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Abstract Let μN be the empirical measure associated to a N -sample of a given
probability distribution μ on R

d . We are interested in the rate of convergence of μN

to μ, when measured in the Wasserstein distance of order p > 0. We provide some
satisfying non-asymptotic L p-bounds and concentration inequalities, for any values
of p > 0 and d ≥ 1. We extend also the non asymptotic L p-bounds to stationary
ρ-mixing sequences, Markov chains, and to some interacting particle systems.
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1 Introduction and results

1.1 Notation

Let d ≥ 1 and P(Rd) stand for the set of all probability measures on R
d . For μ ∈

P(Rd), we consider an i.i.d. sequence (Xk)k≥1 ofμ-distributed random variables and,
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708 N. Fournier, A. Guillin

for N ≥ 1, the empirical measure

μN := 1

N

N∑

k=1

δXk .

As is well-known, by Glivenko-Cantelli’s theorem, μN tends weakly to μ as N → ∞
(for example in probability, see Van der Vaart-Wellner [40] for details and various
modes of convergence). The aim of the paper is to quantify this convergence, when
the error is measured in some Wasserstein distance. Let us set, for p ≥ 1 and μ, ν in
P(Rd),

Tp(μ, ν) = inf

{(∫

Rd×Rd
|x − y|pξ(dx, dy)

)
: ξ ∈ H(μ, ν)

}
,

whereH(μ, ν) is the set of all probability measures onRd ×R
d with marginalsμ and

ν. See Villani [41] for a detailed study of Tp. The Wasserstein distanceWp on P(Rd)

is defined by Wp(μ, ν) = Tp(μ, ν) if p ∈ (0, 1] and Wp(μ, ν) = (Tp(μ, ν))1/p if
p > 1.

The present paper studies the rate of convergence to zero of Tp(μN , μ). This
can be done in an asymptotic way, finding e.g. a sequence α(N ) → 0 such that
limN α(N )−1Tp(μN , μ) < ∞ a.s. or limN α(N )−1

E(Tp(μN , μ)) < ∞. Here we
will rather derive some non-asymptotic moment estimates such as

E(Tp(μN , μ)) ≤ α(N ) for all N ≥ 1

as well as some non-asymptotic concentration estimates (also often called deviation
inequalities)

Pr(Tp(μN , μ) ≥ x) ≤ α(N , x) for all N ≥ 1, all x > 0.

They are naturally related to moment (or exponential moment) conditions on the law
μ and we hope to derive an interesting interplay between the dimension d ≥ 1, the
cost parameter p > 0 and these moment conditions. Let us introduce precisely these
moment conditions. For q > 0, α > 0, γ > 0 and μ ∈ P(Rd), we define

Mq(μ) :=
∫

Rd
|x |qμ(dx) and Eα,γ (μ) :=

∫

Rd
eγ |x |αμ(dx).

We now present our main estimates, the comparison with the existing results and
methods will be developped after this presentation. Let us however mention at once
that our paper relies on some recent ideas of Dereich et al. [16].

1.2 Moment estimates

We first give some L p bounds.
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Convergence of the empirical measure 709

Theorem 1 Letμ ∈ P(Rd) and let p > 0. Assume that Mq(μ) < ∞ for some q > p.
There exists a constant C depending only on p, d, q such that, for all N ≥ 1,

E
(
Tp(μN , μ)

) ≤ CM p/q
q (μ)

×
⎧
⎨

⎩

N−1/2 + N−(q−p)/q if p > d/2 and q �= 2p,
N−1/2 log(1 + N ) + N−(q−p)/q if p = d/2 and q �= 2p,
N−p/d + N−(q−p)/q if p ∈ (0, d/2) and q �= d/(d − p).

Observe that when μ has sufficiently many moments (namely if q > 2p when
p ≥ d/2 and q > dp/(d − p) when p ∈ (0, d/2)), the term N−(q−p)/q is small and
can be removed. We could easily treat, for example, the case p > d/2 and q = 2p
but this would lead to some logarithmic terms and the paper is technical enough.

This generalizes [16], in which only the case p ∈ [1, d/2) (whence d ≥ 3) and
q > dp/(d − p) was treated. The argument is also slightly simplified.

To show that Theorem 1 is really sharp, let us give examples where lower bounds
can be derived quite precisely.

(a) If a �= b ∈ R
d andμ = (δa +δb)/2, one easily checks (see e.g. [16, Remark 1])

thatE(Tp(μN , μ)) ≥ cN−1/2 for all p ≥ 1. Indeed,wehaveμN = ZN δa+(1−ZN )δb

with ZN = N−1 ∑N
1 1{Xi=a}, so that Tp(μN , μ) = |a− b|p|ZN − 1/2|, of which the

expectation is of order N−1/2.
(b) Such a lower bound in N−1/2 can easily be extended to any μ (possibly very

smooth) of which the support is of the form A ∪ B with d(A, B) > 0 (simply note
that Tp(μN , μ) ≥ d p(A, B)|ZN − μ(A)|, where ZN = N−1 ∑N

1 1{Xi∈A}).
(c) If μ is the uniform distribution on [−1, 1]d , it is well-known and not difficult

to prove that for p > 0, E(Tp(μN , μ)) ≥ cN−p/d . Indeed, consider a partition of
[−1, 1]d into (roughly) N cubes with length N−1/d . A quick computation shows that
with probability greater than some c > 0 (uniformly in N ), half of these cubes will
not be charged by μN . But on this event, we clearly have Tp(μN , μ) ≥ aN−1/d for
some a > 0, because each time a cube is not charged by μN , a (fixed) proportion of
the mass of μ (in this cube) is at distance at least N−1/d/2 of the support of μN . One
easily concludes.

(d) When p = d/2 = 1, it has been shown by Ajtai et al. [2] that for μ the uniform
measure on [−1, 1]d , T1(μN , μ) 	 c(log N/N )1/2 with high probability, implying
that E(T1(μN , μ)) ≥ c(log N/N )1/2.

(e) Let μ(dx) = c|x |−q−d1{|x |≥1}dx for some q > 0. Then Mr (μ) < ∞
for all r ∈ (0, q) and for all p ≥ 1, E(Tp(μN , μ)) ≥ cN−(q−p)/q . Indeed,
P(μN ({|x | ≥ N 1/q}) = 0) = (μ({|x | < N 1/q}))N = (1 − c/N )N ≥ c > 0
and μ({|x | ≥ 2N 1/q}) ≥ c/N . One easily gets convinced that Tp(μN , μ) ≥
N p/q1{μN ({|x |≥N1/q })=0}μ({|x | ≥ 2N 1/q}), from which the claim follows.

As far as general laws are concerned, Theorem 1 is really sharp: the only possible
improvements are the following. The first one, quite interesting, would be to replace
log(1 + N ) by something like

√
log(1 + N ) when p = d/2 (see point (d) above). It

is however not clear whether it is feasible in full generality. The second one, which
should be a mere (and not very interesting) refinement, would be to sharpen the bound
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710 N. Fournier, A. Guillin

in N−(q−p)/q whenMq(μ) < ∞: point (e) only shows that there isμwithMq(μ) < ∞
for which we have a lowerbound in N−(q−p)/q−ε for all ε > 0.

However, some improvements are possible when restricting the class of laws μ.
First, when μ is the uniform distribution in [−1, 1]d , the results of Talagrand [38,39]
strongly suggest that when d ≥ 3, E(Tp(μN , μ)) 	 N−p/d for all p > 0, and this is
much better than N−1/2 when p is large. Such a result would of course immediately
extend to any distribution μ = λ ◦ F−1, for λ the uniform distribution in [−1, 1]d and
F : [−1, 1]d �→ R

d Lipschitz continuous. In any case, a smoothness assumption for
μ cannot be sufficient, see point (b) above.

Second, for irregular laws, the convergence can be much faster than N−p/d when
p < d/2, see point (a) above where, in an extreme case, we get N−1/2 for all values
of p > 0. It is shown by Dereich et al. [16] (see also Barthe and Bordenave [3]) that
indeed, for a singular law, limN N−p/d

E(Tp(μN , μ)) = 0.

1.3 Concentration inequalities

We next state some concentration inequalities.

Theorem 2 Let μ ∈ P(Rd) and let p > 0. Assume one of the three following
conditions:

∃ α > p, ∃ γ > 0, Eα,γ (μ) < ∞, (1)

or ∃ α ∈ (0, p), ∃ γ > 0, Eα,γ (μ) < ∞, (2)

or ∃ q > 2p, Mq(μ) < ∞. (3)

Then for all N ≥ 1, all x ∈ (0,∞),

P(Tp

(
μN , μ) ≥ x

)
≤ a(N , x)1{x≤1} + b(N , x),

where

a(N , x) = C

⎧
⎨

⎩

exp(−cNx2) if p > d/2,
exp(−cN (x/ log(2 + 1/x))2) if p = d/2,
exp(−cNxd/p) if p ∈ (0, d/2)

and

b(N , x) = C

⎧
⎨

⎩

exp(−cNxα/p)1{x>1} under (1),
exp(−c(Nx)(α−ε)/p)1{x≤1} + exp(−c(Nx)α/p)1{x>1} ∀ ε ∈ (0, α) under (2),
N (Nx)−(q−ε)/p ∀ ε ∈ (0, q) under (3).

The positive constants C and c depend only on p, d and either on α, γ, Eα,γ (μ) (under
(1)) or on α, γ, Eα,γ (μ), ε (under (2)) or on q, Mq(μ), ε (under (3)).

We could also treat the critical case where Eα,γ (μ) < ∞with α = p, but the result
we could obtain is slightly more intricate and not very satisfying for small value of x
(even if good for large ones).

123



Convergence of the empirical measure 711

Remark 3 When assuming (2) with α ∈ (0, p), we actually also prove that

b(N , x) ≤ C exp(−cNx2(log(1 + N ))−δ) + C exp(−c(Nx)α/p),

with δ = 2p/α − 1, see Step 5 of the proof of Lemma 13 below. This allows us
to extend the inequality b(N , x) ≤ C exp(−c(Nx)α/p) to all values of x ≥ xN , for
some (rather small) xN depending on N , α, p. But for very small values of x > 0, this
formula is less interesting than that of Theorem 2. Despite much effort, we have not
been able to get rid of the logarithmic term.

We believe that these estimates are quite satisfying. To get convinced, first
observe that the scales seem to be the good ones. Recall that E(Tp(μN , μ)) =∫ ∞
0 P(Tp(μ

N , μ) ≥ x)dx .
(a) One easily checks that

∫ ∞
0 a(N , x)dx ≤ CN−p/d if p < d/2,CN−1/2 log(1+

N ) if p = d/2, and CN−1/2 if p > d/2, as in Theorem 1.
(b) When integrating b(N , x) (or rather b(N , x) ∧ 1), we find N−(q−ε−p)/(q−ε)

under (3) and something smaller under (1) or (2). Since we can take q − ε > 2p,
this is < N−1/2 (and thus also < N−p/d if p < d/2 and than N−1/2 log(1 + N ) if
p = d/2).

The rates of decrease are also satisfying in most cases. Recall that in deviation
estimates, we never get something better than exp(−Ng(x)) for some function g.
Hence a(N , x) is probably optimal. Next, for ȲN the empirical mean of a family of
centered i.i.d. random variables, it is well-known that the good deviation inequalities
are the following.

(a) If E[exp(a|Y1|β)] < ∞ with β ≥ 1, then Pr[|ȲN | ≥ x] ≤ Ce−cNx21{x≤1} +
Ce−cNxβ

1{x>1}, see for example Djellout et al. [18], Gozlan [24] or Ledoux [27],
using transportation cost inequalities.

(b) If E[exp(a|Y1|β)] < ∞ with β < 1, then Pr[|ȲN | ≥ x] ≤ Ce−cNx2 +
Ce−c(Nx)β , see Merlevède et al. [31, Formula (1.4)] which is based on results by
Borovkov [8].

(c) If E[|Y1|r ] < ∞ for some r > 2, then Pr[|ȲN | ≥ x] ≤ Ce−cNx2 +CN (Nx)−r ,
see Fuk and Nagaev [23], using usual truncation arguments.

Our result is in perfect adequacy with these facts [(up to some arbitratry small loss
due to ε under (2) and (3)] since Tp(μN , μ) should behave very roughly as the mean
of the |Xi |p’s, which e.g. has an exponential moment with power β := α/p under (1)
and (2).

1.4 Comments

The control of the distance between the empirical measure of an i.i.d. sample and its
true distribution is of course a long standing problem central both in probability, sta-
tistics and informatics with a wide number of applications: quantization (see Delattre
et al. [14] and Pagès andWilbertz [33] for recent results), optimal matching (see Ajtai
et al. [2], Dobrić and Yukich [19], Talagrand [39], Barthe and Bordenave [3]), density
estimation, clustering (see Biau et al. [5] and Laloë [26]), MCMC methods (see [36]
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712 N. Fournier, A. Guillin

for bounds on ergodic averages), particle systems and approximations of partial dif-
ferential equations (see Bolley et al. [11] and Fournier and Mischler [22]). We refer
to these papers for an extensive introduction on this vast topic.

If many distances can be used to consider the problem, the Wasserstein distance is
quite natural, in particular in quantization or for particle approximations of P.D.E.’s.
However the depth of the problemwas discovered only recently by Ajtai et al. [2], who
considered the uniform measure on the square, investigated thoroughly by Talagrand
[39]. As a review of the litterature is somewhat impossible, let us just say that the
methods involved were focused on two methods inherited by the definitions of the
Wasserstein distance: the construction of a coupling or by duality to control a particular
empirical process.

Concerning moment estimates (as in Theorem 1), some results can be found in
Horowitz and Karandikar [25], Rachev and Rüschendorf [35] and Mischler and
Mouhot [32]. But theses results are far from optimal, even when assuming that μ

is compactly supported. Very recently, strickingly clever alternatives were considered
by Boissard and Le Gouic [7] and by Dereich et al. [16]. Unfortunately, the construc-
tion of Boissard and Le Gouic, based on iterative trees, was a little too complicated to
yield sharp rates. On the contrary, the method of [16], exposed in details in the next
section, is extremely simple, robust, and leads to the almost optimal results exposed
here. Some sharp moment estimates were already obtained in [16] for a limited range
of parameters.

Concerning concentration estimates, only few results are available. Let us mention
the work of Bolley et al. [11] and very recently by Boissard [6], which we consid-
erably improve. Our assumptions are often much weaker (the reference measure μ

was often assumed to satisfy some functional inequalities, which may be difficult to
verify and usually include more “structure” than mere integrability conditions) and
Pr[Tp(μN , μ) ≥ x]was estimated only for rather large values of x . In particular, when
integrating the concentration estimates of [11], one does never find the good moment
estimates, meaning that the scales are not the good ones.

Moreover, the approach of [16] is robust enough so that we can also give some
good moment bounds for the Wasserstein distance between the empirical measure of
a Markov chain and its invariant distribution (under some conditions). This could be
useful for MCMCmethods because our results are non asymptotic. We can also study
very easily some ρ-mixing sequences (see Doukhan [20]), for which only very few
results exist, see Biau et al. [7]. Finally, we show on an example how to use Theorem
1 to study some particle systems. For all these problems, we might also obtain some
concentration inequalities, but this would need further refinements which are out of
the scope of the present paper, somewhat already technical enough, and left for further
works.

1.5 Plan of the paper

In the next section, we state some general upper bounds of Tp(μ, ν), for any μ, ν ∈
P(Rd), essentially taken from [16]. Section 3 is devoted to the proof of Theorem 1.
Theorem 2 is proved in three steps: in Sect. 4 we study the case where μ is compactly
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Convergence of the empirical measure 713

supported and where N is replaced by a Poisson(N )-distributed random variable,
which yields some pleasant independance properties. We show how to remove the
randomization in Sect. 5, concluding the case where μ is compactly supported. The
non compact case is studied in Sect. 6. The final Sect. 7 is devoted to dependent random
variables: ρ-mixing sequences, Markov chains and a particular particle system.

2 Coupling

The following notion of distance, essentially taken from [16], is the main ingredient
of the paper.

Notation 4 (a) For � ≥ 0, we denote by P� the natural partition of (−1, 1]d into 2d�

translations of (−2−�, 2−�]d . For two probability measures μ, ν on (−1, 1]d and for
p > 0, we introduce

Dp(μ, ν) := 2p − 1

2

∑

�≥1

2−p�
∑

F∈P�

|μ(F) − ν(F)|,

which obviously defines a distance on P((−1, 1]d), always bounded by 1.
(b)We introduce B0 := (−1, 1]d and, for n ≥ 1, Bn := (−2n, 2n]d\(−2n−1, 2n−1]d .

For μ ∈ P(Rd) and n ≥ 0, we denote by RBnμ the probability measure on (−1, 1]d
defined as the image of μ|Bn/μ(Bn) by the map x �→ x/2n. For two probability
measures μ, ν on R

d and for p > 0, we introduce

Dp(μ, ν) :=
∑

n≥0

2pn
(|μ(Bn) − ν(Bn)| + (μ(Bn) ∧ ν(Bn))Dp(RBnμ,RBnν)

)
.

A little study, using that Dp ≤ 1 on P((−1, 1]d), shows that this defines a distance
on P(Rd).

Having a look at Dp in the compact case, one sees that in some sense, it measures
distance of the two probability measures simultaneously at all the scales. The opti-
mization procedure can be made for all scales and outperforms the approach based
on a fixed diameter covering of the state space (which is more or less the approach
of Horowitz and Karandikar [25]). Moreover one sees that the principal control is on
|π(F)−μ(F)|which is a quite simple quantity. The next results are slightly modified
versions of estimates found in [16], see [16, Lemma 2] for the compact case and [16,
proof of Theorem 3] for the non compact case. It contains the crucial remark that Dp

is an upper bound (up to constant) of the Wasserstein distance.

Lemma 5 Let d ≥ 1 and p > 0. For all pairs of probability measures μ, ν on R
d ,

Tp(μ, ν) ≤ κp,dDp(μ, ν), with κp,d := 2pd p/2(2p + 1)/(2p − 1).

Proof We separate the proof into two steps.
Step 1.We first assume that μ and ν are supported in (−1, 1]d . We infer from [16,

Lemma 2], in which the conditions p ≥ 1 and d ≥ 3 are clearly not used, that, since
the diameter of (−1, 1]d is 2

√
d ,
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714 N. Fournier, A. Guillin

Tp(μ, ν) ≤
(
2
√
d
)p

2

∑

�≥0

2−p�
∑

F∈P�

μ(F)
∑

C child of F

∣∣∣∣
μ(C)

μ(F)
− ν(C)

ν(F)

∣∣∣∣ ,

where “C child of F” means that C ∈ P�+1 and C ⊂ F . Consequently,

Tp(μ, ν) ≤ 2p−1d p/2
∑

�≥0

2−p�
∑

F∈P�

∑

C child of F

(
ν(C)

ν(F)
|μ(F)− ν(F)|+|μ(C)− ν(C)|

)

≤ 2p−1d p/2
∑

�≥0

2−p�

⎛

⎝
∑

F∈P�

|μ(F) − ν(F)| +
∑

C∈P�+1

|μ(C) − ν(C)|
⎞

⎠

≤ 2p−1d p/2(1 + 2p)
∑

�≥1

2−p�
∑

F∈P�

|μ(F) − ν(F)|,

which is nothing but κp,dDp(μ, ν). We used that
∑

F∈P0
|μ(F) − ν(F)| = 0.

In Dereich et al. [16], use directly the formula with the children to study the rate
of convergence of empirical measures. This leads to some (small) technical compli-
cations, and does not seem to improve the estimates.

Step 2. We next consider the general case. We consider, for each n ≥ 1, the opti-
mal coupling πn(dx, dy) between RBnμ and RBnν for Tp. We define ξn(dx, dy)
as the image of πn by the map (x, y) �→ (2nx, 2n y), which clearly belongs to
H(μ|Bn/μ(Bn), ν|Bn/ν(Bn)) and satisfies

∫∫ |x − y|pξn(dx, dy) = 2np
∫∫ |x −

y|pπn(dx, dy) = 2npTp(RBnμ,RBnν).
Next, we introduce q := 1

2

∑
n≥0 |ν(Bn) − μ(Bn)| and we define

ξ(dx, dy) =
∑

n≥0

(μ(Bn) ∧ ν(Bn))ξn(dx, dy) + α(dx)β(dy)

q
,

where

α(dx) :=
∑

n≥0

(μ(Bn) − ν(Bn))+
μ|Bn (dx)
μ(Bn)

and

β(dy) :=
∑

n≥0

(ν(Bn) − μ(Bn))+
ν|Bn (dy)
ν(Bn)

.

Using that

q =
∑

n≥0

(ν(Bn) − μ(Bn))+ =
∑

n≥0

(μ(Bn) − ν(Bn))+

= 1 −
∑

n≥0

(ν(Bn) ∧ μ(Bn)),

it is easily checked that ξ ∈ H(μ, ν). Furthermore, we have, setting cp = 1 if
p ∈ (0, 1] and cp = 2p−1 if p > 1,
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∫∫
|x − y|p α(dx)β(dy)

q
≤ 1

q

∫ ∫
cp(|x |p + |y|p)α(dx)β(dy)

= cp

∫
|x |pα(dx) + cp

∫
|y|pβ(dy)

≤ cp
∑

n≥0

2pn[(μ(Bn) − ν(Bn))+ + (ν(Bn) − μ(Bn))+]

= cp
∑

n≥0

2pn|μ(Bn) − ν(Bn)|.

Recalling that
∫∫ |x − y|pξn(dx, dy) ≤ 2npTp(RBnμ,RBnν), we deduce that

Tp(μ, ν) ≤
∫ ∫

|x − y|pξ(dx, dy)

≤
∑

n≥0

2np
(
cp|μ(Bn) − ν(Bn)|

+ (μ(Bn) ∧ ν(Bn))Tp(RBnμ,RBnν)
)
.

We conclude using Step 1 and that cp ≤ κp,d . ��
When proving the concentration inequalities, which is very technical, it will be

good to break the proof into several steps to separate the difficulties and we will first
treat the compact case. On the contrary, when dealing with moment estimates, the
following formula will be easier to work with.

Lemma 6 Let p > 0 and d ≥ 1. For all μ, ν ∈ P(Rd),

Dp(μ, ν) ≤ Cp

∑

n≥0

2pn
∑

�≥0

2−p�
∑

F∈P�

∣∣μ(2n F ∩ Bn) − ν(2n F ∩ Bn)
∣∣

with the notation 2n F = {2nx : x ∈ F} and where Cp = 1 + 2−p/(1 − 2−p).

Proof For all n ≥ 1, we have |μ(Bn) − ν(Bn)| = ∑
F∈P0

|μ(2n F ∩ Bn) − ν(2n F∩
Bn)| and

(μ(Bn) ∧ ν(Bn))Dp(RBnμ,RBnν)

≤ μ(Bn)
∑

�≥1

2−p�
∑

F∈P�

∣∣∣∣
μ(2n F ∩ Bn)

μ(Bn)
− ν(2n F ∩ Bn)

ν(Bn)

∣∣∣∣

≤
∑

�≥1

2−p�
∑

F∈P�

∣∣μ(2n F ∩ Bn) − ν(2n F ∩ Bn)
∣∣

+
∣∣∣∣1 − μ(Bn)

ν(Bn)

∣∣∣∣
∑

�≥1

2−p�
∑

F∈P�

ν(2n F ∩ Bn).

This last term is smaller than 2−p |μ(Bn) − ν(Bn)| /(1−2−p) and this ends the proof.
��
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3 Moment estimates

The aim of this section is to give the

Proof of Theorem 1 We thus assume that μ ∈ P(Rd) and that Mq(μ) < ∞ for some
q > p. By a scaling argument, we may assume that Mq(μ) = 1. This implies that
μ(Bn) ≤ 2−q(n−1) for all n ≥ 0.ByLemma5,we haveTp(μN , μ) ≤ κp,dDp(μN , μ),
so that it suffices to study E(Dp(μN , μ)). In the whole proof, the positive constant C ,
whose value may change from line to line, depends only on p, d, q.

For a Borel subset A ⊂ R
d , since NμN (A) is Binomial(N , μ(A))-distributed, we

have

E (|μN (A) − μ(A)|) ≤ min
{
2μ(A),

√
μ(A)/N

}
.

Using the Cauchy–Scharz inequality and that #(P�) = 2d�, we deduce that for all
n ≥ 0, all � ≥ 0,

∑

F∈P�

E
(∣∣μN (2n F ∩ Bn) − μ(2n F ∩ Bn)

∣∣) ≤ min
{
2μ(Bn), 2

d�/2(μ(Bn)/N )1/2
}

.

Using finally Lemma 6 and that μ(Bn) ≤ 2−q(n−1), we find

E(Dp(μN , μ)) ≤ C
∑

n≥0

2pn
∑

�≥0

2−p� min
{
2−qn, 2d�/2(2−qn/N )1/2

}
. (4)

Step 1. Here we show that for all ε ∈ (0, 1), all N ≥ 1,

∑

�≥0

2−p� min
{
ε, 2d�/2(ε/N )1/2

}
≤C

⎧
⎨

⎩

min{ε, (ε/N )1/2} if p > d/2,
min{ε, (ε/N )1/2 log(2 + εN )} if p = d/2,
min{ε, ε(εN )−p/d} if p ∈ (0, d/2).

First of all, the bound by Cε is obvious in all cases (because p > 0). Next, the case
p > d/2 is immediate. If p ≤ d/2, we introduce �N ,ε := �log(2 + εN )/(d log 2)�,
for which 2d�N ,ε 	 2 + εN and get an upper bound in

(ε/N )1/2
∑

�≤�N ,ε

2(d/2−p)� + ε
∑

�≥�N ,ε

2−p�.

If p = d/2, we find an upper bound in

(ε/N )1/2�N ,ε + Cε2−p�N ,ε ≤ C(ε/N )1/2 log(2 + εN )

+Cε(1 + εN )−1/2 ≤ C(ε/N )1/2 log(2 + εN )
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Convergence of the empirical measure 717

as desired. If p ∈ (0, d/2), we get an upper bound in

C(ε/N )1/22(d/2−p)�N ,ε+Cε2−p�N ,ε≤C(ε/N )1/2(2+ εN )1/2−p/d+Cε(2+ εN )−p/d .

If εN ≥ 1, then (2+ εN )1/2−p/d ≤ (3εN )1/2−p/d and the conclusion follows. If now
εN ∈ (0, 1), the result is obvious because min{ε, ε(εN )−p/d} = ε.

Step 2: p > d/2. By (4) and Step 1 (with ε = 2−qn), we find

E(Dp(μN , μ)) ≤ C
∑

n≥0

2pn min
{
2−qn, (2−qn/N )1/2

}

≤ C

{
N−1/2 if q > 2p,
N−(q−p)/q if q ∈ (p, 2p).

Indeed, this is obvious if q > 2p, while the case q ∈ (p, 2p) requires to separate the
sum in two parts n ≤ nN and n > nN with nN = �log N/(q log 2)�. This ends the
proof when p > d/2.

Step 3: p = d/2. By (4) and Step 1 (with ε = 2−qn), we find

E(Dp(μN , μ)) ≤ C
∑

n≥0

2pn min
{
2−qn, (2−qn/N )1/2 log(2 + 2−qnN )

}
.

If q > 2p, we immediately get a bound in

E(Dp(μN , μ)) ≤ C
∑

n≥0

2(p−q/2)nN−1/2 log(2 + N ) ≤ C log(2 + N )N−1/2,

which ends the proof (when p = d/2 and q > 2p).
If q ∈ (p, 2p), we easily obtain, using that log(2 + x) ≤ 2 log x for all x ≥ 2, an

upper bound in

E(Dp(μN , μ)) ≤ C
∑

n≥0

1{N<2.2nq }2(p−q)n + C
∑

n≥0

1{N≥2.2nq }2(p−q/2)nN−1/2 log(N2−nq)

≤ CN−(q−p)/q + CN−1/2
nN∑

n=0

2(p−q/2)n(log N − nq log 2)

=: CN−(q−p)/q + CN−1/2KN ,

123



718 N. Fournier, A. Guillin

where nN = �log(N/2)/(q log 2)�. A tedious exact computation shows that

KN = log N
2(p−q/2)(nN+1) − 1

2(p−q/2) − 1

− q log 2

[
(nN + 1)

2(p−q/2)(nN+1) − 1

2(p−q/2) − 1
+ nN + 1

2(p−q/2) − 1

− 2(p−q/2)(nN+2) − 2(p−q/2)

(2(p−q/2) − 1)2

]
.

Using that the contribution of the middle term of the second line is negative and the
inequality log N − (nN + 1)q log 2 ≤ log 2 (because (nN + 1)q log 2 ≥ log(N/2)),
we find

KN ≤ C2(p−q/2)nN ≤ CN p/q−1/2.

We finally have checked that E(Dp(μN , μ)) ≤ CN−(q−p)/q + CN−1/2N p/q−1/2 ≤
CN−(q−p)/q , which ends the proof when p = d/2.

Step 4: p ∈ (0, d/2). We then have, by (4) and Step 1,

E
(
Dp(μN , μ)

) ≤C
∑

n≥0

2pn min
{
2−qn, 2−qn(1−p/d)N−p/d

}
.

If q > dp/(d − p), which implies that q(1 − p/d) > p, we immediately get an
upper bound by CN−p/d , which ends the proof when p < d/2 and q > dp/(d − p).

If finally q ∈ (p, dp/(d − p)), we separate the sum in two parts n ≤ nN and
n > nN with nN = �log N/(q log 2)� and we find a bound in CN−(q−p)/q as desired.

��

4 Concentration inequalities in the compact poissonized case

It is technically advantageous to first consider the case where the size of the sampling
is Poisson distributed, which implies some independence properties. Replacing N
(large) by a Poisson(N )-distributed random variable should be feasible, because a
Poisson(N )-distributed random variable is close to N with high probability.

Notation 7 We introduce the functions f and g defined on (0,∞) by

f (x) = (1 + x) log(1 + x) − x and g(x) = (x log x − x + 1)1{x≥1}.

Observe that f is increasing, nonnegative, equivalent to x2 at 0 and to x log x at
infinity. The function g is positive and increasing on (1,∞).

The goal of this section is to check the following.
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Convergence of the empirical measure 719

Proposition 8 Assume that μ is supported in (−1, 1]d . Let �N be a Poisson measure
on R

d with intensity measure Nμ and introduce the associated empirical measure
�N = (�N (Rd))−1�N . Let p ≥ 1 and d ≥ 1. There are some positive constants
C, c (depending only on d, p) such that for all N ≥ 1, all x ∈ (0,∞),

P

(
�N (Rd )Dp(�N , μ) ≥ Nx

)
≤ C

⎧
⎪⎨

⎪⎩

exp(−N f (cx)) if p > d/2,
exp (−N f (cx/ log(2 + 1/x))) if p = d/2,

exp (−N f (cx)) + exp
(
−cNxd/p

)
if p ∈ (0, d/2).

We start with some easy and well-known concentration inequalities for the Poisson
distribution.

Lemma 9 For λ > 0 and X a Poisson(λ)-distributed random variable, we have

(a) E(exp(θX)) = exp(λ(eθ − 1)) for all θ ∈ R;
(b) E(exp(θ |X − λ|)) ≤ 2 exp(λ(eθ − 1 − θ)) for all θ > 0;
(c) P(X > λx) ≤ exp(−λg(x)) for all x > 0;
(d) P(|X − λ| > λx) ≤ 2 exp(−λ f (x)) for all x > 0;
(e) P(X > λx) ≤ λ for all x > 0.

Proof Point (a) is straightforward. For point (b), write E(exp(θ |X − λ|)) ≤
eθλ

E(exp(−θX))+e−θλ
E(exp(θX)), use (a) and that λ(e−θ −1+θ) ≤ λ(eθ −1−θ).

For point (c), write P(X > λx) ≤ e−θλx
E[exp(θX)], use (a) and optimize in θ . Use

the same scheme to deduce (d) from (b). Finally, for x > 0, P(X > λx) ≤ P(X >

0) = 1 − e−λ ≤ λ. ��
We can now give the

Proof of Proposition 8 During the proof, the constants may only depend on p and d.
We fix x > 0 for the whole proof. Recalling Notation 4-(a), we have

�N (Rd)Dp(�N , μ) = C
∑

�≥1

2−p�
∑

F∈P�

|�N (F) − �N (Rd)μ(F)|

≤ C |�N (Rd) − N | + C
∑

�≥1

2−p�
∑

F∈P�

|�N (F) − Nμ(F)|

≤ C |�N (Rd) − N | + C(N + �N (Rd))2−p�0

+ C
�0∑

�=1

2−p�
∑

F∈P�

|�N (F) − Nμ(F)|

for any choice of �0 ∈ N. We will choose �0 later, depending on the value of x . For
any nonnegative family r� such that

∑�0
1 r� ≤ 1, we thus have

ε(N , x) :=P

(
�N (Rd)Dp(�N , μ) ≥ Nx

)

≤P

(
|�N (Rd) − N | ≥ cNx

)
+ P

(
�N (Rd) ≥ N (cx2p�0 − 1)

)
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720 N. Fournier, A. Guillin

+
�0∑

�=1

P

⎛

⎝
∑

F∈P�

|�N (F) − Nμ(F)| ≥ cNx2p�r�

⎞

⎠ .

By Lemma 9-(c), (d), since �N (Rd) is Poisson(N )-distributed, P(�N (Rd) ≥
N (cx2p�0 − 1)) ≤ exp(−Ng(cx2p�0 − 1)) and P(|�N (Rd) − N | ≥ cNx) ≤
2 exp(−N f (cx)). Next, using that the family (�N (F))F∈P�

is independent, with
�N (F) Poisson(Nμ(F))-distributed, we use Lemma 9-(a) and that #(P�) = 2�d

to obtain, for any θ > 0,

E

⎛

⎝exp

⎛

⎝θ
∑

F∈P�

|�N (F) − Nμ(F)|
⎞

⎠

⎞

⎠ ≤
∏

F∈P�

2eNμ(F)(eθ−θ−1) ≤ 22
d�

eN (eθ−θ−1).

Hence

P

⎛

⎝
∑

F∈P�

|�N (F) − Nμ(F)| ≥ cNx2p�r�

⎞

⎠

≤ exp
(
−cθNx2p�r�

)
22

d�

exp
(
N (eθ − θ − 1)

)
.

Choosing θ = log(1 + cx2p�r�), we find

P

⎛

⎝
∑

F∈P�

|�N (F) − Nμ(F)| ≥ cNx2p�r�

⎞

⎠ ≤22
d�

exp(−N f (cx2p�r�)).

We have checked that

ε(N , x) ≤ 2 exp(−N f (cx)) + exp(−Ng(cx2p�0 − 1))

+
�0∑

�=1

22
d�

exp(−N f (cx2p�r�)).

At this point, the value of c > 0 is not allowed to vary anymore. We introduce some
other positive constants a whose value may change from line to line.

Case 1: cx > 2. Then we choose �0 = 1 and r1 = 1.We have cx2p�0 −1 = 2pcx−
1 ≥ (2p − 1)cx + 1 whence g(cx2p�0 − 1) ≥ g((2p − 1)cx + 1) = f ((2p − 1)cx).
We also have

∑�0
�=1 2

2d�
exp(−N f (cx2p�r�)) = 22

d
exp(−N f (2pcx)).We finally get

ε(N , x) ≤ C exp(−N f (ax)), which proves the statement (in the three cases, when
cx > 2).

Case 2: cx ≤ 2. We choose �0 so that (1+ 2/(cx)) ≤ 2p�0 ≤ 2p(1+ 2/(cx)), i.e.

�0 := �log(1 + 2/(cx))/(p log 2)� + 1.
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Convergence of the empirical measure 721

This implies that cx2p�0 ≥ 2 + cx . Hence g(cx2p�0 − 1) ≥ g(1 + cx) = f (cx).
Furthermore, we have cx2p�r� ≤ cx2p�0 ≤ 2p(2+cx) ≤ 2p+2 for all � ≤ �0, whence
f (cx2p�r�) ≥ ax222p�r2� (because f (x) ≥ ax2 for all x ∈ [0, 2p+2]). We thus end

up with (we use that 22
d� ≤ exp(2d�))

ε(N , x) ≤ 3 exp(−N f (cx)) +
�0∑

�=1

exp
(
2d� − Nax222p�r2�

)
.

Now the value of a > 0 is not allowed to vary anymore, and we introduce a′ > 0,
whose value may change from line to line.

Case 1.1: p > d/2. We take r� := (1 − 2−η)2−η� for some η > 0 such that
2(p − η) > d. If Nx2 ≥ 1, we easily get

ε(N , x) ≤ 3 exp(−N f (cx)) +
�0∑

�=1

exp(2d� − Na′x222(p−η)�)

≤ 3 exp(−N f (cx)) + C exp(−a′Nx2)

≤C exp(−N f (a′x)).

The last inequality uses that y2 ≥ f (y) for all y > 0. If finally Nx2 ≤ 1, we obviously
have

ε(N , x) ≤ 1 ≤ exp(1 − Nx2) ≤ C exp(−Nx2) ≤ C exp(−N f (x)).

We thus always have ε(N , x) ≤ C exp(−N f (a′x)) as desired.
Case 2.2: p = d/2. We choose r� := 1/�0. Thus, if aN (x/�0)2 ≥ 2, we easily find

ε(N , x) ≤ 3 exp(−N f (cx)) +
�0∑

�=1

exp
(
2d�(1 − aN (x/�0)

2
)

≤ 3 exp(−N f (cx)) + C exp
(
−a′N (x/�0)

2
)

≤ 3 exp(−N f (cx)) + C exp
(−N f (a′x/�0)

)

≤C exp(−N f (a′x/�0))

because �0 ≥ 1 and f is increasing. If now aN (x/�0)2 < 2, we just write

ε(N , x)≤1≤ exp(2 − aN (x/�0)
2)≤ C exp(−aN (x/�0)

2)≤ C exp(−N f (ax/�0)).

We thus always have ε(N , x) ≤ C exp(−N f (a′x/�0)). Using that �0 ≤ C log(2 +
1/x), we immediately conclude that ε(N , x) ≤ C exp(−N f (a′x/ log(2 + 1/x))) as
desired.
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722 N. Fournier, A. Guillin

Case 2.3: p ∈ (0, d/2).We choose r� := κ2(d/2−p)(�−�0) with κ = 1/(1−2p−d/2).
For all � ≤ �0,

2dl−aNx222p�r2� = −aκ2Nxd/p22p�
[
2(d−2p)(�−�0)x2−d/p − 2(d−2p)�/(Naxd/p)

]

≤ −aκ2Nxd/p22p�
[
b2(d−2p)� − 2(d−2p)�/(Naκ2xd/p)

]

where the constant b > 0 is such that 2−(d−2p)�0 ≥ bxd/p−2 (the existence of b is
easily checked). Hence if Naκ2xd/p ≥ 2/b, we find

2dl − aNx222p�r2� ≤ − abκ2Nxd/p2d�b/2

and thus, still using that Nxd/p ≥ 2/(abκ2),

�0∑

�=1

exp(2d� − Nc2x222p�r2� ) ≤ C exp(−a′Nxd/p).

Consequently,we have ε(N , x) ≤ 3 exp(−N f (cx))+C exp(−a′Nxd/p) if Naκ2xd/p

≥ 2/b. As usual, the case where Naκ2xd/p ≤ 2/b is trivial, since then

ε(N , x) ≤ 1 ≤ exp(2/b − Naκ2xd/p) ≤ C exp(−a′Nxd/p).

This ends the proof. ��

5 Depoissonization in the compact case

We next check the following compact version of Theorem 2.

Proposition 10 Assume that μ is supported in (−1, 1]d . Let p > 0 and d ≥ 1 be
fixed. There are some positive constants C and c (depending only on p, d) such that
for all N ≥ 1, all x ∈ (0,∞),

P
[
Dp(μN , μ) ≥ x

] ≤ 1{x≤1}C

⎧
⎨

⎩

exp(−cNx2) if p > d/2;
exp

(−cN (x/ log(2 + 1/x))2
)

if p = d/2;
exp

(−cNxd/p
)

if p ∈ (0, d/2).

We will need the following easy remark.

Lemma 11 For all N ≥ 1, for X Poisson(N )-distributed, for all k ∈ {0, . . . , �√N�},

P[X = N + k] ≥ κ0N
−1/2 where κ0 = e−2/

√
2.
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Convergence of the empirical measure 723

Proof By Perrin [34], we have N ! ≤ e
√
N (N/e)N . Thus

P[X = N + k] = e−N N N+k

(N + k)! ≥ e−N−1 NN+k

√
N + k((N + k)/e)N+k

≥ 1√
2N

(
N

N + k

)N+k

ek−1.

Since log(1 + x) ≤ x on (0, 1), we have ((N + k)/N )N+k ≤ exp(k + k2/N ) ≤
exp(k + 1), so that P[X = N + k] ≥ e−2/

√
2N . ��

Proof of Proposition 10 The probability indeed vanishes if x > 1, sinceDp is smaller
than 1when restricted to probability measures on (−1, 1]d . In the sequel, the constants
may only depend on p and d.

Step 1.We introduce a Poisson measure�N onRd with intensity measure Nμ and
the associated empirical measure�N = �N/�N (Rd). Conditionally on {�N (Rd) =
n}, �N has the same law as μn (the empirical measure of n i.i.d. random variables
with law μ).

P

[
�N (Rd)Dp(�N , μ) ≥ Nx

]
=

∑

n≥0

P

[
�N (Rd) = n

]
P
[
nDp(μn, μ) ≥ Nx

]
.

By Lemma 11 (since �N (Rd) is Poisson(N )-distributed),

1√
N

�√N�∑

k=0

P
[
(N + k)Dp(μN+k, μ) ≥ Nx

] ≤ κ−1
0 P

[
�N (Rd)Dp(�N , μ) ≥ Nx

]
,

which of course implies that (for all N ≥ 1, all x > 0),

1√
N

�√N�∑

k=0

P
[
Dp(μN+k, μ) ≥ x

] ≤ κ−1
0 P

[
�N (Rd)Dp(�N , μ) ≥ Nx

]
.

Step 2. Here we prove that there is a constant A > 0 such that for any N ≥ 1, any
k ∈ {0, . . . , �√N�}, any x > AN−1/2,

P
[
Dp(μN , μ) ≥ x

] ≤ P
[
Dp(μN+k, μ) ≥ x/2

]
.

Build μn for all values of n ≥ 1 with the same i.i.d. family of μ-distributed random
variables (Xk)k≥1. Then a.s.,

|μN+k− μN |T V ≤
∣∣∣∣∣

k

N (N+k)

N∑

1

δX j

∣∣∣∣∣
T V

+
∣∣∣∣∣

1

N + k

N+k∑

N+1

δX j

∣∣∣∣∣
T V

≤ k

N + k
≤ 1√

N
.
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This obviously implies (recall Notation 4-(a)) that Dp(μN , μN+k) ≤ CN−1/2

a.s. (where C depends only on p). By the triangular inequality, Dp(μN , μ) ≤
Dp(μN+k, μ) + CN−1/2, whence

P
[
Dp(μN , μ)≥ x

]≤ P

[
Dp(μN+k, μ)≥ x − CN−1/2

]
≤ P

[
Dp(μN+k, μ)≥ x/2

]

if x − CN−1/2 ≥ x/2, i.e. x ≥ 2CN−1/2.
Step 3. Gathering Steps 1 and 2, we deduce that for all N ≥ 1, all x > AN−1/2,

P
[
Dp(μN , μ) ≥ x

] ≤ 1√
N

�√N�∑

k=0

P
[
Dp(μN+k, μ) ≥ x/2

]

≤ CP

[
�N (Rd)Dp(�N , μ) ≥ Nx/2

]
.

We next apply Proposition 8. Observing that, for x ∈ (0, 1],
(i) exp(−N f (cx/2)) ≤ exp(−cNx2) (case p > d/2),
(ii) exp(−N f (cx/2 log(2+ 2/x))) ≤ exp(−cN (x/ log(2+ 1/x)2) (case p = d/2),
(iii) exp(−N f (cx/2)) + exp(cN (x/2)d/p) ≤ exp(−cNxd/p) (case p ∈ (0, d/2))

concludes the proof when x > AN−1/2. But the other case is trivial, because for
x ≤ AN−1/2,

P[Dp(μN , μ) ≥ x] ≤ 1 ≤ exp(A2 − Nx2) ≤ C exp(−Nx2),

which is also smaller than C exp(−N (x/ log(2 + 1/x))2) and than C exp(−Nxd/p)

(if d > 2p).

6 Concentration inequalities in the non compact case

Here we conclude the proof of Theorem 2.We will need some concentration estimates
for the Binomial distribution.

Lemma 12 Let X be Binomial(N , p)-distributed. Recall that f was defined in
Notation 7.

(a) P[|X − Np| ≥ Npz] ≤ (1{p(1+z)≤1} + 1{z≤1}) exp(−Np f (z)) for all z > 0.
(b) P[|X − Np| ≥ Npz] ≤ Np for all z > 1.
(c) E(exp(−θX)) = (1 − p + pe−θ )N ≤ exp(−Np(1 − e−θ )) for θ > 0.

Proof Point (c) is straightforward. Point (b) follows from the fact that for z > 1,
P[|X − Np| ≥ Npz] = P[X ≥ Np(1 + z)] ≤ P[X �= 0] = 1 − (1 − p)N ≤
pN . For point (a), we use Bennett’s inequality [4], see Devroye and Lugosi [17,
Exercise 2.2 page 11], together with the obvious facts that P[X − Np ≥ Npz] = 0
if p(1 + z) > 1 and P[X − Np ≤ −Npz] = 0 if z > 1. The following elementary
tedious computations also works: write P[|X − Np| ≥ Npz] = P(X ≥ Np(1 +
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Convergence of the empirical measure 725

z)) + P(N − X ≥ N (1 − p + zp)) =: �(p, z) + �(1 − p, zp/(1 − p)), observe
that N − X ∼ Binomial(N , 1 − p). Use that �(p, z) ≤ 1{p(1+z)≤1} exp(−θNp(1 +
z))(1 − p + peθ )N and choose θ = log((1 − p)(1 + z)/(1 − p − pz)), this gives
�(p, z) ≤ 1{p(1+z)≤1} exp(−N [p(1 + z) log(1 + z) + (1 − p − pz) log((1 − p −
pz)/(1− p))]). A tedious study shows that�(p, z) ≤ 1{p(1+z)≤1} exp(−Np f (z)) and
that �(1 − p, zp/(1 − p)) ≤ 1{z≤1} exp(−Np f (z)). ��

We next estimate the first term when computing Dp(μN , μ).

Lemma 13 Let μ ∈ P(Rd) and p > 0. Assume (1), (2) or (3). Recall Notation 4 and
put Z p

N := ∑
n≥0 2

pn|μN (Bn) − μ(Bn)|. Let x0 be fixed. For all x > 0,

P[Z p
N ≥ x] ≤ C exp(−cNx2)1{x≤x0}

+ C

⎧
⎨

⎩

exp(−cNxα/p)1{x>x0} under(1),
exp(−c(Nx)(α−ε)/p)1{x≤x0} + exp(−c(Nx)α/p)1{x>x0} ∀ ε ∈ (0, α) under(2),
N (Nx)−(q−ε)/p ∀ ε ∈ (0, q) under(3).

The positive constants C and c depend only on p, d, x0 and either on α, γ, Eα,γ (μ)

(under (2)) or on α, γ, Eα,γ (μ), ε (under (2)) or on q, Mq(μ), ε (under (3)).

Proof During the proof, the constants are only allowed to depend on the same quan-
tities as in the statement, unless we precise it. Under (1) or (2), we assume that
γ = 1 without loss of generality (by scaling), whence Eα,1(μ) < ∞ and thus

μ(Bn) ≤ Ce−2(n−1)α
for all n ≥ 0. Under (3), we have μ(Bn) ≤ C2−qn for all

n ≥ 0. For η > 0 to be chosen later (observe that
∑

n≥0(1 − 2−η)2−ηn = 1), putting
c := 1 − 2−η and zn := cx2−(p+η)n/μ(Bn),

P
(
Z p
N ≥ x

) ≤
⎛

⎝
∑

n≥0

1{zn≤2}P [|NμN (Bn) − Nμ(Bn)| ≥ Nμ(Bn)zn]

⎞

⎠ ∧ 1

+
⎛

⎝
∑

n≥0

1{zn>2}P [|NμN (Bn) − Nμ(Bn)| ≥ Nμ(Bn)zn]

⎞

⎠ ∧ 1

=:
⎛

⎝
∑

n≥0

In(N , x)

⎞

⎠ ∧ 1 +
⎛

⎝
∑

n≥0

Jn(N , x)

⎞

⎠ ∧ 1.

From now on, the value of c > 0 is not allowed to vary anymore.We introduce another
positive constant a > 0 whose value may change from line to line.

Step 1: bound of In . Here we show that under (3) (which is of course implied by
(1) or (2)), if η ∈ (0, q/2 − p), there is A0 > 0 such that

∑

n≥0

In(N , x) ≤ C exp(−aNx2)1{x≤A0} if Nx2 ≥ 1.
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This will obviously imply that for all N ≥ 1, all x > 0,

⎛

⎝
∑

n≥0

In(N , x)

⎞

⎠ ∧ 1 ≤ C exp(−aNx2)1{x≤A0}.

First,
∑

n≥0 In(N , x) = 0 if zn > 2 for all n ≥ 0. Recalling that μ(Bn) ≤
C2−qn , this is the case if x ≥ (2C/c) supn≥0 2

(p+η−q)n = (2C/c) := A0. Next, since
NμN (Bn) ∼ Binomial(N , μ(Bn)), Lemma 12-(a) leads us to

In(N , x) ≤ 21{zn≤2} exp(−Nμ(Bn) f (zn)) ≤ 2 exp(−Nμ(Bn)z
2
n/4)),

because f (x) ≥ x2/4 for x ∈ [0, 2]. Since finally μ(Bn)z2n/4 ≥ ax22(q−2p−2η)n , we
easily conclude, since q − 2p − 2η > 0 and since Nx2 ≥ 1, that

∑

n≥0

In(N , x) ≤ C
∑

n≥0

exp(−aNx22(q−2p−2η)n)1{x≤A0} ≤ C exp(−aNx2)1{x≤A0}.

Step 2: bound of Jnunder (1) or (2) when x ≤ A. Here we fix A > 0 and prove
that if η > 0 is small enough, for all x ∈ (0, A] such that Nx2 ≥ 1,

∑

n≥0

Jn(N , x) ≤C

{
exp(−aNx2) under (1),
exp(−aNx2) + exp(−a(Nx)(α−ε)/p) ∀ ε ∈ (0, α) under (2).

Here the positive constantsC and a are allowed to depend additionally on A. This will
imply, as usual, that for all N ≥ 1, all x ∈ (0, A],
⎛

⎝
∑

n≥0

Jn(N , x)

⎞

⎠ ∧ 1 ≤C

{
exp(−aNx2) under (1),
exp(−aNx2) + exp(−a(Nx)(α−ε)/p) ∀ ε ∈ (0, α) under (2).

By Lemma 12-(a), (b) (since zn > 2 implies 1{μ(Bn)(1+zn)≤1} + 1{zn≤1} ≤
1{zn≤1/μ(Bn)}),

Jn(N , x) ≤ 1{2<zn≤1/μ(Bn)} min {exp(−Nμ(Bn) f (zn)), Nμ(Bn)}
≤ 1{znμ(Bn)≤1} min {exp (−aNμ(Bn)zn log[2 ∨ zn]) , Nμ(Bn)}

because f (y) ≥ ay log y ≥ ay log[2 ∨ y] for y > 2. Since μ(Bn) ≤ Ce−2(n−1)α
, we

get

Jn(N , x) ≤ C min{exp(−aNx2−(p+η)n log[2 ∨ (ax2−(p+η)ne2
(n−1)α

)]), Ne2
−(n−1)α }.

123



Convergence of the empirical measure 727

A straightforward computation shows that there is a constant K such that for n ≥ n1 :=
�K (1+log log(K/x))�, we have log(ax2−(p+η)ne2

(n−1)α
) ≥ 2(n−1)α/2.Consequently,

∑

n≥0

Jn(N , x) ≤ Cn1 exp(−aNx2−(p+η)n1)

+ C
∑

n>n1

min
{
exp(−aNx2(α−p−η)n), e−2(n−1)α

}

= C J 1(N , x) + C J 2(N , x).

We first show that J 1(N , x) ≤ Ce−aNx2 (here we actually could get something much
better). First, since n1 = �K + K log log(K/x)� and x ∈ [0, A], we clearly have e.g.
x2−(p+η)n1 ≥ ax3/2. Next, Nx2 ≥ 1 implies that 1/x ≤ (Nx3/2)2. Thus

J 1(N , x) ≤ C(1 + log log(C(Nx3/2)2)) exp(−aNx3/2)

≤ C exp(−aNx3/2) ≤ exp(−aNx2).

We now treat J 2(N , x).
Step 2.1. Under (1), we immediately get, if η ∈ (0, α − p) (recall that x ∈ [0, A]),

J 2(N , x) ≤
∑

n≥0

exp
(
−aNx2(α−p−η)n

)
≤ C exp(−aNx) ≤ C exp(−aNx2),

where we used that x ≤ A and Nx2 ≥ 1 (whence Nx ≥ 1/A).
Step 2.2. Under (2), we first write

J 2(N , x) ≤
∑

n≥0

min
{
exp(−aNx2(α−p−η)n), e−2(n−1)α

}

≤ n2 exp(−cNx2(α−p−η)n2) + Ne−2(n2−1)α
.

We choose n2 := �log(Nx)/((p + η) log 2)�, which yields us to 2(n2−1)α ≥
(Nx)α/(p+η)/22α and (Nx)2(α−p−η)n2 ≤ (Nx)α/(p+η). Consequently (recall that
x ∈ (0, A]),

J 2(N , x) ≤ C(1 + log(Nx) + N ) exp(−a(Nx)α/(p+η))

≤ C(1 + N ) exp(−a(Nx)α/(p+η)).

For any fixed ε ∈ (0, α), we choose η > 0 small enough so that α/(p+η) ≥ (α−ε)/p
and we conclude that (recall that Nx ≥ 1/A because Nx2 ≥ 1 and x ≤ A)

J 2(N , x) ≤C(1 + N ) exp(−a(Nx)(α−ε)/p) ≤ C exp(−a(Nx)(α−ε)/p).

The last inequality is easily checked, using that Nx2 ≥ 1 implies that N ≤ (Nx)2.
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Step 3: bound of Jnunder (3). Here we show that for all ε ∈ (0, q), if η > 0 is
small enough,

∑

n≥0

Jn(N , x) ≤ CN

(
1

Nx

)(q−ε)/p

if Nx ≥ 1.

As usual, this will imply that for all x > 0, all N ≥ 1,

⎛

⎝
∑

n≥0

Jn(N , x)

⎞

⎠ ∧ 1 ≤ CN

(
1

Nx

)(q−ε)/p

.

Exactly as in Step 2, we get from Lemma 12-(a)–(b) that

Jn(N , x) ≤min {exp (−aNμ(Bn)zn log[2 ∨ zn]) , Nμ(Bn)} .

Hence for n3 to be chosen later, since aNμ(Bn)zn = aNx2−(p+η)n ,

∑

n≥0

Jn(N , x) ≤C
n3∑

n=0

exp(−aNx2−(p+η)n) + CN
∑

n>n3

2−qn

≤Cn3 exp(−aNx2−(p+η)n3) + CN2−qn3 .

We choose n3 := �(q − ε) log(Nx)/(pq log 2)�, which implies that 2−qn3 ≤
2q(Nx)−(q−ε)/p and that 2−(p+η)n3 ≥ (Nx)−(q−ε)(p+η)/(pq). Hence

∑

n≥0

Jn(N , x) ≤C log(Nx) exp(−a(Nx)1−(q−ε)(p+η)/(pq)) + CN (Nx)−(q−ε)/p.

If η ∈ (0, pε/(q − ε)), then 1 − (q − ε)(p + η)/(pq) > 0, and thus

log(Nx) exp(−a(Nx)1−(q−ε)(p+η)/(pq)) ≤ C(Nx)−(q−ε)/p.

This ends the step.
Step 4. We next assume (1) and prove that for all x ≥ A1 := 2p[Mp(μ) +

(2 log Eα,1(μ))p/α],

Pr[Z p
N ≥ x] ≤ C exp(−aNxα/p).

Asimple computation shows that for any ν ∈ P(Rd),
∑

n≥0 2
pnν(Bn) ≤ 2pMp(ν),

whence Z p
N ≤ 2pMp(μ)+2pN−1 ∑N

1 |Xi |p ≤ 2pMp(μ)+2p[N−1 ∑N
1 |Xi |α]p/α .

Thus

Pr[Z p
N ≥ x] ≤ Pr

[
N−1

N∑

1

|Xi |α ≥ [x2−p − Mp(μ)]α/p

]
.
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Next, we note that for y ≥ 2 log Eα,1(μ),

Pr

[
N−1

N∑

1

|Xi |α ≥ y

]
≤ exp(−Ny + N log Eα,1(μ)) ≤ exp(−Ny/2).

The conclusion easily follows, since x ≥ A1 implies that y := [x2−p −Mp(μ)]α/p ≥
2 log Eα,1(μ) and since y ≥ [x2−p−1]α/p − [Mp(μ)]α/p.

Step 5. Assume (2) and put δ := 2p/α − 1. Here we show that for all x > 0,
N ≥ 1,

Pr[Z p
N ≥ x] ≤ C exp(−a(Nx)α/p) + C exp(−aNx2(log(1 + N ))−δ).

Step 5.1. For R > 0 (large) to be chosen later, we introduce the probability mea-
sure μR as the law of X1{|X |≤R}. We also denote by μR

N the corresponding empirical
measure (coupled with μN in that the Xi ’s are used for μN and the Xi1{|Xi |≤R}’s are
chosen for μR

N ). We set Z p,R
N := ∑

n≥0 2
pn

∣∣μR
N (Bn) − μR(Bn)

∣∣ and first observe

that
∣∣∣Z p

N − Z p,R
N

∣∣∣ ≤ 2pN−1 ∑N
1 |Xi |p1{|Xi |>R} + 2p

∫
{|x |>R} |x |pμ(dx). On the one

hand,
∫
{|x |>R} |x |pμ(dx) ≤ exp(−Rα/2)

∫ |x |pe|x |α/2μ(dx) ≤ C exp(−Rα/2) by

(2) (with γ = 1). On the other hand, since α ∈ (0, p], ∑N
1 |Xi |p1{|Xi |>R} ≤(∑N

1 |Xi |α1{|Xi |>R}
)p/α

. Hence if x ≥ A exp(−Rα/2), where A := 2p+1C ,

Pr
(∣∣∣Z p

N − Z p,R
N

∣∣∣ ≥ x
)

≤Pr

(
N−1

N∑

1

|Xi |p1{|Xi |>R} ≥ x2−p−1

)

≤Pr

(
N∑

1

|Xi |α1{|Xi |>R} ≥ (Nx2−p−1)α/p

)

≤ exp(−(Nx2−p−1)α/p/2)E
[
exp

(|X1|α1{|X1|>R}/2
)]N

.

Observing that E[exp(|X1|α1{|X1|>R}/2)] ≤ 1 + E[exp(|X1|α/2)1{|X1|>R}] ≤ 1 +
C exp(−Rα/2) by (2) and using that log(1 + u) ≤ u, we deduce that for all x ≥
2p+1C exp(−Rα/2),

Pr
(∣∣∣Z p

N − Z p,R
N

∣∣∣ ≥ x
)

≤ exp
(
−(Nx2−p−1)α/p/2 + CN exp(−Rα/2)

)
.

With the choice
R := (2 log(1 + N ))1/α, (5)

we finally find

Pr
(∣∣∣Z p

N − Z p,R
N

∣∣∣ ≥ x
)

≤ exp
(
−(Nx2−p−1)α/p/2 + C

)
≤ C exp

(−a(Nx)α/p)

123



730 N. Fournier, A. Guillin

provided x ≥ A exp(−Rα/2), i.e. (N + 1)x ≥ A. As usual, this immediately extends
to any value of x > 0.

Step 5.2. To study Z p,R
N , we first observe that since μR(Bn) = 0 if 2n−1 ≥ R,

we have 2pnμR(Bn) ≤ (2R)p−α/22αn/2μR(Bn) for all n ≥ 0. Hence Z p,R
N ≤

(2R)p−α/2Zα/2,R
N . But μR satisfies

∫
Rd exp(|x |α)μR(dx) < ∞ uniformly in R,

so that we may use Steps 1, 2 and 4 (with p = α/2 < α) to deduce that for

all x > 0, Pr
(
Zα/2,R
N ≥ x

)
≤ C exp(−aNx2). Consequently, Pr

(
Z p,R
N ≥ x

)
≤

C exp(−aN (x/Rp−α/2)2). Recalling (5) and that δ := 2p/α − 1, we see that that

Pr
(
Z p,R
N ≥ x

)
≤ C exp

(−aNx2(log(1 + N ))−δ
)
. This ends the step.

Conclusion. Recall that x0 > 0 is fixed.
First assume (1). By Step 4, Pr

[
Z p
N ≥ x

] ≤ C exp(−aNxα/p) for all x ≥ A1.
We deduce from Steps 1 and 2 that for x ∈ (0, A1), Pr

[
Z p
N ≥ x

] ≤ C exp(−aNx2).
We easily conclude that for all x > 0, Pr

[
Z p
N ≥ x

] ≤ C exp(−aNx2)1{x≤x0} +
C exp(−aNxα/p)1{x>x0} as desired.

Assume next (2). By Step 5, Pr
[
Z p
N ≥ x

] ≤ C exp(−aNx2(log(1 + N ))−δ) +
C exp(−a(Nx)α/p). But if x ≥ x0, we clearly have (Nx)α/p ≤ CNx2(log(1+N ))−δ

because α < p, so that Pr
[
Z p
N ≥ x

] ≤ C exp(−a(Nx)α/p). If now x ≤ x0, we use
Steps 1 and 2 to write Pr

[
Z p
N ≥ x

] ≤ C exp(−aNx2) + C exp(−a(Nx)(α−ε)/p).
Assume finally (3). By Steps 1 and 3, Pr[Z p

N ≥ x] ≤ C exp(−aNx2) +
CN (Nx)−(q−ε)/q for all x > 0. But if x ≥ x0, exp(−aNx2) ≤ exp(−aNx) ≤
C(Nx)−(q−ε)/q ≤ CN (Nx)−(q−ε)/q . We conclude that for all x > 0, Pr[Z p

N ≥ x] ≤
C exp(−aNx2)1{x≤x0} + CN (Nx)−(q−ε)/q as desired.

We can now give the

Proof of Theorem 2 Let us recall that the constants during this proof may depend only
on p, d and either on α, γ, Eα,γ (μ) (under (1)) or on α, γ, Eα,γ (μ), ε (under (2)) or
on q, Mq(μ), ε (under (3)).

Using Lemma 5, we write

Tp(μN , μ) ≤ κp,dDp(μN , μ)

≤ κp,d

∑

n≥0

2pn|μN (Bn) − μ(Bn)|

+ κp,d

∑

n≥0

2pnμ(Bn)Dp(RBnμN ,RBnμ)

=: κp,d(Z
p
N + V p

N ).

Hence

Pr(Tp(μN , μ) ≥ x) ≤ Pr(Z p
N ≥ x/(2κp,d)) + Pr(V p

N ≥ x/(2κp,d)).

By Lemma 13 (choosing x0 := 1/(2κp,d)), we easily find Pr(Z p
N ≥ x/(2κp,d)) ≤

Ce−cNx21{x≤1} + b(N , x) ≤ a(N , x)1{x≤1} + b(N , x), these quantities being defined
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Convergence of the empirical measure 731

in the statement of Theorem 2. We now check that there is A > 0 such that for all
x > 0,

Pr
[
V p
N ≥ x/(2κp,d)

] ≤ a(N , x)1{x≤A}. (6)

This will end the proof, since one easily checks that a(N , x)1{x≤A} ≤ a(N , x)1{x≤1}+
b(N , x) (when allowing the values of the constants to change).

Let us thus check (6). For η > 0 to be chosen later, we set c := (1− 2−η)/(2κp,d)

and zn := cx2−(p+η)n/μ(Bn). Observing that
∑

n≥0(1 − 2−η)2−ηn = 1), we write

P
(
V p
N ≥ x/(2κp,d)

) ≤
⎛

⎝
∑

n≥0

P
[
Dp(RBnμN ,RBnμ) ≥ zn

]
⎞

⎠ ∧ 1

=:
⎛

⎝
∑

n≥0

Kn(N , x)

⎞

⎠ ∧ 1.

From now on, the value of c > 0 is not allowed to vary anymore.We introduce another
positive constant a > 0 whose value may change from line to line.We only assume (3)
(which is implied by (1) or (2)). We now show that if η > 0 is chosen small enough,
there is A > 0 such that

∑

n≥0

Kn(N , x) ≤ C exp(−aNh(x))1{x≤A} if Nh(x) ≥ 1, (7)

where h(x) = x2 if p > d/2, h(x) = (x/ log(2+1/x))2 if p = d/2 and h(x) = xd/p

if p < d/2. This will obviously imply as usual that for all x > 0,

⎛

⎝
∑

n≥0

Kn(N , x)

⎞

⎠ ∧ 1 ≤ C exp(−aNh(x))1{x≤A}

and thus conclude the proof of (6). We thus only have to prove (7).
Conditionally on μN (Bn), RBnμN is the empirical measure of NμN (Bn) points

which are RBnμ-distributed. Since RBnμ is supported in (−1, 1]d , we may apply
Proposition 10 and obtain

Kn(N , x) ≤ CE
[
1{zn≤1} exp (−aNμN (Bn)h(zn))

]

≤ C1{zn≤1} exp(−Nμ(Bn)(1 − e−ah(zn)))

by Lemma 12-(c). But the condition zn ≤ 1 implies that h(zn) is bounded (by a
constant depending only on p and d), whence

Kn(N , x) ≤ C1{zn≤1} exp(−aNμ(Bn)h(zn)).
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By (3), we have μ(Bn) ≤ C2−qn . Hence if x > A := C/c, we have zn ≥
(c/C)x2(q−p−η)n > 1 for all n ≥ 1 (if η ∈ (0, q − p)) and thus

∑
n≥0 Kn(N , x) = 0

as desired.
Next, we see that θ �→ θh(x/θ) is decreasing, whence for all x ≤ A,

Kn(N , x)≤C exp(−aN2−qnh(cx2(q−p−η)n/C))≤C exp(−aN2−qnh(x2(q−p−η)n)).

We now treat separately the three cases.
Step 1: case p > d/2. Since h(x) = x2, we have, if η ∈ (0, q/2 − p),

∑

n≥0

Kn(N , x) ≤ C
∑

n≥0

exp
(
−aNx22n(q−2p−2η)

)
≤ C exp(−aNx2)

if Nx2 ≥ 1.
Step 2: case p = d/2. Since h(x) = (x/ log(2+1/x))2, we have, if η ∈ (0,q/2-p),

∑

n≥0

Kn(N , x) ≤C
∑

n≥0

exp
(
−aNx22(q−2p−2η)n/ log2[2 + 1/(x2(q−p−η)n)]

)

≤C
∑

n≥0

exp(−aNh(x)2n(q−2p−2η))

≤C exp(−aNh(x))

if Nh(x) ≥ 1. The third inequality only uses that log2(2+1/(x2n(q−p−η))) ≤ log2(2+
1/x).

Step 3: case p < d/2. Here h(x) = xd/p. Since p < d/2 and q > 2p, it holds
that q(1 − p/d) − p > 0. We thus may take η ∈ (0, q(1 − p/d) − p) (so that
q(d/p − 1) − d − dη/p > 0) and we get

∑

n≥0

Kn(N , x) ≤C
∑

n≥0

exp(−aNxd/p2n(q(d/p−1)−d−dη/p)) ≤ C exp(−aNxd/p)

if Nxd/p ≥ 1. ��

7 The dependent case

We finally study a few classes of dependent sequences of random variables. We only
give some moment estimates. Concentration inequalities might be obtained, but this
should be much more complicated.
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7.1 ρ-mixing stationary sequences

A stationary sequence of random variables (Xn)n≥1 with common law μ is said to be
ρ-mixing, for some ρ : N → R

+ with ρn → 0, if for all f, g ∈ L2(μ) and all i, j ≥ 1

Cov ( f (Xi ), g(X j )) ≤ ρ|i− j |
√
Var ( f (Xi ))Var (g(X j )).

We refer for example to Rio [37], Doukhan [20] or Bradley [10].

Theorem 14 Consider a stationary sequence of random variables (Xn)n≥1 with com-
mon law μ and set μN := N−1 ∑N

1 δXi . Assume that this sequence is ρ-mixing, for
some ρ : N → R

+ satisfying
∑

n≥0 ρn < ∞. Let p > 0 and assume thatμ ∈ Mq(R
d)

for some p > q. There exists a constant C depending only on p, d, q, Mq(μ), ρ such
that, for all N ≥ 1,

E
(
Tp(μN , μ)

) ≤ C

⎧
⎨

⎩

N−1/2 + N−(q−p)/q if p > d/2 and q �= 2p,
N−1/2 log(1 + N ) + N−(q−p)/q if p = d/2 and q �= 2p,
N−p/d + N−(q−p)/q if p ∈ (0, d/2) and q �= d/(d − p).

This is very satisfying:we get the same estimate as in the independent case. The case∑
n≥0 ρn = ∞ can also be treated (but then the upper bounds will be less good and

depend on the rate of decrease of ρ). Actually, the ρ-mixing condition is slightly too
strong (we only need the covariance inequality when f = g is an indicator function),
but it is best adapted notion of mixing we found in the litterature.

Proof We first check that for any Borel subset A ⊂ R
d ,

E[|μN (A) − μ(A)|] ≤ min{2μ(A),Cμ(A)N−1/2}.

But this is immediate: E[μN (A)] = μ(A) (whence E[|μN (A) − μ(A)|] ≤ 2μ(A))
and

VarμN (A) = 1

N 2

∑

i, j≤N

Cov (1A(Xi ), 1A(Xi ))

≤ 1

N 2

∑

i, j≤N

ρ|i− j |Var (1A(X1))

≤ μ(A)(1 − μ(A))

N 2

∑

i, j≤N

ρ|i− j |.

This is smaller than Cμ(A)/N as desired, since
∑

i, j≤N ρ|i− j | ≤ N
∑

k≥0 ρk = CN .
Once this is done, it suffices to copy (without any changes) the proof of Theorem 1.

��
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7.2 Markov chains

Here we consider a R
d -valued Markov chain (Xn)n≥1 with transition kernel P and

initial distribution ν ∈ P(Rd) and we set μN := N−1 ∑N
1 δXn . We assume that it

admits a unique invariant probability measure π and the following L2-decay property
(usually related to a Poincaré inequality)

∀ n ≥ 1, ∀ f ∈ L2(π), ‖Pn f − π( f )‖L2(π) ≤ ρn‖ f − π( f )‖L2(π) (8)

for some sequence ρ = (ρn)n≥1 decreasing to 0.

Theorem 15 Let p ≥ 1, d ≥ 1 and r > 2 be fixed. Assume that our Markov chain
(Xn)n≥0 satisfies (8) with a sequence (ρn)n≥1 satisfying

∑
n≥1 ρn < ∞. Assume also

that the initial distribution ν is absolutely continuous with respect to π and satisfies
‖dν/dπ‖Lr (π) < ∞. Assume finally that Mq(π) < ∞ for some q > pr/(r − 1).
Setting qr := q(r − 1)/r and dr = d(r + 1)/r , there is a constant C, depending only
on p, d, r, q, ρ, Mq (π) and ‖dν/dπ‖Lr (π) such that for all N ≥ 1,

Eν

(
Tp(μN , π)

) ≤ C

⎧
⎨

⎩

N−1/2 + N−(qr−p)/qr if p > dr/2r and qr �= 2p,
N−1/2 log(1 + N ) + N−(qr−p)/qr if p = dr/2r and qr �= 2p,
N−p/d + N−(qr−p)/qr if p ∈ (0, dr/2) and qr �= dr/(dr − p).

Once again, we might adapt the proof to get a complete picture corresponding to
other decay than L2-L2 and to slower mixing rates (ρn)n≥1.

Proof We only have to show that for any � ≥ 0, any n ≥ 0,

�N
n,� :=

∑

F∈P�

Eν

(|μN (2n F ∩ Bn) − π(2n F ∩ Bn)|
)

≤C min
{
(π(Bn))

(r−1)/r , [2dr �(π(Bn))
(r−1)/r/N ]1/2

}
.

Since Mq(π) < ∞ (whence π(Bn) ≤ C2−qn), we will deduce that

�N
n,� ≤ C min

{
2−qr n, 2dr �/2(2−qr n/N )1/2

}
.

Then the rest of the proof is exactly the same as that of Theorem 1, replacing every-
where q and d by qr and dr .

We first check that �N
n,� ≤ C(π(Bn))

(r−1)/r . Using that ‖dν/dπ‖Lr (π) < ∞, we
write

Eν(μN (Bn)) = 1

N

N∑

i=1

Eπ

[
dν

dπ
(X0)1{Xi∈Bn}

]
≤ ‖dν/dπ‖Lr (π)π(Bn)

(r−1)/r .

We next consider a Borel subset A of Rd and check that

Eν(|μN (A) − π(A)|) ≤ C(π(A))(r−1)/(2r)N−1/2.
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To do so, as is usual when working with Markov chains or covariance properties (see
[7]), we introduce f = 1A − π(A) and write

Eν(|μN (A) − π(A)|) = 1

N
Eν

(∣∣∣∣∣

N∑

i=1

f (Xi )

∣∣∣∣∣

)
≤ 1

N

⎛

⎝
N∑

i, j=1

Eν( f (Xi ) f (X j ))

⎞

⎠
1/2

.

For j ≥ i , it holds that

Eν( f (Xi ) f (X j )) =Eν[ f (Xi )P
j−i f (Xi )] = Eπ

[
dν

dπ
(X0) f (Xi ).P

j−i f (Xi )

]
.

Using the Hölder inequality (recall that ‖dν/dπ‖Lr (π) < ∞ with r > 2) and (8), we
get

Eν( f (Xi ) f (X j )) ≤ ‖dν/dπ‖Lr (π)‖ f ‖L2r/(r−2)(π)‖P j−i f ‖L2(π)

≤ Cρ j−i‖ f ‖L2r/(r−2)(π)‖ f ‖L2(π).

But for s > 1, ‖ f ‖Ls (π) ≤ Cs(π(A) + (π(A))s)1/s ≤ Cs(π(A))1/s , we find
Eν( f (Xi ) f (X j )) ≤ Cρ j−i (π(A))(r−1)/r and thus

Eν(|μN (F) − π(F)|) ≤ C

N

⎛

⎝
N∑

i, j=1

ρ|i− j |(π(F))(r−1)/2r

⎞

⎠
1/2

≤ C(π(F))(r−1)/(2r)N−1/2

as desired. We used that
∑N

i, j=1 ρ|i− j | ≤ CN .
We can finally conclude that

�N
n,� ≤CN−1/2

∑

F∈P�

(π(2n F ∩ Bn))
(r−1)/(2r) ≤ CN−1/22dr �/2(π(Bn))

(r−1)/(2r)

by the Hölder inequality (and because #P� = 2d�), where dr = d(r + 1)/r as in the
statement. ��

7.3 Mc Kean-Vlasov particles systems

Particle approximation of nonlinear equations has attracted a lot of attention in the
past thirty years. We will focus here on the following R

d -valued nonlinear S.D.E.

dXt = √
2dBt − ∇V (Xt )dt − ∇W ∗ ut (Xt )dt, X0 = x

where ut = Law(Xt ) and (Bt ) is anRd -valued Brownianmotion. This is a probabilis-
tic representation of the so-called Mc Kean-Vlasov equation, which has been studied
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in particular by Carillo et al. [12], Malrieu [28] and Cattiaux et al.[13] to which we
refer for furthermotivations and existence and uniqueness of solutions.Wewill mainly
consider here the case where V and W are convex (and if V = 0 the center of mass is
fixed) and W is even. To fix the ideas, let us consider only two cases:

(a) Hess V ≥ β I d > 0, Hess W ≥ 0.
(b) V (x) = |x |α for α > 2, Hess W ≥ 0.

The particle system introduced to approximate the nonlinear equation is the follow-
ing. Let (Bi

t )t≥0 be N independent Brownianmotions. For i = 1, . . . , N , set Xi,N
0 = x

and

dXi,N
t = √

2dBi
t − ∇V (Xi,N

t )dt − 1

N

∑

j

∇W (Xi,N
t − X j,N

t )dt.

Usual propagation of chaos property is usually concerned with control of

T2(Law(X1,N
t ), ut )

uniformly (or not) in time. It is however very natural to consider rather a control of

T2(ûN
t , ut )

where ûN
t = 1

N

∑N
i=1 δXi,N

t
, as in Bolley et al. [11].

To do so, and inspired by the usual proof of propagation of chaos, let us consider
nonlinear independent particles

dXi
t = √

2dBi
t − ∇V (Xi

t )dt − ∇W ∗ ut (X
i
t )dt, Xi

0 = x

(driven by the same Brownian motions as the particle system) and the corresponding
empirical measure uN

t = 1
N

∑N
i=1 δXi

t
. We then have

T2
(
ûN
t , ut

)
≤ 2T2

(
ûN
t , uN

t

)
+ 2T2

(
uN
t , ut

)
.

Then following [28] in case (a) and [13] in case (b), one easily gets (for some time-
independent constant C)

E

(
T 2
2 (ûN

t , uN
t )

)
≤ 1

N
E

(
N∑

i=1

|Xi,N
t − Xi

t |2
)

≤ Cα(N )

where α(n) = N−1 in case (a) and α(N ) = N−1/(α−1) in case (b). It is not hard to
prove here that the nonlinear particles have infinitely many moments (uniformly in
time) so that combining Theorem 1 with the previous estimates gives

sup
t≥0

E(T2(ûN
t , ut )) ≤ C(α(N ) + β(N ))

where β(N ) = N−1/2 if d = 1, β(N ) = N−1/2 log(1 + N ) if d = 2 and β(N ) =
N−1/d if d ≥ 3.
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