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Abstract We establish the renormalization property for essentially bounded solu-
tions of the continuity equation associated to bounded variation (BV ) fields inWiener
spaces, with values in the associated Cameron-Martin space; thus obtaining, by stan-
dard arguments, new uniqueness and stability results for correspondent Lagrangian
flows.
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1 Introduction

The theory of flows driven by weakly differentiable fields in Euclidean spaces began
with the seminal paper [17], by R.J. DiPerna and P.-L. Lions, where they proved
that Sobolev regularity for vector fields in R

n is sufficient to obtain existence and
uniqueness of a generalized notion of flow driven by these fields. Since then it has
found many developments and applications; for brevity, we refer to the exposition
in [2], mentioning only some notable recent papers: [3,12,18] and [22]. The work of
DiPerna and Lions did not cover the case of bounded variation (BV ) fields, which arise
naturally in many contexts: it was settled by L. Ambrosio in [1] and subsequently BV
fieldswere considered in other settings, e.g. SDEs, in [23], or Fokker-Planck equations,
in [24].

OnabstractWiener spaces, a theoryofflowswasdeveloped somehow independently
(see [13–15] for early works and [26] for more recent developments). In [4], tools
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124 D. Trevisan

from DiPerna-Lions theory were first applied also in the infinite-dimensional setting,
obtaining existence and uniqueness of flows driven by Sobolev fields. A comparison
between the two approaches seems difficult in general, due to different assumptions on
different norms: one approachmight be better than the other, depending on the nature of
the driving field (for more details, see the introduction of [4]). Recent developments of
similar techniques in infinite dimensional settings deal with Fokker-Planck equations
in Wiener spaces [25], continuity equations in Gaussian-Hilbert spaces [16] and also
in some non-Gaussian spaces [21].

In Wiener spaces, uniqueness for flows driven by BV fields was left open in [4]
and the aim of this article is to settle it. Besides an urge of symmetry with the finite
dimensional setting, our interest in dealing with BV fields is mainly due to the lack
of localization for the theory involving Sobolev fields obtained in [4]: after giving
the statement of the main result, Theorem 2 in Sect. 4, we sketch how BV fields
arise naturally by extending smooth fields defined only on open regions of the Wiener
space. If extension theorems for Sobolev spaces on infinite dimensional domains were
known, one might be able to work without BV fields, but this seems to be a rather
delicate subject (see [11] for some recent results, in a negative direction).

Some reasons for the existence of this gap between the finite dimensional theory
and the Wiener space theory can be traced in the fact that the theory of BV maps
on Wiener spaces (which began with the works by Fukushima and Hino [19,20])
only recently has been studied from a geometric point of view, closer to the finite
dimensional setting: see [5,6] and [8].

For a presentation of the general problem of flows and the ideas involved in the
Wiener space setting, we refer to the well written introduction of [4] and then to Sect.
5 therein for a rigorous derivation of the links between well-posedness (i.e. existence
and uniqueness) of flows driven by a vector field b and that of the associated continuity
equation,

∂t ut + div (btut ) = 0, (1)

where div(= divγ ) denotes the distributional divergencewith respect to the underlying
Gaussian measure.

While existence is settled rather easily, assuming bounds on b and divb, unique-
ness is a difficult issue, already in the finite dimensional setting. The DiPerna-Lions
argument is based on the notion of renormalized solution, whose definition we recall
here: a solution to (1) is said to be renormalized if, for every β ∈ C1 (R), with both
β ′ (z) and β (z) − zβ ′ (z) bounded, it holds, in the distributional sense,

∂tβ (ut ) + div (btβ (ut )) − (divbt )
[
β (ut ) − utβ

′ (ut )
] = 0.

Roughly speaking, if all the solutions in some class are known to be renormalized, then
uniqueness holds in that class (for a precise statement, see e.g. the proof of Theorem
3.1, in [4, Section 3]).

In this article, therefore, we focus on the proof of the renormalization property,
the main result being Theorem 2 below: given a BV vector field b with integrable
divergence, every essentially bounded solution of (1) is renormalized: from this it
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Lagrangian flows driven by BV fields in Wiener spaces 125

is not difficult to recover statements about uniqueness and stability for L∞-regular
Lagrangian flows, as in [4].

Let us comment on the proof technique. In the finite dimensional setting, the
approach developed in [1] is based on a refined analysis of error terms arising from
smooth approximations, relying on two different estimates: an anisotropic estimate,
which is rather good in the regions where the measure-derivative Db is mostly sin-
gular with respect to the Lebesgue measure, and an isotropic estimate, which is good
instead in the regions where the derivative is mostly absolutely continuous. Then, an
optimization procedure on the choice of approximations gives the renormalization
property.

In the infinite dimensional setting, a direct implementation of this method fails,
because of error terms depending on the dimension of the space. Our contribution
may be thus summarized in obtaining a refined anisotropic estimate which is well-
behaved at every point and, after a similar optimization procedure, turns out to be
sufficient to conclude the renormalization property.

This method works also in the finite dimensional setting and, since the steps might
prepare the reader for the Wiener space case, we briefly describe it in Sect. 2. From a
technical point of view,we establish first some estimates on smooth functions, obtained
via integration by parts, and then we apply Reshetnyak continuity theorem to cover
the BV case: to the author’s knowledge, this argument is original also in the finite
dimensional setting and, although being here a minor deviation from the usual route,
it proves to be a good approach to deal with the infinite dimensional case.

Starting from Sect. 3, we deal uniquely with the Wiener space setting: we recall
some definitions and facts about Sobolev and BV maps and then, in Sect. 4, we state
our main result. In Sect. 5, we establish some technical facts instrumental to its proof,
which is finally given in Sect. 6.

2 Renormalized solutions in R
d

Aim of this section is to prove the renormalization property for essentially bounded
solutions of the continuity equation associated to a finite dimensional BV field, along
the same lines as in Sect. 6 below: there, computations are a bit more involved and thus
the hope is to introduce the reader to our approach. In particular, the overall structure
of the proof is exactly the same.

For simplicity, we work under global integrability assumptions, but the arguments
can be easily adapted to cover the BVloc case. For brevity, we refer to [2, Section 5],
for a detailed introduction of the finite dimensional setting. Recall that the class of test
functions is given by C∞

c ((0, T ) × R
d).

Theorem 1 Let b ∈ L1
(
(0, T ); BV (Rd ;Rd)

)
with divb ∈ L1

(
(0, T ) × R

d
)
. Then,

any distributional solution u = (ut )t∈(0,T ) ∈ L∞ (
(0, T ) × R

d
)
to

∂t ut + div (btut ) = 0

is a renormalized solution.

123



126 D. Trevisan

Proof We sketch the essential steps to prove the result, since they perfectly correspond
to those involved in the proof of Theorem 2 below. Then, we slightly expand the
arguments in the following subsections.

1. (Mollification). We set up a two parameter family of mollified solutions uε
ρ , with

parameters ρ varying in some set of functions and ε being a positive real number,
that solve, in the distributional sense, the equation

∂t u
ε
ρ + div

(
buε

ρ

) = rε
ρ. (2)

For simplicity, we omit in what follows the dependence on ρ.
2. (Approximate renormalization). We prove that uε and all the terms above are

sufficiently smooth so that, given any β ∈ C1 (R), with both β ′ (s) and β (s) −
sβ ′ (s) uniformly bounded, standard calculus applies entailing

∂tβ
(
uε

) + div
(
bβ

(
uε

)) − (divb)
[
β(uε) − β ′(uε)uε

] = β ′(uε)rε. (3)

3. (Refined anisotropic estimate). We prove that, for some function�ρ (t, x) it holds,
for every test function ϕ,

lim sup
ε→0

∫

(0,T )×Rd

∣∣ϕβ ′ (uε
)
rε

∣∣ dxdt≤‖u‖∞
∥∥β ′∥∥∞

∫

(0,T )×Rd
|ϕ| �ρ d |Dbt | dt.

(4)

This inequality implies that the distribution

σ := ∂tβ (u) + div (bβ (u)) − (divb)
[
β (u) − β ′ (u) u

]
(5)

is a measure, with total variation smaller than �ρd |Dbt | dt .
4. (Optimization). The null measure is the infimum among all �ρ |Db|, as ρ varies:

this relies on a (by now stardard) argument due to G. Alberti, and settles the
renormalization property.

As already remarked in the introduction, when compared with Ambrosio’s original
strategy to prove the renormalization property (see [1] or[2]) our approach differs
mainly in the refined anisotropic estimate, whose derivation seems to be new, to the
author’s knowledge: such a minor deviation from the usual route plays a key role in
the Wiener setting.

2.1 Mollification

Let ρ be any smooth non-negative function onRd , compactly supported, with
∫

ρ = 1.
Given ε > 0, and f ∈ L1

loc

(
(0, T ) × R

d
)
, we mollify by convolution on the space

variables, defining

T ε
ρ ϕ (t, x) :=

∫

Rd
ϕ (t, xε) ρ (y) dy,
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Lagrangian flows driven by BV fields in Wiener spaces 127

where we write here and below, xε := x − εy. We frequently omit the dependence on
t ∈ (0, T ) since it plays no role.

The adjoint in L2((0, T ) × R
d) of T ε

ρ is

(T ε
ρ )∗ϕ (t, x) :=

∫

Rd
ϕ (t, x + εy) ρ (y) dy,

Since T ε
ρ preserves test functions, we naturally extend (T ε

ρ )∗ on distributions. We set
therefore uε

ρ = (T ε
ρ )∗u, so that in (2) it holds

rε
ρ := div

(
b(T ε

ρ )∗u
) − (T ε

ρ )∗div (bu) .

2.2 Approximate renormalization

To keep notation simple, we omit to explicit the dependence on ρ, since its plays no
role in this section. The function uε is smooth with respect to the variable x ∈ R

d , so
that to justify (3) above we show that the distribution rε is (induced by) an integrable
function: actually both div (buε) and (T ε)∗ div (bu) are integrable functions.

Equivalent expressions for div (buε) and (T ε)∗ div (bu) via integration by parts.
Let ϕ be a test function and compute

∫
ϕ div

(
buε

) = −
∫

〈∇ϕ, b〉uε = −
∫

u T ε〈∇ϕ, b〉.

Integrating by parts, we obtain

T ε〈∇ϕ, b〉 (x) = 1

ε

∫
ϕ (xε) divy (b (xε) ρ (y)) dy =

∫
ϕ (xε) A

ε (x, y) dy.

If Aε ∈ L1
(
R
2d

)
, the change of variables (x, y) �→ (x + εy, y) gives

∫
ϕ div

(
buε

) = −
∫

ϕ (x)
∫

uε (x + εy) Aε (x + εy, y) dy.

thus div (buε) ∈ L1. For (T ε)∗ div (bu) we proceed similarly, obtaining

〈∇T εϕ, b〉 (x) = 1

ε

∫
ϕ (xε) divy (b (x) ρ (y)) dy =

∫
ϕ (xε) B

ε (x, y) dy.

If Bε ∈ L1
(
R
2d

)
, we conclude that (T ε)∗ div (bu) ∈ L1. Direct estimates for Aε and

Bε are trivial, but we prefer to sketch a slightly more abstract argument that is useful
in the Wiener setting.

Integrability of Aε and Bε via divergence identities. If M is a linear transformation
of R2d that preserves Lebesgue measure, then, for every vector field c : R2d → R

2d ,
the following distributional identity holds:
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div (c ◦ M) (z) = [div (Mc)] (Mz) . (6)

In the case M (x, y) = (x − sy, y) and c (x, y) = (0, v (x, y)), we obtain

divy (v (xs, y)) = −s [divxv] (xs, y) + [
divyv

]
(xs, y) . (7)

Such an identity gives, for v (x, y) = b (x) and s = ε,

divy (b (xε)) = −ε [divb] (xε) ∈ L1.

From this, we deduce the integrability of Aε (computations for Bε are similar):

εAε (x, y) = ρ (y) divy (b (xε)) + 〈b (xε) ,∇ρ (y)〉 ∈ L1.

2.3 Refined anisotropic estimate

The crucial step in our argument is prove that (4) above holds, with

�ρ (t, x) =
∫ ∣

∣divy (Mt (x) yρ (y))
∣
∣ dy,

where Mt is given by the polar decomposition Dbt (dx) dt = Mt (x) |Dbt | (dx) dt .
To this aim, we proceed as follows. First, we fix ε > 0 and assume b to be smooth,
in order to obtain an estimate for rε in terms of Db. Then, still keeping ε fixed, we
extend the validity of this estimate to any BV vector field. Finally, we let ε → 0 and
conclude.

Without any loss of generality, we assume both ‖u‖∞ ≤ 1 and
∥∥β ′∥∥∞ ≤ 1. As

above, we omit to write as subscripts both ρ and t .
Fix ε > 0 and let b be smooth. In Sect. 2.2, we obtained that

rε (x) =
∫

uε (x + εy)
[
Bε (x + εy, y) − Aε (x + εy, y)

]
dy.

Therefore, we estimate

∫ ∣∣ϕβ ′ (uε) r
ε
∣∣ ≤

∫
|ϕ| (x) ∣∣Bε (x + εy, y) − Aε (x + εy, y)

∣∣ dxdy. (8)

After a change of variables (x, y) �→ (xε, y) (recall that xε = x − εy) and using the
expressions for Aε and Bε, the right hand side above is equal to

∫
|ϕ| (xε)

∣∣∣∣divy

(
b (x) − b (xε)

ε
ρ (y)

)∣∣∣∣ dxdy.
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Lagrangian flows driven by BV fields in Wiener spaces 129

Since b is assumed to be smooth, we have

b (x) − b (xε)

ε
= −

∫
−

ε

0

d

ds
b (xs) =

∫
−

ε

0
Db (xs) y,

where for brevity we write −∫ ε

0 f (s) := 1
ε

∫ ε

0 f (s) ds. Exchanging divergence and
integration with respect to s, it holds

divy

(
b (x) − b (xε)

ε
ρ (y)

)
=

∫
−

ε

0
divy (Db (xs) yρ (y)) . (9)

Let c (x, y) := ρ (y) Db (x) y
(= ρ (y) ∂yb (x)

)
. By identity (7),

divy (Db (xs) yρ (y)) = −s [divx c] (xs, y) + [
divyc

]
(xs, y) .

Since divxc involves further derivatives of b, the following identity is crucial:

[divxc] (xs, y) = ρ (y)
[
∂ydivb

]
(xs) = −ρ (y)

d

ds
divb (xs) ,

because it allows to integrate by parts in (9) to obtain

ρ (y)

[
divb (xε) −

∫
−

ε

0
divb (xs)

]
+

∫
−

ε

0

[
divyc

]
(xs, y) .

We estimate therefore (8) with

∫ ∫
|ϕ| (xε)

[∫
−

ε

0

∣∣[divyc
]
(xs, y)

∣∣ +
∣∣∣∣

∫
−

ε

0
divb (xs) − divb (x)

∣∣∣∣ ρ (y)

]
dydx . (10)

Keeping ε > 0 fixed, we extend the estimate to a general b. We focus on the first
term of the sum in (10). Exchanging integrations and changing variables (x, y) �→
(x + sy, y), we find an equivalent expression, of the form

∫ [∫
|ϕ|ε (x, y) �ρ (x, y) dy

]
|Db| (x) dx,

where we let

|ϕ|ε (x, y) :=
∫
−

ε

0
|ϕ (xε−s)| , �ρ (x, y) := ∣∣divy (M (x) yρ (y))

∣∣

andM (x) is defined by the identityM (x) |Db| (x) = Db (x). The crucial observation
is that this is an expression of the form

∫
f

(
x,

Db

|Db| (x)

)
|Db| (dx) ,
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130 D. Trevisan

where f : Rd ×S
d2−1 is continuous and bounded. By Reshetnyak continuity theorem

[7, Theorem2.39],we extend our estimate to a general BV vector field.More precisely,
we approximate b with a sequence of smooth vector fields bn , such that

lim
n→∞ ‖bn − b‖1 = 0, lim

n→∞ ‖divbn − divb‖1 = 0

and |Dbn|
(
(0, T ) × R

d
) → |Dbn|

(
(0, T ) × R

d
)
(such a sequence exists, e.g. by con-

volution with a smooth kernel). The second term in (10) is easily seen to be continuous
with respect to L1 convergence of divb.

We obtain that, for a general BV field b, the quantity
∫ ∣

∣ϕβ ′ (uε) rε
∣
∣, is estimated

by the sum of two terms:

∫ [∫
|ϕ|ε (x, y) �ρ (x, y) dy

]
d |Db| (x) (11)

and ∫ ∫
|ϕ| (xε)

∣
∣∣∣

∫
−

ε

0
divb (xs) − divb (x)

∣
∣∣∣ ρ (y) dydx . (12)

We let ε → 0. In (12), we estimate |ϕ| (x) with its supremum and then use strong
continuity in L1 of translations, together with the fact that ρ has compact support,
to show that it converges to zero. In (11), we exploit the fact that ϕ a test function,
so that |ϕ|ε (x, y) converges pointwise everywhere to |ϕ| (x) and dominated by some
constant: by Lebesgue’s theorem with respect to |Db|, we conclude that (4) holds.

2.4 Optimization

We prove that, for every matrix M ∈ R
d×d , it holds

inf

{∫ ∣∣divy (Myρ (y))
∣∣ dy : ρ ∈ C∞

c (Rd), ρ ≥ 0,
∫

ρ = 1

}
= 0.

This is precisely the mathematical content of [2, Lemma 5.1], due to Alberti. For
completeness, we report here its proof, since it is used, almost verbatim, in Section 6
below. We argue that, for any T > 0, there exists some ρ ∈ C∞

c

(
R
d
)
such that

∫ ∣∣divy (Myρ (y))
∣∣ dy ≤ 2

T
.

Consider the vector field M̂ : y �→ My and let ū be any smooth, non-negative
and compactly supported function with

∫
ū = 1. The solution (ut ) of the continuity

equation with initial datum ū, i.e.,

∂t ut + div(M̂ut ) = 0, u0 = ū,
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Lagrangian flows driven by BV fields in Wiener spaces 131

is smooth, non-negative and compactly supported: the same holds for ρ :=
1
T

∫ T
0 utdt . Finally, to estimate

∫ ∣∣divy (Myρ (y))
∣∣ dy, let ϕ be smooth and compute∫

ϕ (y) divy (Myρ (y)) dy:

1

T

∫ T

0

∫
ϕ (y) divy

(
M̂ (y) ut (y)

)
= 1

T

(∫
ϕ (y) (uT − u0) dy

)
≤ 2

T
‖ϕ‖∞ .

3 Sobolev and BV spaces on Wiener spaces

In this section, we briefly recall the framework of infinite dimensional analysis on
Gaussian spaces. Let (X, γ, H) be a Wiener space, i.e., X is a separable Banach
space, γ is a non-degenerate centred Gaussian measure on X and H ⊆ X is the
associated Cameron-Martin space, which enjoys a Hilbert space structure with scalar
product 〈·, ·〉H . Let Q ∈ L (X∗, X) be the covariance operator associated with γ ;
duality between X and X∗ is denoted with 〈·, ·〉.

3.1 Smooth cylindrical maps

We fix throughout an orthonormal basis
(
hn = Qx∗

n

)
n≥1 ⊆ H induced by elements

in X∗ and let πN : X → X ,for N ≥ 1, be the map defined on x ∈ X by

πN (x) :=
N∑

n=1

〈x, x∗
n 〉hn .

With a slight abuse of notation, sometimes we identify the image of π with RN .
Let K be any separable Hilbert space. A map b : X → K is said to be cylindrical

if, for some N ≥ 1, there exists ki ∈ K and bi : RN → R, with i ∈ {1, . . . , N }, such
that it holds, for γ -a.e. x ∈ X ,

b (x) =
N∑

i=1

bi (πN (x)) ki .

When K = H , we also require that ki = hi , and use the term field to indicate H -
valued maps. A cylindrical map is said to be smooth if it admits a representation with
bi bounded together with their derivatives, i ∈ {1, . . . , N }.

On smooth cylindrical maps, the Sobolev-Malliavin gradient is defined by

∇b (x) :=
N∑

i=1

ki ⊗ (QDFbi (x)) ∈ K ⊗ H,
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where DFb (x) ∈ X∗ is the Fréchet derivative of bi at x . The Gaussian divergence of
a smooth cylindrical field b (thus, H -valued) is defined by

divb (x) :=
N∑

i=1

〈∇bi (x) , hi 〉H − x∗
i (x) bi (x) .

Given a smooth cylindrical map b, with values in K ⊗ H , in order to define its
divergence, we represent it first as b = ∑

i ki ⊗bi and then we let divb = ∑
i kidivbi .

It is customary and useful to endow the product spaces K ⊗ K ′ with the Hilbert-
Schmidt norm, thus defining a Hilbert space structure.

The following integration by parts formula justifies the definition of divergence:
for any smooth cylindrical function u and field b, it holds

∫
〈∇u, b〉Hdγ = −

∫
u divb dγ.

It is useful to generalize this identity to smooth cylindrical K -valued maps u and
K ⊗ H -valued maps b, arguing componentwise:

∫
〈∇u, b〉K⊗Hdγ = −

∫
〈u, divb〉K dγ. (13)

3.2 Sobolev, BV spaces and the distributional divergence

We recall some basic facts about Sobolev-Malliavin spaces, referring to [10, Chapter
5] for a detailed introduction. Given p ∈ [1,∞[, one considers either the abstract
completion of smooth K -valued maps u with respect to the norm

‖u‖1,p := ∥∥|u|K + |∇u|K⊗H

∥∥
L p(X,γ )

,

or the space of maps u ∈ L p (X, γ ; K ) such that there exists some ∇u ∈
L p (X, γ ; K ⊗ H) which satisfies (13), for every smooth cylindrical K ⊗ H -valued
map b. A Meyers-Serrin type result in this setting (see [10, Proposition 5.4.6]) shows
that the two definitions are equivalent: the space W 1,p (X, γ : K ) is well defined and
smooth cylindrical K -valued maps are dense.

To introduce BV maps, we refer to [8] for details: BV (X, γ ; K ) is defined as
the space of u ∈ L log1/2 L (X, γ ; K ) such that there exists some K ⊗ H -valued
measure Du on X , with finite total variation, such that, for every smooth K ⊗ H -
valued cylindrical map b, it holds

∫
〈b, dDu〉K⊗H = −

∫
〈u, divb〉K dγ.

Theorem 4.1 in [8] provides the following alternative characterization: u ∈
BV (X, γ ; K ) if and only if there exists some sequence un of smooth cylindrical maps
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Lagrangian flows driven by BV fields in Wiener spaces 133

such that, as n → ∞,
∫ |un − u| dγ → 0 and

∫ |∇un|H dγ is uniformly bounded (the
smallest bound among all the sequences being the total variation |Du| (X)). Actually,
in [8], only the scalar case is considered, but the argument easily extends to general
K -valued maps. Finally, we let ‖u‖BV := ∫ |u| dγ + |Du| (X).

Finally, we introduce a notion of distributional divergence for any K ⊗ H val-
ued Borel map b using (13) as a definition. In particular, we may consider suffi-
cient conditions to ensure that (13) holds, for some (necessarily unique) function
divb ∈ L p(X, γ ). For p ∈]1,∞[, it can be proved that, if b ∈ W 1,p (X, γ ; H), then
divb ∈ L p(X, γ ): the case p = 2 is elementary, the others following from the bound-
edness of the Riesz transform on Wiener spaces, see [10, Section 5.8]. To the author’s
knowledge, the validity of a correspondent statement for p = 1 is open.

4 Statement of the main result

Let us first recall the precise meaning of distributional solution to the continu-
ity equation (1), in the Wiener space setting. We introduce a suitable class of test
functions, consisting of those of the form ϕ (t, πN (x)) for some smooth bounded
ϕ (t, y), supported in some strip [δ, T − δ] × R

N , for some δ ∈]0, T [. Then, given
a (possibly time-dependent) field b = (bt ) ∈ L1((0, T ) × X; H), we say that
u = (ut ) ∈ L∞((0, T ) × X) is a distributional solution to (1) if, for every test
function ϕ, it holds

∫ T

0

∫
(∂tϕ + 〈∇ϕ, bt 〉H ) ut dγ = 0.

As already mentioned in the introduction, for a general overview of the Sobolev
case and the links between continuity equations and regular Lagrangian flows, we
refer to [4]. Here, we focus only on the renormalization property for solutions u ∈
L∞ ((0, T ) × X), our main result being the following

Theorem 2 Let p > 1 and b ∈ L1 ((0, T ); BV ∩ L p(X, γ ; H)), with divb ∈
L1 ((0, T ) × X). Then, any distributional solution u = (ut ) ∈ L∞((0, T ) × X)

to

∂t ut + div (btut ) = 0

is a renormalized solution.

Let us remark that the assumption b ∈ L p(X, γ ; H) is made only for technical
convenience and the proof below suggests that it can be removed, exploiting the
natural integrability condition b ∈ L log1/2 L(X, γ, H) valid for general BV maps:
we just prefer to avoid the introduction of Orlicz spaces.

As discussed in the introduction, the arguments in [4, Section 4], combined with
the result above entail existence (assuming a stronger bound on the divb), uniqueness
and stability of associated L∞-regular Lagrangian flows: we do not enter into details
since this is rather straightforward.
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Instead, we briefly show in which sense the introduction of BV vector fields is
expected to be useful, even in contexts where higher regularity would be expected.
A problem with the results in [4] is that they are of global nature. Given a Sobolev
field b ∈ W 1,2(X, γ ; H) with divb ∈ L∞(X, γ ), a global, i.e. on all X , L∞-regular
Lagrangian flow is well-defined: however, it is not clear at all how to proceed e.g. if
b is regular, or even defined, only in an open (even regular) set � ⊆ X . The natural
strategy is to consider the field χ� b, whose regularity should be then only BV .

To sketch a concrete example of such a situation, one can consider a gradient vec-
tor field ∇η, where η solves the following elliptic problem with Neumann boundary
conditions:

{−div∇η + λη = f in�,
∂
∂nη = 0 in ∂�.

Such problems arise as Kolmogorov equations associated to stochastic processes
reflected at the boundary of�, as investigated e.g. in [9]: to our purpose, here, they only
provide non-trivial examples to which our theorem applies. Indeed, using the results
from [9], it is possible to show that if � is sufficiently regular and f ∈ L∞(�; γ ),
then b = χ�∇η enjoys a well-posed regular Lagrangian flow. For brevity, we do
not enter into a detailed description of this fact: we only remark that a key step is
to recognize that divb = χ�(λη − f ) thanks to the boundary conditions and that
Db = ∇η ⊗ Dχ� + χ�(∇2η)γ is a measure.

5 Some technical results

Before we address the proof of Theorem 2, we give some auxiliary facts, about approx-
imations of fields and the exponential map in Wiener spaces.

5.1 Cylindrical approximations

We establish two propositions, the first one being a slight generalization of the approx-
imation procedure employed in the proof of [4, Proposition 3.5].

Recall that, in Sect. 3, we introduced an orthonormal basis in H of the form(
hn = Qx∗

n

)
n≥1 and related projections operators πN , for N ≥ 1: we let in all what

follows FN be the σ -algebra generated by the map πN and let EN be the conditional
expectation operator with respect to FN .

Moreover, the map x �→ (πN (x) , x − πN (x)) induces decompositions X =
ImπN ⊕ ker πN and H = ImπN ⊕ Imπ⊥

N . Recall that we also identify ImπN = R
N

via hi �→ ei . The map πN also induces a decomposition γ = γN ⊗ γ ⊥
N , where γN is

the standard N -dimensional normal law on RN and γ ⊥
N is a non-degenerate Gaussian

measure on ker πN , with Cameron-Martin space given by Imπ⊥
N .

Let K be a Hilbert space and let μ be a K -valued measure on X . The push-forward

(πN )� μ is defined by (πN )� μ (A) := μ
(
π−1
N A

)
, for A Borel. Since push-forwards

commute with linear operators on K , for any H ⊗ H -valued measure, it holds
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[πN ⊗ πN ]μ (A) = [πNμπN ] (A) = πNμ (A) πN .

In the next two propositions, let b ∈ BV ∩ L p (X, γ ; H), with divb ∈ Lq (γ ), for
some p, q ∈ [1,∞[, and, for N ≥ 1, let

bN := EN [πNb]

be a cylindrical approximation of b.

Proposition 1 Let b and bN be as above. Then, bN is a cylindrical BV vector field,
with

DbN = [
(πN )� (πN Db πN )

] ⊗ γ ⊥
N and divbN = EN [divb] .

Moreover, it holds

lim
N→∞

∥∥∥bN − b
∥∥∥
p

+
∥∥∥divbN − divb

∥∥∥
q

= 0.

Proof Once the identity involving the divergence is proved, the last statement follows
at once by the martingale convergence theorem (or because conditional expectations
are contractions and convergence is true for cylindrical fields).

Therefore, we focus on the two identities: being N fixed we write π := πN and
E := EN .

Notice that the fieldbN is at least as integrable as b, since projections and conditional
expectations reduce norms. In what follows, we use duality with smooth cylindrical
functions, self-adjointness of π and E, and the commutation relation

πE [∇ϕ] = E [π∇ϕ] = ∇E [ϕ] .

It holds

∫
ϕ divbNdγ = −

∫
〈∇ϕ, bN 〉dγ = −

∫
〈πE [∇ϕ] , b〉dγ

= −
∫

〈∇E [ϕ] , b〉 =
∫

ϕ E [divb] ,

that gives the identity for the divergence.
Similar computations can be performed on H⊗H smoothmaps with π ⊗Id (where

Id denotes the identity map) in place of π . It holds D (πb) = (π ⊗ Id) Db:

∫
〈ϕ, dDπb〉 = −

∫
〈πdivϕ, b〉 = −

∫
〈div (π ⊗ Id ϕ) , b〉 =

∫
〈ϕ, (π ⊗ Id) dDb〉,
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therefore
∫

〈divϕ, bN 〉 =
∫

〈E [divϕ] , πb〉 =
∫

〈div (Id ⊗ π E [ϕ]) , πb〉

=
∫

〈Id ⊗ π E [ϕ] , dDπ b〉 =
∫

〈E [ϕ] , (π ⊗ π) dDb〉.

and so we conclude. ��
The next result is actually measure-theoretical, its proof being based on disinte-

gration of measures and Jensen’s inequality. Notice that it generalizes the inequality∣∣DbN
∣∣ (X) ≤ |Db| (X).

Proposition 2 Let

f : X × (H ⊗ H) → [0,∞[
be Borel, positively homogeneous and convex in the second variable, keeping fixed the
first. For any N ≥ 1, it holds

∫
f

(

πN ,
DbN

∣∣DbN
∣∣

)

d
∣∣
∣DbN

∣∣
∣ ≤

∫
f

(
πN , πN

Db

|Db|πN

)
d |Db| .

Proof We write for brevity π := πN . Let μ = (π ⊗π)Db, ν = DbN and ρ = γ ⊥
N so

that Proposition 1 gives ν = (
π�μ

)⊗ρ. The total variation and the polar decomposition
of ν factorize respectively as

|ν| (dx, dy) = ∣
∣π�μ

∣
∣ (dx) ⊗ ρ (dy) and

ν

|ν| (x, y) = π�μ∣∣π�μ
∣∣ (x) .

Therefore, it holds

∫
f

(
x,

ν

|ν| (x, y)

)
d |ν (x, y)| =

∫
f

(

x,
π�μ∣∣π�μ

∣∣ (x)

)
∣∣π�μ

∣∣ (dx) .

Since
∣∣π�μ

∣∣ ≤ π� |μ|, it holds π�μ

π�|μ| = π�μ|π�μ|
|π�μ|
π�|μ| which, by positive homogeneity of

f , gives

∫
f

(

x,
π�μ∣∣π�μ

∣∣ (x)

)
∣∣π�μ

∣∣ (dx) =
∫

f

(
x,

π�μ

π� |μ| (x)

)
π� |μ| (dx) .

We now disintegrate |μ| with respect to π , and apply Jensen’s inequality. More
precisely, since X is a separable Banach space, there exists a probability kernel
(N (x, dy))x such that, for every bounded Borel map g (z) it holds

∫
g (z) d |μ| (z) =

∫
π� |μ| (dx)

∫
g (x, y) N (x, dy) .
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Moreover, if σ |μ| = μ is the polar decomposition, using g (z) = h (π (z)) σ (z), we
obtain

π�μ

π� |μ| (x) =
∫

σ (x, y) N (x, dy) .

By convexity of f and Jensen’s inequality,

f

(
x,

π�μ

π� |μ| (x)

)
≤

∫
f (x, σ (x, y)) N (x, dy) .

Integrating with respect to π� |μ|, the right hand side above gives

∫
f (π (z) , σ (z)) d |μ| (z) =

∫
f

(
π (z) ,

μ

|μ| (z)

)
d |μ| (z) ,

The homogeneity of f and the identities

πDb π

|πDb π |
|πDb π |

|Db| = πDb π

|Db| = π
Db

|Db|π,

allow to conclude. ��

5.2 Exponentials maps in Wiener spaces

It is well known that the Cameron-Martin space H ⊆ X is isomorphic to a subspace
H ⊆ L2 (X, γ ) via

h �→ ĥ := −divh ∈ L2(X, γ ).

Notice that the divergence of a constant field is not zero, reflecting the fact thatGaussian
measures are not invariant under translations.

We extend the notation ĥ as follows: given b ∈ L1 (X, γ ; H), we define
b̂ ∈ L1

(
X × X, γ 2

)
by b̂ (x, y) := −divy (b (x)) (y). This provides an embed-

ding L1 (X, γ ; H) ⊆ L1
(
X × X, γ 2

)
. Similarly, given a Hilbert-Schmidt operator

M ∈ H ⊗ H , we let M̂ = −divM ∈ L2 (X, γ ; H). On cylindrical operators in the
form M = ∑

i, j mi j hi ⊗ h j , it holds

M̂ (x) =
∑

i

hi
∑

j

mi j x
∗
j (x) . (14)

In particular, it holds ‖M̂‖2 = ‖M‖ (where ‖·‖ denotes the Hilbert-Schmidt norm)
and ∇ M̂ = M .
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In this section, we focus on integrability result for the solution of a continuity
equation driven by M̂ ,

∂t ut + div(M̂ut ) = 0, u0 = 1. (15)

Since M is regular and integrable, the theory developed in [4] provides existence,
uniqueness and stability for solutions up to a time T which depends on the exponential
integrability of divM̂ . Looking for integral bounds on uT for fixed T > 0, already in
the case M = hi ⊗ hi , one finds

divM̂ = |hi |2 − ĥ2i ,

whose negative part is exponentially integrable only up to a factor α < 1/2 and so
the bound developed in [4] does not seem to help. The following proposition provides
L p-bounds for uT and |∇uT | for some some p(T ) > 1. Although the proof makes
explicit use of the exponential form of solutions, the key ingredient is a well-known
consequence of the so-called concentration of measure, and we claim (but not prove
here) that one could prove results of this kind for rather general H -Lipschitz fields.

Proposition 3 Let M ∈ H ⊗ H. For every T > 0, there exists p(T, ‖M‖) > 1 such
that (15) admits a (unique) solution u ∈ L∞ (

(0, T );W 1,p (γ )
)
.

Proof It is sufficient to assume that X = R
N , γ = γN is a standard Gaussian and M

is a square matrix, provided we obtain bounds that are independent of N , the general
case following by stability via cylindrical approximation.

Recall that the Hilbert-Schmidt norm is stronger than the usual operator norm, that
‖AB‖ ≤ ‖A‖ ‖B‖ and that that products of Hilbert-Schmidt operators have finite
trace, in particular Tr

[
A2

] ≤ ‖A‖2.
Identity (14) shows that M̂ is the linear operator given by matrix multiplication.
We begin by rewriting a linear change of variables in a convenient way (see also

[27, Chapter 10]). If C is any square matrix in R
N , the following identity holds true:

d(I + C)�(γN )

dγN
(x + Cx) = |det2 (I + C)|−1 exp

(
div(Cx) + |Cx |2 /2

)
. (16)

where det2 (I + C) = det (I + C) exp (−Tr [C]) is the Carleman-Fredholm determi-
nant. As a consequence, we have

∫
|det2 (I + C)| exp

(
−div (Cx) − |Cx |2 /2

)
dγN (x) = 1. (17)

The unique solution of (15) is ut = (X (t, ·)�γN )/γN , where X (t, x) is the classical
(finite dimensional) exponential flow,

X (t, x) := exp (tM) x = x + Et x,
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where we write Et := ∑∞
k=1(tM)k/k!, because in this form we may apply (16) to

obtain
ut (X (t, x)) = |det2 (I + Et )|−1 exp

(
div (Et x) + |Et x |2 /2

)
. (18)

We compute first the determinant, that gives

det2 (I + Et ) = exp (Tr [tM − Et ]) = exp

(

Tr

[

(tM)2
∞∑

k=0

(tM)k/(k + 2)!
])

and estimate the trace,

∣∣
∣∣∣
Tr

[

(tM)2
∞∑

k=0

(tM)k/(k + 2)!
]∣∣
∣∣∣
≤ t2 ‖M‖2 exp (t ‖M‖) ,

so that the determinant is bounded below and above.
We focus on the quantity

∫
u p
t =

∫
|det2 (I + Et )|−p−1 exp

(
(p−1)div (Et x)+(p − 1) |Et x |2 /2

)
γN (dx).

Aswe add and subtract a term (p−1)2 |Et x |2 inside the exponential, apply Cauchy-
Schwartz and (17), so that we see that we need to estimate only

∫
exp

(
2(p − 1)2 |Et x |2 + (p − 1) |Et x |2

)
γN (dx),

since all the determinant terms that appear are bounded, arguing as above.
Exponential integrability of (p − 1)(2p − 1) |Et x |2 follows from the fact that

x �→ Et x is Lipschitz, with constant bounded by t ‖M‖ exp (t ‖M‖). Arguing at fixed
T > 0, we may consider p = 1 + ε, with ε so small that [10, Theorem 4.5.7] applies
providing a bound, which does not depend on the dimension of the space.

To obtain bounds on the gradient ∇ut , we notice that (18) gives

ut (y) = |det 2 (I + Et )|−1 exp
(
divEt (exp (−tM) y) + |Et exp (−tM) y|2 /2

)
.

Differentiating with respect to y, we obtain

∇ut (y) = ut (y)∇
[
divEt (exp (−tM) y) + |Et exp (−tM) y|2 /2

]
.

Since we already have a bound on ut , it is sufficient to bound the gradient terms, but
these are all linear expressions in y, which can be explicitly computed and bounded
in every L p space (p < ∞) with some constant depending on p, T and ‖M‖
only. ��
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6 Proof of Theorem 2

In this final section we provide a complete proof of Theorem 2. The line of reasoning
mirrors that of the proof of Theorem 1: in particular, we follow exactly the main steps
stated there, and we split this section to give details.

6.1 Mollification

Let ρ be any cylindrical smooth function on X , with ρ ≥ 0 and
∫

ρdγ = 1, and
introduce a modified Ornstein-Uhlenbeck, acting only on the space variables,

T ε
ρ ϕ (t, x) :=

∫
ϕ (t, xε) ρ (y) dγ (y) ,

where we write, here and in what follows,

xε := e−εx +
√
1 − e−2ε y, yε := −

√
1 − e−2εx + e−ε y.

Its adjoint in L2((0, T ) × X) reads as

(
T ε

ρ

)∗
ϕt (x) :=

∫
ϕ

(
t, xε

)
ρ

(
yε

)
dγ (y) ,

where we introduce the notation

xε := e−εx −
√
1 − e−2ε y, yε :=

√
1 − e−2εx + e−ε y.

Since T ε
ρ preserves test functions on (0, T )× X , we can define (T ε

ρ )∗ on distributions,
by duality. We let therefore uε

ρ = (T ε
ρ )∗u, so that (2) holds, with

rε
ρ := div

(
buε

ρ

) − (T ε
ρ )∗div (bu) .

6.2 Approximate renormalization

To keep notation simple, we frequently omit here and below the dependence on t and
ρ, since they play no role.

As u ∈ L∞ ((0, T ) × X), an integration by parts shows that uε belongs to every
Sobolev space W 1,p(X, γ ) with respect to the space variables, so that the only thing
to prove, in order to justify the usual calculus rules that we perform in this step,
is that the distribution rε is (induced by) an integrable function. It is also enough to
prove that both div (buε) and (T ε)∗ div (bu) are integrable functions (this is a standard
argument, compare with Lemma 3.6 and the computations in Theorem 3.7 in [4]). For
brevity, we do not enter into details, but remark that to perform these computations
and get the approximate renormalization we make use of the integrability assumption
b ∈ L p(X, γ ; H).
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Equivalent expressions for div (buε) and (T ε)∗ div (bu) via integration by parts.
Here and in what follows, the function Cε = eε

√
1 − e−2ε frequently appears due to

various integration by parts. Notice that Cε ∼ √
2ε, as ε → 0.

Given a test function ϕ, we obtain

T ε
ρ 〈∇ϕ, b〉 (x) = − 1

Cε

∫
ϕ (xε) divy

(
eεb (xε) ρ (y)

) =:
∫

ϕ (xε) A
ε (x, y) dγ (y) ,

and

〈∇T ε
ρ ϕ, b〉 (x)=− 1

Cε

∫
ϕ (xε) divy (b (x) ρ (y)) dγ (y) =:

∫
ϕ (xε) B

ε(x, y) dγ (y).

We then show that Aε and Bε are integrable and change variables (x, y) �→ (xε, yε),
to conclude as in the finite dimensional case.

Integrability of Aε and Bε via divergence identities. By rotational invariance of the
Gaussian measures, an analogue of identity (6) holds true in Wiener spaces, for vector
fields c : X × X → H ⊕ H and rotations M = Ms defined on X × X (and then on
H ⊕ H ) by

Ms (x, y) = (xs, ys) =
(
e−s x +

√
1 − e−2s y,−

√
1 − e−2s x + e−s y

)
.

Once we take c (x, y) = (0, v (x, y)) we get the following analogue of (7),

divy (v (xs, ys)) =
√
1 − e−2s [divx (v)] (xs, ys) + e−s [

divy (v)
]
(xs, ys) . (19)

If v (x, y) = b (x) and s = ε, we obtain

divy (b (xε)) =
√
1 − e−2εdivb (xε) − e−εb̂ (xε, yε) ∈ L1(X × X, γ ⊗ γ )

because of the integrability assumptions on b and its divergence. This shows that Aε

is integrable; computations involving Bε are similar.

6.3 Refined anisotropic estimate

We prove that (4) holds true, in the Wiener setting, with

�ρ (t, x) :=
∫

X

∣
∣∣divy

(
M̂t,x (y) ρ (y)

)∣
∣∣ dγ (y) ,

where Mt,x |Dbt | (dx) dt = Dbt (x) dt gives the polar decomposition of Dbtdt with
respect to its total variation measure |Dbt | dt , a finite measure on (0, T ) × X . Here,
M̂ denotes the field associated to M , as defined in Sect. 5.

The proof goes similarly as in the finite dimensional case. First, we let ε > 0 and
b be cylindrical smooth, and obtain an estimate for rε in terms of Db. Then, keeping
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ε fixed, we extend its validity to BV vector fields, first cylindrical and then general.
Finally, we let ε → 0 and conclude with (4).

For simplicity, we assume both ‖u‖∞ ≤ 1 and
∥∥β ′∥∥∞ ≤ 1. As above, we frequently

omit to write as subscripts both ρ and t .
Let ε > 0 be fixed and b be cylindrical smooth. We perform some computations that

give an estimate involving three terms, two of them being error terms, i.e., negligible
as ε → 0, and the third providing the anisotropic estimate. Since Sobolev and BV
spaces are well-behaved with respect to push-forwards by linear maps, we may safely
work in some fixed finite-dimensional Gaussian space (RN , γN ).

If we write explicitly the expressions obtained in the previous step, we obtain the
estimate

∫ ∣∣ϕβ ′ (uε) r
ε
∣∣ ≤

∫
|ϕ| (xε)

∣∣∣∣divy

(
b (x) − eεb (xε)

Cε

ρ (y)

)∣∣∣∣ dxdy. (20)

We add subtract b (xε) in the difference and we split

∫
|ϕ| (xε)

{
eε − 1

Cε

∣∣divy (b (xε) ρ (y))
∣∣ +

∣∣∣∣divy

(
b (xε) − b (x)

Cε

ρ (y)

)∣∣∣∣

}
dxdy.

The first term in the sum above gives the an error term which is smaller than

√
ε ‖ϕ‖∞

[‖b‖1 ‖∇ρ‖∞ + ‖divb‖1 ‖ρ‖∞
]
, (21)

using (19) and noticing that Cε ≤ C
√

ε, for ε ∈ (0, 1] and some constant C .
We focus then on the expression

∫
|ϕ| (xε)

∣∣∣∣divy

(
b (xε) − b (x)

Cε

ρ (y)

)∣∣∣∣ dxdy. (22)

Since b is cylindrical smooth, write

b (xε) − b (x) =
∫ ε

0

d

ds
b (xs) ds =

∫ ε

0
Db (xs) ys

ds

Cs
,

because of the identity d
ds xs = ys/Cs . In all what follows, for brevity, we write

∫
−

ε

0
f (s) := 1

Cε

∫ ε

0
f (s)

ds

Cs
,

where the notation is justified by the fact that, as ε → 0,

1

Cε

∫ ε

0

ds

Cs
→ 1. (23)
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Exchanging divergence and integration, we obtain

divy

(
b (xε) − b (x)

Cε

ρ (y)

)
=

∫
−

ε

0
divy (Db (xs) ysρ (y))

=
∫
−

ε

0

[
divy (Db (xs) ys) ρ (y) + 〈Db (xs) ys,∇ρ (y)〉] . (24)

Let us consider the first term in the sum above: write c (x, y) := Db (x) y = ∂yb (x)
and for s ∈ (0, ε), apply identity (19), to obtain

divy (Db (xs) ys) =
√
1 − e−2s [divxc] (xs, ys) + e−s [

divyc
]
(xs, ys) . (25)

Since the term divxc involves further spatial derivatives of b, the following iden-
tity,obtained by inspection in coordinates, is crucial:

divx c (xs, ys) = Cs
d

ds
divb (xs) + b̂ (xs, ys) ,

whereweused the notation b̂ introduced in the previous section.This allows to integrate
by parts and conclude that

∫
−

ε

0

√
1 − e−2sdivxc (xs, ys) ρ (y)

=
[
e−εdivb (xε) −

∫
−

ε

0
divb (xs) e

−s
]

ρ (y) +
∫
−

ε

0

√
1 − e−2s b̂ (xs, ys) ρ (y) ,

since d
ds

√
1 − e−2s = e−s/Cs . Thanks to these computations we separate from (22)

another error term, smaller than

‖ϕ‖∞ ‖ρ‖∞
[∫ ∣∣∣∣e

−εdivb (xε) −
∫
−

ε

0
divb (xs) e

−s
∣∣∣∣ dxdy + ε

2Cε

‖b‖1
]

.

The integrand above is a linear expression in divb, which reminds of some averaged
Ornstein-Uhlenbeck.By rotational invariance ofGaussianmeasures andby (23) above,
its L1 norm is bounded by some absolute constant, uniformly in ε ∈ (0, 1]. By density
of smooth cylindrical functions in L1, it defines therefore some a family of continuous
operators, that is Rε (divb) (x, y), and we estimate

‖ϕ‖∞ ‖ρ‖∞
[
‖Rε (divb)‖1 + ε

Cε

‖b‖1
]

. (26)

The following expression contains precisely what remains to be estimated from
(22), i.e. the second term in the second line of (24) and the second term in the right
hand side of (25),
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∫
|ϕ| (xε)

∫
−

ε

0

∣
∣e−s [

divyc
]
(xs, ys) ρ (y) + 〈c (xs, ys) ,∇ρ (y)〉∣∣ dxdy.

Once we exchange integration and perform a change of variables (x, y) �→ (xs, ys),
which maps xε to xε−s , we rewrite this expression in a way that easily allows an
extension to the BV case, namely,

∫
f

(
x,

Db

|Db| (x)

)
|Db| (dx) , (27)

where

f (x, M) :=
∫
−

ε

0

∫
|ϕ| (xε−s)

∣∣
∣e−sdivy

(
M̂ (y)

)
ρ

(
ys

) + 〈M̂ (y) ,∇ρ
(
ys

)〉
∣∣
∣ dy,

recalling that M̂ (y) = My in the finite dimensional setting.
Keep ε > 0 fixed and extend the estimate to a general b. The expression in (20) is

smaller than the sum of three terms, namely (21), (26) and (27). We extend the validity
of this fact to cylindrical BV fields, and then to the general case.

Under the assumption that b is cylindrical, everything reduces to a computation in
R

N , so that it is possible to find smooth cylindrical fields (bn) such that, as n → ∞,

‖bn − b‖1 → 0, ‖divbn − divb‖1 → 0, |Dbn| (X) → |Db| (X)

and (Dbn) weakly-* converge to Db (an approximating sequence extracted from the
usual mollification via Ornstein-Uhlenbeck semigroup provides such a sequence). The
left hand side in (20), together with the first and second error terms (21), (26) pass to
the limit with respect to this convergence. The only trouble might be caused by (27),
but the usual Reshetnyak continuity theorem applies, [7, Theorem 2.39]).

We now extend the estimate to cover general BV fields. We consider bN :=
EN [πNb] and let N → ∞. Again, (20), together with the first and second error
terms (21), (26), pass to the limit because of Proposition 1. To handle the term (27),
we prove first that, for every N large enough so that both ϕ and ρ are N -cylindrical,
it holds

∫
f

(

x,
DbN

∣∣DbN
∣∣ (x)

)

d
∣∣∣DbN

∣∣∣ (x) ≤
∫

f

(
x,

Db

|Db| (x)

)
d |Db| (x) .

This follows from Proposition 2, since by direct inspection, the left hand side above
coincides with

∫
fN

(

πN (x) ,
DbN

∣
∣DbN

∣
∣ (x)

) ∣∣∣DbN
∣∣∣ (dx) ,
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where

fN (x, M) :=
∫
−

ε

0

∫
|ϕ| (xε−s)

∣∣e−sdivy (My) ρ
(
ys

) + 〈My,∇ρ
(
ys

)〉∣∣ dγN (y) ,

which is positively homogeneous and convex in the second variable, thus

∫
f

(

x,
DbN

∣∣DbN
∣∣ (x)

) ∣∣∣DbN
∣∣∣ (dx) ≤

∫
fN

(
x, πN

Db

|Db| (x) πN

)
|Db| (dx) .

Since γ is centred, we recognize that πN MπN can be obtained as a conditional expec-
tation, namely it holds πN MπN = EN [πN M̂] and so, again by Proposition 1, applied
this time to M̂ , we obtain the identity

divy (πN MπN y) = EN

[
divy M̂ (y)

]
.

Combining these identities in the expression for fN and recalling that ϕ and ρ are
N -cylindrical we conclude, since the conditional expectation EN is a contraction in
L1 (γ (dy)).

We let ε → 0.Thefirst error term (21) is infinitesimal, but also the term (26), because
‖Rε (divb)‖1 → 0 when b is smooth and cylindrical, by dominated convergence and
(23). By uniform boundedness of Rε in L1 and again by the approximation provided
by Proposition 1, this holds also for any field b with divb ∈ L1(X, γ ).

The term (27) converges to

∫
|ϕ| (x)

[∫ ∣∣
∣divy

(
M̂x (y)

)
ρ (y) + 〈M̂x (y) ,∇ρ (y)〉

∣∣
∣ dγ (y)

]
|Db| (dx) ,

since the integrand converges everywhere, beingϕ andρ cylindrical smooth, uniformly
bounded by some constant because, for any p ∈]1,∞[, it holds

f (x, M) ≤ cp ‖ϕ‖∞
(‖ρ‖p + ‖∇ρ‖p

) ‖M‖ .

and ‖M‖ ≤ 1, |Db|-a.e., as provided by the polar decomposition.
Before we address the final step of the proof, let us spend some words on why (5) is

a measure also in theWiener setting, since the usual Euclidean argument exploits local
compactness of the space andRiesz theorem. In general, one can consider distributions
on (0, T ) × X as linear functionals L on test functions such that, for some k ≥ 0 and
p ∈ (1,∞) it holds

|L (ϕ)| ≤ C(L)

k∑

i=0

∥∥∥∇ iϕ

∥∥∥
p
.

For example, the continuity equation is precisely required to be satisfied in the sense
of distributions on (0, T ) × X , or σ in (5) defines a distribution. To show that σ is a

123



146 D. Trevisan

measure, we use the following fact: if, for some positive measure μ on (0, T ) × X , a
distribution L satisfies

|L (ϕ)| ≤
∫

|ϕ| dμ,

for every test function ϕ, then it must coincide with ameasure (actually, it is the restric-
tion to test functions of the integration with respect such a measure), which is uniquely
determined and absolutely continuous with respect to μ. Indeed, it is sufficient to
remark that in such a case L (ϕ) defines a continuous functional on L1 ((0, T ) × X, μ),
on a dense subspace (see [8, Section 2.1]). This argument, together with the validity
of (4), entails that σ in (5) is a well-defined measure.

6.4 Optimization

We prove that, for any Hilbert-Schmidt operator M ∈ H ⊗ H , it holds

inf
ρ

∫ ∣∣∣div(M̂ρ) (y)
∣∣∣ dγ (y) = 0,

where infρ runs along all smooth cylindrical functions ρ with ρ ≥ 0 and
∫

ρ = 1.
The proof goes as in the Euclidean setting, remarking that, for any p > 1,

ρ �→
∫ ∣∣∣div

(
M̂ρ

)
(y)

∣∣∣ dγ (y)

is continuous with respect to convergence inW 1,p(X, γ ) and so, by density, infρ may
run along all non-negative ρ ∈ ⋃

p>1 W
1,p, with

∫
ρ = 1.

Therefore, for fixed T > 0, we repeat the same construction as in the finite dimen-
sional case, with ū = 1, using Proposition 3 to ensure that ρ = 1

T

∫ T
0 utdt ∈

W 1,p(X, γ ) for some p(T ) > 1, which gives that ρ is admissible.
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