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Abstract For all n, ε > 0, we show that the set of Poisson Binomial distributions
on n variables admits a proper ε-cover in total variation distance of size n2 + n ·
(1/ε)O(log2(1/ε)), which can also be computed in polynomial time. We discuss the
implications of our construction for approximation algorithms and the computation
of approximate Nash equilibria in anonymous games.

Mathematics Subject Classification 60F99

1 Introduction

APoisson binomial distribution of order n is the discrete probability distribution of the
sum of n independent indicator random variables. The distribution is parameterized
by a vector (pi )ni=1 ∈ [0, 1]n of probabilities, and is denoted PBD(p1, . . . , pn). In
this paper we establish that the set Sn of all Poisson Binomial distributions of order
n admits certain useful covers with respect to the total variation distance dTV (·, ·)
between distributions. Namely

Theorem 1 (Main Theorem) For all n, ε > 0, there exists a set Sn,ε ⊂ Sn such that:

1. Sn,ε is an ε-cover of Sn in total variation distance; that is, for all D ∈ Sn, there
exists some D′ ∈ Sn,ε such that dTV

(
D, D′) ≤ ε
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2. |Sn,ε | ≤ n2 + n · ( 1
ε

)O(log2 1/ε)

3. Sn,ε can be computed in time O(n2 log n) + O(n log n) · ( 1
ε

)O(log2 1/ε)
.

Moreover, all distributions PBD(p1, . . . , pn) ∈ Sn,ε in the cover satisfy at least one
of the following properties, for some positive integer k = k(ε) = O(1/ε) :
• (k-sparse form) there is some � ≤ k3 such that, for all i ≤ �, pi ∈{

1
k2

, 2
k2

, . . . , k2−1
k2

}
and, for all i > �, pi ∈ {0, 1}; or

• ((n, k)-binomial form) there is some � ∈ {1, . . . , n} and q ∈ { 1
n , 2

n , . . . , n
n

}
such

that, for all i ≤ �, pi = q and, for all i > �, pi = 0; moreover, � and q satisfy
�q ≥ k2 and �q(1 − q) ≥ k2 − k − 1.

Covers such as the one provided by Theorem 1 are of interest in the design of
algorithms, when one is searching a class of distributions C to identify an element of
the class with some quantitative property, or in optimizing over a class with respect
to some objective. If the metric used in the construction of the cover is relevant for
the problem at hand, and the cover is discrete, relatively small and easy to construct,
then one can provide a useful approximation to the sought distribution by searching
the cover, instead of searching all of C . For example, it is shown in [12–14] that
Theorem 1 implies efficient algorithms for computing approximate Nash equilibria in
an important class of multiplayer games, called anonymous [5,20].

We proceed with a fairly detailed sketch of the proof of our main cover theorem,
Theorem 1, stating two additional results, Theorems 2 and 3. The complete proofs
of Theorems 1, 2 and 3 are deferred to Sects. 3, 4 and 5 respectively. Section 1.4
discusses related work, while Sect. 2 provides formal definitions, as well as known
approximations to the Poisson Binomial distribution by simpler distributions, which
are used in the proof.

1.1 Proof outline and additional results

At a high level, the proof of Theorem 1 is obtained in two steps. First, we establish the
existence of an ε-cover whose size is polynomial in n and (1/ε)1/ε

2
, via Theorem 2.

We then show that this cover can be pruned to size polynomial in n and (1/ε)log
2(1/ε)

using Theorem 3, which provides a quantification of how the total variation distance
between Poisson Binomial distributions depends on the number of their first moments
that are equal.

We proceed to state the two ingredients of the proof, Theorems 2 and 3. We start
with Theorem 2 whose detailed sketch is given in Sect. 1.2, and complete proof in
Sect. 4.

Theorem 2 Let X1, . . . , Xn be arbitrarymutually independent indicators, and k ∈ N.
Then there exist mutually independent indicators Y1, . . . ,Yn satisfying the following:

1. dTV
(∑

i Xi ,
∑

i Yi
) ≤ 41/k;

2. at least one of the following is true:
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(a) (k-sparse form) there exists some � ≤ k3 such that, for all i ≤ �,E[Yi ] ∈{
1
k2

, 2
k2

, . . . , k2−1
k2

}
and, for all i > �,E[Yi ] ∈ {0, 1}; or

(b) ((n, k)-Binomial form) there is some � ∈ {1, . . . , n} and q ∈ { 1
n , 2

n , . . . , n
n

}

such that, for all i ≤ �,E[Yi ] = q and, for all i > �,E[Yi ] = 0; moreover, �
and q satisfy �q ≥ k2 and �q(1 − q) ≥ k2 − k − 1.

Theorem 2 implies the existence of an ε-cover of Sn whose size is n2 + n ·
(1/ε)O(1/ε2). This cover can be obtained by enumerating over all Poisson Binomial
distributions of order n that are in k-sparse or (n, k)-Binomial form as defined in the
statement of the theorem, for k = �41/ε�.

The next step is to sparsify this cover by removing elements to obtain Theorem 1.
Note that the term n ·(1/ε)O(1/ε2) in the size of the cover is due to the enumeration over
distributions in sparse form. Using Theorem 3 below, we argue that there is a lot of
redundancy in those distributions, and that it suffices to only include n ·(1/ε)O(log2 1/ε)

of them in the cover. In particular, Theorem 3 establishes that, if two Poisson Binomial
distributions have their first O(log 1/ε) moments equal, then their distance is at most
ε. So we only need to include at most one sparse form distribution with the same
first O(log 1/ε) moments in our cover. We proceed to state Theorem 3, postponing its
proof to Sect. 5. In Sect. 1.3 we provide a sketch of the proof.

Theorem 3 Let P := (pi )ni=1 ∈ [0, 1/2]n and Q := (qi )ni=1 ∈ [0, 1/2]n be two
collections of probability values. Let also X := (Xi )

n
i=1 and Y := (Yi )ni=1 be two

collections of mutually independent indicators with E[Xi ] = pi and E[Yi ] = qi , for
all i ∈ [n]. If for some d ∈ [n] the following condition is satisfied:

(Cd) :
n∑

i=1

p�
i =

n∑

i=1

q�
i , for all � = 1, . . . , d,

then dTV

(
∑

i

Xi ,
∑

i

Yi

)

≤ 13(d + 1)1/42−(d+1)/2. (1)

Remark 1 Condition (Cd) in the statement of Theorem 3 constrains the first d power
sums of the expectations of the constituent indicators of two Poisson Binomial distri-
butions. To relate these power sums to the moments of these distributions we can use
the theory of symmetric polynomials to arrive at the following equivalent condition
to (Cd):

(Vd) : E

⎡

⎣
(

n∑

i=1

Xi

)�
⎤

⎦ = E

⎡

⎣
(

n∑

i=1

Yi

)�
⎤

⎦ , for all � ∈ [d].

We provide a proof that (Cd) ⇔ (Vd) in Proposition 2 of Sect. 6.

Remark 2 In view of Remark 1, Theorem 3 says the following:

“If two sums of independent indicators with expectations in [0,1/2] have equal
first d moments, then their total variation distance is 2−�(d).”
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We note that the bound (1) does not depend on the number of variables n, and in
particular does not rely on summing a large number of variables. We also note that,
since we impose no constraint on the expectations of the indicators, we also impose
no constraint on the variance of the resulting Poisson Binomial distributions. Hence
we cannot use Berry-Esséen type bounds to bound the total variation distance of the
two Poisson Binomial distributions by approximating themwith Normal distributions.
Finally, it is easy to see that Theorem 3 holds if we replace [0, 1/2] with [1/2, 1]. See
Corollary 1 in Sect. 6.

In Sect. 3 we show how to use Theorems 2 and 3 to obtain Theorem 1. We continue
with the outlines of the proofs of Theorems 2 and 3, postponing their complete proofs
to Sects. 4 and 5.

1.2 Outline of proof of Theorem 2

Given arbitrary indicators X1, . . . , Xn we obtain indicators Y1, . . . ,Yn , satisfying
the requirements of Theorem 2, in two steps. We first massage the given variables
X1, . . . , Xn to obtain variables Z1, . . . , Zn such that

dTV

(
∑

i

Xi ,
∑

i

Zi

)

≤ 7/k;

and E[Zi ] /∈
(
0,

1

k

)
∪
(
1 − 1

k
, 1

)
; (2)

that is, we eliminate from our collection variables that have expectations very close
to 0 or 1, without traveling too much distance from the starting Poisson Binomial
distribution.

Variables Z1, . . . , Zn do not necessarily satisfy Properties 2a or b in the statement
of Theorem 2, but allow us to define variables Y1, . . . ,Yn which do satisfy one of these
properties and, moreover,

dTV

(
∑

i

Zi ,
∑

i

Yi

)

≤ 34/k. (3)

(2), (3) and the triangle inequality imply dTV
(∑

i Xi ,
∑

i Yi
) ≤ 41

k , concluding the
proof of Theorem 2.

Let us call Stage 1 the process of determining the Zi ’s and Stage 2 the process
of determining the Yi ’s. The two stages are described briefly below, and in detail
in Sects. 4.1 and 4.2 respectively. For convenience, we use the following notation:
for i = 1, . . . , n, pi = E[Xi ] will denote the expectation of the given indicator
Xi , p′

i = E[Zi ] the expectation of the intermediate indicator Zi , and qi = E[Yi ] the
expectation of the final indicator Yi .

Stage 1: Recall that our goal in this stage is to define a Poisson Binomial distribution∑
i Zi whose constituent indicators have no expectation in Tk := (0, 1

k ) ∪ (1− 1
k , 1).
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Sparse covers for sums of indicators 683

The expectations (p′
i = E[Zi ])i are defined in terms of the corresponding (pi )i as

follows. For all i , if pi /∈ Tk we set p′
i = pi . Then, if Lk is the set of indices i such

that pi ∈ (0, 1/k), we choose any collection (p′
i )i∈Lk so as to satisfy |∑i∈Lk

pi −∑
i∈Lk

p′
i | ≤ 1/k and p′

i ∈ {0, 1/k}, for all i ∈ Lk . That is, we round all indicators’
expectations to 0 or 1/k while preserving the expectation of their sum, to within
1/k. Using the Poisson approximation to the Poisson Binomial distribution, given
as Theorem 4 in Sect. 2.1, we can argue that

∑
i∈Lk

Xi is within 1/k of a Poisson
distribution with the same mean. By the same token,

∑
i∈Lk

Zi is 1/k-close to a
Poisson distribution with the same mean. And the two resulting Poisson distributions
have means that are within 1/k, and are therefore 1.5/k-close to each other (see
Lemma 3). Hence, by triangle inequality

∑
i∈Lk

Xi is 3.5/k-close to
∑

i∈Lk
Zi . A

similar construction is used to define the p′
i ’s corresponding to the pi ’s lying in (1 −

1/k, 1). The details of this step can be found in Sect. 4.1.

Stage 2: The definition of (qi )i depends on the number m of p′
i ’s which are not 0 or

1. The case m ≤ k3 corresponds to Case 2a in the statement of Theorem 2, while the
case m > k3 corresponds to Case 2b.

• Case m ≤ k3: First, we set qi = p′
i , if p′

i ∈ {0, 1}. We then argue that each
p′
i , i ∈ M := {i | p′

i /∈ {0, 1}}, can be rounded to some qi , which is an integer
multiple of 1/k2, so that (3) holds. Notice that, if we were allowed to use multiples
of 1/k4, this would be immediate via an application of Lemma 2:

dTV

(
∑

i

Zi ,
∑

i

Yi

)

≤
∑

i∈M
|p′

i − qi |.

We improve the required accuracy to 1/k2 via a series of Binomial approximations
to the Poisson Binomial distribution, using Ehm’s bound [15] stated as Theorem 5
in Sect. 2.1. The details involve partitioning the interval [1/k, 1− 1/k] into irreg-
ularly sized subintervals, whose endpoints are integer multiples of 1/k2. We then
round all but one of the p′

i ’s falling in each subinterval to the endpoints of the
subinterval so as to maintain their total expectation, and apply Ehm’s approxima-
tion to argue that the distribution of their sum is not affected bymore than O(1/k2)
in total variation distance. It is crucial that the total number of subintervals is O(k)
to get a total hit of at most O(1/k) in variation distance in the overall distribution.
The details are given in Sect. 4.2.1.

• Case m > k3: We approximate
∑

i Zi with a Translated Poisson distribution
(defined formally in Sect. 2), using Theorem 6 of Sect. 2.1 due to Röllin [23].
The quality of the approximation is inverse proportional to the standard deviation
of

∑
i Zi , which is at least k, by the assumption m > k3. Hence, we show that∑

i Zi is 3/k-close to a Translated Poisson distribution. We then argue that the
latter is 6/k-close to a Binomial distribution B(m′, q), where m′ ≤ n and q is an
integer multiple of 1

n . In particular, we show that an appropriate choice of m′ and
q implies (3), if we set m′ of the qi ’s equal to q and the remaining equal to 0. The
details are in Sect. 4.2.2.
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1.3 Outline of proof of theorem 3

Using Roos’s expansion [24], given as Theorem 7 of Sect. 2.1, we express
PBD(p1, . . . , pn) as a weighted sum of the Binomial distribution B(n, p) at p =
p̄ = ∑

pi/n and its first n derivatives with respect to p also at value p = p̄. (These
derivatives correspond to finite signed measures.) We notice that the coefficients of
the first d + 1 terms of this expansion are symmetric polynomials in p1, . . . , pn of
degree at most d. Hence, from the theory of symmetric polynomials, each of these
coefficients can be written as a function of the power-sum symmetric polynomials∑

i p
�
i for � = 1, . . . , d. So, whenever two Poisson Binomial distributions satisfy

Condition (Cd), the first d + 1 terms of their expansions are exactly identical, and
the total variation distance of the distributions depends only on the other terms of the
expansion (those corresponding to higher derivatives of the Binomial distribution).
The proof is concluded by showing that the joint contribution of these terms to the
total variation distance can be bounded by 2−�(d), using Proposition 1 of Sect. 2.1,
which is also due to Roos [24]. The details are provided in Sect. 5.

1.4 Related work

It is believed that Poisson [22] was the first to study the Poisson Binomial distribution,
hence its name. Sometimes the distribution is also referred to as “Poisson’s Binomial
Distribution.” PBDs have many uses in research areas such as survey sampling, case-
control studies, and survival analysis; see e.g. [8] for a survey of their uses. They are
also very important in the design of randomized algorithms [21].

In Probability and Statistics there is a broad literature studying various properties
of these distributions; see [28] for an introduction to some of this work. Many results
provide approximations to the Poisson Binomial distribution via simpler distributions.
In a well-known result, Le Cam [18] shows that, for any vector (pi )ni=1 ∈ [0, 1]n ,

dTV

(

PBD(p1, . . . , pn),Poisson

(
n∑

i=1

pi

))

≤
n∑

i=1

p2i ,

where Poisson(λ) is the Poisson distribution with parameter λ. Subsequently many
other proofs of this bound and improved ones, such as Theorem 4 of Sect. 2.1, were
given, using a range of different techniques; [2,7,11,17] is a sampling of work along
these lines, and Steele [26] gives an extensive list of relevant references. Much work
has also been done on approximating PBDs by Normal distributions (see e.g. [1,6,16,
19,27]) and by Binomial distributions; see e.g. Ehm’s result [15], given as Theorem 5
of Sect. 2.1, as well as Soon’s result [25] and Roos’s result [24], given as Theorem 7
of Sect. 2.1.

These results provide structural information about PBDs that can be well approx-
imated by simpler distributions, but fall short of our goal of approximating a PBD to
within arbitrary accuracy. Indeed, the approximations obtained in the probability lit-
erature (such as the Poisson, Normal and Binomial approximations) typically depend
on the first few moments of the PBD being approximated, while higher moments are
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crucial for arbitrary approximation [24]. At the same time, algorithmic applications
often require that the approximating distribution is of the same kind as the distribution
that is being approximated. E.g., in the anonymous game application mentioned ear-
lier, the parameters of the given PBD correspond tomixed strategies of players at Nash
equilibrium, and the parameters of the approximating PBD correspond tomixed strate-
gies at approximate Nash equilibrium. Approximating the given PBD via a Poisson
or a Normal distribution would not have any meaning in the context of a game.

As outlined above, the proof of our main result, Theorem 1, builds on Theorems 2
and 3. A weaker form of these theorems was announced in [9,13], while a weaker
form of Theorem 1 was announced in [10].

2 Preliminaries

For a positive integer �, we denote by [�] the set {1, . . . , �}. For a random variable X ,
we denote by L(X) its distribution. We further need the following definitions.

Total variation distance: For two distributions P and Q supported on a finite set A
their total variation distance is defined as

dTV (P,Q) := 1

2

∑

α∈A

|P(α) − Q(α)|.

An equivalent way to define dTV (P,Q) is to view P andQ as vectors inRA, and define
dTV (P,Q) = 1

2‖P − Q‖1 to equal half of their �1 distance. If X and Y are random
variables ranging over a finite set, their total variation distance, denoted dTV (X,Y ) ,

is defined to equal dTV (L(X),L(Y )).

Covers: LetF be a set of probability distributions. A subset G ⊆ F is called a (proper)
ε-cover of F in total variation distance if, for all D ∈ F , there exists some D′ ∈ G
such that dTV

(
D, D′) ≤ ε.

Poisson binomial distribution: A Poisson binomial distribution of order n ∈ N is
the discrete probability distribution of the sum

∑n
i=1 Xi of n mutually independent

Bernoulli random variables X1, . . . , Xn . We denote the set of all Poisson Binomial
distributions of order n by Sn .

By definition, a Poisson Binomial distribution D ∈ Sn can be represented by a
vector (pi )ni=1 ∈ [0, 1]n of probabilities as follows. We map D ∈ Sn to a vector of
probabilities by finding a collection X1, . . . , Xn of mutually independent indicators
such that

∑n
i=1 Xi is distributed according to D, and setting pi = E[Xi ] for all i . The

following lemma implies that the resulting vector of probabilities is unique up to a
permutation, so that there is a one-to-one correspondence between Poisson Binomial
distributions and vectors (pi )ni=1 ∈ [0, 1]n such that 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1.
The proof of this lemma can be found in Sect. 6.

Lemma 1 Let X1, . . . , Xn be mutually independent indicators with expectations
p1 ≤ p2 ≤ · · · ≤ pn respectively. Similarly let Y1, . . . , Yn be mutually indepen-
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686 C. Daskalakis, C. Papadimitriou

dent indicators with expectations q1 ≤ · · · ≤ qn respectively. The distributions of∑
i Xi and

∑
i Yi are different if and only if (p1, . . . , pn) = (q1, . . . , qn).

We will be denoting a Poisson Binomial distribution D ∈ Sn by PBD(p1, . . . , pn)
when it is the distribution of the sum

∑n
i=1 Xi of mutually independent indicators

X1, . . . , Xn with expectations pi = E[Xi ], for all i . Given the above discussion, the
representation is unique up to a permutation of the pi ’s.

Translated Poisson distribution: We say that an integer random variable Y has a trans-
lated Poisson distribution with parameters μ and σ 2 and write L(Y ) = T P(μ, σ 2)

iff

L(Y − �μ − σ 2�) = Poisson(σ 2 + {μ − σ 2}),

where {μ − σ 2} represents the fractional part of μ − σ 2.

Order notation: Let f (x) and g(x) be two positive functions defined on some infinite
subset of R+. One writes f (x) = O(g(x)) if and only if, for sufficiently large values
of x, f (x) is at most a constant times g(x). That is, f (x) = O(g(x)) if and only if
there exist positive real numbers M and x0 such that

f (x) ≤ Mg(x), for all x > x0.

Similarly, we write f (x) = �(g(x)) if and only if there exist positive reals M and x0
such that

f (x) ≥ Mg(x), for all x > x0.

We are casual in our use of the order notation O(·) and �(·) throughout the paper.
Whenever we write O( f (n)) or �( f (n)) in some bound where n ranges over the
integers, we mean that there exists a constant c > 0 such that the bound holds true for
sufficiently large n if we replace the O( f (n)) or�( f (n)) in the bound by c · f (n). On
the other hand, whenever we write O( f (1/ε)) or �( f (1/ε)) in some bound where ε

ranges over the positive reals, we mean that there exists a constant c > 0 such that the
bound holds true for sufficiently small ε if we replace the O( f (1/ε)) or �( f (1/ε))
in the bound with c · f (1/ε).

We conclude with an easy but useful lemma whose proof we defer to Sect. 6.

Lemma 2 Let X1, . . . , Xn be mutually independent random variables, and let
Y1, . . . ,Yn be mutually independent random variables. Then

dTV

(
n∑

i=1

Xi ,

n∑

i=1

Yi

)

≤
n∑

i=1

dTV (Xi ,Yi ) .

2.1 Approximations to the Poisson binomial distribution

We present a collection of known approximations to the Poisson Binomial distribution
via simpler distributions. The quality of these approximations can be quantified in
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Sparse covers for sums of indicators 687

terms of the first few moments of the Poisson Binomial distribution that is being
approximated. We will make use of these bounds to approximate Poisson Binomial
distributions in different regimes of their moments. Theorems 4—6 are obtained via
the Stein-Chen method.

Theorem 4 (Poisson approximation [2,3]) Let J1, . . . , Jn be mutually independent
indicators with E[Ji ] = ti . Then

dTV

(
n∑

i=1

Ji ,Poisson

(
n∑

i=1

ti

))

≤
∑n

i=1 t
2
i∑n

i=1 ti
.

Theorem 5 (Binomial Approximation [15]) Let J1, . . . , Jn be mutually independent

indicators with E[Ji ] = ti , and t̄ =
∑

i ti
n . Then

dTV

(
n∑

i=1

Ji ,B
(
n, t̄

)
)

≤
∑n

i=1(ti − t̄)2

(n + 1)t̄(1 − t̄)
,

where B
(
n, t̄

)
is the Binomial distribution with parameters n and t̄ .

Theorem 6 (Translated Poisson Approximation [23]) Let J1, . . . , Jn be mutually
independent indicators with E[Ji ] = ti . Then

dTV

(
n∑

i=1

Ji , T P(μ, σ 2)

)

≤
√∑n

i=1 t
3
i (1 − ti ) + 2

∑n
i=1 ti (1 − ti )

,

where μ = ∑n
i=1 ti and σ 2 = ∑n

i=1 ti (1 − ti ).

The approximation theorems stated above do not always provide tight enough
approximations. When these fail, we employ the following theorem of Roos [24],
which provides an expansion of the Poisson Binomial distribution as a weighted sum
of a finite number of signed measures: the Binomial distribution B(n, p) (for an arbi-
trary value of p) and its first n derivatives with respect to the parameter p, at the
chosen value of p. For the purposes of the following statement we denote by Bn,p(m)

the probability assigned by the Binomial distribution B(n, p) to integer m.

Theorem 7 ([24]) Let P := (pi )ni=1 ∈ [0, 1]n, X1, . . . , Xn be mutually independent
indicatorswith expectations p1, . . . , pn, and X = ∑

i Xi . Then, for allm ∈ {0, . . . , n}
and p ∈ [0, 1],

Pr [X = m] =
n∑

�=0

α�(P, p) · δ�Bn,p(m), (4)

where for the purposes of the above expression:
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• α0(P, p) := 1 and for � ∈ [n] :

α�(P, p) :=
∑

1≤k(1)<···<k(�)≤n

�∏

r=1

(pk(r) − p);

• and for all � ∈ {0, . . . , n} :
δ�Bn,p(m) := (n − �)!

n!
d�

dp�
Bn,p(m),

where for the last definition we interpret Bn,p(m) ≡ (n
m

)
pm(1 − p)n−m as a

function of p.

We can use Theorem 7 to get tighter approximations to the Poisson Binomial distri-
bution by appropriately tuning the number of terms of summation (4) that we keep.
The following proposition, shown in the proof of Theorem 2 of [24], bounds the �1
approximation error to the Poisson Binomial distribution when only the first d + 1
terms of summation (4) are kept. The error decays exponentially in d as long as the
quantity θ(P, p) in the proposition statement is smaller than 1.

Proposition 1 ([24]) Let P = (pi )ni=1 ∈ [0, 1]n, p ∈ [0, 1], α�(·, ·) and δ�Bn,p(·)
as in the statement of Theorem 7, and take

θ(P, p) = 2
∑n

i=1(pi − p)2 + (
∑n

i=1(pi − p))2

2np(1 − p)
.

If θ(P, p) < 1, then, for all d ≥ 0:

n∑

�=d+1

|α�(P, p)| · ‖δ�Bn,p(·)‖1 ≤ √
e(d + 1)1/4θ(P, p)(d+1)/2 1 − d

d+1

√
θ(P, p)

(1 − √
θ(P, p))2

,

where ‖δ�Bn,p(·)‖1 := ∑n
m=0 |δ�Bn,p(m)|.

3 Proof of Theorem 1

We first argue that Theorem 2 already implies the existence of an ε-cover S ′
n,ε of Sn of

size at most n2+n ·( 1
ε

)O(1/ε2)
. This cover is obtained by taking the union of all Poisson

Binomial distributions in (n, k)-Binomial form and all Poisson Binomial distributions
in k-sparse form, for k = �41/ε�. The total number of Poisson Binomial distributions
in (n, k)-Binomial form is at most n2, since there are at most n choices for the value
of � and at most n choices for the value of q. The total number of Poisson Binomial

distributions in k-sparse form is at most (k3 + 1) · k3k2 · (n+ 1) = n · ( 1
ε

)O(1/ε2)
since

there are k3+1 choices for �, at most k3k
2
choices of probabilities p1 ≤ p2 ≤ · · · ≤ p�

in
{

1
k2

, 2
k2

, . . . , k2−1
k2

}
, and at most n + 1 choices for the number of variables indexed
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by i > � that have expectation equal to 1.1 Notice that enumerating over the above

distributions takes timeO(n2 log n)+O(n log n)·( 1
ε

)O(1/ε2)
, as a number in {0, . . . , n}

and a probability in
{ 1
n , 2

n , . . . , n
n

}
can be represented using O(log n) bits, while a

number in {0, . . . , k3} and a probability in
{

1
k2

, 2
k2

, . . . , k2−1
k2

}
can be represented

using O(log k) = O(log 1/ε) bits.
We next show that we can remove from S ′

n,ε a large number of the sparse-form
distributions it contains to obtain a 2ε-cover of Sn . In particular, we shall only keep

n · ( 1
ε

)O(log2 1/ε)
sparse-form distributions by appealing to Theorem 3. To explain the

pruning we introduce some notation. For a collection P = (pi )i∈[n] ∈ [0, 1]n of
probability values we denote by LP = {i | pi ∈ (0, 1/2]} and by RP = {i | pi ∈
(1/2, 1)}. Theorem 3, Corollary 1, Lemmas 1 and 2 imply that if two collections
P = (pi )i∈[n] and Q = (qi )i∈[n] of probability values satisfy

∑

i∈LP

pti =
∑

i∈LQ

qti , for all t = 1, . . . , d;
∑

i∈RP

pti =
∑

i∈RQ

qti , for all t = 1, . . . , d; and

(pi )[n]\(LP∪RP ) and (qi )[n]\(LQ∪RQ) are equal up to a permutation;

then dTV(PBD(P),PBD(Q)) ≤ 2 · 13(d + 1)1/42−(d+1)/2. In particular, for some
d(ε) = O(log 1/ε), this bound becomes at most ε.

For a collection P = (pi )i∈[n] ∈ [0, 1]n , we define its moment profile mP to be the
(2d(ε) + 1)-dimensional vector

mP =
⎛

⎝
∑

i∈LP

pi ,
∑

i∈LP

p2i , . . . ,
∑

i∈LP

pd(ε)
i ;

∑

i∈RP

pi , . . . ,
∑

i∈RP

pd(ε)
i ; |{i | pi =1}|

⎞

⎠ .

By the previous discussion, for two collections P,Q, if mP = mQ then
dTV(PBD(P),PBD(Q)) ≤ ε.

Given the above we sparsify S ′
n,ε as follows: for every possible moment profile that

can arise from a Poisson Binomial distribution in k-sparse form, we keep in our cover
a single Poisson Binomial distribution with such moment profile. The cover resulting
from this sparsification is a 2ε-cover, since the sparsification loses us an additional ε
in total variation distance, as argued above.

We now bound the cardinality of the sparsified cover. The total number of moment
profiles of k-sparse Poisson Binomial distributions is kO(d(ε)2) · (n + 1). Indeed, con-
sider a Poisson Binomial distribution PBD(P = (pi )i∈[n]) in k-sparse form. There are
at most k3 + 1 choices for |LP |, at most k3 + 1 choices for |RP |, and at most (n + 1)
choices for |{i | pi = 1}|. We also claim that the total number of possible vectors

1 Note that imposing the condition p1 ≤ · · · ≤ p� won’t lose us any Poisson Binomial distribution in
k-sparse form given Lemma 1.
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⎛

⎝
∑

i∈LP

pi ,
∑

i∈LP

p2i , . . . ,
∑

i∈LP

pd(ε)
i

⎞

⎠

is kO(d(ε)2). Indeed, if |LP | = 0 there is just one such vector, namely the all-zero
vector. If |LP | > 0, then, for all t = 1, . . . , d(ε),

∑
i∈LP pti ∈ (0, |LP |] and it must

be an integer multiple of 1/k2t . So the total number of possible values of
∑

i∈LP pti
is at most k2t |LP | ≤ k2t k3, and the total number of possible vectors

⎛

⎝
∑

i∈LP

pi ,
∑

i∈LP

p2i , . . . ,
∑

i∈LP

pd(ε)
i

⎞

⎠

is at most

d(ε)∏

t=1

k2t k3 ≤ kO(d(ε)2).

The same upper bound applies to the total number of possible vectors

⎛

⎝
∑

i∈RP

pi ,
∑

i∈RP

p2i , . . . ,
∑

i∈RP

pd(ε)
i

⎞

⎠ .

The moment profiles we enumerated over are a superset of the moment profiles of
k-sparse Poisson Binomial distributions. We call them compatible moment profiles.
We argued that there are at most kO(d(ε)2) · (n+1) compatible moment profiles, so the
total number of Poisson Binomial distributions in k-sparse form that we keep in the

cover is at most kO(d(ε)2) ·(n+1) = n ·( 1
ε

)O(log2 1/ε)
. The number of Poisson Binomial

distributions in (n, k)-Binomial form is the same as before, i.e. at most n2, as we did

not eliminate any of them. So the size of the sparsified cover is n2 + n · ( 1
ε

)O(log2 1/ε)
.

To finish the proof it remains to argue that we don’t actually need to first com-
pute S ′

n,ε and then sparsify it to obtain our cover, but can produce it directly in time

O(n2 log n) + O(n log n) · ( 1
ε

)O(log2 1/ε)
. We claim that, given a moment profile m

that is compatible with a k-sparse Poisson Binomial distribution, we can compute
some PBD(P = (pi )i ) in k-sparse form such that mP = m, if such a distribution

exists, in time O(log n)
( 1

ε

)O(log2 1/ε)
. This follows from Claim 1 of Sect. 6.2 So our

2 A naive application of Claim 1 results in running time O(n3 log n) ·
(
1
ε

)O(log2 1/ε)
. We can improve

this to the claimed running time as follows: for all possible values |LP |, |RP | such that |LP | + |RP | ≤
min(k3, n−m2d(ε)+1), we invoke Claim 1with ñ = |LP |+|RP |, δ = d(ε), B = k3, n0 = n1 = 0, ns =
|LP |, nb = |RP |, andmomentsμ� = m�, for � = 1, . . . , d(ε), andμ′

�
= md(ε)+�, for � = 1, . . . , d(ε). If

for some pair |LP |, |RP | the algorithm succeeds in finding probabilities matching the provided moments,
we set m2d(ε)+1 of the remaining probabilities equal to 1 and the rest to 0. Otherwise, we output “fail.”
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algorithm enumerates over all moment profiles that are compatible with a k-sparse
Poisson Binomial distribution and for each profile invokes Claim 1 to find a Poisson
Binomial distribution with such moment profile, if such distribution exists, adding it
to the cover if it does exist. It then enumerates over all Poisson Binomial distributions
in (n, k)-Binomial form and adds them to the cover as well. The overall running time
is as promised.

4 Proof of Theorem 2

Weorganize the proof according to the structure and notation of our outline in Sect. 1.2.
In particular, we proceed to provide the details of Stages 1 and 2, described in the
outline. The reader should refer to Sect. 1.2 for notation.

4.1 Details of stage 1

Define Lk := {i | i ∈ [n] ∧ pi ∈(0, 1/k)} and Hk := {i | i ∈ [n] ∧ pi ∈(1 − 1/k, 1)}.
We define the expectations (p′

i )i of the intermediate indicators (Zi )i as follows.
First, we set p′

i = pi , for all i ∈ [n]\Lk ∪ Hk . It follows that

dTV

⎛

⎝
∑

i∈[n]\Lk∪Hk

Xi ,
∑

i∈[n]\Lk∪Hk

Zi

⎞

⎠ = 0. (5)

Next, we define the probabilities p′
i , i ∈ Lk , using the following procedure:

1. Set r =
⌊∑

i∈Lk
pi

1/k

⌋
; and letL′

k ⊆ Lk be an arbitrary subset of cardinality |L′
k | = r .

2. Set p′
i = 1

k , for all i ∈ L′
k , and p′

i = 0, for all i ∈ Lk\L′
k .

We bound the total variation distance dTV
(∑

i∈Lk
Xi ,

∑
i∈Lk

Zi

)
using the Poisson

approximation to the Poisson Binomial distribution. In particular, Theorem 4 implies

dTV

⎛

⎝
∑

i∈Lk

Xi ,Poisson

⎛

⎝
∑

i∈Lk

pi

⎞

⎠

⎞

⎠ ≤
∑

i∈Lk
p2i∑

i∈Lk
pi

≤
1
k

∑
i∈Lk

pi
∑

i∈Lk
pi

= 1/k.

Similarly, dTV
(∑

i∈Lk
Zi ,Poisson

(∑
i∈Lk

p′
i

))
≤ 1/k. Finally, we use Lemma 3

(given below and proved in Sect. 6) to bound the distance

dTV

⎛

⎝Poisson

⎛

⎝
∑

i∈Lk

pi

⎞

⎠ ,Poisson

⎛

⎝
∑

i∈Lk

p′
i

⎞

⎠

⎞

⎠ ≤ 1

2

(
e
1
k − e− 1

k

)
≤ 1.5

k
,
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where we used that |∑i∈Lk
pi −∑

i∈Lk
p′
i | ≤ 1/k. Using the triangle inequality the

above imply

dTV

⎛

⎝
∑

i∈Lk

Xi ,
∑

i∈Lk

Zi

⎞

⎠ ≤ 3.5

k
. (6)

Lemma 3 (Variation Distance of Poisson Distributions) Let λ1, λ2 > 0. Then

dTV (Poisson(λ1),Poisson(λ2)) ≤ 1

2

(
e|λ1−λ2| − e−|λ1−λ2|

)
.

We follow a similar rounding scheme to define (p′
i )i∈Hk from (pi )i∈Hk . That is,

we round some of the pi ’s to 1 − 1/k and some of them to 1 so that |∑i∈Hk
pi −∑

i∈Hk
p′
i | ≤ 1/k. As a result, we get (to see this, repeat the argument employed

above to the variables 1 − Xi and 1 − Zi , i ∈ Hk)

dTV

⎛

⎝
∑

i∈Hk

Xi ,
∑

i∈Hk

Zi

⎞

⎠ ≤ 3.5

k
. (7)

Using (5), (6), (7) and Lemma 2 we get (2).

4.2 Details of stage 2

Recall thatM := {i | p′
i /∈ {0, 1}} and m := |M|. Depending on on whether m ≤ k3

or m > k3 we follow different strategies to define the expectations (qi )i of indicators
(Yi )i .

4.2.1 The case m ≤ k3

First we set qi = p′
i , for all i ∈ [n]\M. It follows that

dTV

⎛

⎝
∑

i∈[n]\M
Zi ,

∑

i∈[n]\M
Yi

⎞

⎠ = 0. (8)

For the definition of (qi )i∈M, we make use of Ehm’s Binomial approximation
to the Poisson Binomial distribution, stated as Theorem 5 in Sect. 2.1. We start by
partitioning M as M = Ml � Mh , where Ml = {i ∈ M | p′

i ≤ 1/2}, and describe
below a procedure for defining (qi )i∈Ml so that the following hold:

1. dTV
(∑

i∈Ml
Zi ,

∑
i∈Ml

Yi
)

≤ 17/k;

2. For all i ∈ Ml , qi is an integer multiple of 1/k2.

To define (qi )i∈Mh , we apply the same procedure to (1 − p′
i )i∈Mh to obtain (1 −

qi )i∈Mh . Assuming the correctness of our procedure for probabilities ≤ 1/2 the
following should also hold:

123



Sparse covers for sums of indicators 693

1. dTV
(∑

i∈Mh
Zi ,

∑
i∈Mh

Yi
)

≤ 17/k;

2. For all i ∈ Mh, qi is an integer multiple of 1/k2.

Using Lemma 2, the above bounds imply

dTV

(
∑

i∈M
Zi ,

∑

i∈M
Yi

)

≤ dTV

⎛

⎝
∑

i∈Ml

Zi ,
∑

i∈Ml

Yi

⎞

⎠

+ dTV

⎛

⎝
∑

i∈Mh

Zi ,
∑

i∈Mh

Yi

⎞

⎠ ≤ 34/k. (9)

Now that we have (9), using (8) and Lemma 2 we get (3).
So it suffices to define the (qi )i∈Ml properly. To do this, we define the partition

Ml = Ml,1 � Ml,2 � · · · � Ml,k−1 where for all j :

Ml, j =
{
i
∣∣∣ p′

i ∈
[
1

k
+ ( j − 1) j

2

1

k2
,
1

k
+ ( j + 1) j

2

1

k2

)}
.

(Notice that the length of interval used in the definition of Ml, j is
j
k2
.) Now, for

each j = 1, . . . , k − 1 such that Ml, j = ∅, we define (qi )i∈Ml, j via the following
procedure:

1. Set p j,min := 1
k + ( j−1) j

2
1
k2

, p j,max := 1
k + ( j+1) j

2
1
k2

, n j = |Ml, j |, p̄ j =
∑

i∈Ml, j
p′
i

n j
.

2. Set r =
⌊
n j ( p̄ j−p j,min)

j/k2

⌋
; let M′

l, j ⊆ Ml, j be an arbitrary subset of cardinality r .

3. Set qi = p j,max, for all i ∈ M′
l, j ;

4. For an arbitrary index i∗j ∈ Ml, j\M′
l, j , set qi∗j = n j p̄ j − (rp j,max + (n j − r −

1)p j,min);
5. Finally, set qi = p j,min, for all i ∈ Ml, j\M′

l, j\{i∗j }.
It is easy to see that

1.
∑

i∈Ml, j
p′
i = ∑

i∈Ml, j
qi ≡ n j p̄ j ;

2. For all i ∈ Ml, j\{i∗j }, qi is an integer multiple of 1/k2.

Moreover Theorem 5 implies:

dTV

⎛

⎝
∑

i∈Ml, j

Zi ,B
(
n j , p̄ j

)
⎞

⎠ ≤
∑

i∈Ml, j
(p′

i − p̄ j )
2

(n j + 1) p̄ j (1 − p̄ j )

≤

⎧
⎪⎨

⎪⎩

n j ( j
1
k2

)2

(n j+1)p j,min(1−p j,min)
, when j < k − 1

n j ( j
1
k2

)2

(n j+1)p j,max(1−p j,max)
, when j = k − 1

≤ 8

k2
.
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A similar derivation gives dTV
(∑

i∈Ml, j
Yi ,B

(
n j , p̄ j

)) ≤ 8
k2
. So by the triangle

inequality:

dTV

⎛

⎝
∑

i∈Ml, j

Zi ,
∑

i∈Ml, j

Yi

⎞

⎠ ≤ 16

k2
. (10)

As Eq. (10) holds for all j = 1, . . . , k − 1, an application of Lemma 2 gives:

dTV

⎛

⎝
∑

i∈Ml

Zi ,
∑

i∈Ml

Yi

⎞

⎠ ≤
k−1∑

j=1

dTV

⎛

⎝
∑

i∈Ml, j

Zi ,
∑

i∈Ml, j

Yi

⎞

⎠ ≤ 16

k
.

Moreover, the qi ’s defined above are integer multiples of 1/k2, except maybe for
qi∗1 , . . . , qi∗k−1

. But we can round these to their closest multiple of 1/k2, increasing

dTV
(∑

i∈Ml
Zi ,

∑
i∈Ml

Yi
)
by at most 1/k.

4.2.2 The case m > k3

Let t = |{i | p′
i = 1}|.We show that the random variable

∑
i Zi is within total variation

distance 9/k from the Binomial distribution B(m′, q) where

m′ :=
⌈(∑

i∈M p′
i + t

)2
∑

i∈M p′2
i + t

⌉

and q := �∗

n
,

where �∗ satisfies
∑

i∈M p′
i+t

m′ ∈ [ �∗−1
n , �∗

n ]. Notice that:
• (∑

i∈M p′
i + t

)2 ≤ (
∑

i∈M p′2
i + t)(m + t), by the Cauchy-Schwarz inequality;

and
•

∑
i∈M p′

i+t
m′ ≤

∑
i∈M p′

i+t

(
∑

i∈M p′i+t)
2

∑
i∈M p′2i +t

=
∑

i∈M p′2
i +t∑

i∈M p′
i+t

≤ 1.

So m′ ≤ m + t ≤ n, and there exists some �∗ ∈ {1, . . . , n} so that
∑

i∈M p′
i+t

m′ ∈
[ �∗−1

n , �∗
n ].

For fixed m′ and q, we set qi = q, for all i ≤ m′, and qi = 0, for all i > m′, and
compare the distributions of

∑
i∈M Zi and

∑
i∈M Yi . For convenience we define

μ := E

[
∑

i∈M
Zi

]

and μ′ := E

[
∑

i∈M
Yi

]

,

σ 2 := Var

[
∑

i∈M
Zi

]

and σ ′2 := Var

[
∑

i∈M
Yi

]

.

The following lemma compares the values μ,μ′, σ, σ ′.
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Lemma 4 The following hold

μ ≤ μ′ ≤ μ + 1, (11)

σ 2 − 1 ≤ σ ′2 ≤ σ 2 + 2, (12)

μ ≥ k2, (13)

σ 2 ≥ k2
(
1 − 1

k

)
. (14)

The proof of Lemma 4 is given in Sect. 6. To compare
∑

i∈M Zi and
∑

i∈M Yi we
approximate both by Translated Poisson distributions. Theorem 6 implies that

dTV

(
∑

i

Zi , T P(μ, σ 2)

)

≤
√∑

i p
′3
i (1 − p′

i ) + 2
∑

i p
′
i (1 − p′

i )
≤

√∑
i p

′
i (1 − p′

i ) + 2
∑

i p
′
i (1 − p′

i )

≤ 1
√∑

i p
′
i (1 − p′

i )
+ 2

∑
i p

′
i (1 − p′

i )
= 1

σ
+ 2

σ 2

≤ 1

k
√
1 − 1/k

+ 2

k2
(
1 − 1

k

) (using (14))

≤ 3

k
,

where for the last inequality we assumed k ≥ 3, but the bound of 3/k clearly also
holds for k = 1, 2. Similarly,

dTV

(
∑

i

Yi , T P(μ′, σ ′2)
)

≤ 1

σ ′ + 2

σ ′2

≤ 1

k
√
1− 1

k − 1
k2

+ 2

k2
(
1− 1

k − 1
k2

) (using (12), (14))

≤ 3

k
,

where for the last inequality we assumed k ≥ 3, but the bound of 3/k clearly also
holds for k = 1, 2. By the triangle inequality we then have that

dTV

(
∑

i

Zi ,
∑

i

Yi

)

≤ dTV

(
∑

i

Zi , T P(μ, σ 2)

)
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+ dTV

(
∑

i

Yi , T P(μ′, σ ′2)
)

+ dTV
(
T P(μ, σ 2), T P(μ′, σ ′2)

)

= 6/k + dTV
(
T P(μ, σ 2), T P(μ′, σ ′2)

)
. (15)

It remains to bound the total variation distance between the two Translated Poisson
distributions. We make use of the following lemma.

Lemma 5 ([4]) Let μ1, μ2 ∈ R and σ 2
1 , σ 2

2 ∈ R+\{0} be such that �μ1 − σ 2
1 � ≤

�μ2 − σ 2
2 �. Then

dTV
(
T P(μ1, σ

2
1 ), T P(μ2, σ

2
2 )
)

≤ |μ1 − μ2|
σ1

+ |σ 2
1 − σ 2

2 | + 1

σ 2
1

.

Lemma 5 implies

dTV
(
T P(μ, σ 2), T P(μ′, σ ′2)

)
≤ |μ − μ′|

min(σ, σ ′)
+ |σ 2 − σ ′2| + 1

min(σ 2, σ ′2)

≤ 1

k
√
1 − 1

k − 1
k2

+ 3

k2
(
1 − 1

k − 1
k2

) (using Lemma 4)

≤ 3/k, (16)

where for the last inequality we assumed k > 3, but the bound clearly also holds for
k = 1, 2, 3. Using (15) and (16) we get

dTV

(
∑

i

Zi ,
∑

i

Yi

)

≤ 9/k, (17)

which implies (3).

5 Proof of Theorem 3

Let X and Y be two collections of indicators as in the statement of Theorem 3. For
α�(·, ·) defined as in the statement of Theorem 7, we claim the following.

Lemma 6 If P,Q ∈ [0, 1]n satisfy property (Cd) in the statement of Theorem 3, then
for all p, � ∈ {0, . . . , d}:

α�(P, p) = α�(Q, p).

Proof of Lemma 6 First α0(P, p) = 1 = α0(Q, p) by definition. Now fix � ∈
{1, . . . , d} and consider the function f (�x) := α�((x1, . . . , xn), p) in the variables
x1, . . . , xn ∈ R. Observe that f is a symmetric polynomial of degree � on x1, . . . , xn .
Hence, from the theory of symmetric polynomials, it follows that f can be written as
a polynomial function of the power-sum symmetric polynomials π1, . . . , π�, where
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π j (x1, . . . , xn) :=
n∑

i=1

x j
i , for all j ∈ [�],

as the elementary symmetric polynomial of degree j ∈ [n] can be written as a poly-
nomial function of the power-sum symmetric polynomials π1, . . . , π j (e.g. [29]).
Now (Cd) implies that π j (P) = π j (Q), for all j ≤ �. So f (P) = f (Q), i.e.
α�(P, p) = α�(Q, p). ��

For all p ∈ [0, 1], by combining Theorem 7 and Lemma 6 and we get that

Pr [X = m] − Pr [Y = m] =
n∑

�=d+1

(α�(P, p) − α�(Q, p)) · δ�Bn,p(m),

for all m ∈ {0, . . . , n}.
Hence, for all p:

dTV (X,Y ) = 1

2

n∑

m=0

|Pr [X = m] − Pr [Y = m]|

≤ 1

2

n∑

�=d+1

|α�(P, p) − α�(Q, p)| · ‖δ�Bn,p(·)‖1

≤ 1

2

n∑

�=d+1

(|α�(P, p)| + |α�(Q, p)|) · ‖δ�Bn,p(·)‖1. (18)

Plugging p = p̄ := 1
n

∑
i pi into Proposition 1, we get

θ(P, p̄) =
∑n

i=1(pi − p̄)2

n p̄(1 − p̄)
≤
∣∣∣max

i
{pi } − min

i
{pi }

∣∣∣ ≤ 1

2
(see [24])

and then

1

2

n∑

�=d+1

|α�(P, p̄)| · ‖δ�Bn, p̄(·)‖1 ≤ √
e(d + 1)1/42−(d+1)/2

1 − 1√
2

d
d+1

(
√
2 − 1)2

≤ 6.5(d + 1)1/42−(d+1)/2.

But (Cd) implies that
∑

i qi = ∑
i pi = p̄. So we get in a similar fashion

1

2

n∑

�=d+1

|α�(Q, p̄)| · ‖δ�Bn, p̄(·)‖1 ≤ 6.5(d + 1)1/42−(d+1)/2.

Plugging these bounds into (18) we get

dTV (X,Y ) ≤ 13(d + 1)1/42−(d+1)/2.
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6 Deferred proofs

Proof of Lemma 1 Let X = ∑
i Xi and Y = ∑

i Yi . It is obvious that, if
(p1, . . . , pn) = (q1, . . . , qn), then the distributions of X and Y are the same. In
the other direction, we show that, if X and Y have the same distribution, then
(p1, . . . , pn) = (q1, . . . , qn). Consider the polynomials:

gX (s) = E

[
(1 + s)X

]
=

n∏

i=1

E

[
(1 + s)Xi

]
=

n∏

i=1

(1 + pi s);

gY (s) = E

[
(1 + s)Y

]
=

n∏

i=1

E

[
(1 + s)Yi

]
=

n∏

i=1

(1 + qi s).

Since X and Y have the same distribution, gX and gY are equal, so they have the same
degree and roots. Notice that gX has degree n − |{i | pi = 0}| and roots {− 1

pi
| pi =

0}. Similarly, gY has degree n − |{i | qi = 0}| and roots {− 1
qi

| qi = 0}. Hence,
(p1, . . . , pn) = (q1, . . . , qn). ��
Proof of Lemma 2 It follows from the coupling lemma that for any coupling of the
variables X1, . . . , Xn,Y1, . . . ,Yn :

dTV

(
n∑

i=1

Xi ,

n∑

i=1

Yi

)

≤ Pr

[
n∑

i=1

Xi =
n∑

i=1

Yi

]

≤
n∑

i=1

Pr[Xi = Yi ]. (19)

We proceed to fix a specific coupling. For all i , it follows from the optimal coupling
theorem that there exists a coupling of Xi andYi such that Pr[Xi = Yi ] = dTV (Xi ,Yi ).
Using these individual couplings for each i we define a grand coupling of the variables
X1, . . . , Xn,Y1, . . . ,Yn such that Pr[Xi = Yi ] = dTV (Xi ,Yi ), for all i . This coupling
is faithful because X1, . . . , Xn are mutually independent and Y1, . . . ,Yn are mutually
independent. Under this coupling Eq. (19) implies:

dTV

(
n∑

i=1

Xi ,

n∑

i=1

Yi

)

≤
n∑

i=1

Pr[Xi = Yi ] ≡
n∑

i=1

dTV (Xi ,Yi ) . (20)

��
Claim 1 Fix integers ñ, δ, B, k ∈ N+, ñ, k ≥ 2. Given a set of values μ1, . . . , μδ,

μ′
1, . . . , μ

′
δ , where, for all � = 1, . . . , δ,

μ�,μ
′
� ∈

{

0,

(
1

k2

)�

, 2

(
1

k2

)�

, . . . , B

}

,
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discrete sets T1, . . . , Tñ ⊆
{
0, 1

k2
, 2
k2

, . . . , 1
}
, and four integers n0, n1 ≤ ñ, ns, nb ≤

B, it is possible to solve the system of equations:

(�) :
∑

pi∈(0,1/2]
p�
i = μ�, for all � = 1, . . . , δ,

∑

pi∈(1/2,1)

p�
i = μ′

�, for all � = 1, . . . , δ,

|{i |pi = 0}| = n0
|{i |pi = 1}| = n1

|{i |pi ∈ (0, 1/2]}| = ns
|{i |pi ∈ (1/2, 1)}| = nb

with respect to the variables p1 ∈ T1, . . . , pñ ∈ Tñ , or to determine that no solution
exists, in time

O(ñ3 log2 ñ)BO(δ)kO(δ2).

Proof of Claim 1 We use dynamic programming. Let us consider the following tensor
of dimension 2δ + 5:

A(i, z0, z1, zs, zb; ν1, . . . , νδ; ν′
1, . . . , ν

′
δ),

where i ∈ [ñ], z0, z1 ∈ {0, . . . , ñ}, zs, zb ∈ {0, . . . , B} and

ν�, ν
′
� ∈

{

0,

(
1

k2

)�

, 2

(
1

k2

)�

, . . . , B

}

,

for � = 1, . . . , δ. The total number of cells in A is

ñ · (ñ + 1)2 · (B + 1)2 ·
(

δ∏

�=1

(Bk2� + 1)

)2

≤ O(ñ3)BO(δ)kO(δ2).

Every cell of A is assigned value 0 or 1, as follows:

A(i, z0, z1, zs, zb; ν1, . . . , νδ, ν
′
1, . . . , ν

′
δ) = 1

⇐⇒

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

There exist p1 ∈ T1, . . . , pi ∈ Ti such
that |{ j ≤ i |p j = 0}| = z0,

|{ j ≤ i |p j = 1}| = z1,
|{ j ≤ i |p j ∈ (0, 1/2]}| = zs,
|{ j ≤ i |p j ∈ (1/2, 1)}| = zb,∑
j≤i :p j∈(0,1/2] p�

j = ν�, for all

� = 1, . . . , δ,
∑

j≤i :p j∈(1/2,1) p
�
j = ν′

�, for
all � = 1, . . . , δ.

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.
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Notice that we need O(ñ3)BO(δ)kO(δ2) bits to store A and O(log ñ + δ log B +
δ2 log k) bits to address cells of A. To complete A we can work in layers of increasing
i . We initialize all entries to value 0. Then, the first layer A(1, ·, · ; ·, . . . , ·) can be
completed easily as follows:

A(1, 1, 0, 0, 0; 0, 0, . . . , 0; 0, 0, . . . , 0) = 1 ⇔ 0 ∈ T1;
A(1, 0, 1, 0, 0; 0, 0, . . . , 0; 0, 0 . . . , 0) = 1 ⇔ 1 ∈ T1;
A(1, 0, 0, 1, 0; p, p2, . . . , pδ; 0, . . . , 0) = 1 ⇔ p ∈ T1 ∩ (0, 1/2];
A(1, 0, 0, 0, 1; 0, . . . , 0; p, p2, . . . , pδ) = 1 ⇔ p ∈ T1 ∩ (1/2, 1).

Inductively, to complete layer i +1, we consider all the non-zero entries of layer i and
for every such non-zero entry and for every vi+1 ∈ Ti+1, we find which entry of layer
i + 1 we would transition to if we chose pi+1 = vi+1. We set that entry equal to 1 and
we also save a pointer to this entry from the corresponding entry of layer i , labeling
that pointer with the value vi+1. The bit operations required to complete layer i + 1
are bounded by

|Ti+1|(ñ + 1)2BO(δ)kO(δ2)O(log ñ + δ log B + δ2 log k) ≤ O(ñ2 log ñ)BO(δ)kO(δ2).

Therefore, the overall time needed to complete A is

O(ñ3 log ñ)BO(δ)kO(δ2).

Having completed A, it is easy to check if there is a solution to (�). A solution
exists if and only if

A(ñ, n0, n1, ns, nb;μ1, . . . , μδ;μ′
1, . . . , μ

′
δ) = 1,

and can be found by tracing the pointers from this cell of A back to level 1. The overall
running time is dominated by the time needed to complete A. ��
Proof of Lemma 3 Without loss of generality assume that 0 < λ1 ≤ λ2 and denote
δ = λ2 − λ1. For all i ∈ {0, 1, . . .}, denote

pi = e−λ1
λi1

i ! and qi = e−λ2
λi2

i ! .

Finally, define I∗ = {i : pi ≥ qi }.
We have

∑

i∈I∗
|pi − qi | =

∑

i∈I∗
(pi − qi ) ≤

∑

i∈I∗

1

i ! (e
−λ1λi1 − e−λ1−δλi1)

=
∑

i∈I∗

1

i !e
−λ1λi1(1 − e−δ)

≤ (1 − e−δ)

+∞∑

i=0

1

i !e
−λ1λi1 = 1 − e−δ.
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On the other hand

∑

i /∈I∗
|pi − qi | =

∑

i /∈I∗
(qi − pi ) ≤

∑

i /∈I∗

1

i ! (e
−λ1(λ1 + δ)i − e−λ1λi1)

=
∑

i /∈I∗

1

i !e
−λ1((λ1 + δ)i − λi1)

≤
+∞∑

i=0

1

i !e
−λ1((λ1 + δ)i − λi1)

= eδ
+∞∑

i=0

1

i !e
−(λ1+δ)(λ1 + δ)i −

+∞∑

i=0

1

i !e
−λ1λi1

= eδ − 1.

Combining the above we get the result. ��
Proof of Lemma 4 We have

μ

m′ =
∑

i∈M p′
i + t

m′ ≤ q = �∗

n
≤

∑
i∈M p′

i + t

m′ + 1

n
= μ

m′ + 1

n
.

Multiplying by m′ we get:

μ ≤ m′q ≤ μ + m′

n
.

As μ′ = m′q and m′ ≤ n, we get μ ≤ μ′ ≤ μ + 1. Moreover, since m ≥ k3,

μ ≥
∑

i∈M
p′
i ≥ m

1

k
≥ k2.

For the variances we have:

σ ′2 = m′q(1 − q) = m′ · �∗

n
·
(
1 − �∗ − 1

n
− 1

n

)

≥
(
∑

i∈M
p′
i + t

)

·
(
1 − 1

n
−

∑
i∈M p′

i + t

m′

)

= (1 − 1/n)

(
∑

i∈M
p′
i + t

)

− (
∑

i∈M p′
i + t)2

m′

≥ (1 − 1/n)

(
∑

i∈M
p′
i + t

)

− (
∑

i∈M p′
i + t)2

(
∑

i∈M p′
i+t)

2

∑
i∈M p′2

i +t
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=
∑

i∈M
p′
i (1 − p′

i ) − 1

n

(
∑

i∈M
p′
i + t

)

= σ 2 − 1

n

(
∑

i∈M
p′
i + t

)

≥ σ 2 − 1. (21)

In the other direction:

σ ′2 = m′q(1 − q) = m′ ·
(

�∗ − 1

n
+ 1

n

)
·
(
1 − �∗

n

)

≤ m′ ·
(

�∗ − 1

n

)
·
(
1 − �∗

n

)
+ m′

n

≤
(
∑

i∈M
p′
i + t

)

·
(
1 −

∑
i∈M p′

i + t

m′

)
+ 1

=
(
∑

i∈M
p′
i + t

)

−
(∑

i∈M p′
i + t

)2

m′ + 1

≤
(
∑

i∈M
p′
i + t

)

−
(∑

i∈M p′
i + t

)2

(
∑

i∈M p′
i+t)

2

∑
i∈M p′2

i +t
+ 1

+ 1

=
(
∑

i∈M
p′
i + t

)

−
(
∑

i∈M
p′2
i + t

)

×
(∑

i∈M p′
i + t

)2
(∑

i∈M p′
i + t

)2 +∑
i∈M p′2

i + t
+ 1

=
(
∑

i∈M
p′
i + t

)

−
(
∑

i∈M
p′2
i + t

)

×
(

1−
∑

i∈M p′2
i + t

(∑
i∈M p′

i + t
)2+∑

i∈M p′2
i + t

)

+1

=
∑

i∈M
p′
i (1 − p′

i ) +
(∑

i∈M p′2
i + t

)2

(∑
i∈M p′

i + t
)2 +∑

i∈M p′2
i + t

+ 1

= σ 2 +
(∑

i∈M p′2
i + t

)2

(∑
i∈M p′

i + t
)2 +∑

i∈M p′2
i + t

+ 1 ≤ σ 2 + 2.(22)

Finally,

σ 2 =
∑

i∈M
p′
i (1 − p′

i ) ≥ m
1

k

(
1 − 1

k

)
≥ k2

(
1 − 1

k

)
.

��
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Proposition 2 For all d ∈ [n], Condition (Cd) in the statement of Theorem 3 is
equivalent to the following condition:

(Vd) : E

⎡

⎣
(

n∑

i=1

Xi

)�
⎤

⎦ = E

⎡

⎣
(

n∑

i=1

Yi

)�
⎤

⎦ , for all � ∈ [d].

Proof of Proposition 2 (Vd) ⇒ (Cd): First notice that, for all �∈[n],E
[(∑n

i=1 Xi
)�]

can be written as a weighted sum of the elementary symmetric polynomials
ψ1(P), ψ2(P), . . . , ψ�(P), where, for all t ∈ [n], ψt (P) is defined as

ψt (P) := (−1)t
∑

S⊆[n]
|S|=t

∏

i∈S
pi .

(Vd) implies then by induction

ψ�(P) = ψ�(Q), for all � = 1, . . . , d. (23)

Next, for all t ∈ [n], define πt (P) to be the power sum symmetric polynomial of
degree t

πt (P) :=
n∑

i=1

pti .

Now, fix any � ≤ d. Since π�(P) is a symmetric polynomial of degree � on the
variables p1, . . . , pn , it can be expressed as a function of the elementary symmetric
polynomials ψ1(P), . . . , ψ�(P). So, by (23), π�(P) = π�(Q). Since this holds for
any � ≤ d, (Cd) is satisfied.
The implication (Cd) ⇒ (Vd) is established in a similar fashion. (Cd) says that

π�(P) = π�(Q), for all � = 1, . . . , d. (24)

Fix some � ≤ d. E
[(∑n

i=1 Xi
)�] can be written as a weighted sum of the elementary

symmetric polynomialsψ1(P), ψ2(P), . . . , ψ�(P). Also, for all t ∈ [�], ψt (P) can be
written as a polynomial function of π1(P), . . . , πt (P) (see, e.g., [29]). So from (24) it

follows that E
[(∑n

i=1 Xi
)�] = E

[(∑n
i=1 Yi

)�]. Since this holds for any � ≤ d, (Vd)

is satisfied. ��
Corollary 1 Let P := (pi )ni=1 ∈ [1/2, 1]n and Q := (qi )ni=1 ∈ [1/2, 1]n be two
collections of probability values in [1/2, 1]. Let also X := (Xi )

n
i=1 and Y := (Yi )ni=1

be two collections of mutually independent indicators with E[Xi ] = pi and E[Yi ] =
qi , for all i ∈ [n]. If for some d ∈ [n] Condition (Cd) in the statement of Theorem 3
is satisfied, then
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dTV

(
∑

i

Xi ,
∑

i

Yi

)

≤ 13(d + 1)1/42−(d+1)/2.

Proof of Corollary 1 Define X ′
i = 1 − Xi and Y ′

i = 1 − Yi , for all i . Also, denote
p′
i = E[X ′

i ] = 1 − pi and q ′
i = E[Y ′

i ] = 1 − qi , for all i . By assumption:

n∑

i=1

(
1 − p′

i

)� =
n∑

i=1

(
1 − q ′

i

)�
, for all � = 1, . . . , d. (25)

Using the Binomial theorem and induction, we see that (25) implies:

n∑

i=1

p′�
i =

n∑

i=1

q ′�
i , for all � = 1, . . . , d.

Hence we can apply Theorem 3 to deduce

dTV

(
∑

i

X ′
i ,
∑

i

Y ′
i

)

≤ 13(d + 1)1/42−(d+1)/2.

The proof is completed by noticing that

dTV

(
∑

i

Xi ,
∑

i

Yi

)

= dTV

(
∑

i

X ′
i ,
∑

i

Y ′
i

)

.

��
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