; is not defined. Then g;
and K;,0 <t < T, are called the covering radial Loewner maps and hulls driven by

A. We have g; : H\Et Cil:f H. If g; and K;, 0 <t < T, are the radial Loewner maps
and hulls driven by A, then Et = () 1(K,) and ¢’ o g =go ¢!, where ¢! denotes
the map z > ¢'%.

For k > 0, chordal (resp. radial) SLE, is defined by solving the chordal (resp.
radial) Loewner equation with A(f) = /k B(¢). Such driving function a.s. generates a
chordal (resp. radial) trace, which is simple if « € (0, 4].

3.2 Backward Loewner equations

Let & € C([0, T)). The backward chordal Loewner equation driven by A is

3tft(Z) = m,

fo(z) = z. 3.D

We assume that f;(co) = ocofor0 <t < T.Let L; = H\ f;(H). We call f; and Ly,
0 <t < T, the backward chordal Loewner maps and hulls driven by A.

Define a family of maps f;, s, t1, t2 € [0, T), such that, for any fixed t; € [0, T')
and z € @\{A(tl)}, the function 1, — f;, 1, (z) is the maximal solution of the ODE

2

O fr.1,(2) = m’

ftl,tl (Z) =Z.

Note that f; 0 = f; and fi; = id@\{m)}, 0<t<T.Ifyy € (0,T), then 1, could be
bigger or smaller than #;. Some simple observations give the following lemma.

Lemma 3.1 (i) Forany t,t2,13 € [0,T), fi.5, © fin,1y I8 a vestriction of fi 1. In
particular, this implies that f;, , = fl;}].

(ii) For any fixed ty € [0, T), fiy41,500 0 <t < T — to, are the backward chordal
Loewner maps driven by Mty +1),0 <t < T — 1.

(iii) Forany fixed to € [0, T), fig—t.19, 0 < t < 1o, are the (forward) chordal Loewner
maps driven by A(tg —t), 0 <t < 19.

Let Ly, s, = H\ fi,,, (H) for 0 < 11 < 1 < T. From (i), (iii), and the properties
of forward chordal Loewner maps, we see that, if 0 < #; <, < T, then L, ; is an
H-hull with hcap(Ly, ;) = 2(t2 — t1), and fi, 1, = thle' If 11 = 1, this is almost
still true except that f;, ;, = id@\{/\(n)} and thm = fy = idg. Since L, o = L,
and A(¢) € R does not lie in the range of f;, which is @/CS\L‘jlb for t > 0, we get the
following lemma.
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Lemma3.2 ForO <t <T, L; i/s\an H-hull with hcap(L;) = 2t. If t € (0, T), then
fi = f1, with the same domain: C\Sy,, and L(t) € By,.

If t2 Z tl 2 tO, from ftz,tl o fl],t() = ftz,t() we get Ltz,t() = le,t] : Lt],t(y From
Lemmas 2.7 and 3.1, we obtain the following lemma.

Lemma 3.3 Forany0 <t; <15 <T, Ly < Ly, and S, C Sp,1y)- For any fixed
to € [0, T), the family Ly, : Liy—r = Ly 19—, 0 < t < 1o, are the chordal Loewner
hulls driven by A(tg — t), 0 <t < 19.

Note that Sy, = Sp = @, and its is easy to see that, for 0 < #p < T, SLro
is the set of x € R such that the solution f;(x) to (3.1) blows up before or at g,
ie., SL,() ={x e R: 17 <1} Soevery S;,,0 <t < T, is areal interval, and
ﬂ0<t<T SL[ = {A(0)}.

If for every tg € [0, T'), L(to — 1), 0 < t < 1o, generates a (forward) chordal trace,
which we denote by B, (tp — t), 0 < t < to, then we say that A generates backward
chordal traces B,,0 < fo < T.If this happens, thenforany 0 <t <t < T,H\L, 4
is the unbounded component of H\ B, ([¢1, t2)), and f;, ;, extends continuously from
H to H such that

fon QD) = Bu(t), 0<n <0 <T. (3.2)

Here we still use f, ,, to denote the continuation if there is no confusion. For 0 <
to <t <ty <T,theequality fi,, = fi.; © fr1.00 Still holds after continuation,
which together with (3.2) implies that

S By (@) =Bn(@), 0<t<t1<n<T. (3.3)

Remark One should keep in mind that each S; is a continuous function defined on [0, ¢],
B:(0) is the tip of B¢, and B (¢) is the root of B;, which lies on R. The parametrization
is different from a forward chordal trace 8, of which §(0) is the root.

The backward radial Loewner equations and the backward covering radial Loewner
equation driven by A € C([0, T')) are the following two equations respectively:

et + £i2)
O fi(2) = _ft(z)eWTfi(z)’ Jo(2) = z;

¥ fi(z2) = —cota(fr (z) — A(1)), fo(z) = z.

We have f, o ¢! = e’ o f;. Let L; = D\ f;(D). We call f; and L,0<1<T,the
backward radial Loewner maps and hulls driven by A, and call f;, 0 <t < T, the
backward covering radial Loewner maps driven by A.

By introducing f;, ;, in the radial setting, we find that Lemma 3.1 holds if the word
“chordal” is replaced by “radial”. The following lemma is similar to Lemma 3.2.

Lemma34 For0 <t < T, Ly is a D-hull with dcap(L;) = t. If t € (0, T), then
fi = f1, with the same domain: C\Sy,, and e ¢ By,.

We find that Lemma 3.3 holds here if the word “chordal” is replaced by “radial”.
So we may define backward radial traces B;, 0 <t < T, in a similar manner.
The following lemma holds only in the radial case.
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Lemma 3.5 If T = oo, then T\ Uy, SL, contains at most one point.

Proof Let Soo = Uy~ <00 St,- From Koebe’s 1/4 theorem, as t — oo, dist(0, L;) —
0, which implies that the harmonic measure of T\ By, in D\ L; seen from 0 tends to

Conf
0. Since f; : D o D\L;, f;(0) =0, and f;(T\S.,) = T\By,, the above harmonic
measure at time ¢ equals to [T\ Sy, |/(27). Thus, [T\ Seo| = lim; o0 [T\Sz,| =0. O

For k > 0, the backward chordal (resp. radial) SLE, is defined by solving backward
chordal (resp. radial) Loewner equation with A(1) = /k B(t), 0 <t < oo. Since for
any fixed 7o > 0, (A (19 — ) — A(tp), 0 < t < fo) has the distribution of (/k B(t),0 <
t < ty), using the existence of forward chordal (resp. radial) SLE, traces, we conclude
that A a.s. generates a family of backward chordal (resp. radial) traces.

3.3 Normalized global backward trace

First we consider a backward chordal Loewner process generated by A(¢),0 <t < T.
LetS; = 81,,0<t <T,and Sy = U0§t<T S;. Then (S;) is an increasing family,
and S is an interval. The following Lemma is similar in spirit to Proposition 5.1 in
[18].

Lemma 3.6 There exists a family of conformal maps Fr;, 0 <t < T, on H such
that Fry = Frp o fon inHifO <ty <th <T.Let D; = Fr,(H),0 <t < T,
and Dy = \J,_7 Di. If (fp,) satisfies the same property as (Fr;), then there is a
conformal map ht defined on Dt such that fT,, =hrofFr,; 0<t<T.Ifthereis
zo € H such that

Im fi(z0)

1m - =
=T | f{(z0)]

then we may construct (Fr ) such that Dt = C, and we have St = R.

3.4)

Proof Fix zo € H. Let z; = f;(z0) and u; = f/(20), 0 <t < T.For¢t € [0,T),
let M,(z) = % and F; = M; o f;. Then F; maps zo to 0 and has derivative 1 at
z0.For0 <11 <t < T,define F, ;; = My, o fi,.1;. Then Fy, 1 0 fi1.10 = Fiy 1 if
to < t1 < tp. Setting o = 0 we get Fy, 1, o fr, = Fy,. Thus, Fy, 4, is a conformal map
on H with F;, 4, (z,) = 0 and Ft’zyt1 (zs,) = 1/uy, . By Koebe’s distortion theorem, for
any 11 € [0, T), {F4,.1, : t2 € [t1, T)} is uniformly bounded on each compact subset
of H. This implies that every sequence in this family contains a subsequence which
converges locally uniformly, and the limit function is also conformal on H, maps z;,
to 0, and has derivative 1/u;, at z;,.

From a diagonal argument, we can find a sequence (#,) in [0, T') such that#, — T
and forany ¢ € QN [0, T'), (F}, 4) converges locally uniformly on H. Let Fr 4, g €
QNI0, T), denote the limit functions, which are conformal on HL. Since Fy, 4,0 fy,.4; =
F}, .4, foreachn, wehave Fr 4,0 f4,.4; = Fr.4,.Fort € [0, T),chooseq € QN[t, T)
and define the conformal map Fr; = Fr 0 f;,onH.If g1 < g € QN [z, T), then
Frgi 0 fa1.6 = Frg 0 fgo.q1 © far,0 = 1,92 © fgo,1- Thus, the definition of Fr ; does
not depend on the choice of ¢. If 0 < #; < t, < T, by choosing g € QN [0, T') with
qg>t Vi, wegetFrp,o fon =Frgo fgno fon =Frqgo fgn =Fry.
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If (3.4) holds, then we start the construction of (Fr,) with such zp. Since
Conf

Fr, : (H; z) ey (Dy; 0) and F} (zt) = 1/u;, Koebe’s 1/4 theorem implies that
dist(0, dD;) > %Im z¢/|us| = thlfr}'itz(()zﬁ)’ which tends to co as t — T. So Dr has to
be C.

Supgose Fr;, 0 <t < T, satisfies the same property as Fr;, 0 <t < T. Let
hy = Fr;o FT_tl, 0 <t < T. Then each h; is a conformal map defined on D;. If
0<t; <t <T,then

hy o Fryy = Fry(2) = Frn o fo,n =hn o Frpo fon =hyoFry

in HI, which implies that i, = hy,| Dy, So we may define a conformal map s on Dr
such that i; = hr|p, for 0 <t < T. Such hr is what we need.

Suppose that (3.4) holds but St # R. Since St is an interval, Sr # R. Choose
20 € R\g, and start the construction with Z in place of zg at the beginning of this
proof. Let ﬁT,,, 0 <1 < T, denote the family of maps constructed in this way. Then

each Fr; is an R-symmetric conformal map, which implies that D7 C H. However,

Conf —~
now Dy = Cand hy : Dy o D, which is impossible. Thus, ST = R when (3.4)

holds. O

Let (Fr,), Ds, and D7 be as in Lemma 3.6. Let F7 = Fr . Suppose A generates
backward chordal traces B, 0 < fy < T, which satisfy

Vip € [0,T), 31 € (o, T), B0, 1] C H. (3.5)

We may define B(¢), 0 <t < T, as follows. For every t € [0, T), pick tp € (¢, T)
such that B, (¢) € H, which is possible by (3.5), and define

ﬁ(t) = FT,t(),Bt()(t) € Dto C Dr. 3.6)

Since Fr s = Fr 4, o fi,.1 in H, from (3.3) we see that the definition of 8 does not
depend on the choice of #y. Let tp € [0, T). From (3.5), there is #; > fy such that
B ([0, t]) € H. Since B(t) = Fr (B (), 0 <t < 1y, we see that 8 is continuous
on [0, fp]. Thus, B(¢),0 <t < T, is a continuous curve in Dr.

Fix any x € S7. Then x € Sy, for some 7y € (0, T). So fi,(x) lies on the outer
boundary of L,,, which implies that f;,(x) € B, (¢) for some ¢ € [0, tp]. From (3.5),
thereis | € (fo, T) such that B, ([0, to]) C H. Then fi, (x) = fi,1(Bry () = B (1) €
H. From the continuity of f;, on HUR, there is a neighborhood U of x in HUR such
that f; (U) C H. This shows that U "R C S;; C S7. Since Fr = Fr4 o f;, in H,
we find that Fr has continuation on U. Since x € St is arbitrary, we conclude that
St is an open interval, and Fr has continuation to H U S7.

Now we assume that A generates backward chordal traces, and both (3.4) and (3.5)
hold. Then Dy = C, St = R, acontinuous curve 8(¢),0 <t < T, is well defined, and
Fr extends continuously to HUR. Moreover, Fr is unique up to amap z — az+b for
some a, b € C, a # 0. With some suitable normalization condition, the family Fr ,
and the curve 8 will be determined by A. We will use the following normalization:
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Fr(x(0)) = 2(0), Fr((0)+i) =x1(0) +i. 3.7

If (3.7) holds, we call B the normalized global backward chordal trace generated by
A. From (3.7) we see that 8(0) = A(0), and B does not pass through A(0) + i.

For the radial case, Lemma 3.6 still holds with H replaced by D, and (3.4) replaced
by T = oo. For the construction, we choose zo = 0 and let F}, ;,(z) = el S (). If
A generates backward radial traces 8;, 0 < t < T, which satisfy

vVt € [0, T), 3 e(t,T), ﬂ,z(tl) e D, (3.8)

then we may define a continuous curve §(¢),0 <t < T,in D7 using (3.6).If T = oo,
then Dy = C, and such 8 is determined by A up to a map z — az + b for some
a,b € C, a # 0, which means that we may define a normalized global backward
radial trace once a normalization condition is fixed.

3.4 Forward and backward Loewner chains

In this section, we review a condition on a family of hulls that corresponds to contin-
uously driven (forward) Loewner hulls, and discuss the corresponding condition for
backward Loewner chains.

Let D C Chea simply connected domain such that @\D contains more than one
point. A relatively closed subset H of D is called a (boundary) hull in D if D\ H is
simply connected. For example, a hull in H is an H-hull iff it is bounded; a hull in
D is a D-hull iff it does not contain 0. Let T € (0, oc]. A family of hulls in D: K;,
0 <t < T,is called a Loewner chain in D if

1. Ko=@and K;, G K, whenever 0 <t; <1 < T;

2. for any fixed a € [0, T) and a compact set ' C D\ K,, the extremal length (c.f.
[1]) of the family of curves in D\ K; that separate F from K;;.\K; tends to O as
& — 0, uniformly in ¢ € [0, a].

If K;,0 <t < T, is a Loewner chain in D, and a € [0, T), then we also call the
restriction K;, 0 <t < a, a Loewner chain in D.

There are two important properties for Loewner chains. If K;,,0 <t < T,isa
Loewner chain in D, and u is a continuous increasing function defined on [0, 7") with
u(0) = 0, then Ku—l(t), 0 <t < u(T),is also a Loewner chain in D, which is called a
time-change of (K;) viau. If W maps D conformally onto E, then W(K;),0 <t < T,
is a Loewner chain in E.

An H-(resp. D-)Loewner chain is a Loewner chain in H (resp. D) such that each hull
is an H-(resp. D-)hull. An H-(resp. D-)Loewner chain (K;) is said to be normalized
if hcap(K;) = 2t (resp. dcap(K;) = t) for each ¢.

The conditions for the conformal invariance property of H-(resp. ID-)Loewner
chains can be slightly weakened as below.

Proposition 3.7 If K;, 0 < t < T, is an H-(resp. D-)Loewner chain, and W is an
R-(resp. T-)symmetric conformal map, whose domain contains K ;ib for each t and

@ Springer



838 S. Rohde, D. Zhan

whose image does not contain oo (resp. 0), then W(K;),0 <t < T, is also an H-(resp.
D-)Loewner chain.

The following proposition combines some results in [8, 12].
Proposition 3.8 Let T € (0, oo]. The following are equivalent.

(i) K;, 0 <t < T, are chordal (resp. radial) Loewner hulls driven by some A €
C(0, T)).
(i) K;, 0 <t < T, is a normalized H-(resp. D-)Loewner chain.

If either of the above holds, with X(l) = A(t) (resp. i(t) = "D jn the radial case)
we have

@)= (Kise/Kr. 0<t<T.

e>0

In addition, if K;, 0 <t < T, is any H-(resp. D-)Loewner chain, then the function
u(t) := hcap(K;)/2 (resp. u(t) := dcap(K;)), 0 <t < T, is continuous increasing
with u(0) = 0, which implies that K,~1(;), 0 < t < u(T), is a normalized H-(resp.
D-)Loewner chain.

Definition 3.9 A family of H-(resp. D-)hulls: L;, 0 <t < T, is called a backward
H-(resp. D-)Loewner chain if they satisfy

1. Lo=Wand L, <L, if0<t;1 <tr <T;
2. Ly Lyy—, 0 <t <1, 1is an H-(resp. D-)Loewner chain for any 79 € (0, T).

If u is a continuous increasing function defined on [0, T)) with #(0) = 0, then
L1, 0 <t < u(T),is also a backward H-(resp. D-)Loewner chain, and is called a
time-change of (L;) via u. A backward H-(resp. D-)Loewner chain (L) is said to be
normalized if hcap(L;) = 2t (resp. dcap(L;) =t) forany ¢t € [0, T).

Using Lemma 3.3 and Proposition 3.8, we obtain the following.

Proposition 3.10 Let T € (0, oo]. The following are equivalent.

(i) L;, 0 <t < T, are backward chordal (resp. radial) Loewner hulls driven by
some X € C([0,T)).
(i) L;, 0 <t < T, is a normalized backward H-(resp. D-)Loewner chain.

If either of the above holds, with 5»(1‘) = A(t) (resp. )o\.(t) = ¢*® jn the radial case)
we have

hoy=(LiLi—. 0<t<T, (3.9)

e>0

In addition, if L;, 0 <t < T, is any backward H-(resp. D-)Loewner chain, then the
function u(t) := hcap(K;)/2 (resp. u(t) := dcap(K;)), 0 < t < T, is continuous
increasing with u(0) = 0, which implies that Ly-1¢) 0 <t < u(T), is a normalized
backward H-(resp. D-)Loewner chain.
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We say that f; and L;, 0 <t < T, are backward chordal (resp. radial) Loewner
maps and hulls, via a time change u, driven by A, if # is a continuous increasing function
defined on [0, T) with u(0) = 0, such that fu—l(t) and Ly-1¢), 0 <t < u(T),are
backward chordal (resp. radial) Loewner maps and hulls driven by A o »~!. From the
above proposition, if (L;) is any H-(resp. D-)Loewner chain, then L;,0 <t < T, are
backward chordal (resp. radial) Loewner hulls, via a time change u(¢) := hcap(L;)/2
(resp. dcap(L;)), driven by A, which satisfies (3.9).

3.5 Simple curves and weldings

An H-simple (resp. D-simple) curve is a half-open simple curve in H (resp. D\{0}),
whose open side approaches a single point on R (resp. T). Every H (resp. D)-simple
curve f is an H (resp. ID)-hull, whose base Bg is a single point, and whose support Sg
is an R (resp. T-)interval. Here an T-interval is an arc on T. The function fg extends
continuously from H (resp. D) to H (resp. D), which maps Sg onto B, sends the two ends
of Sg to Bg, and sends a unique point, say zg € Sg to the tip of 8. The point zg divides
Sg into two R(resp. T-)intervals such that the restriction of fg to either interval is a
homeomorphism onto 8. Thus, there is a unique involution (an auto homeomorphism
whose inverse is itself) ¢g of Sg, which fixes only one point: zg, swaps the two end
points of Sg, and satisfies that y = ¢g(x) implies that fg(x) = fg(y). We call ¢g the
welding induced by 8.

Suppose K is an H- or D-simple curve. Let W be as in Theorems 2.12, 2.20, or 2.23.
Then W (K) is also an H- or D-simple curve. The equality WX o fx = SwrkyoW
holds after continuous extension from H or DD to its closure. So the weldings induced
by K and W(K) satisfy ¢y ) = W o g o W1

Suppose the hulls (L;) generated by a backward chordal (resp. radial) Loewner
process driven by A are all H(resp. D)-simple curves. Then the process generates
backward chordal (resp. radial) traces (8;) such that every f; is a simple curve, and
Ly =p:([0,1),0=<t <T.

Let ¢, be the welding induced by L;, which is an involution of S; := S;,. Recall
that (S;) is an increasing family because L;, < L, fort; <. If0 <t <t < T,
then from f, 1, o fi; = fi, we see that ¢y, |5, = ¢,. Thus, there is a unique involution
¢ of St := J, S such that ¢ |5, = ¢ for each r € [0, T). In other words, y = ¢ (x)
implies that f;(x) = f;(y) for some ¢ > 0, where f; is the continuous extension of the
Loewner map at time ¢ from H(resp. D) to H (resp. D). We say that ¢ is the welding
induced by this process. In the case that S = R (resp. T\{zo} for some zo € T), we
will extend ¢ to an involution of R := R U {oo} (resp. T) such that oo (resp. z¢) is the
other fixed point of ¢.

Here is another way to view the welding ¢. For every ¢ € (0, T), ¢ swaps the two
end points of ;. Let 4(0) = A(0) (resp. ¢*©). Since f;((0)) = B;(0) is the tip of
L; for each ¢, we see that i(O) is the only fixed point of ¢. On the other hand, it is
easy to see that, x and y are end points of S; ifand only if 7, =7, =1¢,0 <t < T;
and every point on ST\{i(O)} is an end point of some S;, 0 < ¢ < T. Thus, for
x#£ye€ ST\{i(O)}, y = ¢(x) if and only if 7, = 1y, i.e., x and y are swallowed at
the same time.
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Let k € (0, 4]. Since the backward chordal (resp. radial) SLE, traces are H(resp.
D-)simple curves, so the process induces a random welding, which we call a backward
chordal (resp. radial) SLE, welding. In the chordal case, For any x € R\{1(0)} =
R\ {0}, the process X} := A() — f;(x) is a rescaled Bessel process of dimension
1-— % < 1, which implies that a.s. X;7 — 0 at some finite time. Thus, Soc = R. which
implies that a chordal SLE, welding is an involution of R with two fixed points:
A(0) = 0 and oo. In the radial case, since T = oo, Lemma 3.5 says that Soo = T
or T\{zo} for some z¢ € T. The first case can not happen since ¢ has only one fixed
point on So. Thus, a radial SLE, welding is an involution of T with two fixed points,
one of which is ¢/*©@ = 1.

Suppose a backward chordal (resp. radial) Loewner process generates H (resp. D)-
simple backward traces B;, 0 < t < T. Then (3.5) (resp. (3.8)) is satisfied because
Br, (1) lies in H (resp. D) if 1o > #1. It is clear that the curve B defined by (3.6) is
simple, and D; = Dr\B([t,T)) for 0 <t < T. Let ¢ be the welding induced by the
process. If y = ¢ (x), there is ¢ € [0, T') such that y, x € §; and f;(y) = f;(x). From
Fr o f; = Fr, we get Fr(y) = Fr(x). This means that ¢ can be realized by the
conformal map Fr.

If a backward chordal (resp. radial) Loewner chain (L;) is composed of H (resp.
D)-simple curves, then (L;) induces a welding ¢, which is an involution of | J Sz, and
agrees with ¢;, on Sy, for each 7. To see this, one may first normalized the backward
Loewner chain so that it is generated by a backward Loewner process.

4 Conformal transformations

In this section, we will study how a backward SLE(x; p) process changes under a
Mobius transformation, and derive the backward SLE counterpart of the results of
[17]. For this purpose, we will first define the conformal transformation of a backward
Loewner chain. The rest of the arguments are the same as the ones for forward SLE,
up to negating k. We will use the ideas in [17] and some results in [8].

Proposition 4.1 Suppose L;, 0 <t < T, is a backward H-(resp. D-)Loewner chain,
W is an R-(resp. T-)symmetric conformal map whose domain contains every Sy ,, and
oo ¢ W(St,)forO0 <t <T.Then wh (Ly), 0 <t < T, isalso a backward H-(resp.
D-)Loewner chain.

Proof From Theorem 2.12, WL and WH(L,) are well defined. Since Ly = ,
WH(Ly) = ?#. Let0 <1, < b < T. Since L, < Ly, from Lemma 2.14,
WH(L,) < WH(L,). Fix tp € (0, T). Since Ly : Ly, 0 < t < fo, is an H-
(resp. D-)Loewner chain, from Lemma 2.14 and Proposition 3.7 we see that

WH(Ly) : WH(Lyy—) = WEO(Lyy - Liy—), 0 <1 <19,

is also an H-(resp. D-)Loewner chain. This finishes the proof. O

We call WH(L,), 0 <t < T, the conformal transformation of L;, 0 <t < T,
under W. Using Lemma 2.21 instead of Lemma 2.14, we can show that a similar
proposition holds.
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Proposition 4.2 Suppose L;, 0 <t < T, is a backward H-(resp. D-)Loewner chain,
W is a Mobius transform that maps H onto D (resp. maps D onto H) such that
oo ¢ W(S,) for0 <t < T. Then WH(LI), 0 <t < T, is a backward D-(resp.
H-)Loewner chain.

Suppose (L;) is composed of H- or D-simple curves. Then (W7(L,)) is also
composed of H or D-simple curves. Let ¢ and ¢w be the weldings induced by these
two chains, which are involutions of (J Sz, and |J Sy ;). respectively. Since for
each 7 € (0.7), @ls,, = &L, dwlsys,,, = Pwrwy> Swrw,y = W(SL,), and
dwr,y =W oL, o W, wesee that | Syw ) = W(J St,) and

dw=WopoW L .1

This means that the conformal transformation preserves the welding.
The following proposition is essentially Lemma 2.8 in [8].

Proposition 4.3 Let W be an R-symmetric conformal map, whose domain contains
z0 € R, such that W (zp) # oo. Then

hcap(W (H))

— W 2’
Hl_rgo hcap(H) W o)l

where H — zo means that diam(H U {zo}) — 0 with H being a nonempty H-hull.

Using the integral formulas for capacities of H-hulls and D-hulls, it is not hard to
derive the following similar proposition.

Proposition 4.4 (i) Let W be a conformal map on a T-symmetric domain 2, which
satisfies I o W = Wo It and W(Q ND) C H. Let zo € Q N T be such that
W (z0) # oo. Then

hcap(W (H))

=2W/ 2,
Hl—r>nzO dcap(H) W o)l

where H — zo means that diam(H U {zo}) — 0 with H being a nonempty
D-hull.

(ii) Proposition 4.3 holds with R replaced by T, hcap replaced by dcap, and H — zo
understood as in (i).

4.1 Transformations between backward H-Loewner chains

Suppose L; and f;,0 <t < T, are backward chordal Loewner hulls and maps driven
by A € C([0, T)). From Proposition 3.10, (L;) is a backward H-Loewner chain. Let W
be an R-symmetric conformal map, whose domain €2 contains the support of every L;.
Write W, for WL, The domain of W; is Q%7 which contains L?b. Ift > 0,A(t) € L9,
so A(t) is contained in the domain of W;. This is also true for 1 = 0 because Wy = W
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and {A(0)} = Sp C S, = S1, C Qforanyt € (0, T). Let L¥ = WH(L,) = W,(L,),
0 <t < T. From Proposition 4.1, (L}) is a backward H-Loewner chain, and

Wi(Lt 2 L) = L* Ly

t—e’

O0<t—e<t<T. “4.2)

From Proposition 3.10, Ly, 0 < t < T, are backward chordal Loewner hulls via a
time change u(t) := hcap(L})/2, driven by some 1*, which satisfies

Wan=(Li: L, 0<t<T.

e>0

From (3.9), (4.2), and continuity, we find that
(@)= W (A(@), 0<r<T. 4.3)

Since (L;) and (L"‘,1 )) are normalized, we know that hcap(L; : L;—,) = 2¢ and
heap(L} : L} ,) = 2u(t) — 2u(t — ¢). From (4.2) and Proposition 4.3, we find that

W)y =W ow)? 0<t<T. (4.4)

Let f* = fr». From the definition of W; = WLt we have the equality
Wio fy = ffoW, 4.5)
which holds in £\S;,. Differentiating (4.5) w.r.t. #, and using (4.3) and (4.4), we get

-2 —2u' (1)
fi(2) = A(0) f,*(W(z)) — A¥(1)

_ W)’

C Wi(fi@) = Wi (A1)

[0 W (f1 () + W/ (f1(2))

Thus, for any w = f,(z) € f,(Q\Sz,) = QL \LP,

_ 2W )’ -2
W) = e e e 5 “46)

By analytic extension, the above equality holds for any w e QL/\{A(r)}. Letting
w — A(t), we find that

AW (A1) =3W,/ (A1), 0<t<T. “4.7)

Differentiating (4.6) w.r.t. w and letting w — A(t), we get

AW/ _ _1(W//(/\(f)))2 L AWrem) “.8)

W/ (A (1)) W/ (A (1)) 3 W)
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4.2 Transformations involving backward D-Loewner chains

Now suppose L;, 0 <t < T, are backward radial Loewner hulls driven by A. Let f;
and f; be the corresponding radial Loewner maps and covering maps. Suppose W is a
T-symmetric conformal map, whose domain €2 contains the support of every L,. Let
W, = Whe, L¥ = W,(L,) = WH(L,), and u(t) = dcap(L}),0 <t < T.Then L},
0 <t < T, are backward radial Loewner hulls via a time change u(¢) := dcap(L}),
driven by some A*, which satisfies

Oy =(Lf:Li.. 0<t<T.

t—e»
e>0

Let f;* (resp. f:*), 0 <t < T, denote the backward radial (resp. covering radial)
Loewner hulls via the time change u driven by A*. The argument in the last subsection
still works with Proposition 4.4 in place of Proposition 4.3. We can conclude that ¢/*(")
lies in the domain of W, for 0 < t < T; W;(e'*0) = "0 /(1) = |W’(e"“’))|2'
and (4 5) still holds. Suppose W is an R- symmetrlc conformal map defined on Q=
(e )~ (Q) Wthh satisfies e oW = Woe'. Define W, to be the analytic extension of
fFoWo fi'toQ := (e')1(Q). Then we get

Wiofi=foW; (4.9)
gomparing this with (4.5) we find ¢’ o W, = W, o ¢'. So A(¢) lies in the domain of

W;, and B
W(t)y=Wow)? 0<t<T. 4.10)

Since W, (e*®) = ¢*" () from the continuity, there is n € N such that W, (A(1)) =
A*(t) + 2nm for 0 <t < T. Since A* and A* + 2nw generate the same backward
radial Loewner objects via the time change u, by replacing A* with A* 4+ 2n7, we may
assume that _

W, (L) =1*(1), 0<t<T. (4.11)

Differentiating (4.9) w.r.t. t and letting w = f;(z), we get
& W, (w) = =W, (.(1))? cota (W, (w) — W, (A (1)) + W, (w) cota(w — A (1)), (4.12)
which holds for w € (e/)~1(QL1\{e!*}). Letting w — A(f), we get
dW,(L(1)) =3W/(L(1)), 0<1t<T. (4.13)
Differentiating (4.12) w.r.t. w and letting w — A(¢), we get

oW _ 1 (W,”(A(r)))2 AW 00

1
W WO - <. (414
W/ () W/ (1(1)) 3 W/ (1)) + AO) g 414

The number L 5 comes from the Laurent series of cot; (z) = — — + 0.
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Let(L;),(f:),and (ﬁ) be as above. Now suppose W is a Mobius transformation that
maps I onto H such that W1 (c0) ¢ Si, forevery ¢. Let WL be as in Theorem 2.20.
Let W, = WL and LY = Wi(L;) = WH(L,),0<t<T.Then L*,0 <t < T, are
backward chordal Loewner hulls via a time change u(¢) := hcap(L})/2, driven by
some A*. Let f* = f,. Then (4.5) still holds, and we have u'(t) = |W/(*®)? and
Wi(e™W) = ¢*" ) Let W = W o e’ and W, = W, o e'. We get (4.10), (4.11), and
W, o f, = fro w. Differentiating this equality w.r.t. # and letting w = f, (z) tend to
A(1), we find that (4.13) still holds.

4.3 Mobius invariance of backward SLE(k; p) processes

We now define backward chordal and radial SLE(x; p) processes, where p =
(p1,---,pn) € R". Let x0,91,---,9, € R such that g # xo for all k. Let
A(?),0 <t < T, be the maximal solution of the equation

dr(t) = VkdB(t) + Z m dt;  1(0) = xo. (4.15)
t

Here ft)‘, 0 <t < T, are the backward chordal Loewner maps driven by A. Then we
call the backward chordal Loewner process driven by A the chordal SLE(x; p) process
started from xo with force points (g1, . . . , g»), or simply started from (xo; g1, - - ., gn)-
We allow some g to be co. In that case, f,)‘ (gr) is always oo, and the term /\(t)—_—%
vanishes. B

Let x0, g1, -..,qn € Rbe such that gx ¢ xo + 27 Z forall k. Let A(¢),0 <t < T,

be the maximal solution of the equation
P
dM1t) = VkdB(t) + ) Tk coty(A (1) — fH(gr))dt; 1(0) =xp.  (4.16)
k=1

Here f?‘, 0 <t < T, are the covering backward radial Loewner maps driven by A.
Then the backward radial Loewner process driven by A is called the radial SLE(«; p)
process started from e/*0 with marked points (¢/?', ..., /"), or simply started from
(el*o; eldr . eldn),

The existence of backward chordal (resp. radial) SLE, traces and Girsanov’s The-
orem imply the existence of a backward chordal (resp. radial) SLE(k; p) traces. The
traces are H(resp. D)-simple curves if « € (0, 4].

The following lemma is easy to check.

Lemma 4.5 Let W be a Mébius transformation. Then the following hold.

(i) Foranyz e CNWY(C)andw € G

W@ 2 W@
Wi —Ww) z—w W)
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(i) Let W = W o ¢'. Foranyz € CN W~1(C) and w € C,

2W'(2) W’ (z)
== —coh(z —w) = = .
W(z) — W(w) W'(z)

(iii) Suppose an analytic function W:Q—C satisfies €' o W =Woeé inQ. Then
forany z, w € L,

W// (Z)

W'(2) cota (W (z) — W (w)) — cota(z — w) = T

Theorem 4.6 Let L;,, 0 <t < T, be the backward chordal SLE(k; p) hulls started
from (x0; q1, - -, qn)- Suppose > pr = —k — 6. Let W be a Mébius transforma-
tion from H onto H such that {co, W1 (00)} C {q1,...,qn}). Then, after a time
change, wH (Ly), 0 <t < T, are the backward chordal SLE(k; p) hulls started from
(W(x0); W(@D), - -, W(gn):

Proof Since W~!(00) is a force point, it is not contained in the support of any L;. So
oo ¢ W(S.,),0 <t < T.Let A be the driving function, and f; = ftx, 0<r<T,
be the corresponding maps. We may and now adopt the notation in Sect. 4.1. Let
(F) be the complete filtration generated by B(¢) in (4.15). Then ();) and (L) are
(F)-adapted. From Corollary 2.19 (i), (WH(L,)) is also (F;)-adapted. Since W, =
Wkt = fur,, o Wogr, on QE\LP, (W,) is (F;)-adapted. So we may apply 1t0’s
formula (c.f. [14]). From (4.3) and (4.7), we get

dAF(6) = W L (0))dA(1) + (g + 3) W/'Oe)dt, 0<t<T.

Applying (4.15) and Lemma 4.5 (i), and using the condition that >_ px = —k — 6, we
find that

. , L W)
AN = W (A(t dB(t) +
(1) = W/ () /kd B(1) ; Wi Git) — Wi o £(a0)
J— / 2
o Wi (A (1)) dt, 0<t<T.

- W dB(t) +
[ 0)KdB() Z, 0 — 1o W) -

From (4.3) we get A*(0) = Wp(A(0)) = W (xp).Since L} = wH(L,)and f; areback-
ward chordal Loewner hulls and maps via the time change u driven by A*, from (4.4)
and the above equation, we conclude that, after a time change, wH (L), 0<t<T,
are the backward chordal SLE(x; p) hulls started from (W (xo); W(q1), ..., W(qn))
and stopped at some time.

It remains to show that the above process is completed. If not, the process can be
extended without swallowing the force points W (q1), . .., W(g,). From the condition,
W (o0) is among these force points. So (WM is well defined at the hulls of the
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extended process. From Propositions 4.1 and 3.10, this implies that the backward
chordal Loewner hulls L;, 0 < ¢t < T, can be extended without swallowing any of
q1, - - -, qn, Which is a contradiction. |

The following theorem can be proved using the above proof with minor modifica-
tions: we now use the argument in Sect. 4.2 instead of thatin Sect. 4.1, apply Lemma4.5
(ii) and (iii) instead of (i), and use Proposition 4.2 in addition to Proposition 4.1.

Theorem 4.7 Suppose > px = —k — 6. Let (L) be the backward radial SLE(k; p)
hulls started from (e'¥0; e\, ... e!9). Let W map D conformally onto H (resp.
D) such that (W™l (c0)} N T < {9, ..., e'%). Then, after a time change,
(WH(L,)) are the backward chordal (resp. radial) SLE(k; p) hulls started from
(W (e*0); W ('), ..., W(eln)).

quollary 4.8 Let (L;) be the backward radial SLE(x; —k - 6) hulls started from
(e'*0; '), Let W map D conformally onto H such that W (e'*°) = 0 and W (¢'1) =
oo. Then, after a time change, (WH(L ¢)) are the backward chordal SLE, hulls started
from 0.

Remarks

1. The above theorems are the backward SLE counterpart of the work in [17] for
forward SLE(k; p) processes. The condition in their paper for Mobius invariance
is D pr = k — 6. This is one reason why we may view backward SLE, as SLE_,.

2. The definition of backward SLE(x; p) process differ from Sheffield’s definition in
[18] by a minus sign in (4.15) and (4.16) before the pi’s. If Sheffield’s definition
were used, the condition for conformal invariance would be >, px = « + 6 instead
of > pr = —k —6.

3. We may allow interior force points as in [17]. For the chordal (resp. radial)
SLE(«x; p) process ifgr e H (resp el ¢ ]D)) is a force point, we use Re ft (qx)
(resp. Re f, (gx)) instead of f[ (gqx) (resp. f, (gr)) in (4.15) (resp. (4.16)). In the
radial case, adding O to be a force point or change the force for 0 does not affect
the process. Theorems 4.6 and 4.7 still hold if some or all force points lie inside H
or D. For the proofs, we apply Lemma 4.5 with real parts taken on the displayed
formulas. One particular example is the following corollary.

Corollary 4.9 Let L;, 0 < t < o0, be a backward radial SLE, process. Let W be
a Mobius transformation that maps 1 onto H such that W (1) # oo. Let T be the
maximum number such that W~ (c0) ¢ Si,, 0 <t < T. Then, after a time change,
WH(L,), 0 <t < T, are the backward chordal SLE(k; —k — 6) hulls started from
(W(1); W(0)).

4. Using the properties of Bessel process and applying Girsanov’s theorem, one may
define backward chordal or radial SLE(x ; p) processes with exactly one degenerate
force point, if the corresponding force p; satisfies p; < —2 (which corresponds to
a Bessel or Bessel-like process of dimensiond = 1 — “”}ﬂ > 1). Theorems 4.6
and 4.7 still hold when a degenerate force point exists. Unlike forward SLE(k; p)
process, it is impossible to define a backward SLE(«; p) process with two different
degenerate force points.
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5. Consider the radial case with one force point. Suppose the force p; < —5 — 2.

Let X; = A(¢) — f? (g1). Then X; is a Bessel-like process with dimension d =
1 - ﬂﬂ > 2, which implies that X, never hits 277Z. So T = oo and /7' ¢ S;
for any t. From Lemma 3.5, Soo = ’H‘\{eiq' }. If, in addition, ¥« € (0, 4], then
a backward radial SLE(x; p1) process induces a random welding ¢, which is a
involution of T with exactly two fixed point, M0 and ¢4 which are the initial
point and the force point of the process.

5 Commutation relations

Definition 5.1 Let x1,xy > 0, n € N, and p1, pp € R". Let z1, 20, wy, 2 < k <
n, be distinct points on R (resp. T). We say that a backward chordal (resp. radial)
SLE(k1; p1) started from (z1; 22, wa, ..., w,) commutes with a backward chordal
(resp. radial) SLE(x2; p2) started from (z2; z1, wa, ..., wy) if there exists a coupling
of two processes (L1(¢); 0 <t < Tp) and (L2(¢); 0 <t < T) such that

(1) For j =1,2,(L;(),0 <t < Tj)is a complete backward chordal (resp. radial)
SLE(k; p ;) process started from (z; z3—j, w2, ..., wy).

(ii) For j # k € {1,2},if i < Ty is a stopping time w.r.t. the complete filtra-
tion (.7-',k) generated by (Lx(¢)), then conditioned on .7-';; , after a time change,
felie, )L j(tj), 0 < tj < T;(t), has the distribution of a partial backward
chordal (resp. radial) SLE(«j; p ;) process started from

(fieies (27)); M (@), fielTe w2, -+« fieli, wa)),

where fy(fx, ) = fr,i i) = sup{tj_ < T;: S NSy = 95
Ak (f) = A (f) in the chordal case (resp. e/*¢() in the radial case), and Ay is the
driving function for (L (?)).

Here a partial backward SLE(k; p ;) processis acomplete SLE(k; p ;) process stopped
at a positive stopping time. If the commutation holds for any distinct points z1, 22, Wk,
2 <k <nonR (resp. T), then we simply say that backward chordal (resp. radial)
SLE(x1; p1) commutes with backward chordal (resp. radial) SLE(«2; 02).

Remark The definition is similar to the definition of the commutation relation
between forward SLE(«; p) processes that first appeared in [5], where implicitly
gk(tk, Lj(t))) = gr,(i,)(L;j(t;)) was used instead of the fi (7, -)H(Lj(tj)) here, and
T (tx) was defined to be the first ; such that L ;( j)db intersects Ly (7)9®.

Theorem 5.2 For any « > 0, backward chordal (resp. radial) SLE(k; —k — 6) com-
mutes with backward chordal (resp. radial) SLE(k; —k — 6).

We will prove this theorem in the next two subsections.
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5.1 Ensemble

In this subsection we will study how two backward SLE processes interact with each
other. The argument relies extensively on ideas and techniques from [9]. We first
consider the radial case. Fix « > 0 and z; # zo € T. Write z; = eizf', j =172
For j =1,2,let Lj(¢),0 <t < T}, be a backward radial SLE(x; —k — 6) process
started from (z;; z3—;); let A; be the driving function, and let f;(z,-) and f;(z, -),
0 <t < T}, be the corresponding maps and covering maps. At first, we suppose that
the two processes are independent. Then for j = 1, 2, A; satisfies A ;(0) = Z/ and the
SDE:

K —6 -~
drj(t) = «/EdBj(l‘) — cota(A;(t) — fi(t,z3—;)dt, 0=<t<T;, (5.1
where B (7) and B(#) are independent standard Brownian motions. For j =1, 2, let

(F/) denote the complete filtration generated by B ().
Define D = {(#1, 2) € [0, T1) x [0, T2) : Sz,(¢;) N SLo(1y) = D). Then for (¢, 1) €
D, we have (L1(t1), L2(#2)) € P«. So we may define

(L1.,y(11), Loy (1) = fF(L1(11), La(02)).

Let fi,(11, ) = fri a0 and fo,4 (12, ) = fL,,, (1»)- From a radial version of Theo-
rem 2.16, we see that

fin@, D)o falt, ) = fLia)vLan) = fan(t2,2) o fi(t, ). (5.2)

Recall that Li(#1) Vv La(fp) is the quotient union of Li(¢;) and Ly(%), i.e., the
unique hull which is the disjoint union of two hulls such that the corresponding two
quotient hulls are Li(#1) and Ly(%). Fix j # k € {1, 2}. From a radial version of

Corollary 2.19 (ii), the random map fj ;, (¢, -) is .7-' ><.7-' k _measurable. Let u ; ) =
dcap(L 4 (¢;)). From Propositions 3.10 and 4.1, for any ﬁxed t € [O 1), fiu(tj, ")
are backward radial Loewner maps via the time change u; . Let f . (tj, -) be the
corresponding covering maps. So e’ o fj w(tj, ) = fjy(tj, ) oe'. From continuity,

we see that f (), ) 1s also .7-7 x F k _measurable, and from (5.2) we have
frn@, ) o falia, ) = fau () 0 filn, ). (53)
Define m on D by m(#1, t2) = dcap(L(t1) V La(2)). From (5.2) we get
m(fy, 1) = u1,, (1) + 12 = upy (2) + 1. 5.4
Apply the argument in the first paragraph of Sect. 4.2 with A = A, L;; = L;(t;),
W = fi(t, ), and W = fk(tk, -), where fx € [0, Tr) is fixed. Then we have corre-

spondence: L* =Lj,(tj), u=ujy,and ft = f] (), ). Since Wt is an analytic

@ Springer



Backward SLE and the symmetry of the welding 849

extension of j‘;* oWo ﬁ*] from (5.3), we find that Wt = fk, (tx, -). Thus, e )
(resp. X; (t/)) lies in the domain of fi /; (7, -) (resp. fk t; (., -)) aslongas (t1, 12) € D.

Write Fk (i, ) = fk 4 (t%, -). We will use 8, to denote the partial derivative w.r.t.
the first variable inside the parentheses and use " and the superscript (k) to denote the
partial derivatives w.r.t. the second variable inside the parentheses. For h =0, 1, 2, 3,
define A ; on D by

At ) = Fi e 2y @)) = Bl @, ). (5.5)
Use Sf to denote the (partial) Schwarzian derivative of f. Define A; s on D by
Ajs(ti 1) = S fir, (ti, hj (1)) = SFe (17, 25(t7)) (5.6)

From Sect. 4.2, we know that L ;, (¢;) are backward radial Loewner hulls via the time
change u ; ;, driven by A; ,, which can be chosen such that

A (tj) = Ajo(t, 12). (5.7)

Moreover, from (4.10), (4.13), and (4.14), we have

ul, (1) = AJ . (5.8)
3 Frer (17, 2 (1)) = 3A 2, (5.9)
M:_l<ﬂ)2+iﬂ+lfﬁl_l (5.10)
Flé,zk(tj’)‘j(tj)) 2\Aj; 3Aj, 6 , 6

where all A; j, are valued at (¢1, 12).
From now on, we fix an (]-"tk )-stopping time #; with #y < Ty. Then the process of

conformal maps (fk,zk (tj,-) is (]—'t];. X fi),jzo—adapted. Let T (k) be the maximal
number such that for any t; < T (), we have (t1, 2) € D. Then T} (#) is an (.7-',’}: X

.E’;)tjzo—stopping time. Recall that (A()) is an (.Ft]j-.)—adapted local martingale with
(Aj): = «t. From now on, we will apply It6’s formula repeatedly. All SDEs below are
(}',/j X f};),jzo-adapted, and ¢; runs in the interval [0, T} (%)).
From (5.7), (5.5), and (5.9), we get
iy (1)) = Aj1dh; (z,)+( +3) jadt, 0=t <Tj(t). (5.11)
From (5.5) and (5.10) we get
W Ajn  Ajo 1 (Aj2\> [k 4\ Ajz 1 1
L = PR AN i+ | —= i + =+ L_F_Az, — — | dt:.
Ajn Ajg 2(A,,1) (2 3) Ajp 60 6|

(5.12)
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Let

6 — (=) oo (8 = 3(=k))(—=k —6)
20—=k) = 2(—k) '

Note that if —« is replaced by «, then ¢ becomes the central charge for forward SLE,.,
which mns in the 1nterval (—o0, 1]. The ¢ here falls in the interval [25, 00). Since

Ajs =75 ( )2 from (5.12) we get
;AT | Ao c o o
Js Js 2
— a2 [—-A~ Ya2 _ —]dr. 5.13
A‘j){l OlAj’1 j + 6 ],S+ 6 gl 6 Jj ( )

Now we study 8, Ak and 8, Ai.s. From (5.5) we have App(t1, 1) =
F( )(tk,kk(tk)) Recall that Fj 1 (e, ) = fj (), ), and fj 1 (tj, ) are backward

coverlng radial Loewner maps via the time change u; ; driven by A; ;. From (5.7)
and (5.8), we get

O fa(tj,2) = — A3 | cota(f (1), 2) — Aj0). (5.14)
Differentiate the above formula w.r.t. z, we get

atﬁtkaj,z)

fl (ti,2) A2 1 COtz(f/ n(tj,2) — Ajo). (5.15)
etk NI

Differentiating the above formula w.r.t. z, we get

f (tj9 ) ~ ~
S " — A3 coty (fiu (t7.2) — Aj0) o, (15, 2).
j e jZ

Since Sf = (f—,,/)/ - %(fT,,/)Z, from the above formula, we get

WS (tj.2) = =A% coty (Fu(tj.2) — Ajo) ., (1. )% (5.16)

Letting z = A (#) in (5.14), (5.15), and (5.16), we get

3 Ao = — A3 cota (Ao — Aj0)dl: (5.17)

3, Ar.1

il L —Ail cots (A0 — Ajo)dtj; (5.18)
Ak

O Ars = —A7 | A} coty (Aro — Ajo)dt;. (5.19)

Define X j on Dsuchthat X; = A o— Ay . Then X1 +X» = 0. Since i) lies in
the domain of f ;, (1. -), et = ic; (t %) lies in the range of ;M. ), ie,
@\Lk,,j (tx)- On the other hand, since via a time change, Ly, 4 (1) are backward radial
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Loewner hulls driven by Ay s (fx) = A0, from Lemma 3.4 we have el Ako ¢ Li; (1)

when #;, > 0. Thus, €40 #£ ¢/4k0 if 1 > 0. Switching j and k, the inequality
also holds if t; > 0. If t; = 1 = 0, then elAjo = ¢i%j # % = ¢! A0 Thus,

Xj, Xy ¢ 2nZ. So we may define
e =20 __ | —2a
Y = [sinp(X)|™™ = [sina(X2)| 77",
From (5.7), (5.11), and (5.17), we get
K
0, X; = Ajadh; + (E +3) Ajadt = A% | cota(X ).

From It&’s formula, we get

&Y
Y

= —acotr(X))Aj1drj —« (% + 3) Ajocotr(Xj)dt;
o oK
—EA% cot3 (X j)dt; + TA?yldtj.

Define Q and F on D such that Q = cot}'(X|) = cot}’(X>) and

(5.20)

%) 11
F(t1, 1) = exp (/ / Al,l(sl,52)2A2,1(Sl7SZ)ZQ(SI752)dSIdS2) . (52D
0 Jo

Since ka,,k (0, -) = id, from (5.6) we have A; s = 0 when ¢; = 0. From (5.19) we

get
o, F

F

Define a positive function M onD by

= —Aj’sdtj.

—~ c C
M = AY [AS \YF Gel™,

From (5.4), (5.8), (5.13), (5.18), (5.20), and (5.22), we have

oM _ —Af*zdx (XA 1dh; — —dt
— = i — o CO i i i — = i
M Aja S

(5.22)

(5.23)

(5.24)

Whenr, =0, wehave A;; = 1,A;, =0,m =1r;,and X; = A;(t;) — f;(t,%k), 80

the RHS of (5.24) becomes

1 /k ot 3 ‘2
- (5 + 3) cota(Aj(tj) — fi(tj, zi))dAj — gdtj.

Define another positive function M on D by

M(t1, )M (0, 0)

M(t, ) = = ~ .
) = G OM 0. 0)

(5.25)

(5.26)
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Then M(-,0) = M(0, -) = 1. From (5.1), (5.24), and (5.25), we have

8tjM K A2 —Kk —6
= —(3+2)-L - t2(X)A;
M |: ( +2)Aj,l ) cota( ]) J.1

_ ~ dB:(t:
cota (A (t) — fj(tj,zk))}ﬂ. (5.27)

= NG

So when #; € [0, p) is a fixed (]-",k)—stopping time, M as a function in ¢; is an (]—'4 X
}"t]j )t;>0-local martingale.

5.2 Coupling measures

Let JP denote the set of disjoint pairs of closed arcs (J1, J2) on T such that z; = e'%i
is contained in the interior of J;, j = 1, 2. Let T (J;) denote the first time that Sz, ()
intersects WJ] Then for every (J1, J2) € IP, if t; < T;(J;), then Sz;;y C Jj,
which implies that L (7;) € Hy;. So [0, T1(J1)] x [0, T2(J2)] C D.

Proposition 5.3 (Boundedness) For any (J1, J2) € JP, | In(M)| is uniformly bounded
on [0, T1(J1)] x [0, T>(J>2)] by a constant depending only on Jy and J,.

Proof Fix (J1, J2) € JP. In this proof, all constants depend only on (Ji, J2), and
we say a function is uniformly bounded if its values on [0, T1(J1)] x [0, T>(J2)] are
bounded in absolute value by a constant. From (5.23) and (5.26), it suffices to show
that In(Ay 1), In(A2,1), In(Y), In(F), and m are all uniformly bounded.

Note thatifz; < Tj(J;),then L;(7;) € H,;. From aradial version of Theorem 2.16
(iii), we have

{L1(t1) vV La(t2) : t; € [0, T;(J)], j=1,2} CHyus,- (5.28)

Since J1 U J» ; T, from Lemma 10.2, the righthand side is a compact set. So
the lefthand side is relatively compact. Since H + dcap(H) is continuous, and
m(t, tp) = dcap(L1(#1) Vv L2(2)), we see that m is uniformly bounded. For j = 1, 2,
since t; < m, T;(J;) is also uniformly bounded.

Let S7 and S, be the two components of T\(J; U J). Fors = 1,2, let E; C S

. . . Lu.
be a compact arc. From Lemma 10.3, L, — L in Hj,uy, implies that fr, = 1L

in C\(J; U J2), which then implies that fin 1—u> f; in C\(J1 U J»). From (5.28),
the compactness of H j,uy,, and that E; U Ep are compact subsets of C\(J1 U J2),
we conclude that there is a constant ¢; > 0 such that | f il (t)VLa (tz)(z)| > c for any
1 < Tj(Jj),j = 1,2, and z € E{ U E3. Thus, for 1 € [0, Tj(-]j)]’j =1,2,
the length of f1,(:))vL,(0)(Es), s = 1,2, is bounded below by a constant ¢; > 0.
Suppose ¢; € (0, T;(t;)], j = 1, 2. From Lemma 3.4, ¢'4/0 ¢ BLj,t;,j(tj)’j =1,2.
Note that f7,)vL, ) (E1UE2) disconnects By, ) from By, , 1,y onT. Thus, there
is a constant ¢3 > 0 such that |e!41.0U1:2) _ iA20(.22)| > (5 for tji € (0, T;(t)],
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J =1, 2. From continuity, this still holds if ¢; € [0, T;(J;)], j = 1, 2. Thus, In(Y) =
—2aIn|siny (X )|, | coth (X )], and | coty'(X )|, j = 1, 2, are all uniformly bounded.

We may find a Jordan curve o, which is disjoint from J; U J;, such that its interior
contains Ji and its exterior contains J>. From compactness, sup, ., In | f; (tj,z)| and

Sup, ¢, In |f£1(z1)vL2(z2)(Z)| are both uniformly bounded. From (5.2) we see that the

value sup,,. £(tj.0) In | f3’_ i) (tx, w)| is also uniformly bounded. Note that the inte-
rior of f;(t;, o) contains L ;(#;)%, which contains ¢/*/ /) if t; > 0. From maximum
principle, there is ¢4 € (0, 00) such that Aj 1 (t1, 1) = |f3’_j’[j (13—}, Y| < ¢y
ift; € (0,T;(Jj)] and t3_; € [0, T3_;(J3—;)]. From continuity, A;; is uniformly
bounded, j = 1, 2. From (5.18) and the uniformly boundedness of | cot), (X ;)| we see
that In(A 1) is uniformly bounded, j = 1, 2. From (5.21) and the uniformly bound-
edness of | cot)’ (X ;)| we see that In(F) is also uniformly bounded, which completes

the proof. O

Let p; denote the distribution of (A;), j = 1,2. Let 4 = p1 x po. Then
W is the joint distribution of (A1) and (A;), since A; and A, are independent. Fix
(J1, J2) € JP. From the local martingale property of M and Proposition 5.3, we
have E ,[M(T\(J1), T»(J2))] = M(0,0) = 1. Define v, 4, by dvy, 5,/du =
M(T1(J1), T>(J2)). Then vy, 4, is a probability measure. Let vy and vy be the two
marginal measures of vy, 5. Then dvy/dpuy = M(T1(J1),0) = 1 and dva/duy =
M0, T5(J2)) = 1,50 v; = uj, j = 1, 2. Suppose temporarily that the joint distribu-
tion of (A1) and (A7) is vy, , instead of w. Then the distribution of each (4 ;) is still
K-
jFix an (ff)-stopping time fp < T>(J3). From (5.1), (5.27), and Girsanov theorem
(c.f. [14]), under the probability measure v, ,, there is an (]—'ll1 X }',22) 1 >0-Brownian
motion El,tz (t1) suchthat A (¢1),0 < t; < T1(J}), satisfies the (.7-",11 xfé)tlzo-adapted
SDE:

~ K Al,2 —Kk —06
dhi(n) = VikdBr ) — (3+5) S2dn - cos(X1) A1 1dn,
27 A1 2

which together with (5.5), (5.7), (5.9), and 1td’s formula, implies that

—Kk —06

dhipn(t) = AL iVkdBy g (1) — cota(X1)AL dr.

From (5.5) ZEId (5.7)we get X = A=Ay =AM (tl.)f f],tz (t1, A2(12)). Note that
A (0) = fr0(t2,271) = fa(t2,71). Since Ly 4, (¢1) and fi 4, (¢1, -) are backward radial
Loewner hulls and covering maps via the time change u1 ;,, from (5.8) and the above
equation, we find that, under the measure vy, j,, conditioned on ]—",12 for any (F2)-

stopping time #, < T>(J>), via the time change u; 1, L1, (1) = f2(t2, ~)H(L1(tl)),
0 <1 < Ti(J1), is a partial backward radial SLE(k; *"2*6) process started from
el ofz(tg, Z1) = fo(t2, z1) withmarked point ¢/ (A2 (#2)). Similarly, the above statement
holds true if the subscripts “1” and “2” are exchanged.

The joint distribution vy, j, is a local coupling such that the desired properties in

the statement of Theorem 5.2 holds true up to the stopping times 77(J1) and 72(J2).
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Then we can apply the maximum coupling technique developed in [20] to construct a
global coupling using the local couplings within different pairs (J1, J2). To be more
specific, the construction is composed of two steps:

1. Prove that for any finite sequence (J](k), J2(k)), 1 < k < n, in JP, there is a global
coupling, say v of (Li(11)) and (La(t2)), such that for every 1 < k < n,if the
two processes in the coupling are stopped at 77 (J l(k)) and TQ(JQ(k)), respectively,
then we get the joint distribution v, j,. Such coupling is obtained by doing oper-
ations on the process M. From Theorem 4.5 in [21], we see that there is a bounded
positive process M ™) defined on [0, T;] x [0, T»] such that
(a) When ¢ is fixed, M ™) is a martingale in 7, and vice versa.
(b) When 1 or t; equals 0, M ™) is constant 1.
(c) Forevery 1 <k <n, M™ agrees with M on [0, T; (J)] x [0, Ta(J{)].
Then the v is defined by weighting the independent coupling of (L{(¢1)) and
(La(12)) by M™ (T1, T).

2. Choose a dense sequence (Jl(k), Jz(k)), k € N, in JP. For each n € N, we get a

global coupling v using the previous step for the pairs (J l(k), Jz(k)) up to n. Then

we choose a suitable topology such that the space of coupling measures is tight.
Then the desired commutation coupling is any subsequential limit of the sequence
(v™).

The reader is referred to Section 4.3 in [21] for more details of the technique. This
finishes the proof of Theorem 5.2 in the radial case.

Now we briefly describe the proof for the chordal case. The proof in this case
is simpler because there are no covering maps. Suppose the two backward chordal
SLE(kx; —k — 6) processes start from (z;; zx), where z; # zo € R. Formula
(5.1) holds with all tildes removed and the function cot; replaced by z — % The
domain D and the H-hulls L; 4, (#;) and L; ; (t2) are defined in the same way. Then
(5.2) still holds. From Corollary 2.19 (ii), fi.,,(t1,-) and fa, (2, ") are F}\ x F2-
measurable. Define m(¢1,#) = hcap(Li(t1) vV L2(t2))/2. Then (5.4) holds with
uj g (t;) :=hcap(L;, (¢;))/2.

Now we apply the argument in Sect. 4.1 with W = fi (#, -). Then W, = f;. t (tg, -).
Let Fy, (tj,-) = fkylj (t, ), and define A, and Aj s using (5.5) and (5.6) with
all tildes removed. Using (4.3), (4.4), (4.7), and (4.8), we see that (5.7) still holds
here; (5.8) and (5.9) hold with all tildes removed; and (5.10) holds without the tildes

and the terms +%A§)1 — 4. Then we get the SDEs (5.11) and (5.13) without the
terms +%A§,1 — - Formulas (5.17), (5.18), and (5.19) hold with cot replaced by
7> % We still define X; = Aj 1 — Ag,1. Then X; # 0in D. Define ¥ on D by
Y = |X1|72* = |X»|72*. Then (5.20) holds with cot, replaced by z — 2 and the
term +°%A§’1dtj removed. Define F using (5.21) with O = —;{—?
(5.22) still holds. Define M using (5.23) without the factor e12™ Then (5.24) holds
with cot, replaced by z +— % and the term —%dt ; removed. Define M using (5.26).

_ 12 Th
= —=7. en
X3

Then (5.27) holds with all tildes removed and cot; replaced by z — %
We define JP to be the set of disjoint pairs of closed real intervals (J;, J2) such that
z; is contained in the interior of J;. Then Proposition 5.3 holds with a similar proof,
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where Lemma 9.2 is applied here, and we can show that | X| is uniformly bounded
away from 0. The argument on the local couplings hold with all tildes and ¢' removed
and cot; replaced by z — % Finally, we may apply the maximum coupling technique
to construct a global coupling with the desired properties. This finishes the proof in
the chordal case.

5.3 Other results

Besides Theorem 5.2, one may also prove the following two theorems, which are
similar to the couplings for forward SLE that appear in [5,21].

Theorem 5.4 Let «1,kp > 0 satisfy kikp = 16, and cy,...,c, € R satisfy
Sicick = 3. Let pj = (F,ci(—k; —4),....ca(—kj —4), j = 1,2. Then
backward chordal (resp. radial) SLE(k1; p1) commutes with backward chordal (resp.
radial) SLE(k2; p2).

Theorem 5.5 Let k > 0 and p € R", whose first coordinate is 2. Then backward
chordal (resp. radial) SLE(x; p) commutes with backward chordal (resp. radial)
SLE(k; p).

6 Reversibility of backward chordal SLE

Theorem 6.1 Let « € (0,4] and 71 # zo € T. Suppose a backward radial
SLE(k; —k — 6) process (L1(t)) started from (z1; z2) commutes with a backward
radial SLE(k; —k — 6) process (Lo (t)) started from (z2; z1). Then a.s. they induce
the same welding.

Proof For j = 1,2, let S,] = SL,-(:) and f,] = ij(t). Let T;(-), j = 1,2, be as in
Definition 5.1. Let ¢; be the welding induced by (L ;(¢)). Since —k —6 < —« /2 -2,
from the last remark in Sect. 4.3, we see that, for j = 1,2, as. T; = oo, Séo =
T\{z3—;}, and ¢; is an involution of T with exactly two fixed points: z; and z5.

Fix t» > 0. Since (L1(¢)) and (L»(#)) commute, the following is true. Condi-
tioned on (L2(?)):<s,, (fé)H(Ll(tl)), 0 <11 < Ti(t), is a partial backward radial
SLE(k; —« — 6) process, after a time change, started from ( fé (z1); €*2(2)) where
M2 is a driving function for (L, (#2)). We have

. _ £2 1y _ £2/¢l
s= U Serwa=r U SD=Ff6h |- ©D

0<t1<Ti(r2) 0=t <Ti(t2)

Recall that fé is a homeomorphism from ’]1’\St22 onto T\ By, 1) = T\{e/*2(2)}. From

the definition of T (12), we see that S}l ) intersects S,z2 # () at one or two end points

of both arcs. If they intersect at only one point, then S}l (1) is a proper subset of T\Stzz,

and these two arcs share an end point. From (6.1), this then implies that the arc S is a
proper subset of T\ B, ,), and By, () is an end point of S. Recall that, after a time
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change, (f,%)H(Ll(tl)), 0 <11 < Ti(tp), is a partial backward radial SLE(«x; —« — 6)
process. Since S # T\ By, ), the process is not complete. Then we conclude that §
is contained in a closed arc on T that does not contain By, (,) because the force point
is not swallowed by the process at any finite time, which contradicts that By, ,) is an
end point of S. Thus, a.s. SlTI ) and 5122 share two end points. Since ¢; swaps the two

end points of any St], j = 1,2, we see that a.s. ¢ = ¢1 on 3'J1‘St22~ Let o > 0 vary
in the set of rational numbers, we see that a.s. ¢ = ¢ on |, €0.0 BTS,ZZ, which is a
dense subset of T. The conclusion follows since ¢; and ¢, are continuous. O

We now state the reversibility of backward chordal SLE, for x € (0, 4] in terms of
its welding. Recall that a backward chordal SLE, welding is an involution of R with
two fixed points: 0 and oo.

Theorem 6.2 Let « € (0, 4], and ¢ be a backward chordal SLE, welding. Let h(z) =
—1/z. Then h o ¢ o h has the same distribution as ¢.

Proof Let (L1(t)) and (L2(#)) be commuting backward radial SLE(kx; —x — 0)
processes as in Theorem 5.2, which induce the weldings v and ¥, respectively.
The above theorem implies that a.s. ¥y = . For j = 1,2, let W; be a Mobius
transformation that maps ID onto H such that W;(z;) = 0 and W;(z3-;) = 00, and
W> = h o Wy. From Corollary 4.8, K;(t) := W]H(Lj(t)), 0 <t < o0, is a back-
ward chordal SLE,, after a time change, which then induces backward chordal SLE,
welding ¢;, j = 1,2. Then ¢ and ¢, have the same law as ¢. From (4.1), we get
¢j=Wjoyjo Wj_l,j = 1, 2, which implies that a.s. ¢» = h o oh. The conclusion
follows since ¢; and ¢; has the same distribution as ¢. O

Lemma 6.3 Let k > 0. Let f;, 0 < t < o0, be backward chordal SLE, maps. Then
for every zg € H, a.s. (3.4) holds.

Proof Let Z; = fi(z0) — A(t), X; = Re Z;, and Y; = Im Z;. Then

dx JkdB(t) 2Xe o ay S
= — K —_— , = ——F
! X2+ v? T x24 72
2_y2
Let R, = | f/(z0)]. Then % = §§(’§f+ Yir);dz. Let N, = Y,/R; and A, = X,/Y;. Then
t t
dN, 4y? dB(t 4A
— =1, dn, = - Y<dBO 1.
Ny Xy +Y; )2 Y; X;+Y;
Let u(t) = In(Y;). Then u/(t) = ﬁ Let T = supu([0, 00)) and define ]/\75 =

N,-1(s) and Ay = A1) for0 < s < T.Then

dN 2 _ . N
S ds, dA; = —\/1+ A2/k/2dB(s) — 2Ads,

N, AZ+1
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where §(s) is another Brownian motion. We claim that 7 = oco. Suppose T < oo.
Then lim;_, o, Y (t) = ¢’ € R. From the SDE for A, we see that a.s. lim,_,7 Ay € R,
which implies that lim; o0 A; € Rand lim;_, o, X; € Ras X; = Y;A;. Then we have
as.s'(r) = X2+Y2 tends to a finite positive number as t — 0o, which contradicts that
T =sup{s(#),0 <t < 00} < 0c. So the claim is proved Using It6’s formula, we see
that AS, 0 <s < o0, is recurrent. Since (ln(Ns))’ ’T’ we see that a.s. N — 00
Im fi(z0)
|/ zo)

If k € (0, 4], then since the backward chordal traces are simple, (3.5) holds. From
the above lemma and Sect. 3.3, we see that, for « € (0, 4], the backward chordal
SLE, a.s. generates a normalized global backward chordal trace 8, which we call a
normalized global backward chordal SLE, trace. Recall that 8(¢), 0 < t < o0, is

ass — 0o.Soas. Ny = — ooast — 0o,1.e., (3.4) holds. O

Conf
simple with 8(0) = 0, and i ¢ B; and there is F, : H > C\ B, whose continuation
maps R onto S such that (3.7) holds, and for any x € R, Foo(x) = Foo(¢(x)) € B.
Now we state the reversibility of the backward chordal SLE, for « € (0, 4) in terms
of B.

Theorem 6.4 Let k € (0,4), and  be a normalized global backward chordal SLE,
trace. Let h(z) = —1/z. Then h(B\{0}) has the same distribution as B\{0} as random
sets.

Proof For j = 1,2, let ¢; be a backward chordal SLE, welding and 8; be the
corresponding normalized global trace. Then §; is a simple curve with one end point

0, and there exists F; : H Cg:f C\B; such that F;(i) =i, F;(0) =0, and F;(x) =
Fj(¢;(x)) for x € R. From Theorem 6.2 we may assume that ¢, = ho¢; o h~! Now
it suffices to show that 2(82\{0}) = B1\{0}.

Define G = ho Fboho Ffl. Then G is a conformal map defined on C\p;.
It has continuation to 81\{0}. In fact, if z € C\B; and z — zop € B1\{0}, then

7' (@) = {x, $1(x)} for some x € R\{0}, which then implies that & o F; ' (z) —
{h(x), h o ¢p1(x)}; since ¢ o h = h o ¢, we find that F, o h o Ff] (z) tends to some
point on B>\{0}, so G(z) tends to some point on h(B>\{0}). It was proved in [15]
that a forward SLE, trace is the boundary of a Holder domain. Then the same is true
for backward chordal SLE, traces and the normalized global trace. From the results
in [6], we see that 81\{0} is conformally removable, which means that G extends to
a conformal map from (C\B;) U (81\{0}) = C\{0} onto C\{0}, and maps 8;\{0}
to h(B2\{0}). Since G(i) = i, either G = id or G = h. Suppose G = h. Then
Fi = F> 0 h. Since F1(0) = F2(0) = 0, for j = 1,2, F; maps a neighborhood of
0 in H onto a neighborhood of 0 in C without a simple curve. Since F| = F, o h,
F1 also maps a neighborhood of oo in H onto a neighborhood of 0 without a simple
curve, which contradicts the univalent property of Fj. Thus, G = id, and we get

h(B2\{0}) = G(B1\{0}) = B1\{0}, as desired. O

Now we propose a couple of questions. First, let’s consider backward chordal SLE,
for k > 4. Since the process does not generate simple backward chordal traces, the
random welding ¢ can not be defined. However, the lemma below and the discussion
in Sect. 3.3 show that we can still define a global backward chordal SLE, trace.
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Lemma 6.5 Let k € (0, 00). Suppose B;, 0 <t < oo, are backward chordal traces
driven by A(t) = \/k B(t). Then a.s. (3.5) holds.

Proof 1f k € (0, 4], a.s. the traces are simple, so (3.5) holds. Now suppose k > 4.
Let f; and L; be the corresponding maps and hulls. It suffices to show that, for any
to > 0, a.s. there exists #1 > fy such that g, ([0, 1p]) C H.

Let g and K;, 0 < t < 00, be the forward chordal Loewner maps and hulls driven
by /«k B(t). From Theorem 6.1 in [22], for any deterministic time #; € (0, 00), the
continuation of g, Das. maps the interior of Sk, into H. From Lemma 3.1 and the
property of Brownian motion, we see that, for any #; € (0, 00), f;, has the same
distribution as A(#1) + g, ! (- — A(t1)), which implies that the continuation of f;, a.s.
maps the interior of Sy, into H.

Since a.s. Usoz1 Sp = Seo = R D A([0, #p]), and (S;) is an increasing family of
intervals, we see that a.s. there is N € N such that the interior of Sy contains A ([0, #g]).
Lett; = N.Then f;, maps A([0, #p]) into H, which implies that §;, (1) = fi, (A(¢)) € H
forO <t <. O

Question 6.6 Do we have the reversibility of the global backward chordal SLE,. trace
fork > 4?

Second, let’s consider backward radial SLE, processes. One can show that (3.8)
a.s. holds. Since T = oo, we may define a global backward radial SLE, trace.

Question 6.7 Does a global backward radial SLE, trace satisfy some reversibility
property of any kind?

Recall that the forward radial SLE, trace does not satisfy the reversibility property
in the usual sense. However, it’s proved in [24] that, for ¥ € (0, 4], the whole-plane
SLE,, as a close relative of radial SLE,, satisfies reversibility.

Finally, it is worth mentioning the following simple fact. Recall that, if « € (0, 4],
a backward radial SLE, welding is an involution of T with two fixed points, one of
which is 1. The following theorem gives the distribution of the other fixed point ¢,
and says that a backward radial SLE, process conditioned on ¢ is a backward radial
SLE(k; —4) process with force point ¢. It is similar to Theorem 3.1 in [22], and we
omit its proof.

Theorem 6.8 Let « € (0,4]. Let u denote the distribution of a backward radial
SLE, process. For 6 € (0, 2m), let vy denote the distribution of a backward radial
SLE(k; —4) process started from (1; e'?). Let f@ =cC siny (0)*/%, where C > 0 is
such that [}" f(6)d6 = 1. Then

2w
M=/0 vo f(0)d6.

Acknowledgments We would like to thank the referee for his/her valuable comments, which improve
the readability of the paper.
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Appendices
Appendix A: Carathéodory topology

Definition 7.1 Let (D,);°, and D be domains in C. We say that (D)) converges to

D, and write D, C;m; D, if for every z € D, dist(z, C\D,) — dist(z, C\ D). This is
equivalent to the following:

(i) every compact subset of D is contained in all but finitely many D,,’s;
(i1) for every point zg € d D, there exists z,, € d D, for each n such that z,, — zo.

Remark A sequence of domains may converge to two different domains. For example,

let D, = C\((—o0, n]). Then D, % H, and D,, Cﬁi —H as well. But two different
limit domains of the same domain sequence must be disjoint from each other, because
if they have nonempty intersection, then one contains some boundary point of the
other, which implies a contradiction.

Cara Conf Lu. .
Lemma 7.2 Suppose D, — D, f, : D, — E,, n € N, and f, — f in D.

Then either f is constant on D, or f is a conformal map on D. In the latter case, let
E = f(D). Then E, &% Eand f7' 2% =1 in E.

Remark The above lemma resembles the Carathéodory kernel theorem [13, Theorem
1.8], but the domains here don’t have to be simply connected. The main ingredients
in the proof are Rouché’s theorem and Koebe’s 1/4 theorem. The lemma also holds
in the case that D,, and D are domains of any Riemann surface, if the metric in the
underlying space is used in place of the Euclidean metric for Definition 7.1 and locally
uniformly convergence. In particular, if we use the spherical metric, then Lemma 7.2
holds for domains of C.

Appendix B: Topology on interior hulls

Let H denote the set of all interior hulls in C. Recall that for any H € H, qb;,l is
defined on {|z| > rad(H)}, and for a nondegenerate interior hull, ¥y (z) = (p;,l () =

qbl}] (rad(H)z) is defined on {|z| > 1}. It’s shown in Section 2.5 of [23] that there is a
metric dyy on H such that for any H,,, H € H, the followings are equivalent:

1. dy(H,, H) — 0

2. rad(H,) — rad(H) and ¢>;Inl Lo qb;]l in {|z| > rad(H)}.

3. C\H, <% C\H.

In particular, we see that rad is a continuous function on (H, d3¢). Thus, for nonde-

generate interior hulls, dy (H,, H) — 0iff ¢g, LY ¥y in {|z| > 1}. The following
lemma is Lemma 2.2 in [23].

Lemma 8.1 Forany F € 'H, the set {H € H : H C F} is compact.

Corollary 8.2 Forany F € Handr > 0, the set {H € H : H C F,rad(H) > r}is
compact.
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Appendix C: Topology on H-hulls

From Section 5.2 in [19], there is a metric d3; on the space of H-hulls such that
Cara

dy(H, — Hoo) iff fH, Loy fH,, inH. From Lemma 7.2, this implies that H\ H,, —

Cara

H\ Hyo. But H\ H,, — H\ Hy, does not imply d3/(H, — H). A counterexample is
H, ={zeH:|z—2n| <n}and Hy = ¥. Since H| - H, = H3 iff fy, o fu, = fu,,
the dot product is continuous.

Formula (5.1) in [19] states that for any H-hull H, there is a positive measure u gy
supported by S¢7, the convex hull of Sy, such that for any z € C\S%,

—1
fH@) =z +/ ——dug(x). 9.1
Z— X

In particular, if H is bounded by a crosscut, then g is absolutely continuous w.r.t.
the Lebesgue measure, and duy /dx = % Im fy (x), where the value of fy on Sf} is
the continuation of fy from H. If H is approximated by a sequence of H-hulls (H,,),
then ppy is the weak limit of (uy,). We may choose each H, to be bounded by a
crosscut, whose height is not bigger than & + 1/n, where h is the height of H. Then
each pp, has a density function, whose L® norm is not bigger than (h + 1/n)/m.
Thus, wy also has a density function, whose L* norm is not bigger than 4 /7. We

use py to denote the density function of up. Since fy : C\SF/ Cgr»lf C\H®¢ and
f1;(00) = 1, we see that rad(H9¢Y) = rad(5)) = |S$|/4. Thus, diam(H®¢") <
4rad(HIe) = |S7/|. On the other hand, the diameter of H db.cv is at least twice the
height of H. So [|pllec < S,

By approximating any H-hull H using a sequence of H-hulls (H,,), each of which
is the union of finitely many mutually disjoint H-hulls bounded by crosscuts in H,
we see that pg is in fact supported by Sy. By continuation, (9.1) holds for any
z € C\Sy. Furthermore, the support of gy is exactly Sy because from (9.1) fy
extends analytically to the complement of the support of 1 g7, while from Lemma 2.6 f
can not be extended analytically beyond C\Sg. So we obtain the following lemma.

Lemma 9.1 For any H-hull H, vy has a density function py, whose support is Sy,
and whose L® norm is no more than liz . Moreover, (9.1) holds for any 7 € C\Sy.

The following lemma extends Lemma 5.4 in [19], and we now give a proof.

Lemma 9.2 For any compact F C R, Hr := {H : Sy C F} is compact, and
. . . Lu. .
H, — H in HF implies that fp, =5 fr in C\F.

Proof Suppose (Hy) is a sequence in H . Let | F¢V| denote the length of the convex

hull of F. Then for each n, pg, is supported by Sy, C F, and the L norm of pp,
SCV cv

is no more than % < % Thus, (pn,) contains a subsequence (pan), which

converges in the weak-* topology to a function p supported by F. From (9.1) we see

that ank converges uniformly on each compact subset of C\ F, and if f is the limit

function, then f(z) —z = fF ;T;p(x)dx, 7€ C\F.So f(z) —z —> 0asz — oo.
This means that f can not be constant. From Lemma 7.2, f is a conformal map on
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C\F. Since f(z) —z — 0as z — o0, oo is a simple pole of f. Thus, f(C\F)
contains a neighborhood of co. Let G = C\ f(C\ F). Then G is compact. Since every
fH,, 18 R-symmetric, so is f. Let H = G N H. Then f maps H conformally onto
H\ H. This implies that H is an H-hull and f = fy on H because f(z) —z — 0 as
z — o0. Since f extends fg |, from Lemma 2.6, we see that Sy C F and f = fg

in C\ F. Since ank i fu in H, we get H,, — H € Hp. This shows that H is
. Lu, .
compact. The above argument also gives ank = fu in C\F.If H, — H,then any

. Lu. .
subsequence (H,, ) of (H,) contains a subsequence (an[) such that fH”kz U fg in

C\F, which implies that f, ~% fy in C\F. O

Appendix D: Topology on D-hulls

Define a metric d7; on the space of D-hulls such that

— 1
d(Hy, Hy) = ) 2 S (m @ = i@ (10.1)
n=1 zl=1=1/n

It is clear that dy(H,, H) — 0 iff fp, l—u> fr in D. From Lemma 7.2, this implies

Cara

that D\ H,, — D\ H. On the other hand, from Lemma 10.1 below, one see that

Cara

D\H, — D\H also implies that H, — H. Since fp, L fr in D implies that
f 1/'1}1 (0) — f7,(0), we see that dcap is a continuous function. Moreover, the dot product
is also continuous.

Lemma 10.1 Forany M < oo, {H : dcap(H) < M} is compact.

Proof Suppose (H,) is a sequence of D-hulls with dcap(H,) < M for each n. Then
f;l,, (0) = e~ deap(Hn) > =M gGipce ( fH,) is uniformly bounded in D), it contains a
subsequence ( f Hi, ), which converges locally uniformly in D. Let f be the limit. Then
£(0) = limg_, 00 f,’{nk (0) > =M Thus, f is not constant. From Lemma 7.2, f is

conformal in ID. Since f(0) = limg_, o ank (0) and f'(0) > 0, we seethat f = fy|p

for some D-hull H. Since f'(0) > e, dcap(H) < M. From fH”k 1—u> fr inDD we
get H,, — H. O

Remark We may compactify the space of D-hulls by adding one element H, with the
associated function fy., = 0in I, and defining the metric d7¢ in the extended space
using (10.1).

Lemma 10.2 For any compact F ; T, HF :={H : Sy C F} is compact.

Proof Let H € 'H . From conformal invariance, the harmonic measure of T\ H b in
D\ H seen from 0 equals to the harmonic measure of T\ Sy in D seen from 0, which
is bounded below by |T\ F|/|T| > 0. This implies that the distance between 0 and H
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is bounded below by a positive constant r depending on F, which then implies that
dcap(H) is bounded above by —In(r) < oco. From Lemma 10.1, we see that Hr is
relatively compact.

It remains to show that Hr is bounded. Let (H,) be a sequence in H g, which
converges to H. We need to show that H € Hr. Since H, € HF, each fp, is analytic

in @\F. We have fp, Loy fu in D. From T-symmetry, fp, Loy fm in D*. Let
J ={|z] =2} ¢ D*. Then ank — fm uniformly on J. Sine fy, maps {|z] < 2}\F
into the Jordan domain bounded by f, (J), we see that the family ( f#,) is uniformly
bounded in {|z| < 2}\ F. So it contains a subsequence ( ank ), which converges locally
uniformly in {|z| < 2}\ F. The limit function is analytic in {|z] < 2}\ F and agrees
with fy on D, which implies that fy extends analytically across T\F. So Sy C F,
ie., H e Hr. O

There is an integral formula for D-hulls which is similar to (9.1). For any D-hull
H, there is a positive measure (g with support Sy such that

f(z)=z~exp(/ _x—l—szH(x))’ z € C\Sy, (10.2)
T X—2

and H, — H iff py, — pg weakly. Moreover, g is absolutely continuous w.r.t.
the Lebesgue measure on T, and the density function is bounded. From this integral
formula, it is easy to get the following lemma.

Lu, .
Lemma 10.3 For any compact F C T, H, — H in HF implies that fp, = SfH in
C\F.
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