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Abstract We consider the problem of nonparametric estimation of a convex regres-
sion function φ0. We study the risk of the least squares estimator (LSE) under the nat-
ural squared error loss. We show that the risk is always bounded from above by n−4/5

modulo logarithmic factors while being much smaller when φ0 is well-approximable
by a piecewise affine convex function with not too many affine pieces (in which case,
the risk is at most 1/n up to logarithmic factors). On the other hand, when φ0 has
curvature, we show that no estimator can have risk smaller than a constant multi-
ple of n−4/5 in a very strong sense by proving a “local” minimax lower bound. We
also study the case of model misspecification where we show that the LSE exhibits the
same global behavior provided the loss is measured from the closest convex projection
of the true regression function. In the process of deriving our risk bounds, we prove
new results for the metric entropy of local neighborhoods of the space of univariate
convex functions. These results, which may be of independent interest, demonstrate
the non-uniform nature of the space of univariate convex functions in sharp contrast
to classical function spaces based on smoothness constraints.
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1 Introduction

We consider the problem of estimating an unknown convex function φ0 on [0, 1] from
observations (x1,Y1), . . . , (xn,Yn) drawn according to the model

Yi = φ0(xi ) + ξi , for i = 1, . . . , n, (1)

where x1, . . . , xn are fixed points in [0, 1] and ξ1, . . . , ξn represent independent mean
zero errors. Convex regression is an important problem in the general area of non-
parametric estimation under shape constraints. It often arises in applications: typical
examples appear in economics (indirect utility, production or cost functions), medicine
(dose response experiments) and biology (growth curves).

The most natural and commonly used estimator for φ0 is the full least squares
estimator (LSE), φ̂ls , which is defined as any minimizer of the LS criterion, i.e.,

φ̂ls ∈ argmin
ψ∈C

n∑

i=1

(Yi − ψ(xi ))
2 ,

where C denotes the set of all real-valued convex functions on [0, 1]. φ̂ls is not unique
even though its values at the data points x1, . . . , xn are unique. This follows from
that fact that (φ̂ls(x1), . . . , φ̂ls(xn)) ∈ R

n is the projection of (Y1, . . . ,Yn) on a closed
convex cone. A simple linear interpolation of these values leads to a unique continuous
and piecewise linear convex function with possible knots at the data points, which can
be treated as the canonical LSE. The canonical LSE can be easily computed by solving
a quadratic program with (n − 2) linear constraints.

Unlike other methods for function estimation such as those based on kernels which
depend on tuning parameters such as smoothing bandwidths, the LSE has the obvious
advantage of being completely automated. It was first proposed by [20] for the estima-
tion of production functions and Engel curves. Algorithms for its computation can be
found in [13] and [14]. The theoretical behavior of the LSE has been investigated by
many authors. Its consistency in the supremum norm on compact sets in the interior
of the support of the covariate was proved by [19]. Mammen [22] derived the rate
of convergence of the LSE and its derivative at a fixed point, while [16] proved con-
sistency and derived its asymptotic distribution at a fixed point of positive curvature.
Dümbgen et al. [12] showed that the supremum distance between the LSE and φ0,
assuming twice differentiability, on a compact interval in the interior of the support of
the design points is of the order (log(n)/n)2/5.

In spite of all the above mentioned work, surprisingly, not much is known about
the global risk behavior of the LSE under the natural loss function:

�2(φ,ψ):=1

n

n∑

i=1

(φ(xi ) − ψ(xi ))
2 . (2)

This is themain focus of our paper. In particular, we satisfactorily address the following
questions in the paper: At what rate does the risk of the LSE φ̂ls decrease to zero?
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Global risk bounds and adaptation 381

How does this rate of convergence depend on the underlying true function φ0 ∈ C; i.e.,
does the LSE exhibit faster rates of convergence for certain functions φ0? How does
φ̂ls behave, in terms of its risk, when the model is misspecified, i.e., the regression
function is not convex?

We assume, throughout the paper, that, in (1), x1 < x2 < · · · < xn are fixed design
points in [0, 1] satisfying

c1 ≤ n(xi − xi−1) ≤ c2, for i = 2, 3, . . . , n, (3)

where c1 and c2 are positive constants, and that ξ1, . . . , ξn are independent normally
distributed random variables with mean zero and variance σ 2 > 0. In fact, all the
results in our paper, excluding those in Sect. 5, hold under the milder assumption of
subgaussianity of the errors. Our contributions in this paper can be summarized in the
following

1. We establish, for the first time, a finite sample upper bound for risk of the LSE φ̂ls

under the loss �2 in Sect. 2. The analysis of the risk behavior of φ̂ls is complicated
due to two facts: (1) φ̂ls does not have a closed form expression, and (2) the class C
(over which φ̂ls minimizes the LS criterion) is not totally bounded. Our risk upper
bound involves a minimum of two terms; see Theorem 2.1. The first term says
that the risk Eφ0�

2(φ̂ls, φ0) is bounded by n−4/5 up to logarithmic multiplicative
factors in n. The second term in the risk bound says that the risk is bounded from
above by a combination of the parametric rate 1/n and an approximation term that
dictates how well φ0 is approximated by a piecewise affine convex function (up
to logarithmic multiplicative factors). Our risk bound, in addition to establishing
the n−4/5 worst case bound, implies that φ̂ls adapts to piecewise affine convex
functions with not too many pieces (see Sect. 2 for the precise definition). This is
remarkable because the LSE minimizes the LS criterion over all convex functions
with no explicit special treatment for piecewise affine convex functions.

2. In the process of proving our risk bound for the LSE, we prove new results for
the metric entropy of balls in the space of convex functions. One of the standard
approaches to finding risk bounds for procedures based on empirical risk min-
imization (ERM) says that the risk behavior of φ̂ls is determined by the metric
entropy of balls in the parameter space around the true function (see, for exam-
ple, [4,23,30,32]). The ball around φ0 in C of radius r is defined as

S(φ0, r) := {φ ∈ C : �2(φ, φ0) ≤ r2}. (4)

Recall that, for a subset F of a metric space (X , ρ), the ε-covering number of F
under the metric ρ is denoted by M(ε,F , ρ) and is defined as the smallest number
of closed balls of radius ε whose union containsF . Metric entropy is the logarithm
of the covering number.
We prove new upper bounds for the metric entropy of S(φ0, r) in Sect. 3. These
bounds depend crucially on φ0.When φ0 is a piecewise affine function with not too
many pieces, the metric entropy of S(φ0, r) is much smaller than when φ0 has a
second derivative that is bounded from above and below by positive constants. This
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difference in the sizes of the balls S(φ0, r) is the reason why φ̂ls exhibits different
rates for different convex functions φ0. It should be noted that the convex functions
S(φ0, r) are not uniformlybounded andhence existing results on themetric entropy
of classes of convex functions (see [5,11,18]) cannot be used directly to bound the
metric entropy of S(φ0, r). Our main risk bound Theorem 2.1 is proved in Sect. 4
using the developed metric entropy bounds for S(φ0, r). These new bounds are
also of independent interest.

3. We investigate the optimality of the rate n−4/5. We show that for convex functions
φ0 having a bounded (from both above and below) curvature on a sub-interval of
[0, 1], the rate n−4/5 cannot be improved (in a very strong sense) by any other
estimator. Specifically we show that a certain “local” minimax risk (see Sect. 5
for the details), under the loss �2, is bounded from below by n−4/5. This shows,
in particular, that the same holds for the global minimax rate for this problem.

4. We also provide risk bounds in the case of model misspecification where we do
not assume that the underlying regression function in (1) is convex. In this case we
prove the exact same upper bounds for Eφ0�

2(φ̂ls, φ0) where φ0 now denotes any
convex projection (defined in Sect. 6) of the unknown true regression function.
To the best of our knowledge, this is the first result on global risk bounds for the
estimation of convex regression functions under model misspecification. Some
auxiliary results about convex functions useful in the proofs of the main results
are deferred to “Appendix”.

Two special features of our analysis are that: (1) all our risk-bounds are non-asymptotic,
and (2) none of our results uses any (explicit) characterization of the LSE (except that
it minimizes the least squares criterion) as a result of which our approach can, in
principle, be extended to more complex ERM procedures, including shape restricted
function estimation in higher dimensions; see e.g., [10,26,27].

Our adaptation behavior of the LSE implies in particular that the LSE converges
at different rates depending on the true convex function φ0. We believe that such
adaptation is rather unique to problems of shape restricted function estimation and is
currently not very well understood. For example, in the related problem of monotone
function estimation, which has an enormous literature (see e.g., [3,15,33] and the
references therein), the only result on adaptive global behavior of the LSE is found
in [17]; also see [29]. This result, however, holds only in an asymptotic sense and
only when the true function is a constant. Results on the pointwise adaptive behavior
of the LSE in monotone function estimation are more prevalent and can be found,
for example, in [7,8,21]. For convex function estimation, as far as we are aware,
adaptation behavior of the LSE has not been studied before. Adaptation behavior for
the estimation of a convex function at a single point has been recently studied by [6]
but they focus on different estimators that are based on local averaging techniques.

2 Risk analysis of the LSE

Before stating our main risk bound, we need some notation. Recall that C denotes
the set of all real-valued convex functions on [0, 1]. For φ ∈ C, let L(φ) denote the
“distance” of φ from affine functions. More precisely,
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L(φ):= inf {�(φ, τ ) : τ is affine on [0, 1]}.

Note that L(φ) = 0 when φ is affine.
We also need the notion of piecewise affine convex functions. A convex function

α on [0, 1] is said to be piecewise affine if there exists an integer k and points 0 =
t0 < t1 < · · · < tk = 1 such that α is affine on each of the k intervals [ti−1, ti ] for
i = 1, . . . , k. We define k(α) to be the smallest such k. Let Pk denote the collection
of all piecewise affine convex functions with k(α) ≤ k and let P denote the collection
of all piecewise affine convex functions on [0, 1].

We are now ready to state our main upper bound for the risk of φ̂ls .

Theorem 2.1 Let R:=max(1,L(φ0)). There exists a positive constant C depending
only on the ratio c1/c2 such that

Eφ0�
2(φ̂ls, φ0) ≤ C

(
log

en

2c1

)5/4

×min

⎡

⎣
(

σ 2
√
R

n

)4/5

, inf
α∈P

(
�2(φ0, α) + σ 2k5/4(α)

n

)⎤

⎦

provided

n ≥ C
σ 2

R2

(
log

en

2c1

)5/4

.

Because of the presence of the minimum in the risk bound presented above, the bound
actually involves two parts. We isolate these two parts in the following two separate
results. The first result says that the risk is bounded by n−4/5 up tomultiplicative factors
that are logarithmic in n. The second result says that the risk is bounded from above
by a combination of the parametric rate 1/n and an approximation term that dictates
how well φ0 is approximated by a piecewise affine convex function (up to logarithmic
multiplicative factors). The implications of these two theorems are explained in the
remarks below. It is clear that Theorems 2.2 and 2.3 together imply Theorem 2.1. We
therefore prove Theorem 2.1 by proving Theorems 2.2 and 2.3 separately in Sect. 4.

Theorem 2.2 Let R:=max(1,L(φ0)). There exists a positive constant C depending
only on the ratio c1/c2 such that

Eφ0�
2
(
φ̂ls, φ0

)
≤ C

(
log

en

2c1

)(
σ 2

√
R

n

)4/5

whenever

n ≥ C

(
log

en

2c1

)5/4
σ 2

R2 .
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Theorem 2.3 There exists a constant C, depending only on the ratio c1/c2, such that

Eφ0�
2(φ0, φ̂ls) ≤ C

(
log

en

2c1

)5/4

inf
α∈P

(
�2(φ0, α) + σ 2k5/4(α)

n

)
(5)

for all n.

The following remarks will better clarify the meaning of these results. The first remark
below is about Theorem 2.2. The later three remarks are about Theorem 2.3.

Remark 2.1 (Why convexity is similar to second order smoothness) From the classical
theory of nonparametric statistics, it follows that this is the same rate that one obtains
for the estimation of twice differentiable functions (satisfying a condition such as
supx∈[0,1] |φ′′

0 (x)| ≤ B) on the unit interval. In Theorem2.2, we prove that φ̂ls achieves
the same rate (up to log factors) when the true function is convex under no assumptions
whatsoever on the smoothness of the function. Therefore, the constraint of convexity is
similar to the constraint of second order smoothness. This has long since been believed
to be true, but to the best of our knowledge, Theorem 2.2 is the first result to rigorously
prove this via a nonasymptotic risk bound for the estimator φ̂ls with no assumption of
smoothness.

Remark 2.2 (Parametric rates for piecewise affine convex functions) Theorem 2.3
implies that φ̂ls has the parametric rate for estimating piecewise affine convex func-
tions. Indeed, suppose φ0 is a piecewise affine convex function on [0, 1] i.e., φ0 ∈ P .
Then using α = φ0 in (5), we have the risk bound

Eφ0�
2(φ0, φ̂ls) ≤ C

(
log

en

2c1

)5/4
σ 2k5/4(φ0)

n
.

This is the parametric rate 1/n up to logarithmic factors and is of course much smaller
than the nonparametric rate n−4/5 given in Theorem 2.2. Therefore, φ̂ls adapts to each
class Pk of piecewise convex affine functions.

Remark 2.3 (Automatic adaptation) Risk bounds such as (5) are usually provable for
estimators based on empirical model selection criteria (see, for example, [2]) or aggre-
gation (see, for example, [25]). Specializing to the present situation, in order to adapt
over Pk as k varies, one constructs LSE over each Pk and then either selects one
estimator from this collection by an empirical model selection criterion or aggregates
these estimators with data-dependent weights. While the theory for such penaliza-
tion estimators is well-developed (see e.g., [2]), these estimators are computationally
expensive, might rely on certain tuning parameters which might be difficult to choose
in practice and also require estimation of σ 2. The LSE φ̂ls is very different from these
estimators because it simply minimizes the LS criterion over the whole space C. It is
therefore very easy to compute, does not depend on any tuning parameter or estimates
for σ 2 and, remarkably, it automatically adapts over the classes Pk as k varies.
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Remark 2.4 (Why convexity is different from second order smoothness) In Remark
2.1, we argued how estimation under convexity is similar to estimation under second
order smoothness. Here we describe how the two are different. The risk bound given
by Theorem 2.3 crucially depends on the true function φ0. In other words, the LSE
converges at different rates depending on the true convex function φ0. Therefore, the
rate of the LSE is not uniform over the class of all convex functions but it varies
quite a bit from function to function in that class. As will be clear from our proofs,
the reason for this difference in rates is that the class of convex functions C is locally
non-uniform in the sense that the local neighborhoods around certain convex functions
(e.g., affine functions) are much sparser than local neighborhoods around other convex
functions. On the other hand, in the class of twice differentiable functions, all local
neighborhoods are, in some sense, equally sized.

Remark 2.5 (On the logarithmic factors) We believe that Theorems 2.2 and 2.3 might
have redundant logarithmic factors. In particular, we conjecture that there should
be no logarithmic term in Theorem 2.2 and that the logarithmic term should be
log(en/(2c1)) instead of (log(en/(2c1)))5/4 in Theorem 2.3; cf. analogous results in
isotonic regression—[33] and [9]. These additional logarithmic factors mainly arise
due to the fact that the class S(φ0, r), of convex functions appearing in the proofs, is not
uniformly bounded. Sharpening these factors might be possible by using an explicit
characterization of the LSE (as was done in [33] and [9] for isotonic regression) and
other techniques that are beyond the scope of the present paper.

The proofs of Theorems 2.2 and 2.3 are presented in Sect. 4. A high level overview
of the proof goes as follows. The convex LSE is an ERM procedure. These procedures
are very well studied and numerous risk bounds exist in mathematical statistics and
machine learning (see, for example, [4,23,30,32]). These results essentially say that
the risk behavior of φ̂ls is determined by the metric entropy of the balls S(φ0, r)
(defined in (4)) in C around the true function φ0. Controlling the metric entropy of the
S(φ0, r) is the key step in the proofs of Theorems 2.2 and 2.3. The next section deals
with bounds for the metric entropy of S(φ0, r).

3 The local structure of the space of convex functions

In this section, we prove bounds for the metric entropy of the balls S(φ0, r) as φ0
ranges over the space of convex functions. Our results give new insights into the local
structure of the space of convex functions.We show that the metric entropy of S(φ0, r)
behaves differently for different convex functions φ0. This is the reason why the LSE
exhibits different rates of convergence depending on the true function φ0. The metric
entropy of S(φ0, r) is much smaller when φ0 is a piecewise affine convex function
with not too many affine pieces than when φ0 has a second derivative that is bounded
from above and below by positive constants.

The next theorem is the main result of this section.

Theorem 3.1 There exists a positive constant c depending only on the ratio c1/c2
such that for every φ0 ∈ C and ε > 0, we have
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logM(ε, S(φ0, r), �) ≤ c

(
log

en

2c1

)5/4
√

�(r;φ0)

ε
(6)

where

�(r;φ0):= inf
α∈P

(
k5/2(α)

(
r2 + �2(φ0, α)

)1/2)
.

Note that the dependence of the right hand side on (6) on ε is always ε−1/2. The
dependence on r is given by �(r;φ0) and it depends on φ0. This function �(r;φ0)

controls the size of the ball S(φ0, r). The larger the value�(r;φ0), the larger themetric
entropy of S(φ0, r). The smallest possible value of �(r;φ0) equals r and is achieved
for affine functions. When φ0 is piecewise affine, �(r;φ0) is larger than r but it is not
much larger provided k(φ0) is small. This is because �(r;φ0) ≤ rk5/2(φ0). When
φ0 cannot be well-approximable by piecewise affine functions with small number of
pieces, it can be shown that�(r;φ0) is bounded from below by a constant independent
of r . This will be the case, for example, when φ0 is twice differentiable with φ′′

0 (x)
bounded from above and below by positive constants. As shown in the next theorem,
S(φ0, r) has the largest possible size for such φ0. Note also that one always has
the upper bound �(r;φ0) ≤ √

r2 + L2(φ0) which can be proved by restricting the
infimum in the definition of �(r;φ0) to affine functions.

We need the following definition for the next theorem. For a subinterval [a, b] of
[0, 1] and positive real numbers κ1 < κ2, we define K:=K(a, b, κ1, κ2) to be the class
of all convex functions φ on [0, 1] which are twice differentiable on [a, b] and which
satisfy κ1 ≤ φ′′(x) ≤ κ2 for all x ∈ [a, b].
Theorem 3.2 Suppose φ0 ∈ K(a, b, κ1, κ2). Then there exist positive constants c, ε0
and ε1 depending only on κ1, κ2, b − a and c2 such that

logM(ε, S(φ0, r), �) ≥ cε−1/2 for ε1n
−2 ≤ ε ≤ rε0. (7)

Note that the right hand side of (7) does not depend on r . This should be contrasted
with the right hand side of (6) when φ0 is, say, an affine function. The non-uniform
nature of the space of univariate convex functions should be clear from this: balls
S(φ0, r) of the same radius r in the space have different sizes depending on their
center, φ0. This should be contrasted with the space of twice differentiable functions
in which all balls are equally sized in the sense that they all satisfy (7).

Remark 3.1 Note that the inequality (7) only holds when ε ≥ ε1n−2. In other words,
it does not hold when ε ↓ 0. This is actually inevitable because, ignoring the convexity
of functions in S(φ0, r), the metric entropy of S(φ0, r) under � cannot be larger than
the metric entropy of the ball of radius r in R

n , which is bounded from above by
n log(1 + (3r/ε)) (see e.g., [24], Lemma 4.1). Thus, as ε ↓ 0, the metric entropy of
S(φ0, r) becomes logarithmic in ε as opposed to ε−1/2. Also note that inequality (7)
only holds for ε ≤ rε0. This also makes sense because the diameter of S(φ0, r) in the
metric � equals 2r and, consequently, the left hand side of (7) equals zero for ε > 2r .
Therefore, one cannot expect (7) to hold for all ε > 0.
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Remark 3.2 The proof of Theorem 3.2 actually implies a conclusion stronger than (7).
Let S′(φ0, r):=

{
φ ∈ C : supx |φ(x) − φ0(x)| ≤ r

}
. Clearly this is a smaller neighbor-

hood of φ0 than S(φ0, r) i.e., S′(φ0, r) ⊆ S(φ0, r). The proof of Theorem 3.2 shows
that the lower bound (7) also holds for logM(ε, S′(φ0, r), �).

In the reminder of this section, we provide the proofs of Theorems 3.1 and 3.2. Let us
start with the proof of Theorem 3.1. Since functions in S(φ0, r) are convex, we need
to analyze the covering numbers of subsets of convex functions. There exist only two
previous results here. Bronshtein [5] proved covering numbers for classes of convex
functions that are uniformly bounded and uniformly Lipschitz under the supremum
metric. This result was extended by [11] who dropped the uniform Lipschitz assump-
tion (this result was further extended by [18] to the multivariate case). Unfortunately,
the convex functions in S(φ0, r) are not uniformly bounded (they only satisfy a weaker
integral-type constraint) and hence Dryanov’s result cannot be used directly for prov-
ing Theorem 3.1. Another difficulty is that we need covering numbers under � while
the results in [11] are based on integral L p metrics.

Here is a high-level outline of the proof of Theorem 3.1. The first step is to reduce
the general problem to the case when φ0 ≡ 0. The result for φ0 ≡ 0 immediately
implies the result for all affine functions φ0. One can then generalize to piecewise
affine convex functions by repeating the argument over each affine piece. Finally,
the result is derived for general φ0 by approximating φ0 by piecewise affine convex
functions.

For φ0 ≡ 0, the class of convex functions under consideration is S(0, r). Unfor-
tunately, functions in S(0, r) are not uniformly bounded; they only satisfy a weaker
discrete L2-type boundedness constraint. We get around the lack of uniform bounded-
ness by noting that convexity and the L2-constraint imply that functions in S(0, r) are
uniformly bounded on subintervals that are in the interior of [x1, xn] (this is proved
via Lemma 7.3). We use this to partition the interval [x1, xn] into appropriate subin-
tervals where Dryanov’s metric entropy result can be employed. We first carry out
this argument for another class of convex functions where the discrete L2-constraint
is replaced by an integral L2-constraint. From this result, we deduce the covering
numbers of S(0, r) by using straightforward interpolation results (Lemma 7.4).

3.1 Proof of Theorem 3.1

3.1.1 Reduction to the case when φ0 ≡ 0

The first step is to note that it suffices to prove the theorem when φ0 is the constant
function equal to 0. For φ0 ≡ 0, Theorem 3.1 is equivalent the following statement:
there exists a constant c > 0, depending only on the ratio c1/c2, such that

logM(ε, S(0, r), �) ≤ c

(
log

en

2c1

)5/4 (ε

r

)−1/2
for all ε > 0. (8)
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Below, we prove Theorem 3.1 assuming that (8) is true. Let α ∈ Pk be a piecewise
affine function with k(α) = k. We shall show that

logM(ε, S(α, r), �) ≤ ck5/4
(
log

en

2c1

)5/4 (ε

r

)−1/2
for every ε > 0. (9)

This inequality immediately implies Theorem 3.1 because for every φ0, φ ∈ C and
α ∈ P , we have

�2(φ, α) ≤ 2�2(φ, φ0) + 2�2(φ0, α)

by the trivial inequality (a + b)2 ≤ 2a2 + 2b2. This means that �2(φ, α) ≤ 2r2 +
2�2(φ0, α) for every φ ∈ S(φ0, r). Hence

M(ε, S(φ0, r), �) ≤ M(ε, S(α,
√
2(r2 + �2(φ0, α)), �).

This inequality and (9) together clearly imply (6). It suffices therefore to prove (9).
Suppose that α is affine on each of the k intervals Ii = [ti−1, ti ] for i = 2, . . . , k,

where 0 = t0 < t1 < · · · < tk−1 < tk = 1, and I1 = [0, t1]. Then there exist k affine
functions τ1, . . . , τk on [0, 1] such that α(x) = τi (x) for x ∈ Ii for every i = 1, . . . , k.

For every pair of functions f and g on [0, 1], we have the trivial identity: �2( f, g) =∑k
i=1 �2i ( f, g) where

�2i ( f, g):=
1

n

∑

j :x j∈Ii

(
f (x j ) − g(x j )

)2
.

As a result, we clearly have

M(ε, S(α, r), �) ≤
k∏

i=1

M(ε/
√
k, S(α, r), �i ). (10)

Fix an i ∈ {1, . . . , k}. Note that for every f ∈ S(α, r), we have

�2i ( f, τi ) = �2i ( f, α) ≤ �2( f, α) ≤ r2.

Therefore
M(ε/

√
k, S(α, r), �i ) ≤ M(ε/

√
k, Si (τi , r), �i )

where Si (τi , r) consists of the class of all convex functions f : Ii → R for which
�2i (τi , f ) ≤ r2.

By the translation invariance of the Euclidean distance and the fact that φ − τ is
convex whenever φ is convex and τ is affine, it follows that

M(ε/
√
k, Si (τi , r), �i ) = M(ε/

√
k, Si (0, r), �i )

where Si (0, r) is defined as the class of all convex functions f : Ii → R for which
�2i (0, f ) ≤ r2.
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The covering number M(ε/
√
k, Si (0, r), �i ) can be easily bounded using (8) by

the following scaling argument. Let J :={ j ∈ {1, . . . , n} : x j ∈ Ii } with m being the
cardinality of J . Also write [a, b] for the interval Ii and let u j :=(x j − a)/(b− a) for
j ∈ J . For f, g ∈ C, let

�(u)( f, g):=
⎛

⎝ 1

m

∑

j∈J

( f (u j ) − g(u j ))
2

⎞

⎠
1/2

and S(u)(0, γ ):={ f ∈ C : �(u)( f, 0) ≤ γ }. By associating, for each f ∈ Si (0, r), the
convex function f̃ ∈ C defined by f̃ (x):= f (a + (b − a)x), it can be shown that

M(ε/
√
k, Si (0, r), �i ) = M

(√
n

m

ε√
k
, S(u)(0, r

√
n/m), �(u)

)
.

The assumption (3) implies that the distance betweenneighboring points in {u j , j ∈ J }
lies between mc1/(n(b − a)) and mc2/(n(b − a)). Therefore, by applying (8) to
{u j , j ∈ J } instead of {xi }, we obtain the existence of a positive constant c depending
only on the ratio c1/c2 such that

logM

(√
n

m

ε√
k
, S(u)(0, r

√
n/m), �(u)

)
≤ c

(
log

en(b − a)

2c1

)5/4 (
ε√
kr

)−1/2

≤ c

(
log

en

2c1

)5/4 (
ε√
kr

)−1/2

.

The required inequality (9) now follows from the above and (10).

3.1.2 The integral version

We have established above that it suffices to prove Theorem 3.1 for φ0 ≡ 0 i.e., it
suffices to prove (8). The ball S(0, r) consists of all convex functions φ such that

1

n

n∑

i=1

φ2(xi ) ≤ r2. (11)

For a < b and B > 0, let I([a, b], B) denote the class of all real-valued convex
functions f on [a, b] for which ∫ b

a f 2(x)dx ≤ B2. The ball S(0, r) is intuitively very
close to the class I([0, 1], r) the only difference being that the average constraint (11)
is replaced by the integral constraint

∫ 1
0 φ2(x)dx ≤ r2 in I([0, 1], r). We shall prove a

good upper bound for the metric entropy of I([0, 1], r). The metric entropy of S(0, r)
will then be derived as a consequence.
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390 A. Guntuboyina, B. Sen

Theorem 3.3 There exist a constant c such that for every 0 < η < 1/2, B > 0 and
ε > 0, we have

logM (ε,I([0, 1], B), L2[η, 1 − η]) ≤ c

(
log

e

2η

)5/4 ( ε

B

)−1/2
. (12)

where, by L2[η, 1 − η], we mean the metric where the distance between f and g is
given by (∫ 1−η

η

( f (x) − g(x))2 dx

)1/2

.

Remark 3.3 We take themetric above to be L2[η, 1−η] as opposed to L2[0, 1] because

logM (ε,I([0, 1], B), L2[0, 1]) = ∞ (13)

To see this, take f j (t) = 2 j/2 max(0, 1− 2 j t) for t ∈ [0, 1] and j ≥ 1. It is then easy

to check that f j ∈ I([0, 1], B) for B ≥ 1/3 and that
∫ 1
0 ( f j − f j+1)

2 ≥ c for some
positive constant c which proves (13). The equality (13) is also the reason why the
right hand side of (12) approaches ∞ as η ↓ 0.

The above theorem is a new result. If the constraint
∫ 1
0 φ2(x)dx ≤ B2 is replaced

by the stronger constraint supx∈[0,1] |φ(x)| ≤ B, then this has been proved by [11].
Specifically, [11] considered the class C([a, b], B) consisting of all convex functions f
on [a, b]which satisfy supx∈[a,b] | f (x)| ≤ B and proved the following. [18] extended
this to the multivariate case.

Theorem 3.4 (Dryanov) There exists a positive constant c such that for every B > 0
and b > a, we have

logM (ε, C([a, b], B), L2[a, b]) ≤ c

(
ε

B(b − a)1/2

)−1/2

for every ε > 0. (14)

Remark 3.4 In [11], inequality (14) was only asserted for ε ≤ ε0B(b − a)1/2 for a
positive constant ε0. It turns out however that this condition is redundant. This follows
from the observation that the diameter of the space C([a, b], B) in the L2[a, b] metric
is at most 2B(b − a)1/2 which means that the left hand side of (14) equals 0 for
ε > 2B(b − a)1/2 and, thus, by changing the constant c suitably in Dryanov’s result,
we obtain (14).

The class I([0, 1], B) is much larger than C([0, 1], B) because the integral con-
straint

∫ 1
0 φ2(x)dx ≤ B2 is much weaker than supx∈[0,1] |φ(x)| ≤ B. Therefore, The-

orem 3.3 does not directly follow from Theorem 3.4. However, it is possible to derive
Theorem 3.4 from Theorem 3.3 via the observation (made rigorous in Lemma 7.3)
that functions in I([0, 1], B) become uniformly bounded on subintervals of [0, 1] that
are sufficiently far away from the boundary points. On such subintervals, we may use
Theorem 3.4 to bound the covering numbers. Theorem 3.3 is then proved by putting
together these different covering numbers as shown below.
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Proof of Theorem 3.3 By a trivial scaling argument, we can assume without loss
of generality that B = 1. Let l be the largest integer that is strictly smaller than
− log(2η)/ log 2 and let ηi :=2iη for i = 0, . . . , l + 1. Observe that ηl < 1/2 ≤ ηl+1.

Fix i ∈ {0, . . . , l}. By Lemma 7.3, the restriction of a function φ ∈ I([0, 1], 1) to
[ηi , ηi+1] is convex and uniformly bounded by 2

√
3η−1/2

i . Therefore, by Theorem 3.4,
there exists a positive constant c such that we can cover the functions in I([0, 1], 1)
in the L2[ηi , ηi+1] metric to within αi by a finite set having cardinality at most

exp

[
c

(
αi

√
ηi√

ηi+1 − ηi

)−1/2
]

= exp
(
cα−1/2

i

)
.

Because ∫ 1/2

η

(φ(x) − f (x))2 dx ≤
l∑

i=0

∫ ηi+1

ηi

(φ(x) − f (x))2 dx,

we get a cover for functions in I([0, 1], 1) in the L2[η, 1/2] metric of size less than

or equal to
(∑l

i=0 α2
i

)1/2
and cardinality at most exp

(
c
∑l

i=0 α
−1/2
i

)
.

Taking αi = ε(l + 1)−1/2, we get that

logM(ε,I([0, 1], 1), L2[η, 1/2]) ≤ cε−1/2(l + 1)5/4 ≤ c1ε
−1/2

(
log

e

2η

)5/4

where c1 depends only on c. By an analogous argument, the above inequality will
also hold for logM(ε,I([0, 1], 1), L2[1/2, 1−η]). The proof is completed by putting
these two bounds together. �

3.1.3 Completion of the Proof of Theorem 3.1

We now complete the proof of Theorem 3.1 by proving inequality (8). We will use
Theorem 3.3. We need to switch between the pseudometrics � and L2[η, 1− η]. This
will be made convenient by the use of Lemma 7.4.

By an elementary scaling argument, it follows that

M(ε, S(0, r), �) = M(ε/r, S(0, 1), �).

We, therefore, only need to prove (8) for r = 1. For ease of notation, let us denote
S(0, 1) by S.

Because xi − xi−1 ≥ c1/n for all i = 2, . . . , n, we have x2, . . . , xn−1 ∈ [c1/n, 1−
(c1/n)]. We shall first prove an upper bound for logM(ε, S, �1) where

�21(φ,ψ):= 1

n − 2

n−1∑

i=2

(φ(xi ) − ψ(xi ))
2 .
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392 A. Guntuboyina, B. Sen

For each function φ ∈ S, let φ̃ be the convex function on [x2, xn−1] defined by

φ̃(x):= xi+1 − x

xi+1 − xi
φ(xi ) + x − xi

xi+1 − xi
φ(xi+1) for xi ≤ x ≤ xi+1

where i = 2, . . . , n − 2. Also let S̃:=
{
φ̃ : φ ∈ S

}
.

By Lemma 7.4 and the assumption that xi − xi−1 ≥ c1/n for all i , we get that

�21(φ,ψ) ≤ 6

c1

∫ xn−1

x2

(
φ̃(x) − ψ̃(x)

)2
dx

for every pair of functions φ and ψ in S. Letting δ:=ε
√
c1/6 this inequality implies

that
M (ε, S, �1) ≤ M

(
δ, S̃, L2[x2, xn−1]

)
.

Again by Lemma 7.4 and the assumption xi − xi−1 ≤ c2/n, we have that

∫ xn

x1
φ̃2(x)dx ≤ c2

n

n∑

i=1

φ2(xi ) ≤ c2 for everyφ ∈ S.

As a result, we have that S̃ ⊆ I([x1, xn],√c2). Further, because x2 ≥ x1 + c1/n and
xn−1 ≤ xn − c1/n, we get that

M
(
δ, S̃, L2[x2, xn−1]

)
≤ M

(
δ,I([x1, xn],√c2), L2[x1 + η, xn − η])

where η:= c1/n. By a simple scaling argument, the covering number on the right hand
side above is upper bounded by

M

(
δ√

xn − x1
,I([0, 1],√c2(xn − x1)), L2

[
η

xn − x1
, 1 − η

xn − x1

])
. (15)

Indeed, for each f ∈ I([x1, xn],√c2), we can associate f̃ (y):= f (x1 + y(xn − x1))
for y ∈ [0, 1]. It is then easy to check that f̃ ∈ I([0, 1],√c2(xn − x1)) and

∫ xn−η

x1+η

( f1(x) − f2(x))
2 dx = (xn − x1)

∫ 1−(η/(xn−x1))

η/(xn−x1)

(
f̃1(y) − f̃2(y)

)2
dy,

fromwhich (15) easily follows. From the bound (15), it is now easy to see that (because
xn − x1 ≤ 1)

M
(
δ,I([x1, xn],√c2), L2[x1 + η, xn − η]) ≤ M

(
δ,I([0, 1],√c2), L2[η, 1 − η]) .
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Thus, by Theorem 3.3, we assert the existence of a positive constant c a such that

logM(ε, S, �1) ≤ c

(
log

en

2c1

)5/4 (√
c1ε√
c2

)−1/2

. (16)

Now for every pair of functions φ and ψ in S, we have

�2(ψ, φ) ≤ �21(ψ, φ) + 1

n

∑

i∈{1,n}
(φ(xi ) − ψ(xi ))

2 .

We make the simple observation that (φ(x1), φ(xn)) lies in the closed ball of radius√
n in R

2 denoted by B2(0,
√
n). As a result, using Pollard ([24], Lemma 4.1), we

have

M(ε, S, �) ≤ M

(
ε√
2
, S, �1

)
M

(√
nε√
2

, B2(0,
√
n)

)

≤
(
1 + 3

√
2

ε

)2

M

(
ε√
2
, S, �1

)

where the covering number of B2(0,
√
n) is in the usual Euclidean metric. Using (16),

we get

logM(ε, S, �) ≤ 2 log

(
1 + 3

√
2

ε

)
+ c

(
log

en

2c1

)5/4 (√
c1ε√
2c2

)−1/2

. (17)

Because log(1 + x) ≤ 3
√
x for all x > 0, the first term in the right hand side above

is bounded by a constant multiple of ε−1/2. This proves (8) provided the constant c is
renamed appropriately.

3.2 Proof of Theorem 3.2

In our proof below, we shall make use of Lemma 7.1 (stated and proved in Appendix)
which bounds the distance between functions in K(a, b, κ1, κ2) and their piecewise
linear interpolants.

Fix m ≥ 1 and let ti = a + (b − a)i/m for i = 0, . . . ,m. For each i = 1, . . . ,m,
let αi define the linear interpolant of the points (ti−1, φ0(ti−1)) and (ti , φ0(ti )) i.e.,

αi (x):= φ0(ti−1) + φ0(ti ) − φ0(ti−1)

ti − ti−1
(x − ti−1) for x ∈ [0, 1].

By error estimates for linear interpolation (see e.g., Chapter 3 of [1]), for every x ∈
[ti−1, ti ], there exists a point tx ∈ [ti−1, ti ] for which

|φ0(x) − αi (x)| = (x − ti−1)(ti − x)
φ′′
0 (tx )

2
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which implies, because φ0 ∈ K(a, b, κ1, κ2), that

|φ0(x) − αi (x)| ≤ (x − ti−1)(ti − x)
κ2

2
≤ κ2

8
(ti − ti−1)

2 = (b − a)2κ2

8m2 (18)

for every x ∈ [a, b]. By convexity of φ0, it is obvious that αi (x) ≥ φ0(x) for x ∈
[ti−1, ti ] and αi (x) ≤ φ0(x) for x /∈ [ti−1, ti ].

Now for each τ ∈ {0, 1}m , let us define

φτ (x):=max

(
φ0(x), max

i :τi=1
αi (x)

)
for x ∈ [0, 1].

The functions φτ are clearly convex because they equal the pointwise maximum of
convex functions. Moreover, for x ∈ [ti−1, ti ], we have

φτ (x) =
{

αi (x) if τi = 1
φ0(x) if τi = 0.

Also, from (18),

sup
x∈[0,1]

|φτ (x) − φ0(x)| ≤ max
1≤i≤m

sup
x∈[ti−1,ti ]

|φ0(x) − αi (x)| ≤ (b − a)2κ2

8m2 .

Because �(φτ , φ0) ≤ supx |φτ (x) − φ0(x)|, it follows that φτ ∈ S(φ0, r) provided

(b − a)2κ2

8m2 ≤ r. (19)

Observe now that for every τ, τ ′ ∈ {0, 1}m ,

�2 (φτ , φτ ′) =
∑

i :τi �=τ ′
i

�2 (φ0,max(φ0, αi )) ≥ ϒ(τ, τ ′) min
1≤i≤m

�2(φ0,max(φ0, αi ))

(20)
whereϒ(τ, τ ′):=∑

i {τi �= τ ′
i }.We now use Lemma 7.1 to bound �2(φ0,max(φ0, αi ))

from below. Since αi is the linear interpolant of (ti−1, φ0(ti−1)) and (ti , φ0(ti )), we
use Lemma 7.1 (inequality (38)) with a = ti−1 and b = ti to assert

�2(φ0,max(φ0, αi )) ≥ κ2
1 (ti − ti−1)

5

4,096c2
= κ2

1 (b − a)5

4,096c2m5

provided

n ≥ 4c2
ti − ti−1

= 4mc2
b − a

. (21)

From (20), we thus have

�2(φτ , φτ ′) ≥ ϒ(τ, τ ′)
κ2
1 (b − a)5

4,096c2m5
.
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Using now the Varshamov-Gilbert lemma [(see, for example, Massart ([23], Lemma
4.7)] which asserts the existence of a subset W of {0, 1}m with cardinality, |W | ≥
exp(m/8) such that ϒ(τ, τ ′) ≥ m/4 for all τ, τ ′ ∈ W with τ �= τ ′, we get that

�2(φτ , φτ ′) ≥ κ2
1 (b − a)5

16,384c2m4 for all τ, τ ′ ∈ W with τ �= τ ′. (22)

Let us now fix ε > 0 and choose m so that

m4 = κ2
1 (b − a)5

16,384c2ε2
.

From (22), we then see that {φτ : τ ∈ W } is an ε-packing set under the pseudometric
�. The condition (19) would hold provided

ε ≤ κ1
√
b − a

16
√
c2κ2

r.

Also, the condition (21) is equivalent to

ε ≥ c22
√
b − aκ1

8
√
c2n2

.

We have therefore showed that for ε satisfying the above pair of inequalities, there
exists an ε-packing subset of S(φ0, r) with cardinality |W | satisfying

log |W | ≥ m

8
≥

√
κ1(b − a)5/4

96c1/42

ε−1/2.

The proof of Theorem 3.2 is now complete if we take

ε0:=κ1
√
b − a

16κ2
√
c2

and c:=
√

κ1(b − a)5/4

96c1/42

and ε1:=c22
√
b − aκ1

8
√
c2

.

4 Proofs of the risk bounds of the LSE

In this section, we provide the proofs of Theorems 2.2 and 2.3. As mentioned in
Sect. 3, these two theorems together imply our main risk bound Theorem 2.1 of the
convex LSE. Our proofs are based on the local metric entropy result (Theorem 3.1) of
the space of univariate convex functions derived in the previous section together with
standard results on the risk behavior of ERM procedures. Before proceeding further,
let us state precisely the result from the literature on ERM procedures that we use to
analyze the risk of φ̂ls . There exist many such results but they are all similar in spirit
and the following result fromVan deGeer ([30], Theorem 9.1) is especially convenient
to use.
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Theorem 4.1 [30] For each r > 0, let

S(φ0, r):={φ ∈ C : �2(φ0, φ) ≤ r2}.

Suppose H is a function on (0,∞) such that

H(r) ≥
∫ r

0

√
logM(ε, S(φ0, r), �) dε for every r > 0

and such that H(r)/r2 is decreasing on (0,∞). Then there exists a universal constant
C such that

Pφ0

(
�2(φ̂ls, φ0) > δ

)
≤ C

∑

s≥0

exp

(
−n22sδ

C2σ 2

)

for every δ > 0 satisfying
√
nδ ≥ CσH(

√
δ).

Let us note that our local metric entropy result, Theorem 3.1, easily implies an upper
bound for the entropy integral

∫ r

0

√
logM(ε, S(φ0, r), �)dε (23)

appearing in Theorem 4.1. Indeed, using the bound given by (6) for M(ε, S(φ0, r), �)
above and integrating, we obtain that (23) is bounded from above by

K

(
log

en

2c1

)5/8

r3/4 inf
α∈P

[
k5/8(α)

(
r2 + �2(φ0, α)

)1/8]
(24)

for every φ0 ∈ C and r > 0 where K is a constant that only depends on the ratio c1/c2.

4.1 Proof of Theorem 2.2

Let us define

δ0 := A

(
σ 2

n

)4/5

R2/5 log
en

2c1

where A is a constant whose value will be specified shortly. Observe that δ0 ≤ R2

whenever n ≥ A5/4 (log((en)/(2c1)))5/4 σ 2/R2. We use the bound (24) for the
entropy integral (23). By restricting the infimum in the right hand side of (24)
to affine functions (i.e., α ∈ P1) for which k(α) = 1, we obtain (note that
infα∈P1 �2(φ0, α) = L2(φ0) ≤ R2)

∫ r

0

√
logM(ε, S(φ0, r), �)dε ≤ K

(
log

en

2c1

)5/8

r3/4
(
r2 + R2

)1/8
(25)
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for every r > 0. Suppose now that

n ≥ A5/4
(
log

en

2c1

)5/4
σ 2

R2 (26)

so that δ0 ≤ R2 and inequality (25) holds for every r > 0. Let H(r) denote the right
hand side of (25). It is clear that H(r)/r2 is decreasing on (0,∞). As a result, a
condition of the form

√
nδ ≥ CσH(

√
δ) for some positive constant C holds for every

δ ≥ δ0 provided it holds for δ = δ0. Clearly

H(
√

δ0)

δ0
= K

(
log

en

2c1

)5/8

δ
−5/8
0

(
δ0 + R2

)1/8
.

Assuming that (26) holds and noting then that δ0 ≤ R2, we get

H(
√

δ0)

δ0
≤ 21/8K

(
log

en

2c1

)5/8

δ
−5/8
0 R1/4 = 21/8K A−5/8

√
n

σ
.

We shall now use Theorem 4.1. Let C be the constant given by Theorem 4.1. By the
above inequality, the condition

√
nδ ≥ CσH(

√
δ) holds for each δ ≥ δ0 provided

A = 21/5(CK )8/5. Thus by Theorem 4.1, we obtain

Pφ0

(
�2(φ̂ls, φ0) > δ

)
≤ C

∑

s≥0

exp

(
−n22sδ

C2σ 2

)

for all δ ≥ δ0 whenever n satisfies (26). Using the expression for δ0 and (26), we get
for δ ≥ δ0,

nδ

σ 2 ≥ nδ0

σ 2 = A
( n

σ 2

)1/5
R2/5 log

en

2c1
≥ A5/4

(
log

en

2c1

)5/4

. (27)

We thus have

Pφ0

(
�2(φ̂ls, φ0) > δ

)
≤ C1 exp

(
− nδ

C1σ 2

)
for all δ ≥ δ0

for some constant C1 (depending only on C and A = 21/5(CK )8/5) provided n
satisfies (26). Integrating both sides of this inequality with respect to δ [and using (27)
again], we obtain the risk bound

Eφ0�
2(φ̂ls, φ0) ≤ C2δ0 = C2

(
σ 2

n

)4/5

AR2/5 log
en

2c1

for some positive constant C2 depending only on C and K . Because C is an absolute
constant and K only depends on the ratio c1/c2, the proof is complete by an appropriate
renaming of the constant C .
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4.2 Proof of Theorem 2.3

For each 1 ≤ k ≤ n, let

�2k = inf{�2(φ0, α) : α ∈ P and k(α) = k}
so that

inf
α∈P

(
�2(φ0, α) + σ 2k5/4(α)

n

)
= inf

1≤k≤n

(
�2k + σ 2k5/4

n

)
.

It is also easy to check that

�21 ≥ �22 ≥ · · · ≥ �2n = 0.

As a result, there exists an integer u ∈ {1, . . . , n} such that �2k > σ 2k5/4/n if 1 ≤ k < u
and �2k ≤ σ 2k5/4/n if k ≥ u. This means that when 1 ≤ k < u (which implies that
u ≥ 2 or u − 1 ≥ u/2)

�2k + σ 2k5/4

n
≥ �2u−1 >

σ 2

n
(u − 1)5/4 ≥ σ 2u5/4

25/4n
.

It then follows that

inf
1≤k≤n

(
�2k + σ 2k5/4

n

)
≥ σ 2u5/4

25/4n
.

Consequently, the proof will be complete if we show that

Eφ0�
2(φ0, φ̂ls) ≤ C

(
log

en

2c1

)5/4
σ 2u5/4

n
. (28)

To prove this, we start by defining

δ0:=A

(
log

en

2c1

)5/4
σ 2u5/4

n

for a constant A whose value will be specified shortly. Because �2u ≤ σ 2u5/4/n, it
follows that �2u ≤ δ0/A.

By (24), there exists a positive constant K depending only on the ratio c1/c2 such
that

∫ r

0

√
logM(ε, S(φ0, r), �)dε ≤ K

(
log

en

2c1

)5/8
inf

α∈P

[
k5/8(α)r3/4

(
r2 + �2(φ0, α)

)1/8]

≤ K

(
log

en

2c1

)5/8
inf

α∈Pu

[
k5/8(α)r3/4

(
r2 + �2(φ0, α)

)1/8]

≤ K

(
log

en

2c1

)5/8
u5/8r3/4

(
r2 + �2u

)1/8
.
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for every r > 0. Let H(r) denote the right hand side above. It is clear that H(r)/r2

is decreasing on (0,∞). As a result, a condition of the form
√
nδ ≥ CσH(

√
δ) for

some positive constant C holds for every δ ≥ δ0 provided it holds for δ = δ0. Because
�2u ≤ δ0/A, we have

H(
√

δ0) ≤ K

(
log

en

2c1

)5/8

u5/8
√

δ0

(
1 + 1

A

)1/8

.

Consequently,
H(

√
δ0)

δ0
≤ K√

A

(
1 + 1

A

)1/8 √
n

σ
. (29)

We shall now use Theorem 4.1. Let C be the positive constant given by Theorem 4.1.
By inequality (29), we can clearly choose A depending only on K and C so that√
nδ0 ≥ CσH(

√
δ0). Because H(r)/r2 is a decreasing function of r , this choice of

A also ensures that
√
nδ ≥ CσH(

√
δ) for every δ ≥ δ0. Thus by Theorem 4.1, we

obtain

Pφ0

(
�2(φ̂ls, φ0) > δ

)
≤ C

∑

s≥0

exp

(
−n22sδ

C2σ 2

)
for all δ ≥ δ0. (30)

Note further, from the definition of δ0, that δ0 ≥ σ 2A/n which implies that the sum
on the right hand side of (30) is dominated by the first term. We thus have

Pφ0

(
�2(φ̂ls, φ0) > δ

)
≤ C1 exp

(
− nδ

C1σ 2

)
for all δ ≥ δ0.

for a constant C1 depending upon only C and A. The required risk bound (28) is now
derived by integrating both sides of the above inequality with respect to δ and using
that δ0 ≥ σ 2A/n.

5 Non-adaptable convex functions

We showed that the risk of the convex LSE is always bounded from above by n−4/5 up
to logarithmic factors in n and that for convex functions that are well-approximable
by piecewise affine functions with not too many pieces, the risk of the convex LSE
is bounded by 1/n up to log factors. The reason why the risk is much smaller for
these functions is that the balls around them have small sizes. We also showed in
Theorem 3.2 that for convex functions with curvature, the balls are really non-local.
Here, we show that for such convex functions, in a very strong sense, the rate n−4/5

cannot be improved by any estimator.
Recall the class of functions, K(a, b, κ1, κ2), that was defined in Theorem 3.2. The

constants a, b, κ1 and κ2 will be fixed constants in this section and we shall therefore
refer to K(a, b, κ1, κ2) by just K. For every function φ0 ∈ K, let us define the local
neighborhood N (φ0) of φ0 in C by
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N (φ0):=
⎧
⎨

⎩φ ∈ C : sup
x∈[0,1]

|φ(x) − φ0(x)| ≤
(

κ2c21
32

)1/5 (
σ 2

n

)2/5
⎫
⎬

⎭ .

Recall that the constant c1 is defined in (3).We define the local minimax risk of φ0 ∈ K
to be

Rn(φ0):= inf
φ̂

sup
φ∈N (φ0)

Eφ�2(φ, φ̂),

the infimum above being over all possible estimators φ̂.Rn(φ0) represents the smallest
possible risk under the knowledge that the unknown convex function φ lies in the local
neighborhood N (φ0) of φ0.

In the next theorem, we shall show that the local minimax risk of every function
φ0 ∈ K is bounded from below by a constant multiple of n−4/5. Observe that the
l2 diameter of N (φ0) defined as supφ1,φ2∈N (φ0)

�2(φ1, φ2) is bounded from above by
n−4/5 up to multiplicative factors that are independent of n. Therefore, the supremum
risk over N (φ0) of any reasonable estimator is bounded from above by n−4/5 up to
multiplicative factors. The next theorem shows that if φ0 ∈ K, then the supremum risk
of every estimator is also bounded from below by n−4/5 up to multiplicative factors.
Therefore, one cannot estimate φ0 at a rate faster than n−4/5.

Theorem 5.1 (Lower bound) For every φ0 ∈ K(a, b, κ1, κ2), we have

Rn(φ0) ≥ κ2
1

4,096c2

(√
c1

κ2

)8/5

(b − a)

(
σ 2

n

)4/5

(31)

provided n2 ≥ (2c2)5/2κ2/(σ
√
c1).

Prototypical examples of functions in K include power functions xk for k ≥ 2 and
the above theorem implies that every estimator has rate at least n−4/5 for all these
functions. Note that the LSE has the rate n−4/5 up to logarithmic factors of n for all
functions φ0. In particular, the LSE is rate optimal (up to logarithmic factors) for all
functions in K.

Prominent examples of functions not in the class K include the piecewise affine
convex functions. As shown in Theorem 2.3, faster rates are possible for these func-
tions. Essentially, the LSE converges at the parametric rate (up to logarithmic factors)
for these functions.

The hardest functions to estimate under the global risk are therefore smooth convex
functions. This is in sharp contrast to the standpoint of pointwise risk estimationwhere,
for example, cusps in the function f (x) = |x | are the hardest to estimate. In fact, one
would expect a rate of n−2/3 near such cusp points (see [6] for a detailed study of
pointwise estimation although they work with estimators that are different from the
LSE). However, for global estimation, the region over which one gets such slower
rates is small enough to not effect the overall near-parametric rate for piecewise affine
convex functions.

Our proof of Theorem 5.1 is based on the application of Assouad’s lemma, the
following version of which is a consequence of Lemma 24.3 of Van der Vaart ([31],
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pp. 347). We start by introducing some notation. Let Pφ denote the joint distribution
of the observations (x1,Y1), . . . , (xn,Yn)when the true convex function equals φ. For
two probability measures P and Q having densities p and q with respect to a common
measureμ, the total variation distance, ‖P−Q‖T V , is defined as

∫
(|p−q|/2)dμ and

the Kullback-Leibler divergence, D(P‖Q), is defined as
∫
p log(p/q)dμ. Pinsker’s

inequality asserts
D(P‖Q) ≥ 2‖P − Q‖2T V (32)

for all probability measures P and Q.

Lemma 5.2 (Assouad) Let m be a positive integer and suppose that, for each
τ ∈ {0, 1}m, there is an associated convex function φτ in N (φ0). Then the follow-
ing inequality holds:

Rn(φ0) ≥ m

8
min
τ �=τ ′

�2(φτ , φτ ′)

ϒ(τ, τ ′)
min

ϒ(τ,τ ′)=1

(
1 − ‖Pφτ − Pφτ ′ ‖T V

)
, (33)

where ϒ(τ, τ ′):=∑
i {τi �= τ ′

i }.
Proof of Theorem 5.1 Fix m ≥ 1 and consider the same construction {φτ , τ ∈
{0, 1}m} from the proof of Theorem 3.2. We saw there that

sup
x∈[0,1]

|φτ (x) − φ0(x)| ≤ (b − a)2κ2

8m2 (34)

and that

�2(φτ , φτ ′) ≥ ϒ(τ, τ ′)
κ2
1 (b − a)5

4,096c2m5
(35)

for every τ, τ ′ ∈ {0, 1}m provided n ≥ 4mc2/(b − a). Also, whenever ϒ(τ, τ ′) = 1,
it is clear that

�2(φτ , φτ ′) ≤ max
1≤i≤m

�2(φ0,max(φ0, αi )).

We use Lemma 7.1 to bound �2(φ0,max(φ0, αi )) from above. Specifically, we use
inequality (39) with a = ti−1 and b = ti to get

�2(φ0,max(φ0, αi )) ≤ κ2
2 (ti − ti−1)

5

32c1
= κ2

2 (b − a)5

32c1m5

provided n ≥ 4mc1/(b − a). Thus under the assumption n ≥ 4mc2/(b − a), we
have (35) and also (note that c2 ≥ c1)

�2(φτ , φτ ′) ≤ κ2
2 (b − a)5

32c1m5
wheneverϒ(τ, τ ′) = 1.

We apply Assouad’s lemma to these functions φτ . By inequality (32), we get

‖Pφτ − Pφτ ′ ‖2T V ≤ 1

2
D(Pφτ ‖Pφτ ′ ).
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By the Gaussian assumption and independence of the errors, the Kullback-Leibler
divergence D(Pφτ ‖Pφτ ′ ) can be easily calculated to be n�2(φτ , φτ ′)/(2σ). We there-
fore obtain

‖Pφτ − Pφτ ′ ‖T V ≤
√
n

2σ
�(φτ , φτ ′).

Thus by the application of (33), we obtain the following lower bound for Rn(φ0):

Rn(φ0) ≥ m

8

κ2
1 (b − a)5

4,096m5c2

⎛

⎝1 −
√
nκ2

2σ

√
(b − a)5

m532c1

⎞

⎠ (36)

provided φτ ∈ N (φ0) for each τ . We make the choice

m

b − a
:=

( √
nκ2

σ
√
32c1

)2/5

.

The inequality (34) implies that φτ ∈ N (φ0). The inequality (31) follows easily
from (36). The constraint n ≥ 4c2m/(b − a) translates to

n2 ≥ (2c2)
5/2κ2/(σ

√
c1).

The proof is complete. �

6 Model misspecification

In this section, we evaluate the performance of the convex LSE φ̂ls in the case when
the unknown regression function (to be denoted by f0) is not necessarily convex.
Specifically, suppose that f0 is an unknown function on [0, 1] that is not necessarily
convex. We consider observations (x1,Y1), . . . , (xn,Yn) from the model:

Yi = f0(xi ) + ξi , for i = 1, . . . , n,

where x1 < · · · < xn are fixed design points in [0, 1] and ξ1, . . . , ξn are independent
normal variables with zero mean and variance σ 2.

The convex LSE φ̂ls is defined in the sameway as before as any convex function that
minimizes the sum of squares criterion. Since the true function f0 is not necessarily
convex, it turns out that the LSE is really estimating the convex projections of f0.
Any convex function φ0 on [0, 1] that minimizes �2( f0, φ) over φ ∈ C is a convex
projection of f0 i.e.,

φ0 ∈ argmin
ψ∈C

n∑

i=1

( f0(xi ) − φ(xi ))
2 .

Convex projections are not unique. However, because {(φ(x1), . . . , φ(xn)) : φ ∈ C}
is a convex closed subset of Rn , it follows (see, for example Stark and Yang ([28],
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Chapter 2)) that the vector (φ0(x1), . . . , φ0(xn)) is unique for every convex projection
φ0 and, moreover, we have the inequality:

�2( f0, φ) ≥ �2( f0, φ0) + �2(φ0, φ) for everyφ ∈ C. (37)

The following is the main result of this section. It is the exact analogue of Theorem 2.1
for the case of model misspecification.

Theorem 6.1 Let φ0 denote any convex projection of f0 and let R:=max(1,L(φ0)).
There exists a positive constant C depending only on the ratio c1/c2 such that

E f0�
2(φ̂ls, φ0) ≤ C

(
log

en

2c1

)5/4

min

⎡

⎣
(

σ 2
√
R

n

)4/5

,

inf
α∈P

(
�2(φ0, α) + σ 2k5/4(α)

n

)]

provided

n ≥ C
σ 2

R2

(
log

en

2c1

)5/4

.

We omit the proof of this theorem because it is similar to the proof of Theorem 2.1. It
is based on the metric entropy results from Sect. 3 and the following result from the
literature on the risk behavior of ERMs.

Theorem 6.2 Let φ0 denote any convex projection of f0. Suppose H is a function on
(0,∞) such that

H(r) ≥
∫ r

0

√
logM(ε, S(φ0, r))dε for every r > 0

and such that H(r)/r2 is decreasing on (0,∞). Then there exists a universal constant
C such that

P f0

(
�2(φ̂ls, φ0) > δ

)
≤ C

∑

s≥0

exp

(
−n22sδ

C2σ 2

)

for every δ > 0 satisfying
√
nδ ≥ CσH(

√
δ).

This result is very similar to Theorem 4.1. Its proof proceeds in the same way as the
proof of Theorem 4.1 [(see Van de Geer ([30], Proof of Theorem 9.1)]. We provide
below a sketch of its proof for the convenience of the reader.

Proof of Theorem 6.2 Because φ0 is convex, we have, by the definition of φ̂ls , that

1

n

n∑

i=1

(
Yi − φ̂ls(xi )

)2 ≤ 1

n

n∑

i=1

(Yi − φ0(xi ))
2 .
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Writing Yi = f0(xi ) + ξi and simplifying the above expression, we get

�2( f0, φ̂ls) − �2( f0, φ0) ≤ 2

n

n∑

i=1

ξi

(
φ̂ls(xi ) − φ0(xi )

)
.

Inequality (37) applied with φ = φ̂ls gives

�2(φ̂ls, φ0) ≤ �2( f0, φ̂ls) − �2( f0, φ0).

Combining the above two inequalities, we obtain

�2(φ̂ls, φ0) ≤ 2

n

n∑

i=1

ξi

(
φ̂ls(xi ) − φ0(xi )

)
.

This is of the same form as the “basic inequality” of Van de Geer ([30], pp. 148). From
here, the proof proceeds just as the proof of Theorem 9.1 in [30]. �
Theorem 6.1 shows that one gets adaptation in the misspecified case provided f0 has
a convex projection that is well-approximable by a piecewise affine convex function
with not toomany pieces. An illuminating example of this occurs when f0 is a concave
function. In this case, we show in Lemma 7.5 (stated and proved in Appendix) that φ0
can be taken to be an affine function, i.e., φ0 ∈ P1. As a result, it follows that if f0 is
concave, then the risk of φ̂ls measured from any convex projection of f0 is bounded
from above by the parametric rate up to a logarithmic factor of n.

Acknowledgments The authors would like to thank Aritra Guha, Sasha Tsybakov, a referee and an
Associate Editor for their helpful comments.

7 Appendix: Some auxiliary results

Lemma 7.1 Fix φ0 ∈ C and suppose there exists a subinterval [a, b] of [0, 1] such
that φ0 is twice differentiable on [a, b]. Let α denote the linear interpolant of the points
(a, φ0(a)) and (b, φ0(b)) i.e.,

α(x) := φ0(a) + φ0(b) − φ0(a)

b − a
(x − a) for x ∈ [0, 1].

1. If φ′′
0 (x) ≥ κ1 for all x ∈ [a, b], then

�2(φ0,max(φ0, α)) ≥ κ2
1 (b − a)5

4,096c2
when n ≥ 4c2/(b − a). (38)

2. If φ′′
0 (x) ≤ κ2 for all x ∈ [a, b], then

�2(φ0,max(φ0, α)) ≤ κ2
2 (b − a)5

32c1
when n ≥ 4c1/(b − a). (39)
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Proof of Lemma 7.1 By convexity ofφ0, it is obvious that α(x) ≥ φ0(x) for x ∈ [a, b]
and α(x) ≤ φ0(x) for x /∈ [a, b]. We therefore have

�2(φ0,max(φ0, α)) = 1

n

n∑

i=1

(α(xi ) − φ0(xi ))
2 I {xi ∈ [a, b]} , (40)

where I denotes the indicator function. By standard error estimates for linear interpo-
lation, for every x ∈ [a, b], there exists a point tx ∈ [a, b] for which

|φ0(x) − α(x)| = (x − a)(b − x)
φ′′
0 (tx )

2
. (41)

Let us first prove (38). By (41) and the assumption φ′′
0 (x) ≥ κ1 for x ∈ [a, b], we have

|φ0(x) − α(x)| ≥ (x − a)(b − x)κ1
2

for all x ∈ [a, b].

Thus, from (40), we get

�2(φ0,max(φ0, α)) ≥ κ2
1

4n

n∑

i=1

(xi − a)2(b − xi )
2 I {xi ∈ [a, b]}

≥ κ2
1

4n

n∑

i=1

(xi − a)2(b − xi )
2 I {xi ∈ [(3a + b)/4, (a + 3b)/4]} .

Clearly (x − a)(b − x) ≥ (b − a)2/16 for every x ∈ [(3a + b)/4, (a + 3b)/4] and
hence,

�2(φ0,max(φ0, α)) ≥ κ2
1

1,024

(b − a)4

n

n∑

i=1

I {xi ∈ [(3a + b)/4, (a + 3b)/4]} .

To get a lower bound on the number of points x1, . . . , xn that are contained in the
interval [(3a + b)/4, (a + 3b)/4], we use Lemma 7.2 which gives

�2(φ0,max(φ0, α)) ≥ κ2
1

1,024

(b − a)4

n

(
n(b − a)

2c2
− 1

)
.

The condition n ≥ 4c2/(b − a) now implies that

n(b − a)

2c2
− 1 ≥ n(b − a)

4c2

which completes the proof of (38). We now turn to the proof of (39). By (41) and the
assumption φ′′

0 (x) ≤ κ2 for x ∈ [a, b], we have

|φ0(x) − α(x)| ≤ (x − a)(b − x)
κ2

2
for all x ∈ [a, b].
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Thus from (40), we write

�2(φ0,max(φ0, α)) ≤ κ2
2

4n

n∑

i=1

(xi − a)2(b − xi )
2 I {xi ∈ [a, b]} .

Because (x − a)(b − x) ≤ (b − a)2/4 for all x ∈ [a, b], we obtain

�2(φ0,max(φ0, α)) ≤ κ2
2

64

(b − a)4

n

n∑

i=1

I {xi ∈ [a, b]} .

To obtain an upper bound on the number of points x1, . . . , xn that are contained in
[a, b], we again use Lemma 7.2 to get

�2(φ0,max(φ0, α)) ≤ κ2
2

64

(b − a)4

n

(
n(b − a)

c1
+ 1

)

When n ≥ 4c1/(b − a), we have

n(b − a)

c1
+ 1 ≤ 2n(b − a)

c1

and this completes the proof. �
Lemma 7.2 Let x1 < · · · < xn be fixed points in [0, 1] satisfying c1 ≤ n(xi −xi−1) ≤
c2 for all 2 ≤ i ≤ n. Let [a, b] be a subinterval of [0, 1] that contains m of the n real
numbers x1, . . . , xn. Then

n(b − a)

c2
− 1 ≤ m ≤ n(b − a)

c1
+ 1. (42)

Proof Let x0 := max (x1 − c2/n, 0) and xn+1 := min (xn + c2/n, 1). Let

{x1, . . . , xn} ∩ [a, b] = {xk+1, . . . , xk+m}

for some 0 ≤ k ≤ n − m. Clearly

b − a ≥ xk+m − xk+1 =
k+m∑

i=k+2

(xi − xi−1) ≥ c1(m − 1)

n

which gives the upper bound in (42). On the other hand,

b − a ≤ xk+m+1 − xk =
k+m+1∑

i=k+1

(xi − xi−1) ≤ c2(m + 1)

n

which gives the lower bound in (42). The proof is complete. �
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Lemma 7.3 Let φ be a convex function on [0, 1] for which ∫ 1
0 |φ(x)|pdx ≤ 1 for a

fixed p ≥ 1. Then |φ(y)| ≤ 2(1+ p)1/p max
(
y−1/p, (1 − y)−1/p

)
for all y ∈ (0, 1).

Proof It suffices to prove the theorem for 0 < y < 1/2.
Suppose φ(y) > y−1/p. Then, by convexity of φ, the condition φ(x) > φ(y) must

hold either for all x ∈ (0, y) or for all x ∈ (y, 1). Therefore,

1 ≥
∫

|φ(x)|pdx ≥ φ(y)p min(y, 1 − y) ≥ φ(y)p y

which gives a contradiction. Therefore φ(y) ≤ y−1/p.
Suppose, if possible, that φ(y) < −cy−1/p for some c > 1. We consider the

following cases separately.

Case (i) Assume φ(0) < −cy−1/p . In this case, by convexity of φ, it follows that
φ(x) < −cy−1/p for all x ∈ [0, y]. Therefore |φ(x)| > cy−1/p and thus

1 ≥
∫ 1

0
|φ(x)|pdx ≥

∫ y

0

cp

y
dx = cp.

This contradicts c > 1.

Case (i i) Here φ(0) ≥ −cy−1/p. We now consider the following two subcases:

1. φ(0) ≤ 0. Then φ(x) ≤ 0 for all x ∈ [0, y]. For each 0 ≤ x ≤ y, we have, by
convexity,

φ(x) ≤
(
1 − x

y

)
φ(0) + x

y
φ(y) ≤ x

y
φ(y).

Thus yφ(x) ≤ xφ(y) ≤ 0 for each 0 ≤ x ≤ y. As a result,

y p|φ(x)|p ≥ x p|φ(y)|p for 0 ≤ x ≤ y.

Integrating both sides from x = 0 to x = y, we obtain

y p
∫ y

0
|φ(x)|pdx ≥ |φ(y)|p y p+1

p + 1

which implies that |φ(y)|p ≤ (p + 1)/y, i.e., |φ(y)| ≤ (1+ p)1/p y−1/p which is
a contradiction if c > (1 + p)1/p.

2. φ(0) > 0. Let z ∈ (0, y) be such that φ(z) = 0. For x < z, we can write, by
convexity,

0 = φ(z) ≤ y − z

y − x
φ(x) + z − x

y − x
φ(y)

which implies that

0 > φ(y) ≥ y − z

x − z
φ(x).
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As a result, |z − x |p|φ(y)|p ≤ |y − z|p|φ(x)|p for 0 < x < z. Integrating both
sides from x = 0 to x = z, we get

|φ(y)|p z p+1

p + 1
≤ |y − z|p

∫ z

0
|φ(x)|pdx . (43)

For z < x < y, again, by convexity, we write

φ(x) ≤ x − z

y − z
φ(y) + y − x

y − z
φ(z) = x − z

y − z
φ(y) ≤ 0.

As a result, |y − z|p|φ(x)|p ≥ |x − z|p|φ(y)|p. Integrating from x = z to x = y,
we get

|φ(y)|p (y − z)p+1

p + 1
≤ |y − z|p

∫ y

z
|φ(x)|pdx . (44)

Adding the two inequalities (43) and (44), we obtain

|φ(y)|p
p + 1

(
z p+1 + (y − z)p+1

)
≤ |y − z|p

∫ y

0
|φ(x)|pdx < y p.

Now

z p+1 + (y − z)p+1 ≥ min
0<u<y

(
u p+1 + (y − u)p+1

)
= 2−p y p+1.

Combining, we obtain
|φ(y)| < 2(1 + p)1/p y−1/p

which results in a contradiction if c ≥ 2(1 + p)1/p y−1/p.

�
Lemma 7.4 (Interpolation Lemma) Fix x1 < x2 < · · · < xn and suppose that
c1 ≤ n(xi − xi−1) ≤ c2 for all 2 ≤ i ≤ n. For every function f on [x1, xn],
associate another function f̃ on [x1, xn] by

f̃ (x):= xi+1 − x

xi+1 − xi
f (xi ) + x − xi

xi+1 − xi
f (xi+1) for xi ≤ x ≤ xi+1

where i = 1, . . . , n− 1. Then for every pair of functions f and g on [x1, xn], we have

1

c2

∫ xn

x1

(
f̃ (x)− g̃(x)

)2
dx≤ 1

n

n∑

i=1

( f (xi )−g(xi ))
2≤ 6

c1

∫ xn

x1

(
f̃ (x) − g̃(x)

)2
dx .

Proof It is elementary to check that for every 1 ≤ i ≤ n − 1, we have

∫ xi+1

xi

(
f̃ (x) − g̃(x)

)2
dx = xi+1 − xi

3

(
α2 + β2 + αβ

)
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where α:= f (xi ) − g(xi ) and β = f (xi+1) − g(xi+1). Using the inequalities

−α2 − β2

2
≤ αβ ≤ α2 + β2

2
,

we obtain

c1(α2 + β2)

6n
≤ (xi+1 − xi )

α2 + β2

6
≤
∫ xi+1

xi

(
f̃ (x) − g̃(x)

)2
dx

≤ (xi+1 − xi )
α2 + β2

2
≤ c2(α2 + β2)

2n
.

Adding these inequalities from i = 1 to i = n − 1, we deduce

c1
6n

n∑

i=1

( f (xi ) − g(xi ))
2 ≤

∫ xn

x1

(
f̃ (x) − g̃(x)

)2
dx ≤ c2

n

n∑

i=1

( f (xi ) − g(xi ))
2

which yields the desired result. �
Remark 7.1 Observe that if f is a convex function on [a, b], then f̃ is also convex on
[a, b].
Lemma 7.5 The set of all convex projections of a concave function f0 includes an
affine function.

Proof We prove this result by the method of contradiction. Suppose that there is no
convex projection that is affine. Let φ0 be the continuous piecewise affine convex
projection of f0. For a function g : [0, 1] → Rwe define g(0+):= limx→0+ g(x) and
g(1−):= limx→1− g(x). This notation is necessary as f0 need not be continuous at
the boundary points {0, 1}.

Case (i): Suppose that f0(0+) ≥ φ0(0) and f0(1−) ≥ φ0(1). Then the affine
function φ̃0 obtained by joining (0, φ0(0)) and (1, φ0(1)), i.e., φ̃0(x) = (1 −
x)φ0(0)+ xφ0(1), for x ∈ [0, 1], lies in-between φ0 and f0 (as f0 is concave) and
�2(φ0, f0) ≥ �2(φ̃0, f0), giving rise to a contradiction.
Case (i i): Suppose that f0(0+) < φ0(0) and f0(1−) ≥ φ0(1). Then there is
a point u ∈ (0, 1) such that f0(u) = φ0(u). Let us define φ̃ to be the affine
function joining (u, φ0(u)) and (1, φ0(1)). Again, φ̃0 lies in-between φ0 and f0
and �2(φ0, f0) ≥ �2(φ̃0, f0), thus giving rise to a contradiction.
Case (i i i): Suppose that f0(0+) ≥ φ0(0) and f0(1−) < φ0(1). A similar analysis
as in (i i) by looking at the affine function obtained by joining (0, φ0(0)) and
(v, φ0(v)) where φ0(v) = f0(v), v ∈ (0, 1), gives a contradiction.
Case (iv): Suppose that f0(0+) < φ0(0) and f0(1−) < φ0(1). Suppose that there
are two points u0, u1 ∈ (0, 1) such that f0(ui ) = φ0(ui ), for i = 1, 2. Then
define φ̃ to be the affine function joining (u0, φ0(u0)) and (u1, φ0(u1)). Again,
φ̃0 lies in-between φ0 and f0 and �2(φ0, f0) ≥ �2(φ̃0, f0), thus giving rise to a
contradiction. Suppose that f0 and φ0 touch at just one point v ∈ (0, 1). Then
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410 A. Guntuboyina, B. Sen

defining φ̃0 to be the affine function that passes through (v, φ0(v)) and is a sub-
gradient to both φ0 and f0 at v yields a contradiction. If f0 and φ0 do not touch at
all then defining φ̃0 to be any affine function lying between φ0 and f0 shows that
�2(φ0, f0) ≥ �2(φ̃0, f0). This completes the proof. �

Remark 7.2 Note that if n > 2, the convex projection of a concave f0 is in fact unique
on (0, 1) and affine.
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