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Abstract In this paper we mingle the Gaussian free field, the Schramm–Loewner
evolution (SLE) and the KPZ relation in a natural way, shedding new light on all of
them. In particular, we describe the quantum fractal behaviour of the level lines and the
SLEκ flow lines of the Gaussian free field by determining their quantum Minkowski
dimensions. As a corollary we deduce that the usual KPZ relation is not satisfied.
In order to determine the fractal dimensions, we have to make a technical detour:
by a careful study of a certain diffusion process, we provide exact estimates of the
exponential moments of winding of chordal SLE curves conditioned to pass nearby a
fixed point. This extends previous results on winding of SLE curves by Schramm.
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1 Introduction

This paper combines in a way three beautiful mathematical concepts, all having three-
letter abbreviations: the Gaussian free field (GFF), the Schramm–Loewner evolution
(SLE) and the KPZ relation.

The background motivation comes from statistical physics. Statistical physics
models on Euclidean lattices are often difficult to study. Even when for the self-
avoiding walk on the hexagonal lattice we know the connective constant [10], we
are for example only beginning to gather any rigorous results at all on the square
lattice. Also, we still hope for proofs of critical percolation exponents on the same
lattice.

However, in the eighties three physicists Knizhnik, Polyakov and Zamolodchikov
[21] came upwith a far-reaching strategy for studying thesemodels. The proposed plan
was to study them in a randomenvironment, or inwhat they called theQuantumGravity
regime, and then translate the results back to the Euclidean setting. This was a fruitful
idea as the study of many models becomes easier in these random environments, and
evenmore—the so called KPZ relation gives an exact translation for critical exponents
back to the Euclidean case [1,11,12].

Mathematically, however, the understanding of the KPZ relation is still scarce.
Mainly, the problem is that in higher than one dimension, we do not yet have a suitable
continuum model for the random environment that would allow understanding of the
KPZ relation. Even though random planar maps have been shown to converge to a
candidate random metric space [27,28], we are still missing a conformal structure
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KPZ relation does not hold for the level lines 467

on these spaces, thus making it hard to relate models on these spaces with our usual
models on Euclidean lattices.

Still, recently there has been progress in understanding the KPZ relation. In one
dimension, we have a quite good understanding [7]. For two dimensions, a more
mundane version of the random environment has helped us. Namely, whereas ideally
we would like to establish the KPZ relation in a random metric space with a certain
topology, we can already givemeaning to the KPZ relationwhenwemodel the random
environment by a random measure on a two-dimensional domain. This measure is
called the Liouville measure [15,17].

In this context of the Liouville measure the KPZ relation can be shown to rigor-
ously relate Euclidean and Quantum fractal dimensions [15,33]. There is, however,
a little catch—all the proofs only work for deterministic sets and sets independent
of the random environment. However, in at least a few cases the statistical physics
models are coupled with the random environment, as for example in the Ising model.
Though expected, it is not a priori clear whether our sets of interest, as for example
the interface boundaries, will become independent in the continuum limit. Hence it is
also interesting to ask to which extent the KPZ relation holds for sets depending on
the measure.

In this article, we treat the case of most natural sets coupled with the Liouville
measure—the SLEκ curves corresponding to interface boundaries in statistical physics
models. One way of coupling the SLE lines with the GFF and the Liouville measure is
using a conformal welding of two Liouville quantum surfaces [16,42]. This ought to
correspond to gluing random planar maps in the discrete setting.We already know that
in this case one recovers a KPZ relation, if instead of volume measures one considers
boundary measures on the SLE [16,42]. In what follows, we show that on the other
hand the usual KPZ relation does not hold for the SLEκ with 0 < κ < 8 coupled with
the GFF as level lines (κ = 4) or flow lines of the field, by determining exactly the
quantum fractal behaviour of the SLE curves in this coupling. Notice that this implies
that the KPZ relation is of very different character than the Kaufman’s theorem on
dimension doubling of the Brownian motion. It can also been seen as evidence that,
indeed, in the continuum limit the interface boundaries have to become independent
of the random environment.

On the way towards the final proof, we have to find new precise estimates of the
exponential moments of winding of chordal SLE curves around points conditioned
to be close to the curve. This goes beyond Schramm’s analysis in his seminal paper
introducing the SLE curves [37] and could be of independent interest.

Outline and main results

We start the paper by giving a concise description of the key constructions of the paper:
the GFF, the SLE, the Liouville measure. We also discuss the couplings of the level
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and flow line couplings of the GFF and the SLE and give them precise mathematical
meanings. Then we discuss at more length the different versions of the KPZ relation in
the literature [15,33] and propose yet a third one. Indeed, whereas we set off to prove
our claim for the almost sure Hausdorff version, an intermediate step of determining
whatwe call the expected quantumMinkowski dimension of these lines becameuseful.
We also discuss how one can come up with easier, but less natural counterexamples
for the KPZ relation.

Next, in Sect. 3 we study the introduced notion of the expected Minkowski dimen-
sion. We prove the relevant KPZ relation and show that, as expected, the expected
quantum Minkowski dimension is always larger than the quantum Hausdorff dimen-
sion introduced in [33].

After these preliminaries, we are ready to attack the zero level lines in Sect. 4. There
is a simple proof, a matter of only putting our intuition on a rigorous grounding: the
fact that the GFF is forced to be low near the zero level line, means that the Liouville
measure is small, hence it is easier to cover the zero level line and both the expected
quantum Minkowski and quantum Hausdorff dimensions are smaller than predicted
by the KPZ relation.

Handling SLEκ flow lines for 0 < κ < 8 is considerably harder and needs some
technical work on the SLE curves. In Sect. 5 we derive up to multiplicative constants
the exponential moments of the winding of the chordal SLE curves, conditioned to
arrive close at points. In our context the winding is defined by the argument of the
derivative of the uniformizing map w(z) := limt→τ arg f ′

t (z). Here τ is the first
time z is cut from the infinity (see Sect. 5 for more details). We obtain the following
theorem:

Theorem 1.1 Let CR0 be the conformal radius of a fixed point z0 in the upper half
plane. Fix 0 < κ < 8. Denote by Hτ the SLE slit domain component containing z0.
Then, for ε > 0 sufficiently small, conditioned on CR(z0, Hτ ) ∈ [ε,Cε] with C > 1,
the exponential moments of the winding w(z0) around the point z0 are given by

E

(
eλw(z0)|CR(z0, Hτ ) ∈ [ε,Cε]

)
� ε−λ2κ/8

where the implied constants depend on κ, λ and for fixed κ can be chosen uniform for
|λ| < λ0 for any choice of λ0 > 0.

We do this by using a diffusion process related to SLE already in previous papers
[6,24,40]. We need, however, to study this process in finer detail, and provide good
control of the eigenvalues and eigenfunctions of the respective generator. The whole
section is a bit technical, but both the result and methods could be of independent
interest.

Thereafter, in Sect. 6 we find the expected quantum Minkowski dimension of the
SLEκ flow lines by introducing a non-standard Whitney decomposition that is based
on the conformal radius instead of the Euclidean radius. This allows us to work off
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the curve, where things get singular, and to use the results on winding obtained. The
final result, containing also the previous work on zero level lines, can be stated as
follows:

Theorem 1.2 Consider the Liouville measure with 0 ≤ γ < 2 in the unit disc and let
0 < κ < 8. Then the expected quantum Minkowski dimension of the SLEκ flow lines
is given by qM,E < 1 satisfying

dM = (2 + γ 2/2)qM,E − γ 2(1 − κ/4)2q2M,E/2

where dM is the Minkowski dimension of the respective SLE curve.

As the usual KPZ relation is given by dM = (2+ γ 2/2)qM,E − γ 2q2M,E/2, this in
particular means that for 0 < κ < 8 the KPZ relation is not satisfied for the expected
Minkowski dimension of the SLEκ in forward coupling with the GFF. Notice that in
the limits κ ↓ 0, κ ↑ 8 we regain the KPZ relation. Using the fact that the quantum
Hausdorff dimension is dominated by the expected quantum Minkowski dimension,
we also deduce the following corollary

Corollary 1.1 Consider the Liouville measure with 0 ≤ γ < 2 in the unit disc and
let 0 < κ < 8. Then almost surely the quantum Hausdorff dimension for the flow lines
SLEκ is below the dimension predicted by KPZ relation and hence the KPZ relation
is not satisfied in the almost sure Hausdorff version.

This incompatibility with the usual KPZ relation is illustrated by the following
figure, where we fixed γ = √

2, the dotted line represents the usual KPZ relation, and
the solid line the actual quadratic relation satisfiedby the expected quantumMinkowski
dimension.

After having proved the main theorems of the paper, we return to a less rigorous
level and finish the article with a section on some speculations and open questions.
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Notations

Multiplicative constants arriving in our calculations are of little importance and hence
we use the big-O and the � notation. We write f � g to mean that f (x) ≤ Mg(x)
for all x in the range of definition and some absolute constant M . Similarly, we use
the notation g � f , in cases where simultaneously g � f and f � g. We hope
this makes the calculations more readable. The dependency of the implied constants
should be clear from the context.

2 Preliminaries

We will next introduce shortly the mathematical setting of our problem and discuss in
a bit more length different possible formulations of the KPZ relation.

2.1 GFF and SLE and their couplings

GFF

The Gaussian free field (GFF) is a model for random surfaces (though it is not math-
ematically a surface itself) and represents the Euclidean bosonic massless field in
quantum field theories [41]. It can also be conceptualised as a Brownian Motion with
2 time dimensions. Finally, due to its roughness, it is not defined point-wise and hence
the underlying mathematical setting is that of random distributions.

We will give a possible definition of the zero boundary GFF in the upper half plane,
but for a thorough treatment refer to [9,41] and for a shorter introduction to [17]. To
define the GFF, denote by C0(H) the set of smooth functions compactly supported
inside H. Let H (H) be its closure with respect to the Dirichlet inner product and
H (H)−1 the Hilbert space dual.

Definition 2.1 (Zero boundary Gaussian free field) The zero boundary GFF h on the
upper half plane H can be defined as the zero-mean Gaussian process on the space
H (H)−1 with the covariance kernel given by theGreen’s functionGH(x, y)with zero
boundary condition. In otherwords, to each f ∈ H (H)−1 theGFFattaches aGaussian
h( f ) such that E(h( f )) = 0 and E(h( f )h(g)) = 1

2π

∫
H×H

f (x)g(y)GH(x, y)dxdy.

From the conformal invariance of theGreen’s function, we can see that theGaussian
free field is conformally invariant, if seen as a “height function” [41]. Hence in fact
this definition provides one for any simply-connected connected domain with Jordan
boundary of the plane. In particular wewill also use theGFF in the unit disc. Also, here
we also work with the GFF with fixed boundary conditions—this just means we have
a zero-boundary GFF plus an harmonic extension of the fixed boundary conditions.
In all cases of this paper the harmonic extension can be seen to exist.
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SLE

Schramm–Loewner evolution (SLE) is a family of random curves, that were invented
to describe the interfaces of models in statistical physics [37]. They are conformally
invariant processes that satisfy the domain Markov property. For a thorough introduc-
tion we refer to either [22,44].

Whereas one can talk of chordal, radial andwhole-plane SLE-s,we here concentrate
only on the chordal version.Wedefine it in the upper half-planeH, but due to conformal
invariance this of course gives the definition for any simply connected domain. SLE-s
are defined via a family of conformal maps, and these conformal maps themselves are
defined using the so called Loewner differential equation.

Definition 2.2 (Loewner differential equation) Let ζ(t) be a continuous real-valued
function. Then for any z ∈ H define g0(z) = z and

∂t gt (z) = 2

gt (z) − ζ(t)

defined up to τ(z) = supt≥0 min|gt (z) − ζ(t)| > 0.

If we write Kt = {z : τ(z) ≤ t} then the equation above defines a family of
conformal maps from the decreasing domains Ht = H\Kt back to the upper half
plane. The family Kt is called the Loewner chain. The randomness part enters by
defining the driving function ζ(t) to be a multiple of the standard Brownian motion.

Definition 2.3 (Chordal SLE) Let Bt denote a standard Brownian motion. Then the
Loewner chain given by the driving function ζ(t) = κBt with κ ≥ 0 is called an
SLEκ .

In this paper, we want to normalize the map such that the tip of the curve maps to
zero. This can be done by just setting

ft (z) = gt (z) − ζ(t)

It has been shown that the SLE chains are almost surely generated by a curve [36].
We will be interested in the quantum fractal dimension of these curves, when coupled
with the GFF. We use the known fact that the Hausdorff dimension of SLEκ curve for
κ ≤ 8 is 1 + κ/8, first proved in its entirety in [6].

GFF and SLE couplings

TheGaussian free field andSchramm–Loewner evolutions are coupled in twobeautiful
ways [9,42]. One way is to see SLE curves as interfaces for glueing together two
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Liouville measures [42]. In this paper we work with the other way, which gives SLE
curves a geometric meaning, when interpreting GFF as a random surface [9,42]. Set

λ = π√
κ

Firstly, SLE4 can be seen as, or maybe rather forced to be the zero level line of the
GFF [39]:

Theorem 2.1 (Zero level lines of the GFF) Let η be a chordal SLE4 curve inH and h
the GFF in H with boundary conditions −λ, λ on the negative and positive real axis
respectively. Then there is a coupling (h, η) such that

– The marginal of h can be obtained by sampling the SLE up to some finite stopping
time T , and then sampling an independent GFF in the slit domain with boundary
conditions set to −λ on negative real axis and to the left of the SLE, and λ to the
right of the SLE and on the positive real axis

– η is a measurable with respect to h.

Remark 2.1 It is shown in [39] that the GFF of the slit domain is well-defined as a
distribution on the whole of H. This will be important for us. Also notice that the
harmonic correction term introduced by boundary conditions is not well-defined on
SLE. However, it can be set to zero—see the discussion following the statement on
theorem 1.1. in [42]. Notice that this harmonic correction coming from the boundary
conditions is uniformly bounded. Finally, it is not hard to show that the coupling
theorem also holds when we sample the whole SLE curve [39].

Remark 2.2 The intuitive name “level line” in this context is well justified by the fact
that the level lines of the discrete Gaussian free field indeed converge to the SLE4

coupled with the field in the sense above [38].

Secondly, SLEκ for κ > 0 can be seen as flow lines of the GFF [9,29,42]. Whereas
intuitively level lines are clear, flow lines are a bit harder to interpret. Nice pictures
with nice explanations can be found in [29], but also Figs. 1 and 2 of the paper should
provide some insight. In short and without rigour, for flow lines at any point, the
angular derivative is given by a multiple of the field height.

Theorem 2.2 (Flow lines of the GFF) For 0 ≤ κ < 4, let ηκ be a chordal SLEκ curve
inH and h the GFF inH with boundary conditions−λ, λ on the negative and positive
real axis respectively. Then there is a coupling (h, ηκ) such that

– The marginal of h can be obtained by
– Sampling the SLE ηκ up to some finite stopping time T
– Then sampling an independent GFF in the slit domain with boundary condi-
tions as above: −λ on negative real axis and to the left of the SLE, and λ to
the right of the SLE and on the positive real axis
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Fig. 1 On the left, we see the flow line coupling of the SLE8/3 and on the right the zero level line coupling.
The colours indicate the height of the GFF. Notice that whereas the zero level line—as by definition it
should—really moves along the boundary of positive and negative heights, SLE8/3 also keeps close to this
boundary

Fig. 2 On the left the flow line corresponding to SLE0.5 is represented. Notice that it does not really hold
close to the level line anymore, but shoots quite straight from one end-point to the other. On the right we
have the SLE7.5 flow line. One can see that it starts filling the space, not being too picky about which points
to step on

– And finally, subtracting χ arg f ′
T where χ = 2/

√
κ − √

κ/2 and fT is the
normalized SLE map

– η is a measurable with respect to h.

Again, there are some remarks to be made. First, this coupling reduces to the level
line coupling for κ = 4 as then χ = 0. As above, GFF in the slit domain can be
extended to the whole plane, and the harmonic correction term (this time possibly
unbounded!) can be still set to zero on the curve. Second, arg f ′

T (z) = Im log f ′
T (z)

measures the winding of the SLE curve with respect to the point z. We require the
argument to be continuous in the slit domain and tend to 0 at infinity. The winding is
discussed in Sect. 5 of the paper, but we also refer to [29].

Also, in fact κ < 4 is no real restriction, everything here can also be stated for
8 > κ > 4. One needs to just take extra care as the SLE curve is no longer simple:
first, thewinding for anypoint needs to be calculated just before the point gets separated
from infinity by the curve i.e. as a limit limt↑T ′ arg f ′

t (z) with T ′ = T ∧ τ(z), where
τ(z) is the first time z is separated from the infinity by the SLE curve. Second, a
separate and independent GFF needs to be defined in each isolated domain (they all
extend similarly to the whole ofH) and for the boundary conditions one needs to take
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into account in which direction the loops were closed. For details and an extension to
κ > 8 and more generally to SLEκ,ρ processes, see [42] or [29].

Finally, it is not hard to show that the coupling theorem also holds when we sample
the whole SLE curve [39].

2.2 Liouville measure

Liouville measure should be the right model for a random measure underlying the
study of statistical physics models in their “quantum gravity” form. It is one step short
of the actual aim—the Liouville metric.

Mathematically, the Liouville measure ought to be the exponential of the Gaussian
free field. However, as GFF is formally a distribution, one needs to define the Liouville
measure using some kind of regularization process. There are many ways of achieving
this, the roots going back to the beautiful work of Kahane [20] on Gaussianmultiplica-
tive chaos. Different ways of defining the Liouville measure and their equivalence are
discussed in greater detail in [34].

In this article we use the circle-averaging regularization as used in Duplantier and
Sheffield [15]. This suits our needswell as it is local andworkswell under conditioning
as explained below.

Liouville measure

In [15] the following process is used to define the Liouville measure in any sufficiently
nice domain D:

– First, regularize the field by taking circle averages around each point, i.e. set

hδ(z) = h(ρz
δn

)

where by ρz
δn

(z) ∈ H
−1 we denote the distribution giving unit mass to the circle

of radius δn around the point z.
– Now let 0 < γ < 2 and define the δ−approximate Liouville measures as

dμδ(z) = δγ 2/2eγ hδ(z)dz

Remark 2.3 The regularized GFF corresponds to a Gaussian field with the covariance
kernel given by

Gδ(x, y) = log
1

δ ∨ |x − y| + G̃δ(x, y)

Here G̃δ(x, y) is the harmonic extension to the domainof the the function− log 1
δ∨|x−y|

on boundary. See [15] for details.
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Then the following theorem can be then taken as definition of the Liouville measure
[15]:

Theorem 2.3 Let D be a domain. For 0 ≤ γ < 2, along powers of two in the interior
of D, then almost surely δ−approximate Liouville measures weakly converge to a
non-degenerate random measure μγ , called the Liouville measure. This measure is
measurable w.r.t zero-boundary GFF h.

The renormalization term δγ 2/2 is there to compensate for the growing variance and
in this case uniform over the domain. As a result the field is lower near the boundary
as the Green’s function giving the covariance structure is lower near the boundary.
This is illustrated by the fact that Eμδ(z) = CR(z, D)γ

2/2, where CR(z, D) denotes
the conformal radius at the point z (which is though rigorously at distance at least δ

from the boundary).
In the Gaussian multiplicative chaos (GMC) approach one usually renormalizes by

setting

dMδ(z) = eγ hδ(z)−γ 2/2E(hδ(z))dz

i.e. directly by the variance. This setting ismore comfortable for amuchwider selection
of regularization procedures, as you do not need to know explicitly the variance on
each regularization step [35]. However, for us some care is needed when we want to
use this type of renormalization.

Namely, we want to couple the Liouville measure with the SLE in a similar way
to the coupling of the GFF and the SLE. Recall that in order to sample a GFF in this
coupling, we start by first sampling an SLE, then choosing an independent GFF in the
slit domain and adding some harmonic correction terms. In the case of the Liouville
measurewewould like to obtain theLiouvillemeasure on thewhole domain as follows:
we sample the SLE, then we define the GFF with correct boundary conditions in the
slit domain and construct the Liouville measure in the slit domain.

Thus, in other words, when we depart from the Liouville measure of the whole
domain and then condition on say a level line, we would want to see the conditioned
measure to be the Liouville measure in the slit domain.

“eγ hD |SLE (d)∼ eγ hDSLE ”

When one puts in the δ-regularized version, one can see that for the definition above,
Theorem 2.3, everything works well and we indeed obtain the definition of the Liou-
ville measure in the slit domain. However, for the GMC approach the renormalization
term −γ 2/2E(hδ(z)) in the exponent does not pass under the conditioning. Thus one
has to keep the renormalization term of the whole domain and does not directly obtain
the Chaos measure of the slit domain.
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Hence in this article we use the Liouville measure regularized as in the definition
above. However, we shall however find it useful to change the renormalization for
some calculations, in order to use some machinery developed in that context [20,35].

2.2.1 The 2D KPZ relations for the Liouville measure

We now introduce two canonical versions for the KPZ relation in 2D quantum gravity,
and propose yet another one. Then we shortly compare all three. The difference is only
in the nature of the fractal dimension used: either using a box-counting, Hausdorff or
Minkowski version of the dimension. Throughout we always (more or less silently)
assume that we are dealing with sets such that the corresponding fractal dimensions
exist. Whereas here all the dimensions are measure-based, we also remark that in [7] a
1D metric version of KPZ relation was proved in the context of dyadic multiplicative
cascades.

Expected box-counting version

The first rigorous version of the KPZ relation was given in the work of Duplantier–
Sheffield [15], to which an interested reader can find a well-readable introduction in
[17]. Here the fractal dimensions for a fixed set A on the Euclidean and on the quantum
side are defined as follows (assuming they exist in the first place):

– Euclidean side:

x(A) = lim
r↓0

logP(Br (z) ∩ A �= ∅)

log r

where we sample according the the uniform measure of the domain.
– Quantum side:

Δ(A) = lim
r↓0

logEμh(B
q
r (z) ∩ A �= ∅)

log r

Here the quantum ball Bq
r (z) of radius r is defined as the largest Euclidean ball

around z for which the Liouville measure is not larger than r .

In other words, to define the euclidean exponent we calculate the probability that a
ball of radius r , around a point sampled according to the Lebesgue measure of the
domain, touches the set A. Similarly, for the quantum exponent we first calculate the
probability that a quantum ball around a point sampled according to an instance of
the Liouville measure touches the set A, then average over the random measures and
finally calculate the exponent.

With these notions the KPZ relation holds:
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Theorem 2.4 (Duplantier and Sheffield) Let A be a deterministic (or field-indepen-
dent) compact subset in the interior of some domain such that its Euclidean scaling
exponent x(A) exists. Letμγ be the Liouville measure on this domain with 0 ≤ γ < 2.
Then we have that:

– The quantum scaling exponent 0 ≤ Δ(A) ≤ 1 exists and
– Satisfies the so called KPZ formula:

x = (2 − γ 2/2)Δ + γ 2Δ2/2

Remark 2.4 Here and later, we define the Euclidean using the Euclidean “metric”. In
particular, this way x = 2Δ when we let γ ↓ 0 as the quantum dimension is measure-
based.We opt for this convention, as we will often need to refer to results on Euclidean
dimensions of the SLE curves and we feel it would be confusing to translate them into
the measure-based context.

Almost sure Hausdorff version

Soon thereafter, Rhodes and Vargas [33] published a version using slightly different
notion for the fractal dimension. The proof of the respective KPZ relation can be made
quite short [3]. As a basis for their definition of the quantum dimension, they use a
measure-based Hausdorff dimension.

– On the Euclidean side we use the usual Hausdorff dimension. I.e. define the Haus-
dorff content

Hδ(A, r) = inf

{
k∑

i=1

r δ
i : A ⊂ ∪k

1Bi (ri ), ri ≤ r

}

Then the Hausdorff dimension is defined as

dH (A) = inf
δ

{
lim
r↓0 Hδ(A, r) < ∞

}

– For the quantum side, we define similarly the quantum Hausdorff content to be

HQ
δ (A, r) = inf

{
k∑

i=1

μ(Bi (ri ))
δ : A ⊂ ∪k

1Bi (ri ), ri ≤ r

}

The quantum Hausdorff dimension is then given by

qH (A) = inf
δ

{
lim
r↓0 Hδ(A, r) < ∞

}

Then the following KPZ relation holds.
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Theorem 2.5 (Rhodes and Vargas) Let A be a deterministic (or field-independent)
compact subset in the interior of some domain. Let μγ be the Liouville measure
on this domain with 0 ≤ γ < 2. Then, almost surely, the following KPZ formula
holds:

dH = (2 + γ 2/2)qqH − γ 2q2H/2

where by dH and qH we denote respectively the usual and the quantum Hausdorff
dimensions of the set A.

Expected Minkowski version

To make the literature even more colourful, we introduce yet a third version of the
dimension which also satisfies the KPZ relation. We use a version of the upper
Minkowski dimension, which we will henceforth call just the Minkowski dimension.

There aremanyways to define theMinkowski dimension, for us themost convenient
version uses only fixed dyadic tiling [8]. We recall that a n-th level dyadic covering of
the plane can be defined as the collection of all squares with vertex coordinates of the
form ( k

2n , l
2n ), ( k+1

2n , l
2n ), ( k

2n , l+1
2n ), ( k+1

2n , l+1
2n ) for k, l ∈ Z. We restrict this covering

to a domain by taking the subset of all these squares intersecting the domain.
Then a dyadic 2−n Minkowski content of A defined by:

Mδ(A, 2−n) =
∑
Si∈Sn

1(Si ∩ A �= ∅)l(Si )
δ

whereSn is the n-th level dyadic covering of the domain and l(Si ) the side-length the
square Si . Then we define the Minkowski dimension as

dM (A) = inf
δ

{
lim sup
n↑∞

Mδ(A, 2−n) < ∞
}

The corresponding quantum version is given by first defining the quantum dyadic
2−n Minkowski content:

MQ
δ (A, 2−n) =

∑
Si∈Sn

1(Si ∩ A �= ∅)μ(Si )
δ

and then setting

qM (A) = inf
δ

{
lim sup

n↑0
MQ

δ (A, 2−n) < ∞
}

It is clear that the definitions work nicely also for random sets, in which case the
Minkowski contents will just be random variables.
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Moreover, it will also make sense to talk about the expected quantum Minkowski
dimension, where in the definition of theMinkowski dimension, we just use the expec-
tation of the dyadic Minkowski content w.r.t the measure. So, for deterministic sets
we set for example:

qM,E (A) = inf
δ

{
lim sup
n↑∞

Eh

(
MQ

δ (A, 2−n)
)

< ∞
}

Notice that we take the expectation of each dyadic 2−n Minkowski before the
lim sup. Whereas this is less natural, it allows us to work only with first moment
estimates and nevertheless provide upper bounds for the quantum Hausdorff dimen-
sion. Also, it is actually more similar to the order of expectations in the expected
box-counting version from [15] introduced above.

In the next section, we will prove the analogous KPZ relation for the expected
quantum Minkowski dimension, the proof of which is shorter than for the other two
notions:

Proposition 2.1 Let A be a fixed (or field-independent) compact subset in the interior
of some domain. Let μγ be the Liouville measure on this domain with 0 ≤ γ < 2.
Then we have the following KPZ formula:

dM = (2 + γ 2/2)qM,E − γ 2q2M,E/2

where by dM and qM,E we denote respectively the usual (upper) and the expected
quantum Minkowski dimensions of the set A.

Relations between the notions

These three different notions of the quantum dimension and hence the KPZ relation
all have different benefits:

– Box counting version: it provides a notion of quantum balls having more physical
content and is probably easiest to link to discretization of the field, and hence
discrete models.

– Almost sure Hausdorff version: whereas the box counting version is averaged over
the field, here we have an almost sure relation; it also has the usual advantages and
specificities with respect to theMinkowski dimension. However, it proved difficult
to use for field-dependent sets.

– Expected Minkowski: this is easiest to work with for both dependent and indepen-
dent sets; onemight say it is less natural, however it certainly has enough substance
to give useful bounds on the Hausdorff dimension.

In the next section, we will also prove two relations between the expected quantum
Minkowski and quantum Hausdorff dimensions.
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Firstly, we show that for deterministic and measure-independent sets we have the
following relation: if the Euclidean Minkowski and Hausdorff dimensions of a set
agree, then also its expected Minkowski dimension and Hausdorff dimension agree
on the quantum side. This shows that we are not losing much in general by using the
Minkowski version.

Secondly, we show that on the quantum side the quantum Hausdorff dimension is
almost surely smaller than the expected Minkowski dimension, even if the measured
set depends on the field. This will allow us to prove results about the almost sure
Hausdorff version, by fist proving them for the expected Minkowski dimension.

KPZ relation for dependent sets

Notice that in all three theorems we require the sets in question to be either fixed or
independent of the underlying measure. Hence it is natural to ask, to what extent the
KPZ relation remains true for sets that depend on the measure. It comes out that there
is no uniform theorem as for example Kaufman’s theorem for dimension doubling in
Brownian Motion.

In fact, given that the KPZ relation stems from a multifractal behaviour [34], it
is quite intuitive that for example fixed level sets should help us construct already
a counterexample. The problem is that the precise counterexamples depend on the
“sensitivity” of the definition and the intuitively clearest versions will not always
work:

For almost sure Hausdorff dimension finding a counterexample is relatively easy.
One just needs to look at γ -thick points [2,19,20], i.e. points such that limr↓0 hε (z)

log 1/r =
γ . Their Hausdorff dimension is smaller than two, but they are of full measure on the
quantum side, violating the usual KPZ relation.

For expected box-counting measure and the Minkowski dimension finding a coun-
terexample is somewhat harder, as they are less sensitive. For example γ -thick points,
being dense, would have trivial dimensions on both sides. To produce a simple
counterexample one needs to go one step further. We can still rely on the height
of the field to produce a fractal as in [19], but we need to intersect this field-
dependent fractal with a deterministic fractal to arrive at the “sensitivity” level of these
definitions.

Now these previous examples might look unnatural—in some sense we were really
trying to cook up counterexamples. Thus it would be interesting to find counterex-
amples where the measure-dependent sets are not a priori chosen to violate KPZ.
This was exactly the aim of this paper: we look at the zero level lines and SLEκ

flow lines given by the coupling of the GFF and the SLE and show that the expected
Minkowski and almost sure Hausdorff versions of the KPZ relation do not hold for
these sets. Thus, even for rather natural couplings the KPZ relation cannot be taken as
given.
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3 Expected Minkowski dimension: KPZ formula and relation to almost sure
Hausdorff dimension

3.1 KPZ formula for expected Minkowski dimension

In this subsection we will prove the following proposition:

Proposition 3.1 (KPZ formula for expected Minkowski dimension) Let A be a fixed
(or field-independent) compact subset in the interior of some domain. Let μγ be the
Liouville measure on this domain with 0 ≤ γ < 2. Then we have the following KPZ
formula:

dM = (2 + γ 2/2)qM,E − γ 2q2M,E/2

where by dM and qM,E we denote respectively the usual (upper) and the expected
quantum Minkowski dimensions.

The proof is a simple consequence of the multifractal properties of Euclidean balls
under the Liouville measure. We state this as a lemma. For the proof and slightly
generalized versions, we refer to one of the many newer works on multiplicative
chaos, including [33,35], but also to [15] where it is approached slightly differently.

Lemma 3.1 Consider the Liouville measure μ = μγ for 0 ≤ γ < 2. Then for any
q ∈ [0, 1] and any fixed ball B(r) ⊂ D of radius r with 0 < r < ε at least at distance
ε from the boundary, we have

Eμ(B(r))q � r (2+γ 2/2)q−γ 2q2/2

where the implied constant depends on q.

Remark 3.1 If the distance of the ball is comparable to the boundary, one needs to be
more careful as the exact scaling holds for the covariance kernel given by log+ 1

|x−y|
and the correction term of the Green’s function starts playing a greater role near the
boundary.

Proof (Proof of proposition)

Upper bound

Let δ > 0, 1 ≥ q > 0 be such that dM + δ = (2 + γ 2/2)q − γ 2q2/2. We want to
show that lim supn EM

Q
q (E, 2−n) < ∞. As the Minkowski dimension of A is dM ,

then for sufficiently large n

MdM+δ(A, 2−n) � 2−nδ/2
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Thus, for the same covering we get using the scaling relation of 3.1, that

E(MQ
q (A, 2−n)) � 2−nδ/2

Thus qM,E ≥ q. Now letting δ ↓ 0, we get the upper bound.

Lower bound

The lower bound follows similarly. As dM is the Minkowski dimension for A, then
for any δ > 0, we have infinitely many n ∈ N such that MdM−δ(A, 2−n) > R for any
R > 0. Now consider 1 ≥ q > 0 such that dM − δ = (2 + γ 2/2)q − γ 2q2/2. Then
for all the same indexes n, we have EMQ

q (A, 2−n) > R and the lower bound follows.
��

Remark 3.2 Notice that for the upper bound we could use an “almost sure” version
of the Minkowski dimension. Indeed, from Markov’s inequality

P(MQ
q (A, 2−n) ≥ 2−nδ/4) ≤ 2−nδ/4

Now this sequence of probabilities is summable and thus by Borel–Cantelli the event
only happens finitely often.Thus in fact almost surely lim supn M

Q
q (A, 2−n) = 0.

Remark 3.3 Also, it is easy to see that the same result holds for sets that are independent
of the field.

3.2 Relations between expected Minkowski and almost sure Hausdorff dimension

In this section we bring out two results. First, for fixed (and field-independent) sets
we conclude an agreement between the expected Minkowski and almost sure Haus-
dorff versions of the quantum dimension, given that there is agreement between the
dimensions on the Euclidean side. Second, we prove an inequality for the quantum
side holding even for dependent sets.

The first relation, as both the Hausdorff and Minkowski dimension satisfy the very
same KPZ relation, is a straightforward corollary of the previous proposition:

Corollary 3.1 Consider the Liouville measure for 0 ≤ γ < 2 in some domain.
Suppose A is deterministic (or field-independent) compact set in the interior of some
domain, such that its Euclidean Minkowski and Hausdorff dimensions agree. Then
also, its expected quantum Minkowski dimension and quantum Hausdorff dimensions
agree.

The second relation importantly also holds for sets that can depend on the measure:
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Proposition 3.2 Consider the Liouville measure with 0 ≤ γ < 2 in some domain.
For any random set coupled with the field, the quantum Hausdorff dimension is almost
surely bounded above by the expected quantum Minkowski dimension.

To prove this, first notice that in fact we could equally well use squares instead of
balls in our definition of the (quantum) Hausdorff dimension.

Proof Suppose that with positive probability p > 0 the quantumHausdorff dimension
of the set A satisfies qH (A) > δ. Then also

P

(
lim
n↑∞ HQ

δ (A, 2−n) = ∞
)

= p

where we use squares instead of balls in the covering. But now every covering used
in the Minkowski dimension also provides a suitable covering whose content must be
larger than HQ

δ (A, 2−n). Hence it follows that

P

(
lim inf
n↑∞ MQ

δ (A, 2−n) = ∞
)

≥ p

Now fix some R > 0 large and define the event

EN ,R = {MQ
δ (A, 2−n) > R for all n ≥ N }

The events EN ,R are increasing in N and

⋃
N

EN ,R ⊃
{
lim inf
n↑∞ MQ

δ (A, 2−n) = ∞
}

Thus by countable additivity there is some NR such that P(ENR ,R) > p/2. But then
for all n > NR

E(MQ
δ (A, 2−n)) ≥ Rp/2

And thus

lim sup
n↑∞

E

(
MQ

δ (A, 2−n)
)

≥ Rp/2

But p > 0 was fixed and we can pick R arbitrarily large. Therefore

lim sup
n↑∞

E

(
MQ

δ (A, 2−n)
)

= ∞

and qM,E (A) ≥ δ. As this holds for all δ with P(qH (A) > δ) > 0, we have the claim.
��

123



484 J. Aru

Remark 3.4 Notice that we do indeed need a proof. Namely, we have no scaling result
similar to Lemma 3.1 at our disposal. Sowe do not a priori know that theHausdorff and
Minkowski contents scale well on the quantum side. Secondly, more direct approaches
are limited by the fact that our definition of the Minkowski dimension involved an
expectation inside the lim sup.

4 Almost sure Hausdorff dimension of the zero level line does not satisfy
the KPZ relation

In this section we show that the expected Minkowski and almost sure Hausdorff
versions of the usual KPZ relation do not hold for zero level lines of the Gaussian
free field. Fix the underlying domain to be the upper half plane. Recall from Sect. 2,
Theorem 2.1 the precise meaning of the level line: we couple the GFF with certain
boundary conditions with the SLE4 curve such that the in this coupling the GFF can be
sampled by first sampling the SLE, then an independent GFF in the remaining domain
+ adding a bounded harmonic function.

Proposition 4.1 Consider the Liouville measureμγ with 0 ≤ γ < 2 in the upper half
plane. The expected quantum Minkowski dimension of the zero level line drawn up to
some finite stopping time satisfies qM,E ≤ 3

4+γ 2 . Hence the usual KPZ relation does
not hold.

By using Proposition 3.2, we have a straightforward corollary:

Corollary 4.1 Almost surely the quantum Hausdorff dimension of the zero level line
drawn up to some finite stopping time is bounded from above by 3

4+γ 2 and hence the
usual KPZ relation is not satisfied for quantum Hausdorff dimension.

Remark 4.1 In fact, this proposition can also be seen as a straightforward corollary
of the later work on flow lines by setting κ = 4. In fact, we then also confirm that the
expected Minkowski dimension of the zero level line is equal to q = 3

4+γ 2 . However,
the proof here is much shorter and simpler in spirit. The underlying intuition is that
near the zero level line the field is lower and this intuition can be nicely expressed
with rigour.

We start with a key lemma that replaces the usual scaling Lemma 3.1 and gives
the multifractal behaviour of the balls around points on the zero level line under the
Liouville measure:

Lemma 4.1 Sample a zero level line ητ drawn up to some finite stopping time τ . Let S
be a dyadic square of side-length l(S) intersecting this zero level line. Now denote by
h = hη the Gaussian free field in this slit domain and by μ = μhη the corresponding

Liouville measure with 0 ≤ γ < 2. Then we have that Eh|ητ (μh(S)) � l(S)2+γ 2/2.
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Here we write Eh|ητ to recall that we are actually working in the conditioned
measure.

Proof As usual in working with the Liouville measure, it is cleaner to work with a
regularized field. From Theorem 2.3 we know δn = 2−n regularized fields converge
to the Liouville measure. Hence, we can write

μh(S) = lim
δn↓0

μhδn
(S) = lim

δn↓0

∫

S
δγ 2/2eγ hδn (z)dz

Recall from definitions preceeding 2.3 that the regularized field hδn (z) is a Gaussian
field, defined by taking circle averages of the GFF. It is defined nicely point-wise. Its
mean is given by the bounded harmonic SLE-measurable correction term described in
Sect. 2.1, and the covariance kernel is described by the regularized Green’s function
of the slit domain:

Gδn (x, y) = log
1

δn ∨ |x − y| + G̃δn (x, y)

Here G̃δn (x, y) is the harmonic extension of the function equal to− log 1
δn∨|x−y| when

one of the points is on the boundary of the domain. Notice that if at least one of x, y
is of distance δn from the boundary, then G̃δn (x, y) = G̃(x, y) where the latter is the
harmonic correction term for the usual Green’s function. This is useful, as we know
that G̃(x, x) = CR(x, Ht ) where the latter denotes the conformal radius of the point
x for the slit domain.

Now we can write the GFF h as a sum of a zero-boundary GFF h0 and the bounded
harmonic correction termCh that can be defined to be zero on the SLE (see discussion
after the statement on Theorem 2.1). Using Fatou’s lemma, we can write

Eh|ητ (μh(S)) ≤ lim
δn↓0

Eh|ητ

(∫

S
δ
γ 2/2
n eγ h0δn (z)+γChdz

)

Firstly notice that as the harmonic correction is uniformly bounded by a constant, it
will only influence the expectation by a bounded constant and thus we can henceforth
neglect the term γCh by absorbing it in some multiplicative constant. Thus we want
to bound

Eh|ητ

(∫

S
δ
γ 2/2
n eγ h0δn (z)dz

)

We will split the integral into two:

1. The part that is at least of distance δn off the curve.
2. The curve together with its δn neighbourhood.
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For the first part, start by taking the expectation inside the integral (everything is nicely
bounded). Then using exponential moments for Gaussian random variables, we have
the following estimate for the integrand:

Eh|ητ

(
δ
γ 2/2
n eγ h0δn

)
≤ CR(z, Ht )

γ 2/2 (4.1)

Recall that the conformal radius satisfies CR(z, Ht ) � d(z, Ht ) where d(z, Ht ) is
the distance from the boundary. But d(z, Ht ) ≤ l(S) and hence we get a bound of
O(l(S))γ

2/2. Thus integrating over the whole square (minus the δn neighbourhood)
we get a contribution of O(l(S)2+γ 2/2).

Now we treat the part near the curve. We could use Kahane convexity inequalities
[20] or a global argument as in 6.2.1. However, it follows also elementarily by using
bare hands. Start again by taking the expectation inside the integral. Then we need
to bound the variance of h0δn (z). By the definition of the GFF in Ht it is given by
integrating

∫

Ht×Ht

Gδn (x, y)ρ
z
δn

(x)ρz
δn

(y)dxdy

where by ρz
δn

we denote the distribution giving unit mass to the circle of radius δn

around the point z.
But G(x, y) ≥ Gδn (x, y) and hence the variance is bounded by

∫

H×H

G(x, y)ρz
δn

(x)ρz
δn

(y)dxdy

i.e. by that of the δn regularized GFF in H. But this we can calculate as above to get

Eh|ητ

(
δ
γ 2/2
n eγ h0δn

)
≤ CR(z,H)γ

2/2

Now we now that the SLE4 is not space-filling and in fact has Hausdorff dimension
of 3/2 [6]. Thus we may bound this part with o(δ1/3n )

Thus

Eh|ητ

(∫

S
δ
γ 2/2
n eγ hδn (z)dz

)
� (l(S))2+γ 2/2 + o(δ1/3n )

and letting finally δn ↓ 0, we get

Eh|ητ (μh(S)) � l(S)2+γ 2/2

��
Now we are ready to attack the proposition:
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Proof (Proof of proposition)
We will sample the GFF as above: we first sample an SLE4 up to some finite

stopping time τ , then the field in the slit domain with its bounded harmonic correction
term.

Now, we know that the Minkowski dimension of the SLE4 curve is 3/2 [6,36].
Thus for any δ > 0 we can cover it with O(r−3/2−δ) dyadic squares Si ∈ S of radius
r = 2−n . Fix q < 1 to be defined later.

By linearity of expectation we can write

Eh|ητ

(
MQ

q (A, r)
)

= Eh|ητ

⎛
⎝ ∑

Si∈S
μh(Si )

q

⎞
⎠ =

∑
Si∈S

Eh|ητ (μh(Si )
q)

Now by Lemma 4.1, μh(Si ) is an integrable random variable with respect to the
randomness of the GFF h. Hence as q ≤ 1, we can use Jensen’s inequality for the
concave function xq to get

Eh|ητ

(
μh(Si )

q) ≤ (
Eh|ητ μh(Si )

)q

But using Lemma 4.1 again, we have for any ball Si

(
Eh|ητ μh(Si )

)q � rq(2+γ 2/2)

and so

Eh|ητ

⎛
⎝ ∑

Si∈S
μh(Si )

q

⎞
⎠ � r−3/2−δ+q(2+γ 2/2)

Choosing q = (1 + δ) 3
4+γ 2 and averaging over the curve, we thus have

EMQ
q (A, r) � r δ/2

It follows that qM ≤ q and by letting δ ↓ 0, we see that qM ≤ 3
4+γ 2 . ��

5 Winding of SLEκ

In this section we find the exponential moments for the winding of chordal SLE curves
conditioned to pass nearby a fixed point.
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5.1 Introduction and results

The winding we study in this section is in exact correspondence with the additional
correction term in the flow line coupling of Theorem 2.2.

Definition 5.1 Consider a chordal SLEκ , 0 < κ < 8 in the upper half plane and fix
some point z. Let τ be the disconnection time of z, which is finite for 4 < κ < 8 and
a.s. infinite otherwise. We define the windingw(z) around the point z by the following
limit w(z) := limt↑τ arg f ′

t (z).

Remark 5.1 It is known that this limits exist, e.g. see [42]. Or indeed, it follows from
the proofs below.

Notice that as arg f ′(z) is the imaginary part of an analytic function log f ′(z), it
is a harmonic function off the curve itself. We fix the logarithm by requiring it to be
continuous in the slit domain and tend to 0 at infinity [42]. The basic intuition behind
winding is that whereas | f ′(z)| measures the distortion of the length under f , then
arg( f ′(z))measures the angular distortion. Very near the curve, this distortion is given
by unwinding the SLE curve back to zero. One can also think that this definition of
winding gives the amount that a curve from the infinity needs to wind to access the
point z. Asymptotically near the curve, this version of winding should coincide with
the geometric winding up to some bounded constants [14]. We will henceforth always
use the term winding to refer to the definition above and not the usual geometric
counterpart.

The coupling of GFF and SLE gives the average winding of SLE over the random-
ness of the SLE. Here, we prove the following more precise result, calculating the
winding around any point depending on its distance to the SLE curve. Recall that we
are working with the chordal SLE in the upper half plane.

Theorem 5.1 Let CR0 be the conformal radius of a fixed point z0 in the upper half
plane. Fix 0 < κ < 8. Denote by Hτ the SLE slit domain component containing z0.
Then, for ε > 0 sufficiently small, conditioned on CR(z0, Hτ ) ∈ [ε,Cε] with C > 1,
the exponential moments of the winding w(z0) around the point z0 are given by

E

(
eλw(z0)|CR(z0, Hτ ) ∈ [ε,Cε]

)
� ε−λ2κ/8

where the implied constants depend on κ, λ and for fixed κ can be chosen uniform for
|λ| < λ0 for any choice of λ0 > 0.

Remark 5.2 We have defined the winding in the upper half plane and also stated the
theorem in there. However, as defining the chordal SLE in a different nice (for exam-
ple smooth Jordan boundary) domain would involve conjugations by analytic maps
that extend to the boundary and have non-zero derivative on the boundary almost
everywhere, the winding in any other such domain will be the same up to a uniformly
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bounded additive error. Hence, aswe determine exponentialmoments up tomultiplica-
tive constants, the Theorem 5.1 holds also for the chordal SLE in all nice domains and
in particular in the unit disc.

Remark 5.3 By following the proof carefully, we actually get slightly more: we get
that the winding is given by a Gaussian of variance− κ

4 log ε plus different error terms.
The dependence relations between these error terms are a bit delicate and that is also
the reason why we chose the wording above, which, needless to say, is sufficient for
our applications.

Comparision to Schramm’s study on winding

In this paragraph, we will shortly discuss how this result relates to Schramm’s work
on winding in his seminal paper [37]. First, Schramm actually studied the geometric
winding of radial SLE around its endpoint zero and the variance was approximated
by a Gaussian of variance −κ log ε, when the tip was ε-close to zero. However, in our
case we have a Gaussian of variance −κ/4 log ε. This seems to be in agreement with
predictions by Duplantier (see e.g. [13], ch. 8), where radial SLE ought to correspond
to a one-arm event and chordal SLE conditioned to be close to a point—we think—
could correspond to a two-arm event. Intuitively for κ small, one could argue that in
the chordal case you just pass from one or other side of the point, whereas in the radial
case you might still do a turn before finally hitting zero, thus causing a difference in
variances.

Also, one needs to remark that notions ofwinding in [37] andhere differ. Schramm is
looking at the geometric winding number around zero, which is given by the argument
of the tip of the curve, when the argument is chosen to be continuous along this curve.
We, however, use the definition of [42] that gives the GFF-SLE couplings above.
As explained above and as used in physics literature [14], these two notions should
asymptotically agree up to bounded additive errors.Whatwe can confirm is that indeed
a few line of calculations show that in the radial case aroundpoint zero, the concept used
here would give a Gaussian of variance−κ log ε, in agreement with Schramm’s result.

Finally, there is the question whether Schramm’s nice geometric approach could
have helped the technical work to follow. It does not seem to be the case, as his method
in some sense only helps to relate the winding of the curve to the behaviour of the
driving process. Due to conditioning, in our case the work is actually in studying the
behaviour of the driving process resulting from conditioning.

5.2 Proof of the theorem

To start attacking the theorem, we need a lemma to translate the question to that of
diffusion processes and rewrite the geometric conditioning of SLE curves in terms of
exit times of a certain diffusion process:
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Lemma 5.1 Consider the chordal SLEκ in the upper half plane with 0 < κ < 8 and
set CR0 = CR(z0,H). Parametrize the SLE using “radial parametrization”, i.e. so
that at any time t we have CR(z0, Ht ) = CR0e−t . In this parametrization, the driving
function gives rise to a diffusion αs in (0, 2π), satisfying the following equation:

dαs = √
κdBs + κ − 4

2
cot

αs

2
ds (5.1)

Let τ be the first exit time of a diffusion. Then the winding around z0 is given by
w(z0) = ∫ τ

0 cot αs
2 .

Remark 5.4 This lemma stems from the first moment argument in [6]. The basic
strategy is the following: we transform our chordal SLE in H to a process in D for
which the image of z0 is fixed to the origin, then pick a convenient time change, and
study the process induced for the driving Brownian motion. We only need slightest
adjustments, but for the convenience of the reader, the proof is still provided in the
appendix. Notice that in case of κ > 4 the exit time of the diffusion corresponds to the
first time when the point z0 is separated by the curve from the infinity, and for κ < 4
it corresponds to infinity. For more on radial parametrization, see for example [26].

Proof (Proof of the Theorem 5.1)
Let τ be the disconnection time of z0. From Lemma 5.1, we see that conditioning on

CR(z0, Hτ ) ∈ [ε,Cε]

is equivalent on conditioning the corresponding diffusion to exit (0, 2π) during the
time interval

(
logCR0 + log

1

ε
− logC, log CR0 + log

1

ε

]

Recall that τ is also the first exit time for the diffusion and set T = log 1
ε
+ logCR0 −

logC . Then it remains to show that conditioned on τ ∈ [T, T + c], we have

E

(
exp

(
λ

∫ τ

0
cot

αs

2

)
|τ ∈ [T, T + c]

)
� eTλκ/8

with uniform constants for |λ| < λ0 for any choice of of λ0 > 0. ��
We will do this in several steps: first, the main term of the theorem comes from

the conditioned diffusion up to time T − 10. By gaining control on eigenfunction
expansions of survival probability, we show that this part is more or less stationary and
absolutely continuous with respect to the process conditioned to everlasting survival.
Thereafter, we have to control the rest. As the behaviour of the diffusion starts to
change and we need to opt a different strategy. The more dangerous part is the very
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end and we want to handle it (for κ �= 4) independently of the main term, thus we
introduce yet another subdivision at time T − 9. These error terms are then controlled
using probabilistic arguments.

5.2.1 Boundary growth of eigenfunctions for the Green operator

For the main part, the key is obtaining tight estimates of the survival probability of the
diffusion. This is also studied in [6], and in several articles by Lawler and co-authors,
e.g. in [25], where they study the so called SLE Green’s function, which represents
the probability that the curve passes ε-close to a point. Whereas usually this is done
via martingale methods, we do everything analytically by gaining control over the
eigenfunction expansion of a related integral operator. This method would apply in
quite a larger context of diffusions.

Although inside the interval everything about our diffusion (5.1) is nice and smooth,
we have to be cautious because the drift term becomes singular at both ends of the
interval. Recall that when one considers one-dimensional diffusions on its natural
scale—basically turning it into a martingale—then the speed measure represents the
time-change with respect to a standard Brownian motion. In our case this speed mea-
sure is seen to be

m(dx) = sin2−
8
κ
x

2
dx

which is integrable over the interval [0, 2π ] only for κ > 8/3.
Given the speed measure of the diffusion, it is known that the Green’s function is

given by

G(x, y) =
{ s(x)(s(2π)−s(y))

s(2π)
for x ≤ y

s(y)(s(2π)−s(x))
s(2π)

for x > y
(5.2)

where s(x) is a scale function of the diffusion given by

s(x) =
∫ x

0
sin

8
κ
−2 u

2
du

See for example chapter IV of [4]. Green’s function could also be derived purely
analytically as in [46].
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Now consider the corresponding integral operator on L2(I,m(dx)):

G f (x) =
∫

G(x, y) f (y)m(dy) (5.3)

A direct calculation shows that this satisfies the conditions of a Hilbert–Schmidt inte-
gral operator, i.e. its L2[(I,m(dx)) × (I,m(dx))] norm of the kernel is finite. Thus
from Hilbert–Schmidt expansion theorem and Krein–Rutman theory, it follows that
we have a complete orthonormal system of eigenfunctions φi (x) and corresponding
eigenvalues λ−1

i such that 0 < λ0 < λ1 ≤ λ3 ≤ · · · < ∞ (we use the inverses here
for the sake of readability later).

In the concrete context this can be shown by hand as in [4] chapter IV, section 5.1

Also, we remark that all of the claims above would also follow by just considering the
corresponding Sturm–Liouville problem: even though the problem is not entirely reg-
ular at endpoints, the expansion still applies and we still have eigenvalues as described
above.

Now as the corresponding diffusion (or its generator) has C2 regularity inside any
compact interval of (0, 2π), the eigenfunctions are also at least C2 in these respec-
tive intervals. Moreover, by writing out the eigenfunction expansion for the Green’s
function itself and using Bessel inequality, we see that eigenvalues do not grow too
hastily: ∑

i=0

λ−2
i < ∞ (5.4)

We summarize the above conclusions in a lemma:

Lemma 5.2 The integral operator (5.3) has a complete ON system of eigenfunctions
φi (x) that are of C2 regularity inside any compact interval in (0, 2π). The corre-
sponding eigenvalues λ−1

i satisfy

1. 0 < λ0 < λ1 ≤ λ3 ≤ ... < ∞
2.

∑
i=0 λ−2

i < ∞
Next we would like to get a good control on individual eigenfunctions also near the

boundary. An explicit calculation shows that λ0 = 1 − κ
8 and up to a normalization

constant φ0(x) is equal to sin
8
κ
−1 x

2 . This is also well known in the SLE literature,
see e.g. [23] or [25] where it plays a role in the so called SLE Green’s function,
which represents the time spent by the SLE curve near a point. In what follows we set
φ0(x) = sin

8
κ
−1 x

2 to ease some subsequent calculations (but keep other eigenfunctions
normalized).

1 Notice that in the reference [4] chapter IV, section 5 the integrability of the speed measure is assumed
(which we do not have). Yet one can see that the arguments go through as long as our operator is Hilbert–
Schmidt and the Green’s function itself is integrable.
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For other eigenfunctions, we need some more work. As a first step we can use
Cauchy–Schwartz on φi (x) = λi Gφi (x), to obtain

∣∣∣∣
1

λi
φi (x)

∣∣∣∣ = |Gφi (x)| =
∣∣∣∣
∫

G(x, y)φi (y)m(dy)

∣∣∣∣

≤
(∫

G2(x, y)m(dy)

)1/2 (∫
φi (y)

2m(dy)

)1/2

� 1 (5.5)

or in other words φi (x) � λi , where the implied constant does not depend on i .
However, this is not yet enough for our purposes.We need to show that the boundary

growth of other eigenfunctions is at least of the same order than that of the first
eigenfunction φ0. Thus we define for all i ∈ N

gi (z) = φi (x)

φ0(x)

and study its behaviour. We prove two lemmas about g(z). First we show that all
eigenfunctions scale similarly near the boundary or in other words:

Lemma 5.3 For all i ∈ N, we have

gi (x) � λmi

for some universal m.

Then we go on to push this control a step further to show that the boundary growth
of other eigenfunctions is in fact even nicer:

Lemma 5.4 For all i ∈ N, we have

g′
i (x) � λm+1

i sin
x

2

where the implied constant does not depend on i .

Proof (Proof of Lemma 5.3) To prove the first lemma, notice that it is enough to
show the claim near x = 0, as firstly by (5.5) and the fact that φ0 does not vanish
inside the interval we know that the claim holds trivially in any compact subinterval of
(0, 2π) and secondly, our diffusion is symmetric with respect to π and thus boundary
behaviour is the same near 0 and 2π .

Now the key is to notice that the Green’s function is actually much more regular
than needed for being in L2(I,m(dx)). For example from Gy(x) � φ0(x) it already
follows that the Green’s function lies in L1(I,m(dx)).

Our next aim is to use a bootstrap the scaling of the eigenfunctions φi (x), by
improving step by step on the Cauchy–Schwarz in (5.5). In this respect, consider the
following expression for x near 0 and for a ≥ 0:

123



494 J. Aru

z(x, a) =
∫ 2π

0
G2(x, y) sin2a

y

2
m(dy)

Claim z(x, a) � max
(
sin

8
κ
+2a+1 x

2 , sin2(
8
κ
−1) x

2

)

Using this claim, it is easy to improve step by step on the regularity of the eigen-
functions and to prove the lemma.

Indeed, notice that in (5.5) the first term on the RHS is given by

z(x, 0)1/2 � sin
4
κ
+1/2 x

2

and thus it follows that φi (x) � λi sin
4
κ
+1/2 x

2 . Notice that for κ ≥ 8/3 we could
hence stop here, as 4

κ
+1/2 ≥ 8

κ
−1 and we already have the statement of the lemma.

For smaller κ consider the following bootstrap:
Suppose that we already know that φi (x) � λki sin

4
κ
−1+a x

2 . Then using a similar
strategy as in (5.5), we could write using claim 5.2.1

∣∣∣∣
1

λi
φi (x)

∣∣∣∣ = |Gφi (x)| =
∣∣∣∣
∫

G(x, y)φi (y)m(dy)

∣∣∣∣

≤ λki

(∫
G2(x, y) sin2a

y

2
m(dy)

)1/2 (∫
sin

8
κ
−2 y

2
m(dy)

)1/2

= O(λki z(x, a)1/2))

� λki max
(
sin

4
κ
+a+ 1

2
x

2
, sin

8
κ
−1 x

2

)

and thus φi (x) � λk+1
i max(sin

4
κ
+a+ 1

2 x
2 , sin

8
κ
−1 x

2 ). Thereby we can improve on the
boundary scaling m − 1 times until we get φi (x) � λmi φ0(x) as needed, whereas the
implied constants have been independent of i .

Hence to prove the lemma we just need to prove the claim above. ��

Proof (Proof of Claim 5.2.1) Using the form of the Green’s function, we can bound

z(x, a) =
∫ 2π

0
G2(x, y) sin2a

y

2
m(dy)

by the following:

z(x, a) � max

(∫ x

0
s(y)2(s(2π) − s(x))2 sin2a

y

2
m(dy),

∫ 2π

x
s(x)2(s(2π) − s(y))2 sin2a

y

2
m(dy)

)
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This can be further simplified to

z(x, a) � max

(∫ x

0
s(y)2 sin2a

y

2
m(dy), s(x)2

)

Inserting now the definitions of the scale function and the speed measure, this gives
us for x small:

z(x, a) � max

(
sin

8
κ
+2a+1 x

2
, sin

2
(
8
κ
−1

)
x

2

)

Thus the claim 5.2.1 and the proof of Lemma 5.3 follow. ��
The second lemma improves on this multiplicative regularity. And to prove it, we

need to go back to the generator of the diffusion and use the fact that any eigenfunction
of the Green’s operator is also an eigenfunction of the generator [46].

Proof (Proof of Lemma 5.4) From the previous claim, we know than we can write
φi (x) = φ0(x)gi (x) for gi = O(λmi ). Notice also that gi has C2 regularity inside any

compact interval of (0, 2π) as both φi , φ0 have this regularity and φ0 = sin
8
κ
−1 x

2 is
non-zero inside the whole interval.

Now every φi is also an eigenfunction of the generator of the diffusion. This can
be stated in the Sturm-Liouville form:

(κ

2
sin2−

8
κ
x

2
φ′
i (x)

)′ = λi sin
2− 8

κ
x

2
φi (x)

Replacing now φi (x) = φ0(x)gi (x), using the fact that φ0(x) is an eigenfunction, we
can calculate inside any compact interval of (0, 2π):

κ

2
sin2−

8
κ
x

2
φ′
0(x)g

′
i (x)+

(κ

2
sin2−

8
κ
x

2
φ0(x)g

′
i (x)

)′ =(λi − λ0) sin
2− 8

κ
x

2
φ0(x)gi (x)

Plugging in the exact form of φ0(x) and a few calculations, we have:

2 cos
x

2
g′
i (x) + κ

2
sin

x

2
g′′
i (x) = (λi − λ0) sin

x

2
gi (x)

Thus we obtain the following Sturm-Liouville form for gi (x), which holds at least
inside any compact of (0, 2π).

(κ

2
sin

8
κ
x

2
g′
i (x)

)′ = (λi − λ0) sin
8
κ
x

2
gi (x)

But now g is bounded and C2, the right hand side can be nicely integrated up to
any ε > 0 and we get

[κ

2
sin

8
κ
x

2
g′(x)

]x0
ε

= (λi − λ0)

∫ x0

ε

sin
8
κ
x

2
g(x)dx (5.6)
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We first claim the following:

Claim As ε ↓ 0 we have

[κ

2
sin

8
κ
x

2
g′(x)

]
(ε) = o(1)

We know that φi (x), gi (x) are C2 inside any compact interval of (0, 2π). Thus we
can differentiate φi (x) = φ0(x)g(x) and using the triangle inequality write

|φ0(x)g
′(x)| ≤ |φ′

i (x)| + |φ′
0(x)g(x)| (5.7)

For the second term of the RHS, we know that φ0(x) = sin
8
κ
−1 x

2 and from Lemma

5.3 we know that gi = O(λmi ). Hence the second term is of order O(λmi sin
8
κ
−2 x

2 ). To
get a bound on the first term of the RHS consider again the integral equation satisfied
by eigenfunctions:

1

λi
φi (x) =

∫
G(x, y)φi (y)m(dy)

Now φi (x) is differentiable inside compacts of (0, 2π), and also the Green’s func-
tion G(x, y) is differentiable unless x = y, at which point it is both left and right-
differentiable but these derivatives have a finite gap between them. Thus we can dif-
ferentiate both sides to get:

1

λi
φ′
i (x) =

∫
∂

∂x
G(x, y)φi (y)m(dy)

Plugging in the form of the Green’s function shows that the RHS can be bounded by
O(λmi sin

8
κ
−2 x

2 ) and thus |φ′
i (x)| = O(λm+1

i sin
8
κ
−2 x

2 ).
Thus we see that in the triangle inequality (5.7), the whole of RHS is of order

O
(
λm+1
i sin

8
κ
−2 x

2

)

In particular this must hold for the LHS, i.e. we have

|φ0(x)g
′(x)| = O

(
λm+1
i sin

8
κ
−2 x

2

)

To prove the claim, recall that φ0(x) = sin
8
κ
−1 x

2 . Hence, as
8
κ

> 1, it follows that

[κ

2
sin

8
κ
x

2
g′(x)

]
(ε) = O

(
λm+1
i ε

8
κ
−1

)
= o(1)

and thus our claim 5.2.1 follows.
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Finally return to (5.6). The absolute value of the right hand side can be bounded by
O(λm+1

i sin
8
κ
+1 x

2 ) using Lemma 5.3. From our recent claim we know that by letting

ε ↓ 0, only the term κ
2 sin

8
κ

x
2 g

′(x0) survives. Thus get the claimed derivative bound:

(
φi (x0)

φ0(x0)

)′
= g′(x0) � λm+1

i sin
x0
2

��

5.2.2 Diffusion up to time s ≤ T − 10

Given a sufficiently regular diffusion of diffusion coefficient a/2 and drift term b,
one can use either Doob’s H-transform [45] or direct calculations as in Pinsky [30] to
show that, conditioned on τ ∈ (T, T + c), up to time T we have a non-homogeneous
diffusion with the following generator

LT
s = 1/2∇ · a∇ + b∇ + a

∇Px (c + T − s ≥ τ > T − s)

Px (c + T − s ≥ τ > T − s)
∇

It is also knownby samemethods that conditionedon everlasting survival, the generator
becomes

L∞
s = 1/2∇ · a∇ + b∇ + a

∇φ0(x)

φ0(x)
∇

In our concrete setting thismeans that conditioned on everlasting survival our diffusion
process is given by

dα∞
s = √

κdBs + 2 cot
α∞
s

2
ds (5.8)

Our aim is to then show that for T large at least until some time T − 10 the diffusion
conditioned to survive up to time T is almost the same. More explicitly, we claim that

Lemma 5.5 The conditioned diffusion can be written as:

dαT
s = √

κdBs +
(
2 cot

αT
s

2
+ ET (αT

s , s)

)
ds (5.9)

for some independent Brownian motion Bt and the error term

ET (x, s) = ∇Px (c + T − s ≥ τ > T − s)

Px (c + T − s ≥ τ > T − s)
− ∇φ0(x)

φ0(x)

satisfies ET (x, s) � e−a(T−s) for s ∈ [0, T −10], for some a > 0 and uniformly over
the interval [0, 2π ]. Hence in the time interval [0, T − 10] the conditioned diffusion
is absolutely continuous with respect to the everlasting survival process.
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The proof of this lemma just makes use of our control on the eigenfunctions:

Proof We start by writing out a series representation for Px (c+ T − s ≥ τ > T − s).
To do this, notice first that

Px (c + T − s ≥ τ > T − s) = Px (τ > T − s) − Px (τ > c + T − s)

and so it suffices to find series representation for the similar terms on the RHS.
Now, using Lemma 5.3 and the condition on the growth of eigenvalues (5.4), it is

easy to see [4], that for any t > 0 the transition probabilities of the initial process (5.1)
can be written as a sum converging absolutely and uniformly over the whole interval
[0, 2π ]:

Px (αt ∈ dy) =
∑
i=0

φi (x)e
−λi tφi (y)m(dy)

Thus survival probability can be written as a series

Px (τ > T ) =
∑
i=0

ciφi (x)e
−λi T (5.10)

Similarly the convergence of this sum is also absolute and uniform over the interval.
Moreover, if we choose some t0 > 0, then for all T > t0 the convergence is uniform
in t as well. Any t0 > 0 would do, so we pick t0 = 10.

Notice that thenwe can in fact write thatPx (τ > T ) � e−λ0Tφ0 for all T > t0. This
gives us in a slightly more direct manner the conclusion of the first moment argument
for the Hausdorff dimension of SLE curves in [5]. More precisely, it replaces the
hands-on technical section 1.2 of that paper by the more general setup presented here.
It also proves the existence of the conformal radius SLE Green’s function [25].

Now plugging in the expansion (5.10) using the remark above, we have

eT (x, s) =
∑

i=1 c
′
i

(
φ′
i (x)φ0(x) − φ′

0(x)φi (x)
)
e−λi (T−s)

φ0(x) (Px (τ > T − s) − Px (τ > c + T − s))

with c′
i = ci (1 − e−λi c).

We start from the denominator. Using the uniform convergence for T − s > 10 and
λ1 > λ0 we have

Px (τ > T − s) − Px (τ > c + T − s) = c′
0φ0(x)e

−λ0(T−s)

+ O(φ0(x))e
−0.5(λ0+λ1)(T−s)

Thus we have a lower bound:

Px (τ > T − s) − Px (τ > c + T − s) � φ0(x)e
−λ0(T−s)

123



KPZ relation does not hold for the level lines 499

For the nominator, write

φ′
i (x)φ0(x) − φ′

0(x)φi (x) = φ2
0(x)

(
φi (x)

φ0(x)

)′

Plugging in the derivative estimates from Lemma 5.4 and using the bound on the
growth of eigenvalues (5.4), we have for T − s > 10 uniformly

∣∣∣∣∣
∑
i=1

c′
i

(
φ′
i (x)φ0(x) − φ′

0(x)φi (x)
)
e−λi (T−s)

∣∣∣∣∣ � e−0.5(λ1+λ0)(T−s)φ2
0(x)

And thus for T − s > 10 uniformly over time and space

|ET (x, s)| � e−0.5(λ1−λ0)(T−s)

and the lemma follows. ��
Putting things together we find the total winding of this part:

∫ T−10

0
cot

αs

2
d∼

√
κ

2
BT−10 + (αT

T−10 − αT
0 ) +

∫ T−10

0
E(αT

s , s)ds

Now, αT
s itself is bounded and due to the exponential decay of the error term, the final

term is also uniformly bounded. Finally, from the Brownian part we get a Gaussian of
variance T − 10. This gives us that conditioned on τ ∈ [T, T + c] we have

∫ T−10

0
cot

αs

2
ds

d∼ κ

2
X + EB (5.11)

with X Gaussian of variance T − 10 and EB some uniformly bounded random error
(not independent of X ). Looking at the exponential moments, we account for the main
term of the theorem and a multiplicative error.

Remark 5.5 In SLE literature, e.g. in [26], the diffusion conditioned on everlasting
survival corresponds to two-sided radial SLE. Hence, one could hope to approach the
problem by weighing the everlasting measure by a martingale to obtain the process
conditioned on {τ > T }.We know thismartingale explicitly [23], it is given by the first
eigenfunction of the generator—Mt (x) = eλ0tφ0(x)1(τ > t). Using this approach
one could possibly offer another derivation for the control over the main interval,
slightly different in spirit. The error analysis below would be needed in any case.

5.2.3 The remaining part: T − 10 < t ≤ τ

Now after the time T −10, our control on the drift term gets gradually worse andworse
and hence our previous strategy doesn’t allow the exact estimation of the contribution
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to winding by relating it to the Brownian motion. This is due to the fact that the initial
strong boundary repulsion at time 0 changes gradually to an attraction at time T . Hence
we need a different strategy.

We start by reducing our workload considerably:

Claim It is sufficient to only deal with the upper bound of the exponential moments
for λ > 0.

Proof Indeed, firstly, it is easy to see that uniform upper (lower) bounds on exponential
moments for λ > 0 give also lower (upper) bounds for λ < 0.

Secondly, notice that the processes starting from a and 2π − a are symmetric with
respect to π , but cot x

2 is antisymmetric. Hence we can couple processes α1 and α2

starting from a and 2π − a by using the Brownian motion Bt and −Bt such that
cot α1(s)

2 + cot α2(s)
2 = 0.

Hence an uniform lower bound on the positive exponential moments of
∫
cot x

2
starting from 2π , is via Cauchy-Schwarz equivalent to an uniform upper bound on the
exponential moments and vice versa. Indeed, we can write

1 = Ec exp

(
λ

∫ τ

T−10
cot

α1(s)

2
+ cot

α2(s)

d
s

)

where we write Ec for the expectation wrt the conditioned measure. We then Cauchy
Schwarz to get

1 ≤
[
Ec exp

(
2λ

∫ τ

T−10
cot

α1(s)

2
ds

)]1/2 [
E exp

(
2λ

∫ τ

T−10
cot

α2(s)

2
ds

)]1/2

Thus the claim follows. ��
Now we have to treat separately cases κ �= 4 and κ = 4. For the former, we will

first discuss how to obtain a bound on the exponential moments from the time T − 9
onwards, then deal with the middle part, i.e. the time interval [T − 10, T − 9], and
finally put them together to obtain control over the whole remaining part. Thereafter
we handle the case κ = 4 in a more direct manner.

Control over the interval [T − 9, τ ] for κ �= 4

Suppose that at time T − 9 the diffusion conditioned to die between T and T + c
is at some point δ > 0. Then the process onwards is given by the initial diffusion
conditioned to die between 9 < τ ≤ 9 + c. We claim the following:

Claim Suppose we start the diffusion (5.1) conditioned to die between 9 < τ ≤ 9+ c
from δ > 0. Then we have the following upper bound for the winding over this time
interval

E(λwτ ) = O(δ1−8/κ )
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Let’s first see why this will suffice our needs. The problem is that the estimate
blows up as δ ↓ 0. However, if we were able to well control the probability of being
below δ0 at time T − 9 independently of the position at time T − 10, we would stand
some hope. This is indeed our plan. As is clear from the proof of Lemma 5.5, absolute
continuity with respect to everlasting survival process (5.8) lasts nicely also up to time
T − 9 (with a slightly worse constant). From say [23] or by following directly [4]
and [30], we know that the transition probabilities for this everlasting survival process
are given by Px (α

∞
t ∈ dy) � sin

8
κ

y
2dy for any t > 0 and thus surely at t = 1.

Thus our conditioned process will have probability O(δ8m/κ+1) to be in the interval
[δm+1, δm] at time 10. Now taking the above expectation over all possible intervals of
this form, we get a geometric sum of terms O(δ8m/κ+1δm(1−8/κ)) = O(δm+1) which
has a finite value. So everything looks nice. When we put things together in the end of
the subsection it is cleaner to condition on the exact position of the diffusion at time
T −9, but this just replaces sums by integrals and everything remains nicely bounded.

Proof (Proof of claim)

Recall that the initial diffusion Eq. (5.1) has a unique strong solution and so we can
work with respect to the filtration of the corresponding Brownian motion Bt . Consider
the exponential martingale exp(λBt − λ2t/2) and the bounded stopping time τ ′ =
(9+c)∧τ .Wecanuse the optional stopping theorem togetE(exp(λBτ ′−λ2τ ′/2)) = 1.
But on the other hand, we know that as αs remains always bounded, then from the
initial diffusion Eq. 5.1 it follows that we can write the winding as

wτ ′ =
∫ τ ′

0
cot

αs

2
ds = 2

√
κ

κ − 4
Bτ ′ + C ′

with C ′ random, but in [0, 2π ]. Thus we have

E exp

(
λ

∫ τ ′

0
cot

αs

2
ds

)
� E exp

(
4κ

(κ − 4)2
λ2τ ′/2

)

� E exp

(
4κ

(κ − 4)2
λ2(9 + c)/2

)

where the implied constants depend on λ, κ . Hence for any event F

E exp

(
λ

∫ τ ′

0
cot

αs

2
ds

)
|F)P(F) � E exp

(
4κ

(κ − 4)2
λ2(9 + c)/2

)

In particular, we can choose the event F = {9 < τ ≤ 9 + c}. Recall from the proof
of Lemma 5.5 that the probability of F is of order O(δ8/κ−1). And thus forgetting
the dependence on fixed λ, c, κ we get an upper bound of order O(δ1−8/κ ) on the
exponential moments. ��
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Control over the interval [T − 10, T − 9] for κ �= 4

Now we deal with the small remaining part from T − 10 to T − 9. Again, as over
this time window the process is absolutely continuous with respect to the process
conditioned on everlasting survival given by (5.8), it is sufficient to bound exponential
moments for the latter.

It might seem that we also have an additional conditioning pushing the endpoints
to lie in an interval [δm+1, δm]. However, in fact when putting the remaining part
together in the next paragraph, we will get rid of this dependence. Hence we need to
just control the exponential moments independently of the starting point at T −10 for
the process that is conditioned on the everlasting survival. Now as cot x

2 is decreas-
ing in [0, 2π ], then from stochastic coupling of different trajectories using the same
Brownianmotions, one can see that the exponential momentsE exp(λ

∫ T−9
T−10 cot

αs
2 ds)

are bounded by those coming from the process that starts at the point 0.
Finally, recall the form of the everlasting survival process (5.8):

dα∞
s = √

κdBs + 2 cot
α∞
s

2
ds

It follows that we can write the exponential moments of
∫ 1
0 1 cot α∞

s
2 as above using

the Brownian part:

∫ 1

0
cot

α∞
s

2
ds =

√
κ

2
B1 + C ′

with C ′ random, but in [0, 2π ] and conclude that the exponential moments are finite,
independent of where the process is at the time T − 10.

Putting the remaining part together for κ �= 4

Recall that themain part from thewinding came from the time interval I1 = [0, T−10].
Additional error terms come from intervals I2 = [T −10, T −9] and I3 = [T −9, τ ].
As the winding is given as an integral over time, we can decompose the winding over
the remaining part R = I2 ∪ I3 as wR = wI2 + wI3 . Denoting byFI1 the filtration of
the underlying Brownian Motion up to to time T − 10 , we can write the contribution
of the remaining part as:

Ec(e
λ(wI2+wI3 )|FI1)

For now this is a random variable. We Cauchy–Schwarz the expectation to get rid of
the dependence at the point T − 9 and gain an upper bound

Ec(e
λ(wI2+wI3 )|FI1) ≤ Ec(e

2λwI2 |FI1)
1/2

E(e2λwI3 |FI1)
1/2
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Now, start from the first term. As the conditioned process is a nice Markov process,
what happens over the time interval I2 = [T −10, T −9] depends on the filtrationFI1

only through its position at the time T − 10. But we saw that the positive exponential
moments over I2 have uniform bounds independent of the location of the process at
time T − 10. Thus:

Ec(e
λ(wI2+wI3 )|FI1) � Ec(e

2λwI3 |FI1)
1/2

For the second term, we condition further on the value of αT−9:

Ec(e
2λwI3 |FI1) = Ec(E(e2λwI3 |αT−9)|FI1)

In the discussion above we saw that

Ec(e
2λwI3 |α9) � α

1−8/κ
T−9

Thus

Ec(e
2λwI3 |FI1) � Ec(α

1−8/κ
T−9 |FI1)

Also, as argued above, the density of αT−9 satisfies Px (αT−9 ∈ dy) � sin
8
κ

y
2dy

independently of the starting point at T − 10. Thus the expectation is nicely finite and
indeed, putting everything together

Ec(e
λwR |FI1) = O(1)

where now the implied constant is deterministic.

Remaining part for κ = 4

Although the above strategy fails for κ = 4, the diffusion itself is simpler: the drift
term in (5.1) vanishes and the unconditioned process is really just twice a standard
Brownian motion. As we are just aiming for bounds of exponential moments, we can
well assume that we have the standard Brownian motion, denote it by Bt .

As above we aim to find upper bounds for positive (λ > 0) exponential moments:

E

[
exp

(
λ

∫ τ

0
cot

Bs

2
ds

)
|τ ∈ [10, 10 + c)

]

Start by noticing that in the space interval [0, 2π ] we have cot x
2 ≤ 4

x . Thus it
suffices to bound

E

[
exp

(
λ

∫ τ

0

1

Bs
ds

)
|τ ∈ [10, 10 + c)

]
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Next we separate cases Bτ = 0 and Bτ = 2π . The latter case is simple, as condi-
tioned on Bτ = 2π , we have a Bessel-3 process. With positive probability this process
reaches 2π in the time interval [10, 10+ c). Thus it suffices to bound just the relevant
exponential moments for a Bessel-3 process starting from a point in [0, 2π ]. This we
can again do by studying the relevant SDE as above for case κ �= 4. The SDE of
Bessel-3 is given by

dρt = dBt + 1

ρt
dt

Writing τ ′ = τ ∧ 10 + c, we have

E exp

(
λ

∫ τ ′

0

1

ρs
ds

)
� Eeλρτ ′

Thus, as the exponential moments for Bessel processes on the LHS certainly exist
[32], we have the desired upper bound.

For the case Bτ = 0 we need a bit more. Here, the idea is to condition on the exact
values of exit times τ ∈ [10, 10 + c) to obtain a family of Brownian excursions of
fixed length and to gain control over these excursions. In other words, we want to
write

E

[
exp

(
λ

∫ τ

0

1

Bs
ds

)
|τ ∈ [10, 10 + c), Bτ = 0

]

= E

[
E

(
exp

(
λ

∫ τ

0

1

Bs
ds

)
|τ, Bτ = 0

)
|τ ∈ [10, 10 + c)

]
(5.12)

and study E(exp(λ
∫ τ

0
1
Bs
ds)|τ, Bτ = 0).

First, notice that by stochastic coupling using the same Brownian motion, we can
certainly consider the starting point also to be at 0. How to describe this conditioned
process?We are conditioning on two events: (1) the process being back at zero at τ and
(2) remaining inside the interval for 0 < t < τ . Now, as is well known, the probability
law of a Brownian excursion can defined as a limit of nicely defined conditional laws.
Also, the second event has positive probability in all of the considered measures. Thus
we can condition in any order. In particular we can obtain our conditioned process
by taking a Brownian excursion and conditioning it to be lower than 2π . Now this
latter conditioning has positive probability, and so proving an upper bound on the
exponential moments over the usual excursions suffices our needs.

To control the integral over the Brownian excursion over time [0, 1], recall that the
scaled Brownian excursion is in fact just a Bessel-3 bridge with the following SDE
[32]:

dρt = dBt + 1

ρt
dt − ρt

1 − t
dt
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Then, as above we can write

∫ 0.5

0

1

ρt
dt = Bt +

∫ 0.5

0

ρt

1 − t
dt

Thus denoting by M∗ the maximum of the Bessel bridge in [0, 1], we have for some
positive constant c:

E exp

(
λ

∫ 0.5

0

1

ρs
ds

)
≤ eλ2/8

EeλcM∗

But this maximum of the Bessel 3-bridge is below the maximum of the usual
Bessel 3-process in [0, 1], and for the latter all exponential moments exist [32].
Thus E exp(λ

∫ 0.5
0

1
ρs
ds) = O(1). As the bridge is symmetric, it also follows that:

E exp(λ
∫ 1
0.5

1
ρs
ds) = O(1).

Finally, by Cauchy–Schwarz we have

E exp

(
λ

∫ 1

0

1

ρs
ds

)
= O(1)

Hence we have showed the existence on the relevant exponential moments over the
Bessel-3 bridges of length 1. But by scaling this amounts to the existence of these
moments for all bridges of fixed lengths in [10, 10 + c]. Moreover these bounds are
all dominated by those of the longest bridge. Thus we can uniformly upper bound the
term E(exp(λ

∫ τ

0
1
Bs
ds)|τ, Bτ = 0) in (5.12) and obtain also O(1) error bound for

κ = 4 uniformly over the starting point of the error interval.

Negative exponential moments and lower bounds

Finally, recall that by claim 5.2.3 in the beginning of this section, the work above
for positive exponential moments also implies the upper bound for λ < 0 and lower
bounds for all exponential moments. In other words we have shown that

Ec(e
λwR |FI1) � 1 (5.13)

with no randomness on the RHS. Here the implied constants depend on λ, κ and can
be chosen to be uniform for |λ| < λ0 for any choice of λ0 > 0.

5.2.4 The final result

Now we individually controlled the exponential moments over time intervals I1 =
[0, T − 10] and R = [T − 10, τ ]. There is one moment of dependency between them
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at time point T − 10, but this does no harm as our control over the remaining part was
uniform. We can write the winding as a sum over the time intervals:

w = wI1 + wR

Thus the exponential moments are given by

Ec(e
λw) = E(eλ(wI1+wR))

where again Ec means that we already consider the expectation with respect the com-
mon conditioning of τ ∈ [T, T + c]. It remains then to condition out the first part:

Ec(e
λw) = E(eλwI1Ec(e

λwR |FI1))

whereFI1 as above denotes the filtration of the underlying BMup to the end of the first
time interval. From (5.13) we know that the second term only can be adds a uniformly
bounded by a deterministic constant both from above and below. Thus the proposition
follows from plugging in the derived form (5.11) for the first term. ��
Remark 5.6 Of course this proofmethodworks in amuchwider context of conditioned
diffusions, hence we hope it could be of some independent interest as well.

6 Expected quantum Minkowski dimension of the SLEκ flow lines

In this section we aim to find the exact expected quantum Minkowski dimension of
the SLEκ flow lines and show that this does not satisfy the KPZ relation and to deduce
that the almost sure Hausdorff version of the KPZ relation is not satisfied either. For
technical reasons we now consider the unit disc as our underlying domain.

The main result can be then stated as follows:

Theorem 6.1 Consider the Liouville measure with 0 ≤ γ < 2 in the unit disc and let
0 < κ < 8. Then the expected quantum Minkowski dimension of the SLEκ flow lines
is given by qM,E < 1 satisfying

dM = (2 + γ 2/2)qM,E − γ 2(1 − κ/4)2q2M,E/2

where dM is the Minkowski dimension of the respective SLE curve.

Hence for 0 < κ < 8 the KPZ relation is not satisfied for the expected Minkowski
dimension. And from Proposition 3.2, we straight away deduce that:

Corollary 6.1 Consider the Liouville measure with 0 ≤ γ < 2 in the unit disc and
let 0 < κ < 8. Then almost surely the quantum Hausdorff dimension for the flow lines
SLEκ is below the dimension predicted by KPZ relation and hence the KPZ relation
is not satisfied in the almost sure Hausdorff version.
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The intuition behind this result can be gained by comparing the two images on
Fig. 1 in the introduction of the paper that illustrate the SLE8/3 flow line and level
line couplings. Indeed, we saw that zero level lines acted like the boundary of the
domain and hence the KPZ relation was not satisfied as the field was considerably
lower around them. Now looking at Fig. 1 we can also see that at least for κ close to 4,
the SLEκ flow lines still stick close to the level line. Hence similarly to the zero level
line case, the corresponding quantum contents of the coverings should be smaller and
thus the quantum dimension lower.

For κ = 0, κ = 8 we regain the KPZ relation, which is nice but not surprising
as κ = 0 should correspond to a straight line joining zero and infinity, i.e. become
independent of the field, and for κ = 8 the winding part itself should form the whole
field. So in some sense their behaviour is “field-independent”. On Fig. 2 we provide
two illustrative images by Scott Sheffield that indicate what happens when κ is near 0
or 8.

Proof strategy

Recall our simple proof strategy for SLE4: cover the curve with balls, look at their
scaling using Jensen to bring expectation inside integrals, and conclude. This does not
seem to work here. Of course already the fact we also want lower bounds asks for
some additional ideas. However, main problems are related to the additional winding
term in the coupling Theorem 2.2 for the flow lines:

– First, it is crucial to take averages here over the SLE process to make use of the
winding Theorem 5.1. This requires us to (in some sense) fix the covering balls
we are working with. Hence also the usefulness of the Minkowski version of the
KPZ relation.

– Second, the fact that winding is not defined on the SLE curve and that we can only
calculate it for a specific conditioning poses its constraints.

– Third, as a minor modification we now need to work with the chordal SLE drawn
up to the very end. the underlying domain is then cut into two pieces and it needs
some extra care.

Our strategy of attack makes use of a variant of the dyadic Whitney decompo-
sition which we call conformal-radius or CR-Whitney decomposition. It allows us
at the same time to work off the curve, nicely incorporate the results on winding
and still get the necessary information on the fractal geometry of the curve. Whitney
decomposition has been also used to study the geometry of the SLE in many of the
relevant papers. For example in the beautiful seminal paper by Rohde and Schramm
on basic properties of the SLE [36], it was used to provide the correct upper bounds
for the Minkowski dimension and thus Hausdorff dimension of traces for the SLE
curves.
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By using the CR-Whitney decomposition, the proofs of both the upper and lower
bounds for the quantum expected Minkowski dimension will follow the same outline.
To bound the Minkowski dimension we need to provide bounds for the Liouville
measure of a dyadic covering. We will do this in three steps: first, we estimate the
expected Liouville measure of a single CR-Whitney square for the SLE slit domain;
second, we provide an estimate on the expected Liouville measure over a collection of
suitable CR-Whitney squares; and finally, we translate this estimate into an estimate
about the combined measure of a dyadic covering.

6.1 CR-Whitney decomposition

Recall that dyadicWhitney decomposition of a domain is composed of dyadic squares
Q that satisfy: l(Q) ≤ d(Q) ≤ 4l(Q) where d(Q) is the distance of the square from
the boundary of the domain and l(Q) the side-length of the square.One way to achieve
a dyadic Whitney decomposition is to just pick all maximal dyadic squares with
d(Q) ≥ l(Q). The maximality will guarantee the other inequality. See for example
[18] or [36] for an usage in context.

It comes however out that it is easier for us not to work with the usual Whitney
squares, as this would make incorporating information on winding rather technical.
We hence work with a slight modification, where instead of normal distance we use
the conformal radius. Thus we define CR-Whitney squares as dyadic squares Q such
that they satisfy 4l(Q) ≤ CR(z0) ≤ 12l(Q). Notice that here we really condition on
the conformal radius of the centre, thus allowing to use the results on winding, i.e.
Theorem 5.1. We have an analogous CR-Whitney decomposition, which we state for
clarity as a separate lemma.

Lemma 6.1 (CR-Whitney decomposition) For every Jordain-domain of the complex
plane, we can find a decomposition of dyadic squares such that any Q ∈ W satisfies
4l(Q) ≤ CR(z0) ≤ 12l(Q), where CR(z0) is the conformal radius of the centre of z0
of Q, and that the interiors of the squares do not overlap.

Proof Again, pick all maximal dyadic squares satisfying 4l(Q) ≤ CR(z0). Then
using the triangle inequality and the relation CR(z0)/4 ≤ d(z0, ∂D) ≤ CR(c0), we
arrive that the maximality imposes CR(z0) ≤ l(8 + 2

√
2) ≤ 12l. ��

It is important for us that we can fully cover the slit domain with CR-Whitney
squares. However, we do not actually want to further use the disjointness condition.
We would like the event {Q is a CR-Whitney square} to be in exact correspondence
with conditioning on the conformal radius of its centre and sticking to the disjointness
condition would ruin this.

Hence we stress that from now on, being a CR-Whitney square only means condi-
tioning on its centre to satisfy certain inequalities.
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6.1.1 An estimate on the Green’s function

To estimate the Liouville measure of a CR-Whitney square, we need tight control on
the Green’s function inside a CR-Whitney square. This is established in the following
lemma, which might be well-known, but we could not locate a concrete reference in
the literature. It is similar to Harnack type of inequalities, only that we ask for additive
bounds. We state and prove it first for typical Whitney squares.

Lemma 6.2 Let D be some bounded simply connected domain. Write the Green’s
function in D in the form GD(x, y) = log 1

|x−y| + G̃D(x, y). Then if x, y belong to
the same Whitney square with l(Q) < 1 of D, we have

− log
1

d(Q, ∂D)
− C1 ≤ G̃D(x, y) ≤ − log

1

d(Q, ∂D)
+ C2

for some universal constants C1,C2.

However in fact we make use of the following straightforward corollary:

Corollary 6.2 The same holds for CR-Whitney squares with possibly different con-
stants

This indeed follows quickly, as one can for example notice that any CR-Whitney
square is either contained in a at most M-times bigger Whitney square or is tiled into
at most M-times smaller Whitney squares for some absolute constant M. The proof of
the lemma itself needs a bit more:

Proof (Proof of Lemma 6.2) The left-hand side is simple. For fixed x , G̃D(x, y) is
by definition the harmonic extension to D of − log 1

x−y on ∂D. Now we know that a
harmonic function inside a bounded domain achieves its minimum on the boundary.
Combining this with the fact that the boundary of D is at least at distance d(Q, ∂D)

for any x, y ∈ Q, we get the lower bound.
For the upper bound, we argue as follows: we know that the Green’s function in

the upper half plane is given by

GH(z, w) = log
1

|z − w| − log
1

|z − w|
Now pick f : H → D to be a conformal map and set x = f (z), y = f (w). Then by
the conformal invariance of the Green’s function, we have

log
1

|z − w| − log
1

|z − w| = log
1

|x − y| + G̃D(x, y)

Now using the complex version of the Mean Value Theorem, write x − y = f (z) −
f (w) = A(z − w) where A = Re( f ′(u)) + i Im( f ′(v)) for some u, v on the line
between z and w. Plugging this into the previous equation, we get

123



510 J. Aru

G̃D(x, y) = − log
1

|z − w| − log
1

|A|

Now using triangle inequality, we have |z − w| ≤ |z − w| + 2 Im(w). So using also
the definition of A again,

G̃D(x, y) ≤ − log
|A|

|x − y| + 2|A| Im(w)
− log

1

|A| = − log
1

|x − y| + 2|A| Im(w)

Now we know that |x − y| ≤ √
2l(Q). Also, we know that for Whitney squares the

side-length is up to fixedmultiplicative constants equal to the distance of the boundary.
Thus |x − y| ≤ cd(Q, ∂D).

Recall that from distortion theorems [31] it follows that for f analytic from D1 →
D2 we have

| f ′(z0)| � d( f (z0), D2)

d(z0, D1)
(6.1)

where the implied constants are absolute. Thus we get that

d(Q) � Im(w)| f ′(w)| � d(Q))

for some absolute constants and hence

G̃D(x, y) ≤ − log
1

cd(Q, ∂D)
− log

| f ′(w)|
|A| + C

for some absolute constant C . It finally remains to show an absolute bound on
|A|/| f ′(w)| to conclude the lemma.

Now, we know that Q can be covered by at most M images of Whitney squares in
H, where M is a universal constant [18]. Join these M Whitney squares with further
Whitney squares in H to make the region covered convex, i.e. a big rectangle. The
number of these additional squares can again be universally bounded.

Then z, w, u, v lie inside this region, and as they are only bounded hyperbolic
distance apart, the ratio of their imaginary parts is bounded. On the other hand this
bounded number of Whitney squares can be in turn covered by a uniformly bounded
number of connected Whitney squares in D. Thus also the ratios of distances of
f (z), f (w), f (u), f (v) from the boundary are bounded by constants. It follows again
from the distortion theorems (6.1) that also the ratios of the different f ′(·) are bounded,
giving us the claim. ��

Remark 6.1 The proof can be done in many different ways. For example, for the right-
hand side, i.e. the upper bound, one could also represent G̃D(x, y) using the Brownian
motion and use Beurling type of estimates. The proof using Whitney decomposition
seems to better fit the spirit of the rest of the paper.

123



KPZ relation does not hold for the level lines 511

6.1.2 Controlling winding inside a CR-Whitney square

A priori, conditioned on a dyadic square to be a CR-Whitney square we have infor-
mation on its winding only at the center of the square. This could be a problem, as
we have no control on the covariance structure of the winding. However, from the
geometric intuition of the winding number, it is clear that inside a CR-Whitney square
the winding has to be bounded up to an additive constant. Although the definition of
winding in our case is different (see discussion after the statement of Theorem 5.1),
this result also holds in our case. Again we state and prove it for more traditionalWhit-
ney squares, but use for CR-Whitney squares and although we cannot find a direct
reference, this does follow by a standard argument:

Lemma 6.3 Suppose Q is aWhitney square in the slit domain. Then the windingw(z)
satisfies w(z)− c ≤ w(z0) ≤ w(z)+ c, where z0 is the centre of the square and c > 0
is some absolute constants.

Proof By distortion theorems, we control well the ratios of absolute values of f ′
T ,

we want to translate this control to that of imaginary part of f ′
T . To do this, we use

the Borel–Carathodory theorem [43], which is an easy consequence of the Schwarz
lemma or Poisson representation. In a slightly constrained form it states that for an
analytic function g(z) with g(0) = 0 we can control its modulus inside a closed disc
of radius r < R by the maximum of its real part on the circle of radius R. More
explicitly, we have

|g(z)| ≤ 2r

R − r
sup

z∈∂B(0,R)

�g(z)

We apply this theorem

– g(z) = log f ′
T (z) − log f ′

T (z0), where fT is the map from the SLE slit domain
back to the upper half plane H and z0 is the center of our Whitney square Q

– r = l(Q)√
2
and R = l(Q) with l(Q) as before the sidelength of Q.

Firstly, as our domain in question is simply connected and f ′
T (z) is non-zero every-

where, it follows that g(z) is analytic. Secondly, the whole square Q fits in the closed
disc of radius r and the larger disc still fits into the domain as d(z0, ∂Ht ) ≥ 3l(Q)

2 .
Next, we need to control the real part of g(z). This real part is given by

�g(z) = log
| f ′

T (z)|
| f ′

T (z0)|

Now it can be seen that the disc of radius R centred at z0 is of bounded hyperbolic
diameter that is independent of the sidelength of the square l(Q) and the domain.
Hence by conformal invariance of the hyperbolic distance, also the images fT (z) and
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fT (z0) are only at bounded hyperbolic distance. It follows from distortion theorems

(6.1) that the ratio
| f ′

T (z)|
| f ′

T (z0)| is bounded by an absolute constant. Thus the same holds

for �g(z) .
Finally, the relative change in winding w.r.t z0 is given exactly by the imaginary

part of g(z) and the lemma follows. ��
Corollary 6.3 The same holds for CR-Whitney squares with a slightly different con-
stant.

6.2 Proof of the Theorem 6.1

Nowwe are set to prove the Theorem 6.1.We start with the upper bound and follow the
strategy outlined in the beginning of the section. In all sections we start by sampling
an SLEκ and then constructing the Liouville measure in the slit domain, using the
coupling results between the GFF and SLE. We make a few remarks that simplify the
further work and its write-up

1. We ignore at all phases the bounded harmonic correction term in the coupling,
because it only gives a bounded multiplicative constant as discussed in proof of
4.1.

2. As we sample the SLE curve until it cuts the unit disc into two, we are left with
two independent GFFs in both subdomains. However we can still consider the
Whitney decomposition of the unit disc with the SLE curve, and all estimates for
a single Whitney square depend only one one of these GFFs, hence we can also
forget about this additional issue.

3. For κ = 4 one needs to forget about winding and everything will go through.
For κ > 4 one needs to notice that χ changes sign and additionally take care of
sampling GFF independently in every subdomain as explained in remarks after
Theorem 2.2. Otherwise everything is exactly the same—indeed, even for points
cut-off from infinity by the curve, the winding is defined similarly in the coupling
Theorem 2.2 and the theorem on winding 5.1.

6.2.1 Upper bound

Upper bound for a CR-Whitney square

Consider a dyadic square Q of side-length l(Q) and denote by W the collection of
all CR-Whitney squares of the unit disc cut by the SLE curve. We will find an upper
bound to

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
]

where informally μ̃(dz) � μ(dz)e−γχw(z) is the Liouville measure now weighted
by the winding. This can be given concrete meaning using the circle-average regu-
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larization process as in Sect. 4. As winding is harmonic inside the slit domain, then
taking the regularization term δn ≤ 0.01l(Q), the circle-averages for winding give
its value at the centre. Now, from the corollary to Lemma 6.3 one can see that inside
a CR-Whitney square, the winding is equal up to a constant. So setting z0 to be the
centre of Q we can write

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
] � ESLE

[
e−γχqw(z0)Eh|SLE

(
μ(Q)q

) |Q ∈ W
]

Now, with only minor modifications we can use Lemma 4.1, to upper bound the
Liouville part without winding and get:

Eh|SLE
(
μ(Q)q)

) ≤ l(Q)(2+γ 2/2)q

So we are left with

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
]

� l(Q)(2+γ 2/2)q
ESLE

[
e−γχqw(z0)|Q ∈ W

]

But the as Q has side-length l(Q) and is conditioned to be a CR-Whitney square,
we are exactly conditioning the conformal radius CR(z0, SLE) ∈ [4l(Q), 12l(Q)].
Hence using the theorem on winding 5.1, we have

ESLE

[
e−γχqw(z0)|Q ∈ W

]
� l(Q)−γ 2(1−κ/4)2q2/2

Putting everything together, gives us

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
]

� l(Q)(2+γ 2/2)q−γ 2(1−κ/4)2q2/2

Upper bound for Liouville measure over all CR-Whitney squares

Next, letW≥n denote the collection of Whitney squares of side-length at most 2−n we
provide an upper bound for the sum

ESLEEh|SLE

⎛
⎝ ∑

Q∈W≥n

μ̃(Q)q

⎞
⎠

=
∑

Q∈S≥n

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
]
PSLE (Q ∈ W )

where the sum is over the collectionS≥n of dyadic squares of side-length at most 2−n .
Now for Q to be a CR-Whitney square, we certainly need its center z0(Q) to satisfy
CR(z0) ≤ 12l(Q). However, we know from [6] that the probability of this happening
is bounded by O(1)l(Q)1−κ/8 and so
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PSLE (Q ∈ W ) ≤ PSLE [CR(z0) ≤ 12l(Q)] � l(Q)1−κ/8

Hence, fixing some n ∈ N as themaximal size of the dyadic squares used, and combing
this previous estimate with the previous one for CR-Whitney squares, we have that
for any 1 > q > 0, δ > 0 with

(2 + γ 2/2)q − γ 2(1 − κ/4)2q2/2 = 1 + κ/8 + δ

the following upper bound bound holds:

ESLEEh|SLE

⎛
⎝ ∑

Q ∈W≥n

μ̃(Q)q

⎞
⎠ �

∑
k≥n

∑

l(Q)=2−k

22k2−k(2+δ) = 2−nδ

1 − 2δ

Notice that by making n large enough we can in fact make this sum arbitrarily small.

Almost sure upper bound for the covering

The final step of the proof is inspired by the (not yet published) book of Bishop and
Peres [8], where they discuss the notion of dimension related to Whitney decomposi-
tions. Suppose we have a covering of the SLE by dyadic squares Si ∈ Sn such that
their side-length is 2−n . The idea is to cover each dyadic squares by CR-Whitney
squares and obtain an estimation this way for the dyadic covering. See the figure
below, where we have illustrated the curve by a blue linear segment, a dyadic square
and (usual) Whitney squares covering this dyadic square:

The problem is that withWhitney square we never touch the curve itself, so in order
to proceed we need the following claim:
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Claim For κ < 8 the Liouville measure of SLEκ in forward coupling with the GFF
is almost surely zero.

Before proving the claim, let us show it implies the upper bound. Consider again
the collection of dyadic CR-Whitney squares of side-length at most 2−n , denoted by
W≥n and a dyadic square Si ∈ Sn intersecting the SLE curve. Recall that the CR-
Whitney squares cover the whole slit domain, also notice that no CR-Whitney square
intersecting Si can be larger than Si itself. Hence if the Liouville measure of the curve
itself is almost surely zero, we a.s. have:

μ̃(Si ) ≤
∑
Q∈Wi

μ̃(Q)

whereWi denotes the collection of dyadicCR-Whitney squares intersecting the interior
of Si .

Write

∑
Q∈Wi

μ̃(Q)q =
∑
Wi

μ̃(Q)μ̃(Q)q−1

Then for q < 1, we have μ̃(Q)q−1 ≥ μ̃(Si )q−1 and so

∑
Q∈Wi

μ̃(Q)q ≥ μ̃(Si )
q

Now as the collections of CR-Whitney squares Wi used to cover each dyadic square
that intersects the SLE curve are disjoint, we have:

∑
Si∈Sn

1(Si ∩ SLE �= ∅)μ̃(Si )
q ≤

∑
i

∑
Q∈Wi

μ̃(Q)q ≤
∑

Q∈W≥n

μ̃(Q)q

We can put everything together in expectation to get:

ESLEEh|SLE

⎛
⎝ ∑

Si∈Sn

1(Si ∩ SLE �= ∅)μ̃(Si )
q

⎞
⎠ ≤ ESLEEh|SLE

⎛
⎝ ∑

Q∈W≥n

μ̃(Q)q

⎞
⎠

Plugging in the estimate from the last section, we obtain:

ESLEEh|SLE
(
MQ

q (SLE, 2−n)
)

� 2−nδ

1 − 2δ

and thus certainly

lim sup
n↑∞

ESLE,h

(
MQ

q (SLE, 2−n)
)

< ∞
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Hence we see that qM,E < q for any q such that there is a δ > 0 with

(2 + γ 2/2)q − γ 2(1 − κ/4)2q2/2 = 1 + κ/8 + δ

Now we can just let δ ↓ 0 to obtain the claimed upper bound.

Proof (Proof of claim 6.2.1)
It only remains to prove that the Liouville measure for the SLEκ flow lines with κ < 8
is zero. We do it using a global “no loss of mass” argument. As this involves several
changes of integrals and limits, we have to be careful at all steps.

Denote by D the unit disc. Pick δ → 0 along powers of two.Recall that the Liouville
measure is defined as the limit of the δ− regularized measures, see Theorem 2.3. Thus
we have that

Eμ(D) = E lim
δ→0

μδ(D)

Now, from the proof of proposition 1.2 in [15] (or indeed, by a small calculation) it
follows that the limit can be taken outside the expectation:

Eμ(D) = lim
δ→0

E(μδ(D)

Hence we can write

Eμ(D) = lim
δ→0

E

∫

D
μδ(z)dz

= lim
δ→0

∫

D
Eμδ(z)dz

=
∫

D
lim
δ→0

Eμδ(z)dz

Here, the second equality follows from Fubini and the third from dominated conver-
gence. Now fixm large and write Am for the event that the flow line avoids the δm ball
around z, i.e. set Am = {SLE ∩ Bδm (z) = ∅}. Then we can continue by writing

Eμ(D) =
∫

D
lim
δ→0

(
ESLEEh|SLE (μδ(z)1(Am)) + ESLEEh|SLE (μδ(z)1(Ac

m))
)
dz

=
∫

D

(
lim
δ→0

ESLEEh|SLE (μδ(z)1(Am))+ lim
δ→0

ESLEEh|SLE (μδ(z)1(Ac
m))

)
dz

By boundedness and positivity writing the limit of a sum as sum of limits is fine. We
bound the second term using Cauchy-Schwarz:

ESLEEh|SLE
(
μδ(z)1(Ac

m)
)

≤
(
Eμδ(z)

2
)1/2

P(Ac
m)1/2
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But we know that P(Ac
m) � δm(1−κ/8). By plugging in μδ(z) = δγ 2/2ehδ(z) and using

the exponential moments of Gaussians, we see that the first term is bounded by δ−γ 2/2.
Thus the whole term is of order O(δ−γ 2/2+m/2(1−κ/8)) and by pickingm large enough,
we can force it to be o(δ). But then

Eμ(D) =
∫

D

(
lim
δ→0

ESLEEh|SLE (μδ(z)|Am)P(Am)

+ lim
δ→0

ESLEEh|SLE (μδ(z)|Ac
m)P(Ac

m)

)
dz

= o(δ) +
∫

D
lim
δ→0

ESLEEh|SLE (μδ(z)|Am)P(Am)dz

Here we have also integrated the error term over the domain that has bounded
mass.

Now notice that in the second term of the final expression, we never consider the
mass on the curve itself. Yet there is no loss of total mass. Thus, in expectation, the
mass on the curve is zero. Finally, the mass is clearly non-negative and hence it must
be almost surely zero. ��
Remark 6.2 In fact this is the claim where really the fractal geometry of the SLE, the
coupling of GFF and SLE and the construction of Liouville measure are all mixed
together.

6.2.2 Lower bound

The strategy is very similar, though small changes are needed at every step:

Lower bound for a CR-Whitney square

Again, to start off consider a dyadic square Q of side-length l(Q) and denote by W

the collection of CR-Whitney squares of the unit disc cut by the SLE curve. We aim
to provide a lower bound to

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
]

where as before μ̃ � μ(z)e−γχw(z) is informally the Liouville measure weighed by
the winding. From Lemma 6.3 we see that w(z) ≤ w(z0) +C ′, where z0 is the centre
of Q. So we can write

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
] � ESLE

[
e−γχqw(z0)Eh|SLE

(
μ(Q)q

) |Q ∈ W
]

Weneed to lower boundEh|SLE (μ(Q)q) and this can be done usingKahane convexity
inequality [20,35], that reduces comparing themoments of balls inmultiplicative chaos
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measures to a comparison of covariance kernels. For the convenience of the reader we
restate the lemma from [20] in a slightly more convenient manner:

Lemma 6.4 (Convexity inequality of GMC) Let G1(x, y) ≤ G2(x, y) be two covari-
ance kernels and let μ1 and μ2 be the two associated Gaussian multiplicative chaos
measures. Let F be a convex function on R+ and K some compact subset. Then
EF(μ1(K )) ≤ EF(μ2(K )).

To apply this convexity inequality directly, we need to change the regularization
of the Liouville measure to use the exact variance, as used in the literature on the
multiplicative chaos. Start by picking δn = 2−n to get the regularization sequence for
the construction of Liouville measure in Theorem 2.3. We have for δn < 0.01l(Q),

μh(Q) = lim
δn↓0

μhδn (Q) = lim
δn↓0

∫

Q
δ
γ 2/2
n eγ hδn (z)dz

where hδn (z) is a Gaussian field with the kernel

Gδn (x, y) = log
1

δn ∨ |x − y| + G̃(x, y)

Notice that as in the whole square we are at distance at least say 10δn from the
boundary, we indeed have inside our square G̃(x, y) = G̃δn (x, y) where the former is
the harmonic correction corresponding to the usual Green’s function of the domain,
and the latter is the harmonic correction corresponding to regularizedGreen’s function.

Thus μh(Q) can be rewritten in terms of Gaussian multiplicative chaos as

μh(Q) � l(Q)γ
2/2 lim

δn↓0

∫

Q
eγ hδn (z)−γ 2/2E(hδn (z)2)dz (6.2)

We now consider two Gaussian fields h1, h2, with the covariance kernels respectively
denoted by G1(x, y) and G2(x, y) and given as follows:

G1(x, y) = G(x, y) + log
1

l(Q)
+ C

for some constant C and the usual Green’s function G. Now, we take the constant
C = C2 from Lemma 6.2. Thus when we define

G2(x, y) = log
1

|x − y|
we have that G2 ≥ G1. Moreover, we can consider only sufficiently small Whitney
squares such that log 1

l(Q)
+C is positive and hence h1 can be written as a sum of the

Gaussian free field and an independent Gaussian Y of variance log 1
l(Q)

+ C . Now,
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by [20,34] we know that the multiplicative chaos measures for these fields are nicely
defined andwewill denote them by just “eh1(z)−E(h1(z)2)” etc. Hence as q < 1 and thus
x → xq is concave, we have by Kahane convexity inequality cited above [20,35]:

E

(∫

Q
eγ h1(z)−γ 2/2E(h1(z)2)

)q

≥ E

(∫

Q
eγ h2(z)−γ 2/2E(h2(z)2)

)q

Using the fact that h1 = h + Y , that Y is an independent Gaussian and that h, h2
satisfy the scaling relation 3.1 [35], we have

E

(∫

Q
eγ h(z)−γ 2/2E(h(z)2)

)q

≥ l(Q)2q

Finally as Gδn (x, y) ≤ G(x, y) we can translate this back to the regularized field to
get:

E

(∫

Q
eγ hδn (z)−γ 2/2E(hδn (z)2)dz

)q

≥ l(Q)2q

and thus μh(Q) � l(Q)(2+γ 2/2)q So taking the expectation w.r.t. SLE, we have

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
]

� l(Q)(2+γ 2/2)q
ESLE

[
e−γχqw(z0)|Q ∈ W

]

But the as Q has side-length l(Q) and is conditioned to be a CR-Whitney square, we
are conditioning on

CR(z0, SLE) ∈ [4l(Q), 12l(Q)]

Hence using the Theorem 5.1, we have

ESLE

[
e−γχqw(z0)|Q ∈ W

]
� l(Q)−γ 2(1−κ/4)2q2/2

Putting everything together, gives us

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q ∈ W
]

� l(Q)(2+γ 2/2)q−γ 2(1−κ/4)2q2/2

Lower bound for Liouville measure over level-n CR-Whitney squares

This time we do not aim to bound the whole CR-Whitney decomposition, but are
happy with analysing the collection of level-n CR-Whitney squares Wn . Moreover,
we relax the definition of CR-Whitney square and call every dyadic square satisfying
4l(Q) ≤ CR(z0) ≤ 150l(Q) a CR-Whitney square, where as before z0 is the centre
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of Q. The reason will become clear when we aim for the lower bound of the dyadic
covering.

Write as earlier

ESLEEh|SLE

⎛
⎝∑

Wn

μ̃(Q)q

⎞
⎠=

∑
Q

ESLE
[
Eh|SLE

(
μ̃(Q)q

) |Q∈Wn
]
PSLE (Q∈Wn)

and pick 1 > q > 0, δ > 0 with

(2 + γ 2/2)q − γ 2(1 − κ/4)2q2/2 = 1 + κ/8 − δ

Now the probability of being a CR-Whitney square can be exactly calculated using
the SLE Green’s function [25], and is still up to some multiplicative constant of order
l(Q)1−κ/8. Thus using this probability and the estimate on the CR-Whitney square
itself we finally get

ESLEEh|SLE

⎛
⎝∑

Wn

μ̃(Q)q

⎞
⎠ � 22n2−n(2−δ) ≥ 2nδ

which is arbitrarily large for n large.

Lower bound for the covering

To make the final step from the lower bound on CR-Whitney squares to a lower bound
on the covering, our idea is to locate at least one CR-Whitney square inside each
dyadic square in the covering of the SLE. At first sight this might seem hard, because
we would also need to handle the case when SLE almost fills the square. However,
due to estimates of the SLE Green’s function, it costs us nothing to require the SLE
curve to leave some open space around the centre of the square, just enough to fill in
some CR-Whitney squares.

To be more precise, notice first that in order for a dyadic square S of side-length
l(S) = 2−n to intersect the SLE curve, it suffices that the centre of this square has
conformal radius less than l(S)/2. On the other handwe can also require the conformal
radius to be more than l(S)/3 without changing the order of magnitude of our event
[25].

Then a small geometrical calculation shows that all four dyadic squares of side-
length l(S)2−6 neighbouring the centre of square S will necessarily be CR-Whitney
squares. This is of course also the reason for relaxing the definition of CR-squares in
the previous section.

The rest now follows easily. Indeed, cut Si first into four dyadic square Q′
i, j with

j = 1, 2, 3, 4 of sidelength l(Si )2−1. Then fromJensen applied to the concave function
xq :
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∑
Si∈Dn

1(SLE ∩ Si )μ̃(Si )
q �

∑
Si∈Dn

1(SLE ∩ Si )
∑

j=1,2,3,4

μ̃(Q′
i, j )

q

Now denote by Qi, j the corresponding dyadic squares of sidelength l(Si )2−1 that have
the centre of Si as one corner. Thus

∑
j=1,2,3,4

μ̃(Q′
i, j )

q ≥
∑

j=1,2,3,4

μ̃(Qi, j )
q

But we saw above {SLE ∩ Si } ⊃ ∪ j=1,2,3,4{Qi, j ∈ Wn+6} and so

1(SLE ∩ Si ) ≥ 1/4
∑

j=1,2,3,4

1(Qi, j ∈ Wn+6)

Thus we can further lower bound the RHS by a sum over the CR-Whitney squares on
level n + 6 that are around the centre of a level n dyadic square. When we denote this
specific collection by W ′

n+6, we have:

ESLEEh|SLE
∑
Si∈Dn

1(SLE ∩ Si )μ̃(Si )
q � ESLEEh|SLE

⎛
⎝ ∑
W ′

n+6

μ̃(Q)q

⎞
⎠

Now, W ′
n+6 forms a constant proportion of all CR-Whitney squares of size n + 6,

and thus we can use the previous estimate on the sum of n-th level Whitney squares.
Thus we get that for n large enough

ESLEEh|SLEMQ
q (SLE, 2−n) � 2nδ

From this it follows that q < qM,E for any q such that there is a δ > 0 with

(2 + γ 2/2)q − γ 2(1 − κ/4)2q2/2 = 1 + κ/8 − δ

The lower bound for the expepcted quantum Minkowski dimension follows by taking
δ ↓ 0. This also finishes the proof of the Theorem 6.1.

7 Further questions and speculations

Finally, we list a few open questions to point in future directions and in hope that they
could provoke some thought. We start from more realistic questions and finish in a
more speculative spirit.

The first natural question is to what extent these results carry over to processes
related to SLEκ that are also coupled to the GFF. Firstly, there are CLE processes. For
example CLE4 should describe the contour lines of the GFF. It is natural to expect that
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all the results from this paper should carry over for these CLE processes coupled with
the field and in fact give the sameKPZ-like relations. Indeed, as soon as exact coupling
results have been published, one can probably answer the following question:

Question 7.1 Show that the KPZ type of relation for CLE loops is the same as above,
and if possible, find also the KPZ type of relation for the CLE gasket.

Similarly, similarly to usual SLEκ , the SLEκ,ρ processes are also coupled with the
GFF as flow lines [29], which of course hints the following question:

Question 7.2 Determine the KPZ type of relations for all flow and counterflow lines
of the GFF.

What if we condition the SLE curve to pass closely through two different points,
how are their windings related? Or in other words, can we determine correlations for
the winding? It would be interesting to attack this question by trying to make use
of the techniques developed for the SLE-GFF coupling, introduced in [29] and its
subsequent papers. Answering the question might allow us to replace the expected
quantum Minkowski dimension with an almost sure version.

Question 7.3 Find the exponential moments of wz1 + wz2 conditioned on the SLE to
pass close by points z1 and z2.

We finish with amore general question. In this paper we showed that there is natural
deviation from the KPZ relation. But by howmuch can one deviate? One would expect
there to be non-trivial upper bounds at least for sufficiently small positive Hausdorff
dimension, as then they cannot be filled with γ−thick points. Similarly one would
hope for non-trivial lower bounds for at least large enough Hausdorff dimension.

Question 7.4 Find best bounds ub(γ, q) and lb(γ, q) such that for any 0 ≤ γ < 2
and 0 ≤ q ≤ 2 and any (possibly field-dependent) set A of Hausdorff dimension
qH (A) = q, we have lb(γ, q) ≤ qQ

H (A) ≤ ub(γ, q) where the quantum dimensions
are defined with respect to the μγ Liouville measure.
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8 Appendix

Proof (Proof of lemma 5.1) The proof is the first moment argument in [6], with two
slight differences: (1) we follow the evolution of the conformal radius and not the
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distance itself (2) we also follow the time evolution of winding. The basic strategy
is the following: we transform our chordal SLE in H to a process in D for which
the image of z0 is fixed. Then pick a convenient time change, and study the process
induced for the driving Brownian motion. As in [6] one works with the map gt (z)
instead of ft (z) and we want to keep close to his exposition, we first remark that for
the question of winding as defined in 5.1 this is equivalent—g′

t (z) is equal to f ′
t (z).

Fixing the image of z0

Denote by Ht = H\Kt the SLE slit domain and consider the map g̃t : Ht → D from
the slit domain to the unit disc, given by

g̃t : z → gt (z) − gt (z0)

gt (z) − gt (z0)

It maps ∞ → 1 and z0 → 0. We have that

log g̃′
t (z) = log g′

t (z) − log(gt (z) − gt (z0))

First of all, one can see that the conformal radius

CR(z0, Ht ) = 1

|g̃′
t (z0)|

Second, we have that

arg g̃′
t (z0) = arg g′

t (z0) − π/2

Hence ∂tw(z0) = ∂t arg g̃′
t (z0) and hence we can concentrate on studying arg g̃′

t (z0).
The driving function of the Loewner chain maps to a process on the unit circle by:

β̃t = βt − gt (z0)

βt − gt (z0)

Defining a time change

ds = (β̃t − 1)4

|gt (z0) − gt (z0)|2β̃2
t

dt

it is shown in [6] that we can write the time evolution of g̃t as hs = g̃t (s) where hs
satisfies the following equation:

∂shs(z) = 2β̃t hs(z)(hs(z) − 1)

(1 − β̃t )(hs(z) − β̃t )
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Now differentiating this with respect to s at z = z0, we get

∂sh
′
s(z0) = 2h′

s(z0)

1 − β̃s

Hence

∂s log h
′
s(z0) = 2

1 − β̃s

From here two things follow. Firstly, as

CR(z0, Ht ) = 1

|h′
s(z0)|

and

∂s log|h′
s(z0)| = 1

we can follow the evolution of the conformal radius:

∂s logCR(z0, Hs) = −1 (8.1)

Secondly, after writing βs = exp(iαs), a small calculation gives that we can also
follow the winding:

∂s arg h
′
s(z0) = cot

αs

2
(8.2)

Hence, everything is at our hand as soon as we understand the transformed driving
process αs .

The diffusion of the driving process

Indeed, putting faith in [6], Ito’s formula gives that αs defined as above by βs =
exp(iαs) is a diffusion in (0, 2π) starting from α0 = 2 arg gt (z0) and satisfying the
following stochastic differential equation:

dαs = √
κdBs + κ − 4

2
cot

αs

2
ds

where Bs is a standard 1D Brownian Motion. This is well-defined and omits a unique
strong solution up to the first exit-time.

As for κ < 4 the drift term is attractive towards the boundary, then comparing to
Brownianmotion, one can conclude that the exit time τ for the diffusion is almost surely
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finite. Moreover, looking at 8.1, we can put the hitting time in exact correspondence
with the conformal radius. Indeed, we have

CR(z0, Hτ ) = CR(z0,H)e−τ

Moreover, from (8.2) the claimed form for the winding also follows:

w(z0) =
∫ τ

0
∂s arg h

′
s(z0) =

∫ τ

0
cot

αs

2
ds

��
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