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Abstract The problem of pointwise adaptive estimation of the drift coefficient of
a multivariate diffusion process is investigated. We propose an estimator which is
sharp adaptive on scales of Sobolev smoothness classes. The analysis of the exact
risk asymptotics allows to identify the impact of the dimension and other influencing
values—such as the geometry of the diffusion coefficient—of the prototypical drift
estimation problem for a large class of multidimensional diffusion processes. We
further sketch generalizations of our results to arbitrary diffusions satisfying suitable
Bernstein-type inequalities.
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1 Introduction and motivation

Diffusions present a particularly important class of stochastic processes. The long
standing probabilistic interest in this subject is illustrated, for example, by the seminal
books of Itō and McKean [9] and Stroock and Varadhan [22]. From the statistical
point of view, one classical problem is to estimate the (unknown) characteristics of
the diffusion, both from continuous-time and discrete observations. In the last two
decades, nonparametric estimation of diffusion processes has been widely developed,
mainly due to their applications in mathematical finance where diffusions are com-
monly used to model the evolution of financial assets or portfolios of assets. While
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diffusion models have been largely univariate in the past, they now predominantly
include multiple state variables; see the introductory remarks of Aït-Sahalia [1] for
concrete examples. In some respects, the statistical theory did not keep pace with this
evolution: thorough theoretical results on nonparametric estimation of multidimen-
sional diffusion processes are few and far between. At least partially, this is due to the
fact that the concept of diffusion local time and related tools such as the occupation
times formula are not available in dimension d > 1 such that the treatment of the
multivariate case requires different approaches and new techniques.

The aim of this paper is to close one gap in the literature by analyzing the asymp-
totically exact behavior of the pointwise risk for adaptively estimating the drift vector
b : Rd → R

d of a multivariate diffusion which is given as a solution of the stochastic
differential equation

dXt = b(Xt )dt + σ(Xt )dWt , X0 = ξ, t ∈ [0, T ], (1.1)

where σ : R
d → R

d×d is the dispersion matrix, W is a d-dimensional standard
Wiener process and the initial value ξ ∈ R

d is independent of W . It will be assumed
throughout that a continuous record of observations XT := (Xt )0≤t≤T is available.
Thus, the diffusion coefficient σσ� is identifiable by means of the semimartingale
quadratic variation, and it means only little loss of generality to simplify the analysis
by considering merely the case of known, constant diffusion part. We further restrict
attention to ergodic diffusions whose invariant measure is absolutely continuous with
respect to the Lebesgue measure. Let ρb denote the invariant density. The initial value
ξ is assumed to follow the invariant law such that the process X is strictly stationary.

It is statistical folklore to consider drift estimation as some analogue of the regres-
sion problem. Given some appropriately chosen kernel K : Rd → R and bandwidth
h > 0, it thus appears natural to investigate the following type of kernel estimators of
the drift vector b,

̂bT (x) := T−1
∫ T
0 Kh(Xu − x)dXu

ρ̂T (x) ∨ ρ∗(x)
, x ∈ R

d , (1.2)

where Kh(·) := h−d K (·/h), ρ̂T is some estimator of the invariant density ρb and
ρ∗(x) > 0 denotes some a priori lower bound on ρb(x). In the sequel, the quality of
an estimator̂bT will be quantified by its pointwise risk

R(

̂bT , b
) := Eb‖̂bT (x0) − b(x0)‖2, x0 ∈ R

d fixed,

forEb denoting expectationwith respect to the invariant measure associatedwith b and
‖ · ‖ denoting the Euclidean norm. The goal is to define minimax adaptive estimators
b∗
T satisfying

R(

b∗
T , b

) = inf
˜bT

sup
b∈B

R(

˜bT , b
)

.
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Exact adaptive pointwise drift estimation 363

The supremum here extends over a given class of functions B, typically, a class of
functions satisfying certain smoothness assumptions or structural constraints. For esti-
mating the drift vector,we shall consider scales of Sobolev classes (ΣT (β, L))(β,L)∈BT

where, for fixed β∗ > d/2 and 0 < L∗ < L∗ < ∞,

BT := {

(β, L) : β∗ ≤β <βT , L∗ ≤ L ≤ L∗}

, βT =(log log T )δ, δ∈(0, 1) fixed.

We propose estimators which attain not only the optimal rate of convergence but the
best exact asymptotic minimax risk when the actual smoothness of the drift and the
associated invariant density ρb are unidentified and we only assume membership to
ΣT (β, L) for some (β, L) ∈ BT .

To the best of our knowledge, sharp asymptotic minimax bounds for nonparamet-
ric estimation in the diffusion framework have been established exclusively for one-
dimensional processes up to now. One particularly deep result is given in Dalalyan [5]
where a fully data-driven procedure for exact global estimation of the drift for a large
class of ergodic scalar diffusion processes is proven. In the multidimensional diffu-
sion set-up however, we only know of upper bound results on rates of convergence,
even for the prototypical problem of estimating the drift vector from continuous-time
observations. Let us emphasize that the question of identifying the exact constant in
the risk asymptotics is far from being merely of theoretical interest. The subsequent
in-depth analysis rather allows to descry the influencing values of the drift estimation
problem, and these findings provide answers to practice-oriented issues. For instance,
it is to be expected—and has been observed in practice indeed—that the speed of
convergence for estimating functionals of a diffusion process solution of the SDE
(1.1) depends on the geometry of the diffusion coefficient σσ� =: a = (a jk)1≤ j,k≤d .
For the exemplary problem of estimating the j-th component b j of the drift vector,
j ∈ {1, . . . , d} fixed, the dependence will be proven to be reflected by the appearance
of a j j , the j-th diagonal entry of the diffusion matrix, in the exact normalizing factor
in the risk asymptotics. Our exact results further give a theoretical justification for the
wide-spread use of standard kernel methods for drift estimation which in applications
(e.g., in financial econometrics) often occurs on an ad-hoc basis. Heuristically, the use
of such methods is based on the aforementioned folklore that “drift estimation is just
regression,” provided that the long observation limit is considered and as long as the
diffusion is sufficiently regular.

On a mathematically formal level, abstract decision theory allows to transfer risk
bounds from one statistical model to another by referring to the concept of asymp-
totic equivalence of experiments in the sense of Le Cam. For inference on the drift
in multidimensional ergodic diffusion models, asymptotic equivalence is established
in Dalalyan and Reiß [7]. Their results concern the special case of Kolmogorov dif-
fusions with unit diffusion part, i.e. σ = Id, and hold only for large enough Hölder
smoothness of the drift coefficient (which is substantially larger than the lower bound
of d/2 which would correspond to known results on asymptotic nonequivalence of
scalar nonparametric experiments when the smoothness index is 1/2).We take a direct
approach and establish upper and lower asymptotic risk bounds for diffusions with ge-
neral constant and nondegenerate diffusion part without resorting to arguments based
on asymptotic equivalence.
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For ease of presentation however, let usmerely announce the result for the important
special case of diffusions with dispersion matrix of the form σ = σ0 Id, for some
0 
= σ0 ∈ R. Define

D(β, L; ρb, σ0) := 2βL
d
2β

ρb(x0)
√
d

(

d2σ 2
0 ρb(x0)

β(2β − d)

)
β−d/2
2β

Iβ, β >
d

2
, L > 0. (1.3)

Here, with B(·, ·) and Γ (·) denoting the Beta and the Gamma function, respectively,
and letting Sd := 2πd/2/Γ (d/2) denote the surface of the unit sphere in Rd ,

I
2
β := 1

2β
B

(

1 + d

2β
, 1 − d

2β

)

(2π)−d
Sd

= 1

(2π)d

∫

Rd

‖λ‖2β
(

1 + ‖λ‖2β)2 dλ. (1.4)

On the one hand, we show that

lim inf
T→∞ inf

˜bT
sup

(β,L)∈BT

sup
b∈Π(c1,c2)

sup
ρb∈ΣT (β,L)

(

T

log T

)
β−d/2

β

×D−2(β, L; ρb, σ0) Eb
∥

∥˜bT (x0) − b(x0)
∥

∥

2 ≥ 1,

for some suitably defined functional setsΠ(c1, c2) andΣT (β, L) = �T (β, L; L ′, σ0),
depending also on σ0 and constants c1, c2, L ′ related to the regularity properties of
the class of investigated multivariate diffusion processes (for details, see Sects. 2 and
5). Furthermore, we suggest an asymptotically sharp adaptive estimator over BT , i.e.
an adaptive estimator which does not only achieve the best possible rate of conver-
gence but the best asymptotic constant associated to it. Our exact asymptotic results
on drift estimation hold under mild regularity constraints and indicate that asymptotic
equivalence—at least in some reduced sense—also holds under smoothness assump-
tions less severe than those imposed in Dalalyan and Reiß [7]; cf. the discussion in
Sect. 6.

The current investigation is directly related to previous work both from the field
of nonparametric statistics and more applied areas such as financial econometrics. A
larger quantity of results on nonparametric drift estimation in the scalar diffusion case
is already available.Dalalyan andKutoyants [6] consider the problemof nonparametric
estimation of the derivative of the invariant density and of the drift coefficient for scalar
ergodic diffusion processes over weighted L2 Sobolev classes. The construction of the
suggested asymptotically efficient estimator requires the knowledge of the smoothness
and the radius of these weighted Sobolev balls. On the basis of these results, Dalalyan
[5] develops an adaptive procedure which does not depend on the characteristics of the
Sobolev ball and which is asymptotically minimax simultaneously over a broad scale
of Sobolev classes. In direct relation to the present work, Spokoiny [20] considers the
problem of pointwise adaptive drift estimation and develops a locally linear smoother
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Exact adaptive pointwise drift estimation 365

with data-driven bandwidth choice. His method is also derived in a scalar setting but
generalizes to the multidimensional framework. The focus of Spokoiny [20] clearly
differs from ours: he provides nonasymptotic results (which do not require stationarity,
ergodicity or mixing properties of the observed diffusion process) for the suggested
kernel type estimators, while our interest is in identifying the asymptotically exact
behavior of adaptive drift estimators. The definition of such asymptotically sharp
adaptive estimators does not only require a data-dependent choice of the smoothing
parameter but also a data-driven selection of the kernel.

In the sequel, we will use rather recent results on functional inequalities (and the
interplay of different types thereof) for diffusion processes. To bemore precise, inspec-
tion of the constructive proof of the asymptotic upper risk bound suggests that the
combination of a Bernstein-type deviation inequality and sufficiently tight variance
bounds is the key for suggesting sharp adaptive drift estimation procedures for diffu-
sion processes. Diverse works on generalizations of the classical Bernstein inequality
which are applicable in the diffusion framework exist. In this paper, we will assume
that the diffusion satisfies the spectral gap inequality—a condition which, at least
in the area of statistics for random processes, is rather unconventional. However, it
can be argued that this hypothesis presents some sort of minimal assumption for a
Bernstein-type inequality for symmetric diffusion processes to hold and thus pro-
vides a natural framework for our investigation. The combination of different types
of tail estimates of additive functionals and sharp variance bounds due to Dalalyan
and Reiß [7] then allows to prove the required type of exponential inequalities, and
classical chaining arguments and conditions on the size of function classes in terms
of bracketing numbers provide an extension to uniform versions thereof. Our results
still are by no means restricted to this specific kind of dependence mechanism as will
be sketched later. Currently, (probabilistic) research on diffusion processes is aimed
at investigating the interplay between different approaches for the study of quantita-
tive ergodic properties and the relationship between different functional inequalities.
It would be interesting to complement these results with findings on the asymptotic
statistical behavior of estimators in the respective ergodic diffusion models, and the
present analysis provides one first step in this direction.

Outline of the paper One crucial point in our subsequent investigation is the fact that
we may restrict attention to analyzing the exact asymptotics of the estimators which
appear in the numerator of (1.2). Only mild regularity properties of the diffusion are
required for translating results on estimating

lim
h→0

Eb

[

1

T

∫ T

0
Kh(Xu − x)dXu

]

= lim
h→0

∫

Rd
Kh(y − x)b(y)ρb(y)dy

= b(x)ρb(x), x ∈ R
d ,

into upper and lower bounds for drift estimation. We thus start our investigation with
considering estimation of bρb, assuming that the components b jρb, j ∈ {1, . . . , d},
belong to some Sobolev class of regularity β ∈ I, I some given interval of the form
[

β∗, βT
]

with βT →T→∞ ∞ slowly enough. Section 3 contains a lower bound for
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pointwise estimation of bρb, and an adaptive procedure for estimating the components
of bρb which asymptotically attains the respective infimum is introduced in Sect.
4. Provided that the drift grows at most linearly and the invariant density decays
exponentially, upper and lower bounds for estimating bρb can be translated into corres-
ponding results for drift estimation. In favor of a concise and transparent presentation,
the bounds are stated explicitly only for Kolmogorov diffusions. The respective results
are given in Sect. 5. Section 6 contains a discussion of our findings and a sketch of
possible extensions. Details on the exponential inequality used in the proof of the
upper bound part of our exact result are given in Appendix A. The bulk of the proofs
of the main results is deferred to Appendix B.

General definitions and notation For g : Rd → R
d , denote by g j its j-th component.

For a smooth function f : Rd → R, let ∂ j f := ∂ f/∂x j , and denote its gradient by
∇ f = (∂ j f ) j . Rows of an d × d-matrix a are denoted by a j , and the Frobenius norm
of the matrix σ is denoted by ‖σ‖S2 := (

∑d
j=1(σσ�) j j )

1/2. Let φ f be the Fourier

transform of f ∈ L2(Rd), that is, for any λ ∈ R
d , φ f (λ) := ∫

Rd f (x) exp(i λ�x)dx .
Let β > d/2, and define the Sobolev seminorm ηβ(·) by

ηβ( f ) :=
(

1

(2π)d

∫

Rd
‖λ‖2β ∣

∣φ f (λ)
∣

∣

2dλ

)1/2

, f ∈ L2(Rd).

The isotropic Sobolev classS(β, L) is given asS(β, L) :={

f ∈ L2(Rd) : ηβ( f )≤ L
}

.
Throughout, � means less or equal up to some constant which does not depend on the
variable parameters in the expression.

2 Preliminaries

The complexity of the diffusionmodel requires somecare in defining the framework for
pointwise estimation of the components of the drift vector, with special consideration
of the interplay of regularity properties of the individual components of the model.
We start by defining Π0 = Π0(σ ), σ some constant nondegenerate R

d×d -valued
dispersion matrix with associated diffusion coefficient σσ� = a, as the set of all drift
coefficients b : Rd → R

d such that

(P0) the SDE

dXt = b(Xt )dt + σ dWt (2.1)

admits a strong solution which is ergodic with Lebesgue continuous invariant
measure dμb(x) = ρb(x)dx , and

(P′
0) for j ∈ {1, . . . , d}, the invariant density ρb satisfies the relation

2b jρb = a j∇ρb =
d

∑

k=1

a jk∂kρb.
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Exact adaptive pointwise drift estimation 367

We further suppose that the initial value X0 has the density ρb such that (Xt )t≥0 is
strictly stationary.

As aforementioned, the drift estimation problem in the sequel will be decomposed
into the individual questions of estimating the invariant density ρb and the products
b jρb, j = 1, . . . , d. Restricting to diffusion processes satisfying (P′

0), the secondques-
tion can also be stated as estimating the weighted sums of derivatives

∑d
k=1 a jk∂kρb,

j = 1, . . . , d. As has been proved in Dalalyan and Kutoyants [6] and Dalalyan [5]
in the scalar set-up, this approach has the potential to derive deep results. We already
noted that the non-existence of diffusion local time presents a particular challenge
for the statistical analysis of estimators in the multivariate diffusion framework as a
set of valuable technical tools falls away. One further difficulty consists in identifying
regularity conditions on the diffusionwhich allow for an as broad as possible extension
of the investigation to a multivariate framework. It is convenient to include the condi-
tion (P′

0), but our results can also be generalized to more general classes of diffusion
processes.

In the sequel, we consider estimation of the drift function at a point x0 ∈ R
d under

Sobolev smoothness constraints on the associated invariant density. Precisely, set

ΣT (β, L; L ′, σ ) :=
{

ρb | b ∈ Π0(σ ), ρb ∈ S(β + 1, L ′),

b jρb ∈ S(β, L), 1 ≤ j ≤ d, ρb(x0) ≥ ρ∗
T

}

,

where ρ∗
T is a sequence of positive real numbers such that limT→∞ ρ∗

T = 0 and
lim infT→∞

(

ρ∗
T log T

)

> 0. To shorten notation, we frequently write ΣT (β, L) for
ΣT (β, L; L ′, σ ). For constants c1 ∈ (0,∞] and c2 > 0,we further defineΠ(c1, c2) =
Π(c1, c2, σ ) as the set of all drift functions b ∈ Π0(σ ) satisfying the following
conditions:

(P1) It holds lim sup‖x‖→∞ ‖x‖−2 〈b(x), x〉 = −c1.
(P2) For all x ∈ R

d , we have ‖b(x)‖ ≤ c2(1 + ‖x‖).
A few comments on the definition of the functional sets �0(σ ) and �(c1, c2, σ )

are in order:

Remark 1 • A lower bound on the value ρb(x0) is required for two reasons: First
(and analogously to the case of nonparametric density estimation from i.i.d. obser-
vations considered in Butucea [3]), in order to obtain a reasonably good adaptive
estimator of the value (b jρb)(x0), we have to exclude the case of a density ρb
that varies with T such that ρb(x0) → 0 too fast. Secondly, for defining a ratio-
type drift estimator in the spirit of (1.2), a strictly positive a priori lower bound
ρ∗(x0) < ρb(x0) is needed. The regularity conditions on the drift used in the
proof of the asymptotic properties of our adaptive estimators actually allow for the
derivation of explicit lower bounds; see Remark 2 below.

• The assumption of ergodicity is central for our subsequent analysis. Existence and
uniqueness of invariant measures are conveniently proven by means of versions
of Khasminskii’s criterion, involving Lyapunov-type functions for the generator
of the diffusion. Assumption (P1) is a radial assumption on the drift coefficient
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and states that (if c1 < ∞) the inward radial component of b has a prescribed
polynomial behavior. In particular, (P1) implies that exp(δ‖x‖2) for ‖x‖ ≥ 1 is a
Lyapunov function for small enough δ, thus ensuring the existence of an invariant
measure. Together with the “at most linear growth”-condition in (P2), it further
implies an exponential bound on the associated invariant density (see Lemma 1
below).

3 Lower bound for pointwise estimation

In the Gaussian white noise framework, it has been shown by Lepski [12] that esti-
mators which are optimally rate adaptive with respect to the pointwise risk over the
scale of Hölder classes do not exist. The best adaptive estimators are proven to achieve
only a rate which is slower than the optimal one in a logarithmic factor. Tsybakov [23]
derives an analogous result for adaptation over the scale of Sobolev classes. To some
extent, our findings are analogous, and principal ideas of the proof basically rely on
techniques developed in the classical framework. The exact analysis of the drift esti-
mation problem however also involves some subtleties which go beyond the known
intricacies associated to the question of pointwise adaptation.

Let us first state the exact lower bound for estimating the components of bρb
adaptively, assuming that the components b jρb ∈ S(β, L), j = 1, . . . , d, for some
β ∈ [β∗,∞) and L ∈ [L∗, L∗]. Here, β∗ ∈ (d/2,∞) and 0 < L∗ < L∗ < ∞ are
fixed values. For any β > d/2, let

κ = κ(β) := β − d
2

2β
, ψT,β :=

(

log T

T

)κ(β)

, (3.1)

and recall the definition of Iβ according to (1.4).

Theorem 1 Fix β∗ > d/2 and δ ∈ (0, 1), and denote BT := [β∗, βT ]×
[

L∗, L∗]

, for
βT := (log log T )δ . Then, for any x0 ∈ R

d and j ∈ {1, . . . , d} fixed,

lim inf
T→∞ inf

ĝT
sup

(β,L)∈BT

sup
b∈Π(c1,c2)

sup
ρb∈ΣT (β,L;L ′,σ )

Eb
∣

∣ĝT (x0) − (b jρb)(x0)
∣

∣

2

ψ2
T,βC

2
j (β, L; ρb, σ )

≥ 1,

(3.2)

where the infimum is taken over all estimators ĝT of b jρb and

C j (β, L; ρb, σ ) := L
d
2β
2β

d

(

d2a j jρb(x0)

β(2β − d)

)

β−d/2
2β

Iβ. (3.3)

The proof of Theorem 1 is deferred to Appendix B.1.
The basic—and classical—idea of the proof of Theorem 1 is to reduce the proof

of the lower bound in (3.2) to proving a lower bound on the risk of two suitably
chosen hypotheses. A lower bound on the latter risk is then deduced by means of
Theorem 6(i) in Tsybakov [23] as it was also done in Butucea [3] and Klemelä and
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Exact adaptive pointwise drift estimation 369

Tsybakov [10,11]. The verification of the conditions of Tsybakov [23]’s result in the
current diffusion framework however requires tools which differ from those used in
the references mentioned above. Denoting by P0 and P1 the probability measures
associated to the two different hypotheses, it needs to be shown that, for some fixed τ

and for any α ∈ (0, 1/2),

P1

(

dP0

dP1
≥ τ

)

≥ 1 − α. (3.4)

In the Gaussian white noise framework considered in Klemelä and Tsybakov [10,11],
(3.4) is verified directly for suitably chosen hypotheses due to the Gaussian nature of
the model. For nonparametric density estimation from i.i.d. observations, Butucea [3]
uses Lyapunov’s CLT. In our framework, the condition (3.4) is verified by means of
the martingale CLT.

4 Construction of sharp adaptive estimators

To define pointwise adaptive estimators of the components of bρb which attain the
lower bound established in the previous section, we act similarly to Klemelä and Tsy-
bakov [11]. Precisely, we will use a two-staged procedure in the spirit of Lepski’s
method, constructing first a collection of admissible estimators and selecting then
an estimator with minimal variance among them. In contrast to the Gaussian white
noise setting considered in Klemelä and Tsybakov [11], the complexity of the mul-
tidimensional diffusion model however requires a more involved investigation and
more sophisticated tools. This remark applies both to the proof of asymptotic lower
and upper bounds on the pointwise risk. In particular, for proving the exact upper
bound, sufficiently precise exponential bounds on the stochastic error are needed. In
the Gaussian white noise framework, the derivation of such exponential bounds is
straightforward due to the Gaussian nature of the model. An additional complication
arises in the classical problem of estimating a density at some fixed point x0 ∈ R from
i.i.d. observations (cf. Butucea [3]) where one has to derive exponential bounds on the
risk which hold uniformly over a set of estimators associated to different bandwidths.
To do so, Butucea [3] uses the classical Bernstein inequality and a uniform exponen-
tial inequality due to van de Geer [24]. Similarly to the pointwise density estimation
problem, the bandwidths used for defining the estimators in our selection procedure
involve an estimator ρ̂T (x0) of the (unknown) value of the invariant density ρb at x0
such that uniform risk bounds on the stochastic error are required.

We proceed by introducing central assumptions on the diffusion process X required
for proving adaptivity of the proposed estimation scheme. Let Pt be the transition
semigroup of X , and denote its transition density by pt , i.e.

Pt f (x) = Eb[ f (Xt ) | X0 = x] =
∫

Rd
f (y)pt (x, y)dy, f ∈ L2(μb).

The followingBernstein-type deviation inequality in particular allows to proveuniform
deviation inequalities which are crucial tools for verifying sufficiently sharp upper
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bounds on the pointwise squared risk of the adaptive estimators. Given any b ∈ �0(σ ),
denote by ς2

b (·) the asymptotic variance appearing in the CLT, i.e.

ς2
b (g) := lim

T→∞
1

T
VarPb

(∫ T

0
g(Xu)du

)

, g ∈ L2(μb). (4.1)

Assumption (BI) Let b ∈ Π0(σ ). Then there exists some positive constant CB such
that, for any bounded measurable function f ∈ L2(μb) and for any r, T > 0 and
j ∈ {1, . . . , d} fixed,

Pb

(∣

∣

∣

∣

1

T

∫ T

0
f (Xu)b

j (Xu)du −
∫

Rd
f (y)b j (y)dμb(y)

∣

∣

∣

∣

> r

)

(BI)

≤ 2 exp

(

− Tr2

2CB
(

ςb( f ) + r‖ f ‖∞
)

)

.

The investigation of the variance term in (4.1) differs from the case of independent
data as there appear additional covariances in the dependent case. The following
assumption provides sufficiently tight upper bounds on the (asymptotic) variance.

Assumption (SG+) The carré du champs associated with the infinitesimal generator
of the diffusion satisfies the spectral gap inequality, that is, for some constant cP and
any f ∈ L2(μb),

∥

∥

∥Pt f −
∫

Rd
f dμb

∥

∥

∥

L2(μb)
≤ e−t/cP ‖ f ‖L2(μb)

. (SG)

Furthermore, there exists some C0 > 0 such that, for any u ≥ t > 0 and for any pair
of points x, y ∈ R

d with ‖x − y‖2 ≤ u, the transition density pt (·, ·) satisfies

pt (x, y) ≤ C0
(

t−d/2 + u3d/2)

. (4.2)

For any symmetric diffusion X , it can be shown analogously to the proof of Propo-
sition 1 in Dalalyan and Reiß [7] (also see the proof of Lemma 2.3 in Cattiaux et al.
[4]) that, for any f ∈ L2(μb) and T > 0,

Eb

[( ∫ T

0
f (Xu)du

)2]

= 2
∫ T

0

∫ v

0
Eb [ f (Xu) f (Xv)] du dv

≤ 2T
∫ T

0
〈 f, Pw f 〉L2(μb)

dw.

The last term is upper-bounded by applying the Cauchy–Schwarz and the spectral gap
inequality such that, for some positive constant C (depending only on cP ),

Eb

[( ∫ T

0
f (Xu)du

)2]

≤ CT ‖ f ‖2L2(μb)
. (4.3)
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Exact adaptive pointwise drift estimation 371

It however turns out that, given the goal of describing the precise asymptotics for
nonparametric drift estimation, we do actually require an exponential inequality with
a tight leading term in the exponent. Taking also into account the upper bound on
the transition density in (4.2), Proposition 1 in Dalalyan and Reiß [7] provides an
enforced upper bound on the variance of additive functionals of multidimensional
diffusions which allows to prove such a refined exponential inequality. In particular,
for any compactly supported kernel G : Rd → R, Assumption (SG+) ensures that
there exists some positive constant C ′ (depending only on d, C0 and cP ) such that, for
any bandwidth h > 0, y ∈ R

d , T > 0,

Varb

(

1√
T

∫ T

0
Gh(Xu − y)du

)

≤ C ′ ×
⎧

⎨

⎩

1, d = 1,
max

{

1, (log(h−4))2
}

, d = 2,
h2−d , d ≥ 3.

It seems to be rather unconventional to investigate estimators in diffusion models
under the explicit assumption that functional inequalities in the spirit of the spectral
gap hypothesis are satisfied. We believe that this approach is useful as it allows to
formulate precise results for a sufficiently large class of diffusion processes under
clear assumptions; see in particular Theorem 3 below.

The adaptive scheme is based on Lepski’s principle. For implementing the proce-
dure, consider a sufficiently fine grid G = GT on the interval [β∗, βT ], with βT → ∞.
It is defined as G = GT := {

β1, . . . , βm
}

, where β∗ < β1 < · · · < βm = βT . Assume
that there exist k2 > k1 > 0 and δ1 ≥ δ > 1 such that

k1(log T )−δ1 ≤ βi+1 − βi ≤ k2(log T )−δ, i = 0, 1, . . . ,m − 1, (4.4)

and set β0 := β∗ − d/2. As in the case of density estimation from i.i.d. observations
(cf. Butucea [3]), the optimal bandwidth for estimating b jρb is not available in practice
as it involves the unknown value of the invariant density ρb at x0 ∈ R

d . The adaptive
procedure for estimating b jρb therefore starts with a preliminary estimator ρ̂T (x0) of
the value ρb(x0).

Definition of the preliminary density estimator Define

ρ̌T (x0) := 1

ThdT

∫ T

0
Q

(

Xu − x0
hT

)

du, (4.5)

where Q is a bounded positive kernel satisfying
∫

Rd ‖u‖|Q(u)|du < ∞, and the
bandwidth hT > 0 is such that

lim
T→∞ hT = 0, lim

T→∞ ThdT = ∞, lim
T→∞ Th2dT (log T )−3 = ∞, (4.6a)

and, for some α0 ∈ (0, 1/2),

lim sup
T→∞

hdT T
α0 < ∞. (4.6b)
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Recall the definition of ρ∗
T , and let ρ̂T (x0) := max

{

ρ̌T (x0), ρ∗
T

}

.

Main part of the procedure: adaptive estimation of bρb For fixed j ∈ {1, . . . , d}, we
now describe the procedure for defining an adaptive estimator of the j-th component
of the vector bρb. Recall that σ is the dispersion matrix taking values in R

d×d and
a = σσ� denotes the associated diffusion coefficient. The adaptive estimator will be
selected among the family of estimators ĝ j

T,β(x0), defined as

ĝ j
T,β(x0) := 1

T̂hdT,β

∫ T

0
Kβ

(

Xu − x0
̂hT,β

)

dX j
u ,

wherêhT,β = ̂h j
T,β :=

(

dρ̂T (x0)a j j log T
βT

)1/(2β)

. As in Klemelä and Tsybakov [10], the

kernel Kβ is obtained as a renormalized version of the basic kernel

˜Kβ(x) := (2π)−d
∫

Rd

(

1 + ‖λ‖2β
)−1

exp(i λ�x)dλ, (4.7)

namely

Kβ(x) := bd ˜Kβ(bx), for b = b(β) :=
(

2β − d

d

)1/(2β)

. (4.8)

As the last ingredient of the adaptive procedure, introduce the thresholding sequence

η̂T,β = η̂
j
T,β :=

(

dρ̂T (x0)a j j log T

βT

)
β−d/2
2β ‖Kβ‖L2(Rd ).

The adaptive estimator g̃ j
T is defined as

g̃ j
T (x0) := ĝ j

T,̂β
j
T

(x0), (4.9)

where

̂β
j
T := max

{

β ∈ GT : ∣

∣ĝ j
T,γ (x0) − ĝ j

T,β(x0)
∣

∣ ≤ η̂T,γ ∀ γ ∈ GT , γ ≤ β
}

. (4.10)

We continue with the main result on pointwise adaptive estimation of bρb. Recall
the definition of the constants C j (β, L; ρb, σ ), j = 1, . . . , d, in (3.3). Denote by
˜Π(c1, c2) = ˜Π(c1, c2, σ ) the intersection of Π(c1, c2, σ ) with the set of all drift
functions b ∈ Π0(σ ) satisfying (BI) and Assumption (SG+).

Theorem 2 For fixed β∗ > d/2, 0 < L∗ < L∗ < ∞, δ ∈ (0, 1) and for
BT = [β∗, βT ] × [

L∗, L∗]

, where βT = (log log T )δ , the adaptive estimator g̃ j
T
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defined according to (4.9) satisfies, for any x0 ∈ R
d ,

lim sup
T→∞

sup
(β,L)∈BT

sup
b∈ ˜Π(c1,c2)

sup
ρb∈ΣT (β,L;L ′,σ )

Eb
∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2

ψ2
T,βC

2
j (β, L; ρb, σ )

≤ 1.

The proof of Theorem 2 is given in Appendix B.2.

5 Sharp adaptive drift estimation for Kolmogorov diffusions

Restriction to the important case of Kolmogorov diffusions allows to derive and for-
mulate results in a comparatively concise way.

Let b ∈ Π0(σ0 Id), 0 
= σ0 ∈ R, and consider the diffusion

Xt = X0 +
∫ t

0
b(Xu)du + σ0 Wt , t ≥ 0, (5.1)

whereW is a d-dimensional Brownian motion and the initial value X0 is independent
of W . Note that property (P′

0) in the definition of the functional set Π0 is fulfilled if
b = σ 2

0 ∇ (log ρb) /2, that is, the drift vector b can be represented as a gradient. To
enlighten notation, let

C(β, L; ρb, σ0) = L
d
2β

2β√
d

(

d2σ 2
0 ρb(x0)

β(2β − d)

)
β−d/2
2β

Iβ. (5.2)

We further introduce the maximal risk of an estimator ǧT of bρb, for β > d/2, L > 0,
T > 0, some bounded set A ⊂ R

d and fixed x0 ∈ Å defined as

RT,β,L
(

ǧT
) := sup

b∈ ˜Π(c1,c2)

sup
ρb∈ΣT (β,L;L ′,σ0Id)

Eb‖ǧT (x0) − (bρb)(x0)‖2. (5.3)

Theorem 3 Define BT as in Theorem 2, and consider the risk introduced in (5.3).
Then the following holds true:

(a) For any x0 and for C(β, L; ρb, σ0) defined in (5.2), the estimator g̃T =
(

g̃ j
T

)

j=1,...,d defined according to (4.9) is sharp adaptive.
(b) If there exists an estimator ǧT such that, for some β0 ≥ β∗, L > 0,

lim sup
T→∞

sup
b∈ ˜Π(c1,c2)

sup
ρb∈ΣT (β0,L;L ′,σ0Id)

Eb‖ǧT (x0) − (bρb)(x0)‖2
ψ2
T,β0

C2(β0, L; ρb, σ0)
< 1,

then there exists β ′
0 > β0 such that

RT,β ′
0,L

(

ǧT
)

RT,β ′
0,L

(

g̃T
) ≥ ΨT

RT,β0,L
(

g̃T
)

RT,β0,L
(

ǧT
) , (5.4)
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where ΨT →T→∞ ∞. In particular, for any fixed β ≥ β∗, L > 0,

lim sup
T→∞

sup
b∈ ˜Π(c1,c2)

sup
ρb∈ΣT (β,L;L ′,σ0Id)

Eb‖g̃T (x0) − (bρb)(x0)‖2
ψ2
T,βC

2(β, L; ρb, σ0)
= 1.

The statement in the second part of the above theorem is to be interpreted in the sense
that, whenever there exists an estimator ǧT which performs better than the estimator
g̃T at least for one smoothness degree β0, there exists another smoothness factor β ′

0 for
which there is much greater loss of ǧT . The assertion—and its respective proof—are
to be compared with Theorem 2 in Klemelä and Tsybakov [11].

Proof (of Theorem 3) We first show that Π(c1, c2, σ0 Id) = ˜Π(c1, c2, σ0 Id). Let
b ∈ Π(c1, c2, σ0 Id). In view of the results in Section 4.3 in Bakry et al. [2] (p. 747),
(P1) implies that (SG) holds. Since, in addition, (P2) is satisfied, Theorem 3.2 in Qian
and Zheng [17] entails that (4.2) and thus Assumption (SG+) is fulfilled. For any
b ∈ Π0(σ0 Id), the associated measure μb is reversible for X (see, e.g., Lemma 2.2.3
in Royer [19]). In particular, (SG) is equivalent to Poincaré’s inequality. Restricting to
boundeddrift functions, Poincaré’s inequality implies thatAssumption (BI) is satisfied,
too; this follows from Lemma 2 stated in Appendix A. In view of Theorem 1 and
Theorem 2, it now only remains to verify (5.4). The proof actually is along the lines
of the proof of Theorem 2 in Klemelä and Tsybakov [11] and therefore omitted. ��

Weconclude this sectionwith a brief summary of the adaptive estimation procedure.
Assume that a continuous record of observations XT = (Xt )0≤t≤T of a diffusion
process solution of the SDE (2.1) is available and that the (constant) diffusion matrix
a = σσ� is known. The goal is to estimate the value of the j-th component of the
product bρb at some given fixed point x0. For implementing the adaptive estimation
scheme, we need to specify a lower bound β∗ > d/2 on the unknown smoothness of
the function bρb and fix some value δ ∈ (0, 1). To define an estimator on the basis of
the input parameters XT , a = (ai j )1≤i, j≤d , x0, β∗ and δ, one then might proceed as
follows:

∗ (Computation of a pilot estimator of the invariant density) Choose some bounded
positive kernel Q : Rd → R satisfying

∫

Rd ‖u‖|Q(u)|du < ∞ and some band-
width hT > 0 fulfilling (4.6). Define a preliminary density estimator ρ̂T (x0) by
computing ρ̌T (x0) according to (4.5) and by letting

ρ̂T (x0) := max
{

ρ̌T (x0), ρ∗
T

}

,

where ρ∗
T denotes a vanishing sequence of positive real numbers satisfying

lim infT→∞(ρ∗
T log T ) > 0.

∗ (Computation of kernel estimators for a discrete set of parameters) Specify a grid
GT := {β1, . . . , βm}, where the values β∗ < β1 < · · · < βm = (log log T )δ are
chosen such that (4.4) is satisfied. Define the bandwidths

̂hT,βi =
(

dρ̂T (x0)a j j log T

βi T

) 1
2βi

, i = 1, . . . ,m.

123



Exact adaptive pointwise drift estimation 375

Recall the definition of the kernel Kβ in (4.8), and compute the family of estimators

ĝ j
T,βi

(x0) = 1

T̂hdT,βi

∫ T

0
Kβi

(

Xu − x0
̂hT,βi

)

dX j
u , i = 1, . . . ,m. (5.5)

∗ (Definition of the Lepski-type estimator of β and the adaptive estimator of b jρb)
Recall the definition of I2β in (1.4), and define the thresholding values

η̂T,βi =
(

dρ̂T (x0)a j j log T

βi T

)
βi−d/2
2βi

Iβi

(

2βi − d

d

)
βi+d/2
2βi

, i = 1, . . . ,m.

(5.6)

Use the values (5.5) and (5.6) to determine ̂β
j
T as specified in (4.10), and define

the adaptive estimator g̃ j
T (x0) = ĝ j

T,̂β
j
T

(x0).

Remark 2 • Once one has determined the adaptive estimator g̃T = (g̃ j
T ) j=1,...,d

according to the above scheme, one obtains an adaptive drift estimator by defining
a suitable invariant density estimator ρ̃T and setting

˜bT (x0) := g̃T (x0)

ρ̃T (x0) ∨ ρ∗(x0)
, x0 ∈ R

d ,

ρ∗(x0) > 0 denoting some a priori lower bound on ρb(x0). Restricting again to the
case of Kolmogorov diffusions as in (5.1), the normalizing factor appearing in the
upper bound for the pointwise squared risk of˜b j

T (x0), assuming that b ∈ Π(c1, c2)
and ρb ∈ ΣT (β, L; L ′, σ0 Id), is identified as C j (β, L; ρb, σ0)ρ

−1
b (x0) =

Dj (β, L; ρb, σ0).
• In the situation of Theorem 3, an explicit a priori lower bound on ρb(x0) depending
only on c1, c2 can be derived as in Remark 6 in Dalalyan and Reiß [7]. For themore
general case of diffusion processes with uniformly nondegenerate diffusionmatrix
a, it was proven in Metafune et al. [15] that, if bi ∈ C2(Rd), (P1) is satisfied, and,
in addition, ‖b(x)‖ + ‖Db(x)‖ + ‖D2b(x)‖ ≤ c′

1(1 + ‖x‖) for some constant

c′
1 > 0, it holds ρb(x) ≥ e−K (1+‖x‖2), x ∈ R

d , with some positive constant K
depending only on c′

1, c2, d and σ .

6 Discussion and extensions

Placement and interpretation of the identified constants Let us first arrange the nor-
malizing factors identified in the previous sections and relate it to known results on
asymptotically exact adaptive estimation with respect to pointwise risk over the scale
of Sobolev classes in the classical statisticalmodels. Tsybakov [23] considers the prob-
lem of nonparametric function estimation in the Gaussian white noise model (in the
one-dimensional case), assuming that the unknown function belongs to some Sobolev

123



376 C. Strauch

class with unknown regularity parameter. The question of density estimation at a fixed
point x0 ∈ R is investigated by Butucea [3]. Since the variance of the proposed ker-
nel estimator is proportional to the value of the unknown density f at x0, the value
f (x0) appears in the exact normalization. Klemelä and Tsybakov [11] deal with non-
parametric estimation of a multivariate function and its partial derivatives at a fixed
point when the Riesz transform is observed in Gaussian white noise. In particular,
Klemelä and Tsybakov [11] find the exact constant for nonparametric estimation of a
function f : Rd → R, observed in Gaussian white noise and satisfying the Sobolev
smoothness constraint ηβ( f ) ≤ L . In combination with the results of Butucea [3] on
classical density estimation (in dimension d = 1), the exact constant for nonparamet-
ric estimation of a density f : Rd → R at some fixed point x0 ∈ R

d is then identified
as

L
d
2β
2β

d

(

d2 f (x0)

β(2β − d)

)
β−d/2
2β

Iβ. (6.1)

For the case of Kolmogorov diffusions with σσ� = Id, C j (β, L; ρb, Id) as intro-
duced in (3.3) coincides with the constant in (6.1). The accordance of constants in the
exact asymptotics reflects the old-established experience that different statistical mod-
els show similar behavior, at least from an asymptotic point of view. The remarkable
results of Dalalyan and Reiß [7] on asymptotic statistical equivalence for inference
on the drift in multidimensional Kolmogorov diffusion models justify this notice in
a mathematically formal manner. They are however established under rather restric-
tive (Hölder) smoothness assumptions. Precisely, the critical regularity for proving
asymptotic equivalence with the Gaussian shift model grows like (1/2 + 1/

√
2)d as

d → ∞. The authors refer to the question whether for Hölder classes of smaller regu-
larity asymptotic equivalence fails as “a challenging open problem.” Our risk bounds
are valid under weaker smoothness constraints which suggests that asymptotic equiv-
alence (at least in a reduced sense) still holds beyond the critical bounds of Dalalyan
and Reiß [7]. Going beyond the special case of Kolmogorov diffusions with unit diffu-
sion part, the dependence of the drift estimation problem on the form of the diffusion
coefficient a = σσ� is reflected by the appearance of the j-th diagonal entry of the
matrix a in the optimal normalizing factor C j (β, L; ρb, σ ) (for estimating b jρb).

Possible generalizations of the assumptions It can be arguedwhich type of description
of the dependence structure underlying the diffusion is most convenient. Given the
goal of describing exact asymptotics for pointwise drift estimation for an as large as
possible class of diffusion processes under some preferably small set of assumptions,
we decided to formulate our results in terms of the spectral gap hypothesis. Indeed,
restricting to the case of reversible diffusion processes, Theorem 3.1 in Guillin et al.
[8] implies that, whenever ς2

b (g) ≤ C‖g‖2∞ for any centered bounded g and some
constant C > 0, (BI) entails the Poincaré inequality, i.e.

Varμb ( f ) =
∫

f 2dμb −
(∫

f dμb

)2

≤ c−1
P

∫

|∇ f |2dμb (PI)
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for any smooth enough function f : Rd → R and some positive constant cP . It is
further well-known that Poincaré’s inequality in the symmetric case is equivalent to the
spectral gap assumption (SG). However, as was already noted in the introduction, the
upper bound result in Theorem2 essentially holdswhenever aBernstein-type deviation
inequality in the spirit of (BI) is combinedwith a sufficiently tight upper variance bound
[as provided by Assumption (SG+)]. Such variance bounds for diffusion processes
actually can be deduced by means of mixing conditions or the assumption of weak
dependence of data.
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constant encouragement and constructive advise. She also would like to thank two anonymous referees for
helpful comments which led to a substantial improvement of the paper. This work was partially supported
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Appendix A: Preliminaries

We first give a result which allows to deduce the exact asymptotics for pointwise
estimation of the drift component b j from exact results on estimating b jρb, j ∈
{1, . . . , d}. In particular, it allows to identify D(β, L; ρb, σ0) as defined in (1.3) as the
optimal normalizing factor for estimating the j-th component of b ∈ Π(c1, c2, σ0Id).
For the detailed derivation of the exact lower bound, we refer to Theorem 2.5.7 in
Strauch [21].

Lemma 1 (a) There exist two positive constants C1,C2 (depending only on c1, c2
and σ) such that the invariant density ρb satisfies ρb(x) ≤ C1e−C2‖x‖2 , x ∈ R

d ,
for any b ∈ Π(c1, c2).

(b) If b ∈ ˜Π(c1, c2) and if ρb ∈ S(β + 1, L ′), for some β > d/2 and L ′ > 0, then
there exists an invariant density estimator ρ̂T such that

Eb|ρ̂T (x) − ρb(x)|2 ≤ K1T
− β+1−(d/2)

β+1 exp (−K2‖x‖), x ∈ R
d , (7.1)

where the constants K1, K2 depend only on L ′, c1, c2 and σ .

Proof (a) The pointwise upper bound onρb is an immediate consequence of the results
ofMetafune et al. [15] who study global regularity properties of invariantmeasures
of divergence-form operators. Their results also hold in our specific framework
since we restrict attention to the case of constant, uniformly elliptic diffusion part.
Denote by λmax the largest eigenvalue of a. Due to Corollary 2.5 in Metafune
et al. [15], (P1) implies that exp(η‖x‖2) ∈ L1(μb) for η < c1 (2λmax)

−1. Since
‖b(x)‖ ≤ c2(1 + ‖x‖) � exp(‖x‖), Theorem 6.1 in Metafune et al. [15] applies
and yields the assertion.

(b) Let G = Gβ+1 : Rd → R be the kernel with Fourier transform

φG(λ) =
∫

Rd
ei λ

�yG(y)dy = 1

1 + ‖λ‖2(β+1)
, λ ∈ R

d ,
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and define the invariant density estimator

ρ̂T (x) = ρ̂T,h(x) := 1

Thd

∫ T

0
G

(

Xu − x

h

)

du, x ∈ R
d .

The bandwidth h = hT ↘ 0 is to be specified later. For bounding the stochastic
error, note that, using (4.3),

Eb
∣

∣ρ̂T (x) − Ebρ̂T (x)
∣

∣

2 = 1

T 2h2d
Varb

( ∫ T

0
G

(

Xu − x

h

)

du

)

≤ C

Th2d

∫

Rd
G2

(

y − x

h

)

ρb(y)dy.

Taking into account the regularity properties of G, a multidimensional version of
Theorem 1A in Parzen [16] yields

Eb
∣

∣ρ̂T (x) − Ebρ̂T (x)
∣

∣

2 ≤ C

Thd
ρb(x)‖G‖2L2(Rd )

(1 + oT (1)).

It remains to treat the bias term. Note that, using in particular Cauchy–Schwarz,

∣

∣Ebρ̂T (x) − ρb(x)
∣

∣ = (2π)−d
∣

∣

∣

∣

∫

Rd
φρb(λ)

{

(

1 + ‖hλ‖2β
)−1 − 1

}

e− i λ�xdλ

∣

∣

∣

∣

≤ hβ+1
(

(2π)−d
∫

Rd

∣

∣φρb(λ)
∣

∣

2 ‖λ‖2(β+1)dλ

)1/2

×
(

(2π)−d
∫

Rd

‖hλ‖2(β+1)

(

1 + ‖hλ‖2(β+1)
)2 dλ

)1/2

≤ L ′ (2π)−d/2
(∫

‖y‖≤1

dy

(1 + ‖y‖2β)2
+

∫

‖y‖>1

dy

‖y‖2β
)1/2

× hβ+1−d/2 =: Mhβ+1−d/2.

Specifying h = hT ∼
(

Cρb(x)
M2T

) 1
2(β+1)

and using the upper bound on ρb(x) from

part (a), we obtain (7.1). ��
Denote by N[ ]

(

ε,F , L2(μb)
)

the ε-entropy with bracketing, that is, the smallest
number of ε-brackets (in L2(μb)) which are required to cover F (cf. van der Vaart
and Wellner [25], Definition 2.1.6).

Lemma 2 (a) Let b ∈ Π(c1, c2, σ ), and suppose that X satisfies (PI). Fix j ∈
{1, . . . , d}, and assume that there exists some positive constant B such that, for
any bounded measurable f ∈ L2(μb),

max

{

sup
x∈supp( f )

|b j (x)|, sup
x∈supp( f 2)

|b j (x)|2
}

≤ B. (7.2)
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Then Assumption (BI) is satisfied.
(b) LetF ⊂ L2(μb) be some class of measurable functions f : Rd → R, and assume

that, for some positive constants K and M, it holds

sup
f ∈F

‖ f ‖∞ ≤ K , sup
f ∈F

‖ f ‖L2(μb)
≤ M.

Grant Assumptions (BI) and (SG). Then, for arbitrary T > 0 and any positive r
satisfying, for some positive constants K1 and K2,

K1√
T

∫ 1

0
max

{
√

log N[ ](ε,F , L2(μb)), 1

}

dε ≤ r ≤ K2M2

K
,

there exist some positive constants C1 and C2 such that

Pb

(

sup
f ∈F

∣

∣

∣

∣

1

T

∫ T

0
f (Xu)dX

j
u −

∫

Rd
f (y)b j (y)dμb(y)

∣

∣

∣

∣

> r

)

(BI+)

≤ C1 exp

(

−C2Tr2

M2

)

.

Proof (a) Letting, for r, T > 0,

pT (r) := Pb

(∣

∣

∣

∣

1

T

∫ T

0

(

f (Xu)b
j (Xu) −

∫

Rd
f (y)b j (y)dμb(y)

)

du

∣

∣

∣

∣

> r

)

, (7.3)

Theorem 1.1 in Lezaud [13] implies that

pT (r) ≤ 2 exp

(

− Tr2

2
(

ς2
b ( f b j )+cP‖ f b j‖∞r

)

)

. (7.4)

Using the spectral gap assumption, we get, for any T > 0, g ∈ L2(μb),

1

T
VarPb

(∫ T

0
g(Xu)du

)

≤ 2
∫ T

0

〈

Pt g, g
〉

μb
dt ≤ 2‖g‖2L2(μb)

∫ T

0
e−2t/cPdt

≤ cP‖g‖2L2(μb)
.

Consequently, in view of (7.2),

ς2
b ( f b j ) = lim

T→∞
1

T
VarPb

(∫ T

0
( f b j )(Xu)du

)

≤ cP‖ f b j‖2L2(μb)
≤ cP B‖ f ‖2L2(μb)

and ‖ f b j‖∞ ≤ B‖ f ‖∞. Plugging these estimates into (7.4), we obtain the asserted
inequality.
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(b) Under the given assumptions, Bernstein’s inequality for continuous martingales
can be used to show that there exists some constant ˜CB such that, for any r, T > 0,

qT (r) := Pb

(∣

∣

∣

∣

1

T

∫ T

0
f (Xu)dX

j
u −

∫

Rd
f (y)b j (y)dμb(y)

∣

∣

∣

∣

> r

)

≤ 2 exp

(

− Tr2

2˜CB
(‖ f ‖2

L2(μb)
+ ‖ f ‖∞

)

)

. (7.5)

To see this, write qT (r) ≤ pT (r/2) + p′
T (r/2), for pT (·) introduced in (7.3) and

p′
T (r) := Pb

(∣

∣

∣

∣

1

T

∫ T

0
f (Xu)

d
∑

k=1

σ jkdW
k
u

∣

∣

∣

∣

> r

)

, r > 0.

Letting Mt ( f ) := ∫ t
0 f (Xu)

∑d
k=1 σ jk dWk

u , t ≥ 0, and denoting by 〈M〉· the
quadratic variation of the martingale M , Bernstein’s inequality for continuous mar-
tingales (see p. 154 in Revuz and Yor [18]) gives

p′
T (r/2) ≤ Pb

(

∣

∣MT ( f )
∣

∣ > Tr/2; 〈M( f )〉T ≤ Tr‖ f ‖∞/2
)

+ Pb

(

〈M( f )〉T > Tr‖ f ‖∞/2
)

≤ 2 exp

(

− Tr

4‖ f ‖∞

)

+ Pb

(

T−1
∫ T

0
f 2(Xu)du > a−1

j j r‖ f ‖∞/2

)

︸ ︷︷ ︸

=:p′′
T (r)

.

Theorem 1.1 in Lezaud [13] then can be used to show that

p′′
T (r) ≤ exp

(

− Tr2

8cPa j j
(

a j j ‖ f ‖2
L2(μb)

+ ‖ f ‖∞/2
)

)

.

The inequality (7.5) now follows for ˜CB := 4max
{

2cP , 2cPa2j j , cPa j j , 1
}

. In view
of (7.5), a uniform exponential inequality in the spirit of Theorem 5.11 in van de Geer
[24] is available. Indeed, Theorem 5.11 in van de Geer [24] appears as a special case
of the uniform inequality for martingales in van de Geer [24]’s Theorem 8.13, and
the proof of Theorem 8.13 continues to hold in the diffusion setting if the Bernstein
inequality for martingales in van de Geer [24]’s Corollary 8.10 is replaced with the
Bernstein-type deviation inequality (BI). ��

For the proof of the following Lemma, we refer to the proofs of Proposition 1 in
Klemelä and Tsybakov [10] and of Lemma 10 in Tsybakov [23].

Lemma 3 Let β > d/2, and, for Iβ , ˜Kβ(·) and b = b(β) defined according to (1.4),
(4.7) and (4.8), respectively, let K ∗

β(x) := I
−1
β b−β+d/2

˜Kβ(bx).
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(a) (cf. Proposition 1 in Klemelä and Tsybakov [10]) It holds

˜Kβ(0) = (2π)−d
∫

Rd

(

1 + ‖λ‖2β
)−1

dλ = 2β

d
I
2
β,

and, for Kβ(x) = bd ˜Kβ(bx),
∥

∥Kβ

∥

∥

L2(Rd )
= Iβ

(

2β−d
d

)
β+d/2
2β = Iβ bβ+d/2.

(b) (cf. Lemma 10 in Tsybakov [23]) For fixed δ ∈ (0, 1), there exists some compactly
supported modification K β of K ∗

β which enjoys the following properties,

∥

∥K β

∥

∥

L2(Rd )
≤ 1 − δ/2, (K1)

ηβ(K β) ≤ 1 − δ/2, (K2)

(1 − δ/2)K ∗
β(0) ≤ K β(0) ≤ K ∗

β(0). (K3)

Appendix B: Proofs

B.1: Lower bound

Proof (of Theorem 1) Let ψβ,L = ψ
j
β,L := ψT,βC j (β, L; ρb, σ ), for ψT,β and

C j (β, L; ρb, σ ) defined in (3.1) and (3.3), respectively. To enlighten notation, the
dependence on the coordinate j ∈ {1, . . . , d} will be mostly suppressed in the sequel.

(I) Construction of the hypotheses. Let L ∈ [L∗, L∗], fix some nondegenerate
R
d×d -matrix σ , let a := σσ�, and consider some positive density function

ρ ∈ C∞(Rd) ∩ S (

βT + 1, L ′) ∩ S (

β∗ + 1, L ′) , where L ′ := 2L

(

d
∑

k=1

a2jk

)−1/2

.

Fix δ0 ∈ (0, 1/2), c1, c2 > 0, and assume that ρ is such that the function

ρT,0(x) := δ
1/(β∗+3/2)
0 ρ

(

xδ1/(β∗+3/2)
0

)

, x ∈ R
d ,

satisfies ρT,0(x0) ≥ ρ∗
T , for any x with ‖x‖ large enough,

〈a∇ log ρT,0(x), x〉 ≤ −2c1‖x‖2,

and for any x ∈ R
d ,

∣

∣

∣

d
∑

k=1

a jk∂kρT,0(x)
∣

∣

∣ ≤ 2 and ‖∇ log ρT,0(x)‖ ≤ 2‖a‖−1
S2
c2.
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Consequently, a∇(log ρT,0)/2 =: bT,0 ∈ Π(c1, c2, σ ). In particular, the SDE dXt =
bT,0(Xt )dt + σ dWt , t ≥ 0, admits a strong solution with Lebesgue continuous
invariant measure and invariant density ρT,0. Define further

gT,0(x) := 1

2

d
∑

k=1

a jk∂kρT,0(x), x ∈ R
d .

For β > d/2, consider ˜Kβ and b = b(β) as introduced in (4.7) and (4.8), respectively,
and denote again K ∗

β(x) = I
−1
β b−β+d/2

˜Kβ(bx). Lemma 3 implies that

K ∗
β(0) = I

−1
β b−β+d/2

˜Kβ(0) = 2β

d

(

d

2β − d

)
β−d/2
2β

Iβ

and

‖K ∗
β‖L2(Rd ) = I

−1
β b−β+d/2

(∫

Rd

˜K 2
β(bx)dx

)1/2

= 1.

Denote by K β the compactly supported modification of K ∗
β from Lemma 3 satisfying

(K1), (K2), and (K3) for δ = δ0. Define the function gT,β∗ : Rd → R such that, for
any k ∈ {1, . . . , d},

∂kgT,β∗(x) = 2La−1
j j h

β∗−d/2
T,β∗ K β∗

(

x − x0
hT,β∗

)

δk j , x ∈ R
d , (8.1)

where

hT,β∗ :=
(

dρT,0(x0)a j j log T

β∗L2T

)1/(2β∗)
. (8.2)

Let

ρT,1(x) := ρT,0(x)

(

1 −
∫

Rd
gT,β∗(y)dy

)

+ gT,β∗(x),

and consider the hypothesis gT,1, defined as gT,1 := ∑d
k=1 a jk∂kρT,1/2. The function

bT,1 : Rd → R
d is taken as bT,1 := a∇(log ρT,1)/2. Note that, for T large enough,

ρT,0(x0)

ρT,1(x0)
≤ ρT,0(x0)

ρT,0(x0)
(

1 − ∫

Rd gT,β∗(y)dy
) ≤ 1 + δ0/2. (8.3)

Plugging in the respective definitions of the hypotheses, it can be shown that gT,0 ∈
S(βT , L), gT,1 ∈ S(β∗, L) and bT,1 ∈ Π(c1, c2, σ ). The above definitions of the
hypotheses further imply that ρT,0 ∈ S(βT + 1, L ′), ρT,1 ∈ S(β∗ + 1, L ′) and
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2b j
T,iρT,i =

d
∑

k=1

a jk∂k
(

log ρT,i
)

ρT,i =
d

∑

k=1

a jk∂kρT,i , i ∈ {0, 1}.

Summing up, ρT,0 ∈ ΣT (βT , L) and ρT,1 ∈ ΣT (β∗, L).

(II) A version of Theorem 6(i) in Tsybakov [23]. The central ingredient of
the proof is a special case of Theorem 6(i) in Tsybakov [23]. It will be applied in the
following situation: Denote by Ei = EbT,i expectation under the measure Pi = PbT,i

associated with the hypothesis b = bT,i , i ∈ {0, 1}, and note that

inf
ĝT

sup
(β,L)∈BT

sup
b∈Π(c1,c2,σ )

sup
ρb∈ΣT (β,L)

ψ−2
β,L Eb

∣

∣ĝT (x0) − (b jρb)(x0)
∣

∣

2

≥ inf
ĝT

max

{

sup
b∈Π(c1,c2,σ )

sup
ρb∈ΣT (βT ,L)

ψ−2
βT ,L Eb

∣

∣ĝT (x0) − (b jρb)(x0)
∣

∣

2
,

sup
b∈Π(c1,c2,σ )

sup
ρb∈ΣT (β∗,L)

ψ−2
β∗,L Eb

∣

∣ĝT (x0)−(b jρb)(x0)
∣

∣

2
}

≥ inf
ĝT

max
{

E0

[

ψ−2
βT ,L

∣

∣ĝT (x0)−gT,0(x0)
∣

∣

2
]

, E1

[

ψ−2
β∗,L

∣

∣ĝT (x0)−gT,1(x0)
∣

∣

2
]}

= inf
̂TT

max
{

E0
∣

∣QT ̂TT
∣

∣

2
, E1

∣

∣̂TT − θ1
∣

∣

2
}

, (8.4)

where QT := ψβ∗,Lψ−1
βT ,L , ̂TT := ψ−1

β∗,L
(

ĝT (x0) − gT,0(x0)
)

, and

θ1 := ψ−1
β∗,L

(

gT,1(x0) − gT,0(x0)
)

.

The proof of the following lemma is completely along the lines of the proof of Theorem
6(i) in Tsybakov [23].

Lemma 4 (Theorem 6(i) in Tsybakov [23]) Consider QT , ̂TT and θ1 as introduced
above, and assume that θ1 ∈ R satisfies

∣

∣θ1
∣

∣ ≥ 1 − δ0. (A1)

If P0,P1 are such that P0 � P1 and, for τ > 0 and α ∈ (0, 1) fixed,

P1

(

dP0

dP1
≥ τ

)

≥ 1 − α, (A2)

then

inf
̂TT

max
{

E0
∣

∣QT ̂TT
∣

∣

2
, E1

∣

∣̂TT − θ1
∣

∣

2
}

≥ (1 − α)τ(1 − 2δ0)2
(

QT δ0
)2

(1 − 2δ0)2 + τ
(

QT δ0
)2 ,

where the infimum is taken over all ̂TT = ψ−1
β∗,L

(

ĝT (x0) − gT,0(x0)
)

.
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We proceed with verifying (A1) and (A2). Note first that

∣

∣

∣

1

2

d
∑

k=1

a jk∂kgT,β∗(x0)
∣

∣

∣ = Lhβ∗−d/2
T,β∗ K β∗(0)

(K3)≥ Lhβ∗−d/2
T,β∗ (1 − δ0/2) K ∗

β∗(0)

= (1 − δ0/2) L

(

d2a j jρT,0(x0) log T

β∗(2β∗ − d)L2T

)

β∗−d/2
2β∗ 2β∗

d
Iβ∗

= (1 − δ0/2) C j (β∗, L; ρT,0, σ ) ψT,β∗ .

Since, for T large enough, ψ−1
β∗,L

∫

Rd gT,β∗(y)dy ≤ δ0/2, this implies

∣

∣θ1
∣

∣ ≥ ψ−1
β∗,L

∣

∣

∣

∣

1

2

d
∑

k=1

a jk

(

∂kgT,β∗(x0) − ∂kρT,0(x0)
∫

Rd
gT,β∗(y)dy

)∣

∣

∣

∣

≥ 1 − δ0. (8.5)

Denote by Y the solution of the SDE dYt = bT,1(Yt )dt + σ dWt . In order to verify
(A2), note that the specifications on pp. 296–297 in Liptser and Shiryaev [14] imply
that the likelihood ratio under P1 is given by

dP0

dP1
(Y T ) = ρT,0

ρT,1
(Y0) exp

(

− 1

2

∫ T

0
(bT,0 − bT,1)

�(Yu)a
−1(bT,0 − bT,1)(Yu)du

+
∫ T

0

(

σ−1 (

bT,0 − bT,1
)

)�
(Yu)dWu

)

. (8.6)

To proceed, set

Mt :=
∫ t

0

(

σ−1 (

bT,0 − bT,1
)

)�
(Yu)dWu, t ≥ 0,

denote g := (bT,0 − bT,1)
�a−1(bT,0 − bT,1), and consider the following stationary

sequence of random variables,

Zk :=
∫ kt

(k−1)t
g(Yu)du, k ≥ 1.

Since g ∈ L1(P1), it follows from the ergodic theorem that, for any t > 0,

1

n

n
∑

k=1

Zk = 1

n

∫ nt

0
g(Yu)du = 1

n
〈M〉nt a.s.−→n→∞ tc,
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where

c : = E1

[

(bT,0 − bT,1)
�(Y0)a

−1(bT,0 − bT,1)(Y0)
]

= E1

∥

∥

∥σ−1(bT,0 − bT,1)(Y0)
∥

∥

∥

2
. (8.7)

In particular, this implies by means of the martingale CLT that, for some standard
Brownian motion W ,

Mnt√
n

P1�⇒n→∞
√
c Wt . (8.8)

Denoting by [s] the integer part of s and considering an arbitrary sequence
γ (s) →s→∞ 0, it holds

γ (s)
∫ s

[s]
g(Yu)du

P1−→s→∞ 0.

Choosing t ≡ 1 in (8.8) and passing to the continuous-time case, we obtain

MT√
T

P1�⇒T→∞ Z ∼ N (0, c).

It is verified by straightforward algebra that the definition of the hypotheses bT,0 and
bT,1 entails that

2σ−1 (

bT,0 − bT,1
) = σ�∇

(

log
ρT,0

ρT,1

)

= gT,β∗σ
�∇ (

log ρT,0
) + σ�∇gT,β∗

ρT,1
.

The definition of gT,β∗ further implies that, using in particular (8.1),

E1

[∥

∥σ�∇gT,β∗(Y0)
∥

∥

2

4ρ2
T,1(Y0)

]

=
∫

Rd

∥

∥σ�∇gT,β∗(y)
∥

∥

2

4ρT,1(y)
dy = a j j

∫

Rd

(

∂ j gT,β∗(y)
)2

4ρT,1(y)
dy

= a−1
j j L

2 h2β∗−d
T,β∗

∫

Rd
K

2
β∗

(

y − x0
hT,β∗

)

dy

ρT,1(y)

= a−1
j j L

2 h2β∗
T,β∗

∫

Rd
K

2
β∗(y)dy

(

1 + oT (1)
)

ρT,1(x0)

≤ (1 − δ0/2)
2 a−1

j j L
2h2β∗

T,β∗

(

1 + oT (1)
)

ρT,1(x0)
.
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The last inequality follows from (K1). Thus, plugging in the definition of hT,β∗ [see
(8.2)] and using (8.3),

E1

[∥

∥σ�∇gT,β∗(Y0)
∥

∥

2

4ρ2
T,1(Y0)

]

≤ (1 − δ0/2)
2 L2

(

dρT,0(x0)a j j log T

β∗L2T

)
(

1 + oT (1)
)

a j jρT,1(x0)

≤
(

1 − δ20/4
)2 d log T

Tβ∗
(

1 + oT (1)
)

.

It can be shown by analogous arguments that the terms

E1

[

g2T,β∗(Y0)‖σ�∇(log ρT,0)(Y0)‖2
ρ2
T,1(Y0)

]

and

E1

[

gT,β∗(Y0)
(∇(log ρT,0)(Y0)

)�
a∇gT,β∗(Y0)

ρ2
T,1(Y0)

]

are asymptotically negligible. Thus, for c defined in (8.7) and whenever δ0 is small
and T is large enough,

c ≤
(

1 − δ20/4
)2 d

β∗
log T

T

(

1 + oT (1)
)

.

Consequently, for τ := exp

(

−
(

1−δ20/4
)

d log T
2β∗

)

, it holds a.s.

log τ − log ρT,0(Y0) + log ρT,1(Y0) + 1
2 〈M〉T√

T c
≤ −δ20

8

√

d log T

β∗
+ oT (1) → −∞.

The verification of (A2) is accomplished by means of a tightness argument. Con-
sider some sequence of probability measures (Pn)n≥1 on some measurable space,
converging weakly to some probability measure P. Tightness of Pn implies that, for
any sequence γn → −∞,

lim
m→∞max

{

P ((−∞, γm)) , sup
n∈N

Pn ((−∞, γm))

}

= 0.

Thus, limm→∞ supn∈N Pn ((−∞, γm)) = 0 and limm→∞ infn∈N Pn ((−∞, γm)) =
1. In particular,

lim
m→∞Pm ((γm,∞)) = 1.
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In the current framework, this last assertion implies that, for

γT := log τ − log ρT,0(Y0) + log ρT,1(Y0) + 1
2 〈M〉T√

T c
→ −∞,

one has [plugging in (8.6)]

lim
T→∞P1

(

dP0

dP1
≥ τ

)

= lim
T→∞P1

(

ρT,0

ρT,1
(Y0) exp

(

MT − 1

2
〈M〉T

)

≥ τ

)

= lim
T→∞P1

(

MT√
T c

≥ γT

)

= 1.

For large enough T and fixed τ > 0 (where δ0 ∈ (0, 1) can be chosen arbitrarily
small), we thus obtain

P1

(

dP0

dP1
≥ τ

)

≥ 1 − δ0. (8.9)

(III) Completion of the proof. In view of (8.5) and (8.9), Lemma 4 gives

inf
ĝT

sup
(β,L)∈BT

sup
b∈Π(c1,c2,σ )

sup
ρb∈�T (β,L)

Eb
∣

∣ĝT (x0) − (b jρb)(x0)
∣

∣

2
ψ−2

β,L

(8.4)≥ inf
̂TT

max
{

E0
∣

∣QT ̂TT
∣

∣

2
, E1

∣

∣̂TT − θ1
∣

∣

2
}

≥ (1 − δ0)τ (1 − 2δ0)2
(

QT δ0
)2

(1 − 2δ0)2 + τ
(

QT δ0
)2 .

Since, for C := C j (β∗, L; ρT,0, σ )/C j (βT , L; ρT,0, σ ),

QT = ψβ∗,L
ψβT ,L

= C exp

(

− d

4β∗βT
(β∗ − βT ) (log T − log log T )

)

,

we have

τQ2
T = C2 exp

(

d
(

δ20βT /4 − β∗
)

2β∗βT
log T

)

× exp

(

d (β∗ − βT )

2β∗βT
log log T

)

.

As T → ∞, τQ2
T → ∞. Choosing δ0 > 1/A for A large enough to ensure δ0 < 1/2,

it holds

(1 − δ0)τ (1 − 2δ0)2
(

QT δ0
)2

(1 − 2δ0)2 + τ
(

QT δ0
)2 = (1 − δ0)(1 − 2δ0)2δ20

(1−2δ0)2

τQ2
T

+ δ20

→T→∞ (1 − δ0)(1 − 2δ0)
2.

Taking now A → ∞, the assertion follows. ��
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B.2: Upper bound

Proof (of Theorem 2) Let β ∈ [β∗, βT ], L ∈ [

L∗, L∗]

, β ′ ∈ (d/2, β], c1 ∈ (0,∞],
c2 > 0, σ some nondegenerate Rd×d -matrix, L ′ > 0, and fix j ∈ {1, . . . , d}.

Denote by γT i , i ∈ N, functions of T such that limT→∞ γT i = 0. For ψT,β and

C j (β, L; ρb, σ ) introduced in (3.1) and (3.3), respectively, recall thatψβ,L = ψ
j
β,L =

ψT,βC j (β, L; ρb, σ ). To enlighten notation, the dependence on the coordinate j again
will be mostly suppressed. Denote by ˜T (β) the effective noise level under adaptation,
defined as

˜T (β) = ˜T j (β) :=
(

dρb(x0)a j j log T

βT

)1/2

.

Consider the following deterministic counterparts of the bandwidth ̂hT,β ′ and the
thresholding sequence η̂T,β ′ ,

hT,β ′ :=
(

dρb(x0)a j j log T

β ′T

)1/2β ′

= ˜T (β ′)1/β ′
(8.10)

and

ηT,β ′ :=
(

dρb(x0)a j j log T

β ′T

)
β′−d/2
2β′

∥

∥Kβ ′
∥

∥

L2(Rd )
= hβ ′−d/2

T,β ′
∥

∥Kβ ′
∥

∥

L2(Rd )
.

Set

˜β = ˜β(β, β ′) :=
{

β ′ + d
2 , if d

2 ≤ β ′ ≤ β
2 + d

4 ,

β, if β
2 + d

4 < β ′ ≤ β.

Define δT := (log T )−1, and introduce the random event

AT,β ′ :=
{

∣

∣

∣

(

̂h j
T,β ′/hT,β ′

)˜β ′−d/2 − 1
∣

∣

∣ ≤ δT

}

and the associateddeterministic setHT,β ′ =H j
T,β ′ :=

{

h :
∣

∣

∣

(

h/hT,β ′
)˜β ′−d/2−1

∣

∣

∣≤δT

}

.

Note that there exists a positive constant c0 such that

HT,β ′ ⊂
{

h :
∣

∣

∣

(

h/hT,β ′
) − 1

∣

∣

∣ ≤ c0δT

}

=: HT,β ′ .

Denote the kernel estimator of (b jρb)(x0) with deterministic bandwidth h ∈ HT,β ′
by

gT,β ′(x0, h) := 1

Thd

∫ T

0
Kβ ′

(

Xu − x0
h

)

dX j
u , (8.11)
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and set gT,β ′(x0) := gT,β ′
(

x0, hT,β ′
)

. Define

sT (β) := h−d/2
T,β

√

ρb(x0)a j j

T

∥

∥Kβ

∥

∥

L2(Rd )
,

and let dT (β) := √

(d log T )/β such that sT (β)dT (β) = ηT,β . For β ′ ≤ β, introduce
the auxiliary sequence

τT (β ′) := sT (β ′)
(

√

d2T (β ′) − d2T (β) +
(

log T

βT

)1/4
)

.

Lemma 5 (Bound on the bias) Consider the estimator gT,β ′(x0, h) defined in (8.11),
and let

bβ,β ′ :=
(

2β ′ − d

d

)
d/2−˜β

2β′
(

(2π)−d
∫

Rd

‖λ‖4β ′−2˜β

(

1 + ‖λ‖2β ′)2 dλ

)1/2

.

For any HT,β ′ � h > 0,

sup
b∈ ˜Π(c1,c2,σ )

sup
ρb∈�T (β,L)

∣

∣

∣EbgT,β ′(x0, h) − (b jρb)(x0)
∣

∣

∣ ≤ Lh
˜β−d/2bβ,β ′ . (8.12)

Furthermore,

sup
d/2<β ′≤β<∞

bβ,β ′ < ∞, lim sup
δ→0

sup
β,β ′∈[β∗,∞): |β−β ′|≤δ

bβ,β ′

bβ,β

≤ 1.

Proof The bound on the bias in (8.12) is proven by standard arguments and relies in
particular on exploiting the scaling properties of the Fourier transform of Kβ ′,h . The
remaining assertions are Lemma 1(ii), (iii) in Klemelä and Tsybakov [11]. ��

The principal importance of exponential bounds on the stochastic error of estimators
considered in the adaptive procedure was already indicated in the introduction. The
Bernstein-type deviation inequality (BI) and its implication (BI+), the basic uniform
exponential inequality stated in Lemma 2, can be applied to derive more specific
bounds on the stochastic error of the estimators gT,β defined according to (8.11). The
following function classes are defined analogously to Butucea [3],

K1 :=
{

Kβ ′,h(·) := h−d Kβ ′ ((· − x0)/h) | h ∈ HT,β ′
}

,

K2 :=
{

Kβ ′,h − Kβ ′,hT,β′ | h ∈ HT,β ′
}

.
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For h ∈ HT,β , let

ZT,β(h) := gT,β(x0, h) − EbgT,β(x0, h)

= 1

T

∫ T

0
Kβ,h(Xu)dX

j
u −

∫

Rd
Kβ,h(y)(b

jρb)(y)dy. (8.13)

Lemma 6 Grant Assumptions (BI) and (SG+). For any β ′ > d/2, the stochastic error
ZT,β ′(·) defined according to (8.13) has the following properties:

(a) For any u ∈ [

τT (β ′), R1 sT (β ′)
√
log T

]

, R1 > 0 an absolute constant, there exist
some sufficiently small γ > 0, independent of β ′, and some universal constant
c′
1 > 0 such that

Pb

(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ > u

)

≤ c′
1 exp

(

−1

2

(

u(1 − γ )

sT (β ′)

)2
)

+ o
(

T−1)

. (8.14)

(b) For any u ∈ [

R1 sT (β ′)
√
log T , R2

]

, R1, R2 > 0 absolute constants, it holds,
for some absolute constants c′

2, c
′
3 > 0,

Pb

(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ > u

)

≤ c′
2 exp

(

−c′
3

(

u

sT (β ′)

)2
)

.

(c) Assume that β ′ < β. Then, uniformly in β ∈ BT ,

sup
β′∈B,

β ′<β

m sup
b∈ ˜Π(c1,c2)

sup
ρb∈ΣT (β,L)

ψ−2
β,L

×Eb

[

(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣

)2

1

{

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ > τT (β ′)
}

]

→ 0,

sup
β′∈B,

β ′<β

m sup
b∈ ˜Π(c1,c2)

sup
ρb∈ΣT (β,L)

ψ−2
β,L

×Eb

[

(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣

)2

1

{

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ >

√

sT (β ′)ψβ,L

}

]

→ 0.

Proof The assertions are analogue to the statements in Lemma 4.3, Lemma 4.5 and
Theorem 4.6 in Butucea [3]. For deriving the inequality (8.14) with the specific factor
1/2 in the exponent in the current diffusion framework, we however have to go into
greater detail. Throughout the proof, D1, D2, . . . denote positive constants. For fixed
δ′ ∈ (0, 1) and arbitrary u, T > 0, write

Pb

(

∣

∣ZT,β ′(hT,β ′)
∣

∣ > u
)

≤ t1 + t2,
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for

t1 :=Pb

(∣

∣

∣

∣

1

T

∫ T

0

(

Kβ ′,hT,β′ (Xu)b
j (Xu)−

∫

Rd
Kβ ′,hT,β′ (y)(b

jρb)(y)dy

)

du

∣

∣

∣

∣

>δ′u
)

,

and, denoting Mt (K ) := ∫ t
0 K (Xu)

∑d
r=1 σ jrdWr

u , t > 0,

t2 := Pb

(∣

∣

∣

∣

1

T
MT

(

Kβ ′,hT,β′
)

∣

∣

∣

∣

> (1 − δ′)u
)

.

For any u ≤ R1 sT (β ′)
√
log T , we have

u
∥

∥Kβ,hT,β′
∥

∥∞ ≤uh−d
T,β ′Kmax≤ R1 sT (β ′)h−d

T,β ′
√

log T Kmax ≤ D1 s
2
T (β ′)Th−d/2+β ′

T,β ′ ,

such that, since β ′ > d/2,

u‖Kβ,h‖∞
s2T (β ′)T

= oT (1).

Furthermore, the enhanced spectral gap assumption (SG+) gives

ςb
(

Kβ,hT,β′
) ≤ D2 ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, d = 1,

max
{

1, (log(h−4
T,β ′))2

}

, d = 2,

h2−d
T,β ′ , d ≥ 3.

Thus, for T sufficiently large, CB

(

ςb
(

Kβ,hT,β′
) + δ′u

∥

∥Kβ,hT,β′
∥

∥∞
)

≤ s2T (β ′)T . The

Bernstein-type deviation inequality (BI) therefore implies that

t1 ≤ 2 exp

(

− δ′2u2

2 s2T (β ′)

)

. (8.15)

For bounding t2 from above, we first use Bernstein’s inequality for continuous mar-
tingales which gives, for any h > 0,

Pb

(

∣

∣MT
(

Kβ ′,h
)∣

∣>T (1 − δ′)u; 〈

M
(

Kβ ′,h
)〉

T ≤T 2 s2T (β ′)
)

≤2 exp

(

− (1−δ′)2u2

2 s2T (β ′)

)

.

(8.16)

By means of (BI) and using again that β ′ > d/2, it can be shown that

Pb

(

〈

M
(

Kβ ′,hT,β′
)〉

T > T 2 s2T (β ′)
)

= Pb

(

1

T

∫ T

0
K 2

β ′,hT,β′ (Xu)du > a−1
j j h

−d
T,β ′

)

= o
(

T−1)

. (8.17)
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Adding the upper bounds (8.15), (8.16) and (8.17), we obtain, for some small γ > 0,

Pb

(

∣

∣ZT,β ′(hT,β ′)
∣

∣ > u
)

≤ 2 exp

(

−u2(1 − γ )

2 s2T (β ′)

)

+ o
(

T−1)

. (8.18)

Consider the sequence δT 1 := βT δT
√
log T = (log log T )δ(log T )−1/2 → 0, and

note that, for any u > 0,

Pb

(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ > u

)

≤ Pb

(

sup
h∈HT,β′

∣

∣ZT,β ′(h) − ZT,β ′(hT,β ′)
∣

∣ > uδT 1

)

+ Pb

(

∣

∣ZT,β ′(hT,β ′)
∣

∣ > u(1 − δT 1)

)

.

Since u(1 − δT 1) ≤ u ≤ R1 sT (β ′)
√
log T , (8.18) gives an upper bound on the latter

summand. For T large enough, it further holds

[

τT (β ′)δT 1, R1δT 1 sT (β ′)
√

log T
]

⊂
⎡

⎣

βT δT
√
log T√

Thd/2
T,β ′

, βT δT

⎤

⎦ .

Taking into account that

sup
h∈HT,β′

∥

∥Kβ ′,h − Kβ ′,hT,β′
∥

∥

L2(μb)
≤ O(1) sup

h∈HT,β′
h−d/2
T,β ′

∣

∣

∣1 − (

h/hT,β ′
)2β ′ ∣

∣

∣

≤ O(1)h−d/2
T,β ′ βT δT

and since

∫ 1

0
max

{
√

log N[ ](ε,K2, L2(μb), 1

}

dε ≤ D4βT δT
√

log Th−d/2
T,β ′ ,

the uniform exponential inequality (BI+) implies that

Pb

(

sup
h∈HT,β′

∣

∣

∣ZT,β ′(h) − ZT,β ′(hT,β ′)
∣

∣

∣ > uδT 1

)

≤ C1 exp

(

−D5ThdT,β ′(uδT 1)
2

(βT δT )2

)

.

(8.19)

Summing the upper bounds due to (8.18) and (8.19), we obtain (8.14).
The inequality stated in (b) follows as an application of (BI+)with K := h−d

T,β ′Kmax
and

M2 := h−d
T,β ′

∥

∥Kβ ′
∥

∥

2
L2(Rd )

ρb(x0).
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Finally, part (c) is proven similarly to Theorem 4.6 in Butucea [3] by noting that there
exists some positive constant R such that suph∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ ≤ Rh−d
T,β ′ . A suitable

decomposition of

Eb

[(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣

)2

1

{

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ > τT (β ′)
}]

and uniform exponential bounds on the corresponding integrands as they follow from
parts (a) and (b) of this lemma then yield the assertions. ��

The next lemma contains a decomposition of the normalizing factorψβ,L and some
relations which are needed later in the proof. For hT,β defined according to (8.10),
denote

bT,β ′ := Lbβ,β ′h
˜β−d/2
T,β ′ . (8.20)

Lemma 7 Let β ∈ [d/2,∞), L ∈ [

L∗, L∗]

, and denote ν = (β, L). It then holds

ψν = Ld/(2β)
(

ηT,β + hβ−d/2
T,β bβ,β

)

. (8.21)

Furthermore, there exist positive constants D1, . . . , D5, dependingonly onβ∗, L∗, L∗,
d and σ , such that

D1 ≤ ψν/ηT,β ≤ D2, (8.22)

and, for β ′ ∈ [d/2,∞), β ′ < β,

D3

βT

(

log T

T

)κ(β ′)−κ(β)

≤ ψβ ′,L
ψν

≤ D4T
κ(β)−κ(β ′) (8.23)

and

b2T,β ′ + τ 2T (β ′)
ψ2

ν

≤ D5 log T T 2κ(β)−2κ(β ′). (8.24)

Proof The proof of the decomposition is comparable to the derivation of relation (68)
on p. 461 in Klemelä and Tsybakov [11]; for details, see the proof of Lemma 2.6.6
in Strauch [21]. Assertions (8.22) and (8.23) follow analogously to the proof of the
relations (44)–(46) in Lemma 4 in Klemelä and Tsybakov [11] (pp. 453–454). For the
proof of (8.24), we refer to the proof of Lemma 3.5 in Butucea [3]. ��
Main part of the proof of the upper bound. Define β− = β−(β) by

β− := β − β+
T

log T
,
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where β+
T := (log log T )δ

′
, for some δ′ ∈ (δ, 1). We follow the standard approach and

decompose the risk successively. Assume that b ∈ ˜Π(c1, c2, σ ), let ν = (β, L), and
set

R+
T,ν = R+

T,ν( j) := sup
ρb∈ΣT (β,L)

ψ−2
ν Eb

[

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T ≥ β−}

]

,

R−
T,ν = R−

T,ν( j) := sup
ρb∈ΣT (β,L)

ψ−2
ν Eb

[

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T < β−}

]

.

For ease of notation, we usually suppress the dependence of the risk on the coordinate
j .
(I)We first consider the case ̂β

j
T ≥ β−, and we show that

lim sup
T→∞

sup
ν∈BT

R+
T,ν ≤ 1. (8.25)

Define β = β(β) via the equation
(

log T
L2T

)1/(2β) =
(

log T
T

)1/(2β)

. Let β+ ∈ G
be the largest grid point ≤ β, and assume that T is large enough for ensuring
β− < β+. Denote G1 = G1(β) := {

β ′ ∈ G | β− ≤ β ′ ≤ β+}

, G2 = G2(β) :=
{

β ′ ∈ G | β+ < β ′ ≤ βT
}

, and rewrite

R+
T,ν = sup

ρb∈ΣT (β,L)

ψ−2
ν Eb

[

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T ∈ G1 ∪ G2

}

]

.

Letβ ′ ∈ G1 = G1(β) andρb ∈ ΣT (β, L), and assume that T is so large that ˜β(β, β ′) =
β. Using Lemma 5, the facts thatHT,β ′ ⊂ HT,β ′ , that β ′ ≤ β and the definition of β,
it can be shown that

sup
h∈HT,β′

∣

∣EbgT,β ′(x0, h) − (b jρb)(x0)
∣

∣ ≤ �(β, β ′)Ld/(2β)hβ−d/2
T,β bβ,β ′

(

1 + δT
)

,

where

�(β, β ′) := (

dρb(x0)a j j
)

β−d/2
2β′ − β−d/2

2β (β ′)−
β−d/2
2β′ β

β−d/2
2β .

The following arguments are along the lines of the proof of the upper bound inKlemelä
and Tsybakov [11] (see pp. 461–463). For any β ′ ∈ G1, there exists some positive
constant C such that

∣

∣β − β ′∣
∣ ≤ Cβ+

T (log T )−1. (8.26)

Since �(β, β ′) is uniformly continuous in β, β ′ ∈ [β∗,∞), this implies that
�(β, β ′) ≤ 1 + γT 1. Furthermore, for any β ′ ∈ G1, β ∈ [β∗, βT ], it holds
bβ,β ′ ≤ bβ,β (1 + γT 2). Consequently, for any β ′ ∈ G1, ρb ∈ �T (β, L),

sup
h∈HT,β′

∣

∣EbgT,β ′(x0, h) − (b jρb)(x0)
∣

∣ ≤ Ld/(2β)hβ−d/2
T,β bβ,β (1 + γT 3).
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Similar arguments (also see the derivation of line (54) on p. 1591 in Klemelä and
Tsybakov [10]) yield

ηT,β+ ≤
(

4dρb(x0)a j j

β+

)
β+−d/2
2β+ (

log T

T

)
β−d/2
2β ‖Kβ+‖L2(Rd ) (1 + γT 4)

≤ Ld/(2β)ηT,β (1 + γT 5). (8.27)

Recall the definition of the stochastic error ZT,β(·). Whenever ̂β
j
T = β ′ ∈ G1 and the

event AT,β ′ holds, the above arguments imply that

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣ = ∣

∣ĝT,β ′(x0) − (b jρb)(x0)
∣

∣

≤ sup
h∈HT,β′

∣

∣g j
T,β ′(x0, h) − (b jρb)(x0)

∣

∣

≤ sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣+Ld/(2β)hβ−d/2
T,β bβ,β (1 + γT 3) (8.28)

≤ sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ + ψν(1 + γT 3). (8.29)

The last line holds true since HT,β ′ ⊂ HT,β ′ and in view of the decomposition of the

normalizing factor ψν according to (8.21). If ̂β
j
T ≥ β+, the definition of the estimator

̂β
j
T according to (4.10) implies that

∣

∣ĝ j

T,̂β
j
T

(x0) − ĝ j
T,β+(x0)

∣

∣ ≤ η̂T,β+ .

Therefore, if ̂β
j
T = β ′ ∈ G2, it holds on AT,β+ ,

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

≤
(

∣

∣ĝ j
T,β ′(x0) − ĝ j

T,β+(x0)
∣

∣ + ∣

∣ĝ j
T,β+(x0) − (b jρb)(x0)

∣

∣

)

≤ η̂T,β+ + ∣

∣ĝ j
T,β+(x0) − (b jρb)(x0)

∣

∣

≤ sup
h∈HT,β+

{

ηT,β+
(

h/hT,β

)β−d/2 + ∣

∣gT,β+(x0, h) − EbgT,β+(x0, h)
∣

∣

+∣

∣EbgT,β+(x0, h) − (b jρb)(x0)
∣

∣

}

(8.28)≤ ηT,β+
(

1 + δT
) + sup

h∈HT,β+

∣

∣ZT,β+(h)
∣

∣ + Ld/(2β)hβ−d/2
T,β bβ,β (1 + γT 3)

(8.27)≤ sup
h∈HT,β′

∣

∣ZT,β+(h)
∣

∣+
(

Ld/(2β)ηT,β (1 + γT 6)+Ld/(2β)hβ−d/2
T,β bβ,β(1+γT 3)

)

.
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In view of the decomposition (8.21), this last line implies that

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣1
{

̂β
j
T = β ′ ∈ G2

}

1
{

AT,β+
}

≤ sup
h∈HT,β′

∣

∣ZT,β+(h)
∣

∣ + ψν (1 + γT 7). (8.30)

Thus, using (8.29) and (8.30),

ψ−2
ν Eb

[

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T ∈ G1 ∪ G2

}

]

≤
∑

β ′∈G1

Eb

[

(

1 + γT 3 + ψ−1
ν sup

h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣

)2
1

{

̂β
j
T = β ′} 1

{

AT,β ′
}

]

+
∑

β ′∈G1

Eb

[

ψ−2
ν

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T = β ′} 1

{

Ac
T,β ′

}

]

+
∑

β ′∈G2

Eb

[

(

1 + γT 7 + ψ−1
ν sup

h∈HT,β+

∣

∣ZT,β+(h)
∣

∣

)2
1

{

̂β
j
T = β ′} 1

{

AT,β+
}

]

+
∑

β ′∈G2

Eb

[

ψ−2
ν

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T = β ′}1

{

Ac
T,β+

}

]

=:
∑

β ′∈G1

(

p1(β ′) + p2(β ′)
) +

∑

β ′∈G2

(

p3(β ′) + p4(β ′)
)

, say.

The terms p1(·), . . . ,p4(·) are now considered separately. Note first that, for any
β ′ ∈ G1,

p1(β ′) ≤ Eb

[

(

1 + γT 3 + ψ−1
ν sup

h∈HT,β′

∣

∣ZT,β ′ (h)
∣

∣

)2
1

{

sup
h∈HT,β′

∣

∣ZT,β ′ (h)
∣

∣ >
√

sT (β ′)ψν

}

]

+
(

1 + γT 3 +
√

sT (β ′)ψ−1
ν

)2

Pb

(

̂β
j
T = β ′) . (8.31)

Since (8.26) holds for any β ′ ∈ G1, it can be shown by means of (8.22) and (8.23) that

sT (β ′)
ψν

≤ D−1
1 D4 exp

(

Cβ+
T

)

sT (β ′)
ηT,β ′

≤ D−1
1 D4 exp

(

Cβ+
T

)

dT (βT )

≤ D−1
1 D4 exp

(

Cβ+
T

)

√

βT

log T
=: AT .

The summand in (8.31) is bounded from above by the sum of the terms
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2 (1 + γT 3)
2 Pb

(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ >
√

sT (β ′)ψν

)

(8.14)≤ 2c′
1(1 + γT 3)

2 exp

(

−ψν(1 − γT )2

2 sT (β ′)

)

and

2ψ−2
ν Eb

[(

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣

)2

1

{

sup
h∈HT,β′

∣

∣ZT,β ′(h)
∣

∣ >
√

sT (β ′)ψν

}]

.

Part (c) of Lemma 6 entails that the latter term tends to zero, uniformly in β ′ ∈ G1.
Therefore,

p1(β ′) ≤ (

1 + γT 3 + √

AT
)2 Pb

(

̂β
j
T = β ′) + O(1) exp

(

− (1 − γT )2

2AT

)

+ oT (1).

Recall that the cardinality m of the grid G satisfies

m ≤ k−1
1 βT (log T )δ1 = k−1

1 (log T )δ1(log log T )δ. (8.32)

By construction, β+ ∈ G1, such that p3(β ′) is upper-bounded analogously. Conse-
quently,

∑

β ′∈G1

p1(β ′) +
∑

β ′∈G2

p3(β ′) ≤
(

1 + max
{

γT 3, γT 7
} + √

AT

)2
Pb

(

̂β
j
T ∈ G1 ∪ G2

)

+O(1)m exp

(

− (1 − γT )2

2AT

)

+ oT (1)

≤ 1 + oT (1).

For p2(·) and any β ′ ∈ G1, there exists some universal constant c0 such that

p2(β ′) ≤ ψ−2
ν Eb

[

∣

∣ĝ j
T,β ′(x0) − (b jρb)(x0)

∣

∣

2
1

{

Ac
T,β ′

}

]

≤ c0
(

Pb

(

Ac
T,β ′

))1/2
.

The regularity conditions on the bandwidth and the kernel used for defining ρ̂T (x0)
ensure that, for any β ′ ∈ (d/2, β] and some sufficiently small constant α > 0 fixed,

Pb

(

Ac
T,β ′

)

≤ 2 exp

(

−T
(

(1 − α)hdT δT ρ∗
T

)2

2‖Q‖2∞

)

= oT (1). (8.33)
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This implies that p2(β ′) is exponentially small, for any β ′ ∈ G1, such that
∑

β ′∈G1
p2(β ′) → 0. Analogously, it follows that

∑

β ′∈G2
p4(β ′) → 0, completing

finally the verification of (8.25).

(II) It is proven now that

lim
T→∞ sup

ν∈BT

R−
T,ν = 0. (8.34)

Let β ′ ∈ GT , and assume that the event AT,β ′ holds. In view of the definition of the
stochastic error ZT,β ′ in (8.13) and taking into account Lemma 5, it holds, whenever
ρb ∈ ΣT (β, L),

∣

∣ĝ j
T,β ′(x0) − (b jρb)(x0)

∣

∣ = ∣

∣ĝ j
T,β ′

(

x0,̂hT,β ′
) − (b jρb)(x0)

∣

∣

≤ sup
h∈HT,β′

{

∣

∣ZT,β ′(h)
∣

∣ + Lh
˜β−d/2bβ,β ′

}

.

Then, using the definition of bT,β ′ in (8.20),

∑

β ′∈G,β ′<β−
sup

ρb∈�T (β,L)

ψ−2
ν Eb

[

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T = β ′} 1

{

AT,β ′
}

]

≤
∑

β ′∈G,β ′<β−
sup

ρb∈�T (β,L)

ψ−2
ν Eb

[

(

bT,β ′ (1 + δT ) + sup
h∈HT,β′

∣

∣ZT,β ′ (h)
∣

∣

)2
1

{

̂β
j
T = β ′}

]

≤ 2(1 + δT )2
∑

β ′∈G,β ′<β−
sup

ρb∈�T (β,L)

ψ−2
ν b2T,β ′ Pb

(

̂β
j
T = β ′)

+2
∑

β ′∈G,β ′<β−
sup

ρb∈�T (β,L)

ψ−2
ν Eb

[

(

sup
h∈HT,β′

∣

∣ZT,β ′ (h)
∣

∣

)2
1

{

̂β
j
T = β ′}

]

≤ 2
∑

β ′∈G,β ′<β−
sup

ρb∈�T (β,L)

ψ−2
ν

(

b2T,β ′
(

1 + δT
)2 + τ 2T (β ′)

)

Pb

(

̂β
j
T = β ′)

+2
∑

β ′∈G,β ′<β−
sup

ρb∈�T (β,L)

ψ−2
ν Eb

[

(

sup
h∈HT,β′

∣

∣ZT,β ′ (h)
∣

∣

)2
1

{

sup
h∈HT,β′

∣

∣ZT,β ′ (h)
∣

∣ > τT (β ′)
}

]

=: g1(ν) + g2(ν).

The term g1(ν) is bounded from above by exploiting the fact that the probability to
underestimate the value of β by ̂β

j
T substantially is small, whenever ρb ∈ �T (β, L).

Recall that m is the cardinality of the grid G.
Lemma 8 (Probability of undershooting) Let β ∈ [β∗,∞), β ′ ∈ G, β ′ < β−, L ∈
[

L∗, L∗]

, and ν = (β, L). Then there exists some constant K , depending only on
β∗, L∗, L∗, d and σ such that, for any b ∈ ˜Π(c1, c2, σ ),

sup
ρb∈ΣT (β,L)

Pb

(

̂β
j
T = β ′) ≤ Km

(

T−d/(2β ′) + o(T−1)
)

. (8.35)
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Proof The proof substantially relies on applications of Lemma 2. Since the basic
arguments are similar to those used in the proof of Lemma 4.8 in Butucea [3] and the
proof of Lemma 5 in Klemelä and Tsybakov [11], we do not include the proof but
refer to Strauch [21]. ��
Let β ∈ [β∗, βT ], β ′ ∈ G, L ∈ [

L∗, L∗]

, ν = (β, L). By means of Lemma 8 and
using relation (8.24) in Lemma 7, we obtain

g1(ν) = 2
∑

β ′∈G,β ′<β−
sup

ρb∈ΣT (β,L)

ψ−2
ν

(

b2T,β ′
(

1 + δT
)2 + τ 2T (β ′)

)

Pb

(

̂β
j
T = β ′)

≤ 2D5Km
∑

β ′∈G,β ′<β−
log T T−d/(2β)+d/(2β ′) (

T−d/(2β ′) + o(T−1)
)

.

In view of the upper bound on the cardinalitym of the grid G = GT in (8.32), it follows
that limT→∞ supν∈BT

g1(ν) = 0, and the first assertion in Lemma 6(c) immediately
gives limT→∞ supν∈BT

g2(ν) = 0. Note finally that, for any β ′ ∈ G,

sup
ρb∈ΣT (β,L)

ψ−2
ν Eb

[

∣

∣ĝ j
T,β ′(x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T = β ′} 1

{

Ac
T,β ′

}

]

≤ sup
ρb∈ΣT (β,L)

ψ−2
ν

√

Eb

[

∣

∣ĝ j
T,β ′(x0) − (b jρb)(x0)

∣

∣

4
]

Pb

(

Ac
T,β ′

)

�
√

Pb

(

Ac
T,β ′

)

.

Consequently, taking into account (8.33), it holds, independent both of β and β ′,
∑

β ′∈G,β ′<β−
sup

ρb∈ΣT (β,L)

ψ−2
ν Eb

[

∣

∣g̃ j
T (x0) − (b jρb)(x0)

∣

∣

2
1

{

̂β
j
T = β ′} 1

{

Ac
T,β ′

}

]

= oT (1),

thus completing the proof of (8.34). ��
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