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Z. Brzeźniak · S. Cerrai · M. Freidlin

Received: 25 May 2013 / Revised: 12 October 2014 / Published online: 18 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We are dealing with the Navier-Stokes equation in a bounded regular
domain O of R2, perturbed by an additive Gaussian noise ∂wQδ /∂t , which is white
in time and colored in space. We assume that the correlation radius of the noise gets
smaller and smaller as δ ↘ 0, so that the noise converges to the white noise in space
and time. For every δ > 0 we introduce the large deviation action functional Sδ

T and
the corresponding quasi-potential Uδ and, by using arguments from relaxation and
�-convergence we show that Uδ converges to U = U0, in spite of the fact that the
Navier-Stokes equation has no meaning in the space of square integrable functions,
when perturbed by space-time white noise. Moreover, in the case of periodic boundary
conditions the limiting functional U is explicitly computed. Finally, we apply these
results to estimate of the asymptotics of the expected exit time of the solution of
the stochastic Navier-Stokes equation from a basin of attraction of an asymptotically
stable point for the unperturbed system.
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Department of Mathematics, The University of York, Heslington, York YO10 5DD, UK
e-mail: zdzislaw.brzezniak@york.ac.uk

S. Cerrai (B) ·M. Freidlin
Department of Mathematics, University of Maryland, College Park, MD 20742, USA
e-mail: cerrai@math.umd.edu

M. Freidlin
e-mail: mif@math.umd.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-014-0584-6&domain=pdf


740 Z. Brzeźniak et al.
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1 Introduction

Let O be a regular bounded open domain of R2. We consider here the 2-dimensional
Navier-Stokes equation in O, perturbed by a small Gaussian noise

∂u(t, x)

∂t
= �u(t, x)− (u(t, x) · ∇u(t, x)) u(t, x)−∇ p(t, x)+√

ε η(t, x),

with the incompressibility condition

div u(t, x) = 0,

and initial and boundary conditions

u(t, x) = 0, x ∈ ∂O, u(0, x) = u0(x).

Here 0 < ε << 1 and η(t, x) is a Gaussian random field, white in time and colored
in space.

In what follows, for any α ∈ R
+ we shall denote by Vα the closure in the space

[Hα(O)]2 of the set of infinitely differentiable 2-dimensional vector fields, having
zero divergence and compact support on O, and we shall set H = V0 and V = V1.
We will also set

D(A) = [H2(O)]2 ∩ V, Au = −�u, u ∈ D(A).

The operator A is positive and self-adjoint, with compact resolvent. We will denote
with 0 < λ1 ≤ λ2 ≤ · · · and {ek}k∈N the eigenvalues and the eigenfunctions of A,
respectively. Moreover, we will define the bilinear operator B : V × V → V−1 by
setting

〈B(u, v), z〉 =
∫
O
z(x) · [(u(x) · ∇) v(x)] dx .

With these notations, if we apply to each term of the Navier-Stokes equation above
the projection operator into the space of divergence free fields, we formally arrive to
the abstract equation

du(t)+ [Au(t)+ B(u(t)
]
dt, u(t)) = √

ε dwQ(t), u(0) = u0, (1.1)
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Quasipotential and exit time for 2D Stochastic Navier-Stokes equations 741

where the noise wQ(t) is assumed to be of the following form

wQ(t) =
∞∑
k=1

Qekβk(t), t ≥ 0, (1.2)

for some sequence of independent standard Brownian motions {βk(t)}k∈N and a linear
operator Q defined on H (for all details see Sect. 2).

As well known, white noise in space and time (that is Q = I ) cannot be taken
into consideration in order to study Eq. (1.1) in the space H. But if we assume that
Q is a compact operator satisfying suitable conditions, as for example Q ∼ A−α , for
some α > 0, we have that for any u0 ∈ H and T > 0 Eq. (1.1) is well defined in
C([0, T ];H) and the validity of a large deviation principle and the problem of the exit
of the solution of Eq. (1.1) from a domain can be studied.

As in the previous work [11], where a class of reaction-diffusion equations in any
space dimension perturbed by multiplicative noise has been considered, in the present
paperwewant to see howwe can describe the small noise asymptotics of Eq. (1.1), as if
the noisy perturbation were given by a white noise in space and time. This means that,
in spite of the fact that Eq. (1.1) is notmeaningful inHwhen the noise is white in space,
the relevant quantities for the large deviations and the exit problems associated with it
can be approximated by the analogous quantities that onewould get in the case ofwhite
noise in space. In particular, when periodic boundary conditions are imposed, such
quantities can be explicitly computed and such approximation becomes particularly
useful.

In what follows we shall consider a family of positive linear operators {Qδ}δ∈ (0,1]
defined on H, such that for any fixed δ ∈ (0, 1] Eq. (1.1), with noise

wQδ (t) =
∞∑
k=1

Qδekβk(t), t ≥ 0,

is well defined in C([0, T ];H), and Qδ is strongly convergent to the identity operator
in H, for δ ↘ 0. For each fixed δ ∈ (0, 1], the family {L(uxε,δ)}ε∈ (0,1] satisfies a large
deviation principle in C([0, T ];H) with action functional

Sδ
T (u) = 1

2

∫ T

0

∣∣∣Q−1
δ

(
u′(t)+ Au(t)+ B(u(t), u(t))

)∣∣∣2
H
dt,

and the corresponding quasi-potential is defined by

Uδ(φ) = inf
{
Sδ
T (u) : u ∈ C([0, T ];H), u(0) = 0, u(T ) = φ, T > 0

}
, φ ∈ H.

Our purpose here is to show that, although we cannot prove any limit for the solution
uδ of Eq. (1.1), nevertheless, for all φ ∈ H such that Uδ(φ) < ∞,

lim
δ→0

Uδ(φ) = U (φ), (1.3)

where U (φ) is defined as Uδ(φ), with the action functional Sδ
T replaced by
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742 Z. Brzeźniak et al.

ST (u) = 1

2

∫ T

0

∣∣u′(t)+ Au(t)+ B(u(t), u(t))
∣∣2
H dt.

To this purpose, the key idea consists in characterizing the quasi-potentials Uδ and U
as

Uδ(φ) = min
{
Sδ−∞(u) : u ∈ X and u(0) = φ

}
, φ ∈ H, (1.4)

and
U (φ) = min {S−∞(u) : u ∈ X and u(0) = φ}, φ ∈ H, (1.5)

where

X =
{
u ∈ C((−∞, 0];H) : lim

t→−∞ |u(t)|H = 0

}

and the functionals Sδ−∞ and S−∞ are defined on X in a natural way, see formulae
(5.6) and (5.5) later on.

In this way, in the definition of Uδ and U , the infimum with respect to time T > 0
has disappeared and we have only to take the infimum of suitable functionals in the
space Xφ := {u ∈ X : u(0) = φ}. In particular, the convergence of Uδ(φ) to U (φ)

becomes the convergence of the infima of Sδ−∞ in Xφ to the infimum of S−∞ in Xφ ,
so that (1.3) follows once we prove that Sδ−∞ is Gamma-convergent to S−∞ in Xφ , as
δ ↘ 0.Moreover, as a consequence of (1.5), in the case of the stochasticNavier-Stokes
equations with periodic boundary conditions we can prove, see Sect. 7, that

U (φ) = |φ|2V, φ ∈ V. (1.6)

This means that U (φ) can be explicitly computed and the use of (1.3) in applications
becomes particularly relevant. Let us point out that a similar explicit formula for the
quasipotential has been derived for linear SPDEs by Da Prato, Pritchard and Zabczyk
in [17] and in the recent work by the second and third authors for stochastic reaction
diffusion equations in [11]. A finite dimensional counterpart of our formula (1.6) was
first derived in Theorem IV.3.1 in the monograph [20].

The proofs of characterizations (1.4) and (1.5) and of the Gamma-convergence of
Sδ−∞ to S−∞ are based on a thorough analysis of the Navier-Stokes equation with
an external deterministic force in the domain of suitable fractional powers of the
operator A.

One of the main motivation for proving (1.3) comes from the study of the expected
exit time τ

ε,δ
φ of the solution uε,δ

φ from a domain D in L2(O), which is attracted to the
zero function. Actually, in the second part of the paper we prove that, under suitable
regularity properties of D, for any fixed δ > 0

lim
ε→0

ε log E(τ
ε,δ
φ ) = inf

y∈ ∂D
Uδ(y). (1.7)

This means that, as in finite dimension, the expectation of τ
ε,δ
φ can be described in

terms of the quantity Uδ(φ). Moreover, once we have (1.3), by a general argument

123



Quasipotential and exit time for 2D Stochastic Navier-Stokes equations 743

introduced in [11] and based again on Gamma-convergence, we can prove that if D
is a domain in H such that any point φ ∈ V ∩ ∂D can be approximated in V by a

sequence {φn}n∈N ⊂ D(A
1
2+α) ∩ ∂D (think for example of D as a ball in H), then

lim
δ→0

inf
φ∈ ∂D

Uδ(φ) = inf
φ∈ ∂D

U (φ).

According to (1.7), this implies that for 0 < ε << δ << 1

E τ
ε,δ
φ ∼ exp

(
1

ε
inf

φ∈ ∂D
U (φ)

)
.

In particular, if D is the ball of H of radius c and the boundary conditions are periodic,
in view of (1.6) for any φ ∈ D we get,

e−
c2λ21

ε E τ
ε,δ
φ ∼ 1, 0 < ε << δ << 1.

At the end of this long introduction, we would like to point out that although 2-
D stochastic Navier-Stokes equations with periodic boundary conditions have been
investigated by Flandoli and Gozzi in [23] and Da Prato and Debussche in [16] from
the point of view of Kolmogorov equations and the existence of a Markov process,
we do not know whether our results (even in the periodic case) could be derived from
these papers. One should bear in mind that the solution from [16] exists for almost
every initial data u0 from a certain Besov space of negative order with respect to a
specific Gaussian measure while we construct a quasipotential for every u0 from the
space H whose measure is equal to 0. Of course our results are also valid for 2-D
stochastic Navier-Stokes equations with Dirichlet boundary conditions.

Wehave been recently becomeaware of awork byBouchet et al. [3]where somehow
related issues are considered from a physical point of view. We hope to be able to
understand the relationship between our work and this work in a future publication.

2 Notation and preliminaries

LetO ⊂ R
2 be an open and bounded set.We denote by� = ∂O the boundary ofO.We

will always assume that the closureO of the setO is a manifold with boundary of C∞
class, whose boundary ∂O is denoted by �, is a 1-dimensional infinitely differentiable
manifold being locally on one side ofO, see condition (7.10) from [29, chapter I]. Let
us also denote by ν the unit outer normal vector field to �.

It is known that O is a Poincaré domain, i.e. there exists a constant λ1 > 0 such
that the following Poincaré inequality is satisfied

λ1

∫
O

ϕ2(x) dx ≤
∫
O
|∇ϕ(x)|2 dx, ϕ ∈ H1

0 (O). (2.1)

In order to formulate our problem in an abstract framework, let us recall the defin-
ition of the following functional spaces. First of all, let D(O) (resp. D(O)) be the set
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744 Z. Brzeźniak et al.

of all C∞ class vector fields u : R2 → R
2 with compact support contained in the set

O (resp. O). Then, let us define

E(O) = {u ∈ L2(O,R2) : div u ∈ L2(O)},
V = {

u ∈ D(O) : div u = 0
}
,

H = the closure of V in L2(O),

H1
0(O,R2) = the closure of D(O,R2) in H1(O,R2),

V = the closure of V in H1
0(O,R2).

The inner products in all the L2 spaces will be denoted by (·, ·). The space E(O) is a
Hilbert space with a scalar product

〈u, v〉E(O) := (u, v)L2(O,R2) + (div u, div v)L2(O,R2). (2.2)

We endow the set H with the inner product (·, ·)H and the norm |·|H induced by
L2(O,R2). Thus, we have

(u, v)H =
2∑
j=1

∫
O
u j (x)v j (x) dx,

The space H can also be characterised in the following way. Let H− 1
2 (�) be the dual

space of H1/2(�), the image in L2(�) of the trace operator γ0 : H1(O) → L2(�) and

let γν be the bounded linear map from E(O) to H− 1
2 (�) such that, see [41, Theorem

I.1.2],
γν(u) = the restriction of u · ν to �, if u ∈ D(O). (2.3)

Then, see [41, Theorem I.1.4],

H = {u ∈ E(O) : div u = 0 and γν(u) = 0},
H⊥ = {u ∈ E(O) : u = ∇ p, p ∈ H1(O)}.

Let us denote by P : L2(O,R2) → H the orthogonal projection called usually the
Leray-Helmholtz projection. It is known, see for instance [41, Remark I.1.6] that

Pu = u − ∇(p + q), u ∈ L2(O,R2), (2.4)

where, for u ∈ L2(O), p is the unique solution of the following homogenous boundary
Dirichlet problem for the Laplace equation

�p = div u ∈ H−1(O), p|� = 0. (2.5)
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and q ∈ H1(O) is the unique solution of the following in-homogenous Neumann
boundary problem for the Laplace equation

�q = 0,
∂q

∂ν

∣∣∣
�
= γν(u −∇ p). (2.6)

Note that the function p above satisfies ∇ p ∈ L2(O,R2) and div (u − ∇ p) = 0. In
particular, u −∇ p ∈ E(O) so that q is well defined.

It is proved in [41, Remark I.1.6] that P maps continuously the Sobolev space
H1(O,R2) into itself. Below, we will discuss continuity of P with respect to other
topologies.

Since the set O is a Poincaré domain, the norms on the space V induced by norms
from the Sobolev spaces H1(O,R2) and H1

0(O,R2) are equivalent. The latter norm
and the associated inner product will be denoted by |·|V and

(·, ·)V, respectively. They
satisfy the following equality

(
u, v

)
V =

2∑
i, j=1

∫
O

∂u j

∂xi

∂v j

∂xi
dx, u, v ∈ H1

0(O,R2).

Since the space V is densely and continuously embedded into H, by identifying H
with its dual H′, we have the following embeddings

V ⊂ H ∼= H′ ⊂ V′. (2.7)

Let us observe here that, in particular, the spaces V, H and V′ form a Gelfand triple.
We will denote by | · |V′ and 〈·, ·〉 the norm in V′ and the duality pairing between

V and V′, respectively.
The presentation of the Stokes operator is standard and we follow here the one

given in [9]. We first define the bilinear form a : V× V → R by setting

a(u, v) := (∇u,∇v)H, u, v ∈ V. (2.8)

As obviously the bilinear form a coincides with the scalar product in V, it is V-
continuous, i.e. there exists some C > 0 such that

|a(u, u)| ≤ C |u|2V, u ∈ V.

Hence, by the Riesz Lemma, there exists a unique linear operator A : V → V′, such
that a(u, v) = 〈Au, v〉, for u, v ∈ V. Moreover, since O is a Poincaré domain, the
form a is V-coercive, i.e. it satisfies a(u, u) ≥ α|u|2V for some α > 0 and all u ∈ V.
Therefore, in view of the Lax-Milgram theorem, see for instance Temam [41, Theorem
II.2.1], the operator A : V → V′ is an isomorphism.

Next we define an unbounded linear operator A in H as follows

{
D(A) = {u ∈ V : Au ∈ H}
Au = Au, u ∈ D(A).

(2.9)
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746 Z. Brzeźniak et al.

It is now well established that under suitable assumptions1 related to the regularity
of the domainO, the space D(A) can be characterized in terms of the Sobolev spaces.
For example, (see [26], where only the 2-dimensional case is studied but the result
is also valid in the 3-dimensional case), if O ⊂ R

2 is a uniform C2-class Poincaré
domain, then we have

{
D(A) = V ∩ H2(O,R2) = H ∩ H1

0(O,R2) ∩ H2(O,R2),

Au = −P�u, u ∈ D(A).
(2.10)

It is also a classical result, see e.g. Cattabriga [13] or Temam [40, p. 56], that A is
a positive self adjoint operator in H and

(Au, u) ≥ λ1|u|2H, u ∈ D(A), (2.11)

where the constant λ1 > 0 is from the Poincaré inequality (2.1). Moreover, it is well
known, see for instance [40, p. 57], that V = D(A1/2). Moreover, from [43, Theorem
1.15.3, p. 103] it follows that

D(Aα/2) = [H, D(A)] α
2
,

where [·, ·] α
2
is the complex interpolation functor of order α

2 , see e.g. [29,43] and

[37, Theorem 4.2]. Furthermore, as shown in [43, Section 4.4.3], for α ∈ (0, 1
2 )

D(Aα/2) = H ∩ Hα(O,R2). (2.12)

The above equality leads to the following result.

Proposition 2.1 Assume that α ∈ (0, 1
2 ). Then the Leray-Helmholtz projection P is

a well defined and continuous map from Hα(O,R2) into D(Aα/2).

Proof Let us fix α ∈ (0, 1
2 ). Since, by its definition, the range of P is contained in

H, it is sufficient to prove that for every u ∈ Hα(O,R2), Pu ∈ Hα(O,R2). For this
aim, let us fix u ∈ Hα(O,R2). Then div u ∈ Hα−1(O). Therefore, by the elliptic
regularity we infer that the solution p of the problem (2.5) belongs to the Sobolev
space Hα+1(O) ∩ H1

0 (O) and therefore ∇ p ∈ Hα(O,R2).

Since by [41, Theorem I.1.2], the linear map γν is bounded from E(O) to H− 1
2 (�)

and from E(O) ∩ H1(O,R2) to H
1
2 (�), by a standard interpolation argument we

infer that γν is a bounded linear map from E(O) ∩ Hα(O,R2) to H− 1
2+α(�). Thus

we infer that γν(u − ∇ p) ∈ H− 1
2+α(�) and by the Stokes formula (I.1.19) from

[41], 〈γν(u−∇ p), 1〉 = 0. Therefore, again by the elliptic regularity, see for instance
[29], the solution q of the problem (2.6) belongs to Hα+1(O) and therefore ∇q ∈
Hα(O,R2). This proves that Pu ∈ Hα(O,R2) as required.

The proof is complete. ��

1 These assumptions are satisfied in our case.
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Remark 2.2 We only claim that the above result is true for α < 1
2 . In particular, we do

not claim that is P is a bounded linear map fromH1(O,R2) to V and we are not aware
of such a result. However, if this is true, Proposition 2.1 will hold for any α ∈ (0, 1)
with a simple proof by complex interpolation. However, it seems to us that the result
for α > 1

2 is not true, since we cannot see how one could prove that Pu|∂O = 0.
The reason why Proposition 2.1 holds for any α ∈ (0, 1

2 ) is that according to identity
(2.12) the only boundary conditions satisfied by functions belonging to D(Aα/2) are
those satisfied by functions belonging to the space H. One can compare with the paper
[38] by Temam (or chapter 6 of his book [39]).

Let us finally recall that by a result of Fujiwara–Morimoto [24] the projection P
extends to a bounded linear projection in the space Lq(O,R2), for any q ∈ (1,∞).

Now, consider the trilinear form b on V × V × V given by

b(u, v, w) =
2∑

i, j=1

∫
O
ui

∂v j

∂xi
w j dx, u, v, w ∈ V.

Indeed, b is a continuous trilinear form such that

b(u, v, w) = −b(u, w, v), u ∈ V, v, w ∈ H1
0(O,R2), (2.13)

and

|b(u, v, w)| ≤ C

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|u|1/2H |∇u|1/2H |∇v|1/2H |Av|1/2H |w|H u ∈ V, v ∈ D(A), w ∈ H

|u|1/2H |Au|1/2H |∇v|H|w|H u ∈ D(A), v ∈ V, w ∈ H

|u|H|∇v|H|w|1/2H |Aw|1/2H u ∈ H, v ∈ V, w ∈ D(A)

|u|1/2H |∇u|1/2H |∇v|H|w|1/2H |∇w|1/2H u, v, w ∈ V,

(2.14)
for some constant C > 0 (for a proof see for instance [41, Lemma 1.3, p.163] and
[40]).

Define next the bilinear map B : V× V → V′ by setting

〈B(u, v), w〉 = b(u, v, w), u, v, w ∈ V,

and the homogenous polynomial of second degree B : V → V′ by

B(u) = B(u, u), u ∈ V.

Let us observe that if v ∈ D(A), then B(u, v) ∈ H and the following inequality
follows directly from the first inequality in (2.14)

|B(u, v)|2H ≤ C |u|H|∇u|H|∇v|H|Av|H, u ∈ V, v ∈ D(A). (2.15)

Moreover, the following identity is a direct consequence of (2.13).

〈B(u, v), v〉 = 0, u, v ∈ V. (2.16)
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748 Z. Brzeźniak et al.

Let us also recall the following fact (see [9, Lemma 4.2]).

Lemma 2.3 The trilinearmapb : V×V×V → Rhas aunique extension to abounded
trilinear map from L4(O,R2) × (L4(O,R2) ∩ H) × V and from L4(O,R2) × V ×
L4(O,R2) into R. Moreover, B maps L4(O,R2) ∩ H (and so V) into V′ and

|B(u)|V′ ≤ C1|u|2L4(O,R2)
≤ 21/2C1|u|H|∇u|H ≤ C2|u|2V, u ∈ V. (2.17)

Proof It it enough to observe that due to theHölder inequality, the following inequality
holds

|b(u, v, w)| ≤ C |u|L4(O,R2)|∇v|L2(O)|w|L4(O,R2), u, v, w ∈ H1
0(O,R2). (2.18)

Thus, our result follows from (2.13). ��
Let us also recall the following well known result, see [41] for a proof.

Lemma 2.4 For any T ∈ (0,∞] and for any u ∈ L2(0, T ; D(A)) with u′ ∈
L2(0, T ;H), we have

∫ T

0
|B(u(t), u(t))|2H dt < ∞.

Proof Our assumption implies that2 u ∈ C([0, T ];V) (for a proof see for instance
[45, Proposition I.3.1]). Then, we can conclude thanks to (2.15). ��

The restriction of the map B to the space D(A) × D(A) has also the following
representation

B(u, v) = P(u∇v), u, v ∈ D(A), (2.19)

where P is the Leray-Helmholtz projection operator and u∇v = ∑2
j=1 u

j D jv ∈
L2(O,R2). This representation together with Proposition 2.1 allows us to prove the
following property of the map B.

Proposition 2.5 Assume that α ∈ (0, 1
2 ). Then for any s ∈ (1, 2] there exists a

constant c > 0 such that

|B(u, v)|D(Aα/2) ≤ c|u|
D(A

s
2 )
|v|

D(A
1+α
2 )

, u, v ∈ D(A). (2.20)

Proof In view of equality (2.19), since the Leray-Helmholtz projection P is a well
defined and continuous map from Hα(O,R2) into D(Aα/2) and since the norms in
the spaces D(A

s
2 ) are equivalent to norms in Hs(O,R2), it is enough to show that

|u∇v|Hα ≤ C |u|Hs |v|H1+α , u, v ∈ H2(O,R2).

2 Note that in the case T = ∞ one also has limt→∞ u(t) = 0 in V.
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The last inequality is a consequence of the Marcinkiewicz Interpolation Theorem, the
complex interpolation and the following two inequalities for scalar functions which
can be proved by using Gagliado–Nirenberg inequalities

|uv|L2 ≤ C |u|Hs |v|L2 , u ∈ Hs, v ∈ L2,

|uv|H1 ≤ C |u|Hs |v|H1, u ∈ Hs, v ∈ H1.

��
3 The skeleton equation

We are here dealing with the following functional version of the Navier-Stokes equa-
tion {

u′(t)+ νAu(t)+ B(u(t), u(t)) = f (t), t ∈ (0, T )

u(0) = u0,
(3.1)

where T ∈ (0,∞] and ν > 0. Let us recall the following definition (see [41, Problem
2, section III.3]).

Definition 3.1 Given T > 0, f ∈ L2(0, T ;V′) and u0 ∈ H, a solution to problem
(3.1) is a function u ∈ L2(0, T ;V) such that u′ ∈ L2(0, T ;V′), u(0) = u03 and (3.1)
is fulfilled.

It is known (see e.g. [41, Theorems III.3.1/2]) that if T ∈ (0,∞], then for every
f ∈ L2(0, T ;V′) and u0 ∈ H there exists exactly one solution u to problem (3.1),
which satisfies

|u|2C([0,T ],H) + |u|2L2(0,T,V)
≤ |u0|2H + | f |2L2(0,T,V′). (3.2)

Moreover, see [41, Theorem III.3.10], if T < ∞ and f ∈ L2(0, T ;H) then

sup
t∈(0,T ]

|√t u(t)|2V +
∫ T

0
|√t Au(t)|2H dt

≤
(
|u0|2H + | f |2L2(0,T ;V′) + T | f |2L2(0,T ;H)

)
e
c
(
|u0|4H+| f |4L2(0,T ;V′)

)
, (3.3)

for a constant c independent of T , f and u0.
Finally, if T ∈ (0,∞], f ∈ L2(0, T ;H) and u0 ∈ V, then the unique solution u

satisfies

u ∈ L2(0, T ; D(A)) ∩ C([0, T ];V), u′ ∈ L2(0, T ;H),

and, for4 t ∈ [0, T ] ∩ [0,∞),

3 It is known, see for instance [41, Lemma III.1.2] that these two properties of u imply that there exists a
unique ū ∈ C([0, T ],H). When we write u(0) later we mean ū(0).
4 Please note that [0, T ] ∩ [0,∞) is equal to [0, T ] if T < ∞ and to [0,∞) if T = ∞.
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d

dt
|u(t)|2V + λ1|u(t)|2V ≤ d

dt
|u(t)|2V + |Au(t)|2H

≤ 2| f (t)|2H + 108|u(t)|2V |u(t)|2H|u(t)|2V . (3.4)

Hence, by the Gronwall Lemma and inequality (3.2), for any t ∈ [0, T ] ∩ [0,∞)

|u(t)|2V ≤
(
|u0|2V + 2

∫ t

0
| f (s)|2H ds

)
e−λ1t+54

(
|u0|2H+

∫ t
0 | f (s)|2V′ ds

)2
, (3.5)

so that, in particular,

eλ1t |u|2C([0,T ],V) ≤
(
|u0|2V + 2| f |2L2(0,T ;H)

)
e
54
(
|u0|2H+| f |2L2(0,T ;V′)

)2
. (3.6)

Moreover, thanks to (3.4), this yields

|u|2L2(0,T,D(A))
≤ |u0|2V + 2| f |2L2(0,T ;H)

+ 54
(
|u0|2H + | f |2L2(0,T,V′)

)2

×
(
|u0|2V + 2| f |2L2(0,T ;H)

)
e
54
(
|u0|2H+| f |2L2(0,T ;V′)

)2

=
(
|u0|2V + 2| f |2L2(0,T ;H)

)

×
(
1+54

(|u0|2H+| f |2L2(0,T,V′)
)2
e
54
(
|u0|2H+| f |2L2(0,T ;V′)

)2)
. (3.7)

The above results and arguments yield in particular the following corollary.

Corollary 3.2 If f ∈ L2
loc(0,∞;H) and u0 ∈ V, then the solution u to problem (3.1)

satisfies u ∈ L2
loc(0,∞; D(A)), u ∈ C([0,∞),V) and

eλ1t |u(t)|2V ≤
(
|u0|2V + 2

∫ t

0
| f (s)|2H ds

)
e54
(
|u0|2H+

∫ t
0 | f (s)|2V′ ds

)2
, t ≥ 0. (3.8)

In particular, if f ∈ L2(0,∞;H) then u ∈ L2(0,∞; D(A)) and

eλ1t |u(t)|2V ≤
(
|u0|2V + 2

∫ ∞

0
| f (s)|2H ds

)
e54
(
|u0|2H+

∫∞
0 | f (s)|2

V′ ds
)2

, t ≥ 0. (3.9)

If also f = 0, this gives

|u(t)|2V ≤ e54|u0|4He−λ1t |u0|2V , t ≥ 0. (3.10)

Now we will formulate and prove some generalizations of the above results when
the data u0 and f are slightly more regular. Similar results in the case of integer order
of the Sobolev spaces has been studied in [38] where some compatibility conditions
are imposed.
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Proposition 3.3 Assume that α ∈ (0, 1
2 ). If T ∈ (0,∞], f ∈ L2(0, T ; D(A

α
2 )) and

u0 ∈ D(A
α+1
2 ), then the unique solution u to problem (3.1) satisfies

u ∈ L2(0, T ; D(A1+ α
2 )) ∩ C([0, T ]; D(A

α+1
2 )) and u′(·) ∈ L2(0, T ; D(A

α
2 )).

(3.11)
Moreover, for t ∈ [0, T ] ∩ [0,∞), we have

|A α+1
2 u(t)|2H ≤ e−λ1t eC

2K3(|u0|V ,| f |L2(0,T ;H)
)

×
(
|A α+1

2 u0|2H +
∫ T

0
|A α

2 f (s)|2H ds

)
, (3.12)

where C > 0 is a generic constant5 and

K3(R, ρ) := [
R2 + 2ρ2]×

[
1+ 54

λ21

(
R2 + ρ2)2e

54
λ21

(
R2+ρ2

)2]
. (3.13)

In particular, if f = 0, then

|A α+1
2 u(t)|2H ≤ e−λ1t eC

2K3(|u0|V ,0)|A α+1
2 u0|2H, t ≥ 0. (3.14)

Proof Let us fix T > 0. Since by Proposition 2.1, B is a bilinear continuous map

from D(A
α+1
2 )× D(A

α+1
2 ) to D(A

α
2 ) it follows (see for instance [5] for the simplest

argument) that for every R, ρ > 0 there exists T∗ = T∗(R, ρ) ∈ (0, T ] such that for

every u0 ∈ D(A
α+1
2 ) and f ∈ L2(0, T ; D(A

α
2 ) such that

|u0|
D(A

α+1
2 )

≤ R, | f |
L2(0,T∗;D(A

α
2 )
≤ ρ

there exists a unique solution v to problem (3.1) which satisfy conditions (3.11) on

the time interval [0, T∗]. Since D(A
α+1
2 ) ⊂ V and L2(0, T ; D(A

α
2 ) ⊂ L2(0, T ;H)

with the embeddings being continuous, u0 ∈ V and f ∈ L2(0, T ;H). Therefore
by Theorems 3.1 and 3.2 in chapter III of [41], there exists a unique solution u to
problem (3.1) on the whole real half-line [0,∞) which satisfies (3.6) and (3.7). By
the uniqueness part of the above cited results, u = v on [0, T∗].

Hence it is sufficient to show that the norm of u in L2(0, T∗; D(A1+ α
2 ) ∩

C([0, T∗]; D(A
α+1
2 )) and the norm of u′ in L2(0, T∗; D(A

α
2 )) are bounded by a con-

stant depending only on |A α+1
2 u0|2H and

∫ T
0 |A α

2 f (s)|2H ds.

For this aim, by calculating the derivative of |A α+1
2 u(t)|2H, i.e. applying Lemma

III.1.2 from [41] and using inequality6 (2.20), with s = 2, we get the following
inequality

5 In fact, the one from inequality (2.20) in Proposition 2.5.
6 Since |〈A1+αu, Bu〉| = |〈A1+ α

2 u,A
α
2 Bu〉| ≤ |A1+ α

2 u||A α
2 Bu| ≤ C |A1+ α

2 u||Au||A1+α
2 u| ≤

1
4 |A1+ α

2 u|2 + C2|Au|2|A1+α
2 u|2.
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1

2

d

dt
|A α+1

2 u(t)|2H + |A α
2+1u(t)|2H

≤ |A α
2 f (t)|2H + C2|Au(t)|2H|A

α+1
2 u(t)|2H, t ∈ [0, T∗]. (3.15)

Thus, denoting the right hand side of inequality (3.7) by K1(T, f, u0) and applying
the Gronwall Lemma we get

|A α+1
2 u(t)|2H +

∫ t

0
|A α

2+1u(s)|2H ds

≤ eC
2K1(T, f,u0)|A α+1

2 u0|2H + eC
2K1(T, f,u0)

∫ t

0
|A α

2 f (s)|2H ds

≤ eC
2K1(T, f,u0)

(
|A α+1

2 u0|2H+
∫ T

0
|A α

2 f (s)|2H ds

)
, t ∈ [0, T∗]. (3.16)

This proves that the norm of u in L2(0, T∗; D(A1+ α
2 )) ∩ C([0, T∗]; D(A

α+1
2 )) is

bounded by a constant depending only on |A α+1
2 u0|2H and

∫ T
0 |A α

2 f (s)|2H ds.

Finally, the corresponding bound for the norm of u′ in L2(0, T∗; D(A
α
2 )) follows

from estimate (3.4), inequality (2.20) in Proposition 2.5, the assumption on f and the
estimates for Au and B(u, u).

This concludes the proof of the first part of Proposition 3.3, in particular of (3.11).
Let us now assume that T = ∞, R, ρ > 0 and f ∈ L2(0,∞; D(A

α
2 )) and

u0 ∈ D(A
α+1
2 ) such that |u0|V ≤ R and | f |L2(0,∞;H) ≤ ρ. Since, by the Poincaré

inequality (2.1), | f |2V′ ≤ λ−1
1 | f |2H, for f ∈ H,we infer that K1(T, f, u0) ≤ K3(R, ρ),

where K3(R, ρ) has been defined in (3.13). Thus, from inequality (3.16) we infer

|A α+1
2 u(t)|2H +

∫ t

0
|A α

2+1u(s)|2H ds ≤ eC
2 K3(R,ρ)

×
(
|A α+1

2 u0|2H+
∫ t

0
|A α

2 f (s)|2H ds

)
, t≥0.

Since by the Poincaré inequality (2.1) |A α
2+1|2H ≥ λ1|A α+1

2 u|2H, for u ∈ D(A
α
2+1), by

the inequality above and the Gronwall Lemma we infer that

|A α+1
2 u(t)|2H ≤ e−λ1t eC

2 K (R,ρ)

(
|A α+1

2 u0|2H+
∫ t

0
|A α

2 f (s)|2H ds

)
, t ≥ 0. (3.17)

This concludes the proof of inequality (3.12) and hence of the second part of the
Proposition. ��

The previous result can be used to derive the next corollary. The proof of this
corollary is analogous to the proof of properties (3.151) in Theorem 3.10 from [41,
chapter III].
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Corollary 3.4 Assume that α ∈ (0, 1
2 ) and β ∈ (α, 1). If T ∈ (0,∞), f ∈

L2(0, T ; D(A
α
2 )) and u0 ∈ V, then the unique solution u to the problem (3.1) satisfy

sup
s∈(0,T ]

sβ |A α+1
2 u(s)|2H +

∫ T

0
sβ |A α

2+1u(s)|2H ds ≤ eC
2K1(T, f,u0)

×
[ ∫ T

0
sβ |A α

2 f (s)|2H ds + CT
1

β−α (K0(T, f, u0)+ K1(T, f, u0))

]
. (3.18)

Proof Let us fix α ∈ (1, 1
2 ), β ∈ (α, 1), f ∈ L2(0, T ; D(A

α
2 )) and u0 ∈ D(A

α+1
2 ).

Multiplying the differential inequality (3.15) by tβ and then integrating it, we get

tβ |A α+1
2 u(t)|2H +

∫ t

0
sβ |A α

2+1u(s)|2H ds ≤
∫ t

0
sβ |A α

2 f (s)|2H ds

+C2
∫ t

0
|Au(s)|2H sβ |A α+1

2 u(s)|2H ds + β

∫ t

0
sβ−1|A α+1

2 u(s)|2H ds, t ∈ (0, T ].
(3.19)

Since A is a self-adjoint operator in H we have

|A α+1
2 u|2H ≤ |A1

2 u|2(1−α)
H |A2

2 u|2αH = |u|2(1−α)
V |Au|2αH , u ∈ D(A).

Therefore, by the Hölder inequality,

∫ t

0
sβ−1|A α+1

2 u(s)|2H ds ≤
(

sup
s∈(0,t]

|u(s)|2V
∫ t

0
s

β−1
1−α ds

)1−α (∫ t

0
|Au(s)|2 ds

)α

.

(3.20)
Since we are assuming β > α and α < 1, we infer that β−1

1−α
> −1 and therefore

∫ t

0
s

β−1
1−α ds = 1− α

β − α
t
1−α
β−α < ∞.

Let us recall that by K1(T, f, u0) we denote the right hand side of inequality (3.7).
Let us also denote by K0(T, f, u0) the right hand side of inequality (3.6). Then, for a
constant C depending only on α and β we get

β

∫ T

0
sβ−1|A α+1

2 u(s)|2H ds ≤ CT
1

β−α K0(T, f, u0)
1−αK1(T, f, u0)

α < ∞.

Therefore, we can deduce from inequality (3.19) the following one

tβ |A α+1
2 u(t)|2H +

∫ t

0
sβ |A α

2+1u(s)|2H ds ≤ eC
2K1(T, f,u0)

×
(∫ t

0
sβ |A α

2 f (s)|2H ds + Ct
1

β−α K0(t, f, u0)
1−αK (t, f, u0)

α

)
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≤eC
2K1(T, f,u0)

(∫ T

0
sβ |A α

2 f (s)|2H ds

+CT
1

β−α (K0(T, f, u0)+K1(T, f, u0))

)
, t ∈[0, T ]. (3.21)

This implies inequality (3.18) under the additional assumption that u0 ∈ D(A
α+1
2 ).

Now, if u0 ∈ V, then by [41, Theorem III.3.10], see also inequality (3.7), there

exists a sequence {tn} such tn ↘ 0 and u(tn) ∈ D(A) ⊂ D(A
α+1
2 ). Let us also denote

fn = f|[tn ,T ] and observe that Ki (T − tn, fn, u(tn)) ≤ Ki (T, f, u(tn)). Thus, by
applying inequality (3.18) to our solution u on the time interval [tn, T ]we get for each
n ∈ N

sup
s∈(tn ,T ]

(s − tn)
β |A α+1

2 u(s)|2H +
∫ T

tn
(s − tn)

β |A α
2+1u(s)|2H ds ≤ eK1(T, f,u(tn))

×
(∫ T

tn
(s − tn)

β |A α
2 f (s)|2H ds + C(T − (tn))

1
β−α (K0(T, f, u(tn))

+ K1(T, f, u(tn)))

)
. (3.22)

Since u ∈ C([0, T ];V), we infer that |u(tn)|V → |u0|V and thus Ki (T, f, u(tn)) →
Ki (T, f, u0), i = 1, 2. Moreover, by the LebesgueMonotone Convergence Theorem,

∫ T

tn
(s − tn)

β |A α
2+1u(s)|2H ds

=
∫ T

0
1(tn ,T ](s)(s − tn)

β |A α
2+1u(s)|2H ds →

∫ T

0
sβ |A α

2+1u(s)|2H ds,

∫ T

tn
(s − tn)

β |A α
2 f (s)|2H ds

=
∫ T

0
1(tn ,T ](s)(s − tn)

β |A α
2 f (s)|2H ds →

∫ T

0
sβ |A α

2 f (s)|2H ds.

Hence, from (3.22) we deduce (3.18). The proof is complete. ��
Now, for any−∞ ≤ a < b ≤ ∞ such that a < b and for any two reflexive Banach

spaces X and Y such that X ↪→ Y continuously, we denote by7 W 1,2(a, b; X,Y ) the
space of all u ∈ L2(a, b; X)which areweakly differentiable asY -valued functions and
theirweak derivative belongs to L2(a, b; Y ). The spaceW 1,2(a, b; X,Y ) is a separable
Banach space (and Hilbert if both X and Y are Hilbert spaces), with the natural norm

|u|2W 1,2(a,b;X,Y )
= |u|2L2(a,b;X)

+ |u′|2L2(a,b;Y )
, u ∈ W 1,2(a, b; X,Y ).

7 Some authours, for instance Vishik and Fursikov, use the notation H1,2N (a, b; X, Y ). Our choice is
motivated by the notation used in the monograph [29], who however use notation W (a, b).
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Later on, we will use the shortcut notation

W 1,2(a, b) = W 1,2(a, b; D(A),H).

We conclude this section with the statement of a couple of results which are obvious
adaptations of deep results from [30] to the 2-dimensional case. To this purpose, there
is no need to mention that all what we have said about Eq. (3.1) in the time interval
[0, T ] applies to any time interval [a, b], with −∞ < a < b < ∞.

Definition 3.5 Assume that −∞ ≤ a < b ≤ ∞ and f ∈ L2
loc((a, b);H). A function

u ∈ C((a, b);H) is called a very weak solution to the Navier-Stokes equations (3.1)
on the interval (a, b) if for all φ ∈ C∞((a, b)× D), such that divφ = 0 on (a, b)× D
and φ = 0 on (a, b)× ∂D,

∫
D
u(t1, x)φ(t1, x) dx

=
∫
D
u(t0, x)φ(t0, x) dx+

∫
[t0,t1]×D

u(s, x) · (∂sφ(s, x)+ ν�φ(s, x)) dsdx

+
∫ t1

t0
b(u(s), u(s), φ(s)) ds +

∫
[t0,t1]×D

f (s, x) · φ(s, x) dsdx, (3.23)

for all a < t0 < t1 < b.

Proposition 3.6 Assume that −∞ ≤ a < b ≤ ∞ and f ∈ L2
loc((a, b);H). Suppose

that the functions u, v ∈ C((a, b);H) are very weak solutions to the Navier-Stokes
equations (3.1) on the interval (a, b), with u(t0) = v(t0), for some t0 ∈ (a, b). Then
u(t) = v(t) for all t ≥ t0.

In the whole paper we will assume, without any loss of generality, that ν = 1.

Definition 3.7 Assume that −∞ ≤ a < b ≤ ∞. Given a function u ∈ C((a, b);H)

we say that

u′ + Au + B(u, u) ∈ L2(a, b;H), (resp. ∈ L2
loc((a, b);H))

if there exists f ∈ L2(a, b;H), (resp. f ∈ L2
loc((a, b);H)) such that u is a very weak

solution of the Navier-Stokes equations (3.1) on the interval (a, b).
Clearly, the corresponding function f is unique and we will denote it byH(u), i.e.

H(u) := u′ + Au + B(u, u). (3.24)

An obvious sufficient condition for the finiteness of the norm of H(u) in
L2(t0, t1; H) is that u′, Au and B(u, u) all belong to L2(t0, t1;H). The next result
shows that this is not so far from a necessary condition.
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Lemma 3.8 Suppose that T > 0 and u ∈ C([0, T ];H) is such that

u′ + Au + B(u, u) ∈ L2(0, T ;H).

Then u(T ) ∈ V, u ∈ W 1,2(t1, T ), for any t1 ∈ (0, T ) and

sup
t∈(0,T ]

|√t u(t)|2V +
∫ T

0
|√t Au(t)|2H dt < ∞.

Moreover, if u(0) ∈ V, then u ∈ W 1,2(0, T ).

Proof Let us fix T > 0 and u as in the assumptions of the Lemma and let us denote
f = u′ + Au + B(u, u). By assumptions we infer that f ∈ L2(0, T ;H). Since
u(0) ∈ H, by [41, Theorem III.3.10], there exists a unique solution v to problem (3.1)
which satisfies inequality (3.3). Then by v is also a mild solution to (3.1) and since
by assumptions and [30, Proposition 2.5] u ∈ C([0, T ];H) is also a mild solution
to (3.1), by Proposition 3.6 (i.e. [30, Theorem 1.2]) we infer that u = v. Hence
u ∈ L2(0, T ;V), u′ ∈ L2(0, T ;V′) and u satisfies (3.3). In particular, for every
t1 ∈ (0, T ) we can find t0 ∈ (0, t1) such that u(t0) ∈ V and therefore by [41, Theorem
III.3.10], u ∈ W 1,2(t0, T ). In particular, u ∈ C([t0, T ];V) and hence u(T ) ∈ V.

If the additional assumption that u(0) ∈ V is satisfied, then by what we have just
seen ([41, Theorem III.3.10]) or by the maximal regularity and the uniqueness of
solutions to 2D NSEs), we can conclude that u ∈ W 1,2(0, T ). ��
Remark 1 It should be pointed out that we cannot claim that u(0) ∈ V. Indeed, if
we take a solution u of the problem (3.1) with data u0 ∈ H\V and f = 0, then
u satisfies the Assumptions of Lemma 3.8 but nethervelles u(0) /∈ V. See however
Proposition 10.1 for a positive result on an unbounded interval (−∞, 0].

A result analogous of Lemma 3.8 holds in domains of fractional powers of A.

Lemma 3.9 Assume that α ∈ [0, 1/2) and suppose that u ∈ C([0, T ];H), for some
T > 0, is such that

u′ + Au + B(u, u) ∈ L2(0, T ; D(A
α
2 )).

Then u(T ) ∈ D(A
α+1
2 ) and u ∈ W 1,2

(
t0, T ; D(A

α
2+1), D(A

α
2 )
)
, for any t0 ∈ (0, T ).

Moreover, if u(0) ∈ D(A
α+1
2 ), then u ∈ W 1,2

(
0, T ; D(A

α
2+1), D(A

α
2 )
)
.

Proof Denote f = u′ + Au + B(u, u) and let us fix t0 ∈ (0, T ) and some
t1 ∈ (0, t0). By Lemma 3.8 we infer that u ∈ W 1,2(t1, T ). In particular, there

exists t2 ∈ (t1, t0) such that u(t2) ∈ D(A) ⊂ D(A
α+1
2 ). The last embedding holds

since α < 1
2 . Since by our assumption, f ∈ L2(0, T ; D(A

α
2 )), in view of Proposi-

tion 3.3 and Proposition 3.6, we infer that u ∈ W 1,2
(
t2, T ; D(A

α
2+1), D(A

α
2 )
)
. This

implies that u ∈ C([t2, T ]; D(A
α+1
2 )) and in particular that u(T ) ∈ D(A

α+1
2 ) and

u ∈ W 1,2
(
t0, T ; D(A

α
2+1), D(A

α
2 )
)
, as in our first claim. The second claim follows

from our last argument. ��
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In what follows, for any r > 0 and γ ≥ 0 we shall denote by Bγ (r) the closed ball

in D(A
γ
2 ) of radius r and centered at the origin, i.e.

Bγ (r) :=
{
x ∈ D(A

γ
2 ) : |x |

D(A
γ
2 )
≤ r

}
.

Moreover, for any φ ∈ H and s ∈ R, we shall denote by uφ(t; s), t ≥ s (simply uφ(t),
t ≥ 0, when s = 0) the solution of problem (3.1) with the external force f equal to 0,
i.e. {

u′(t)+ Au(t)+ B(u(t), u(t)) = 0, t > s,
u(s) = φ.

(3.25)

Moreover, for φ ∈ H, r > 0 and γ ≥ 0 we shall denote

tr,γφ := inf
{
t ≥ 0 : uφ(t) ∈ Bγ (r)

}
.

Proposition 3.10 For any c1, c2 > 0 and σ ∈ [0, 3
2 ), there exists T = T (σ, c1, c2) >

0 such that for every φ ∈ H such |φ|H ≤ c1, one has

|A σ
2 uφ(t)|H ≤ c2, for all t ≥ T . (3.26)

Proof By inequality (3.3), for any φ ∈ H

|uφ(1)|2V ≤ |φ|2He C|φ|
4
H . (3.27)

Then, by inequality (3.10) in Corollary 3.2, we infer

|uφ(t)|2V ≤ e54|φ|4He−λ1(t−1) |uφ(1)|2V , t ≥ 1.

Combining these two we get

|uφ(t)|2V ≤ e(54+C)|φ|4H+λ1e−λ1t |φ|2H, t ≥ 1,

and (3.26) follows for σ ≤ 1.
Consider now the case σ ∈ (1, 3

2 ). Let us fix constants c1, c2 > 0 and an initial data
φ ∈ H such that |φ|H ≤ c1. We will be applying the previous step with α = σ − 1 ∈
(0, 1

2 ). Choose an auxiliary β ∈ (σ − 1, 1). Then by inequality (3.18) in Corollary
3.4, we get

|A α+1
2 uφ(2)|2 ≤ eC

2K1(2,0,uφ(1))C(K0(2, 0, uφ(1))+ K1(2, 0, uφ(1))).

Therefore, recalling how K0 and K1 were defined, due to (3.27)

|A1+α
2 uφ(2)|2H ≤ K4(|φ|H),

for some continuous, increasing function K4. According to (3.12) this allows to
conclude. ��
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4 Some basic facts on relaxation and �-convergence

Let us assume that X is a topological space satisfying the first axiom of countability,
i.e. every point in X has a countable local base. For any x ∈ X , we shall denote by
N (x) the set of all open neighborhoods of x in X .

Definition 4.1 Let F : X → R be a function.

(1) The function F is called lower semi-continuous if for any t ∈ R, the inverse image
set F−1((−∞]) = {x ∈ X : F(x) ≤ t} is closed in X ,

(2) The function F is called coercive if for any t ∈ R, the closure of the level set
{x ∈ X : F(x) ≤ t} is countably compact, i.e. every countable open cover has a
finite subcover.

Now, let {Fn}∈N be a sequence of functions all defined on X with values in R.

Definition 4.2 The sequence of functions {Fn}∈N is called equi-coercive if for any
t ∈ R there exists a closed countably compact set Kt ⊂ X such that

⋃
n∈N

{x ∈ X : Fn(x) ≤ t} ⊂ Kt .

Let us note that if Y is a closed subspace of X , then the restrictions to Y of lower
semi-continuous, coercive and equi-coercive functions, remain such on Y .

As proved in [15, Proposition 7.7], the following characterization of equi-coercive
sequences holds.

Proposition 4.3 The sequence {Fn}∈N is equi-coercive if and only if there exists a
lower semi-continuous coercive function � : X → R such that

Fn(x) ≥ �(x), x ∈ X, n ∈ N.

Now, we introduce the notion of relaxation of a function F .

Definition 4.4 The lower semi-continuous envelope, or relaxed function, of a function
F : X → R̄ is defined by

(sc−F)(x) = sup{G(x) : G ∈ G(F)}, x ∈ X,

where G(F) is the set of all lower semi-continuous functions G : X → R̄ such that
G ≤ F .

From the definition, one has immediately that sc−F is lower semi-continuous,
sc−F ≤ F and sc−F ≥ G, for any G ∈ G(F), so that sc−F can be regarded as the
greatest lower semi-continuous function majorized by F . Moreover, it is possible to
prove that

(sc−F)(x) = sup
U∈N (x)

inf
y∈U

F(y), x ∈ X,

(see [15, Proposition 3.3]).
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The following result, whose proof can be found in [15, Proposition 3.6], provides
a possible characterization of sc−F which we will use later on in the paper.

Proposition 4.5 For any function F : X → R̄, its lower semi-continuous envelope
sc−F is characterized by the following properties:

(1) for any x ∈ X and any sequence {xn}n∈N convergent to x in X, it holds

(sc−F)(x) ≤ lim inf
n→∞ F(xn);

(2) for any x ∈ X there exists a sequence {xn}n∈N convergent to x in X such that

(sc−F)(x) ≥ lim sup
n→∞

F(xn).

Next, we introduce the notion of �-convergence for sequences of functions.

Definition 4.6 The �-lower limit and the �-upper limit of the sequence {Fn}n∈N are
the functions from X into R defined respectively by

� − lim inf
n→∞ Fn(x) = sup

U∈N (x)
lim inf
n→∞ inf

y∈U
Fn(y),

� − lim sup
n→∞

Fn(x) = sup
U∈N (x)

lim sup
n→∞

inf
y∈U

Fn(y).

If there exists a function F : X → R such that � − lim infn→∞ Fn = � −
lim supn→∞ Fn = F , then we write

F = � − lim
n→∞ Fn,

and we say that the sequence {Fn}n∈N is �-convergent to F .

In [15, Proposition 5.7] we can find the proof of the following result, which links
�-convergence and relaxation of functions and provides a useful criterium for �-
convergence.

Proposition 4.7 If {Fn}n∈N is a decreasing sequence converging to F pointwise, then
{Fn}n∈N is �-convergent to sc−F.

We conclude by giving a criterium for convergence of minima for �-convergent
sequences (for a proof see [15, Theorem 7.8]).

Theorem 4.8 Suppose that the sequence {Fn}n∈N is equi-coercive in X and �-
converges to a function F in X. Then, F is coercive and

min
x∈ X

F(x) = lim
n→∞ inf

x∈ X
Fn(x).
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5 The large deviation action functional

For any fixed ε, δ ∈ (0, 1] and φ ∈ H, we consider the problem

du(t)+ [Au(t)+ B(u(t), u(t))
]
dt = √

ε dwQδ (t), u(0) = φ, (5.1)

where

wQδ (t) =
∞∑
k=1

Qδekβk(t), t ≥ 0,

{ek}k∈N is the basis which diagonalizes the operator A, {βk}k∈N is a sequence of
independent Brownian motions all defined on the stochastic basis (�,F ,F,P), where
F = (Ft )t≥0, and Qδ is a bounded linear operator on H, for any δ ∈ (0, 1].

In what follows, we shall assume that the family {Qδ}δ∈ (0,1] satisfies the following
conditions.

Assumption 5.1 For every δ ∈ (0, 1], Qδ is a positive linear operator on H, the
operator A−1Q2

δ is trace class, and there exists some β > 0 such that Qδ : H →
D(A

β
2 ) is an isomorhism. Moreover,

lim
δ→0

Qδ y = y, y ∈ H, lim
δ→0

Q−1
δ y = y, y ∈ D(A

β
2 ),

the limites above being in H, and for any 1 ≥ σ ≥ δ ≥ 0

|Q−1
σ y|H ≥ |Q−1

δ y|H, y ∈ D(A
β
2 ). (5.2)

Remark 2 The reproducing kernel Hilbert space of the Wiener process wQδ is equal

to Qδ(H) and hence by Assumption 5.1 it coincides with the space D(A
β
2 ) for some

β > 0. This implies that the results from [9] are applicable.

Remark 3 It is easy to see that for the Navier-Stokes equations in a d-dimensional
domain, d ≥ 2, any number β > d

2 − 1 and the operators

Qδ :=
(
I + δAβ/2)−1

satisfy Assumption 5.1.

Now, for any −∞ ≤ t0 < t1 ≤ ∞, δ ∈ [0, 1] and u ∈ C([t0, t1]; H), we define

Sδ
t0,t1(u) := 1

2

∫ t1

t0
|Q−1

δ (H(u)(t)) |2H dt, (5.3)

whereH(u) is defined as in (3.24), with the usual convention that Sδ
t0,t1(u) = +∞, if

Q−1
δ (H(u)(·)) �∈ L2(t1, t2;H).
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When δ = 0, the superscript 0 will be omitted. So we put St0,t1 = S0t0,t1 . Note
that according to Lemma 3.9 a necessary condition for Sδ

t0,t1(u) to be finite is that

u(T1) ∈ D(A
α+1
2 ) and u ∈ W 1,2

(
t2, t1; D(A

α
2+1), D(A

α
2 )
)
, for any t2 ∈ (t0, t1).

For any T > 0, p ≥ 1, ε, δ ∈ (0, 1] and φ ∈ H, Eq. (5.1) admits a unique solution
uε,δ

φ ∈ L p(�;C([0, T ];H)); for a proof see e.g. the fundamental work of Flandoli
[21]. To be more precise let us now formulate a definition of a solution following [9].

Definition 5.2 If u0 ∈ H, then an F-adapted process u(t), t ≥ 0 with trajectories in
C([0,∞);H) ∩ L4

loc([s,∞);L4(D)) is a solution to problem (5.1) iff for any v ∈ V,
t ≥ 0, P-almost surely,

(u(t), v) = (u0, v)− ν

∫ t

s
(u(r),Av(r)) dr −

∫ t

s
b(u(r), u(r), v) dr

+√ε (v, wQδ (t)).

As shown in the next theorem, as an immediate consequence of the contraction

principle, we have that the family
{
L(uε,δ

φ )
}

ε∈ (0,1] satisfies a large deviation principle
in C([0, T ];H).

Theorem 5.3 For any φ ∈ H and δ ∈ (0, 1], the family {L(uε,δ
φ )}ε∈ (0,1] satisfies a

large deviation principle on C([0, T ];H), uniformly with respect to initial data φ in
bounded sets of H, with good action functional Sδ

T .

Proof For every ε > 0 and δ ∈ (0, 1], we denote by zε,δ(t) the Ornstein-Uhlenbeck
process associated with A and Qδ , that is the solution of the linear problem

dz(t)+ Az(t) dt = √
ε dwQδ (t), z(0) = 0. (5.4)

We have

zε,δ(t) = √
ε

∫ t

0
e−(t−s)A dwQδ (s), t ≥ 0.

As well known (see e.g. [46, Theorem 3]), under our assumptions the family
{L(zε,δ)}ε∈ (0,1] satisfies a large deviation principle in C([0, T ]; L4(O)), with good
action functional

I δ
0,T (u) = 1

2

∫ T

0

∣∣∣Q−1
δ (u′(t)+ Au(t))

∣∣∣2
H
dt.

Moreover, if we define themappingF : H×C([0, T ]; L4(O)) → C([0, T ];H)which
associates to every φ ∈ H and g ∈ C([0, T ]; L4(O)) the solution v ∈ C([0, T ];H)

of the problem

v′(t)+ Av(t)+ B(v(t)+ g(t), v(t)+ g(t)) = 0, v(0) = φ,
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we have, P-a.s.,

uε,δ
φ = F(φ, zε,δ).

Since, by [9, Theorem4.6], themappingF : H×C([0, T ]; L4(O)) → C([0, T ];H) is
continuous, by the contraction principle, the large deviation principle for {zε,δ}ε∈ (0,1]
onC([0, T ]; L4(O))with action functional I δ

0,T may be transferred to a large deviation

principle for {uε,δ
φ }ε∈ (0,1] on C([0, T ];H), with action functional Sδ

0,T .
Moreover, in [9, Theorem 4.6] it is shown that for any R > 0 there exists cR > 0

such that for any z1, z2 ∈ BR(C([0, T ]; L4(O)))

sup
φ∈ B0(R)

|F(φ, z1)− F(φ, z2)|C([0,T ];H) ≤ cR |z1 − z2|C([0,T ];L4(O)).

This implies that the large deviation principle proved above is uniform with respect to
the initial data φ in any bounded subset of H. ��

In what follows, for any T ∈ (0,+∞] we set

Sδ
T := Sδ

0,T , Sδ−T := Sδ−T,0

and

ST := S0,T , S−T := S−T,0.

In particular,

Sδ−∞(u) := 1

2

∫ 0

−∞
|Q−1

δ (H(u)(t)) |2H dt (5.5)

and

S−∞(u) := 1

2

∫ 0

−∞
|H(u)(t)|2H dt. (5.6)

We conclude the present section with the description of some relevant properties
of the functionals S−∞ and Sδ−∞.

To this purpose, we need to introduce the following functional spaces

X =
{
u ∈ C((−∞, 0];H) : lim

t→−∞ |u(t)|H = 0

}
, Xφ =

{
u ∈ X : u(0) = φ

}
.

(5.7)
We endow the spaceX with the topology of uniformconvergence on compact intervals,
i.e. the topology induced by the metric ρ defined by

ρ(u, v):=
∞∑
n=1

2−n

(
sup

s∈[−n,0]
|u(s)− v(s)|H ∧ 1

)
, u, v ∈ X .

The set Xφ is closed in X and we endow it with the trace topology induced by X .
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Let us note here, see for instance [45, Proposition I.3.1], that if u ∈ W 1,2(t0,∞),
then

lim
t→∞ |u(t)|V = 0.

Similarly, as shown in Proposition 10.3, if u ∈ W 1,2(−∞, t1), then

lim
t→−∞ |u(t)|V = 0.

Proposition 5.4 The functionals S−∞ and Sδ−∞, δ ∈ (0, 1], are lower-semicontinuous
in X .

Proof In order to prove the lower semi-continuity of S−∞ and Sδ−∞, it is sufficient to
show that if a X -valued sequence {un}∞n=1 is convergent in X to a function u ∈ X ,
then for any δ ∈ [0, 1]

lim inf
n→∞ Sδ−∞(un) ≥ Sδ−∞(u). (5.8)

First, we assume that u ∈ X is such that Sδ−∞(u) = ∞. We want to show that

lim inf
n→∞ Sδ−∞(un) = +∞.

Suppose by contradiction that lim infn Sδ−∞(un) < ∞. Then, after extracting a sub-
sequence, we can find C > 0 such that

|u′n + Aun + B(un, un)|
L2(−∞,0;D(A

β
2 ))

≤ C, n ∈ N.

By Proposition 10.2 (Proposition 10.1, if δ = 0), we have that the sequence

{un} is bounded in W 1,2(−∞, 0; D(A1+ β
2 ), D(A

β
2 )) and hence we can find ũ ∈

W 1,2(−∞, 0; D(A1+ β
2 ), D(A

β
2 )) such that, after another extraction of a subsequence,

un → ũ, as n →∞, weakly in W 1,2(−∞, 0; D(A1+ β
2 ), D(A

β
2 )).

By theuniqueness of the limit,we infer thatu = ũ, so thatu ∈ W 1,2(−∞, 0; D(A1+ β
2 ),

D(A
β
2 )) and Sδ−∞(u) < ∞, which contradicts our assumption.

Thus, assume that Sδ−∞(u) < ∞. In view of the last part of Lemma 3.9 (Lemma 3.8

if δ = 0) we have that u(0) ∈ D(A
1+β
2 ) and u ∈ W 1,2(−∞, 0; D(A1+ β

2 ), D(A
β
2 ))

as {un} ⊂ Xx .
Now, assume that (5.8) is not true. Then there exists ε > 0 such that, after the

extraction of a subsequence,

Sδ−∞(un) < Sδ−∞(u)− ε, n ∈ N.
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Hence, if we set fn = u′n + Aun + B(un, un), we have that the sequence { fn}
is bounded in L2(−∞, 0; D(A

β
2 )) and then, by Proposition 10.2 (Proposition 10.1

if δ = 0), we have that {un} is bounded in W 1,2(−∞, 0; D(A1+ β
2 ), D(A

β
2 )). This

implies that we can find ũ ∈ W 1,2(−∞, 0; D(A1+ β
2 ), D(A

β
2 )) such that, after a

further extraction of a subsequence,

un = ũ, as n →∞, weakly in W 1,2(−∞, 0; D(A1+ β
2 ), D(A

β
2 )),

and, by uniqueness of the limit, we infer that u = ũ. Moreover, as the sequence { fn} is
bounded in L2(−∞, 0; D(A

β
2 )), after another extraction of a subsequence,we canfind

f̃ ∈ L2(−∞, 0; D(A
β
2 )) such that fn converges weakly to f̃ in L2(−∞, 0; D(A

β
2 )).

By employing nowadays standard compactness argument, see for instance [9, section
5] we can show that f̃ = f = u′ + Au + B(u, u). Thus, since the mapping

f ∈ L2(−∞, 0; D(A
β
2 )) �→

∫ 0

−∞
|Q−1

δ f (t)|2H dt ∈ R

is convex and lower semi-continuous, it is also weakly lower semi-continuous, so that

lim inf
n→∞ Sδ−∞(un) = 1

2
lim inf
n→∞ |Q−1

δ fn|2
L2(−∞,0;D(A

β
2 ))

≥ 1

2
|Q−1

δ f |2
L2(−∞,0;D(A

β
2 ))

= Sδ−∞(u).

��
Proposition 5.5 Theoperators S−∞ and Sδ−∞ have compact level sets inX .Moreover,
the family {Sδ−∞}δ∈ (0,1] is equi-coercive.

Proof First, notice that we have only to prove the compactness of the level sets of
S−∞. Actually, due to Assumption 5.1,

Sδ−∞ ≥ S−∞, δ ∈ (0, 1], (5.9)

and then, as Sδ−∞ is lower-semicontinuous, the compactness of the level sets of S−∞
implies the compactness of the level sets of Sδ−∞. Moreover, in view of Proposition
4.3, (5.9) and the compactness of the level sets of S−∞ imply the equi-coercivity of
the family {Sδ−∞}δ∈ (0,1].

Hence, we have only to prove that every sequence
{
un
}
in X such that S−∞(un) ≤

r, for any n ∈ N, has a subsequence convergent in X to some u ∈ X such that
S−∞(u) ≤ r .

According to the last part of Proposition 10.1 there exists M > 0 such that

|un|W 1,2(−∞,0) ≤ M, n ∈ N.
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Hence by the Banach–Alaoglu Theorem, we can find u ∈ W 1,2(−∞, 0) and a subse-
quence of the original sequence that is weakly convergent to u inW 1,2(−∞, 0). Note
that u being an element of W 1,2(−∞, 0) it must satisfy

lim
t→−∞ |u(t)|H = 0.

Since the embedding D(A) ↪→ H is compact, by the last part of [8, Corollary 2.8] with
α = 1 and q = 2, we infer that that for each T > 0 the embedding W 1,2(−T, 0) ↪→
C([−T, 0],H) is compact. Hence, for each T > 0 we can extract a subsequence
strongly convergent in C([−T, 0],H). By the uniqueness of the limit we infer that the
later limit is equal to the restriction of u to the interval [−T, 0]. In particular u(0) =
x and therefore u ∈ X . Moreover, by employing the Helly’s diagonal procedure,
we can find a subsequence of

{
un
}
which is convergent in X to u and, as S−∞ is

lower semicontinuous, we have that S−∞(u) ≤ r . This completes the proof of the
compactness of the level sets of S−∞. ��

6 The quasi-potential

We define, for φ ∈ H, the following [0,∞]-valued functions

U (φ) := inf
{
S−T (u) : T > 0, u ∈ C([−T, 0];H), with u(−T ) = 0, u(0) = φ

}
,

(6.1)
and, for any δ ∈ (0, 1],

Uδ(φ) := inf
{
Sδ−T (u) : T > 0, u ∈ C([−T, 0];H), with u(−T ) = 0, u(0) = φ

}
.

(6.2)
Note that with our notation U = U0.

As a consequence of Lemmas 3.8 and 3.9, we have the following result.

Proposition 6.1 We have
U (φ) < ∞⇐⇒ φ ∈ V. (6.3)

Moreover, if Assumption 5.1 is satisfied for some β ∈ (0, 1
2 ), then we have

Uδ(φ) < ∞⇐⇒ φ ∈ D
(
A

β+1
2

)
. (6.4)

Proof We prove (6.4), as (6.3) turns out to be a special case, corresponding to the case
β = 0. Assume that Uδ(φ) < ∞. Then, according to (6.2) we can find T > 0 and
u ∈ C([−T, 0];H) such that u(−T ) = 0, u(0) = φ and

u′ + Au + B(u, u) ∈ L2
(
−T, 0; D(A

β
2 )
)

.

Hence, by Lemma 3.9 we infer that φ ∈ D(A
1+β
2 ).
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Conversely, let us assume that φ ∈ D(A
1+β
2 ). Since for any T > 0 the map

W
(
−T, 0; D(A1+ β

2 ), D(A
β
2 )
)
� v �→ v(0) ∈ D(A

1+β
2 )

is surjective, see [29, Theorem 3.2, p.21 and Remark 3.3, p.22] for a proof, we can

find u1 ∈ W (−T, 0; D(A1+ β
2 ), D(A

β
2 )) such that u1(0) = φ. By Proposition 2.5,

we infer that u′1 + Au1 + B(u1, u1) ∈ L2(−T, 0; D(A
β
2 )). Moreover, there exists

t0 ∈ (−T, 0) such that u1(t0) ∈ D(A1+ β
2 ). This means that if we define

u2(t) := t + T

t0 + T
u1(t0), t ∈ [−T, t0],

we have that u2(−T ) = 0, u2 ∈ W (−T, t0; D(A1+ β
2 ), D(A

β
2 )) and u′2 + Au2 +

B(u2, u2) ∈ L2(−T, t0; D(A
β
2 )). Finally, if we define

u(t) :=
{
u2(t), t ∈ [−T, t0],
u1(t), t ∈ [t0, 0],

we can conclude that Sδ−T (u) < ∞. ��
Now we can prove the following crucial characterization of the functionals Uδ and

U .

Theorem 6.2 For any φ ∈ V, we have

U (φ) := min
{
S−∞(u) : u ∈ Xφ

}
. (6.5)

Analogously, if Assumption 5.1 is satisfied for some β ∈ (0, 1
2 ), then for any δ ∈ (0, 1]

and φ ∈ D(A
1+β
2 ) we have

Uδ(φ) := min
{
Sδ−∞(u) : u ∈ Xφ

}
. (6.6)

Proof We prove (6.6), as (6.5) is a special case, corresponding to β = 0 in Assump-
tion 5.1. Let us fix T > 0 and u ∈ C([−T, 0];H) such that u(−T ) = 0, u(0) = φ

and Sδ−T (u) < ∞, and let us define

ū(t) :=
{
u(t), if t ∈ [−T, 0],
0, if t ∈ (−∞,−T ]. (6.7)

Obviously, ū ∈ Xφ . We will prove that

Sδ−∞(ū) = Sδ−T (u) (6.8)
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Since Sδ−T (u) < ∞, the function u satisfies the assumptions of Lemma 3.9. Therefore,

φ ∈ D(A
1+β
2 ) and u belongs to W 1,2(−T, 0; D(A1+ β

2 ), D(A
β
2 )). Since obviously

the zero function is an elements of the space W 1,2(−∞,−T ; D(A1+ β
2 ), D(A

β
2 )),

we infer, see for instance [5], that

ū ∈ W 1,2(−∞, 0; D(A1+ β
2 ), D(A

β
2 )),

and (6.8) holds. In particular, this implies that

inf
{
Sδ−∞(u) : u ∈ Xφ

} ≤ Sδ−T (u).

Taking now the infimum over all u as above, in view of the definition of Uδ(φ) we
infer that

inf
{
Sδ−∞(u) : u ∈ Xφ

} ≤ Uδ(φ).

It remains to prove the converse inequality. To this purpose, we will need the
following two results, whose proofs are postponed to the end of this section. ��
Lemma 6.3 For every δ ∈ [0, 1], T > 0 and ε > 0, there exists η > 0 such that for

any y ∈ D(A
1+β
2 ) such that |y|

D(A
1+β
2 )

< η, we can find

v ∈ W (0, T ; D(A1+ β
2 ), D(A

β
2 ))

with
Sδ
T (v) < ε, v(0) = 0, v(T ) = y.

Recall that in the case δ = 0, we have Sδ
T = ST and we take β = 0.

Lemma 6.4 Assume that u ∈ X . Then for each δ ∈ [0, 1] and ε > 0 we can find
Tε > 0 and vε ∈ C([−Tε, 0];H) such that vε(−Tε) = 0, vε(0) = u(0) and

Sδ−Tε
(vε) ≤ Sδ−∞(u)+ ε.

Thus, let us prove
Uδ(φ) ≤ inf{Sδ−∞(u) : u ∈ Xφ}. (6.9)

Obviously, we may assume that the right hand side above is finite and so we can find
u ∈ Xφ such that Sδ−∞(u) < ∞. In view of Lemma 6.4, for any ε > 0,

inf
{
Sδ−T (v) : T > 0, v ∈ C([−T, 0],H), v(−T ) = 0, v(0) = φ

} ≤ Sδ−∞(u)+ ε.

This implies that Uδ(φ) ≤ Sδ−∞(u)+ ε. Thus, by taking the infimum over ε > 0 and
then over all admissible u we get (6.9). Finally, we remark that the infima are in fact
minima, as the level sets of S−∞ and Sδ−∞ are compact (see Proposition 5.5).

This completes the proof of (6.6), provided we can prove Lemmas 6.3 and 6.4.
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Proof of Lemma 6.3 Let us fix T > 0 and consider the mapping

HT : W 1,2
(
0, T ; D

(
A1+ β

2

)
, D

(
A

β
2

))
� v �→ v′ + Av + B(v, v) ∈ L2

(
0, T ; D

(
A

β
2

))
.

Due to Lemma 2.5, the mapping HT is well defined and continuous. Moreover

Sδ
T (v) ≤ c |HT (v)|

L2(0,T ;D(A
β
2 ))

, v ∈ W 1,2
(
0, T ; D

(
A1+ β

2

)
, D

(
A

β
2

))
.

(6.10)
Now, by proceeding as in [29, Remark 3.3, p. 22] we can show that there exists a

continuous linear map

R : D(A
1+β
2 ) → W 1,2(0, T ; D(A1+ β

2 ), D(A
β
2 )),

such that [Ry](T ) = y for every y ∈ D(A
1+β
2 ). By using the same augments used in

the proof of Proposition 6.1, we can construct Ry such that Ry(0) = 0. Thus the map

HT ◦ R : D
(
A

1+β
2

)
→ L2

(
0, T ; D

(
A

β
2

))

is continuous and then for every ε > 0 we can find η > 0 such that

|y|
D(A

1+β
2 )

< η �⇒ |HT (Ry)|
L2(0,T ;D(A

β
2 )

<
ε

c
.

Since v = Ry satisfies v ∈ W 1,2(0, T ; D(A1+ β
2 ), D(A

β
2 )), v(0) = 0 and v(T ) = y,

due to (6.10) the proof is complete. ��
Proof of Lemma 6.4 We give the proof here for δ > 0, as δ = 0 is a special case.
Let us assume that u ∈ Xφ for some φ ∈ H , and fix ε > 0. We can assume that
Sδ−∞(u) < ∞. Then by (5.5) we can find Tε > 0 such that

Sδ−∞,−Tε
(u) <

ε

3
.

Moreover, the function u satisfies the assumptions of Lemma 3.9. Therefore, φ ∈
D(A

1+β
2 ) and u belongs to W 1,2

loc (−∞, 0; D(A1+ β
2 ), D(A

β
2 )). As a consequence of

Proposition 10.2, this implies

lim
t→−∞ |u(t)|

D(A
1+β
2 )

= 0. (6.11)

Then, Tε can be chosen in such a way that

|u(−Tε)|
D(A

1+β
2 )

< η,
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where we choose η > 0 as in Lemma 6.3, corresponding to T = 1 and ε
3 . Then by

Lemma 6.3, we can find w ∈ W 1,2(−Tε − 1,−Tε; D(A1+ β
2 ), D(A

β
2 )) such that

Sδ−Tε−1,−Tε
(w) <

ε

3
, w(−Tε − 1) = 0, w(−Tε) = u(−Tε).

Next, we define

ū(t) :=
{
u(t), if t ∈ [−Tε, 0],
w(t), if t ∈ [−Tε − 1,−Tε]. (6.12)

Obviously, ū(0) = φ and ū ∈ C([−Tε − 1, 0];H) and, arguing as before (and hence

using for instance [5]), we infer that ū ∈ W 1,2(−Tε−1, 0; D(A1+ β
2 ), D(A

β
2 )). More-

over,

Sδ−T (ū) = Sδ−Tε−1,−Tε
(w)+ Sδ−Tε

(u)

<
ε

3
+ [Sδ−∞(u)− Sδ−∞,−Tε

(u)
]

<
ε

3
+ Sδ−∞(u).

This concludes the proof of Lemma 6.4. ��
Next, we prove that both U and U δ have compact level sets.

Proposition 6.5 For any r > 0 and δ ∈ (0, 1], the sets

Kr = {φ ∈ H : U (φ) ≤ r}, K δ
r = {φ ∈ H : Uδ(φ) ≤ r}

are compact in H. In particular, both U and U δ are lower semi-continuous in H.

Proof Let {φn} be a sequence in Kr . In view of identity (6.5), for any n ∈ N there
exists un ∈ Xφn such that

S−∞(un) = U (φn) ≤ r.

In particular,

{un} ⊂ {S−∞ ≤ r},

so that, thanks to the compactness of the level sets of S−∞ proved in Proposition 5.5,
we can find a subsequence {unk } ⊂ {un} and ū ∈ C((−∞, 0];H) such that

lim
k→∞ unk = ū, in C((−∞, 0];H).

This implies that

lim
k→∞ unk (0) = ū(0),

and, due to the lower semi-continuity of S−∞ proved in Proposition 5.4,
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S−∞(ū) ≤ lim inf
k→∞ S−∞(unk ) ≤ r.

On the other hand, by the definition ofU ,U (ū(0)) ≤ S−∞(ū). Hence we can conclude
that ū(0) ∈ Kr , and the compactness of Kr follows.

The compactness of the level sets of Uδ can be proved analogously. ��

Weconclude this section by studying the continuity ofU inV and ofUδ in D(A
1+β
2 ).

Proposition 6.6 The maps U : V → R and Uδ : D(A
1+β
2 ) → R are continuous.

Proof In the previous proposition we have seen thatU is lower semi-continuous in H.
In particular, it is lower semi-continuous in V. Thus, is we prove that U is also upper
semi-continuous in V, we can conclude that it is continuous on V.

Let {φn}n∈N be a sequence in V converging to some φ in V. As φ ∈ V, according
to Proposition 6.1 and Theorem 6.2, there exists u ∈ Xφ ∩ W 1,2(−∞, 0) such that
U (φ) = S−∞(u). Now, we define

un(t) = u(t)+ etA(φn − φ), t ≤ 0.

Clearly un(0) = φn . Then, as φn−φ ∈ V, we have that un ∈ Xφn ∩W 1,2(−∞, 0).
Moreover, asφn converges toφ inV andV = (H, D(A)) 1

2 ,2,we infer that un converges

to u in W 1,2(−∞, 0), so that

lim
n→∞ S−∞(un) = S−∞(u).

This allows to conclude that

U (φ) = S−∞(u) = lim
n→∞ S−∞(un) ≥ lim sup

n→∞
U (φn),

so that upper semi-continuity follows.

The proof of the continuity of the map Uδ : D(A
1+β
2 ) → R is analogous. ��

7 Stochastic Navier Stokes equations with periodic boundary conditions

All what we have discussed throughout the paper until now applies to the case when
the Dirichlet boundary conditions are replaced by the periodic boundary conditions. In
the latter case, it is customary to study our problem in the 2-dimensional torus T2 (of
fixed dimensions L×L), instead of a regular bounded domainO. All themathematical
background can be found in the small book [39] by Temam. In particular, the space H
is equal to

H∞ = {u ∈ L2
0(T

2,R2) : div (u) = 0 and γν(u)|� j+2 = −γν(u)|� j , j = 1, 2},
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where L2
0(T

2,R2) is the Hilbert space consisting of those u ∈ L2(T2,R2) which
satisfy

∫
T2 u(x) dx = 0 and � j , j = 1, . . . , 4 are the four (not disjoint) parts of the

boundary of ∂(T2) defined by

� j = {x = (x1, x2) ∈ [0, L]2 : x j = 0},
� j+2 = {x = (x1, x2) ∈ [0, L]2 : x j = L}, j = 1, 2.

The Stokes operator A can be defined in a natural way and it satisfies all the properties
known in the bounded domain case, inclusive the positivity property (2.11) (with
λ1 = 4π2

L2 ) and the following property involving the nonlinear term B

〈Au, B(u, u)〉H = 0, u ∈ D(A), (7.1)

see [39, Lemma 3.1] for a proof. The Leray-Helmholtz projection operator P has the
following explicit formula using the Fourier series, see [39, (2.13)]

[P( f )]k= L2

4π2

(
fk − (k · fk) fk

|k|2
)

, k ∈ Z
2\{0}, f =

∑
n∈Z2\{0}

fne
2π in·x

L ∈ L2
0(T

2,R2).

It follows from the above that P is a bounded linear map from D(Aα) to itself for
every α ≥ 0, compare with Proposition 2.1 in the bounded domain case.

In the next Theorem we will show that, in this case, an explicit representation of
U (x) can be given, for any x ∈ V.

Theorem 7.1 Assume that periodic boundary conditions hold. Then

U (φ) =
{
|φ|2V, φ ∈ V,

+∞, φ ∈ H\V.

Proof By Theorem 6.2, we have that

U (φ) = min
{
S−∞(u) : u ∈ Xφ

}
, φ ∈ V,

and by Proposition 6.1 we have that U (φ) < ∞ if and only if φ ∈ V. Now, let us fix
φ ∈ V and u ∈ Xφ such that S−∞(u) < ∞. In view of Proposition 10.1, we have
that

u ∈ C((−∞, 0];V) ∩ L2(−∞, 0; D(A)), u′ ∈ L2(−∞, 0;H)

and
lim

t→−∞ |u(t)|V = 0. (7.2)

We have

|u′(t)+ Au(t)+ B(u(t), u(t))|2H = |u′(t)− Au(t)+ B(u(t), u(t))|2H
+ 4|Au(t)|2H + 4

〈
u′(t)− Au(t)+ B(u(t), u(t)),Au(t)

〉
H .
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Then, thanks to (7.1) we get

|u′(t)+Au(t)+B(u(t), u(t))|2H=|u′(t)−Au(t)+B(u(t), u(t))|2H+4
〈
u′(t),Au(t)

〉
H .

According to (7.2), this means that

S−∞(u) = 1

2

∫ 0

−∞
|u′(t)− Au(t)+ B(u(t), u(t))|2H dt +

∫ 0

−∞
d

dt
|u(t)|2V dt

= 1

2

∫ 0

−∞
|u′(t)− Au(t)+ B(u(t), u(t))|2H dt + |u(0)|2V.

In particular,

U (φ) ≥ |φ|2V.

On the other hand, if we show that for any φ ∈ V there exists ū ∈ W 1,2(−∞, 0)∩Xφ

such that ū′(t) − Aū(t) + B(ū(t), ū(t)) = 0, for t ∈ (−∞, 0), we conclude that
U (φ) = |φ|2V.

As we have seen in Sect. 2, if φ ∈ V then the problem

{
v′(t)+ Av(t)− B(v(t), v(t)) = 0, t > 0,
v(0) = φ,

admits a unique solution v ∈ L2(0,+∞; D(A)) ∩ C([0,+∞);V), with v′ ∈
L2(0,+∞;H), with

lim
t→∞ |v(t)|2V = 0.

This means that if we define

ū(t) = v(−t), t ≤ 0,

we can conclude our proof, as ū ∈ W 1,2(−∞, 0) ∩ Xφ and ū′(t) − Aū(t) +
B(ū(t), ū(t)) = 0. ��

We have alreadymentioned in the Introduction that a finite dimensional counterpart
of Theorem (7.1) was first derived in Theorem IV.3.1 in the monograph [20]. It has
later been discussed in Example B.2 for finite dimensional Landau–Lifshitz–Gilbert
equations by Kohn et al. [27].

8 Convergence of Uδ to U

Our aim in this section is to prove Theorem 8.3, that is

lim
δ→0

Uδ(φ) = U (φ), φ ∈ D
(
A

β+1
2

)
.
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For this purpose, we introduce an auxiliary functional S̃−∞ : Xφ → [0,∞], where
φ ∈ D(A

β+1
2 ) is fixed, by the formula

S̃−∞(v) :=
{
S−∞(v), if v ∈ Xφ ∩W 1,2

(−∞, 0; D(A
β
2+1), D(A

β
2 )
)
,

+∞, if v ∈ Xφ\W 1,2
(−∞, 0; D(A

β
2+1), D(A

β
2 )
)
.

(8.1)

Lemma 8.1 Under Assumption 5.1, if φ ∈ H, then

� − lim
δ→0

Sδ−∞ = sc− S̃−∞ in Xφ. (8.2)

Proof According to Proposition 4.7, the proof of (8.2) follows, once we show that for
any u ∈ Xφ the function

(0, 1] � δ �→ Sδ−∞(u)

is decreasing and
lim
δ→0

Sδ−∞(u) = S̃−∞(u), u ∈ Xφ. (8.3)

Let us fix a function u ∈ Xφ . In view of Assumption 5.1, for each y ∈ D(A
β
2 ), the

function (0, 1] � δ �→ |Q−1
δ y|2H ∈ R is decreasing. This implies that for any fixed u

the mapping (0, 1] � δ �→ Sδ−∞(u) is decreasing.

We notice that if u ∈ Xφ\W 1,2
( − ∞, 0; D(A

β
2+1), D(A

β
2 )
)
, then for any δ ∈

(0, 1)

Sδ−∞(u) = S̃−∞(u) = +∞,

so that (8.3) follows. On the other end, if u ∈ Xφ∩W 1,2
(−∞, 0; D(A

β
2+1), D(A

β
2 )
)
,

then we have

S̃−∞(u) = S−∞(u) = 1

2

∫ 0

−∞
|H(u)(t)|2H dt.

Thus, since Sδ−∞(u) = 1
2

∫ 0
−∞ |Q−1

δ H(u)(t)|2H dt , by the Lebesgue dominated conver-
gence theorem we obtain (8.3), once we have observed that according to Assumption

5.1, for all y ∈ D(A
β
2 ), Q−1

δ y → y, as δ ↘ 0, and |Q−1
δ y|H ≤ |Q−1

1 y|H. ��
Lemma 8.2 If φ ∈ V, then

sc− S̃−∞(u) = S−∞(u), u ∈ Xφ. (8.4)

Proof In view of Proposition 4.5, we get (8.4) if we show that for every sequence{
un
}
n ⊂ Xφ convergent to u in Xφ

S−∞(u) ≤ lim inf
n

S̃−∞(un), (8.5)
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and for some sequence
{
un
}
n ⊂ Xφ convergent to u in Xφ

S−∞(u) ≥ lim sup
n

S̃−∞(un). (8.6)

It is immediate to check that (8.5) follows from the lower semi-continuiuty of S−∞
and the definition of S̃−∞. Thus, let us prove (8.6). We are going to prove that there

exists a sequence {un} in Xφ ∩W 1,2
(−∞, 0; D(A

β
2+1), D(A

β
2 )
)
such that

lim
n→∞ sup

t∈(−∞,0]
|un(t)− u(t)|H = 0, (8.7)

and
S−∞(u) ≥ lim sup

n→∞
S̃−∞(un). (8.8)

To this purpose, we can assume that S−∞(u) < ∞. Then, according to Proposi-
tion 10.1, u ∈ Xφ ∩W 1,2

(−∞, 0
)
and φ = u(0) ∈ V. Since

W 1,2(−∞, 0
)

↪→ Cb((−∞, 0],H),

it is enough to find a sequence {un} in Xφ ∩W 1,2
(−∞, 0; D(A

β
2+1), D(A

β
2 )
)
satis-

fying (8.8) and, instead of (8.7), the following stronger condition

lim
n→∞ |un − u|W 1,2(−∞,0) = 0. (8.9)

Actually, if we find a sequence
{
un
} ⊂ Xφ ∩ W 1,2

( − ∞, 0; D(A
β
2+1), D(A

β
2 )
)

satisfying (8.9), then in view of (8.1), S̃−∞(un) = S−∞(un) for every n. Therefore, in
view of (8.9), we obtain (8.8), as S−∞ is a continuous functional onW 1,2(−∞, 0). Let
us finally observe that the existence of the required sequence is just a consequence of

the density of the spaceXφ∩W 1,2(−∞, 0; D(A
1+β
2 ), D(A

β
2 )) inXφ∩W 1,2(−∞, 0).

��
Thus we can conclude with the following result.

Theorem 8.3 Under Assumption 5.1, we have

lim
δ→0

Uδ(φ) = U (φ), φ ∈ D(A
β+1
2 ). (8.10)

Proof Let us fix φ ∈ D(A
β+1
2 ). In view of Theorem 6.2

U (φ) = min
{
S−∞(u) : u ∈ Xφ

}
.

and for any δ ∈ (0, 1]

Uδ(φ) = min
{
Sδ−∞(u) : u ∈ Xφ

}
.
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Thus, thanks to Theorem 4.8, our result is proved since we have shown that for any

φ ∈ D(A
β+1
2 ) the family {Sδ−∞}δ∈ (0,1] is equi-coercive in Xφ and, as a consequence

of Lemmas 8.1 and 8.2,

� − lim
δ→0

Sδ−∞ = S−∞, in Xφ. (8.11)

��

9 An application to the exit problem

A domain D ⊂ H is said to be invariant and attracted to the asymptotically stable
equilibrium 0 of the deterministic Navier-Stokes equations (3.1), i.e.

u′(t)+ Au(t)+ B(u(t), u(t)) = 0, u(0) = φ, (9.1)

if, for any φ ∈ D, the solution uφ(t) to (9.1) remains in D, for every t ≥ 0, and

lim
t→∞ |uφ(t)|H = 0.

It is well known that, as the solution uφ satisfies inequality (3.2) by the Poincaré
inequality (2.11), every ball in H is invariant and attracted to 0.

Throughout this section, we will assume the following conditions on D.

Assumption 9.1 The set D ⊂ H is bounded, open, connected, contains 0, is invariant

and attracted to 0. Moreover, for any φ ∈ ∂D ∩ D(A
1+β
2 ) there exists a sequence

{φn} ⊂ (H\D̄) ∩ D(A
1+β
2 ) such that

lim
n→∞ |φn − φ|

D(A
1+β
2 )

= 0.

Remark 9.2 If for every φ ∈ ∂D∩D(A
1+β
2 ) there exists y ∈ (H\D̄)∩D(A

1+β
2 ) such

that

{tφ + (1− t)y : t ∈ [0, 1)} ⊂ H\D̄,

then Assumption 9.1 is clearly satisfied. Such a property is true if, for example, D is
convex.

Lemma 9.3 For any δ ∈ (0, 1], there exists yδ ∈ ∂D such that

inf
y∈ ∂D

Uδ(y) = Uδ(yδ). (9.2)

Proof First we will show that

inf
φ∈∂D

Uδ(φ) < ∞. (9.3)
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Since H\D̄ is an open subset of H and the space D(A
1+β
2 ) is dense in H, there

exists φ̃ ∈ (H\D̄) ∩ D(A
1+β
2 ). Since 0 ∈ D, and the path t �→ t φ̃ is continuous,

there exists t0 ∈ (0, 1) such that t0φ̃ ∈ ∂D. Clearly, t0φ̃ ∈ D(A
1+β
2 ), so that, as

∂D ∩ D(A
1+β
2 ) �= ∅, according to Proposition 6.1, property (9.3) follows.

Due to the compactness of the level sets of the functionals Uδ , we infer that there

exists yδ ∈ ∂D ∩ D(A
1+β
2 ) such that (9.2) holds. ��

Now, for any φ ∈ D, ε > 0 and δ ∈ (0, 1], we will denote by τ
ε,δ
φ the exit time of

the solution uε,δ
φ of Eq. (5.1) from the domain D, that is

τ
ε,δ
φ = inf

{
t ≥ 0 : uε,δ

φ (t) ∈ ∂D
}

.

Our purpose here is to prove the following exponential estimate for the expectation
of τ

ε,δ
φ in terms of the infimum of Uδ on the boundary of D.

Theorem 9.4 For any δ ∈ (0, 1] and φ ∈ D

lim
ε→0

ε log E τ
ε,δ
φ = min

y∈ ∂D
Uδ(y).

Aswe already pointed out in [11, Section 7], the proof of the previous result is based
on the few lemmas below, whose proofs are postponed till Appendix 11. Actually, the
arguments used in the finite dimensional setting (see [19, proof of Theorem 5.7.11]
and [20, proof of Theorem 4.1]), can be adapted to this infinite dimensional case, once
the following preliminary results are proven.

Lemma 9.5 For any η > 0 and μ > 0, there exist T0 = T0(η, μ) > 0 and h =
h(η) > 0 such that for all φ ∈ B0(μ) there exist T ≤ T0 and v ∈ C([0, T ];H), with
v(0) = φ, such that

dH(v(T ), D̄) = h (9.4)

and
Sδ
0,T (v) ≤ inf

y∈ ∂D
Uδ(y)+ η. (9.5)

Lemma 9.6 There exists μ0 > 0 such that for any η > 0 and μ ∈ (0, μ0]

lim
ε→0

ε log

(
inf

φ∈ B0(μ)
P

(
τ

ε,δ
φ ≤ T

))
> −

(
inf

y∈ ∂D
Uδ(y)+ η

)
,

for some T = T (η, μ) > 0.

Lemma 9.7 For any μ > 0 such that B0(μ) ⊂ D,

lim
t→+∞ lim inf

ε→0
ε log

(
sup
φ∈ D

P

(
σ

ε,δ,μ
φ > t

))
= −∞,
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where

σ
ε,δ,μ
φ := inf

{
t ≥ 0 ; uε,δ

φ (t) ∈ B0(μ) ∪ ∂D
}

.

Moreover,

lim
ε→0

P

(
uε,δ

φ (σ
ε,δ,μ
φ ) ∈ B0(μ)

)
= 1.

Lemma 9.8 For any closed set N ⊂ ∂D,

lim
μ→0

lim sup
ε→0

ε log

(
sup

φ∈ B0(3μ)

P

(
uε,δ

φ (σ
ε,δ,μ
φ ) ∈ N

))
≤ − inf

φ∈ N
Uδ(φ). (9.6)

Lemma 9.9 For every λ > 0 and μ > 0 such that B0(μ) ⊂ D, there exists T =
T (μ, λ) < ∞ such that

lim sup
ε→0

ε log

(
sup

φ∈ B0(μ)

P

(
sup

t∈ [0,T ]
|uε,δ

φ (t)− φ|H ≥ 3μ

))
< −λ.

Next, by proceeding as in the proof of [11, Theorem 7.7]) we can conclude that the
following approximation result holds.

Theorem 9.10 Suppose that Assumption 5.1 is satisfied. If for any φ ∈ V∩ ∂D there

exists a sequence {φn} ⊂ D(A
1+β
2 ) ∩ ∂D such that

lim
n→∞ |φn − φ|V = 0, (9.7)

then
lim
δ→0

inf
φ∈ ∂D

Uδ(φ) = inf
φ∈ ∂D

U (φ). (9.8)

Sketch of the Proof Limit (9.8) follows from Theorem 6.2 and (9.7) in virtue of a
general argument based on �-convergence and relaxation, which applies to more
general situations, and which has been introduced in [11]. Actually, we define

Ũ (φ) =
{
U (φ), φ ∈ �β,

+∞, φ ∈ H\�β,

and for any δ ∈ (0, 1]

Ũδ(φ) =
{
Uδ(φ), φ ∈ �β,

+∞, φ ∈ H\�β,

where �β = D(A
1+β
2 ) ∩ ∂D. One can prove that
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� − lim
δ→0

Ũδ = sc−Ũ , in H,

and then, by using (9.7) and the continuity of U in the space V proved in Proposition
6.6, one can show that

sc−Ũ (φ) =
{
U (φ), φ ∈ ∂D,

+∞, φ ∈ H\∂D.

This implies (9.8). ��
In view of Theorems 9.4 and 9.10, we obtain the following result.

Corollary 9.11 Under the same assumptions of Theorem 9.10, we have

lim
δ→0

lim
ε→0

ε logE τ
ε,δ
φ = inf

φ∈ ∂D
U (φ).

Informally, this means that for 0 < ε << δ << 1, the following asymptotic
formula holds

E τ
ε,δ
φ ∼ exp

(
1

ε
inf

φ∈ ∂D
U (φ)

)
.

Remark 4 As in [11, Remark 7.8], we notice that if we take D = B0(r), for r > 0,

then condition (9.7) assumed in Theorem 9.10 is fulfilled. Actually, as D(A
1+β
2 ) is

dense in V, we can find a sequence {φ̂n} ⊂ D(A
1+β
2 ) which is convergent to φ in V.

Then, if we set φn = r φ̂n/|φ̂n|H, we conclude that {φn} ⊂ D(A
1+β
2 ) ∩ ∂D and (9.7)

holds.
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10 Appendix A: Proofs of some auxiliary results

Proposition 10.1 Assume that z ∈ X is such that S−∞(z) < ∞. Then, z(0) ∈ V ,

lim
t→−∞ |z(t)|V = 0, (10.1)

and z ∈ W 1,2(−∞, 0), i.e.

∫ 0

−∞
|Az(t)|2H dt +

∫ 0

−∞
|z′(t)|2H dt < ∞. (10.2)
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Moreover, there exists a continuous and strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and, if z ∈ X is a solution to the problem

z′(t)+ Az(t)+ B(z(t), z(t)) = f (t), t ≤ 0,

with f being an element of L2(−∞, 0, H), then z ∈ W 1,2(−∞, 0), z(0) ∈ V and

|z(0)|2V + |z|2W 1,2(−∞,0) ≤ ϕ

(∫ 0

−∞
| f (t)|2H dt

)
.

Proof The argument below is a bit informal but it can easily be made fully rigorous.
Wewill be careful with the constants aswewant to prove the last part of the Proposition
as well.

We have that z(0) ∈ V , as a consquence of Lemma 3.8. Next, we will prove (10.1).
In view of Lemma 3.8, we can assume that z ∈ W 1,2

loc (−∞, 0). Since S−∞(z) < ∞,
if we set

f (t) = z′(t)+ Az(t)+ B(z(t), z(t)), t ≤ 0, (10.3)

we have that f ∈ L2(−∞, 0; H). If we multiply Eq. (10.3) by z and use equality
(2.16), we get

1

2

d

dt
|z(t)|2H + |z(t)|2V = ( f, z)H ≤ 1

2
|z(t)|2V +

1

2λ1
| f (t)|2H, t < 0, (10.4)

where λ1 is the Poincaré constant of the domain O. Hence,

|z(t)|2H +
∫ t

s
|z(r)|2V dr ≤ |z(s)|2H +

1

λ1

∫ t

s
| f (r)|2Hdr, −∞ < s ≤ t ≤ 0.

As

lim
s→−∞ |z(s)|H = 0,

we infer that

|z(t)|2H +
∫ t

−∞
|z(s)|2V ds ≤ 1

λ1

∫ t

−∞
| f (r)|2Hdr, −∞ < t ≤ 0.

This implies that

|z(t)|2H ≤ 1

λ1

∫ t

−∞
| f (r)|2H dr ≤ 1

λ1

∫ 0

−∞
| f (r)|2Hdr, t ≤ 0, (10.5)

and ∫ 0

−∞
|z(s)|2Vds ≤

1

λ1

∫ 0

−∞
| f (r)|2Hdr. (10.6)
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The last inequality means that z ∈ L2((−∞, 0],V), what implies that we can find a
decreasing sequence {sn} such that sn ↘ −∞ and

lim
n→∞ |z(sn)|V = 0. (10.7)

Next wemultiply Eq. (10.3) by Az(t). Thanks to (2.15) and to the Young inequality,
we get

1

2

d

dt
|z(t)|2V + |Az(t)|2H = −(B(z(t), z(t)), Az(t))H + ( f (t),Az(t))H (10.8)

≤ 1

4
|Az(t)|2H +

C2

2
|z(t)|2H|z(t)|4V +

1

4
|Az(t)|2H + | f (t)|2H.

where C2 = 54
4 C

2 and C is the constant from inequality (2.15) .
Applying next the Poincaré inequality (2.1) we get,

d

dt
|z(t)|2V + λ1|z(t)|2V ≤ C2

[|z(t)|2H|z(t)|2V]|z(t)|2V + 2| f (t)|2H. (10.9)

Hence, since λ1 ≥ 0, we have

d

dt
|z(t)|2V ≤ C2

[|z(t)|2H|z(t)|2H]|z(t)|2V + 2| f (t)|2H, (10.10)

and so, by the Gronwall Lemma, for any −∞ < s ≤ t ≤ 0 we get

|z(t)|2V ≤ |z(s)|2V exp

(
C2

∫ t

s
|z(r)|2H|z(r)|2V dr

)

+2
∫ t

s
| f (r)|2H exp

(
C2

∫ t

r
|z(ρ)|2H|z(ρ)|2V dρ

)
dr. (10.11)

Using the above inequality with s = sn from (10.7) and then taking the limit as
n →∞, we infer that

|z(t)|2V≤2
∫ t

−∞
| f (r)|2H exp

(
C2

∫ t

r
|z(ρ)|2H|z(ρ)|2V dρ

)
dr, t≤0. (10.12)

Of course, for the above to be correct we need to show that the sequence

{∫ t

sn
|z(r)|2H|z(r)|2V dr

}
n≥1

is bounded from above. But in view of estimates (10.5) and (10.6) we have

∫ 0

−∞
|z(ρ)|2H|z(ρ)|2V dρ ≤ 1

λ21
| f |4L2(−∞,0,H)

< ∞. (10.13)
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Therefore, since

∫ t

r
|z(ρ)|2H|z(ρ)|2V dρ ≤

∫ 0

−∞
|z(ρ)|2H|z(ρ)|2V dρ, −∞ < r ≤ t ≤ 0,

we can conclude that

sup
t≤0

|z(t)|2V ≤ 2 exp

(
C2

λ21
| f |4

)
sup
t≤0

∫ t

−∞
| f (r)|2H dr ≤ 2 exp

(
C2

λ21
| f |4

)
| f |2

(10.14)
(here, for the sake of brevity, we denote | f |L2(−∞,0;H) = | f |).

Moreover, as

∫ 0

−∞
| f (r)|2H exp

(
C2

∫ t

r
|z(ρ)|2H|z(ρ)|2V dρ

)
dr < ∞,

we have that

lim
t→−∞

∫ t

−∞
| f (r)|2H exp

(
C2

∫ t

r
|z(ρ)|2H|z(ρ)|2V dρ

)
dr = 0,

so that from (10.12) we conclude that (10.1) holds.
Now, to prove that z ∈ W 1,2(−∞, 0), we observe that from (10.8) we also have

|z(0)|2V +
∫ 0

−∞
|Az(t)|2H dt ≤ C2

∫ 0

−∞
[|z(t)|2H|z(t)|2V]|z(t)|2V dt + 2

∫ 0

−∞
| f (t)|2H dt,

where we have used (10.1). Since by (10.5) and (10.14),

sup
t∈(−∞,0]

|z(t)|2H|z(t)|2V ≤ 2

λ1
exp

(
C2

λ21
| f |4

)
| f |4 < ∞,

we infer that

|z(0)|2V+
∫ 0

−∞
|Az(t)|2H dt≤ 2C2

λ1
exp

(
C2

λ21
| f |4

)
| f |4

∫ 0

−∞
|z(t)|2V dt+2

∫ 0

−∞
| f (t)|2H dt.

(10.15)
Hence, in view of (10.6), we infer that

|z(0)|2V +
∫ 0

−∞
|Az(t)|2H dt ≤ 2C2

λ21
exp

(
C2

λ21
| f |4

)
| f |6 + 2| f |2, (10.16)

and this concludes the proof of the first part of (10.2).
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In order to prove the second part of (10.2), it is enough to show that

∫ 0

−∞
|B(z(t), z(t))|2H dt < ∞.

Indeed, by the Minkowski inequality we have

|z′|L2(−∞,0;H) ≤ |Az|L2(−∞,0;H) + |B(z, z)|L2(−∞,0;H) + | f |L2(−∞,0;H). (10.17)

According to inequalities (10.5), (10.12) and (10.16) and to inequality (2.15), we have

∫ 0

−∞
|B(z(t), z(t))|2H dt ≤ C

∫ 0

−∞
|z(t)|H|z(t)|2V|Az(t)|H dt ≤ C sup

t≤0
|z(t)|H|z(t)|V

×
(∫ 0

−∞
|z(t)|2V dt

) 1
2
(∫ 0

−∞
|Az(t)|2H dt

) 1
2

≤ 2

λ1
exp

(
C2

λ21
| f |4

)
| f |4 1√

λ1
| f |

×
(
2C2

λ21
exp

(
C2

λ21
| f |4

)
| f |6+2| f |2

) 1
2

< ∞. (10.18)

The final statement follows from inequalities (10.16), (10.17) and (10.18). ��
Remark 5 (1) Our proof of Proposition 10.1 has been inspired by [9].
(2) Roughly speaking, the above result says that the following two equalities hold

{z ∈ X : S−∞(z) < ∞} = X ∩W 1,2(−∞, 0)

and

{z ∈ X : u(0) = φ and S−∞(z) < ∞} = Xφ ∩W 1,2(−∞, 0), φ ∈ V.

The next result generalizes Proposition 10.1 to Sδ−∞.

Proposition 10.2 Assume that α ∈ (0, 1/2) and z ∈ X is such that

∫ 0

−∞
|H(z)(t)|2

D
(
A

α
2
)dt < +∞

Let f ∈ L2((−∞, 0]; D(A
α
2 ) be defined as

z′(t)+ Az(t)+ B(z(t), z(t)) = f (t), t ≤ 0. (10.19)

Then z(0) ∈ D(A
α+1
2 ),

lim
t→−∞ |z(t)|

D(A
α+1
2 )

= 0, (10.20)
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and z ∈ W 1,2
(−∞, 0; D(A1+ α

2 ), D(A
α
2 )
)
, i.e.

∫ 0

−∞
|A α

2+1z(t)|2H dt +
∫ 0

−∞
|A α+1

2 z′(t)|2H dt < ∞. (10.21)

Moreover, there exists a continuous and strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and if z ∈ X is a solution to the problem

z′(t)+ Az(t)+ B(z(t), z(t)) = f (t), t ≤ 0,

with f being an element of L2(−∞, 0; D(A
α
2 )), then z ∈ W 1,2

(−∞, 0; D(A
α
2+1),

D(A
α
2 )
)
, z(0) ∈ D(A

α+1
2 ) and

|z(0)|2
D(A

α+1
2 )

+ |z|2
W 1,2(−∞,0;D(A

α
2 +1

),D(A
α
2 ))

≤ ϕ
(
| f |2L2(−∞,0)

)
.

Proof Following the methods from the proof of Proposition 10.1, it is sufficient to
prove the first part of Proposition 10.2.

Let us fix α ∈ (0, 1/2), φ ∈ D(A
1+α
2 ) and z ∈ Xφ such that Sδ−∞(z) < ∞. Let

us define f ∈ L2(−∞, 0; D(A
α
2 )) by (10.19). Since the assumptions of the present

proposition are stronger than the assumptions of Proposition 10.1, we can freely use
the results from the proof of the latter.

So, firstly, let us notice that by inequality (10.15) we can find a decreasing sequence
{sn} such that sn ↓ −∞ and

lim
n→∞ |A1+α

2 z(sn)|H = 0. (10.22)

Arguing as in the proof of Proposition 3.3, if we calculate the derivative of |A α+1
2 u(t)|2H

and use inequality (2.20), with s = 2, to get the following generalisation of (10.8)

1

2

d

dt
|A1+α

2 z(t)|2H + |A α
2+1z(t)|2H = −(B(z(t), z(t)),Aα+1z(t))H

+( f (t),Aα+1z(t))H ≤ 1

2
|A α

2+1z(t)|2H
+C |Az(t)|2H|A

α
2+1z(t)|2 + C |A α

2 f (t)|2H.

(10.23)

Let us note that contrary to (10.8), the highest power of z on the RHS of (10.23) is 4.
Hence, we infer that

d

dt
|A1+α

2 z(t)|2H + |A α
2+1z(t)|2H ≤ C |Az(t)|2H|A

1+α
2 z(t)|2H + 2|A α

2 f (t)|2H. (10.24)

Therefore, by the Gronwall Lemma, for any −∞ < s ≤ t ≤ 0 we get
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|A1+α
2 z(t)|2H ≤ |A1+α

2 z(s)|H exp

(
C
∫ t

s
|Az(r)|2H dr

)

+2
∫ t

s
|A α

2 f (r)|2H exp

(
C
∫ t

r
|Az(ρ)|2H dρ

)
dr. (10.25)

Using the above with s = sn from (10.22) and then taking the limit as n → ∞, we
infer that

|A1+α
2 z(t)|2H ≤ 2

∫ t

−∞
|A α

2 f (r)|2H exp

(
C
∫ t

r
|Az(ρ)|2H dρ

)
dr, t ≤ 0. (10.26)

As in the proof of the previous Proposition 10.1 the above is true because now by
inequality (10.16) the sequence

{∫ t

sn
|Az(r)|2H dr

}
n≥1

is bounded from above by 2C2
λ21

exp

(
C2
λ21
| f |4

)
| f |6 + 2| f |2, where | f | denotes

| f |L2(−∞,0;H). Therefore, we can conclude that

sup
t≤0

|A1+α
2 z(t)| ≤ 2

∫ 0

−∞
|A α

2 f (r)|2H dr exp

(
C
2C2

λ21
exp

(
C2

λ21
| f |4

)
| f |6 + 2| f |2

)
.

(10.27)
Moreover, as

∫ 0

−∞
|A α

2 f (r)|2H exp

(
C
∫ t

r
|Az(ρ)|2H dρ

)
dr < ∞,

we have that

lim
t→−∞

∫ t

−∞
|A α

2 f (r)|2H exp

(
C
∫ t

r
|Az(ρ)|2H dρ

)
dr = 0.

Hence (10.20) follows from (10.26).
Now, to prove the second part of Proposition 10.2, i.e. the first inequality in (10.20),

we observe that from (10.24) we also have

|A α+1
2 z(0)|2H +

∫ 0

−∞
|A α+2

2 z(t)|2H dt ≤ C
∫ 0

−∞
|Az(t)|2H|A

α+1
2 z(t)|2H dt

+2
∫ 0

−∞
|A α

2 f (t)|2H dt.
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Taking into account inequalities (10.27) and (10.16) we infer that

|A α+1
2 z(0)|2H +

∫ 0

−∞
|A α+2

2 z(t)|2H dt ≤ C

(
2C2

λ21
exp

(
C2

λ21
| f |4

)
| f |6 + 2| f |2

)

(∫ 0

−∞
|A α

2 f (r)|2H dr exp

(
C
2C2

λ21
exp

(
C2

λ21
| f |4

)
| f |6 + 2| f |2

))

+2
∫ 0

−∞
|A α

2 f (t)|2H dt, (10.28)

and this concludes the proof of the first part of inequality (10.20).
As in the proof of the previous Proposition, in order to prove the third part of

Proposition 10.2, i.e. the second inequality in (10.20), it is enough to show that

∫ 0

−∞
|A α

2 B(z(t), z(t))|2H dt < ∞.

According to inequalities (2.20) (with s = 2), (10.16) and (10.27) we have

∫ 0

−∞
|A α

2 B(z(t), z(t))|2H dt ≤ C
∫ 0

−∞
|Az(t)|2H|A

α+1
2 z(t)|2H dt

≤ C sup
t≤0

|A α+1
2 z(t)|2H

∫ 0

−∞
|Az(t)|2H dt ≤

(
4C C2

λ21
exp

(
C2

λ21
| f |4

)
| f |6 + 2| f |2

)

∫ 0

−∞
|A α

2 f (r)|2H exp

(
C
2C2

λ21
exp

(
C2

λ21
| f |4

)
| f |6 + 2| f |2

)
. (10.29)

The proof is now complete. ��

Proposition 10.3 Assume that T ∈ R ∪ {+∞}. If z belongs to W 1,2(−∞, T ) then

lim
t→−∞ |z(t)|V = 0.

Proof In view of [29, Theorem 2.2, p. 13] it is enough to consider the case T = +∞.
So let us take z ∈ W 1,2(−∞,∞) Then, since V = [D(A),H]1/2, according to [29,
Theorem 3.1, p. 19], z : R→ V is a bounded and continuous function. Moreover, by
[29, (2.27), p. 16]

lim
t→±∞ |u(t)||H = 0.

Hence the result follows by applying (10.1). ��
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11 Appendix B: Proofs of Lemmas in Sect. 9

Proof of Lemma 9.5 Let us fix η > 0 and μ > 0. In view of Proposition 3.10, for any
κ > 0 there exists T (β, κ, μ) > 0 such that

uφ(t; 0) ∈ B β+1
2

(κ), if φ ∈ B0(μ) and t > T (β, κ, μ).

Thus, if we set T1 = T (β, κ, μ)+ 1 and

z1(t) = uφ(t; 0), t ∈ [0, T1],

we infer that z1(0) = φ, z1(T1) ∈ D(A
1+β
2 ) and

Sδ
T1(z1) = 0. (11.1)

Now, we define

z2(t) = (T1 + 1− t)e−(t−T1)Az1(T1), t ∈ [T1, T1 + 1].

We have z2(T1) = z1(T1) and z1(T1 + 1) = 0. Moreover,

H(z2)(t) = −e−(t−T1)Az1(T1)+ B(z2(t), z2(t)),

so that, according to Assumption 5.1,

Sδ
T1,T1+1(z2) ≤ c

∫ T1+1

T1

∣∣∣e−(t−T1)Az1(T1)
∣∣∣2
D(A

β
2 )

dt

+ c
∫ T1+1

T1
|B(z2(t), z2(t))|2

D(A
β
2 )

dt.

Now, thanks to (2.20), with s = 1+ β, we have

|B(z2(t), z2(t))|
D(A

β
2 )
≤
∣∣∣e−(t−T1)Az1(T1)

∣∣∣2
D(A

1+β
2 )

≤ c κ2,

so that

Sδ
T1,T1+1(z2) ≤ c κ2 + c κ4.

Therefore, we fix κ̄ > 0 small enough such that

Sδ
T1,T1+1(z2) ≤ c κ̄2 + c κ̄4 <

η

2
, (11.2)

and accordingly κ̄ we fix T1 = T (β, κ̄, μ).
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As we have seen in Lemma 9.3, there exists φδ ∈ ∂D ∩ D(A
1+β
2 ) such that

Uδ(φδ) = inf
φ∈ ∂D

Uδ(φ).

According to Assumption 9.1, we can find {φδ,n}n∈N ⊂ D
c ∩ D(A

1+β
2 ), such that

lim
n→∞ |φδ,n − φδ|

D(A
1+β
2 )

= 0. (11.3)

Thus, since the mapping Uδ : D(A
1+β
2 ) → [0,+∞) is continuous (see Proposi-

tion 6.6), we infer that

lim
n→∞Uδ(φδ,n) = Uδ(φδ).

Here we can find n̄ ∈ N such that

Uδ(φδ,n̄) < Uδ(φδ)+ η

4
,

T2 = T2(η) > 0 and z3 ∈ C([0, T2];H) such that z3(0) = 0, z3(T2) = φδ,n̄ and

Sδ
T2(z3) < Uδ(φδ,n̄)+ η

4
< Uδ(φδ)+ η

2
.

Therefore, if we define T := T1 + T2 + 1 and

vφ(t) =

⎧⎪⎨
⎪⎩
z1(t), t ∈ [0, T1],
z2(t), t ∈ [T1, T1 + 1],
z3(t − (T1 + 1)), t ∈ [T1 + 1, T ],

we get vφ ∈ C([0, T ;H), with vφ(0) = φ and vφ(T ) = φδ,n̄ and

Sδ
T (vφ) ≤ Uδ(φδ)+ η.

Moreover, let us observe that T only depends on μ and η. ��
Proof of Lemmas 9.6 and 9.7 The proofs of these two lemmas are analogous to the
proofs of [11, Lemmas 7.3, 7.4 and 7.5] and are based on the validity of a large
deviation principle for the 2-D Navier-Stokes equation perturbed by additive noise,
as proved in Theorem 5.3, which is uniform with respect to the initial condition φ

in a bounded set of H. The arguments used in [11] are an adaptation to an infinite
dimensional setting of the methods used in [19, Chapter 5]. ��
Proof of Lemma 9.8 Our proof follows a path analogous to the one followed in the
proof of Lemmas 9.5, 9.6 and 9.9 in [12]. We proceed here in three steps.
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Step 1. We will show that there exists a strictly increasing continuous function ϕ :
[0,∞) → [0,∞) such that for any φ ∈ H and f ∈ L2(0, T ;H) and for any T > 0,

|u f
φ − u f

0 |C([0,T ];H) ≤ ϕ
(| f |L2(0,T ;H)

) |φ|H, (11.4)

where u f
φ ∈ L2(0, T ;V), with (u f

φ )′ ∈ L2(0, T ;V′), is the solution of problem (3.1),
i.e.

u′(t)+ Au(t)+ B(u(t), u(t)) = f (t), u(0) = φ.

Proof Let us fix T > 0, φ ∈ H and f ∈ L2(0, T ;H), and denote v := u f
0 − u f

φ .
Then

v′(t)+ Av(t)+ B(v(t), u0f (t))+ B(u0f (t), v(t)) = 0, v(0) = −φ

and hence, by [41, Lemmata III.2.1 and III.3.2],

1

2

d

dt
|v(t)|2H + |v(t)|2V = −

〈
B(v(t), u0f (t)), v(t)

〉
H
≤ √

2 |u0f (t))|V |v(t)|H|v(t)|V

≤ 1

2
|v(t)|2V + |u0f (t))|2V |v(t)|2H. (11.5)

By the Gronwall Lemma, this implies that

|u f
φ (t)− u f

0 (t)|2H ≤ |φ|2H exp

(
2
∫ t

0
|u0f (s)|2V ds

)
, t ∈ [0, T ]. (11.6)

This, together with inequality (3.2), implies that

|u f
φ − u f

0 |C([0,T ];H) ≤ |φ|Hϕ
(| f |2L2(0,T ;V′)

)
. (11.7)

Step 2. Assume that C ⊂ H is a closed set and a real number β satisfies

β < inf
φ∈C

Uδ(φ). (11.8)

Then there exists a positive number ρ0 > 0 such that for every T > 0 and every
u ∈ C([0, T ];H), with |u(0)|H < ρ0 and Sδ

0,T (u) ≤ β,

distH(u(t),C) > ρ0, for every t ∈ [0, T ].

Proof By contradiction suppose our claim is not true. Then for every n ∈ N we can
find φn ∈ H, Tn > 0, T̂n ∈ [0, Tn] and fn ∈ L2(0, Tn;H) such that

|φn|H <
1

n
, | fn|2L2(0,Tn;H)

< 2β (11.9)
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and

dist(u fn
φn

(T̂n),C) ≤ 1

n
. (11.10)

Now, if we set φ̂n := u fn
0 (T̂n), then by (11.4) we have

|φ̂n − u fn
φn

(T̂n)|H ≤ ϕ
(| fn|L2(0,Tn;H)

) |φn|H,

so that, thanks to (11.9) and (11.10), we get

lim
n→∞ dist(φ̂n,C) ≤ lim

n→∞
[
ϕ
(√

2β
)
|φn|H + 1

n

]
= 0. (11.11)

Moreover,

Uδ(φ̂n) ≤ 1

2
| fn|2L2(0,Tn;H)

≤ β,

and then, by the compactness in H of the level sets of the functional Uδ , we infer that
there is a subsequence {φ̂nk } and an element φ̂ ∈ H such that φ̂nk → φ̂ in H and
Uδ(φ̂)≤β. On the other hand, C is a closed subset of H so by (11.11) we infer that
φ̂ ∈ C . This contradicts our assumption (11.8).
Step 3. Assume that N ⊂ ∂D is a closed set. Then (9.6) holds.
Proof Let us choose a real number β such that condition (11.8) holds. Let us also
choose a positive number μ > 0 such that B0(3μ) ⊂ D. For any T > 0, we have

P

(
uε,δ

φ (σ
ε,δ,μ
φ ) ∈ N

)
≤ P

(
σ

ε,δ,μ
φ > T

)
+ P

(
uε,δ

φ (t) ∈ N , for some t ∈ [0, T ]
)

.

(11.12)
According to Step 2 and to the fact that the large deviation principle proved in Theorem
5.3 is uniform with respect to initial conditions φ in bounded sets of H, for any μ > 0
such that B0(3μ) ⊂ D and any β < infx∈C Uδ(x), we can find ε1 > 0 such that for
every ε ∈ (0, ε1]

sup
φ∈ B0(3μ)

P

(
uε,δ

φ (t) ∈ N , for some t ∈ [0, T ]
)

(11.13)

≤ sup
φ∈ B0(3μ)

P

(
distC([0,T ];H)(u

ε,δ
φ , K δ

T (β)) > 3μ
)
≤ e−

β−γ
ε , (11.14)

where K δ
T (β) = {u ∈ C([0, T ];H) : Sδ

T (u) ≤ β}.
Moreover, in view of Lemma 9.7, there exist T > 0 and ε2 ≤ ε1 such that

sup
x∈ D

P

(
σ

ε,δ,μ
φ > T

)
≤ e−

β
ε , ε ≤ ε2.

Then, thanks to (11.12), we can conclude the proof of Step 3, due to the arbitrariness
of γ > 0 and condition (11.8). ��
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Proof of Lemma 9.9 Let us fix φ ∈ H and δ ∈ (0, 1]. For any ε > 0, let us now
denote by zε,δ the Ornstein-Uhlenbeck process defined by equation (5.4) and by uε,δ

φ

the solution to the stochastic Navier-Stokes equation (5.1). Thanks to [10, Theorem
1.2 ] (with ξ(t) being the γ -radonifying natural embedding operator from Qδ(H) to
H ∩ L4(O)) we infer that there exists a constant C > 0 such that for any R > 0 and
ε > 0

ε logP
(|zε,δ|C([0,T ];L4(O)) ≥ R

) ≤ − R2

CT
. (11.15)

Let us now fix μ > 0 and λ > 0. By the above inequality there exists T0 > 0 such
that

ε logP
(|zε,δ|C([0,T0];L4(O)) ≥

μ

3

) ≤ −λ

2
, ε > 0. (11.16)

For a given z ∈ C([0, T0]; L4(O)) and φ ∈ H let us denote by vzφ the unique solution
to the problem

(vzφ)′(t)+ Avzφ(t)+ B(vzφ(t)+ z(t), vzφ(t)+ z(t)) = 0, t ∈ [0, T0], vzφ(0) = φ.

(11.17)
Note that v0φ is the unique solution to the deterministic NSE satisfying the initial

condition v0φ(0) = φ. Hence

sup
φ∈ B0(μ)

|v0φ − φ|C([0,T ];H) ≤ 2μ. (11.18)

By [9, Theorem 4.6] we infer that there exists β > 0 such that

|z|C([0,T0];L4(O)) < β �⇒ sup
φ∈ B0(μ)

|vzφ − v0φ |C([0,T0];H) <
μ

3
. (11.19)

By a simple uniqueness argument, the above holds with the same constant for all
T ∈ (0, T0], i.e. there exists β > 0 such that for every T ∈ (0, T0],

|z|C([0,T ];L4(O)) < β �⇒ sup
φ∈ B0(μ)

|vzφ − v0φ |C([0,T ];H) <
μ

3
,

sup
φ∈ B0(μ)

|v0φ − φ|C([0,T ];H) < 2μ.
(11.20)

Since, see [9], uε,δ
φ −φ = zε,δ +vz

ε,δ

φ −v0φ +v0φ −φ, we infer that for every ε > 0,

ε log sup
φ∈ B0(μ)

P
(|uε,δ

φ − φ|C([0,T ];H) ≥ 3μ
)

≤ ε logP
(|zε,δ|C([0,T ];H) ≥ μ

3

)

+ ε log sup
φ∈ B0(μ)

P
(|vzε,δφ − v0φ |C([0,T ];H) ≥ μ

3

)
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+ ε log sup
φ∈ B0(μ)

P
(|v0φ − φ|C([0,T ];H) ≥ 7μ

3

)
. (11.21)

Let us note that by the second part of (11.20), the last term on the RHS of inequality
(11.21) is equal to 0.

In order to estimate the first term on the RHS of inequality (11.21) let us choose
T ≤ T0 such that

β2

CT
≥ λ

2

and then apply inequality (11.15) with R = β. We get that ε logP
(|zε,δ|C([0,T ];H) ≥

μ
3

) ≤ −λ
2 .

In order to estimate the second term on the RHS of inequality (11.21) we use
inequalities (11.20) and (11.16). Thus we deduce that

ε log sup
φ∈ B0(μ)

P
(|uε,δ

φ − φ|C([0,T ];H) ≥ μ
) ≤ ε logP

(|zε,δ|C([0,T ];H) ≥ μ

3

)

+ε logP
(|zε,δ|C([0,T0];L4(O)) ≥ β

) ≤ −λ

2
− λ

2
= −λ. (11.22)

This completes the proof. ��
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7. Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stoch. Stoch. Rep. 61,
245–295 (1997)
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792 Z. Brzeźniak et al.

13. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat.
Univ. Padova 31, 308–340 (1961)

14. Chenal, F., Millet, A.: Uniform large deviations for parabolic SPDE’s and applications. Stoch. Process.
Appl. 72, 161–186 (1997)

15. Dal Maso, G.: An introduction to Gamma convergence, Progress in Nonlinear Differential Equations
and their Applications, Birkhauser Boston Inc, Boston, MA (1993)

16. Da Prato, G., Debussche, A.: Two-dimensional Navier-Stokes equations driven by a space-time white
noise. J. Funct. Anal. 196(1), 180–210 (2002)

17. Da Prato, G., Pritchard, A.J., Zabczyk, J.: On minimum energy problems. SIAM J. Control Optim.
29(1), 209–221 (1991)

18. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press,
Cambridge (1992)

19. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Second Edition. Springer,
Berlin (1998)

20. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New
York (1998)

21. Flandoli, F.: Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA 1,
403–423 (1994)

22. Flandoli, F., Ga̧tarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations.
Probab. Theory Related Fields 102(3), 367–391 (1995)

23. Flandoli, F., Gozzi, F.: Kolmogorov equation associated to a stochastic Navier-Stokes equation. J.
Funct. Anal. 160(1), 312–336 (1998)

24. Fujiwara, D., Morimoto, H.: An Lr theorem of the Helmhotz decomposition of vector fields. J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

25. Ga̧tarek, D., Gołdys, B.: On weak solutions of stochastic equations in Hilbert spaces. Stoch. Stoch.
Rep. 46(1–2), 41–51 (1994)

26. Heywood, J.G.: The Navier-Stokes equations: on the existence, regularity and decay of solutions.
Indiana Univ. Math. J. 29(5), 639–681 (1980)

27. Kohn, R.V., Reznikoff, M.G., Vanden-Eijnden, E.: Magnetic elements at finite temperature and large
deviation theory. J. Nonlinear Sci. 15, 223–253 (2005)

28. Lions, J.L.:Quelquesmèthodes de rèsolution des problèmes aux limites non linèaires.Dunod;Gauthier-
Villars, Paris (1969)

29. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], p. 181.
Springer, New York, Heidelberg (1972)

30. Lions, P.-L., Masmoudi, N.: Uniqueness of mild solutions of the Navier-Stokes system in LN . Comm.
Partial Differ. Equ. 26(11–12), 2211–2226 (2001)

31. Metivier, M.: Stochastic partial differential equations in infinite-dimensional spaces, with a preface by
G. Da Prato. Scuola Normale Superiore di Pisa. Quaderni, Pisa (1988)

32. Rudin, W.: International Series in Pure and Applied Mathematics. Functional analysis, 2nd edn.
McGraw-Hill Inc, New York (1991)

33. Seeley, R.: Interpolation in L p with boundary conditions, in collection of articles honoring the com-
pletion by Antoni Zygmund of 50 years of scientific activity. I, Stud. Math. 44, 47–60 (1972)

34. Simon, J.: Sobolev, Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector
valued spaces on an interval. Ann. Mat. Pura Appl. 157, 117–148 (1990)

35. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier-Stokes equations with
multiplicative noise. Stoch. Process. Appl. 116, 1636–1659 (2006)

36. Struwe, M.: A Series of Modern Surveys in Mathematics. Variational methods. Applications to non-
linear partial differential equations and Hamiltonian systems, vol. 34, 4th edn. Springer, Berlin (2008)

37. Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)
38. Temam, R.: Behaviour at time t = 0 of the solutions of semilinear evolution equations. J. Differ. Equ.

43(1), 73–92 (1982)
39. Temam, R.: Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Con-

ference Series in Applied Mathematics, 41, Society for industrial and applied mathematics (SIAM),
Philadelphia, PA, (1983)

40. Temam, R.: Infinite Dimensioanal Dynamical Systems in Mechanics and Physics, 2nd edn. Springer,
New York (1997)

123



Quasipotential and exit time for 2D Stochastic Navier-Stokes equations 793

41. Temam, R.: Navier-Stokes equations. Theory and numerical analysis, Reprint of the 1984 edition.
AMS Chelsea Publishing, Providence, RI, pp xiv+408 (2001)

42. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam
(1978)

43. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. JohannAmbrosius
Barth, Heidelberg (1995)

44. Viot, M.: Solutions faibles aux équations aux dérivées partielles stochastiques non linéaires. Université
Pierre et Marie Curie, Paris, Thése (1976)

45. Vishik,M.J., Fursikov,A.V.:Mathematical Problems of StatisticalHydromechanics.KluwerAcademic
Publishers, Dordrecht (1988)

46. Zabczyk, J.:On large deviations for stochastic evolution equations, Stochastic systems and optimization
(Warsaw, 1988), Lecture Notes in Control and Inform. Sci., 136, Springer, Berlin, 240–253 (1989)

123


	Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise
	Abstract
	1 Introduction
	2 Notation and preliminaries
	3 The skeleton equation
	4 Some basic facts on relaxation and Γ-convergence
	5 The large deviation action functional
	6 The quasi-potential
	7 Stochastic Navier Stokes equations with periodic boundary conditions
	8 Convergence of Uδ to U
	9 An application to the exit problem
	Acknowledgments
	10 Appendix A: Proofs of some auxiliary results
	11 Appendix B: Proofs of Lemmas in Sect. 9
	References




