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Abstract Let (T1,T2, . . .) be a sequence of random d×d matrices with nonnegative
entries, and let Q be a random vector with nonnegative entries. Consider random
vectors X with nonnegative entries, satisfying

X
L=
∑

i≥1
Ti Xi + Q, (∗)

where
L= denotes equality of the corresponding laws, (Xi )i≥1 are i.i.d. copies of X

and independent of (Q,T1,T2, . . .). For d = 1, this equation, known as fixed point
equation of the smoothing transform, has been intensively studied. Under assumptions
similar to the one-dimensional case, we obtain a complete characterization of all
solutions X to (∗) in the non-critical case, and existence results in the critical case.
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402 S. Mentemeier

List of symbols

1, 1̃ 1 = (1, . . . , 1)� ∈ R
d≥, 1̃ = d−1/21 ∈ S≥

L= Same law
int (A) Topological interior of the set A
[·]v Shift operator in V, see (4.1)
α-Regular See Definition 2.1.

Bn Filtration, Bn = σ
(
(T (v))|v|<n

)

BIu
t

BIu
t
:= σ

(
U (∅), {T (v) : v has no ancestor in Iu

t }
)

(C) Condition imposed on the supp of μ, see Definition 1.1

D, DL ,s D(x) := 1−φ(x)
Hα(x) , DL ,s(u, t) = 1−φ(es+t u)

Hα(et u)eαs L(es )
E

α
u Expectation symbol of Pα

u , see (3.4).
Eα,c Extremal points of HK

α,c, see Lemma 10.5
Hs Hs(x) = ∫

S≥ 〈x, y〉s νs(dy) for all x ∈ R
d≥. It is a s-homogeneous

function, i.e. Hs(x) = |x |s Hs(x/ |x |) and satisfies (Ps∗ Hs)(u) =
k(s)Hs(u), u ∈ S≥

Iμ Iμ = {s ≥ 0 : E ‖M‖s <∞}
ι(a) ι(a) := inf{x ∈ S≥ : |ax |}
Iu
t Stopping line, Iu

t := {v ∈ V : Su(v) > t and Su(v|k) ≤ t ∀ k <

|v|}
J K

α See Definition 9.4
k(s) Dominant eigenvalue of Ps and Ps∗ satisfies m(s) = ENk(s)
KC KC =

(
miny∈C mini yi

)
for compact C ⊂ int

(
S≥
)

L(v) Recursively defined by L(∅) = Id and L(vi) = L(v)Ti (v)

L-α-elementary See Definition 2.1
λa Perron–Frobenius eigenvalue of a ∈ int

(
M≥

)

M(u) Disintegration, see Definition 7.2
M≥ Set M(d × d,R≥) of nonnegative d × d matrices

m(s) m(s) = EN limn→∞
(
E ‖M1 · · ·Mn‖s

)1/n , where (Mi )i∈N are
i.i.d. with law μ

(Mn)n∈N Sequence of random matrices (i.i.d. with law μ under P) c.f. (3.4)

μ LawonM≥, definedby
∫
f (a)μ(da) :=(EN )−1 E

(∑N
i=1 f (Ti )

)
.

N,N0 N = N0\{0}.
νs Probability measure on S≥, satisfy (Ps)′νs = k(s)νs

Pu Notation for initial states, Pu (U (∅) = u,U0 = u, S0 = 0) = 1
Ps , Ps∗ Operators on C

(
S≥
)
defined in (1.13) resp. (3.1)

�n �n :=M�n . . .M�1
P

α
u Exponentially shifted measure, see (3.4).

R≥,R> R≥ = [0,∞), R> = (0,∞)

� Stationary law of (U (t), R(t)) under Pα
u , see Theorem 4.9

Su(v), Sn, S(t) S(v) = − log
∣∣L(v)�u

∣∣, Sn := − log |�nU0|, S(t) = Sτt

S≥ S≥ = S ∩ R
d≥ intersection of the unit sphere and the nonnegative

cone in Rd
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The fixed points of the multivariate smoothing transform 403

τt τt := inf{n : Sn > t}
V V =⋃∞n=0 Nn

Uu(v),Un,U (t) U (v) = L(v)� · u, Un = �n ·U0, U (t) = Uτt

va Perron–Frobenius eigenvalue of a ∈ int
(
M≥

)

Wn,W Martingale, see (1.14), Wn → W , W0(u) = Hα(u)

W ∗ Particular fixed point of SQ , see Lemma 5.2

W f
Iu
t

W f
Iu
t
=∑v∈Iu

t
Hα(L(v)�U (v)) f (U (v), S(v)− t),

Z(u) Z(u) := − logM(u)

1 Introduction

Let d > 1. Let (Ti )i≥1 be a sequence of random d × d-matrices and Q a random
vector in Rd . Assume that

N := #{i : Ti �= 0}

is finite a.s. We will assume throughout that the collection (Ti )i≥1 is ordered in such
a way that Ti �= 0 if and only if i ≤ N . For any random variable X ∈ R

d , let (Xi )i≥1
be a sequence of i.i.d. copies of X , and independent of (Q, (Ti )i≥1). Then the random
variable

∑N
i=1 Ti Xi + Q is well defined, and one can ask the question, whether it

holds that

X
L=

N∑

i=1
Ti Xi + Q, (1.1)

where
L= denotes equality in law. If X is a random variable such that (1.1) holds,

then we call its law L (X) a solution of Eq. (1.1), and ask for a characterization of all
solutions of Eq. (1.1). In other words, introducing the mapping SQ on the set P(Rd)

of probability measures on R
d , defined by

SQη := L
(

N∑

i=1
Ti Xi + Q

)
, (1.2)

where (Xi )i≥1 are i.i.d. random variables with law η, and independent of (Q, (Ti )i≥1),
wewant to find all η ∈ P(Rd), such thatSQη = η, i.e. all fixed points ofSQ . Following
Durrett and Liggett [27], we call SQ the multivariate smoothing transform, and

S0η := L
(

N∑

i=1
Ti Xi

)
, (1.3)

the homogeneous multivariate smoothing transform. By a shift of notation, we will
also call a random variable X a fixed point (FP) or solution, if its law L (X) is a fixed
point of the multivariate smoothing transform.
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404 S. Mentemeier

Note that X ≡ 0 is always a solution of the homogeneous equation with Q ≡ 0,
which we refer to as the trivial one. If there is X �= 0 which is a fixed point of the
homogeneous equation, then cX will be a fixed point of the homogeneous equation
as well, for any c ∈ R. Observe that the following particular case of Eq. (1.1);

X
L=

N∑

i=1
N−1/αXi (1.4)

with α ∈ (0, 2] and N having a geometric distribution on N, is solved by the multi-
variate strictly α-stable laws.

Multivariate stochastic fixed point equations of the form (1.1) arise naturally
in the study of branching processes, divide-and-conquer algorithms or generalized
Polya urn models, some instances appear in Neininger and Rüschendorf [63, Theo-
rem4.1 andTheorem4.3], [13, Theorem1] or in [38, Eq. (3.5)], which can bewritten in
matrix form, too. See as well [49, Section 7] or [45, Section 7] for a critical discussion.
Recently, Bassetti and Matthes [8] used Eq. (1.1) with Q ≡ 0 to study generalized
kinetic models, aiming at the description of particle velocities in a Maxwell gas.

Understanding Eq. (1.1) (with Q ≡ 0) is an important step to study the so-called
multiplicative chaos equation for matrices, i.e. to find random matrices X, satisfying

X L=
N∑

i=1
TiXi , (1.5)

where (Xi )i≥1 is a sequence of i.i.d. copies ofX and independent of (Ti )i≥1. To wit, if
X, X1, X2, . . . satisfy Eq. (1.1) (with Q ≡ 0), then for every a = (a1, . . . , ad)� ∈ R

d

it holds that

(a1X a2X . . . ad X)
L=

N∑

i=1
Ti (a1Xi a2Xi . . . ad Xi ) ,

i.e. the rank-one matrix X = Xa� is a fixed point of Eq. (1.5). There is substantial
interest in understanding (1.5), for itmay serve as a discrete approximation toGaussian
matrix-multiplicative chaos, a field of studywhich has just started, see Chevillard et al.
[23]; Rhodes and Vargas [67].

The long-term goal is to characterize all solutions of the multivariate stochastic
fixed point equation (1.1) for general matrices. As the historic survey for the one-
dimensional case will show, techniques (for d = 1) were first developed to under-
stand nonnegative fixed points of the homogeneous equation with nonnegativeweights
(Ti )i≥1. This equation then served as a model for the study of the more complicated
case of real-valued fixed points, or even real-valued weights; a problem which was
solved very recently in Iksanov and Meiners [33].

We set out our investigations by studying the multidimensional analogue of the
nonnegative case, i.e. we assume that
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The fixed points of the multivariate smoothing transform 405

(Q, (Ti )i≥1) is a random variable in Rd≥ × M(d × d,R≥)N (A0)

and, as mentioned before, we assume that

the r.v. N := #{i : Ti �= 0} equals sup{i : Ti �= 0} and is finite a.s. (A1)

Here, R≥ := [0,∞).
In this setting, Menshikov et al. [58] asked (Remark after Proposition 2.4) for

sufficient conditions for the existence of a fixed point of the matrix-multiplicative
chaos equation. As indicated above, by characterizing the fixed points of Eq. (1.1), we
solve this open problem. Further applications will be given below.

In order to explain what assumptions and results can be expected, we will now
review the history of the problem in dimension d = 1. Then we state all our assump-
tions and the main result.

1.1 History of the problem: results in the one-dimensional case

If d = 1, then (Q, T1, T2, . . .) is a sequence of nonnegative random variables, and one
can define, for s ≥ 0, the quantity

m̂(s) := E

N∑

i=1
T s
i ∈ [0,∞].

Then it is immediate, upon taking expectations, that m̂(1) = 1 (m̂(1) < 1) is a
necessary condition for the homogeneous (inhomogeneous with EQ > 0) equation
to have a nontrivial, i.e. non-zero, fixed point with finite expectation. But the rôle of
the function s �→ m̂(s) is much more fundamental: it is log-convex on its domain of
definition, and subject to the assumption EN > 1, which is imposed in all the studies
below, there are at most two values 0 < α < β with m̂(α) = m̂(β) = 1. If derivatives
exists, then m̂′(α−) ≤ 0, m̂′(β) ≥ 0, with strict inequality holding unless β = α,
which then is called the critical case.

The set of fixed points is structured by the value of α, which generalizes the index of
stability. Roughly speaking, there are two classes of fixed points: mixtures of α-stable
laws, which have an infinite moment of order α, and fixed points with a finite moment
of order α, which then might have heavy tails with tail index β, if β exists. The second
class of fixed points attracts point masses (and can be found by using Banach’s fixed
point theorem on a suitable subspace of probability measures, namely those having a
finite moment of order α + ε), while the first class attracts α-stable laws and needs
more involved techniques to be characterized.

It was shown in Doney [25]; Biggins [9]; Kahane and Peyrière [41], that m̂(1) = 1
together with m̂′(1−) < 0 is a sufficient condition for the existence of fixed points
of S0 with finite expectation. The first two papers are motivated by questions about
convergence ofmartingales in the branching randomwalk,while the third paper studies
so-called Mandelbrot cascades, a model introduced in Mandelbrot [54]. Motivated by
questions from interacting particle systems, Durrett and Liggett [27] considered the
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406 S. Mentemeier

homogeneous equation for general α ∈ (0, 1] under the assumption that N is bounded.
Directly related to Eq. (1.1) is the functional equation

f (t) = E

N∏

i=1
f (Ti t),

where f (t) = E exp(−t X) is the Laplace transform (LT) of a nonnegative random
variable. Durrett and Liggett [27] proved that there is a function L , slowly varying at
0, such that the Laplace transform of each nontrivial fixed point satisfies (assuming
non-arithmeticity)

lim
r→0

1− f (t)

L(t)tα
= K (1.6)

for some K > 0, and relation (1.6) uniquely characterizes the fixed point. The function
L is constant in the non-critical case, while it equals L(t) = |log t | in the critical case
α = 1. Using the Tauberian theorem for LTs, Feller [28, XIII.(5.22)], this relation
yields that fixed points have tails of order α , if α < 1, and finite expectation, if α = 1
and m̂′(α−) < 0. The results of Durrett and Liggett [27] were extended to the case
of more general N , namely random N with finite expectation, in Liu [50], which also
contains many references and additional results. The homogeneous equation in the
critical case, i.e. m̂′(α−) = 0 was studied in Biggins and Kyprianou [11], Kyprianou
[47], Biggins and Kyprianou [12], Aidekon and Shi [1].

Iksanov [34] studied the functional equation for functions f which are not nec-
essary Laplace transforms, but satisfying (a generalization of) (1.6). It was proved
only recently in Alsmeyer et al. [2], under the weakest assumptions known, that any
monotone function with values in [0, 1], satisfying the functional equation, is of the
form

f (t) = E exp(−KtαW ), (1.7)

where W is the (up to scaling) unique fixed point of W
L= ∑

i≥1 T α
i Wi , where

W,W1, . . . are i.i.d. and independent of (Ti )i≥1. Here α ∈ (0,∞) and m̂′(α) ≤ 0
is considered. Such functions are completely monotone (hence Laplace transforms of
a random variable) if and only if α ∈ (0, 1]. In that case, f (t) describes a mixture of
α-stable laws, the LTs of which are given by fα,c(t) := exp(−ctα), c > 0.

The set of fixed points for the inhomogeneous case was described in Alsmeyer and
Meiners [4]: there is a particular fixed point W ∗ (called minimal solution), which has
a finite moment of order α, and in general, there is a one-parameter family of fixed
points, the Laplace transform of which satisfies

E exp(−t X) = E exp(−KtαW − tW ∗), t ≥ 0

for some K ≥ 0, with W as above. If K > 0, these fixed points have an infinite
moment of order α.

The inhomogeneous equation in the critical case was studied in Buraczewski and
Kolesko [20]. Real-valued fixed points (still for Ti being nonnegative) were considered
in Caliebe [21], Caliebe and Rösler [22], Alsmeyer and Meiners [5], and the most
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The fixed points of the multivariate smoothing transform 407

general question about fixed points for real-valued weights (Q, T1, T2, . . .)was solved
very recently by Iksanov and Meiners [33].

All papers cited above studied, as their main objective, the structure of the set of
fixed points of S0 or SQ in the one-dimensional case, while our aim is to pursue
the same question in the multivariate case. There is a lot of related work concerned
with properties of particular fixed points from the second class, namely those of finite
expectation (i.e. α = 1) for the homogeneous equation, or properties of W ∗ for the
inhomogeneous equation. The tail behavior of L1-fixed points of S0 was studied in
Guivarc’h [30] and subsequently in Liu [51]. It turns out that these fixed points have
Pareto-like tails with tail index β, where m̂(β) = 1, m̂(β) > 0. Jelenković and Olvera-
Cravioto [40] proved that the particular solution W ∗ of the inhomogeneous equation
satisfies

lim
t→∞ tβP

(
W ∗ > t

) = C ≥ 0,

where positivity ofC was proved in some cases, and under general assumptions later in
Alsmeyer et al. [3], Buraczewski et al. [19]. Tail behavior of fixed points in the critical
case was studied in Buraczewski [16] for the homogeneous, and in Buraczewski and
Kolesko [20] for the inhomogeneous equation. The case of real-valued weights was
considered in Jelenković and Olvera-Cravioto [39]. The r.v.W in (1.7) is the limit of a
martingaleWn (more details given below), tails of supn Wn were studied in Iksanov and
Negadaı̆lov [35]. Continuity properties of the density of fixed points were considered
in Liu [52].

1.2 Previous results in the multivariate case

Up to now, only partial results about existence and/or uniqueness of fixed points of
Eq. (1.1) for d > 1 have been achieved: Fixed points on R

d with a finite variance
were studied in Neininger and Rüschendorf [63, Theorem 4.4] and in Bassetti and
Matthes [8]. Properties ofW ∗ ∈ R

d≥ were studied in Mirek [61], its counterpart in Rd

in Buraczewski et al. [18]. Fixed points (in R
d≥) of the homogeneous equation with

finite expectation were studied in Buraczewski et al. [17]. Let us point out that all these
existence results are only concerned with fixed points from the second class, i.e. those
with a finite moment of order α + ε.

The fixed points described in this work have an infinite moment of order α if K > 0
and thus are not accessible by these methods. Inter alia, we are going to prove that
the inhomogeneous equation studied in Mirek [61] has more than one solution [in this
respect, the statement of (ibid., Theorem 1.7) is misleading].

1.3 Statement of the main result

The weighted branching model for matrices Let V =⋃∞n=0 Nn be the infinite Ulam–
Harris tree with root ∅. For a node v = v1 . . . vn write |v| = n for its generation,
v|k = v1 . . . vk for its ancestor in the k-th generation, k ≤ n, and vi for its i-th child.

123



408 S. Mentemeier

Attaching to each node an independent copy T (v) = (Q(v),T1(v),T2(v), . . .) of
T = (Q,T1,T2, . . .), the random matrix Ti (v) can be interpreted as a weight along
the path from v to vi . The product of the weights along the unique shortest path from
∅ to v is defined recursively by L(∅) = Id, the identity matrix, and

L(vi) = L(v)Ti (v). (1.8)

Due to the assumption N < ∞ a.s., the number of nonzero weights L(v) is almost
surely finite in every generation, in fact, it follows a Galton–Watson process with
offspring law N . Define a filtration by

Bn := σ (T (v), |v| < n) .

Observe that L(v) isB|v|-measurable, while Q(v) is independent of B|v|.
A particular fixed point With these definitions, a natural candidate for a fixed point of
(1.1) is given by the law of the random variable

W ∗ :=
∞∑

n=0

∑

|v|=n
L(v)Q(v), (1.9)

as soon as this sum converges. Let |·| be the Euclidean norm onRd with unit sphere S,
and let ‖a‖ := supx∈S |ax | be the corresponding operator norm on the set of matrices.
Then a sufficient condition for the convergence of W ∗ is E |W ∗|s < ∞ for some
s > 0. Considering e.g. s ≤ 1, one obtains

E
∣∣W ∗

∣∣s < E |Q|s
∞∑

n=0
E

∑

|v|=n
‖L(v)‖s, (1.10)

and the right hand side is finite if and only if E |Q|s <∞ and the quantity

m(s) := lim sup
n→∞

⎛

⎝E
∑

|v|=n
‖L(v)‖s

⎞

⎠
1/n

is smaller than 1. The function s �→ m(s) will play a fundamental role in the charac-
terization of the set of fixed points below, it is the multivariate analogue of the function
m̂(s) that appeared in the one-dimensional case.
Assumptions on N Besides (A1) which was already introduced, assume that

N ≥ 1 a.s. and 1 < EN <∞. (A2)

The finiteness of EN allows to introduce a probability measure μ on nonnegative
matrices, defined by
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The fixed points of the multivariate smoothing transform 409

∫
f (a) μ(da) := 1

EN
E

(
N∑

i=1
f (Ti )

)
. (1.11)

If now (Mn)n≥1 is a sequence of i.i.d. random matrices with law μ, then

m(s) = EN
(
lim
n→∞

(
E ‖Mn · · ·M1‖s

)1/n)
. (1.12)

We write

Iμ := {s ≥ 0 : m(s) <∞}.

On Iμ, the function m(s) is log-convex, thus continuous and differentiable on the
interior int

(
Iμ
)
of Iμ.

The assumption N ≥ 1 a.s. is for convenience, it assures that the underlying branch-
ing process [the subtree pertaining to nonzero weights L(v)] survives with probability
1 and is supercritical due to the assumption EN > 1.
Geometrical assumptions A nonnegative matrix a ∈M≥ := M(d × d,R≥) is called
allowable, if it has no zero row nor column. We say that a is positive, if all its entries
are positive (>0), i.e. a ∈ int

(
M≥

)
. Let 
 be a semigroup of nonnegative matrices.

Definition 1.1 We say that 
 satisfies condition (C), if

(1) every a in 
 is allowable, and
(2) 
 contains a positive matrix.

Then we impose the following assumption:

The subsemigroup [suppμ] generated by suppμ satisfies (C). (A3)

We are also going to impose a non-arithmeticity assumption. Recall that a positive
matrix a has, due to the Perron-Frobenius theorem, a unique dominant eigenvalue
λa, exceeding all other eigenvalues in modulus, which is furthermore positive and
algebraically simple, with corresponding eigenvector ua ∈ S≥ := S ∩ R

d≥.

The additive group generated by {log λa : a ∈ [supp μ] is positive} is dense in R
(A4)

Moment assumptions The results from the one-dimensional case indicate that it is
natural to assume

There is α ∈ (0, 1] ∩ int
(
Iμ
)

such that m(α) = 1 and m′(α) ≤ 0. (A5)

For d = 1, assuming only EN > 1 and P
(
(Ti )i≥1 ∈ {0, 1}N

)
< 1, it is shown in

Alsmeyer and Meiners [5, Theorem 6.1] that α ∈ (0, 1] is necessary for the existence
of fixed points of SQ . Our assumption (A5) is slightly stronger and guarantees in
addition the existence of ε > 0 such that m(α + ε) < 1 as soon as m′(α) < 0.

123



410 S. Mentemeier

Every allowable matrix a acts on S≥ by the definition

a · x := ax
|ax |

and maps a · int (S≥
) ⊂ int

(
S≥
)
. Moreover, the quantity

ι(a) := inf
x∈S≥
|ax |

is strictly positive, and we have for any x ∈ S≥, that ι(a) ≤ |ax | ≤ ‖a‖. We will use
the following moment conditions, withM having law μ.

E ‖M‖α log(1+ ‖M‖) <∞, E ‖M‖α
∣∣∣log ι(M�)

∣∣∣ <∞ (A6)

E ‖M‖α log(1+ ‖M‖) <∞, E(1+ ‖M‖)α
∣∣∣log ι(M�)

∣∣∣ <∞ (A6a)

E ‖M‖ <∞ (A7)

0 < E |Q|α+ε <∞ for some ε > 0. (A8)

A martingale One additional piece of information is needed to formulate our main
result in full detail. If μ is any measure on nonnegative matrices which satisfies (C),
L (M) = μ, then the following operator in the set C

(
S≥
)
of continuous functions on

S≥ is well defined for any s ∈ Iμ:

Ps : C (S≥
)→ C

(
S≥
)
, Ps f (x) = E |Mx |s f (M · x). (1.13)

Its adjoint operator (Ps)′ is a mapping on the set of bounded measures on S≥.
Defining P̃sν := [(Ps)′ν(S≥)]−1(Ps)′ν, it induces a continuous self-map of P(S≥).
By the Schauder–Tychonoff theorem P̃s has a fixed point νs , say, which is in turn an
eigenmeasure of (Ps)′. Denote its eigenvalue by k(s). It is shown in Buraczewski et
al. [17, Proposition 3.1] that νs is unique up to scaling and that k(s) = (EN )−1m(s),
i.e.

να(Pα)′ = 1

EN
να.

This property, together with the definition ofμ in (1.11) is fundamental for showing
that

Wn(u) :=
∑

|v|=n

∫

S≥

〈
L(v)�u, y

〉
να(dy) (1.14)

defines a martingale w.r.t. the filtration (Bn)n∈N0 . It is nonnegative, thus has an almost
sure limit W (u) for every u ∈ S≥.
Statement of the main result
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The fixed points of the multivariate smoothing transform 411

Theorem 1.2 Assume (A0)–(A7) and m′(α) < 0.

(1) Then W (u) is positive a.s. with 0 < EW (u) < ∞ for each u ∈ S≥. A random
vector X ∈ R

d≥ is a solution of (1.1) with Q ≡ 0, if and only if its Laplace
transform satisfies

E exp(−r 〈u, X〉) = E exp(−KrαW (u)) (1.15)

for some K ≥ 0 and all r ∈ R≥, u ∈ S≥.
(2) Assume in addition (A8) and α < 1. Then W ∗ is a.s. finite, and a random vector

X ∈ R
d≥ is a solution of (1.1) if and only if its Laplace transform satisfies

E exp(−r 〈u, X〉) = E exp
(−KrαW (u)− r

〈
u,W ∗

〉)
(1.16)

for some K ≥ 0 and all r ∈ R≥, u ∈ S≥.

If (A0)–(A3), (A5) and (A6a) hold and m′(α) = 0 then Eq. (1.1) with Q ≡ 0 has a
nontrivial fixed point.

Remark 1.3 In terms of random variables, Eq. (1.16) states that if X is a solution of
(1.1), then for all u ∈ S≥,

〈u, X〉 L= 〈u,W ∗
〉+ (KW (u))1/αYα,

where Yα is a one-dimensional α-stable random variable with LT E exp(−tY ) =
exp(−tα), independent of (W (u),W ∗).

A sufficient condition for the existence of α ∈ (0, 1) with m(α) = 1, m′(α) < 0 is
that the nonnegative matrix EM has spectral radius smaller than 1, see Buraczewski
et al. [17, Lemma 4.14].

Additional properties of the fixed points, like multivariate regular variation or a
representation as a mixture of multivariate α-stable laws are given in Theorem 6.1.

It can be shown that if Assumption (A4) is violated, then there aremore fixed points,
the situation being similar to the one-dimensional arithmetic case. See Mentemeier
[60, Section 18].

1.4 Application: random walk in random environment on multiplexed trees

The random walk in random environment (RWRE) on trees was studied in detail first
by Lyons and Pemantle [53], there very general underlying trees were considered. Of
particular interest for the present situation is the work of Menshikov and Petritis [56],
where it was shown that recurrence properties of a RWRE on Galton–Watson trees
are intimately connected to the existence of fixed points of the smoothing transform.

This model has been extended inMenshikov et al. [57,58] to RWRE onmultiplexed
trees: Let d, N > 1. Equip every vertex v ∈⋃∞n=0{1, . . . , N }n with d different levels
{1, . . . , d}. To every edge connecting the vertex vi with its ancestor v belongs a d×d-
matrixT(v)i , the a-th column ofwhich consists of the transition probabilities for going
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from v to vi and changing from level a to b, divided by the transition probability of
going from vi to v and returning to level a. Due to the (i.i.d.) random environment, the
Ti become random matrices with nonnegative entries. It is assumed in Menshikov et
al. [58] that the law of Ti satisfies condition (C), and it is proved there [58, Section 2],
that positive recurrence holds in this model, if and only if

〈1,Y 〉 :=
〈
1,
∞∑

k=0

∑

|v|=k
L(v)1

〉
<∞,

where 1 = (1, . . . , 1)� is the vector with all entries equal to 1, and Y satisfies the
inhomogeneous fixed point equation

Y
L=

N∑

i=1
Ti Yi + 1.

2 Organization of the paper and outline of the proof

Recall that in the one-dimensional case, fixed points can be characterized by the
behavior of their Laplace transform at 0, see Eq. (1.6). Therefore, a major point will
be to understand the behavior of

lim
r→0

1− ψ(ru)

rαL(r)
, (2.1)

with ψ being the Laplace transform of a fixed point and L a slowly varying function.
Observe that this limit, if it exists at all, may also depend on u ∈ S≥. Existence and
uniqueness of this limit will turn out the be the most involved questions.

To give structure to the subsequent discussion, we introduce, following Iksanov
[34], two special classes of Laplace transforms. As before, write 1 = (1, . . . , 1)� for
the vector with all entries equal to 1.

Definition 2.1 Let α ∈ (0, 1] and L be a positive function which is slowly varying at
0. We call a Laplace transform ψ of a probability measure on Rd≥ L-α-elementary, if
it satisfies

lim
r→0

1− ψ(r1)
L(r)rα

∈ (0,∞).

It is called L-α-regular, if it satisfies

0 < lim inf
r→0

1− ψ(r1)
L(r)rα

≤ lim sup
r→0

1− ψ(r1)
L(r)rα

<∞.

If L ≡ 1, we say that ψ is α-elementary (α-regular).
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Observe that for fixed points X with finite expectation, the limit in Eq. (2.1) exists
with L ≡ 1 and equals 〈u,EX〉, i.e. such fixed points are in particular 1-elementary.

The organization of the paper is as follows: in Sect. 3, we study implications of
assumptions (A3) and (A4), giving additional information on Ps and introducing a
Markov randomwalk, associated with the measureμ. It then appears in a many-to-one
identity in Sect. 4, which contains detailed informations about the weighted branching
model given by (L(v))v∈V, inter alia themean convergence ofWn . A remarkable result
is Theorem 4.10, which is in the spirit of results for general branching processes as in
Nerman [64], Jagers [37], applying for the first time the renewal theorem of Kesten
[44] in this context.

With these prerequisites at hand, we turn to the proof of Theorem 1.2, which will
be done in several steps, each of them given in a self-contained section. The first step
is to prove that each Laplace transform of the form (1.15) resp. (1.16) is indeed a
fixed point, which is done in Sect. 5.3. Subsequently, some properties of these fixed
points, including a representation as mixtures of multivariate stable laws, are proved
in Sect. 6. Having proved the existence of fixed points, we are going to show that
all fixed points of S0 are of the form (1.15) (this will imply the analogous result for
SQ , see Sect. 11). In order to so, we prove in Sect. 7 that all fixed points of S0 are
α-regular. This is done by generalizing the approach of Alsmeyer et al. [2] to the
multidimensional situation.

At the heart of our proof lies Theorem 8.2 which shows that an α-regular fixed
point is already α-elementary. Its proof is given in Sects. 9 and 10. The basic idea
is to use the Arzelá–Ascoli theorem to infer the existence of subsequential limits of
r−α(1 − ψ(ru)), there the proof of equicontinuity poses the most problems. This
issue is solved by observing that α-regularity implies that u �→ r−α(1−ψ(ru)) is α-
Hölder continuous for each r , see Sect. 9. Then one has to show that all subsequential
limits coincide, this is done in Sect. 10 by identifying the limits as bounded harmonic
functions for the associated Markov random walk, which are then constant due to a
Choquet–Deny type result. Having proved that all fixed points of S0 are α-elementary,
we identify such fixed points to be of the form (1.15) in Sect. 8.

In Sect. 11, we use the results proved for S0 to deduce the uniqueness of fixed
points of SQ . The final assertion of Theorem 1.2 about the critical case m′(α) = 0 is
proved in Sect. 12. The final Sects. 13 and 14 contain proofs for the results stated in
Sect. 4. Some helpful inequalities for multivariate Laplace transforms are given in the
“Appendix” (Sect. 15).

3 Implications of condition (C) and a change of measure

In this section, we collect important implications of our geometrical assumptions and
define an associatedMarkov randomwalk, which constitutes themultivariate analogue
of the random walk associated with a branching random walk.

LetM as before be a random matrix with law μ, satisfying condition (C). Besides
the operator Ps introduced in (1.13), consider also the operator

Ps∗ : C
(
S≥
)→ C

(
S≥
)
, Ps∗ f (x) = E

∣∣∣M�x
∣∣∣
s
f (M� · x). (3.1)
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Initiated by Kesten [43], a detailed study of these operators under condition (C)

can be found in Buraczewski et al. [17], based on the fundamental works Guivarc’h
and Le Page [31,32] for invertible matrices. We cite for the reader’s convenience the
following most important properties:

Proposition 3.1 Assume that [suppμ] satisfies (C) and let s ∈ Iμ. Then the spectral
radii of Ps and Ps∗ are both equal to k(s) = (EN )−1m(s), and there is a unique
probability measure νs satisfying (Ps)′νs = k(s)νs and an (up to scaling) unique
eigenfunction Hs satisfying Ps∗ Hs = k(s)Hs.

The function Hs is strictly positive on S≥, min{s, 1}-Hölder-continuous and given
by

Hs(u) =
∫

S≥
〈u, y〉s νs(dy). (3.2)

Moreover, if there is a nonnegative, nonzero continuous function f , satisfying Ps∗ f =
λ f for some λ > 0, then λ = k(s), f = cHs for some c > 0.

Source [17, Proposition 3.1]. ��
Using formula (3.2), we see that Hs extends to a s-homogeneous function on Rd≥,

i.e. Hs(x) = |x |s Hs(|x |−1 x). In particular, the identity Ps∗ Hs = k(s)Hs becomes

Hs(x) = EN

m(s)
E

(
Hs(M�x)

)
= 1

m(s)
E

(
N∑

i=1
Hs(T�i x)

)
(3.3)

This allows us to introduce for any s ∈ Iμ and u ∈ S≥ a s-shifted probability
measure P

s
u on S≥ ×MN≥ by setting

E
s
u [ f (U0,M1, . . . ,Mn)] := (EN )n

m(s)nHs(u)
E

(
Hs(M�n · · ·M�1 u) f (u,M1, . . . ,Mn)

)

(3.4)

for all n ∈ N and any bounded measurable function f : S≥ ×Mn≥ → R. See
Buraczewski et al. [17, Section 3.1] for details. Note that (Mn)n∈N are i.i.d. with law
μ under P0

u for each u ∈ S≥, which implies H0 ≡ 1; and that Ps
u(U0 = u) = 1 for all

u ∈ S≥ and s ∈ Iμ.

3.1 The associated Markov random walk

Under Ps
u , define the following sequences of random variables:

�n := M�n · · ·M�1 ,

Un := �n ·U0 =M�n ·Un−1,

Sn := − log |�nU0| = Sn−1 +
(
− log

∣∣∣M�n Un−1
∣∣∣
)
.

123



The fixed points of the multivariate smoothing transform 415

Then (Un, Sn)n∈N0 constitutes a Markov random walk under each P
s
u , i.e. (Un)n∈N0

is a Markov chain, conditioned under which (Sn) has independent (but not identi-
cally distributed) increments. It is this Markov random that will take the rôle of the
associated randomwalk appearing for instance in Durrett and Liggett [27] or Liu [50].

From (3.4), one obtains the following comparison formula:

E
s
u

[
f ((Uk, Sk)k≤n)

] = 1

k(s)nHs(u)
E
0
u

[
Hs(e−Sn ) f ((Uk, Sk)k≤n)

]
(3.5)

Assumptions (A3)–(A6), which are in fact assumptions on μ, guarantee that Sn
satisfies a SLLN (see Buraczewski et al. [17, Theorem 6.1]), that (Un, Sn) satisfies the
assumptions of Kesten’s renewal theorem [see (ibid., Proposition 7.2)] and a Choquet–
Deny type lemma (see Mentemeier [59, Theorem 2.2]). We will make use of all of
these results.

Since it is the particular instance, where (A6) enters, we state here the SLLN for
Sn .

Proposition 3.2 Assume (A0)–(A3), (A5) and (A6). Then

lim
n→∞

Sn
n
= −m′(α) P

α
u -a.s. (3.6)

Source [17, Theorem 6.1]. ��

4 The weighted branching model with matrices

In this section, we give exhaustive information about the behavior of the family of
branch weights (L(v))v∈V, which can also be seen as a branching random walk on the
semigroup of allowable matrices. By studying its action on particular vectors u ∈ S≥
(which includes the standard basis vectors), we obtain detailed information about its
asymptotic behavior. In particular, Theorem 4.10 might be of interest in its own right.
Some of the results presented here require quite involved proofs, which we postpone
to Sects. 13 and 14.

We start with some additional notation concerned with (T(v))v∈V. Here and below,
(�,B,P) denotes a generic probability space. If no specific σ -field is mentioned,
measurability is always understood with respect to the Borel-σ -field.

4.1 The weighted branching model with matrices

Recall that V = ⋃∞n=0 Nn denotes the infinite Ulam–Harris tree with root ∅, that |v|
denotes the generation of the node v, that (T (v))v∈V is a family of i.i.d. copies of T
with corresponding filtrationBn := σ (T (v), |v| < n) and that we defined recursively
L(vi) = L(v)Ti (v), with L(∅) = Id.
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Furthermore, introduce shift operators [·]v , v ∈ V: Given any function F = f (T )

of the weight family T = (T (w))w∈V pertaining to V, define

[F]v := f ((T (vw))w∈V) (4.1)

as the same function evaluated at the weight family (T (vw))w∈V pertaining to the
subtree rooted in w. Note that the family (T (vw))w∈V has the same distribution as T
and is independent ofB|v| as well as of all other weight families pertaining to subtrees
rooted at the same level.

Instances of such functions are e.g. the branchweightsL(w) = l(w)(T ), we obtain

[L(w)]v = Tw1(v)Tw2(vw1) . . .Twm (vw1 . . . wm−1)

if w = w1 . . . wm , and in particular

L(vw) = L(v) [L(w)]v

for any v,w ∈ V.
Define Rn := max|v|=n ‖L(v)‖ . Then we have the following result, which in con-

trast to Liu [50, Lemma 7.2] needs the stronger assumption that m(s) < 1 for some
s > α, which follows from Assumption (A5) combined with m′(α) < 0.

Lemma 4.1 Assume (A0)–(A2) and (A5) and let m′(α) < 0. Then limn→∞ Rn =
0 P-a.s.

Proof See Sect. 13. ��
Upon fixing u ∈ S≥, define for each v ∈ V the induced random variables

Uu(v) := L(v)� · u, Su(v) := − log
∣∣∣L(v)�u

∣∣∣ .

Note that Su(v),Uu(v) are measurable w.r.t B|v| and that L(v)�u = e−Su(v)Uu(v).
Let v ∈ N

N
0 be an infinite branch. On the set {L(v|k) �= 0 ∀ k ∈ N0}, the sequence

(U (v|k))k∈N0 constitutes an (inhomogeneous) Markov chain with state space S≥,
conditioned on which the increments of (Su(v|k))k∈N0 are independent. This is why
we call (Uu(v), Su(v))v∈V a branching Markov random walk. By Lemma 4.1, we
have that lim|v|→∞ Su(v) = ∞ a.s.

4.2 A many-to-one identity and a martingale

Lemma 4.2 Assume (A0)–(A3) and (A5). Then, with P
α
u as in (3.4), it holds for all

u ∈ S≥, all n ∈ N and any measurable function f : S≥ ×Mn≥ → R≥, that

E
α
u ( f (U0,M1, . . . ,Mn)) = 1

Hα(u)
E

⎛

⎝
∑

|v|=n
Hα(L(v)�u) f (u,L(v|1), . . . ,L(v))

⎞

⎠

(4.2)
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Proof By combining the definition of μ, (1.11), with the definition (3.4) of the α-
shifted measure. ��

For the branching Markov random walk, we immediately infer the following:

Corollary 4.3 Assume (A0)–(A3) and (A5). Then for all u ∈ S≥, n ∈ N and any
nonnegative measurable function f : (S≥ × R)n+1,

1

Hα(u)
E

⎛

⎝
∑

|v|=n
e−αSu(v)Hα(Uu(v)) f

(
(Uu(v|k), Su(v|k))k≤n

)
⎞

⎠ (4.3)

= E
α
u

(
f
(
(Uk, Sk)k≤n)

)
. (4.4)

Recalling the definitions (3.2) of Hα(u) and (1.14) of Wn(u), we obtain that

Wn(u) =
∑

|v|=n
Hα(L(v)�u) =

∑

|v|=n−1

∑

i≥1
Hα(T(v)�i L(v)�u),

and consequently, using identity (3.3) for Hα , that

E[Wn(u) |Bn−1] =
∑

|v|=n−1
E

⎡

⎣
∑

i≥1
Hα(T�i L(v)�u)

∣∣∣∣∣∣
Bn−1

⎤

⎦ = Wn−1(u) P-a.s.,

i.e. Wn(u) is a nonnegative P-martingale for each u ∈ S≥ which, thus it has a limit
W (u).

Mean convergence of this martingale (the intrinsic martingale in multitype branch-
ing random walk) is studied in [10] (see also Athreya [6], Jagers [37], Kyprianou and
Rahimzadeh Sani [48], Olofsson [66]). We obtain the following result:

Proposition 4.4 Assume that (A0)–(A3), (A5) and (A6) hold, and that m′(α) < 0.
In (A5), we may assume α ∈ (0,∞). Then for all u ∈ S≥, Wn(u) converges in mean
to W (u), i.e.

EW (u) = W0(u) =
∫

S≥
〈u, y〉α να(dy) = Hα(u) > 0. (4.5)

Furthermore, it holds that W (u) = w(u, (L(v))v∈V) P-a.s. for a measurable function
w : S≥ ×MV≥ → [0,∞).

Proof By combining the SLLN 3.2 with [10, Theorem 1.1 (i)], see Sect. 13 for details.
The positivity of Hα is an assertion of Proposition 3.1. ��

Applying Lemma 4.1, we obtain the following very useful Corollary:
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Corollary 4.5 Let the assumptions of Proposition 4.4 hold. If a function F : Rd≥ →
R≥ satisfies limr→0 supu∈S≥ |F(ru)− γ | = 0 for some γ ≥ 0, then

lim
n→∞

∑

|v|=n
Hα(L(v)�u)F(L(v)�u) = γ W (u) P-a.s. (4.6)

4.3 Stopping lines and the martingale

Let τ = τ((mk)k∈N) be a stopping time for a sequence of matrices, of the form

τ((mk)k∈N) = inf
{
n ≥ 0 : (mk)

n
k=1 ∈ An

}

for some sets An . This gives rise to the homogeneous stopping line (HSL) Iτ for a
matrix branching process by the definition

Iτ :=
{

v|τ((T�vk (v|k − 1)
)
k∈N

) : v ∈ {1, . . . , N }N
}

(4.7)

The pre-I σ -algebra BI associated with the stopping line I is defined as

BI := σ
(
(T (v))v has no ancestor in I

)
.

A HSL I is called anticipating, if {v ∈ I} ∈ BI for all v ∈ V. It is called a.s.
dissecting, if max{|v| : v ∈ I} is finite a.s. (see Alsmeyer et al. [2, Section 7]).

The many-to-one identity remains valid under the application of a dissecting HSL:

Lemma 4.6 Assume (A0)–(A3) and (A5). Then for all u ∈ S≥, any a.s. dissecting
HSL defined as above, any bounded measurable f ,

1

Hα(u)
E

⎛

⎝
∑

v∈Iτ

Hα(L(v)�u) f (L(v|1), . . . ,L(v))

⎞

⎠ = E
α
u f (M1, . . . ,Mτ ). (4.8)

Proof Just by summing the many-to-one identity (4.2) over n ∈ N0 when considering
the sets {τ = n}. ��

Subsequently, we will focus on a particular class of HSL, namely

Iu
t := {v ∈ V : Su(v) > t, Su(v|k) ≤ t ∀k < |v|},

for arbitrary t ∈ R> and u ∈ S≥. Note that these stopping lines are dissecting by
Lemma 4.1 and anticipating as well, since Su(v) only depends on the initial state u
and (T (v|k))k<|v|. Moreover, BIu

t
is a filtration with

B∞ = lim
t→∞ σ((BIu

s
, s ≤ t)) = σ((T (v), v ∈ V)),

see the proof of Alsmeyer et al. [2, Lemma 8.7] for details.
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The first part of the following lemma is then a direct consequence of Lemma 4.6,
applied with f ≡ 1.

Lemma 4.7 For each u ∈ S≥, the family (indexed by t ∈ R≥)

WIu
t
(u) :=

∑

v∈Iu
t

∫

S≥

〈
L(v)�u, y

〉α
να(dy) =

∑

v∈Iu
t

Hα(L(v)�u)

is a P-martingale with respect to the filtrationBIu
t
.

Subject to m′(α) < 0, it holds that

WIu
t
(u) = E

(
W (u)|BIu

t

)
P-a.s.,

and consequently, P-a.s. and in L1(P),

lim
t→∞WIu

t
(u) = W (u).

Here and in what follows, P-a.s.-convergence for t → ∞ means that for every
sequence tn → ∞, there is a set of full measure, on which the convergence takes
place. This will be enough for our purposes.

Proof of Lemma 4.7 See Sect. 13. ��

4.4 Restricted versions of Wn

Ifm′(α) < 0, then theMRW (Un, Sn)n∈N0 is transient underP
α
u with limn→∞ Sn = ∞

a.s. by Proposition 3.2. Thus τt := inf{n : Sn > t} is a.s. finite, and one can define a
semi-Markov process by

U (t) := Uτt , R(t) := Sτt − t

for all t ∈ R≥. Noting that Pα
u -a.s., τt = inf{n : − log

∣∣M�n . . .M�1 u
∣∣ > t}, we see

that τt corresponds to the stopping line Iu
t , and Lemma 4.6 yields the following very

helpful identity:

Corollary 4.8 For all t ∈ R≥, all bounded measurable f

1

Hα(u)
E

⎛

⎝
∑

v∈Iu
t

Hα(L(v)�u) f (Uu(v), Su(v)− t)

⎞

⎠ = E
α
u f (U (t), R(t)). (4.9)

It is very remarkable, that the renewal theorem of Kesten [44] applies to
(U (t), R(t)), which then gives a nice description of the asymptotic composition of
the matrix branching process:
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Theorem 4.9 Assume that (A0)–(A6) hold and that m′(α) < 0. Then there is a
probability measure � on S≥ ×R, with �(int

(
S≥
)×R) = 1, such that for all u ∈ S≥

and all f ∈ Cb
(
S≥ × R

)
,

lim
t→∞

1

Hα(u)
E

⎛

⎝
∑

v∈Iu
t

Hα(L(v)�u) f (Uu(v), Su(v)− t)

⎞

⎠ =
∫

f (y, s) �(dy, ds).

The result remains valid, if f is a nonnegative radial function, or f (y, s) = g(y)h(s)
for a continuous function g : S≥ → R≥ and a bounded measurable function h : R→
R≥.

Proof It is proved in Buraczewski et al. [17, Proposition 7.2], that theMarkov random
walk (Un, Sn)n≥0 under the measure P

α
u , defined in terms of a measure μ which

satisfies (C) and

∫ ∥∥∥a�
∥∥∥
(∣∣∣log

∥∥∥a�
∥∥∥
∣∣∣+

∣∣∣log ι(a�)

∣∣∣
)

μ(da) <∞

and the aperiodicity assumption (A4), fulfills the conditions I.1–I.4 on Kesten [44,
page 359]. Assumptions (A4)–(A6) warrant these properties for our measure μ. Thus,
after an application of the many-to-one identity (4.9), we can use Kesten [44, Theo-
rem 1.1], which gives

lim
t→∞E

α
u f (U (t), R(t)) =

∫
f (y, s) �(dy, ds)

for a probability measure � on S≥ × R, to infer the asserted convergence.
The convergence result can be rephrased as Qα

u (U (t), R(t) ∈ ·)→ � weakly. The
measure � is sometimes referred to as the stationary Markov delay distribution. It
follows from the expression for � given in Kesten [44, Theorem 1.1], that �(S≥× ·) is
absolutely continuous, while �(· × R) may have atoms. Thus the weak convergence
implies convergence of

E
α
u f (R(t))→

∫
f (s)�(S≥ × ds)

for all bounded measurable radial functions, as well as for functions f (u, s) =
g(u)h(s), where g : S≥ → R is bounded continuous, and h : R → R is bounded
measurable.

The weak convergence implies in particular that � is a stationary measure for
(U (t), R(t)). By part (2) of (C), the stopping time T := {infn∈∈ : �n is positive } is
finite Pα

u -a.s., and �T+k is positive for all k ≥ 0. This implies that UT+k ∈ int
(
S≥
)

for any initial vector U0 = u and all k ≥ 0, hence � as a stationary measure satisfies
�(int

(
S≥
)× R) = 1. ��

The main result of this section is that the above convergence in mean also holds in
probability: define for a nonnegative measurable function f ,
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W f
Iu
t
(u) :=

∑

v∈Iu
t

Hα(L(v)�u) f (Uu(v), Su(v)− t).

Such random variables are particular cases of so called χ -counted populations,
appearing in the study of general branching processes, see Jagers [36,37], Nerman
[64], Olofsson [66]. Our approach uses ideas from Jagers [37], Cohn and Jagers [24],
but takes advantage by using the renewal theorem as an ergodic theorem for the
(U (t), R(t)), rather than using the potential of Sn as in the previous works. We are
going to prove the following result:

Theorem 4.10 Under the assumptions of Theorem 4.9, it holds for all u ∈ S≥ and all
f ∈ Cb

(
S≥ × R

)
, that

lim
t→∞W f

Iu
t
(u) =

(∫
f (y, s) �(dy, ds)

)
W (u)

in P-probability and in L1(P). The result remains valid, if f is a nonnegative radial
function, or f (y, s) = g(y)h(s) for a continuous function g : S≥ → R≥ and a
bounded measurable function h : R→ R≥.

Proof The proof consists of several steps and is given in Sect. 14. ��

5 Existence of fixed points

In this section, we prove the existence part of Theorem 1.2, i.e. we show that every
random variable with a Laplace transforms given by (1.15) or (1.16) is a solution of
the homogeneous reps. inhomogeneous equation.

Therefore, we introduce first the weighted branching process, which allows us to
describe iterations of SQ and its action on Laplace transforms. Then we will prove the
following main result.

Theorem 5.1 Assume (A0)–(A3), (A5)–(A6) and m′(α) < 0. Then for all K > 0, the
function φ0(ru) := exp(−KrαHα(u)), (u, r) ∈ S≥ ×R≥, is the LT of a multivariate
α-stable law on R

d≥ with spherical measure να .

(1) ψ0(ru) := limn→∞ Sn
0φ0(ru) = E exp(−KrαW (u)) is a nontrivial fixed point

of (1.1) with Q ≡ 0.
(2) Assuming in addition that α < 1 and (A8) holds, then W ∗ as defined in Eq. (1.9)

is finite a.s., and

ψ(ru) := lim
n→∞Sn

Qφ0(ru) = E exp
(−KrαW (u)− r

〈
u,W ∗

〉)

is a nontrivial fixed point of (1.1).

123



422 S. Mentemeier

5.1 Weighted branching process

The best way to describe iterations of SQ is via the weighted branching process. Given
a random variable Y ∈ R

d≥, let (Y (v))v∈V be a family of i.i.d. copies of Y , which are
independent of (T (v))v∈V. Then the sequence

Yn :=
∑

|v|=n
L(v)Y (v)+

∑

|w|<n

L(w)Q(w), (5.1)

n ∈ N0, is called the weighted branching process (WBP) associated with Y and T . It
can easily be shown then that

L (Yn) = Sn
QL (Y ) (5.2)

and moreover, that Yn satisfies the identity

Yn =
N∑

i=1
Ti (∅)

[
Yn−1

]
i + Q(∅),

and (
[
Yn−1

]
i )i≥1 is a sequence of i.i.d. copies ofYn−1 and independent of (Q, (Ti )i≥1).

Thus, if Yn converges a.s. to a random variable Y ∗, then this Y ∗ is a fixed point of SQ .
Observe that, subject to the assumption (A0)–(A2), (A8) and (A5) with m′(α) < 0

and α < 1, there is s ∈ (α, 1), such that m(s) < 1 and E |Q|s <∞. Referring to Eq.
(1.10), W ∗ then is finite a.s. and is the limit of the WBP associated with 0 and T .
Moreover, if Y is any random variable in Rd≥ with a finite moment of order α + ε for
some ε > 0, then the associatedWBP converges to a.s. toW ∗ aswell, this follows from
moment calculations as in Mirek [61, Section 3]. Thus we have the following result:

Lemma 5.2 Assume (A0)–(A2), (A5) with m′(α) < 0 and α < 1 and (A8). Then the
series

W ∗n :=
∑

|v|<n

L(v)Q(v)

converges a.s. to a random variable W ∗, and L (W ∗) is the unique FP of SQ with a
finite moment of order α + ε, for any ε > 0.

5.2 Laplace transforms

For a random variable Y ∈ R
d≥, its LT φ(x) = E exp(−〈x,Y 〉) is well defined for all

x ∈ R
d≥. From Eq. (5.2), one obtains iteration formulas for the action of SQ on LTs,

namely

Sn
Qφ(x) = E

⎡

⎣exp

⎛

⎝−
〈
x,
∑

|v|<n

L(v)Q(v)

〉⎞

⎠
∏

|v|=n
φ(L(v)�x)

⎤

⎦. (5.3)
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Observe that SQ defines a continuous mapping on Cb
(
R
d≥
)
. Consequently, if φ

is the LT of a distribution on R
d≥, and ψ := limn→∞ Sn

Qφ exists and is a LT of a
distribution as well, then this is a fixed point of S, since

SQψ = SQ

(
lim
n→∞Sn

Qφ
)
= lim

n→∞Sn+1
Q φ = ψ.

Below, we will consider the WBP associated with particular “initial” random vari-
ables, namely multivariate α-stable ones. The next lemma describes their Laplace
transforms.

Lemma 5.3 Let ν be a probability measure on S≥, K > 0 and α ∈ (0, 1]. Then

φ(x) := exp

(
−K

∫

S≥
〈x, y〉α ν(dy)

)
(5.4)

is the LT of the multivariate α-stable law on R
d≥ with spherical measure ν.

Source An idea of the proof is given in Nolan [65], Zolotarev [70], see Mentemeier
[60, Section 5.2] for a detailed account based on these works. ��

5.3 Existence of fixed points

Nowwe turn to the proof of Theorem5.1.Note that belowW ∗ ≡ 0 in the homogeneous
case Q ≡ 0.

Proof of Theorem 5.1 Step 1: By Lemma 5.3,

φ0(x) := exp
(−K Hα(x)

) = exp

(
−K

∫

S≥
〈x, y〉α να(dy)

)

is the LT of a probability law on Rd≥. Hence φn := Sn
Qφ0 is a sequence of LTs, and by

(5.3), for (u, r) ∈ S≥ × R≥,

φn(ru) =E

⎡

⎣exp
(−r 〈u,W ∗n

〉) ∏

|v|=n
exp

(
−KrαHα(L(v)�u)

)
⎤

⎦

=E exp(−r 〈u,W ∗n
〉− KrαWn(u)).

The random variables W ∗n and Wn(u) converge a.s. (for any u ∈ S≥) by Lemma 5.2
resp. Proposition 4.4. Hence, using the bounded convergence theorem, the sequence
φn converges pointwise to a limit ψ , given by

ψ(ru) = E exp
(−r 〈u,W ∗

〉− KrαW (u)
)
. (5.5)
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Using the continuity theorem formultivariate LTs (see e.g. [69, Lemma 4]),ψ is the LT
of a probability measure on Rd≥, which is then a FP of S by the considerations above.
SinceW (u) is not trivial by Proposition 4.4, Eq. (5.5) describes a one-parameter class
of fixed points. ��

6 Properties of the fixed points

In this section, we will describe properties of the fixed points given by Theorem 5.1,
such as multivariate regular variation, or a representation as a mixture of multivariate
α-stable laws. We are going to prove the following result.

Theorem 6.1 Assume (A0)–(A3), (A5)–(A6) with m′(α) < 0 and α < 1. Let either
Q ≡ 0 (then W ∗ ≡ 0) or let (A8) hold. Then there is a random finite measure � on
S≥, such that

∫
S≥ 〈u, y〉α �(dy) = W (u) P-a.s. for all u ∈ S≥, and hence

ψ(ru) = E exp

(
−r 〈u,W ∗

〉− Krα

∫

S≥
〈u, y〉α �(dy)

)
, (u, r) ∈ S≥ × R≥.

(6.1)
Moreover, E� = να , and if X is a r.v. with LT ψ with K > 0, then

lim
r→∞

P

(
X
|X | ∈ ·, |X | > sr

)

P (|X | > r)
= s−ανα, (6.2)

and in particular,

lim
r→∞ rα

P (〈u, X〉 > r) = K Hα(u)


(1− α)
. (6.3)

Remark 6.2 Note that the heavy tail properties (6.2) and (6.3) are subject to the
assumptions K > 0 and α < 1. If one of those fails, the tail behavior is governed by
β rather then by α, as shown in Buraczewski et al. [17, Theorem 2.4] for the homoge-
neous case α = 1 and Q ≡ 0, and in Mirek [61, Theorem 1.9] for the inhomogeneous
case with α < 1/2 and K = 0, i.e., for the particular fixed point W ∗.

It is remarkable that the directional dependence in the results cited above and in
Eq. (6.3) is given by corresponding functions, namely by Hβ there resp. Hα here.

Define a sequence of Radon measures on Rd \{0} � S× R> by

�0 := να ⊗ lα,

where lα(dr) = 1
rα+1 dr (Lévy measure of a one-dimensional α-stable random vari-

able), and �n being the random measure defined by

�n(ω)(A) :=
∑

|v|=n
�0(L(v)(ω)−1(A))
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The fixed points of the multivariate smoothing transform 425

for all measurable sets A ∈ R
d \{0} → C which are bounded away from the origin.

Consider for u ∈ S, t > 0 the half-space Hu,t = {x ∈ R
d \{0} : 〈u, x〉 > t}.

Lemma 6.3 Under the assumptions of Theorem 6.1, for a.e. ω ∈ � the sequence
�n(ω) converges vaguely to a Radon measure �(ω) on Rd\{0}, which is of the form

�(ω) = �(ω)⊗ lα

for a random finite measure � on S, supported on S≥. We have that E� = να , and
for all u ∈ S≥, it holds that

W (u) = α

∫

S≥
〈u, y〉α �(dy) P-a.s.. (6.4)

Moreover, for all u ∈ S≥ and t > 0,

�0(Hu,t ) = t−α

α
Hα(u). (6.5)

Proof Using the substitute s = r 〈u,L(v)y〉,

�n(Hu,t ) =
∑

|v|=n
�0

({
x ∈ R

d \{0} : 〈u,L(v)x〉 > t
})

=
∑

|v|=n
�0 ({yr : (y, r) ∈ S× R>, 〈u,L(v)y〉 > 0; r > t/ 〈u,L(v)y〉})

=
∑

|v|=n

∫ ∞

t

∫

S≥
1(0,∞)(〈u,L(v)y〉) 〈u,L(v)y〉α να(dy)

1

sα+1 ds

= t−α

α

∑

|v|=n

∫

S≥
1(0,∞)(〈u,L(v)y〉)

〈
L(v)�u, y

〉α
να(dy) (6.6)

Observe that Wn(u) :=∑|v|=n
∫
S≥ 1(0,∞)(〈u,L(v)y〉) 〈L(v)�u, y

〉α
να(dy) defines

a nonnegative martingale for all u ∈ S, which coincides withWn(u) for u ∈ S≥. Thus
Wn(u) converges a.s. to a random limit W (u), which is nontrivial for u ∈ S≥, and
equal to zero for u ∈ −S≥.

Having thus shown that for all u ∈ S and all t > 0

lim
n→∞�n(Hu,t ) = t−α W (u)

α
a.s., (6.7)

we use Boman and Lindskog [14, Theorem 3’] to infer that for a.e. ω ∈ �, there is a
Radon measure �(ω) on R

d \{0} such that
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lim
n→∞

∫
f (x)�n(ω)(dx) =

∫
f (x)�(ω)(dx)

for all bounded continuous functions onRd with support bounded away from the origin
(this implies in particular the asserted vague convergence). The theorem moreover
states that �(ω) is −α − d-homogeneous (c.f. Boman and Lindskog [14, p.692]),
i.e. of the form �(ω) = �(ω)⊗ lα for a finite measure �(ω) on S. The assertion on
the support follows, since every �n is supported on Rd≥\{0}.

Applying (6.6) with n = 0 yields the identity (6.5). Then, taking expectations in
Eq. (6.7), we deduce that

E�(Hu,t ) = (E�⊗ lα)(Hu,t ) = �0(Hu,t ) = (να ⊗ lα)(Hu,t ).

ByBoman andLindskog [14, Theorem3], themeasure of the half-spaces Hu,t uniquely
determines E� and �0, which thus coincide. We conclude that E� = να .

Applying (6.6) with t = 1 and u ∈ S≥, we finally obtain that

α

∫

S≥
〈u, y〉α �(dy) = lim

n→∞α�n(Hu,1) = lim
n→∞Wn(u) = W (u) P-a.s.

��
Proof of Theorem 6.1 In the lemma above, we have already proved the first part of
Theorem 6.1, in particular the representation formula Eq. (6.1).

Next, we prove (6.3). Observe that for fixed u ∈ S≥, the sequence of random
variables r−α

[
1− exp(−rαW (u))

]
is decreasing in r ∈ R>: Replacing s = rα

and fixing a realization of W (u), s �→ [1 − exp(−sW (u))]/s is a LT (see Feller
[28, XIII]), hence decreasing. Since α < 1 is assumed, then also the sequence
r−α

[
1− exp(−KrαW (u))− r 〈u,W ∗〉] is ultimately decreasing. This allows to use

the monotone convergence theorem and Proposition 4.4 to infer

lim
r↓0

1− ψ(ru)

rα
= lim

r↓0 E
[
1− exp(−KrαW (u)− r 〈u,W ∗〉)

rα

]

= E

[
lim
r↓0

1− exp(−KrαW (u)− r 〈u,W ∗〉)
rα

]
(6.8)

= E

[
lim
r↓0

1− exp(−KrαW (u))

rα

]
= EKW (u) = K Hα(u).

(6.9)

Let now X have Laplace transform ψ . Using the Tauberian theorem for LTs Feller
[28, XIII.5, (5.22)], the relation (6.9) with α < 1 implies that

lim
r→∞ rα

P (〈u, X〉 > r) = K Hα(u)


(1− α)
(6.10)

for all u ∈ S≥.
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Now we turn to the proof of (6.2). For α ∈ (0, 1), the property (6.10) implies
multivariate regular variation, i.e. there is a uniquely determined probability measure
� on S such that

lim
r→∞

P (|X | > sr, X/ |X | ∈ ·)
P (|X | > r)

= s−α�,

see Basrak et al. [7, Theorem1.1], or equivalently,

lim
r→∞ rα

E f (r−1X) =
∫

S≥

∫ ∞

0
f (ru)

1

r1+α
dr �(du)

for all bounded continuous functions f on R
d with support bounded away from the

origin.
Referring again to Boman and Lindskog [14, Theorem3], the measure on the right

hand side is uniquely identified by the value it takes on the half-spaces Hu,t . By (6.10),

� ⊗ lα(Hu,t ) = K Hα(u)


(1− α)
,

and thus, recalling Eq. (6.5), � ⊗ lα is a scalar multiple of �0, hence � = να .

7 Every fixed point of S0 is α-regular

Having proved the existence part of the main theorem, we turn now to the much
more involved proof of uniqueness. We will focus on fixed points of the homogeneous
smoothing transform S0, for the inhomogeneous case can then be treated by exploiting
a one-to-one correspondence between fixed points of S0 and SQ , to be proved later.

The proof of uniqueness consists of two fundamental steps: As the first step, we
show that each fixed point of S0 is α-regular; secondly, we are going to prove that
every α-regular fixed point is already α-elementary, and that there is a unique function,
namely Hα(u), that describes the directional behavior.As the second step,we conclude
by showing that α-elementary fixed points are unique, using in essence Corollary 4.5.

In this section, we provide the first fundamental step. In what follows, let φ be (the
LT of) a fixed point of S0, and write

D(x) := 1− φ(x)

Hα(x)
.

Theorem 7.1 Assume (A0)–(A6) and m′(α) < 0. If φ is the Laplace transform of a
nontrivial fixed point ofS0 onRd≥, then 0 < lim infr→0 D(r1) ≤ lim supr→0 D(r1) <

∞, in particular, φ is α-regular.

The proof of this theorem will be given by the Lemmata 7.8 and 7.9 at the end of
this section, extending the approach of Alsmeyer et al. [2] to the multidimensional
situation. Beforehand, we have to introduce the concept of disintegration, and provide
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several prerequisites, including an application of Theorem 4.10. It might be helpful
to have a first glance at the proofs of Lemmata 7.8 and 7.9 after studying the section
about disintegration, in order to understand where the prerequisites are needed.

7.1 Disintegration

Assume (A0)–(A2) and let φ be a FP of S. For each x ∈ R
d≥, the sequence

Mn(x) :=
∏

|v|=n
φ(L(v)�x)

is a bounded nonnegative martingale, which thus converges in L1.

Definition 7.2 The random variable M(x) = limn→∞ Mn(x) is called the disinte-
gration of φ. Set Z(x) := − logM(x) ∈ [0,∞].

Since Mn(x) converges in L1, it holds that ψ(x) = EM(x) = E e−Z(x).

Lemma 7.3 Assume (A0)–(A2) and (A5) with m′(α) < 0. Then for all x ∈ R
d≥,

u ∈ S≥,

(1) limn→∞
∑
|v|=n(1− φ(L(v)�x) = Z(x) P-a.s.,

(2) if a function F : Rd≥ → R≥ satisfies limr→0 supu∈S≥ |F(ru)− γ | = 0 for some
γ ≥ 0, then

lim
n→∞

∑

|v|=n
(1− φ(L(v)�x) F(L(v)�x) = γ Z(x) P-a.s.

(3) limt→∞
∑

v∈Iu
t
(1− φ(L(v)�u)) = Z(u) P-a.s.

Proof (1) Use the fact that limn→∞max|v|=n ‖L(v)‖ = 0 from Lemma 4.1 together
with the convergence Mn(x)→ M(x), the approximation − log r ≈ 1− r , valid for
r close to 1, and lim|x |→0 φ(x) = 1 to infer

Z(x) = − logM(x) = − log lim
n→∞

∏

|v|=n
φ(L(v)�x) = lim

n→∞
∑

|v|=n
(1− φ(L(v)�x)).

(2) Writing

∑

|v|=n
(1− φ(L(v)�x) F(L(v)�x) = γ

∑

|v|=n
(1− φ(L(v)�x)

+
∑

|v|=n
(1− φ(L(v)�x)

(
F(L(v)�x)− γ

)
,

the assertion follows from (1), using the uniform convergence of F and Lemma 4.1.

123



The fixed points of the multivariate smoothing transform 429

(3) The same proof as for Lemma 4.7 (given in Sect. 13) yields that

∏

v∈Iu
t

ψ(L(v)�u) = E
[
M(u)|BIu

t

]
,

from which we infer limt→∞
∏

v∈Iu
t
φ(L(v)�u) = M(u) P-a.s.. Then the argument

is the same as for (1), using now that for v ∈ Iu
t ,
∣∣L(v)�u

∣∣ ≤ e−t . ��

7.2 Prerequisites

We start by applying Theorem 4.10 to particular functions f .

Lemma 7.4 For all ε > 0 there is a c > 0 such that for all u ∈ S≥

lim
t→∞

∑

v∈Iu
t

Hα(L(v)�u)1{Su(v)−t>c} = εW (u) in P-probability. (7.1)

Proof The bounded measurable function fc := 1(c,∞) is radial, so by Theorem 4.10,

lim
t→∞

∑

v∈Iu
t

Hα(L(v)�u)1(c,∞)(S
u(v)−t)= lim

t→∞W fc
Iu
t
(u)=W (u)

∫
fc(r) �(S≥ × dr)

in P-probability, and the integral becomes arbitrarily small for c large. ��
Lemma 7.5 For all sufficiently large c > 0 there is C > 0 such that for all u ∈ S≥

lim
t→∞

∑

v∈Iu
t

Hα(L(v)�u) min
j

Uu(v) j 1{Su(v)−t≤c} = CW (u) in P-probability.

(7.2)

Proof The function u �→ min j u j is continuous on S≥, while r �→ 1[0,c](r) is radial
and bounded measurable, so by Theorem 4.10,

lim
t→∞

∑

v∈Iu
t

Hα(L(v)�u) min
j

Uu(v) j 1{Su(v)−t≤c} =
∫

(min
j

y j )1[0,c](r) �(dy × dr)

in P-probability. By Theorem 4.9, �(· × R>) is concentrated on int
(
S≥
)
, hence

min j u j > 0 �-a.s., and thus upon choosing c sufficiently large,

C :=
∫

(min
j

y j )1[0,c](r) �(dy × dr) > 0.

��
The next lemma generalizes Alsmeyer et al. [2, Lemma 11.4] to the multidimen-

sional case.
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Lemma 7.6 For all u ∈ S≥, t ∈ R it holds that

D(e−t u)

D(e−t1)
≤ Hα(1)

Hα(u)
:= R and

D(e−t u)

D(e−t1) min j u j
≥ R.

Moreover, for all c > 0 there is δ > 0 such that for all u ∈ S≥ and all 0 ≤ a ≤ c,

D(e−(t+a)u)

D(e−t1)
≤ Reδ and

D(e−(t−a)u)

D(e−t1)min j u j
≥ Re−δ. (7.3)

Proof The first inequality results from Inequality (15.5):

D(e−t u)

D(e−t1)
= 1− φ(e−t u)

1− φ(e−t1)
Hα(e−t1)
Hα(e−t u)

≤ 1 · e
−αt Hα(1)
e−αt Hα(u)

= R.

For the second inequality, we use (15.8),

D(e−t u)

D(e−t1) min j u j
= 1− φ(e−t u)

(min j u j )(1− φ(e−t1)
e−αt Hα(1)
e−αt Hα(u)

≥ R.

To derive the remaining inequalities, use that e−αt D(e−t u) is decreasing in t :

D(e−(t+a)u)

D(e−t u)
= e−α(t+a)D(e−(t+a)u)

e−α(t+a)D(e−t u)
≤ e−αt D(e−t u)

e−α(t+a)D(e−t u)
≤ eαc.

Setting δ := αc, one obtains by taking the reciprocal that

D(e−(t−a)u)

D(e−t u)
≥ e−δ.

Now plug in the first and second inequality to derive the third resp. fourth one. ��
A priori, Z(x) = − logM(x) ∈ [0,∞]. Now we are going to show that in fact

Z(u) ∈ (0,∞) P-a.s. for all u ∈ int
(
S≥
)
.

Lemma 7.7 For all u ∈ int
(
S≥
)
,

P (Z(u) <∞,W (u) > 0) = 1, P (Z(u) > 0,W (u) <∞) = 1.

Proof As in the one-dimensional case (see Durrett and Liggett [27, Theorem3.2]),
one can show that lim|x |→∞ φ(x) = P (Z(u) = 0) for all u ∈ int

(
S≥
)
equals

the extinction probability of the underlying branching process which is zero due to
assumption (A2), and is independent of u. In particular, P (Z(u) > 0,W (u) <∞) =
P (Z(u) > 0) = 1, and P (W (u) > 0) = 1 as well. Note that we do not exclude the
possibility P (Z(u) = 0) = 1 for u ∈ ∂S≥, which might appear if the fixed point is
concentrated on a subspace orthogonal to u ∈ ∂S≥.
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Since we assumed the fixed point to have no mass at ∞, φ is continuous in
0 and since φ(u) = Ee−Z(u), necessarily P (Z(u) <∞) = 1. Consequently,
P (Z(u) <∞,W (u) > 0) = 1. ��

7.3 Proof of Theorem 7.1

Now we can prove that all non-degenerate fixed points of S0 are α-regular. Though
the final argument is close to the one given in Alsmeyer et al. [2, Lemma 11.5], a lot of
additional technical machinery has been applied, inter alia the application of Kesten’s
renewal theorem in the lengthy proof of Theorem 4.9.

Lemma 7.8 For all u ∈ int
(
S≥
)
, K u := lim supr→0 D(ru) <∞.

Proof Fix u ∈ int
(
S≥
)
. Then

∑

v∈Iu
t

(1− φ(L(v)�u))

=
∑

v∈Iu
t

Hα(L(v)�u)
1− φ(L(v)�u)

Hα(L(v)�u)

≥
∑

v∈Iu
t

Hα(L(v)�u)D(L(v)�u)1{Su(v)≤t+c}

=
∑

v∈Iu
t

Hα(L(v)�u)D(e−Su(v)Uu(v))1{t<Su(v)≤t+c}

≥ Re−δD(e−(t+c)1)
∑

v∈Iu
t

(min
j

(Uu(v)) j ) H
α(L(v)�u)1{Su(v)≤t+c}

Referring to Lemma 7.5, we have for c large enough and letting t → ∞ along a
suitable subsequence, that

Z(u) ≥ Re−δKuCW (u) P-a.s.

By Lemma 7.7, for any u ∈ int
(
S≥
)
, P (Z(u) <∞,W (u) > 0) > 0, thus Ku <∞.

��
Lemma 7.9 For all u ∈ int

(
S≥
)
, K u := lim infr→0 D(ru) > 0.

Proof Fix u ∈ int
(
S≥
)
. Again using Lemma 7.6, we estimate

∑

v∈Iu
t

(1− φ(L(v)�u)) =
∑

v∈Iu
t

Hα(L(v)�u)D(L(v)�u)1{Su(v)≤t+c}

+
∑

v∈Iu
t

Hα(L(v)�u)D(L(v)�u)1{Su(v)>t+c}
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=
∑

v∈Iu
t

Hα(L(v)�u)D(e−Su(v)Uu(v))1{t<Su(v)≤t+c}

+
∑

v∈Iu
t

Hα(L(v)�u)D(e−Su(v)Uu(v))1{Su(v)>t+c}

≤ eδD(e−t1)
∑

v∈Iu
t

Hα(L(v)�u)

+R
(

sup
s≥t+c

D(e−s1)
) ∑

v∈Iu
t

Hα(L(v)�u)1{Su(v)>t+c}.

Considering Lemma 7.4, we have for t →∞ along a suitable subsequence, that

Z(u) ≤ eδKuW (u)+ RKuεW (u) P-a.s.

By Lemma 7.7 P (Z(u) > 0,W (u) <∞) = 1. Since ε can be made arbitrarily small
for c large, we infer that Ku > 0. ��

8 Uniqueness of fixed points of the homogeneous equation

In the subsequent sections, we will prove the following theorem.

Theorem 8.1 Assume (A0)–(A7) and m′(α) < 0. If φ is an α-regular FP of S0, then
there is K > 0 such that

φ(ru) = E exp(−KrαW (u)), for all r ∈ R≥, u ∈ S≥.

Together with Theorem 7.1, this completes the proof of Theorem 1.2 for the homo-
geneous equation, by proving the uniqueness of fixed points (recall that the existence
of fixed points was shown in Theorem 5.1).

In this section, we are going to conclude Theorem 8.1 from the general result given
below, the proof of which will be given in Sects. 9 and 10.

Theorem 8.2 Assume (A1)–(A4) and (A7). Let α ∈ (0, 1], not necessarily satisfying
(A5).

(1) If there is an L-α-regular FP of S0, then m(α) = 1, m′(α) ≤ 0.
(2) If φ is an L-α-regular FP of S, then for all fixed s > 0,

lim
r→0

sup
u,v∈S≥

∣∣∣∣
1− φ(sru)

1− φ(rv)
− sα Hα(u)

Hα(v)

∣∣∣∣ = 0. (8.1)

(3) If ψ is a L-α-elementary FP of S, then there is K > 0 such that

lim
r→0

sup
u∈S≥

∣∣∣∣
1− ψ(ru)

L(r)rα
− K Hα(u)

∣∣∣∣ = 0. (8.2)
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Remark 8.3 This far reaching result covers the case of general slowly varying
functions L (non-constant L become relevant in the critical case m′(α) = 0,
see Kolesko and Mentemeier [46]) and proves that the directional dependence of
limr→0(1− ψ(ru))/(L(r)rα) is always given by Hα (answering the question raised
at the beginning of Sect. 2) and that the convergence is uniform.

8.1 Proof of Theorem 8.1

Using disintegration (see Sect. 7.1), each fixed point has the representation φ(x) =
E exp(−Z(x)). We will show that P-a.s., the function Z(x) is α-homogeneous, i.e.
Z(x) = |x |α Z(x/ |x |), and subsequently that Z(u) = KW (u) P-a.s. for all u ∈ S≥.

Proof of Theorem 8.1 We follow the proof given inAlsmeyer et al. [2, Lemma 7.6 and
Theorem 10.2] for the one-dimensional case.
Step 1: Z is α-homogeneous: Using Lemma 7.3 together with property (8.1) from
Theorem 8.2, we obtain that for all u ∈ S≥ and s ∈ R≥,

Z(su) = lim
n→∞

∑

|v|=n
(1− φ(rL(v)�u))

= lim
n→∞

∑

|v|=n

1− φ(sL(v)�u)

1− φ(L(v)�u)

[
1− φ(L(v)�u)

]

= sαZ(u) P-a.s. (8.3)

Note that this implies φ(su) = E exp(−sαZ(u)) for all u ∈ S≥, s ∈ R≥.
Step 2: 0 < E Z(u) <∞ for all u ∈ int

(
S≥
)
: By Lemma 7.7, 0 < Z(u) <∞ P-a.s.

for all u ∈ int
(
S≥
)
, which implies EZ(u) > 0. Moreover, we have the monotone

convergence lims→0 s−α(1− exp(−sαZ(u))) = Z(u), thus

lim
s→0

1− φ(su)

sα
= lim

s→0
E

[
1− e−sα Z(u)

sα

]
= EZ(u), (8.4)

being finite or not. But now we can refer to Lemma 7.8, which yields finiteness of
EZ(u).

Step 3: Eq. (8.4) yields that φ is α-elementary. Thus, Eq. (8.2) of Theorem 8.2 gives
that there is K > 0 with

lim
s→0

sup
u∈S≥

∣∣∣∣
1− φ(su)

sαHα(u)
− K

∣∣∣∣ = lim
s→0

sup
u∈S≥

∣∣∣∣
1− φ(su)

Hα(su)
− K

∣∣∣∣ = 0,

which implies EZ(u) = K Hα(u) for all u ∈ S≥, and, together with Corollary 4.5,
that
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Z(u) = lim
n→∞

∑

|v|=n

(
1− φ(L(v)�u)

)

= lim
n→∞

∑

|v|=n
Hα(L(v)�u)

1− φ(L(v)�u)

Hα(L(v)�u)
= KW (u) P-a.s.

��

9 Proof of Theorem 8.2: compactness arguments via the Arzelá–Ascoli theorem

Let φ be L-α-regular. Here and below, wewill study the family (DL ,s)s∈R of functions
on S≥ × R, given by

DL ,s(u, t) := 1− φ(es+t u)

Hα(etu)eαs L(es)
= 1− φ(es+t u)

Hα(u)eα(s+t)L(es)
. (9.1)

Note that φ is L-α-elementary, if lims→−∞ DL ,s(1̃, 0) exists and is finite and
positive, where 1̃ := d−1/21 and that L-α-regularity implies that for each fixed
(u, t) ∈ S≥ × R, the family (DL ,s(u, t))s∈R is uniformly bounded.

This already hints at using the Arzelá-Ascoli theorem. In fact, in this section, we are
going to show that L-α-regularity implies that the family (DL ,s)s∈R are min{1, α}-
Hölder continuous in u for any fixed t ∈ R. This will imply equicontinuity of a
restricted family (DL ,s)s≤s0 . The results of this section carry a lot of technical details,
but their essence can be phrased as follows:

Lemma 9.1 Assume (A0)–(A3) and let φ be L-α-regular for α ∈ (0, 1] and a pos-
itive function L, slowly varying at 0. Then there is s0 ∈ R, such that the family
(DL ,s)s≤s0 is contained in a compact subset of C

(
S≥ × R

)
with respect to the topol-

ogy of uniform convergence on compact sets. In particular, each sequence (DL ,sn )n≥0
with limn→∞ sn = −∞ has a convergent subsequence.

An immediate application is given by the following corollary:

Corollary 9.2 If φ(ru) = E exp(−KrαW (u)), then

lim
r→0

sup
u∈S≥

∣∣∣∣
1− φ(ru)

rα
− K Hα(u)

∣∣∣∣ = 0.

Proof On the one hand, for φ of the given form,

lim
s→−∞

1− φ(es+t u)

eαs
= eαt Hα(u) = Hα(etu),

i.e., for all u ∈ S≥, t ∈ R,
lim

s→−∞ D1,s(t, u) = 1. (9.2)

On the other hand, by Lemma 9.1, any sequence (D1,sn )n∈N with sn ≤ s0 and
limn→∞ sn = −∞ has a convergent subsequence, and this convergence is uniform
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on compact subsets of S≥ × R. But due to (9.2), the limit is always the same, hence
lims→−∞ DL ,s = 1 uniformly on compact subsets of S≥ × R. ��

9.1 Hölder continuity

Recall that for φ being L-α-regular,

K := lim inf
r→0

1− φ(r1)
L(r)rα

> 0, K := lim sup
r→0

1− φ(r1)
L(r)rα

<∞.

Lemma 9.3 Let φ be L-α-regular. Then there is t0 > 0 and K > 0 such that for all
t ∈ [0, t0], u, w ∈ S≥,

∣∣∣∣
1− φ(tru)

tαL(t)
− 1− φ(trw)

tαL(t)

∣∣∣∣ ≤ K (1 ∨ r) |u − w|α . (9.3)

Moreover, let C ⊂ int
(
S≥
)
compact. Then with

KC :=
(
min
y∈C min

i
yi

)
,

it holds that for each r ∈ R> there is t1 = t1(r) ≤ t0 such that for all u, w ∈ C,
t ∈ [0, t1],

∣∣∣∣
1− φ(tru)

1− φ(tu)
− 1− φ(trw)

1− φ(tw)

∣∣∣∣ ≤ 4KKC (1 ∨ r) |u − w|α . (9.4)

Proof For u, w ∈ S≥ define the vector u∧w by (u∧w)i = min{ui , wi }, i = 1, . . . , d.
Then u − u ∧ w,w − u ∧ w ∈ R

d≥. Let X be a r.v. with LT φ. Consider

|1− φ(tru)− (1− φ(trw))|
≤ E |exp(−tr 〈u, X〉)− exp(−tr 〈w, X〉)|
≤ E |exp(−tr 〈u ∧ w, X〉) (1− exp(−tr 〈u − u ∧ w, X〉))|
+E |exp(−tr 〈u ∧ w, X〉) (1− exp(−tr 〈w − u ∧ w, X〉))|
≤ E |1− exp(−tr 〈u − u ∧ w, X〉)| + E |1− exp(−tr 〈w − u ∧ w, X〉)|
= 1− φ(tr [u − u ∧ w])+ 1− φ(tr [w − u ∧ w])

Due to symmetry, it is enough to consider 1 − φ(tr [u − u ∧ w]). Using inequality
(15.5) and then (15.3) resp. (15.4), we infer

1− φ(tr [u − u ∧ w]) ≤ 1− φ(tr |u − u ∧ w| 1)

≤
{
1− φ(t |u − u ∧ w| 1) r < 1

r(1− φ(t |u − u ∧ w| 1)) r ≥ 1

123



436 S. Mentemeier

Since by assumption,

lim sup
t→0

1− φ(t |u − u ∧ w| 1)
tα |u − u ∧ w|α L(t |u − u ∧ w|) ≤ K

with L slowly varying at 0, there is t0 > 0 and K ′ > K such that

1− φ(t |u − u ∧ w| 1)
tαL(t)

≤ K ′(1 ∨ r) |u − u ∧ w|α ≤ K ′(1 ∨ r) |u − w|α

for all t ∈ [0, t0]. This proves the first assertion.
Turning now to the second assertion, write F(x) = 1− φ(x). Then for all t ≤ t0,

∣∣∣∣
1− φ(tru)

1− φ(tu)
− 1− φ(trw)

1− φ(tw)

∣∣∣∣

≤
∣∣∣∣
F(tru)

F(tw)

∣∣∣∣

∣∣∣∣
F(tw)− F(tu)

F(tu)

∣∣∣∣+
∣∣∣∣
F(trw)

F(tw)

∣∣∣∣

∣∣∣∣
F(tru)− F(trw)

F(trw)

∣∣∣∣

≤ (1 ∨ r)

∣∣∣∣
F(tw)− F(tu)

tαL(t)

∣∣∣∣
tαL(t)

F(tu)
+ (1 ∨ r)

∣∣∣∣
F(tru)− F(trw)

(tr)αL(tr)

∣∣∣∣
(tr)αL(tr)

F(tru)

≤ (1 ∨ r)K ′ |u − w|α sαL(t)

F(tu)
+ (1 ∨ r)K ′ |u − w|α (tr)αL(tr)

F(tru)
,

where we used (15.1) and (15.2) to estimate |F(trw)/F(tw)| by (1 ∨ r), and sub-

sequently the estimate for
∣∣∣ F(tu)−F(tw)

(t)αL(t)

∣∣∣ obtained above. To estimate further, observe

that by (15.8)

F(tu)

F(t1)
≥ min

i
ui ,

hence

· · · ≤(1 ∨ r)K ′ |u − w|α (min
i

ui )
−1
(
tαL(t)

F(t1)
+ (tr)αL(tr)

F(tr1)

)

The term in the bracket is bounded by 2/K for t → 0, hence there is t1, depend-
ing on r , such that the expression is bounded by 4/K for all t ≤ t1. To make the
bound independent of u, replace (mini ui )−1 by KC . Finally, choose K = max
{K ′, K ′/K }. ��

9.2 A compact subset of C
(
S≥ × R

)

Nowwe are going to construct a compact subsetJ K
α ⊂ C

(
S≥ × R

)
, such that there is

s0 ∈ R with DL ,s ∈ J K
α for all s ≤ s0. Its definition is given below, subsequently, we

prove that it is compact and that it eventually contains the (DL ,s)s≤s0 . The definition
is subject to assumptions (A0)–(A3), which guarantee the existence of Hα .
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Definition 9.4 For α ∈ (0, 1), K > 0 let J K
α be the set of continuous functions

g : S≥ × R→ [0,∞)

satisfying

(1) supu∈S≥ g(u, 0)Hα(u) ≤ K ,
(2) t �→ g(u, t)eαt is increasing for all u ∈ S≥,
(3) t �→ g(u, t)e(α−1)t is decreasing for all u ∈ S≥,
(4) u �→ g(u, t)Hα(etu) is α-Hölder with constant (1 ∨ et )K for each t ∈ R.

The idea of this construction goes back to Durrett and Liggett [27] for the one-
dimensional case, in fact, properties (1)–(3) are the same as in (ibid., Lemma 2.11).
The fundamental new contribution here is to take care of the directional dependence
on u ∈ S≥, which necessitates the assumption of Hölder continuity in the directional
component. Note that we needed φ to be L-α-regular in order to prove Hölder conti-
nuity of DL ,s ; and therefore had to show first that any fixed point is regular. This step
is not needed for the one-dimensional arguments.

Lemma 9.5 Assume (A0)–(A3). The set J K
α is a compact subset of C

(
S≥ × R

)
w.r.t.

to the topology of uniform convergence on compact sets.

Proof The assertion will follow from the general Arzelà-Ascoli theorem for locally
compact metric spaces, see e.g. Kelley [42, Theorem 7.18]. Properties (1)–(3) together
imply the uniform bounds, valid for all g ∈ J K

α

g(u, t) ≤
{
K Hα(u)−1e(1−α)t t ≥ 0,

K Hα(u)−1e−αt t ≤ 0.
(9.5)

Properties (1)–(4) are closed even under pointwise convergence of functions, thusJ K
α

is particularly closed under compact uniform convergence. Turning to equicontinuity,
fix (u0, t0) ∈ S≥ × R and ε > 0 and consider first the variation in t . Let δ > 0. Then
for any g ∈ J K

α , it follows from property (2) that for all u ∈ S≥ and t ∈ [t0−δ, t0+δ],

g(u, t)eα(t0−δ) ≤ g(u, t)eαt ≤ g(u,t0 + δ)eα(t0+δ),

thus g(u, t) ≤ g(u, t0 + δ)e2αδ. Similarly, from property (3), g(u, t) ≥ g(u, t0 +
δ)e2(α−1)δ and consequently

|g(u, t)−g(u, t0)|≤ g(u, t0+δ)e2αδ−g(u, t0+δ)e2(α−1)δ≤ M
(
e2αδ−e2(α−1)δ

)
,

where the uniform bound M exists due to (9.5). Hence there is δ1 > 0 such that

|g(u, t)− g(u, t0)| < ε

2
(9.6)
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for all t ∈ Bδ1(t0) and all u ∈ S≥. Considering the variation in u, it follows again from
(9.5) that for h(u, t) := g(u, t)Hα(etu),

L := sup{h(u, t) : g ∈ J K
α , (u, t) ∈ S≥ × [t0 − δ1, t0 + δ1]} <∞.

Using property (4), we infer that for all u ∈ S≥,

|g(u, t0)− g(u0, t0)| ≤ |h(u, t0)− h(u0, t0)|
Hα(et0u0)

+ h(u,t0)

∣∣∣∣
1

Hα(et0u0)
− 1

Hα(et0u0)

∣∣∣∣

≤ K (1 ∨ et0) |u − u0|α
Hα(et0u0)

+ L

∣∣∣∣
1

Hα(et0u0)
− 1

Hα(et0u0)

∣∣∣∣

Hence there is δ2 > 0 such that

|g(u, t0)− g(u0, t0)| ≤ ε/2 (9.7)

for all u ∈ Bδ2(u0). Combining (9.6) and (9.7), it holds that for all (u, t) ∈ Bδ2(u0)×
Bδ1(t0),

|g(u, t)− g(u0, t0)| ≤ |g(u, t)− g(u, t0)| + |g(u, t0)− g(u, t)| ≤ ε.

This proves the equicontinuity, hence Arzelà-Ascoli applies and yields the assertion.
��

The next result in particular proves Lemma 9.1.

Lemma 9.6 Assume (A0)–(A3) and let φ be L-α-regular for some α ∈ (0, 1]. Then
there is s0 ∈ R and K > 0 such that

(
DL ,s(u, t)

)
s≤s0 ⊂ J K

α .

Proof We have to check properties (1)–(4):

(1) supu∈S≥ DL ,s(u, 0)Hα(u) ≤ 1−φ(es1)
eαs L(es ) ≤ Ks , with Ks bounded by K asymptot-

ically

(2) Just observe that DL ,s(u, t)eαt = 1−φ(es+t u)
Hα(u)eαs L(es ) is increasing as a function of t .

(3) Recall that (e−s)e−t (1− φ(es+t u)) is a LT, hence decreasing. Consequently,

DL ,s(u, t)e(α−1)t = e−t 1−φ(es+t u)
Hα(u)eαs L(es ) is decreasing as a function of t as well.

(4) This is the content of Lemma 9.3. It gives es0 > 0 and K > 0 such that for all
s < s0,

∣∣DL ,s(u, t)Hα(etu)− DL ,s(w, t)Hα(etw)
∣∣ ≤ K (1 ∨ et ) |u − w|α .

Possibly by making s0 smaller, Ks ≤ K for all s ≤ s0, i.e. property (1) holds with this
K as well. ��
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10 Proof of Theorem 8.2: Choquet–Deny arguments

This section contains the technical cornerstone in the proof of Theorem 8.2. We have
proved so far that for any L-α-regular FP φ, its associated sequence DL ,s has con-
vergent subsequences (for s → −∞), now we are going to identify their limits as
bounded harmonic functions for the associated Markov random walk (Un, Sn)n∈N0 .
The following Choquet–Deny type result holds for (Un, Sn)n∈N0 :

Proposition 10.1 Assume (A0)–(A4) and that H ∈ Cb
(
S≥ × R

)
satisfies

(i) H(u, t) = Eu H(U1, t − S1) for all (u, t) ∈ S≥ × R, and
(ii) for all z ∈ int

(
S≥
)
,

lim
y→z

sup
t∈R
|H(y, t)− H(z, t)| = 0.

Then H is constant.

Source [59, Theorem 2.2]. ��
In order to apply this Choquet–Deny type result, we will introduce a subset HK

α,c

of J K
α (Definition and Lemma 10.2) which contains all possible subsequential limits

of DL ,s (Lemma 10.4). Then we prove that HK
α,c is a compact convex set, and we

identify its extremal points by using Proposition 10.1 (Lemma 10.5). Finally, we
prove Theorem 8.2.

10.1 The set containing the subsequential limits

We start by introducing the subset HK
α,c of J K

α which will contain the subsequential
limits of DL ,s for L-α-regular fixed points.

Definition and Lemma 10.2 Let (A0)–(A3) and (A7) hold. For α, c ∈ (0, 1], define
the subset HK

α,c ⊂ J K
α as follows: A function g ∈ J K

α is in HK
α,c, if it satisfies the

following additional properties:

(1’) supu∈S≥ g(u, 0)Hα(u) = c and g(u, 0)Hα(u) ≥ mini ui for all u ∈ S≥.
(5) For all (u, t) ∈ S≥ × R,

g(u, t) = m(α)Eα
u g(U1, t − S1).

(6) Introducing

Lt : S≥ × R→ R>, (u, z) �→ g(u, t + z)

g(u, z)
,

the following holds: For all t ∈ R, all compact C ∈ int
(
S≥
)
, all u, w ∈ C:

sup
z∈R

e−αt |Lt (u, z)− Lt (w, z)| ≤ 4KKC (1 ∨ et ) |u − w|α ,

with KC := (min{yi : y ∈ C, i = 1, . . . , d})−1.

123



440 S. Mentemeier

Here, validity of (1′) and (5) implies that the function Lt is well defined and continuous
on S≥ × R.

The setHK
α,c is a compact subset of C

(
S≥ × R

)
w.r.t the compact uniform conver-

gence.

Property (6) will provide the uniform continuity needed in the Choquet–Deny-
Lemma 10.1.

Proof Note that (A6) together with (A2) implies that [0, 1] ∈ Iμ, hence P
α
u is well

defined for all α ∈ (0, 1].
The function Lt is well defined and continuous as soon as g(u, z) > 0 for all

(u, z) ∈ S≥ ×R. For u ∈ int
(
S≥
)
, this is a direct consequence of (1′), combined with

the lower bounds

g(u, t) ≥
{
g(u, 0)e−αt t ≥ 0,

g(u, 0)e(1−α)t t ≤ 0.

But due to property (2) of condition (C), Pα
u {Un ∈ int

(
S≥
)} > 0 for all u ∈ S≥ and

some n, hence using property (5), g(u, t) > 0 everywhere.
Since J K

α is compact, it suffices to show that the subsetHK
α,c is closed. It is readily

checked that properties (1′), (6) persist to hold even under pointwise convergence of
functions gn → g. In order to show the closedness of property (5), uniform integrabil-
ity of the sequence gn(U1, t − S1) w.r.t the measures Pα

u is needed. This is the content
of the subsequent lemma. ��
Lemma 10.3 Assume (A0)–(A3) and (A7) and let α ∈ (0, 1]. Then for all (u, t) ∈
S≥ × R, the family

{
g(U1, t − S1) : g ∈ J K

α

}
is uniformly integrable w.r.t Pα

u .

Proof Recalling the uniform bounds (9.5), valid for all g ∈ J K
α and the finiteness of

C := sup
y∈S≥

Hα(y)−1 = 1

inf y∈S≥ Hα(y)

due to Proposition 3.1, it is sufficient to show that

e(1−α)(t−S1)1t≥S1 + e−α(t−S1)1t≤S1

is integrable w.r.t. Pα
u . Using the definition of Pα

u , (3.4),

E
α
u e

(1−α)(t−S1) = 1

Hα(u)
E
0
u H

α(U1)e
α(t−S1)e(1−α)(t−S1)

≤ C(EN )etE
∣∣∣M�u

∣∣∣ ≤ C(EN )etE ‖M‖ ,

E
α
u e
−α(t−S1) = 1

Hα(u)
E
0
u H

α(U1)e
α(t−S1)e−α(t−S1) ≤ CEN ,

hence it is integrable due to assumption (A6). ��
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Lemma 10.4 Let ψ be a L-α-regular FP of S0, with associated sequence DL ,s . Then
for any sequence (sk)k∈N with sk →−∞, there is a subsequence (sn)n∈N ⊂ (sk)k∈N
such that D∞ = limn→∞ DL ,sn exists and is an element ofHK

α,c for some c > 0. The
convergence is uniform on compact subsets of S≥ × R.

Proof By Lemma 9.6, (DL ,s)s≤s0 ∈ J K
α for some K > 0 and s0 ∈ R. Hence for any

sequence sk → −∞ there is a subsequence (sn)n∈N, such that DL ,sn converges and
its limit D∞ is again an element of J K

α . By Lemma 9.5, the convergence is uniform
on compact sets. Thus the burden of the proof is to show that the additional properties
(1′), (5) and (6) hold for the limit D∞.

Step 1, Property (1’): Using (15.8), we infer that

1− ψ(esu) ≥ 1− ψ(es min
i

ui1) ≥ min
i

ui (1− ψ(es1)).

Thus for any s,

DL ,s(u, 0)Hα(u) = 1− ψ(esu)

eαs L(es)
≥ min

i
ui

1− ψ(es1)
eαs L(es)

,

and this is bounded from below by (mini ui )K for s →−∞, since ψ is L-α-regular.
This proves the lower bound for D∞(u, 0). Due to property (1), it is also bounded
from above, thus c := supu∈S≥ D∞(u, 0)Hα(u) exists.

Step 2, Property (5): Write

G(x) := E

[
N∏

i=1
ψ(T�i x)+

N∑

i=1
(1− ψ(T�i x))− 1

]
. (10.1)

G(x) ≥ 0 by a simple translation of the arguments in Durrett and Liggett [27,
Lemma 2.4]. We use that S0ψ = ψ , a linearization and the many-to-one identity
(4.2) to derive the following:

DL ,s(u, t) = 1− ψ(es+t u)

Hα(etu)L(es)eαs
= 1− E

∏N
i=1 ψ(es+tT�i u)

Hα(etu)L(es)eαs

= E
∑N

i=1(1− ψ(es+tT�i u))

Hα(etu)L(es)eαs
− G(es+t u)

Hα(etu)L(es)eαs

= 1

Hα(u)
E

(
N∑

i=1

(1− ψ(es+tT�i u))

Hα(etT�i u)L(es)eαs
Hα(T�i u)

)
− G(es+t u)

Hα(etu)L(es)eαs

= m(α)Eα
u

(
1− ψ(es+tM�u)

Hα(etM�u)L(s)eαs

)
− G(es+t u)

Hα(etu)L(es)eαs

= m(α)Eα
u DL ,s(U1, t − S1)− L(es+t )

L(es)Hα(u)

G(es+t u)

L(es+t )eα(s+t)

Due to Lemma 10.3, the sequence DL ,sn (U1, t − S1) is uniformly integrable w.r.t Pα
u ,

hence it remains to show that the second part tends to zero for s →−∞. The following
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argument follows closely the ideas of Durrett and Liggett [27, Lemma 2.6]. Since L
is slowly varying at 0, the quotient L(es+t )/L(es) is bounded when s tends to −∞.

Consider G(ru), r ∈ R>, u ∈ S≥. Defining the increasing function

f : R>×→ R>, f (s) = e−s + s − 1,

and using the inequality s ≤ e−(1−s) as well as (15.7), we calculate

G(ru) ≤ E

[
exp

(
−
( N∑

i=1
(1− ψ(T�i ru))

)
+

N∑

i=1
(1− ψ(T�i ru))− 1

]

= E f

(
N∑

i=1
(1− ψ(T�i ru))

)
≤ E f

(
N∑

i=1
(‖Ti‖ ∨ 1)(1− ψ(r1))

)

Writing C(T ) = ∑N
i=1(‖Ti‖ ∨ 1), use that EC(T ) ≤ (EN )(1 + E ‖M‖) < ∞, the

regular variation of ψ and lims→0 f (s)/s to deduce that

0≤ lim sup
r→0

sup
u∈S≥

G(ru)

L(r)rα
≤lim sup

r→0
E

⎡

⎣
f
(
C(T )(1− ψ(r1))

)

C(T )(1− ψ(r1))
C(T )

1− ψ(r1)
L(r)rα

⎤

⎦=0

Consequently, for the limit D∞(u, t) = m(α)Eα
u D∞(U1, t − S1).

Step 3, Property (6): Fix t ∈ R, C ⊂ int
(
S≥
)
compact and compute for u, w ∈ C ,

z ∈ R:

e−αt
∣∣∣∣
DL ,s(u, t + z)

DL ,s(u, z)
− DL ,s(w, t + z)

DL ,s(w, z)

∣∣∣∣ =
∣∣∣∣
1− ψ(es+t+zu)

1− ψ(es+zu)
− 1− ψ(es+t+zw)

1− ψ(es+zw)

∣∣∣∣ .

Using Lemma 9.3, there is s1 ∈ R such that the right hand side is bounded by

4KKC (1 ∨ et ) |u − w|α

as soon as es+z ≤ s1. For any fixed z, this condition is satisfied eventually when taking
the limit sn →−∞. Hence in the limit,

e−αt
∣∣∣∣
DL ,s(u, t + z)

DL ,s(u, z)
− DL ,s(w, t + z)

DL ,s(w, z)

∣∣∣∣ ≤ 4KKC (1 ∨ et ) |u − w|α

for all z ∈ R. ��

10.2 Extremal points of HK
α,c

As a compact subset of a locally convex topological space, namely C
(
S≥ × R

)
, the

setHK
α,c (if non-void) is contained in the convex hull of its extremal points due to the
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Krein-Milman theorem [26, TheoremV.8.4]. Using Proposition 10.1, we now compute
all possible extremal points.

Lemma 10.5 Let (A0)–(A4), (A7) hold and α ∈ (0, 1]. The extremal points of HK
α,c

are contained in the set

Eα,c :=
{
(u, t) �→ c

Hχ (etu)

Hα(etu)
: χ ∈ (0, 1], m(χ) = 1.

}
(10.2)

Recall that the functions Hs(·) are s-homogeneous, thus

Hχ (etu)

Hα(etu)
= eχ t Hχ (u)

eαt Hα(u)
= e(χ−α)t H

χ (u)

Hα(u)
.

Proof Let g ∈ HK
α,c be extremal.

Step 1: Use property (5) to compute for all u ∈ S≥, s, t ∈ R

g(u, t + s) = m(α)Eα
u g(U1, t + s − S1)

= m(α)

∫
g(y, t + s − z) Pα

u (U1 ∈ dy, S1 ∈ dz) (10.3)

= m(α)

∫
g(y, t + s − z)

g(y, s − z)
g(u, s)

g(y, s − z)

g(u, s)
P

α
u (U1 ∈ dy, S1 ∈ dz)

(10.4)

Recall that by Lemma 10.2, g > 0, thus the denominators are positive. Using (10.3)
with t = 0, it follows that

m(α)

∫
g(y, s − z)

g(u, s)
P

α
u (U1 ∈ dy, S1 ∈ dz) = 1.

Hence (10.4) is a convex combination of functions gy,z(u, s, t) = g(y,t+s−z)
g(y,s−z) g(u, s).

Consequently, since g is extremal,

g(u, t + s)

g(u, s)
= g(y, t + s − z)

g(y, s − z)
(10.5)

for all u ∈ S≥, t, s ∈ R and all (y, z) ∈ supp P
α
u ((U1, S1) ∈ ·). But this support is the

same as supp Pu((U1, S1) ∈ ·). This yields that Lt (u, s) := g(u,t+s)
g(u,s) satisfies

Lt (u, s) = Eu Lt (U1, s − S1). (10.6)

Step 2: Proposition 10.1will be applied in order to show that Lt is constant on S≥×R,
i.e. equation (10.5) holds for all u, y ∈ S≥, z, s, t ∈ R. The aperiodicity of μ, i.e.
assumption (A4), enters here. Property (6) yields condition (ii) of the proposition,
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while (10.6) is its condition (i). It remains to show that Lt is bounded (for fixed t). If
t ≤ 0, by property (2), g(u, t + s)eα(t+s) ≤ g(u, s)eαs , thus

0 < Lt (u, s) = e−αt g(u, t + s)eα(t+s)

g(u, s)eαs
≤ e−αt .

For t ≥ 0, use property (3) for an analogue argument. Referring also to Lemma 10.2,
Lt ∈ Cb

(
S≥ × R

)
, hence as a bounded harmonic function, it is constant.

Step 3: Validity of (10.5) for any u, y ∈ S≥, t, s, z ∈ R implies that for some
f̃ : S≥ → (0,∞), a ∈ R>, b ∈ R,

g(u, t) = f̃ (u)aebt .

Considering properties (2) and (3) it follows that b ∈ [α − 1, α], i.e. b = χ − α for
some χ ∈ [0, 1]. Rewriting a f̃ (u) =: Hα(u)−1 f (u), it follows that

g(u, t) = f (u)

Hα(u)
e(χ−α)t = f (u)eχ t

Hα(etu)
. (10.7)

It remains to compute the possible values of f and χ . Therefore, use property (5)
which gives together with the comparison formula (3.5)

f (u) = e−χ t Hα(etu)m(α)Eα
u

(
f (U1)

Hα(et−S1U1)
eχ(t−S1)

)

= Hα(etu)m(α)
1

Hα(etu)k(α)
E
0
u

(
Hα(et−S1U1)

f (U1)

Hα(et−S1U1)
e−χ S1

)

= (EN )E0
u f (U1)e

−χ S1 = (EN )E
(
f (M� · u)

∣∣∣M�u
∣∣∣
χ)

= (EN )Pχ∗ f (u).

This means that f is an eigenfunction of Pχ∗ with eigenvalue 1
EN . Referring to the

definition of HK
α,c, f > 0. By Proposition (3.1), scalar multiples of Hχ are the only

strictly positive eigenfunctions of Pχ∗ . Thus f = cHχ where c is given by property
(1). The eigenvalue of Pχ∗ corresponding to Hχ is k(χ). If now k(χ) = 1

EN , then
m(χ) = (EN )k(χ) = 1, which shows that all extremal points of HK

α,c are in EK
α,c. ��

10.3 Proof of Theorem 8.2

Now we can give the proof of Theorem 8.2. For the readers convenience, we repeat
its statement.

Theorem Assume (A1)–(A4) and (A7). Let α ∈ (0, 1], not necessarily satisfying
(A5).

(1) If there is an L-α-regular FP of S0, then m(α) = 1, m′(α) ≤ 0.
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(2) If φ is an L-α-regular FP of S, then for all fixed s > 0,

lim
r→0

sup
u,v∈S≥

∣∣∣∣
1− φ(sru)

1− φ(rv)
− sα Hα(u)

Hα(v)

∣∣∣∣ = 0. (8.1)

(3) If ψ is a L-α-elementary FP of S, then there is K > 0 such that

lim
r→0

sup
u∈S≥

∣∣∣∣
1− ψ(ru)

L(r)rα
− K Hα(u)

∣∣∣∣ = 0. (8.2)

Proof (a): Considering Lemma 10.5, there are at most two values χ1, χ2 ∈ (0, 1],
χ1 < χ2, m(χ1) = m(χ2) = 1, such that every function in HK

α,c can be written as a
convex combination

(u, t) �→ c

Hα(u)

(
λHχ1(u)e(χ1−α)t + (1− λ)Hχ2(u)e(χ2−α)t

)
(10.8)

for λ ∈ [0, 1]. Observe that unless α ∈ {χ1, χ2}, none of this convex combinations is
a bounded function in t for fixed u.

Let ϕ be an L-α-regular FP. Recall the notation 1̃ = √d−1(1, · · · , 1)� ∈ S≥. By
Lemma 10.4, there is a subsequence sn →−∞, such that

D∞(1̃, t) = lim
n→∞ DL ,sn (1̃, t) = lim

n→∞
1− ϕ(esn+t 1̃)

Hα(1̃)L(esn )eαsn+t .

Considering the definition of L-α-regularity, the function D∞(1̃, ·) is bounded from
below and above by K resp. K . Hence by the above, α ∈ {χ1, χ2}.

Supposing that α = χ2, the upper bound

lim sup
r→0

1− ϕ(r1)
L(r)rα

≤ K <∞

still implies, using the Tauberian theorem for LTs Feller [28, XIII.5], that if X is a
random variable with LT ϕ, then for any ε > 0 there is C such that

P (〈X, 1〉 > r) ≤ Cr−χ2+ε.

Thus there is χ1 < s < χ2 ≤ 1 with m(s) < 1 and E |X |s ≤ E 〈X, 1〉s < ∞. But
it can be deduced from Neininger and Rüschendorf [62, Lemma3.3] (see Mentemeier
[60, Section 4] for details), that the unique FP of S0 with finite s-moment form(s) < 1
and s ≤ 1 is δ0. Hence, α = χ1. This proves m(α) = 1, m′(α) ≤ 0.

(b): Moreover, the formula (10.8) for functions in HK
α,c, in particular for the limit

D∞, simplifies to

D∞(u, t) = c

(
λ+ (1− λ)

Hχ2(u)

Hα(u)
e(χ2−α)t

)
.
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Reasoning as before, the only possible choice is λ = 1, since otherwise D∞ would
be unbounded. This proves that any subsequential limit of DL ,s is a positive constant
function, nevertheless, the value of the constant may depend on the subsequence. But
this suffices to prove regular variation, since for any subsequence tn such that DL ,tn
converges,

lim
n→∞

1− ϕ(es+tn u)

1− ϕ(etnv)
= lim

n→∞
DL ,tn (s, u)

DL ,tn (0, v)

Hα(esu)

Hα(v)
= Hα(esu)

Hα(v)
,

i.e. the limit is independent of the particular subsequence. Since every subsequential
limit is the same, the asserted limit for t → 0 exists.

The convergence is uniform, since DL ,tn → D∞ uniform on the compact set
S≥ × [0, s] by Lemma 10.4.

(c): If now ψ is L-α-elementary, then

lim
s→−∞ DL ,s(1̃, t) = lim

s→−∞
1− ψ(es+t 1̃)
L(es)es+t

= K ,

hence for any subsequential limit D∞, it holds that t �→ D∞(1̃, t) ≡ K , thus λ = 1
and consequentlyD∞ ≡ K on S≥ × R. This gives that any subsequence DL ,sn with
sn →−∞ has the same limit K , hence the compact uniform convergence DL ,s → K .
In particular,

lim
s→−∞

1− ψ(es+0u)

Hα(u)L(es)eαs
= K

uniformly on the compact set S≥ × {0}. Replacing t = es , this gives the assertion. ��

11 Uniqueness of fixed points of the inhomogeneous equation

In this section, we finish the proof of Theorem 1.2 (2) concerning the inhomogeneous
equation. We are going to prove the following result.

Theorem 11.1 Assume (A0)–(A8) and α < 1 with m′(α) < 0. Then a r.v. X is a fixed
point of (1.1) if and only if its LT is of the form

E exp(−r 〈u, X〉)=ψQ,K (ru) :=E exp(−KrαW (u)−r 〈u,W ∗
〉
), u ∈ S≥, r ∈ R≥

for some K ≥ 0.

Recall that existence of fixed points for the inhomogeneous equation, i.e. the “if”-
part in the Theorem above, has been proved in Theorem 5.1. Moreover, under the
assumptions of Theorem 11.1, it follows from Theorems 5.1, 7.1 and 8.1 that a r.v. X
is a fixed point of (1.1) with Q ≡ 0 if and only if its LT is of the form

E exp(−r 〈u, X〉) = ψ0,K (ru) := E exp(−KrαW (u)), u ∈ S≥, r ∈ R≥
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for some K ≥ 0. Note that ψ0,0 ≡ 1 is the trivial fixed point.
Using the characterization of fixed points of S0, uniqueness of fixed points for SQ

will follow from a one-to-one correspondence given below. For probability laws � and
η on R

d≥, define

ls(�, η) := inf{E |X − Y |s : L (X) = �, L (Y ) = η}.

On the subspace of probability laws with a finite s-th moment, this quantity is always
finite and defines the so-called minimal Ls-metric, which is a particular case of a
Wasserstein distance. But it can also be used to measure distances between random
variables with an infinite moment of order s, then finiteness of ls(�, η) implies that �
and η have similar tail behavior, as will be seen in the proof of Theorem 11.1 below.

Proposition 11.2 Let s ∈ (0, 1] and E ‖M‖s + |Q|s < ∞. Suppose that m(s) < 1.
Then the following holds:

(1) For any η0 ∈ P(Rd≥) such that S0η0 = η0, there exists exactly one ηQ ∈ P(Rd≥)

such that

SQηQ = ηQ and ls(η0, ηQ) <∞.

(2) For any ηQ ∈ P(Rd≥) such thatSQηQ = ηQ, there exists exactly one η0 ∈ P(Rd≥)

such that

S0η0 = η0 and ls(η0, ηQ) <∞.

Source The result can easily be obtained from Rüschendorf [68, Theorem 3.1], where
the one-dimensional situation is covered. ��
Proof of Theorem 11.1 Assumptions (A5)–(A8) together with α < 1 and m′(α) < 0
imply the assumptions of Proposition 11.2, for s = α + ε for some ε > 0. Writing
FQ and F0 for the set of fixed points of SQ resp. S0, we know that F0 = {η0,K :
K ≥ 0}, where η0,K is the probability measure with LT ψ0,K . By Proposition 11.2,
the induced mapping P : FQ → F0,PηQ = η0 is bijective, thus it suffices to show
that P

({ηQ,K : K ≥ 0}) = F0.
Therefore, let us study further the property ls(ηQ,PηQ) < ∞. Let ηQ ∈ FQ be

arbitrary and Let (XQ, X0) be a coupling of ηQ and PηQ with E
∣∣X0 − XQ

∣∣s <∞.
Using the inequality |as − bs | ≤ |a − b|s which is valid for s ∈ [0, 1] and a, b ∈ R≥,
it follows that for all u ∈ R

d≥

E
∣∣〈u, XQ

〉s − 〈u, X0〉s
∣∣ ≤ E

∣∣〈u, XQ − X0
〉∣∣s ≤ |u|s E ∣∣XQ − X0

∣∣s <∞.

Referring to [29, Lemma 9.4],

∫ ∞

0

1

r

(
rs
∣∣P
(〈
u, XQ

〉
> r

)− P (〈u, X0〉 > r)
∣∣
)
dr <∞.
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From the fact that
∫∞
1

1
r dr diverges, it follows that necessarily

lim sup
r→∞

rs
∣∣P
(〈
u, XQ

〉
> r

)− P (〈u, X0〉 > r)
∣∣ = 0.

Since s > α, in particular

lim
r→∞

∣∣rα
P
(〈
u, XQ

〉
> r

)− rα
P (〈u, X0〉 > r)

∣∣ = 0. (11.1)

Consider now XQ
L= ηQ,K for some K ≥ 0. By Theorem 6.1, Eq. 6.3,

lim
r→∞ rα

P
(〈
u, XQ

〉
> r

) = K


(1− α)
Hα(u),

and the only fixed point of S0 with the same tail behavior is η0,K with the same
K . Hence, Eq. (11.1) implies that PηQ,K = η0,K for all K ≥ 0, which shows that
P{ηQ,K : K ≥ 0} = F0. Since P is bijective, we conclude that FQ = {ηQ,K :
K ≥ 0}.

12 Critical case

In this section, we prove the final part of Theorem 1.2 and show that in the situation
m(α) = 1 with m′(α) = 0 for α ∈ (0, 1], there still exists a nontrivial fixed point of
S0, thereby extending the results of Buraczewski et al. [17] to the situationm(1) = 1,
m′(1) = 0. The existence of a fixed point in the critical case is proved by the same
approximation argument as in Durrett and Liggett [27, Theorem3.5]. This is why we
just sketch themain ideas and refer the interested reader toMentemeier [60, Section10]
for details.

For χ ∈ (0, α), define a biased version of S0 by

Sχ
0 : ν �→ L

(
N∑

i=1
m(χ)−1/χTi Xi

)
, (12.1)

where Xi are i.i.d. with law ν and independent of T . Writing

Tχ = (Tχ,i )i≥1 =
(
m(χ)−1/χTi

)

i≥1 ,

define μχ and mχ in terms of Tχ as μ and m were defined in terms of T .
Then it is readily checked that (A0)–(A3) carry over (see Mentemeier [60, Lemma

10.3]), that mχ (χ) = 1 and m′χ (χ) < 0 and that (A6a) for T imply the validity of
(A6) for Tχ and with α replaced by χ .

Hence Theorem 5.1 applied to Sχ
0 gives the existence of a nontrivial fixed point

with LT ψχ , say. Fix u0 ∈ S≥. Then, possibly after rescaling, ψχ(u0) = 1/2. In this
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manner, construct a family (ψχ)χ∈(0,α), such that ψχ(u0) = 1/2 and Sχ
0 ψχ = ψχ

for all χ ∈ (0, α).
For any sequence χn → α, there is a convergent subsequence ψχnk

with limit
ψ , which is again a LT of a (sub-)probability measure, with ψ(u0) = 1/2. It can
be checked that S0ψ(ru) = ψ(ru) for all (u, r) ∈ S≥ × R> (see Mentemeier [60,
Lemma 10.4] for details). This is used to infer that ψ(0+) = 1, hence ψ is the LT of
a probability measure on R

d≥, and it is nontrivial due to ψ(u0) = 1/2.
In the particular case α = 1, it is shown in Buraczewski et al. [17, Theorem 2.3]

(under some restrictions on N ) that the existence of a nontrivial FP with finite expecta-
tion is equivalent to m′(1) < 0. Thus if m′(1) = 0, then the nontrivial FP constructed
above necessarily has infinite expectation. It is a.s. finite since ψ(0+) = 1.

Further properties of fixed points in the critical case will be studied in Kolesko and
Mentemeier [46].

13 Proofs of the results from Sects. 4.1 to 4.3

Proof of Lemma 4.1 Rn ≥ 0 for all n ∈ N, thus it suffices to show that
lim supn→∞ Rn = 0. Writing Rm,l = max|w|=ml ‖L(w)‖, it follows that

lim sup
n→∞

Rn ≤
l−1∑

k=0

∑

|v|=k
‖L(v)‖ lim sup

m→∞
[
Rm,l

]
v
.

Thus it is enough to consider lim supm→∞
[
Rm,l

]
v
some l ∈ N and |v| ≤ l. By the

assumption α ∈ int
(
Iμ
)
, there is s > α ∈ Iμ, such that m(s) < 1. Referring to the

definition of m(s), there is l ∈ N such that

�(s) := E

∑

|v|=l
‖L(v)‖s = (EN )lE ‖�l‖s < 1.

Fix this l. Define Z0 = 1 and

Zm =
∑

|v|=l
‖L(v)‖s [Zm−1

]
v
=

∑

|v|=ml

m∏

k=1

∥∥[L(v|kl)]v|(k−1)l
∥∥s

as the sum over the norms of the weights, taken in blocks of l generations. Hence
EZ1 = �(s) and (

[
Rm,l

]
v
)s ≤ [Zm]v for all m ∈ N, v ∈ V.

Considering the filtrationFm := Bml and using the independence of [T ]v andB|v|,
it can easily be seen that Z̃m := �(s)−m Zm is a nonnegative Fm-martingale. Thus it
converges to a random variable Z̃ and by Fatou’s lemma, E Z̃ ≤ E �(s)Z1 = 1. In
particular, Z̃ is almost sure finite, and this gives the final estimate

lim sup
m→∞

(
[
Rm,l

]
v
)s ≤ lim sup

m→∞
�(s)m

[
Z̃m

]

v
= 0 P-a.s.

for all |v| ≤ l. ��
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Proof of Proposition 4.4

The following result is the main tool to prove the mean convergence of Wn(u).

Proposition 13.1 Let u ∈ S≥. For r > 0, let

A(r) =
∞∑

n=0
1(Hα(e−SnUn) > r−1).

Suppose that there is a random variable Z such that

P

(∑N
i=1 Hα(T�i x)
Hα(x)

> s

)
≤ P (Z > s) ∀x ∈ R

d≥\{0}, s ≥ 0 (13.1)

(stochastic domination) and a function L, slowly varying at infinity, such that

sup
r>0

A(r)

L(r)
<∞ P

α
u -a.s. (13.2)

If EZL(Z) <∞, then EW (u) = W0(u).

Source [10, Theorem1.1(i)], adopted to the present notation. ��
Proof of Proposition 4.4 We show that under the assumptions of Proposition 4.4,
Proposition 13.1 applies for any u ∈ S≥. First, we prove that the g slowly varying
function L(r) = 1+ log(1+ r) satisfies (13.2). Since supu∈S≥ Hα(u) ≤ 1,

A(r) ≤
∞∑

n=0
1(e−αSn > r−1) ≤

∞∑

n=0
1(αSn < log r) ≤ τ(log(1+ r)),

where

τ(s) := sup{n ∈ N0 : αSn ≤ s}.

The assumptions of the strong law of large numbers for Sn under Pα
u , Proposition 3.2,

are exactly the assumptions imposed here, hence limn→∞ Sn
n = m′(α) < 0 P

α
u -a.s.

Now on the one hand, supr∈(0,1) A(r)/L(r) is readily bounded by τ(0), which is finite
since Sn is transient. On the other hand, it is as well a consequence of the strong law
of large numbers that

lim
s→∞

τ(s)

s
= 1

(−m′(α))
P

α
u -a.s

(see the argument in [15, bottomofp.219]) and consequently, supr>1 A(r)/L(r) is
bounded P

α
u -a.s., too.
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As the second step, observe that, upon defining

Z := C
N∑

i=1

∥∥∥T�i
∥∥∥

α

with C := supu∈S≥ Hα(u)−1 < ∞, (13.1) is satisfied. The finiteness of EZL(Z) is
then a direct consequence of assumption (A6).

Having thus proved that Wn(u) converges P-a.s. to a nontrivial limit W (u) for all
u ∈ S≥, let us discuss whether u �→ W (u) is measurable. We can write Wn(u) :=
wn(u, (L(v)v∈V)) as a measurable function of u and the branch weights. Fix a count-
able dense subset S := {uk : k ∈ N} ⊂ S≥. Then there is a measurable exceptional
set E ⊂ � with P (E) = 0, such that for all ω ∈ Ec limn→∞wn(u, (L(v)v∈V)(ω))

exists for all u ∈ S. Using a sandwich argument, the limit exists for all u ∈ S≥ and
ω ∈ Ec. Define w as this limit on Ec, and let w ≡ 1 on E . Then w is a measurable
function on S≥ ×MV≥ and W (u) = w(u, (L(v))v∈V) P-a.s.. ��

Proof of Lemma 4.7

Proof of Lemma 4.7 The first part of the proof is valid for any anticipating and Pu-a.s.
dissecting HSL I. Following the lines of the proof of [11, Lemma 6.1], write

EI( j) = {v ∈ V : |v| = j, v ∈ I}

and

AI( j) = {v ∈ V : |v| = j, v has no ancestor in I}.

Consequently, if v ∈ AI( j), then σ((T (v|k))|v|k=0) ⊂ BI as well as (T (vw))w∈V and
BI are independent for v ∈ EI( j). Then for m ∈ N,

E[Wm(u)|BI]

= E

⎡

⎣
m∑

j=1

∑

v∈EI ( j)

∑

|w|=m− j

Hα(L(vw)�u)+
∑

v∈AI (m)

Hα(L(v)�u)

∣∣∣∣∣∣
BI

⎤

⎦

=
m∑

j=1

∑

v∈EI ( j)

E

⎡

⎣
∑

|w|=m− j

Hα([L(w)]�v L(v)�u)

∣∣∣∣∣∣
BI

⎤

⎦+
∑

v∈AI (m)

Hα(L(v)�u)

=
m∑

j=1

∑

v∈EI ( j)

Hα(L(v)�u)+
∑

v∈AI (m)

Hα(L(v)�u) P-a.s.
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Since I is P-a.s. dissecting, in the limit m →∞,

E[W (u)|BI] =
∑

v∈I
Hα(L(v)�u) = WI(u) P-a.s.

this convergence being valid as well in L1(P), for the right hand side can be bounded
by the uniform integrable sequence 2Wm(u) in every step.

Now for the sequence of stopping lines Iu
t , we have that W (u) is measurable w.r.t

toB∞. Then by [15, Theorem 5.21]

lim
t→∞WIu

t
(u) = lim

t→∞E[W (u)|BIu
t
] = E[W (u)|B∞] = W (u)

P-a.s. and in L1(P). ��

14 Proof of Theorem 4.10

In this section, we prove Theorem 4.10, which states that

lim
t→∞W f

Iu
t
= lim

t→∞
∑

v∈Iu
t

Hα(L(v)�u) f (Uu(v), Su(v)− t) = γW (u)

in P-probability and in L1(P), where γ = ∫
f (y, s)�(dy, ds) is the limit of

E
α
u f (U (t), R(t)) for t →∞, and f is any bounded continuous function on S≥ ×R,

or a slight generalization thereof.
As a first step, we need the following stronger version of Theorem 4.9. Write

F(u, t) :=
EW f

Iu
t

Hα(u)
.

Proposition 14.1 Under the assumptions of Theorem 4.9, it holds that

lim
t→∞ sup

u∈S≥
|F(u, t)− γ | = 0.

Proof Recall that due to the many-to-one identity (4.9), F(u, t) = E
α
u f (U (t), R(t)),

and that, subject to the assumptions of Theorem 4.9, Kesten’s renewal theorem applies
in order to show that limt→∞ E

α
u f (U (t), R(t)) = γ . Melfi [55] proved (ibid., Theo-

rem 2) that under the same assumptions, the convergence is uniform in u ∈ S≥. This
implies the uniform convergence asserted above. ��

Subsequently, the assumptions of Theorem 4.10 will be in force throughout.
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Lemma 14.2 We have the uniform integrability

lim
q→∞ sup

u∈S≥
sup
t∈R>

E

(
W f

Iu
t
(u)1{W f

Iu
t
(u)>q}

)

= lim
q→∞ sup

u∈S≥
sup
t∈R>

E

(
WIu

t (u)1{WIu
t
(u)>q}

)
=0.

Proof Since 0 ≤ W f
Iu
t
(u) ≤ | f |∞WIu

t
(u) and f is assumed to be bounded, it satisfies

to prove the second equality.
Let u1, . . . , ud ∈ S≥ be the standard basis of Rd , then for all u ∈ S≥, n ∈ N0 it

follows right from the definition (1.14) of Wn(u) that

Wn(u) ≤
d∑

i=1
Wn(ui ),

and consequently, due to theP-a.s.-convergence,W (u) ≤∑d
i=1 W (ui ).Now for fixed

q, the function g(t) := t1(q,∞)(t) is convex. Using the estimate above, the conditional
Jensen inequality and Lemma 4.7, we compute that for all u ∈ S≥, t ∈ R≥

E g(WIu
t
(u)) = E g(E[W (u)|BIu

t
]) ≤ EE[g(W (u))|BIu

t
]

= E g(W (u)) ≤ E g

(
d∑

i=1
W (ui )

)
.

Since
∑d

i=1 W (ui ) is P-integrable, the last expression tends to zero for q →∞. ��
Lemma 14.3 Let (tn)n∈N ⊂ R> be a sequence with limn→∞ tn = ∞. Then we have

lim
n→∞

∑

v∈Iu
tn/2

e−αSu(v)Hα(Uu(v))F(Uu(v), tn − Su(v)) = γW (u) P-a.s..

Proof This follows from the P-a.s. convergence of W f
Iu
tn/2

, proved in Lemma 4.7,

together with the uniform convergence of F to γ , shown in Proposition 14.1.

Set

ξt (u) :=
W f

Iu
t
(u)

Hα(u)F(u, t)
.

Then each ξt (u) hasmean one, and the assertion of uniform convergence in Proposition
14.1 together with Lemma 14.2 above imply the following corollary:
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Corollary 14.4 We have the uniform integrability

lim
q→∞ sup

u∈S≥
sup
t∈R>

E
(
ξt (u)1{|ξt (u)|>q}

) = 0.

Lemma 14.5 If r < t , then for all u ∈ S≥, it holds P-a.s. that

W f
Iu
t
(u) =

∑

v∈Iu
r

e−αSu(v)Hα(Uu(v)) F(Uu(v), tn − Su(v))
[
ξt−Su(v)(U

u(v)
]
v
.

(14.1)

Note that W f
s (u) := f (u,−s) for s < 0.

Proof If r < t , then Iu
r ≺ Iu

t in the sense that for every x ∈ Iu
t there is v ∈ Iu

r with
v ≺ x , i.e. there is w ∈ V s.t. x = vw. Hence, we have the general decomposition

W f
Iu
t
=
∑

v∈Iu
r

∑

w∈V
Hα(L(vw)� · u) f (Uu(vw), Su(vw)−t)1{Su(vw)>t,Su(vw|k)≤t ∀k<|vw|}

=
∑

v∈Iu
r

∑

w∈V
e−α(Su(v)+[SU (v)(w)

]
v
) Hα

([
L(w)�

]

v
·U (v)

)

× f
([

L(w)�
]

v
·Uu(v), Su(v)+

[
SU (v)(w)

]

v
− t
)

×1{[SU (v)(w)]v>t−Su(v), [SU (v)(w|k)]v≤t−Su(v) ∀k<|w|}

=
∑

v∈Iu
r

e−αSu(v)

[
W f

IUu (v)

t−Su (v)

(Uu(v))

]

v

=
∑

v∈Iu
r

e−αSu(v)Hα(Uu(v)) F(Uu(v), t − Su(v))
[
ξt−Su(v)(U

u(v)
]
v

��

Now we can give the proof of Theorem 4.10.

Proof of Theorem 4.10 Due to Lemma 14.5, Eq. (14.1), for P-a.e. ω ∈ �, W f
Iu
tn/2

(u)

constitutes a triangular array with respect to the probabilities P
(
· |BIu

tn/2

)
(ω). By

Corollary 14.4 and Lemma 14.3 we can use Cohn and Jagers [24, Corollary 5] for the
triangular array to infer the convergence

P

(∣∣∣W f
Iu
tn
(u)− γW (u)

∣∣∣ > ε|BIu
tn/2

)
(ω) = 0

for P-a.e. ω. Using dominated convergence, we infer the convergence W f
Iu
tn
(u) →

γW (u) in P-probability. Together with the uniform integrability of W f
Iu
t
, proved in

Lemma 14.2, this yields L1(P)-convergence.
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15 Appendix A: Inequalities for Laplace transforms

If φ is the LT of a r.v. R≥, then t−1(1 − φ(t)) is again a LT of a measure on R≥
(see Feller [28, XIII (2.7)]). Consequently, it is decreasing and thus for all t ∈ R≥,
0 < a < 1:

1− φ(at)

at
≥ 1− φ(t)

t
⇒ 1− φ(at) ≥ a(1− φ(t)),

as well as, for b ≥ 1,
1− φ(bt) ≤ b(1− φ(t)).

This proves the first four inequalities in the subsequent lemma:

Lemma 15.1 Let φ be the Laplace transform of a distribution onRd≥, u ∈ S≥, t ∈ R≥
and A ∈ M(d × d,R≥). Then

1− φ(atu) ≤ 1− φ(tu) for a < 1, (15.1)

1− φ(atu) ≥ a(1− φ(tu)) for a < 1, (15.2)

1− φ(btu) ≥ 1− φ(tu) for b > 1, (15.3)

1− φ(btu) ≤ b(1− φ(tu)) for b > 1. (15.4)

1− φ(tu) ≤ 1− φ(t1) (15.5)

1− φ(tAu) ≤ 1− φ(t |Au| 1) ≤ 1− φ(t ‖A‖ 1) (15.6)

1− φ(tAu) ≤ (‖A‖ ∨ 1) (1− φ(t1)) (15.7)

1− φ(tu) ≥ 1− φ(t (min
i

ui )1) ≥ (min
i

ui )(1− φ(t1)) (15.8)

Proof Let Z be a r.v. with LT φ. For all u ∈ S≥, 〈u, Z〉 ≤ 〈1, Z〉. Thus

1− φ(tu) = E

(
1− e−t〈u,Z〉) =

∫ ∞

0
te−trP (〈u, Z〉 > r) dr

≤
∫ ∞

0
te−trP (〈1, Z〉 > r) dr = 1− φ(t1).
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From (15.5) and (15.1) now (15.6) follows:

1− φ(tAu) = 1− φ(t |Au|A · u)
(15.5)≤ 1− φ(t |Au| 1)

= 1− φ(t
|Au|
‖A‖ ‖A‖ 1)

(15.1)≤ 1− φ(t ‖A‖ 1).

Then (15.7) follows by applying (15.1) resp. (15.4) in (15.6).
In order to prove (15.8), observe that

〈u, Z〉 =
d∑

i=1
ui Zi ≥ min

i
ui

d∑

i=1
Zi = min

i
ui 〈1, Z〉 .

Then the argument is the same as given for (15.5), with an additional use of (15.2).
��
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