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Comparison of quenched and annealed invariance
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Abstract We show that there exists an ergodic conductance environment such that
the weak (annealed) invariance principle holds for the corresponding continuous time
random walk but the quenched invariance principle does not hold.
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1 Introduction

Let d ≥ 2 and let Ed be the set of all non oriented edges in the d-dimensional integer
lattice, that is, Ed = {e = {x, y} : x, y ∈ Z

d , |x − y| = 1}. Let {μe}e∈Ed be a random
process with non-negative values, defined on some probability space (�,F, P). The
process {μe}e∈Ed represents random conductances. We write μxy = μyx = μ{x,y}
and set μxy = 0 if {x, y} /∈ Ed . Set
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742 M. Barlow et al.

μx =
∑

y

μxy, P(x, y) = μxy

μx
,

with the convention that 0/0 = 0 and P(x, y) = 0 if {x, y} /∈ Ed . For a fixed ω ∈ �,
let X = {Xt , t ≥ 0, Px

ω , x ∈ Z
d} be the continuous time random walk on Z

d , with
transition probabilities P(x, y) = Pω(x, y), and exponential waiting times with mean
1/μx . The corresponding expectation will be denoted E x

ω. For a fixed ω ∈ �, the
generator L of X is given by

L f (x) = 1
2

∑

y

μxy( f (y) − f (x)). (1.1)

In [4] this is called the variable speed random walk (VSRW) among the conductances
μe. (We have inserted here a factor of 1

2—see Remark 1.5(5).) This model, of a
reversible (or symmetric) random walk in a random environment, is often called the
random conductance model (RCM).

We are interested in functional Central Limit Theorems (CLTs) for the process X .
Given any process X , for ε > 0, set X (ε)

t = εXt/ε2 , t ≥ 0. Let DT = D([0, T ], R
d)

denote the Skorokhod space, and let D∞ = D([0,∞), R
d). Write dS for the Sko-

rokhod metric and B(DT ) for the σ -field of Borel sets in the corresponding topol-
ogy. Let X be the canonical process on D∞ or DT , PBM be Wiener measure on
(D∞,B(D∞)) and let EBM be the corresponding expectation. We will write W for a
standard Brownian motion. It will be convenient to assume that {μe}e∈Ed are defined
on a probability space (�,F, P), and that X is defined on (�,F) × (D∞,B(D∞))

or (�,F) × (DT ,B(DT )). We also define the averaged or annealed measure P on
(D∞,B(D∞)) or (DT ,B(DT )) by

P(G) = E P0
ω(G).

Definition 1.1 For a bounded function F on DT and a constant matrix �, let �F
ε =

E0
ω F(X (ε)) and�F

� = EBMF(�W ). In the remaining part of the definitionwe assume
that � is not identically zero.

(i) We say that the Quenched Functional CLT (QFCLT) holds for X with limit �W
if for every T > 0 and every bounded continuous function F on DT we have
�F

ε → �F
� as ε → 0, with P-probability 1.

(ii) We say that the Weak Functional CLT (WFCLT) holds for X with limit �W
if for every T > 0 and every bounded continuous function F on DT we have
�F

ε → �F
� as ε → 0, in P-probability.

(iii) We say that the Averaged (or Annealed) Functional CLT (AFCLT) holds for X
with limit �W if for every T > 0 and every bounded continuous function F on
DT we have E �F

ε → �F
� . This is the same as standard weak convergence with

respect to the probability measure P.
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Invariance principle 743

Since the functions F in this definition are bounded, it is immediate that QFCLT
⇒ WFCLT ⇒ AFCLT. One could consider a more general form of the WFCLT
and QFCLT in which one allows the matrix � to depend on the environment μ·(ω).
However, if the environment is stationary and ergodic, then � is a shift invariant
function of the environment, so must be P—a.s. constant.

In [12] it is proved that if μe is a stationary ergodic environment with E μe < ∞
then the WFCLT holds (here � ≡ 0 is allowed). It is an open question as to whether
the QFLCT holds under these hypotheses. For the QFCLT in the case of percolation
see [7,15,18], and for the Random Conductance Model with μe i.i.d see [2,4,10,16].
In the i.i.d. case the QFCLT holds (with � �≡ 0) for any distribution of μe provided
p+ = P(μe > 0) > pc, where pc is the critical probability for bond percolation in
Z

d .

Definition 1.2 For 1 ≤ i < j ≤ d let Ti j be the isometry of Z
d defined

by interchanging the i th and j th coordinates, and Ti be the isometry defined by
Ti (x1, . . . , xi , . . . , xd) = (x1, . . . ,−xi , . . . , xd). We say that an environment (μe)

on Z
d is symmetric if the law of (μe) is invariant under Ti , 1 ≤ i ≤ d and

{Ti j , 1 ≤ i < j ≤ d}.
If (μe) is stationary, ergodic and symmetric, and the WFCLT holds with limit �W

then the limiting covariance matrix �T � must also be invariant under symmetries of
Z

d , so must be a constant σ ≥ 0 times the identity.
Our first result concerns the relation between the weak and averaged FCLT. In

general, of course, for a sequence of random variables ξn , convergence of E ξn does
not imply convergence in probability. However, in the context of the RCM, the AFCLT
and WFCLT are equivalent.

Theorem 1.3 Suppose the AFCLT holds. Then the WFCLT holds.

A slightly more general result is given in Theorem 2.14 below. Our second result
concerns the relation between the weak and quenched FCLT.

Theorem 1.4 Let d = 2 and p < 1. There exists a symmetric stationary ergodic
environment {μe}e∈E2 with E(μ

p
e ∨ μ

−p
e ) < ∞ and a sequence εn → 0 such that

(a) the WFCLT holds for X (εn) with limit W ,
but

(b) the QFCLT does not hold for X (εn) with limit �W for any �.

Remark 1.5 1. Under the weaker condition that E μ
p
e < ∞ and E μ

−q
e < ∞ with

p < 1, q < 1/2 we have the full WFCLT for X (ε) as ε → 0, i.e., not just along a
sequence εn . However, the proof of this is very much harder and longer than that
of Theorem 1.4(a)—see [5]. (Since our environment has E μe = ∞ we cannot
use the results of [12].) We have chosen to use in this paper essentially the same
environment as in [5], although for Theorem 1.4 a slightly simpler environment
would have been sufficient.

2. Biskup [9] has proved that the QFCLT holds with σ > 0 if d = 2 and (μe) are
symmetric and ergodic with E(μe ∨ μ−1

e ) < ∞.
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744 M. Barlow et al.

3. See Remark 6.4 for how our example can be adapted to Z
d with d ≥ 3; in that

case we have the same moment conditions as in Theorem 1.4.
4. In [1] it is proved that the QFCLT holds (in Z

d , d ≥ 2) for stationary symmetric
ergodic environments (μe) under the conditions E μ

p
e < ∞, E μ

−q
e < ∞, with

p−1 + q−1 < 2/d.
5. If μe ≡ 1 then due to the normalisation factor 1

2 in (1.1), the vertical jumps of X
occur at rate 1, and the FCLT holds for X with limit W .

The remainder of the paper after Sect. 2 constitutes the proof of Theorem 1.4. The
argument is split into several sections. In the proof, we will discuss the conditions
listed in Definition 1.1 for T = 1 only, as it is clear that the same argument works for
general T > 0.

2 Averaged and weak invariance principles

The basic setup will be slightly more general in this section than in the introduction.
As in the Introduction, let (�,F, P) be a probability space, fix some T > 0 and
let D = DT in this section (although we will also use D2T ). Recall that X is the
coordinate/identity process onD. Let C(D) be the family of all functions F : D → R

which are continuous in the Skorokhod topology. In the following definition, Pω
n will

stand for a probability measure (not necessarily arising from an RCM) onD forω ∈ �

and n ≥ 1. We will also refer to a probability measure P0 on D. The corresponding
expectations will be denoted Eω

n and E0. The following definition was first introduced
in [14], see also [12].

Definition 2.1 We will say that Pω
n converge weakly in measure to P0 if for each

bounded F ∈ C(D),

Eω
n F(X) → E0F(X) in P probability. (2.1)

Let δn → 0, let 
n = δnZ
d , and let λn be counting measure on 
n normalized so

that λn → dx weakly, where dx is Lebesgue measure on R
d . Suppose that for each ω

and n ≥ 1 we have Markov processes X (n) = (Xt , t ≥ 0, Px
ω,n, x ∈ 
n) with values

in 
n . The corresponding expectations will be denoted E x
ω,n . Write

T (ω,n)
t f (x) = E x

ω,n f (Xt )

for the semigroup of X (n). Since we are discussing weak convergence, it is natural to
put the index n in the probability measures Px

ω,n rather than the process; however we
will sometimes abuse notation and refer to X (n) rather than X under the laws (Px

ω,n).
Recall that W denotes a standard Brownian motion.

For the remainder of this section, we will suppose that the following Assumption
holds.

Assumption 2.2 1. For each ω, the semigroup T (ω,n)
t is self adjoint on L2(
n, λn).
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Invariance principle 745

2. The P law of the ‘environment’ for X (n) is stationary. More precisely, for x ∈ 
n

there exist measure preserving maps Tx : � → � such that for all bounded
measurable F on DT ,

E x
ω,n F(X) = E0

Tx ω,n F(X + x), (2.2)

E E0
Tx ω,n F(X) = E E0

ω,n F(X). (2.3)

3. The AFCLT holds, that is for all T > 0 and bounded continuous F on DT ,

E E0
ω,n F(X) → EBMF(X).

Given a function F from DT to R set

Fx (w) = F(x + w), x ∈ R
d , w ∈ DT .

Note that combining (2.2) and (2.3) we obtain

E E x
ω,n F(X) = E E0

ω,n Fx (X), x ∈ 
n .

Set

Tn
t f (x) = E T (ω,n)

t f (x).

Note that T(n)
t is not in general a semigroup. Write Kt for the semigroup of Brownian

motion on R
d . We also need notation for expectation of general functions F on DT ,

so we define

T (ω,n)F(x) = E x
ω,n F(X),

T(n)F(x) = E E x
ω,n F(X),

KF(x) = EB M F(x + W ),

U (ω,n)F(x) = T (ω,n)F(x) − KF(x).

Using this notation, the AFCLT states that for F ∈ C(DT )

T(n)F(0) → KF(0). (2.4)

Definition 2.3 Fix T > 0 and recall that D = DT . Write dU for the uniform norm,
i.e.,

dU (w,w′) = sup
0≤s≤T

|w(s) − w′(s)|.
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746 M. Barlow et al.

Recall that we defined dS(w,w′) to be the usual Skorokhod metric onD. We have
dS(w,w′) ≤ dU (w,w′), but the topologies given by the two metrics are distinct.
Let M(D) be the set of measurable F on D. A function F ∈ M(D) is uniformly
continuous in the uniform norm onD if there exists ρ(ε) with limε→0 ρ(ε) = 0 such
that if w,w′ ∈ DT with dU (w,w′) ≤ ε then

|F(w) − F(w′)| ≤ ρ(ε). (2.5)

Write CU (D) for the set of F inM(D)which are uniformly continuous in the uniform
norm. Note that we do not have CU (D) ⊂ C(D).

Let C1
0(R

d) denote the set of continuously differentiable functions with compact
support. Let Am be the set of F such that

F(w) =
m∏

i=1

fi (w(ti )), (2.6)

where 0 ≤ t1 ≤ . . . tm ≤ T, fi ∈ C1
0(R

d), and let A = ⋃
m Am .

Lemma 2.4 Let F ∈ A. Then F ∈ CU (D), and KF ∈ Cb(R
d) ∩ L1(Rd).

Proof Let f ∈ Am . ChooseC ≥ 2 so that || fi ||∞ ≤ C and | fi (x)− fi (y)| ≤ C |x − y|
for all x, y, i . Then

|F(w) − F(w′)| ≤ mCmdU (w,w′).

Since fi are bounded and continuous, so is KF . Also, |F | ≤ Cm−1| f (w(t1))|, so
∣∣∣∣
∫

KF(x)dx

∣∣∣∣ ≤
∫

K|F |(x)dx ≤ Cm−1〈Kt1 | f1|, 1〉
= Cm−1〈| f1|, 1〉 = Cm−1|| f1||1 < ∞.

��
Lemma 2.5 For all F ∈ M(D),

T (ω,n)F(x)
(d)= T (ω,n)Fx (0),

U (ω,n)F(x)
(d)= U (ω,n)Fx (0).

(2.7)

Proof By the stationarity of the environment,

T (ω,n)F(x) = E x
ω,n F(X) = E0

Tx ω,n F(X + x) =(d) E0
ω,n F(X + x) = T (ω,n)Fx (0).

The result for U (ω,n) is then immediate. ��
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Invariance principle 747

Lemma 2.6 Let F ∈ CU (DT ). Then T (ω,n)Fx (0), U (ω,n)Fx (0), and T(n)F(x) are
uniformly continuous on 
n for every n ∈ N, with a modulus of continuity which is
independent of n.

Proof If |x − y| ≤ ε then dU (w + x, w + y) ≤ ε, so if F ∈ CU (DT ) and ρ is such
that (2.5) holds, then |Fx (w) − Fy(w)| ≤ ρ(ε), and hence

|T (ω,n)
t Fx (0) − T (ω,n)

t Fy(0)| = |E0
ω,n F(x + X) − E0

ω,n F(y + X)|
≤ E0

ω,n|F(x + X) − F(y + X)| ≤ ρ(ε).

This implies the uniform continuity of T (ω,n)Fx (0) and U (ω,n)Fx (0). By (2.7),

T(n)F(x) = E T (ω,n)F(x) = E T (ω,n)Fx (0),

so the uniform continuity of T(n)F(x) follows from that of T (ω,n)Fx (0). ��
Lemma 2.7 Let F ∈ A. Then

T(n)F(x) → KF(x) for all x ∈ R
d . (2.8)

Proof The AFCLT (in 2.2) implies that E P0
ω,n converge weakly to PB M . Hence the

finite dimensional distributions of X (n) converge to those of W , and this is equivalent
to (2.8). ��

Let Cb(R
d) denote the space of bounded continuous functions on R

d .

Lemma 2.8 Let F ∈ A, and h ∈ Cb(R
d) ∩ L1(Rd). Then

∫
h(x)T(n)F(x)λn(dx) →

∫
h(x)KF(x)dx . (2.9)

Proof This is immediate from (2.8) and the uniform continuity proved in Lemma 2.6.
��

ThenextLemmagives the key construction in this section: using the self-adjointness
of T (ω,n)

t we can linearise expectations of products. A similar idea is used in [19] in
the context of transition densities.

Let F ∈ Am be given by (2.6). Set s j = tm − tm− j , and let

F̂(w) =
m−1∏

j=1

fm− j (ws j )

m∏

j=1

f j (wtm+t j ).

Note that F̂ is defined on functions w ∈ D2T (not DT ). Write 〈 f, g〉n for the inner
product in L2(λn) and 〈 f, g〉 for the inner product in L2(Rd).
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748 M. Barlow et al.

Lemma 2.9 With F and F̂ as above,

∫
(T (ω,n)F(x))2λn(dx) =

∫
(T (ω,n) F̂(x)) fm(x)λn(dx), (2.10)

∫
(KF(x))2dx =

∫
(KF̂(x)) fm(x)dx . (2.11)

Proof Using the Markov property of X (n)

T (ω,n)F(x) = E x
ω,n

m∏

j=1

f j (wt j ) = E x
ω,n

⎛

⎝
m−1∏

j=1

f j (wt j )T
(ω,n)
tm−tm−1

fm(Xtm−1)

⎞

⎠ .

Hence we obtain

T (ω,n)F(x) = T (ω,n)
t1

(
f1T (ω,n)

t2−t1

(
f2 . . . T (ω,n)

tm−tm−1
fm(x) . . .

))
.

Using the self-adjointness of T (ω,n)
t gives

〈T (ω,n)F, T (ω,n)F〉n

= 〈T (ω,n)
t1 f1T (ω,n)

t2−t1 f2 . . . T (ω,n)
tm−tm−1

fm, T (ω,n)
t1 f1T (ω,n)

t2−t1 f2 . . . T (ω,n)
tm−tm−1

fm〉
n

= 〈 f1T (ω,n)
t1 T (ω,n)

t1 f1T (ω,n)
t2−t1 f2 . . . T (ω,n)

tm−tm−1
fm, T (ω,n)

t2−t1 f2 . . . T (ω,n)
tm−tm−1

fm〉
n
.

Continuing in this way we obtain

〈T (ω,n)F, T (ω,n)F〉n

= 〈T (ω,n)
tm−tm−1

fm−1T (ω,n)
tm−1−tm−2

fm−2 . . . f1T (ω,n)
t1 T (ω,n)

t1 f1 . . . T (ω,n)
tm−tm−1

fm, fm〉
n

= 〈T (ω,n) F̂, fm〉n .

The proof for K is exactly the same. ��

Lemma 2.10 Let F ∈ A. Then

E

∫
(T (ω,n)F(x) − KF(x))2λn(dx) → 0. (2.12)

Proof We have

∫
(T (ω,n)F(x) − KF(x))2λn(dx) = 〈(T (ω,n)F − KF), (T (ω,n)F − KF)〉n

= 〈T (ω,n)F, T (ω,n)F〉n − 2〈T (ω,n)F,KF〉n + 〈KF,KF〉n .

123



Invariance principle 749

Thus

E

∫
(T (ω,n)F(x) − KF(x))2λn(dx)

= E 〈T (ω,n)F, T (ω,n)F〉n − 2〈T(n)F,KF〉n + 〈KF,KF〉n . (2.13)

Since KF is continuous we have

〈KF,KF〉n → 〈KF,KF〉.

Taking h = KF and using Lemma 2.4, Lemma 2.8 gives that

〈T(n)F,KF〉n → 〈KF,KF〉.

Let fm and F̂ be as in the the previous lemma. Then

E 〈T (ω,n)F, T (ω,n)F〉n = E 〈T (ω,n) F̂, fm〉n = 〈T(n) F̂, fm〉n .

Again by Lemma 2.8 and (2.11),

〈T(n) F̂, fm〉n → 〈KF̂, fm〉 = 〈KF,KF〉.

Adding the limits of the three terms in (2.13), we obtain (2.12). ��
Lemma 2.11 Let F ∈ A. Then

T (ω,n)F(0) → KF(0) in P -probability. (2.14)

Proof The previous lemma gives

E

∫
(U (ω,n)F(x))2λn(dx) → 0.

Using Lemma 2.5 we have

E

∫
(U (ω,n)Fx (0))

2λn(dx) → 0, (2.15)

and using the uniform continuity of U (ω,n)Fx (0) gives (2.14). ��
Write D for the set of dyadic rationals.

Proposition 2.12 Given any subsequence (nk) there exists a subsequence (n′
k) of (nk)

and a set �0 with P(�0) = 1, such that for any ω ∈ �0 and q1 ≤ q2 ≤ · · · ≤ qm

with qi ∈ D, the r.v. (Xqi , i = 1, . . . , m) under P0
ω,n′

k
converge in distribution to

(Wqi , i = 1, . . . , m).
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750 M. Barlow et al.

Proof Let DT = [0, T ] ∩ D. Fix a finite set q1 ≤ · · · ≤ qm with qi ∈ DT . Then
convergence of (Xqi , i = 1, . . . , m, P0

ω,n) is determined by a countable set of functions

Fi ∈ Am . So by Lemma 2.11 we can find nested subsequences (n(i)
k ) of (nk) such that

for each i

lim
k→∞ P0

(ω,n(i)
k )

Fj (0) = KFj (0) P -a.s., for 1 ≤ j ≤ i.

A diagonalization argument then implies that there exists a subsequence n′′
k such that

(Xqi , i = 1, . . . , m, P0
ω,n′′

k
) converge in distribution to (Wqi , i = 1, . . . , m). Since the

set of the finite sets {q1, . . . , qm} is countable, an additional diagonalization argument
then implies that there exists a subsequence (n′

k) such that this convergence holds for
all such finite sets. ��
Lemma 2.13 If AFCLT holds then “tightness in probability” holds, i.e., for any δ > 0
there exist δ1 > 0 and n1 such that for n ≥ n1, there is a set An of ω with P(An) ≥ 1−δ,
such that for ω ∈ An,

P0
ω,n

(
sup

0≤s≤t≤T,t−s≤δ1

|X (n)
s − X (n)

t | ≥ δ

)
< δ. (2.16)

Proof If AFCLT holds then, by the Skorokhod Lemma, we can construct X (n) and
W on a common probability space, in such a way that each X (n) has the distribution
E P0

ω,n and X (n) → W in the Skorokhod topology, a.s.
Fix any δ > 0. By continuity of Brownian motion there exists δ1 > 0 such that

PB M

(
sup

0≤s≤t≤T,t−s≤δ1

|Ws − Wt | ≥ δ

)
< δ. (2.17)

If a sequence of processes converges in the Skorokhod topology to a continuous
process then it converges also in the uniform sense. Hence, in view of (2.17), there
exists n1 such that for n ≥ n1,

E P0
ω,n

(
sup

0≤s≤t≤T,t−s≤δ1

|X (n)
s − X (n)

t | ≥ 2δ

)
< 2δ.

This implies that for n ≥ n1, there is a set An of ω with P(An) ≥ 1 − √
2δ, such that

for ω ∈ An ,

P0
ω,n

(
sup

0≤s≤t≤T,t−s≤δ1

|X (n)
s − X (n)

t | ≥ 2δ

)
<

√
2δ.

It is elementary to convert the form of this estimate to the form given in the lemma. ��
Theorem 2.14 If Assumption 2.2 holds then P0

ω,n converge weakly in measure to PBM.
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Invariance principle 751

Proof Fix any T > 0, an arbitrarily small ε > 0 and any bounded function F ∈
C(DT ). Let W denote Brownian motion and suppose that processes Y and W are
defined on the same probability space, for which we use the generic notation P and
E . It is easy to see that one can find δ ∈ (0, ε/2) so small that if the process Y satisfies

P

(
sup

0≤t≤T
|Yt − Wt | ≥ 3δ

)
< 3δ, (2.18)

then

|E F(Y ) − E F(W )| < ε. (2.19)

Let δ1 > 0 be so small that (2.16) and (2.17) hold with the present choice of δ.
Suppose that 0 = q1 ≤ q2 ≤ · · · ≤ qm = T are dyadic rationals and qk − qk−1 ≤ δ1
for all k (note that we can assume that T is a dyadic rational without loss of generality).
By Proposition 2.12, we can find a sequence nk such that the joint distributions of the
random variables (Xqi , i = 1, . . . , m) under P0

ω,nk
converge to the distribution of

(Wqi , i = 1, . . . , m), as k → ∞, P-a.s. By the Skorokhod Lemma, we can construct
(Xω,nk

qi , i = 1, . . . , m) and (W ω,nk
qi , i = 1, . . . , m) on the same probability space

(�ω,Fω, Pω) so that

(Xω,nk
qi

, i = 1, . . . , m) → (W ω,nk
qi

, i = 1, . . . , m), Pω-a.s., P -a.s., (2.20)

(Xω,nk
qi , i = 1, . . . , m) has the same distribution under Pω as (Xqi , i = 1, . . . , m)

under P0
ω,nk

, and (W ω,nk
qi , i = 1, . . . , m) has the same distribution under Pω as Brown-

ian motion (sampled at a finite number of times).
Using conditional probabilities and enlarging the probability space, if necessary,

we can assume that there exist processes (Xω,nk
t , 0 ≤ t ≤ T ) and (W ω,nk

t , 0 ≤ t ≤ T )

on the same probability space (�ω,Fω, Pω) such that (Xω,nk
t , 0 ≤ t ≤ T ) has the

same distribution under Pω as (Xt , 0 ≤ t ≤ T ) under P0
ω,nk

, (W ω,nk
t , 0 ≤ t ≤ T )

is Brownian motion, and all the conditions stated in the previous paragraph hold for
these processes sampled at qi , i = 1, . . . , m; in particular, (2.20) holds.

It follows from (2.20) that there exist an event H with P(H) > 1 − δ and k1 such
that for k ≥ k1 and each ω ∈ H ,

Pω(|Xω,nk
qk

− W ω,nk
qk

| < δ,∀ k = 1, . . . , m) ≥ 1 − δ. (2.21)

By Lemma 2.13, for k ≥ k2, there is a set Ak of ω with P(Ak) ≥ 1 − δ, such that
for ω ∈ Ak ,

P0
ω,nk

(
sup

0≤s≤t≤T,t−s≤δ1

|X (nk)
s − X (nk )

t | ≥ δ

)
< δ. (2.22)

Since (Xω,nk
t , 0 ≤ t ≤ T ) has the same distribution under Pω as (X (nk )

t , 0 ≤ t ≤ T )

under P0
ω,nk

, it follows from (2.22) that for k ≥ k2, there is a set Ak of ω with
P(Ak) ≥ 1 − δ, such that for ω ∈ Ak ,
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Pω

(
sup

0≤s≤t≤T,t−s≤δ1

|Xω,nk
s − Xω,nk

t | ≥ δ

)
< δ. (2.23)

For similar reasons, (2.17) implies that

Pω

(
sup

0≤s≤t≤T,t−s≤δ1

|W ω,nk
s − W ω,nk

t | ≥ δ

)
< δ. (2.24)

We now combine (2.21), (2.23) and (2.24) to conclude that for k ≥ k1 ∨ k2, there is a
set H ∩ Ak of ω with P(H ∩ Ak) ≥ 1 − 2δ, such that for ω ∈ H ∩ Ak ,

Pω

(
sup

0≤t≤T
|Xω,nk

t − W ω,nk
t | ≥ 3δ

)
< 3δ.

In view of (2.18)–(2.19) this implies that for k ≥ k1 ∨ k2, there is a set H ∩ Ak of ω

with P(H ∩ Ak) ≥ 1 − 2δ, such that for ω ∈ H ∩ Ak ,

|E0
ω,nk

F(X) − E F(W )| = |Eω F(Xω,nk ) − E F(W ω,nk )| < ε. (2.25)

Set ξn = |E0
ω,n F(X) − E F(W )|; since δ < ε/2, (2.25) implies that

P(ξnk > ε) < ε for k ≥ k1 ∨ k2. (2.26)

We now extend this result to the whole sequence, and claim that there exists n1 such
that

P(ξn > ε) < ε for n ≥ n1. (2.27)

Suppose not: then there exists a subsequence n∗
k with P(ξn∗

k
> ε) ≥ ε for all k.

However, by Proposition 2.12, we can find a subsequence nk of n∗
k such that the joint

distributions of the random variables (Xqi , i = 1, . . . , m) under P0
ω,nk

converge to
the distribution of (Wqi , i = 1, . . . , m), as k → ∞, P-a.s. Applying the argument
above to this subsequence, we have a contradiction to (2.26). Thus (2.27) holds, and
this completes the proof of the theorem. ��

3 Construction of the environment

The remainder of this paper is concerned with the proof of Theorem 1.4. The main
idea of the proof as as follows. We choose a sequence an of integers, with an � an−1,
and an/an−1 = mn ∈ Z. For each n we define an ergodic tiling of Z

2 into (disjoint)
squares, each with a2

n points. Write Sn for the collection of these squares; they are
defined so that each square in Sn is the union of m2

n squares in Sn−1. In each square
in Sn we place 4 obstacles of diameter O(bn), where bn � n−1/2an . The obstacles
are chosen so that the resulting environment is symmetric. Let Fn be the event that
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0 is within a distance O(bn) of an obstacle at scale n. The obstacles are such that if
Fn holds then the rescaled process Zn = (b−1

n Xb2n t , 0 ≤ t ≤ 1) will be far from a
Brownian motion. Thus if Fn holds i.o. then the QFCLT will fail. On the other hand, if
P(Fn) → 0 then with high probability Zn will be close to BM, and (after some work)
we do have the WFCLT.

We now begin by giving the construction of the sets Sn and the associated envi-
ronment. Let � = (0,∞)E2 , and F be the Borel σ -algebra defined using the usual
product topology. Then every t ∈ Z

2 defines a translation Tt of the environment by
t . Stationarity and ergodicity of the measures defined below will be understood with
respect to these transformations.

All constants (often denoted c1, c2, etc.) are assumed to be strictly positive and
finite. For a set A ⊂ Z

2 let E(A) be the set of edges in A if regarded as a subgraph of
Z
2. Let Eh(A) and Ev(A) respectively be the set of horizontal and vertical edges in

E(A). Write x ∼ y if {x, y} is an edge in Z
2. Define the exterior boundary of A by

∂ A = {y ∈ Z
2 − A : y ∼ x for some x ∈ A}.

Let also

∂i A = ∂(Z2 − A).

Finally define balls in the �∞ norm by B∞(x, r) = {y : ||x − y||∞ ≤ r}; of course
this is just the square with center x and side 2r .

Let {an}n≥0, {βn}n≥1 and {bn}n≥1 be strictly increasing sequences of positive inte-
gers growing to infinity with n, with

1 = a0 < b1 < β1 < a1 � b2 < β2 < a2 � b3 . . .

We will impose a number of conditions on these sequences in the course of the paper.
We collect these conditions here so that the reader can check that all conditions can
be satisfied simultaneously. There is some redundancy in the conditions, for easy
reference. (Some additional conditions on bn/an−1 are needed for the proof in [5] of
the full WFCLT for (X (ε)).)

(i) an is even for all n.
(ii) For each n ≥ 1, an−1 divides bn , and bn divides βn and an .
(iii) b1 ≥ 1010.
(iv) an/

√
2n ≤ bn ≤ an/

√
n for all n, and bn ∼ an/

√
n.

(v) bn+1 ≥ 2nbn for all n.
(vi) bn > 40an−1 for all n.
(vii) bn is large enough so that (5.1) and (6.1) hold.
(viii) 100bn < βn ≤ bnn1/4 < 3βn < an/10 for all n.

These conditions do not define an’s and bn’s uniquely. It is easy to check that there
exist constants that satisfy all the conditions: if ai , bi , βi have been chosen for all
i ∈ {1, . . . , n − 1}, then if bn is chosen large enough [with care on respecting the
divisibility condition in (ii)], it will satisfy all the conditions imposed on it with respect
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to constants of smaller indices. Then one can choose an and βn so that the remaining
conditions are satisfied.

We set

mn = an

an−1
, �n = an

bn
. (3.1)

We begin our construction by defining a collection of squares in Z
2. Let

Bn = [0, an]2,
B ′

n = [0, an − 1]2 ∩ Z
2,

Sn(x) = {x + an y + B ′
n : y ∈ Z

2}.

Thus Sn(x) gives a tiling of Z
2 by disjoint squares of side an − 1 and period an . We

say that the tiling Sn−1(xn−1) is a refinement of Sn(xn) if every square Q ∈ Sn(xn) is
a finite union of squares in Sn−1(xn−1). It is clear that Sn−1(xn−1) is a refinement of
Sn(xn) if and only if xn = xn−1 + an−1y for some y ∈ Z

2.
Take O1 uniform in B ′

1, and for n ≥ 2 take On , conditional on (O1, . . . ,On−1), to
be uniform in B ′

n ∩ (On−1 + an−1Z
2). We now define random tilings by letting

Sn = Sn(On), n ≥ 1.

Let ηn, Kn be positive constants; we will have ηn � 1 � Kn . We define con-
ductances on E2 as a limit of conductances for n = 1, 2 . . ., as follows. For each n,
conductances on a tile of Sn will be the same for each tile. Recall that an is even, and
let a′

n = 1
2an . Let

Cn = {(x, y) ∈ Bn ∩ Z
2 : y ≥ x, x + y ≤ an}.

We first define conductances ν
0,n
e for e ∈ E(Cn). Let

D00
n = {(a′

n − βn, y), a′
n − 10bn ≤ y ≤ a′

n + 10bn},
D01

n = {(x, a′
n + 10bn), (x, a′

n + 10bn + 1), (x, a′
n − 10bn), (x, a′

n − 10bn − 1),

a′
n − βn − bn ≤ x ≤ a′

n − βn + bn}.

Thus the set D00
n ∪ D01

n resembles the letter I (see Fig. 1).
For an edge e ∈ E(Cn) we set

ν
n,0
e = ηn if e ∈ Ev(D01

n ),

ν
n,0
e = Kn if e ∈ E(D00

n ),

ν
n,0
e = 1 otherwise.

We then extend νn,0 by symmetry to E(Bn). More precisely, for z = (x, y) ∈ Bn ,
let R1z = (y, x) and R2z = (an − y, an − x), so that R1 and R2 are reflections in the
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Fig. 1 The set D00
n ∪ D01

n
resembles the letter I. The short
vertical (blue) edges at thetop
and bottom of the I have very
low conductance. The central
(red) line represents edges with
very high conductance. Drawing
not to scale (color figure online)

2b

20b

n

n

20bn 2 nβ an

Fig. 2 The obstacle set D0
n . Each obstacle is a copy, in some cases a rotated one, of the obstacle set given

in Fig. 1

lines y = x and x + y = an . We define Ri on edges by Ri ({x, y}) = {Ri x, Ri y} for
x, y ∈ Bn . We then extend ν0,n to E(Bn) so that ν0,ne = ν

0,n
R1e = ν

0,n
R2e for e ∈ E(Bn).

We define the obstacle set D0
n by setting (see Fig. 2),

D0
n =

1⋃

i=0

(D0,i
n ∪ R1(D0,i

n ) ∪ R2(D0,i
n ) ∪ R1R2(D0,i

n )).

123



756 M. Barlow et al.

Fig. 3 Two levels of the
obstacle set. Drawing not to
scale

Note that νn,0
e = 1 for every edge adjacent to the boundary of Bn , or indeed within a

distance an/4 of this boundary. If e = (x, y), we will write e − z = (x − z, y − z).
Next we extend νn,0 to E2 by periodicity, i.e., νn,0

e = ν
n,0
e+an x for all x ∈ Z

2. Finally,
we define the conductances νn by translation by On , so that

νn
e = ν

n,0
e−On

, e ∈ E2.

We also define the obstacle set at scale n by

Dn =
⋃

x∈Z2

(an x + On + D0
n).

We illustrate two levels of construction in Fig. 3.
We define the environment μn

e inductively by

μn
e = νn

e if νn
e �= 1,

μn
e = μn−1

e if νn
e = 1.

Once we have proved the limit exists, we will set

μe = lim
n

μn
e . (3.2)

Theorem 3.1 (a) For each n the environments (νn
e , e ∈ E2), (μn

e , e ∈ E2) are sta-
tionary, symmetric and ergodic.

(b) The limit (3.2) exists P-a.s.
(c) The environment (μe, e ∈ E2) is stationary, symmetric in the sense of Defini-

tion 1.2, and ergodic with respect to the group of translations of Z
2.
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Proof (a) For x = (x1, x2) ∈ Z
2 define the modulo a value of x as the unique

(y1, y2) ∈ [0, a − 1]2 such that x1 ≡ y1 (mod a) and x2 ≡ y2 (mod a). We say that
x, y ∈ Z

2 are equivalent modulo a if their modulo a values are the same, and denote
it by x ≡ y mod a.

LetKn be the set of n-tuples (x1, . . . , xn) with xi ∈ (xi−1 + ai−1Z
2)∩ [0, ai − 1]2

(with the convention a0 = 1, x0 = 0). Denote the uniform measure on Kn by Pn .
Note that (O1, . . . ,On) is distributed according to Pn .

Let Un be a uniformly chosen element of [0, an − 1]2 ∩ Z
2. Then since each ai−1

divides ai , the distribution of (Un + a1Z2, . . . , Un + anZ
2) is stationary, symmetric

and ergodic with respect to the isometries (T̂t , t ∈ Z
2) defined by

T̂t : (Un + a1Z
2, . . . , Un + anZ

2) → (t + Un + a1Z
2, . . . , t + Un + anZ

2).

Letβ be the bijection between [0, an−1]2 ∩ Z
2 andKn defined asβ(t) = (x1, . . . , xn),

where xi is the mod ai value of t . The push-forward of the uniform measure for Un is
then the uniform measure on Kn . Furthermore, β commutes with translations in the
sense that if β(t) = (x1, . . . , xn) and τ ∈ Z, then β(t + τ) = (x1 + τ, . . . , xn + τ),
where addition in the i’th coordinate is understood modulo ai . Similarly, β commutes
with rotations and reflections. Hence symmetry, stationarity and ergodicity of (O1 +
a1Z2, . . . , On +anZ

2) follows from that of (Un +a1Z2, . . . , Un +anZ
2). Symmetry,

stationarity and ergodicity of (νn
e , e ∈ E2) and (μn

e , e ∈ E2) follows from the fact that
(νn

e , e ∈ E2) and (μn
e , e ∈ E2) are deterministic functions of (O1 + a1Z2, . . . , On +

anZ
2), and these functions commute with graph isomorphisms of Z

2.
(b) Bn contains more than 2a2

n edges, of which less than 100bn are such that νn,0
e �= 1.

So by the stationarity of νn ,

P(νn
e �= 1) ≤ 50bn

a2
n

≤ c

2n
.

The convergence in (3.2) then follows by the Borel–Cantelli lemma.
(c) The definition (3.2) and (a) show that (μe, e ∈ E2) is stationary and symmetric,
so all that remains to be proved is ergodicity.

Denote by K∞ the family of sequences (x1, x2, . . .), satisfying xi ∈ (xi−1 +
ai−1Z

2) ∩ [0, ai −1]2 for every i . LetG∞ be theσ -field generated by (O1,O2, . . .), and
(by a slight abuse of notation) for the rest of this proof let P be the law of (O1,O2, . . .).
Let Gn be the sub-σ -field of G∞ generated by (O1, . . . ,On).

If (x1, x2, . . .) ∈ K∞, t ∈ Z
2, define the P-preserving transformation t +

(x1, x2, . . .) as (t + x1, t + x2, . . .), where in the i’th coordinate is modulo ai . To
show ergodicity of (μe, e ∈ E2), it is enough to prove ergodicity of (O1,O2, . . .),
because (μe, e ∈ E2) is a deterministic function of it, and this function commutes
with graph isomorphisms of Z

2.
Now let A ∈ G∞ be invariant, and suppose by contradiction that there is some

ε > 0 such that ε < P(A) < 1− ε. There exists some n and B ∈ Gn with the property
thatP(A�B) < ε/4 (where� is the symmetric difference operator). This also implies
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that 3ε/4 < P(B) < 1 − 3ε/4. We have for t ∈ Z
2

P(B�(B + t)) ≤ P(A�B) + P(A�(B + t)) = P(A�B) + P((A + t)�(B + t))

= P(A�B) + P((A�B) + t) = 2P(A�B) < ε/2.

We now show that we can choose t so that P(B�(B + t)) ≥ 2P(B) P(K∞\B) ≥ ε/2,
giving a contradiction.

For an E ∈ Gn denote by En the subset of Kn such that (O1,O2, . . .) ∈ E if and
only if (O1, . . . ,On) ∈ En . Note that P(E) = Pn(En). So we want to show that for
any B ∈ Gn there exists a t such that Pn(Bn�(Bn + t)) ≥ 2Pn(Bn) Pn(Kn\Bn).

Consider the following average:

1

a2
n

∑

t∈[0,an−1]2
Pn(Bn�(Bn + t)) = 2

a2
n

∑

t∈[0,an−1]2
Pn(Bn\(Bn + t))

= 2

a4
n

∑

t∈[0,an−1]2

∑

x∈Kn

1(x ∈ Bn\(Bn + t)). (3.3)

Use

∑

x∈Kn

1(x ∈ Bn\(Bn + t)) =
∑

x∈Bn

1(x ∈ Bn\(Bn + t)) =
∑

x∈Bn

1(x − t /∈ Bn)

and change the order of summation to obtain

2

a4
n

∑

t∈[0,an−1]2

∑

x∈Kn

1(x ∈ Bn\(Bn + t)) = 2

a4
n

∑

x∈Bn

∑

t∈[0,an−1]2
1(x − t /∈ Bn)

= 2

a4
n

∑

x∈Bn

(a2
n − |Bn|) = 2

a4
n
|Bn|(a2

n − |Bn|) = 2Pn(Bn) Pn(Kn\Bn). (3.4)

It follows from (3.3)–(3.4) that there exists a t ∈ [0, an − 1]2 such that Pn(Bn�(Bn +
t)) ≥ 2Pn(Bn) Pn(Kn\Bn). ��

4 Choice of Kn and ηn

Let

Ln f (x) = 1
2

∑

y

μn
xy( f (y) − f (x)), (4.1)

and Xn be the associated Markov process.

Proposition 4.1 For each n ≥ 1 there exists a constant σn, depending only on
ηi , Ki , 1 ≤ i ≤ n, such that the QFCLT holds for Xn with limit σnW .
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Proof Since μn
e is stationary, symmetric and ergodic, and μn

e is uniformly bounded
and bounded away from 0, the result follows from [4, Theorem6.1]; see also Remarks
6.2 and 6.5 in that paper. (In fact, while [18, Theorem1.1] is stated for the i.i.d. case,
the argument there also works in the ergodic case.) ��

Next, we recall (from [6] for example) how σn is connected with the electrical
conductivity across a square of side an . Let k ∈ {an−1, bn, an}, and let

Qk = {[0, k]2 + z, z ∈ kZ
2}.

Thus Qk gives a tiling of Z
2 by squares of side k which are disjoint except for their

boundaries. Given Q ∈ Qk and m ∈ {n − 1, n} set

μ̃Q,m
xy =

{
1
2μ

m
xy if x, y ∈ ∂i (Q),

μm
xy otherwise.

For f : Q → R set

Ẽm
Q( f, f ) = 1

2

∑

x,y∈Q

μ̃Q,m
xy ( f (y) − f (x))2,

Hn = { f : Bn → R s.t. f (x, 0) = 0, f (x, an) = 1, 0 ≤ x ≤ an},
κn = inf{Ẽn

Bn
( f, f ) : f ∈ Hn}. (4.2)

Thus κ−1
n is just the effective resistance across the square Bn when bonds are assigned

conductivities μ̃Bn ,n .
Fix n ≥ 1 and for simplicity consider the environment μn in the case when On =

0. Then μn has period an (in both coordinate directions), and μn
xy for x, y ∈ Bn

is symmetric with respect to all the symmetries on the square Bn . Because of this
symmetry, the limiting conductance matrix will be a multiple σn of the identity, and
it is sufficient to calculate the variance of Xn in one coordinate direction.

We wish to construct an Ln-harmonic function hn : Z
2 → R so that for all

(x1, x2) ∈ Z
2 we have:

hn(x1, jan) = jan, j ∈ Z, hn(x1 + an, x2) = hn(x1, x2 + an) − an = hn(x1, x2).
(4.3)

It is easy to see by the maximum principle that if such a function exists it is unique.
Given such a function hn , writing Xn

t = (Xn,1
t , Xn,2

t ) we have |hn(Xn
t ) − Xn,2

t | ≤ an

and hn(Xn) is a martingale. Set

gn(x) = 1

2

∑

y∈Z2

μn
xy(hn(x) − hn(y))2.

The function gn also has period an on Z
2, i.e. g(x) = g(x ′) if x − x ′ ∈ anZ

2.
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Recall that B ′
n = [0, an − 1]2 ∩ Z

2, and let ψ : Z
2 → B ′

n be the natural function
which maps Z

2 onto the torus B ′
n . So ψ is the identity on B ′

n and has period an . Let
Yt = ψ(Xn

t ); then Y is a Markov process on B ′
n with stationary measure νx = a−2

n
for each x ∈ B ′

n . Then

〈h(Xn)〉t =
∫ t

0
gn(Xn

s )ds =
∫ t

0
gn(Ys)ds.

So, by the ergodic theorem for Y ,

σ 2
n = lim

t→∞
〈h(Xn)〉t

t
= a−2

n

∑

y∈B′
n

gn(y) = 1
2a−2

n

∑

y∈B′
n

∑

x∈Z2

μn
xy(hn(x) − hn(y))2.

(4.4)

To construct hn we use the resistance problem (4.2) in the square Q = Bn . Let
fn be the minimising function for (4.2). By the maximum principle fn is unique, and
so using the symmetry of μn with respect to reflections in the lines x1 = an/2 and
x2 = an/2 we deduce that for (x1, x2) ∈ Bn ,

fn(an − x1, x2) = f (x1, x2), fn(x1, an − x2) = 1 − f (x1, x2).

Given this function fn we construct hn by setting

hn(x) = an fn(x), x ∈ Bn,

hn(x + iane1 + jane2) = h(x) + jan, x ∈ Bn, i, j ∈ Z.

where e1 = (1, 0) and e2 = (0, 1). The function h satisfies (4.3) and is clearly
Ln-harmonic in the interior of B. Some straightforward calculations show that it is
also harmonic at points x ∈ ∂i Bn , and consequently it is harmonic on Z

2. Since hn is
constant on the lines {(i, jan), 0 ≤ i ≤ an} for j = 0, 1we have, using the symmetries
of hn , that

∑

y∈B′
n

∑

x∈Z2

μxy(hn(x) − hn(y))2 = 2a2
n Ẽ

n
Bn

( fn, fn).

Thus from (4.4)

σ 2
n = Ẽn

Bn
( fn, fn) = inf{Ẽn

Bn
( f, f ) : f ∈ Hn} = κn . (4.5)

We now set

ηn = b−(1+1/n)
n , n ≥ 1. (4.6)
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Theorem 4.2 There exist constants Kn ∈ [1, 50bn] such that σn = 1 for all n.

Proof Let n ≥ 1; we can assume that Ki , 1 ≤ i ≤ n − 1 have been chosen so that
σi = 2 for i ≤ n − 1.

Since σn is non-random, we can simplify our notation and avoid the need for
translations by assuming thatOk = 0 for k = 1, . . . , n; note that this event has strictly
positive probability. For K ∈ [0,∞) let κ2

n (K ) be the effective conductance across Bn

as given by (4.2) if we take Kn = K . Since Bn is finite, κ2
n (K ) is a continuous non-

decreasing function of K . We will show that κ2
n (1) ≤ 1 and κ2

n (K ) > 1 for sufficiently
large K ; by continuity it follows that there exists a Kn such that κ2

n (Kn) = 1, and thus
σ 2

n (Kn) = 1.
If K = 1 then we have μn

e ≤ μn−1
e , with strict inequality for the edges in Dn . We

thus have κ2
n (1) ≤ 1. To obtain a lower bound on κ2

n (K ), we use the dual characteri-
zation of effective resistance in terms of flows of minimal energy—see [13], and [3]
for use in a similar context to the one here.

Let Q be a square in Qk , with lower left corner w = (w1, w2). Let Q′ be the
rectangle obtained by removing the top and bottom rows of Q:

Q′ = {(x1, x2) : w1 ≤ x1 ≤ w1 + k, w1 + 1 ≤ x2 ≤ w1 + k − 1}.

A flow on Q is an antisymmetric function I on Q × Q which satisfies I (x, y) = 0 if
x � y, I (x, y) = −I (y, x), and

∑

y∼x

I (x, y) = 0 if x ∈ Q′.

Let ∂+Q = {(x1, w2 + k) : w1 ≤ x1 ≤ w1 + k} be the top of Q. The flux of a flow I
is

F(I ) =
∑

x∈∂+ Q

∑

y∼x

I (x, y).

For a flow I and m ∈ {n − 1, n} set

Em
Q(I, I ) = 1

2

∑

x∈Q

∑

y∈Q

(μ̃Q,m
xy )−1 I (x, y)2.

This is the energy of the flow I in the electrical network given by Q with conductances
(μ̃

m,Q
e ). If I(Q) is the set of flows on Q with flux 1, then

κn(K )−2 = inf{En
Bn

(I, I ) : I ∈ I(Bn)}.

Let In−1 be the optimal flow for κ−2
n−1. The square Bn consists ofm2

n = a2
n/a2

n−1 copies
of Bn−1; define a preliminary flow I ′ by placing a replica of m−1

n In−1 in each of these
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copies. For each square Q ∈ Qan−1 with Q ⊂ Bn we have En−1
Q (I ′, I ′) = m−2

n , and

since there are m2
n of these squares we have En−1

Bn
(I ′, I ′) = 1.

We now look at the tiling of Bn by squares in Qbn ; recall that �n = an/bn and that
�n is an integer. For each Q ∈ Qbn we have En−1

Q (I ′, I ′) = �−2
n . Label these squares

by (i, j) with 1 ≤ i, j ≤ �n .
We nowdescribemodifications to the flow I ′ in a square Q of side bn . For simplicity,

take first Q = [0, bn]2. Set A1 = {x = (x1, x2) ∈ Q : x1 ≥ x2}, and A2 = {x =
(x1, x2) ∈ Q : x2 ≥ x1}. Given any edge e = (x, y) in E(Q), either x, y ∈ A1 or else
x, y ∈ A2. For x = (x1, x2) ∈ Q set r(x) = (x2, x1). Define a new flow by

I ∗(x, y) =
{

I (x, y) if x, y ∈ A1,

I (r(x), r(y)) if x, y ∈ A2.
(4.7)

The flow I ′ runs from bottom to top of the square, and the modified flow I ∗ begins at
the bottom, and emerges on the left side of the square. As in [3, Proposition3.2] we
have EQ(I ∗, I ∗) ≤ EQ(I ′, I ′) = �−2

n . Thus ‘making a flow turn a corner’ costs no
more, in terms of energy, than letting it run on straight.

Suppose we now consider the flow I ′ in a column (i1, j), 1 ≤ j ≤ �n , and we wish
to make the flow avoid an obstacle square (i1, j1). Then we can make the flow make
a left turn in (i1, j1 − 1), and then a right turn in (i1 − 1, j1 − 1) so that it resumes
its overall vertical direction. This then gives rise to two flows in (i1 − 1, j1 − 1):
the original flow I ′ plus the new flow: as in [3] the combined flow in the square
(i1 − 1, j1 − 1) has energy less than 4�−2

n . If we carry the combined flow vertically
through the square (i1−1, j1), and make the similar modifications above the obstacle,
then we obtain overall a new flow J ′ which matches I ′ except on the 6 squares
(i, j), i1 ≤ i ≤ i1, j1 − 1 ≤ j ≤ j1 + 1. The energy of the original flow in these 6
squares is 6�−2

n , while the new flow will have energy less than 14�−2
n : we have a ‘cost’

of at most 4�−2
n in the 3 squares (i1−1, j), j1−1 ≤ j ≤ j1+1, zero in (i1, j1) and at

most �−2
n in the two remaining squares. Thus the overall energy cost of the diversion

is at most 8�−2
n (see Fig. 4).

We now use a similar procedure to construct a modification of I ′ in Bn with con-
ductances (μ̃

Bn ,n
e ). We have four obstacles, two oriented vertically and resembling an

I , and two horizontal ones. The crossbars on the I , that is the sets D01, contain vertical
edges with conductance ηn � 1. We therefore modify I ′ to avoid these edges, and the
squares with side bn which contain them.

Consider the left vertical I , which has center (a′
n − βn, a′

n). Let (i1, j1) be the
square which contains at the top the bottom left branch of the I , so that this square has
top right corner (a′

n − βn, a′
n − 10bn). The top of this square contains vertical edges

with conductance ηn , so we need to build a flow which avoids these. We therefore (as
above) make the flow in the column i1 take a left turn in square (i1, j1 − 1), a right
turn in (i1 − 1, j1 − 1), carry it vertically through (i1 − 1, j1), take a right turn in
(i1 − 1, j1 + 1) and carry it horizontally through (i1, j1 + 1) into the edges of high
conductance at the right side of (i1, j1 + 1). The same pattern is then repeated on the
other 3 branches of the left obstacle I , and on the other vertical obstacle.
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Fig. 4 Diversion of current around an obstacle square

We now bound the energy of the new flow J , and initially will make the calculations
just for the change in columns i1 − 1 and i1 below and to the left of the point (a′

n −
βn, a′

n). Write M = 10 for the half of the overall height of the obstacle. There are
2(M + 2) squares in this region where I ′ and J differ; these have labels (i, j) with
i = i1 − 1, i1 and j1 − 1 ≤ j ≤ j1 + M . We begin by calculating the energy if
K = ∞. In 3 of these squares the new flow J has energy at most 4�−2

n , in M + 1 of
them it has energy at most �−2

n , and in the remaining M it has zero energy. So writing
R for this region we have ER(I ′, I ′) = (2M + 4)�−2

n , while

ER(J, J ) ≤ (3 · 4 + M + 1)�−2
n = (13 + M)�−2

n .

So

ER(J, J ) − ER(I ′, I ′) ≤ (9 − M)�−2
n = −�−2

n < 0. (4.8)

This is if K = ∞. Now suppose that K < ∞. The vertical edge in the obstacle carries
a current 2/�n and has height Mbn , so the energy of J on these edges is at most

E ′ = 4�−2
n Mbn

K
≤ 4Mbn

K n
. (4.9)

The last inequality holds because �n ≥ √
n. Finally it is necessary to modify I ′ near

the 4 ends of the two horizontal obstacles. For this, we just modify I ′ in squares of
side an−1, and arguments similar to the above show that for the new flow J in this
region R′, which consists of 4 + 2bn/an−1 squares of side an−1, we have

ER′(J, J ) − ER′(I ′, I ′) ≤ 9bn

an−1m2
n

= 9an−1

bn
�−2

n . (4.10)
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The new flow J avoids the edges where μn
e = ηn . Combining these terms we obtain

for the whole square Bn , using (4.8)–(4.10),

En
Bn

(J, J ) − En−1
Bn

(I ′, I ′) ≤ −8�−2
n + 16Mbn

nK
+ 40an−1

bn
�−2

n

≤ −7�−2
n + 16Mbn

nK
< − 7

2n
+ 160bn

nK
.

So if K ′ = 50bn , we have

κ−2
n (K ′) ≤ En

Bn
(J, J ) ≤ 1 − cn−1 < 1.

Hence there exists Kn ∈ [1, 50bn) such that κ2
n (Kn) = 1. ��

Lemma 4.3 Let p < 1. Then E μ
p
e < ∞, and E μ

−p
e < ∞.

Proof Since μn
e = ηn = b−1−1/n

n on a proportion cbn/a2
n of the edges in Bn , we have

E μ
−p
e ≤ c

∑

n

bp(1+1/n)
n

bn

a2
n

≤ c
∑

n

bp+p/n−1
n < ∞.

Here we used the fact that bn ≥ 2n . Similarly,

E μ
p
e ≤ c

∑

n

K p
n

bn

a2
n

≤ c
∑

n

b1+p
n

a2
n

< ∞.

��
Remark 4.4 Using (4.5) and the methods of [3], one can show that for small enough
δ κ2

n (δbn) < 1, so that Kn � bn and consequently E μe = ∞. Note that we also have

lim sup
n→∞

n P(μe > n) = lim sup
k→∞

bk P(μe > cbk) = lim
k→∞

b2k
a2

k

= 0. (4.11)

From now on we take Kn to be such that σn = 1 for all n.

5 Weak invariance principle

Let X = (Xt , t ∈ R+, Px
ω , x ∈ Z

d) be the process with generator (1.1) associated
with the environment (μe). Recall (4.1) and the definition of Xn , and define X (n,ε) by

X (n,ε)
t = εXn

ε−2t , t ≥ 0.

Let Pω
n (ε) be the law of X (n,ε) on D = D1, and Pω(ε) be the law of X (ε).
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Recall that the Prokhorov distance dP between probability measures on D1 is
defined as follows (see [8, p. 238]). For A ⊂ D, let B(A, ε) = {x ∈ D : dS(x, A) <

ε}. For probability measures P and Q onD, dP (P, Q) is the infimum of ε > 0 such
that P(A) ≤ Q(B(A, ε)) + ε and Q(A) ≤ P(B(A, ε)) + ε for all Borel sets A ⊂ D.
Recall that convergence in the metric dP is equivalent to the weak convergence of
measures.

To prove the WFCLT it is sufficient to prove:

Theorem 5.1 There exists a sequence (bn) such that if εn = 1/bn then limn→∞ dP

(Pω(εn), PBM) = 0 in P-probability.

Proof Let n ≥ 1 and suppose that ak, bk have been chosen for k ≤ n − 1. By Propo-
sition 4.1 we have for each ω that dP (Pω

n−1(ε), PBM) → 0. Note that the environment
μn−1 takes only finitely many values. So we can choose bn large enough so that

dP (Pω
n−1(ε), PBM) < n−1 for 0 < ε ≤ b−1

n and all ω. (5.1)

Now for λ > 1 set

G(λ) =
{

w ∈ D1 : sup
0≤s≤1

|w(s)| ≤ λ

}
.

We have

PBM(G(λ)c) ≤ exp(−c′λ2).

We can couple the processes Xn−1 and X so that the two processes agree up
to the first time Xn−1 hits the obstacle set

⋃∞
k=n Dk . Let ξn(ω) = min{|x | : x ∈⋃∞

k=n Dk(ω)}, and

Fn = {ξn > λbn}.

Let m ≥ n, and consider the probability that 0 is within a distance λbn of Dm . Then
Om has to lie in a set of area cλbnbm , and so

P

(
min

x∈Dm
|x | ≤ λbn

)
≤ cbnbm

a2
m

≤ cbn

mbm
.

Thus

P(Fc
n ) ≤ c

∞∑

m=n

bn

mbm
≤ c

n

(
1 +

∞∑

m=n+1

bn

bm

)
≤ c′

n
.
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Suppose that ω ∈ Fn and n ≥ 2 so that n−1 < λ/2. Then using the coupling above,
we have

dP (Pω(εn), Pω
n−1(εn)) ≤ Pω

0

(
sup

0≤s≤b2n

|X (n−1)
s | > λbn

)

≤ dP (Pω
n−1(εn), PBM) + PBM(G(λ/2)c).

If now δ > 0, choose λ > 1 such that PBM(G(λ/2)c) < δ/2, and then N > 2/δ
large enough so that P(Fc

n ) < δ for n ≥ N . Then combining the estimates above, if
n ≥ N and ω ∈ Fn, dP (Pω(εn), PBM) < δ, so for n ≥ N , P(dP (Pω(εn), PBM) >

δ) ≤ P(Fc
n ) < δ, which proves the convergence in probability. ��

6 Quenched invariance principle does not hold

Wewill prove that the QFCLT does not hold for the processes X (εn), and will argue by
contradiction. If the QFCLT holds for X with limit �W then since the WFCLT holds
for X (εn) with diffusion constant 1 in every direction (by isotropy of the environment),
� must be the identity matrix.

Letw0
n = (a′

n −10bn −1, a′
n −βn) be the centre point on the left edge of the lowest

of the four nth level obstacles in the set D0
n , and let z0n = wn − ( 1

2bn, 0
)
. Thus z0n is

situated a distance 1
2bn to the left of w0

n—see Fig. 5. Let

H0
n (λ) = B∞(z0n, λbn), Hn(λ) =

⋃

x∈anZ
2

(x + On + H0
n (λ)).

Lemma 6.1 For λ > 0 the event {0 ∈ Hn(λ)} occurs for infinitely many n, P-a.s.

Proof Let Gk = σ(O1, . . . ,Ok). Given the values of O1, . . . ,On−1, the r.v. On is
uniformly distributed over m2

n points, with spacing an−1, and has to lie in a square
with side 2λbn in order for the event {0 ∈ Hn(λ)} to occur. Thus approximately
(2λbn/an−1)

2 of these values of On will cause {0 ∈ Hn(λ)} to occur. So

P(0 ∈ Hn(λ) | Gn−1) ≥ c
(2λbn/an−1)

2

(an/an−1)2
= c′ b2n

a2
n

≥ c′′

n
.

The conclusion then follows from an extension of the second Borel–Cantelli Lemma.
��

Fig. 5 The square represents

H0
n ( 14 ) z

w

0

0
n

n
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Lemma 6.2 With P-probability 1, the event Gn(λ) = {Hn(λ) ∩ (
⋃∞

m=n+1 Dm) �= ∅}
occurs for only finitely many n.

Proof Let m > n. Then as in the previous lemma, by considering possible positions
of Om , we have

P(Hn(λ) ∩ Dm �= ∅) ≤ c
bmbn

a2
m

≤ c
bn

bm
.

Since bm ≥ 2mbm−1 > 2mbn ,

P

(
Hn(λ) ∩

{ ∞⋃

m=n+1

Dm �= ∅
})

≤
∞∑

m=n+1

c
bn

bm
≤ c2−n,

and the conclusion follows by Borel–Cantelli. ��
Thefirst twoLemmas have shown, first that 0 is close to anth level obstacle infinitely

often, and next that higher level obstacles do not interfere. Our final task is to show
that in this situation, the process X is unlikely to cross the strip of low conductance
edges.

Lemma 6.3 Suppose that 0 ∈ Hn(1/8) and Hn(4) ∩ ( ⋃∞
m=n+1 Dm

) = ∅. Write
Xt = (X1

t , X2
t ), and let

F = {|X2
t | ≤ 3bn/4, |X1

t | ≤ 2bn, 0 ≤ t ≤ b2n, X1
b2n

> 3bn/4}.

Then there exists a constant An−1 = An−1(η1, K1, . . . , ηn−1, Kn−1) such that

P0
ω(F) ≤ cb−1/n

n An−1 log An−1.

Proof Let wn = (xn, yn) be the element of {w0
n +On + an x, x ∈ Z

2} which is closest
to 0. Then, under the hypotheses of the Lemma, we have 3bn/8 ≤ xn ≤ 5bn/8, and
|yn| ≤ bn/8. Thus the square B∞(0, 2bn) intersects the obstacle set Dn , but does not
intersect Dm for any m > n. Hence if F holds then we can couple Xn and X so that
Xn

t = Xt for 0 ≤ t ≤ b2n .
LetH = {(x, y) : x ≤ xn}, and J = B∩∂i H. If F holds then Xn has to cross the line

J , and therefore has to cross an edge of conductance ηn . Let Y be the process with edge
conductances μ′

e, where μ′
e = μn−1

e except that μ′
e = 0 if e = {(xn, y), (xn + 1, y)}

for y ∈ Z. Thus the line ∂i H is a reflecting barrier for Y . Let

Lt =
∫ t

0
1(Ys∈J )ds

be the amount of time spent by Y in J , and

G = {|Y 2
t | ≤ 3bn/4, |Y 1

t | ≤ 2bn, 0 ≤ t ≤ b2n}.

123



768 M. Barlow et al.

Assuming that G holds, let ξ1 be a standard exp(1) r.v., set T = inf{s : Ls > ξ1/ηn},
and let Xn

t = Yt on [0, T ), and Xn
T = YT + (1, 0). Note that one can complete the

definition of Xn
t for t ≥ T in such a way that the process Xn has the same distribution

as the process defined by (4.1). We have

P0
ω(G ∩ {Xn

s = Y n
s , 0 ≤ s ≤ b2n}) = E0

ω(1G exp(−ηn Lb2n
)).

So

P0
ω(G ∩ {T ≤ b2n}) = E0

ω(1G(1 − exp(−ηn Lb2n
)) ≤ E0

ω(1Gηn Lb2n
) ≤ ηn E0

ωLb2n
.

The process Y has conductances bounded away from 0 and infinity on H, so by [11]
Y has a transition probability pt (w, z) which satisfies

pt (w, z) ≤ At−1 exp(−A−1|w − z|2/t), w, z ∈ H, t ≥ |w − z|.

In addition if r = |w−z| ≥ A then pt (w, z) ≤ pr (w, z). Here A = An−1 is a possibly
large constant which depends on (ηi , Ki , 1 ≤ i ≤ n − 1). We can take A ≥ 10. For
w ∈ J we have |w| ≥ bn/4 and so provided bn ≥ 8A,

E0
ω

∫ b2n

0
1(Ys=w)ds =

∫ b2n

0
pt (0, w)dt ≤ bn pbn (0, w) +

∫ b2n

bn

pt (0, w)dt

≤ cAe−bn/A + A
∫ b2n

0
t−1 exp(−b2n/(16At))dt ≤ cA log(A).

So since |J | ≤ 2bn ,

P0
ω(G ∩ {T ≤ b2n}) ≤ cηnbn A log A ≤ cb−1/n

n A log A.

Finally, the construction of Xn from Y gives that P0
ω(F) ≤ P0

ω(G ∩ {T ≤ b2n}). ��
Proof of Theorem 1.4(b) We now choose bn large enough so that for all n ≥ 2,

b−1/n
n An−1 log An−1 < n−1. (6.1)

Let Wt = (W 1
t , W 2

t ) denote two-dimensional Brownian motion with W0 = 0, and
let PBM denote its distribution. For a two-dimensional process Z = (Z1, Z2), define
the event

F(Z) = {|Z2
s | < 3/4, |Z1

s | ≤ 2, 0 ≤ s ≤ 1, Z1
1 > 1}.

The support theorem implies that p1 := PBM(F(W )) > 0. Write Fn = F(X (εn)).
Let N1 = N1(ω) be such that the event Gn(4) defined in Lemma 6.2 does not

occur for n ≥ N1. Let 
 = 
(ω) be the set of n > N1 such that 0 ∈ Hn
( 1
8

)
. Then
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P(
 is infinite) = 1 by Lemma 6.1. By Lemma 6.3 and the choice of bn in (6.1) we
have P0

ω(Fn) < cn−1 for n ∈ 
. So

P0
ω(Fn) → 0 as n → ∞ with n ∈ 
.

Thus whenever
(ω) is infinite the sequence of processes (X (εn)
t , t ∈ [0, 1], P0

ω), n ≥
1, cannot converge to W , and the QFCLT therefore fails. ��
Remark 6.4 We can construct similar obstacle sets in Z

d with d ≥ 3, and we now
outline briefly the main differences from the d = 2 case.

We take bn = ann−1/d , so that
∑

bd
n/ad

n = ∞, and the analogue of Lemma 6.2
holds. In a cube side an we take 2d obstacle sets, arranged in symmetric fashion around
the centre of the cube. Each obstacle has an associated ‘direction’ i ∈ {1, . . . , d}. An
obstacle of direction i consists of a 2bd−1

n edges of low conductance ηn , arranged in
two d − 1 dimensional ‘plates’ a distance Mbn apart, with each edge in the direction
i . The two plates are connected by d − 1 dimensional plates of high conductance Kn .
Thus the total number of edges in the obstacles is cbd−1

n , so taking an/an−1 large
enough, we have

∑
bd−1

n /ad
n < ∞, and the same arguments as in Sect. 3 show that

the environment is well defined, stationary and ergodic.
The conductivity across a cube side N in Z

d is N d−2. Thus if we write σ 2
n (ηn, Kn)

for the limiting diffusion constant of the process Xn , and Rn = Rn(ηn, Kn) for the
effective resistance across a cube side an , then (4.5) is replaced by:

σ 2
n (ηn, Kn) = a2−d

n R−1
n . (6.2)

For the QFCLT to fail, we need ηn = o(b−1
n ), as in the two-dimensional case. With

this choice we have Rn(ηn, 0)−1 < ad−2
n , and as in Theorem 4.2 we need to show that

if Kn is large enough then Rn(ηn, Kn)−1 > ad−2
n .

Recall that �n = an/bn . Let I ′ be as in Theorem 4.2; then I ′ has flux �−d+1
n

across each sub-cube Q′ of side bn . If the sub-cube does not intersect the obstacles
at level n, then EQ′(I ′, I ′) = �−d

n a2−d
n . The ‘cost’ of diverting I ′ around a low

conductance obstacle is therefore of order c�−d
n a2−d

n = cb−d+2
n �−2d+2

n —see [17].
As in Theorem 4.2 we divert the flow onto the regions of high conductance, so as to
obtain some cubes in which the new flow has zero energy. To estimate the energy in
the high conductance bonds, note that we have 2(d − 1)bd−2

n sets of parallel paths
of edges of high conductance, and each path is of length Mbn , so the flow in each
edge is Fn = �−d+1

n /bd−2
n (2d − 2). Hence the total energy dissipation in the high

conductance edges is

K −1M F2
n = c′K −1Mbd−1

n

�2d−2
n b2d−4

n
= c′K −1M

�2d−2
n bd−3

n
.

We therefore need

c′K −1M

�2d−2
n bd−3

n
<

c

bd−2
n �2d−2

n
,
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that is we need to choose Kn > cMbn for some constant c. Since

E μ
p
e �

∑

n

K p
n bd−1

n

ad
n

� M
∑

n

bd−1+p
n

ad
n

,

we find that in d ≥ 3 our example also has E μ
±p
e < ∞ if and only if p < 1.
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