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Abstract We introduce an elliptic extension of Dyson’s Brownian motion model,
which is a temporally inhomogeneous diffusion process of noncolliding particles
defined on a circle. Using elliptic determinant evaluations related to the reduced affine
root system of type A, we give determinantal martingale representation (DMR) for
the process, when it is started at the configuration with equidistant spacing on the
circle. DMR proves that the process is determinantal and the spatio-temporal corre-
lation kernel is determined. By taking temporally homogeneous limits of the present
elliptic determinantal process, trigonometric and hyperbolic versions of noncolliding
diffusion processes are studied.
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1 Introduction

Eigenvalue distributions of random-matrix ensembles provide important examples
of determinantal point processes, in which any correlation function is given by a
determinant specified by a single continuous function called the correlation kernel
[3,15,34,39,40]. Dyson’s Brownian motion model with parameter β = 2 [10,41],
which we simply call the Dyson model in this paper, and other noncolliding diffusion
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638 M. Katori

processes [8,18,21,25,29] are dynamical extensions of random-matrix ensembles.
There any spatio-temporal correlation function is expressed by determinant [12,35]
and such processes are said to be determinantal [7,26]. The noncolliding diffusion
processes have attracted much attention in probability theory also by the fact that
they are realized as h-transforms in the sense of Doob of absorbing particle systems
in the Weyl chambers [18,25,29]. The relationship between the above mentioned
integrability as spatio-temporal models and h-transform constructions as stochastic
processes has been clarified by introducing a notion of determinantal martingales in
[23,24,28]. The purpose of the present paper is to report elliptic extensions of these
determinantal processes. Since the Dyson model can be regarded as a multivariate
extension of the three-dimensional Bessel process, BES(3) [5,27], first we discuss an
elliptic extension of BES(3).

Let i = √−1, v, τ ∈ C and put

z = z(v) = eπ iv, q = q(τ ) = eπ iτ . (1.1)

The Jacobi theta function ϑ1 is defined as

ϑ1(v; τ) = i
∑

n∈Z
(−1)nq(n−(1/2))2 z2n−1

= 2
∞∑

n=1

(−1)n−1eπ iτ(n−(1/2))2 sin{(2n − 1)πv}. (1.2)

(Note that the present function ϑ1(v; τ) is represented as ϑ1(πv, q) in [44].) For
�τ > 0, ϑ1(v; τ) is holomorphic for |v| < ∞ and satisfies the partial differential
equation

∂ϑ1(v; τ)

∂τ
= 1

4π i

∂2ϑ1(v; τ)

∂v2
. (1.3)

With parameters N ∈ N ≡ {1, 2, . . .}, α > 0, and 0 < t∗ < ∞, we introduce the
following function of (t, x) ∈ [0, t∗) × R,

Aα
N (t∗ − t, x) =

[
1

α

d

dv
logϑ1(v; τ)

]

v=x/α,τ=2π i N (t∗−t)/α2

= 1

α

ϑ ′
1(x/α; 2π i N (t∗ − t)/α2)

ϑ1(x/α; 2π i N (t∗ − t)/α2)
, (1.4)

where ϑ ′
1(v; τ) = dϑ1(v; τ)/dv. As a function of x ∈ R, it is odd,

Aα
N (t∗ − t,−x) = −Aα

N (t∗ − t, x), (1.5)

and periodic with period α

Aα
N (t∗ − t, x + mα) = Aα

N (t∗ − t, x), m ∈ Z. (1.6)
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Elliptic determinantal process of type A 639

It has only simple poles at x = mα,m ∈ Z, and simple zeroes at x = (m +
1/2)α,m ∈ Z.

Let r > 0. Suppose that X̌(t), t ∈ [0, t∗) satisfies the stochastic differential equation
(SDE)

d X̌(t) = dB(t) + A2πr
1 (t∗ − t, X̌(t))dt (1.7)

started at X̌(0) = x ∈ (0, 2πr), where B denotes the one-dimensional standard
Brownianmotion (BM). (Fromnowon,BMmeans aone-dimensional standardBrown-
ian motion unless specially mentioned). By periodicity (1.6) with period α = 2πr ,
X̌ can be considered to describe a diffusion process of a particle moving around a
circle with radius r > 0; S1(r) = {x ∈ R : x + 2πr = x}. Note that this system is
temporally inhomogeneous defined only in a time interval [0, t∗). Independently of
t ∈ [0, t∗) and N , however, we have

A2πr
N (t∗ − t, x) ∼ 1

x
as x ↓ 0,

A2πr
N (t∗ − t, x) ∼ − 1

2πr − x
as x ↑ 2πr.

(1.8)

It implies that the behavior of X̌ ∈ (0, 2πr) in the vicinity of 0 (and 2πr ) is similar
to that of BES(3) near 0. We define a process X ∈ [0, 2πr) by

X (t) = X̌(t) mod 2πr, t ∈ [0, t∗). (1.9)

It gives a Markov process showing a position on the circumference [0, 2πr) of S1(r).
We write the probability law of X (t), t ∈ [0, t∗) started at x = X (0) ∈ (0, 2πr) as
Px .

The backward Kolmogorov equation for the SDE (1.7) is given as

− ∂u(s, x)

∂s
= 1

2

∂2u(s, x)

∂x2
+ A2πr

1 (t∗ − s, x)
∂u(s, x)

∂x
, 0 ≤ s < t∗, x ∈ (0, 2πr).

(1.10)
Let q(t − s, y|x) be a solution of diffusion equation −∂v(s, x)/∂s = (1/2)∂2v(s, x)/
∂x2, 0 ≤ s ≤ t < ∞, x ∈ (0, 2πr) satisfying lims↑t v(s, x) = δy({x}), y ∈ (0, 2πr).
Then

u(s, x) = p(t, y|s, x) ≡ q(t−s, y|x) ϑ1(y/2πr; i(t∗ − t)/2πr2)

ϑ1(x/2πr; i(t∗ − s)/2πr2)
, 0 ≤ s ≤ t < t∗,

(1.11)
solves (1.10) under the condition lims↑t u(s, x) = δy({x}), y ∈ (0, 2πr), since
ϑ1(v; τ) satisfies (1.3). For 0 < y < 2πr , ϑ1(y/2πr; i(t∗ − t)/2πr2) > 0 and it
has simple zeroes at y = 0 and y = 2πr , t ∈ [0, t∗). Then, if q(t − s, y|x) is chosen
as the transition probability density (tpd) of the absorbing BM in the interval [0, 2πr ]
with absorbing walls at x = 0 and x = 2πr , (1.11) is strictly positive and finite for
any x, y ∈ (0, 2πr), 0 ≤ s ≤ t < t∗, and thus p(t, y|s, x) gives the tpd for the process
X (t), t ∈ [0, t∗). Let W (t), t ≥ 0 be BM started at x = W (0) ∈ (0, 2πr), where
its probability law is denoted by Px . Consider a filtration {FW (t) : t ≥ 0} generated
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640 M. Katori

by W (t), t ≥ 0, which satisfies the usual conditions, and introduce a stopping time
TW = inf{t > 0 : W (t) ∈ {0, 2πr}}. Then the above fact implies that, for t ∈ [0, t∗),

Px (X (t) ∈ dy) = Px (TW > t,W (t) ∈ dy)
ϑ1(y/2πr; i(t∗ − t)/2πr2)

ϑ1(x/2πr; i t∗/2πr2) ,

x, y ∈ (0, 2πr). (1.12)

Note that

ϑ1(v; τ) ∼ 2eπ iτ/4 sin(πv) as �τ → +∞ (i.e., q = q(τ ) = eπ iτ → 0).

Thus, in the limit t∗ → ∞, (1.7) becomes a temporally homogeneous SDE,

d X̌(t) = dB(t) + 1

2r
cot

(
X̌(t)

2r

)
dt, t ≥ 0, (1.13)

and (1.12) becomes

Px (X (t) ∈ dy) = Px (TW > t,W (t) ∈ dy)
sin(y/2r)

sin(x/2r)
, t ∈ [0,∞), x, y∈(0, 2πr).

(1.14)
If we take the further limit r → ∞ in (1.13), we have X (t) = X̌(t), t ≥ 0 and

dX (t) = dB(t) + dt

X (t)
, t ≥ 0, (1.15)

which is the SDE for BES(3) on R+ = {x > 0 : x ∈ R}, and (1.14) becomes

Px (X (t) ∈ dy) = Px (T
′
W > t,W (t) ∈ dy)

y

x
, t ∈ [0,∞), x, y ∈ R+, (1.16)

where T ′
W = inf{t > 0 : W (t) = 0}. The relation (1.16) states that BES(3) is the

Doob h-transform of the absorbing BM in [0,∞)with an absorbing wall at the origin,
where the harmonic function is given by h(x) = x, x ≥ 0. We regard (1.13) as a
trigonometric extension, and (1.7) as an elliptic extension of (1.15), respectively. The
equality (1.16) is generalized to (1.14) and (1.12), respectively. We can also discuss
a scaling limit realizing q → 1, in which hyperbolic version of (1.7) is obtained (see
Sect. 5).

Let N ∈ {2, 3, . . .} and consider the following bounded region

AAN−1
2πr = {x = (x1, . . . , xN ) ∈ R

N : x1 < x2 < · · · < xN < x1 + 2πr},

which is called a scaled alcove of the affine Weyl group of type AN−1 (with scale 2πr )
[19,31]. With an additional condition x1 ≥ 0, we also consider the space
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Elliptic determinantal process of type A 641

A[0,2πr)N = AAN−1
2πr ∩ {x ∈ R

N : x1 ≥ 0}
= {x ∈ R

N : 0 ≤ x1 < x2 < · · · < xN < 2πr}.

Note that it is different from the scaled alcove of type CN defined by ACN
2πr = {x ∈

R
N : 0 < x1 < x2 < · · · < xN < 2πr} [19,31] which excludes x1 = 0 from

A[0,2πr)N .
Now we introduce an N -particle extension of the above process, X̌

A
(t) =

(X̌ A
1 (t), . . . , X̌ A

N (t)), t ∈ [0, t∗). Assume that the initial configuration is chosen in
the alcove

X̌
A
(0) = u ∈ AAN−1

2πr ,

and an index δ ∈ πrZ is determined so that

uδ ≡ δ +
N∑

j=1

u j ∈ (0, 2πr).

Let

X
A
δ (t) = δ +

N∑

j=1

X̌ A
j (t), t ∈ [0, t∗).

Then X̌
A
(t), t ∈ [0, t∗) is defined as a solution of the following set of SDEs on R,

d X̌ A
j (t) = dB j (t)+

∑

1≤k≤N ,
k �= j

A2πr
N (t∗ − t, X̌ A

j (t)− X̌ A
k (t))dt + A2πr

N (t∗ − t, X
A
δ (t))dt,

(1.17)
1 ≤ j ≤ N , t ∈ [0, t∗), where Bj , 1 ≤ j ≤ N are independent BMs on R. By
(1.5),

∑
1≤ j,k≤N , j �=k A

2πr
N (t∗ − s, x j − xk) = 0, and the summation of (1.17) over

j = 1, 2, . . . , N gives

dX
A
δ (t) = √

NdB(t) + N A2πr
N (t∗ − t, X

A
δ (t))dt, t ∈ [0, t∗), (1.18)

where B is BM on R. We then define the process XA(t) = (X A
1 (t), . . . , X A

N (t)) ∈
[0, 2πr)N , t ∈ [0, t∗) by

X A
j (t) = X̌ A

j (t) mod 2πr, 1 ≤ j ≤ N , t ∈ [0, t∗). (1.19)

It represents a Markov process showing the positions of N particles on the circumfer-
ence [0, 2πr) of S1(r).

Let M([0, 2πr)) be the space of nonnegative integer-valued Radon measures on
the interval [0, 2πr), which is a Polish space with the vague topology. Any element

123



642 M. Katori

ξ of M([0, 2πr)) can be represented as ξ(·) = ∑
j≥1 δx j (·), in which the sequence

of points in [0, 2πr), x = (x j ) j≥1, satisfies ξ(K ) = 
{x j : x j ∈ K } < ∞ for any
subset K ⊂ [0, 2πr). Now we consider the process XA(t) as anM([0, 2πr))-valued
process and write it as

�A(t, ·) =
N∑

j=1

δX A
j (t)(·), t ∈ [0, t∗). (1.20)

The probability law of �A(t, ·), t ∈ [0, t∗) starting from a fixed configuration ξ ∈
M([0, 2πr)) is denoted by PA

ξ and the process specified by the initial configuration is

expressed by
(
�A(t), t ∈ [0, t∗),PA

ξ

)
. The expectations with respect to PA

ξ is denoted

byEA
ξ . We introduce a filtration {F�A(t) : t ∈ [0, t∗)} generated by�A(t), t ∈ [0, t∗),

which satisfies the usual conditions. Let C([0, 2πr)) be the set of all continuous real-
valued functions on [0, 2πr). We set

M0([0, 2πr)) = {ξ ∈ M([0, 2πr)) : ξ({x}) ≤ 1 for any x ∈ [0, 2πr)},

which denotes a collection of configurations without any multiple points.
In the present paper, we study the case that the initial state η = ∑N

j=1 δv j is

corresponding to the configuration with equidistant spacing on S1(r);

v j = 2πr

N
( j − 1), 1 ≤ j ≤ N , (1.21)

and we will prove that the process (�A(t), t ∈ [0, t∗),PA
η ) is determinantal. In this

case,
∑N

j=1 v j = πr(N − 1) and the index δ ∈ πrZ is determined as

δ = −πr(N − 2), (1.22)

so that vδ = πr ∈ (0, 2πr). We will present that this determinantal process can be
considered as an elliptic extension of the Dyson model. The key lemmas to construct
the elliptic determinantal process are obtained from the elliptic determinant evalu-
ations related to infinite families of irreducible reduced affine root systems studied
in [13–15,30,37,42,43]. According to Macdonald’s classification of reduced affine
root systems [33], the present process is related to the system of type AN−1. Further
study concerning other types is in progress. Connection between the elliptic deter-
minantal processes and probabilistic discrete models with elliptic weights [4,6,38]
will be an interesting future problem. We note that the function Aα

N (t∗ − t, z) can
be regarded as Villat’s kernel for an annulus Aq = {z ∈ C : q < |z| < 1} with

0 < q = e−2π2N (t∗−t)/α2
< 1. It is the reason why it also appears in the study of

stochastic Komatu-Loewner evolution in doubly connected domains [2,45].
The paper is organized as follows. In Sect. 2 preliminaries of elliptic functions and

their related functions are given. Useful determinantal identities are obtained from the
elliptic determinant evaluations related to the affine root system of types AN−1 [13–
15,30,37,42,43]. There the generalized h-transform and determinantal martingale for
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Elliptic determinantal process of type A 643

(
�A(t), t ∈ [0, t∗),PA

η

)
are introduced. The main results are given in Sect. 3. First the

determinantal martingale representation (DMR) is given for
(
�A(t), t ∈ [0, t∗),PA

η

)

(Theorem 3.1). As a result of Theorem 1.3 of [23], DMR proves that the process
is determinantal and the correlation kernel is determined (Corollary 3.3). Explicit
expression for the correlation kernel of

(
�A(t), t ∈ [0, t∗),PA

η

)
is shown and the

infinite-particle limit is discussed. In Sect. 4 the temporally homogeneous limit t∗ →
∞ is studied both in the level of SDEs and in the level of determinantal process. We
study the system of noncolliding Brownian motions on a circle, �̂A(t), t ∈ [0,∞),
obtained from �A(t), t ∈ [0, t∗) by this reduction. It is different from the dynamical
circular unitary ensemble (CUE) model studied in [20,23,36]. Finally in Sect. 5, the
results are expressed by using Gosper’s q-sine function [17] as well as the q-gamma
function [1]. Then q → 1 limit is discussed, in which temporally homogeneous
processes expressed by hyperbolic functions are obtained.

2 Preliminaries

2.1 Elliptic functions and their related functions

The Jacobi theta functionϑ1 defined by (1.2) has the following infinite-product expres-
sions,

ϑ1(v; τ) = −iq1/4q0z
∞∏

j=1

(
1 − q2 j z2

) (
1 − q2 j−2/z2

)

= 2q1/4q0 sin(πv)

∞∏

j=1

(
1 − 2q2 j cos(2πv) + q4 j

)
(2.1)

with

q0 = q0(τ ) ≡
∞∏

n=1

(1 − q2n), q = eπ iτ .

It is easy to see from these expressions that,when�τ = 0,�τ > 0 (that is, 0 < q < 1),
ϑ1(v; τ) > 0 for v ∈ (0, 1) and it has simple zeroes at v = 0 and v = 1. It is odd with
respect to v

ϑ1(−v; τ) = −ϑ1(v; τ), (2.2)

and has quasi-periodicity

ϑ1(v + 1; τ) = −ϑ1(v; τ),

ϑ1(v + τ ; τ) = − 1

z2q
ϑ1(v; τ) = −e−π i(2v+τ)ϑ1(v; τ).

(2.3)
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644 M. Katori

We define

ϑ0(v; τ) ≡ −ieπ i(v+τ/4)ϑ1

(
v + τ

2
; τ
)

=
∑

n∈Z
(−1)nqn

2
z2n,

ϑ2(v; τ) ≡ ϑ1

(
v + 1

2
; τ

)
=
∑

n∈Z
q(n−(1/2))2 z2n−1, (2.4)

ϑ3(v; τ) ≡ eπ i(v+τ/4)ϑ1

(
v + 1 + τ

2
; τ

)
=
∑

n∈Z
qn

2
z2n,

as usual. (Note that the present functions ϑμ(v; τ), μ = 1, 2, 3 are denoted by
ϑμ(πv, q), and ϑ0(v; τ) by ϑ4(πv, q) in [44].) They solve the partial differential
equation

∂ϑμ(v; τ)

∂τ
= 1

4π i

∂2ϑμ(v; τ)

∂v2
, μ = 0, 1, 2, 3. (2.5)

We will use the following formulas; n ∈ N, q = eπ iτ ,

n−1∏

j=0

ϑ1(v + j/n; τ) = qn0
(qn)0

ϑ1(nv; nτ), (2.6)

n−1∏

j=1

ϑ1( j/n; τ) = nqn0
(qn)0

ϑ ′
1(0; nτ)

ϑ ′
1(0; τ)

, (2.7)

where

ϑ ′
1(0; τ) ≡ ∂ϑ1(v; τ)

∂v

∣∣∣∣
v=0

= 2π
∞∑

j=1

(−1) j−1(2 j − 1)qn−(1/2))2 , (2.8)

and

ϑ1(v + w; τ)ϑ ′
1(0; τ)

πϑ1(v; τ)ϑ1(w; τ)
= cot(πv) + cot(πw) + 4

∞∑


=1

∞∑

m=1

q2
m sin[2π(
v + mw)].
(2.9)

The formula (2.6) is obtained from Eq. (2.3) of [37] (see (2.17) below) and (2.7) is
obtained as its v → 0 limit, since ϑ1(v; τ) has a simple root at v = 0. The formula
(2.9) is found in ‘Miscellaneous Examples’ of Chapter XXI in [44].

Let ω1 and ω3 be fundamental periods and set

τ = ω3

ω1
, �τ > 0,

�m,n = 2mω1 + 2nω3, m, n ∈ Z.
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Elliptic determinantal process of type A 645

TheWeierstrass℘ function and zeta function ζ are defined as the following meromor-
phic functions

℘(z) = ℘(z|2ω1, 2ω3)

= 1

z2
+

∑

(m,n)∈Z2\{(0,0)}

[
1

(z − �m,n)2
− 1

�m,n
2

]
,

ζ(z) = ζ(z|2ω1, 2ω3)

= 1

z
+

∑

(m,n)∈Z2\{(0,0)}

[
1

z − �m,n
+ 1

�m,n
+ z

�m,n
2

]
.

Letω2 = −(ω1+ω3), and put ζ(ων) = ην, ν = 1, 2, 3. The relation η1+η2+η3 = 0
holds. By definition, ℘(z) is an elliptic function with fundamental periods ω1, ω2 and
ω3,

℘(z + 2ων) = ℘(z), ν = 1, 2, 3,

and it is even, ℘(−z) = ℘(z). The function ζ is odd, ζ(−z) = −ζ(z), and is quasi-
periodic in the sense

ζ(z + 2ων) = ζ(z) + 2ην, ν = 1, 2, 3.

By definition,
℘(z) = −ζ ′(z). (2.10)

Moreover, the relation

{ζ(z + u) − ζ(z) − ζ(u)}2 = ℘(z + u) + ℘(z) + ℘(u) (2.11)

holds (see Section 20.41 in [44]). From this, we obtain the following identity.

Lemma 2.1 For a, b, c ∈ C,

ζ(a − b)ζ(a − c) + ζ(b − a)ζ(b − c) + ζ(c − a)ζ(c − b)

= 1

2

{
ζ(a − b)2 + ζ(b − c)2 + ζ(a − c)2

}

−1

2

{
℘(a − b) + ℘(b − c) + ℘(a − c)

}
.

Proof Put z = a − b, u = b − c in (2.11). Then by the fact that ζ is odd, the equality
is derived. ��

The following relation is established,

ζ(z|2ω1, 2ω3) − η1z

ω1
= 1

2ω1

d

dv
logϑ1(v; τ)

∣∣∣∣
v=z/2ω1

, τ = ω3

ω1
.
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646 M. Katori

It has the following expansion with respect to q = q(τ ) = eπ iτ ,

ζ(z|2ω1, 2ω3) − η1z

ω1
= π

2ω1
cot

(
π z

2ω1

)
+ 2π

ω1

∞∑

n=1

q2n

1 − q2n
sin

(
nπ z

ω1

)
. (2.12)

The function Aα
N (t∗ − t, x) defined by (1.4) is then expressed as

Aα
N (t∗ − t, x) =

[
ζ(x |2ω1, 2ω3) − η1x

ω1

]

ω1=α/2,ω3=π i N (t∗−t)/α

= ζ

(
x

∣∣∣∣α,
2π i N (t∗ − t)

α

)
− 2η1(t∗ − t)x

α
, (2.13)

for t ∈ [0, t∗), x ∈ R, where

η1(t∗ − t) = η1(t∗ − t; N , α) = π2

ω1

(
1

12
− 2

∞∑

n=1

nq2n

1 − q2n

)∣∣∣∣∣
ω1=α/2,q=e−2π2N (t∗−t)/α2

= 2π2

α

(
1

12
− 2

∞∑

n=1

ne−4π2nN (t∗−t)/α2

1 − e−4π2nN (t∗−t)/α2

)
. (2.14)

The formula (2.12) gives

Aα
N (t∗ − t, x) = π

α
cot

(πx

α

)
+ 4π

α

∞∑

n=1

e−4π2nN (t∗−t)/α2

1 − e−4π2nN (t∗−t)/α2 sin

(
2πnx

α

)
,

t ∈ [0, t∗), x ∈ R. (2.15)

From this expression, we can readily observe (1.5) and (1.6) and other properties of
Aα
N . In particular, we can see (1.8).

2.2 Elliptic determinant identities

Let p be a fixed complex number such that 0 < |p| < 1.We use the standard notations

(a; p)∞ =
∞∏

j=0

(1 − ap j ),

(a1, . . . , an; p)∞ = (a1; p)∞ · · · (an; p)∞.
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Elliptic determinantal process of type A 647

Following [37,43], here we use ‘multiplicative notation’ for theta functions,

E(s; p) = (s, p/s; p)∞,

E(s1, . . . , sn; p) =
n∏

j=1

E(s j ; p).

The function E(s; p) is holomorphic for s �= 0. The zero set of E(s; p) is given by
pZ ≡ {p j : j ∈ Z}, and all zeroes are single. The inversion formula

E(1/s; p) = −1

s
E(s; p), (2.16)

the quasi-periodicity E(ps; p) = −E(s; p)/s, and the Laurent expansion

E(s; p) = 1

(p; p)∞
∑

n∈Z
(−1)n p(

n
2)sn

are known. If gn denotes a primitive nth root of unity, n ∈ N, the following equality
holds [37],

E(sn; pn) =
n−1∏

j=0

E(sg j
n ; p). (2.17)

With (1.1), the function E(s; p) is related to the Jacobi theta function ϑ1 by

ϑ1(v; τ) = iq1/4q0
1

z
E(z2; q2). (2.18)

The equality (2.17) is then rewritten as (2.6).
For N ∈ N, s = (s1, . . . , sN ) ∈ C

N , put

WAN−1(s; p) =
∏

1≤ j<k≤N

sk E(s j/sk; p) = (−1)N (N−1)/2
∏

1≤ j<k≤N

s j E(sk/s j ; p),

where the second equality is provedby the inversion formula (2.16). It is theMacdonald
denominator for the reduced affine root systems of type AN−1 [37].

We start with the following two lemmas, which are readily obtained from the results
given in [30,37,42,43].

Lemma 2.2 For r = (r1, . . . , rN ) ∈ C
N and κ ∈ C assume that

r j
rk

/∈ pZ, 1 ≤ j �= k ≤ N , and κ

N∏

j=1

r j /∈ pZ. (2.19)
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648 M. Katori

Then for s ∈ C
N

det
1≤ j,k≤N

⎡

⎣
E
(
κs j

∏N
m=1,m �=k rm; p

)

E
(
κ
∏N

m=1 rm; p
)

∏

1≤
≤N ,
 �=k

E(s j/r
; p)
E(rk/r
; p)

⎤

⎦

=
E
(
κ
∏N

j=1 s j ; p
)
WAN−1(s; p)

E
(
κ
∏N

j=1 r j ; p
)
WAN−1(r; p)

. (2.20)

Proof of Lemma 2.2 Let s1, . . . , sN , a1, . . . , aN−1, b1, . . . , bN , c2, . . . , cN , and κ be
indeterminates, which satisfy

j−1∏

k=1

ak · b j ·
N∏


= j+1

c
 = κ, 1 ≤ j ≤ N . (2.21)

The following equality holds [42] (see Corollary 4.5 and Remark 4.6 in [37], and see
also Section 5.11 in [30]),

det
1≤ j,k≤N

[
k−1∏


=1

E(a
s j ; p) · E(bks j ; p) ·
N∏

m=k+1

E(cms j ; p)
]

= E

⎛

⎝κ

N∏

j=1

s j ; p
⎞

⎠
N∏

k=2

E(bk/ck; p)
∏

1≤
<m≤N

cmsmE(s
/sm, a
/cm; p).

(2.22)

We put a j = 1/r j , 1 ≤ j ≤ N − 1, b j = α/r j , 1 ≤ j ≤ N , c j = 1/r j , 2 ≤ j ≤ N
with α ∈ C. Then the condition (2.21) gives

N∏

j=1

r j = α

κ
(2.23)

and (2.22) becomes

det
1≤ j,k≤N

⎡

⎣E(αs j/rk; p)
∏

1≤
≤N ,
 �=k

E(s j/r
; p)
⎤

⎦

= E

⎛

⎝α

N∏

j=1

s j/r j ; p
⎞

⎠ E(α; p)N−1
∏

1≤
<m≤N

sm
rm

E

(
s

sm

; p
)
E

(
rm
r


; p
)

.

(2.24)
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Under the assumption (2.19) we divide the both sides of (2.24) by E(α; p)N∏
1≤k,
≤N ,k �=
 E(rk/r
; p) and obtain the equality

det
1≤ j,k≤N

⎡

⎣ E(αs j/rk; p)
E(α; p)

∏

1≤
≤N ,
 �=k

E(s j/r
; p)
E(rk/r
; p)

⎤

⎦

=
E
(
α
∏N

j=1 s j/r j ; p
)

E(α; p)
∏

1≤
<m≤N

sm
rm

E(s
/sm; p)
E(r
/rm; p) .

If we use (2.23), we obtain (2.20). ��
The following equality is given in the first line of Proposition 6.1 in [37].

Lemma 2.3 For s ∈ C
N , κ ∈ C,

E

⎛

⎝κ

N∏

j=1

s j ; p
⎞

⎠WAN−1(s; p) = (pN ; pN )N∞
(p; p)N∞

det
1≤ j,k≤N

[
sk−1
j E

(
(−1)N−1 pk−1κsNj ; pN

)]
.

From now on, we assume�τ = 0,�τ > 0, that is, 0 < q = eπ iτ < 1. It is obvious
from (1.2) that if v ∈ R, then ϑ1(v; τ) ∈ R, |ϑ1(v; τ)| < ∞. We set p = q2 and
s j = eix j /r , r j = eiu j /r , κ = eiδ/r in Lemma 2.2, x j , u j ∈ R, 1 ≤ j ≤ N , δ ∈ πrZ.
Then, through (2.18), these lemmas are rewritten as follows.

Lemma 2.4 Assume that u = (u1, . . . , uN ) ∈ A[0,2πr)N and uδ = δ + ∑N
j=1 u j ∈

(0, 2πr). Let xδ = δ +∑N
j=1 x j . Then

det
1≤ j,k≤N

⎡

⎣ϑ1((uδ + x j − uk)/2πr; τ)

ϑ1(uδ/2πr; τ)

∏

1≤
≤N ,
 �=k

ϑ1((x j − u
)/2πr; τ)

ϑ1((uk − u
)/2πr; τ)

⎤

⎦

= ϑ1(xδ/2πr; τ)

ϑ1(uδ/2πr; τ)

∏

1≤ j<k≤N

ϑ1((x j − xk)/2πr; τ)

ϑ1((u j − uk)/2πr; τ)
.

Similarly Lemma 2.3 gives the following.

Lemma 2.5

ϑ1

(
xδ

2πr
; τ

) ∏

1≤ j<k≤N

ϑ1

(
x j − xk
2πr

; τ

)

= CA
N (τ ) det

1≤ j,k≤N

[
ei(k−1)x j /rϑ1

(
N − 1

2
+ (k − 1)τ + δ + Nx j

2πr
; Nτ

)]

(2.25)
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650 M. Katori

with

C A
N (τ ) = CA

N (τ ; r, δ) = q0(τ )(N−1)(N−2)/2i (N−1)(3N−2)/2q(τ )(N−1)(3N−2)/8ei(N−1)δ/2r

= q0(τ )(N−1)(N−2)/2 exp

[
(N − 1)

{
(3N − 2)

8
τ + δ

2πr
+ 3N − 2

4

}
π i

]
.

(2.26)

Let η(x) denotes Dedekind’s η-function [11,33],

η(x) = x1/24
∞∏

n=1

(1 − xn). (2.27)

The following equalities were proved as Proposition 5.6.3 in [15] (see also [13,14]).

Lemma 2.6 Let α ∈ C. For N odd

det
1≤ j,k≤N

[ϑ3(x j + α − k/N ; τ)] = NN/2η(e2Nπ iτ )−(N−1)(N−2)/2

×ϑ3

⎛

⎝
N∑

j=1

(x j + α) + Nτ

2
; 2Nτ

⎞

⎠
∏

1≤ j<k≤N

ϑ1(xk − x j ; Nτ), (2.28)

while for N even

det
1≤ j,k≤N

[ϑ1(x j + α − k/N ; τ)] = NN/2η(e2Nπ iτ )−(N−1)(N−2)/2

×ϑ0

⎛

⎝
N∑

j=1

(x j + α) + Nτ

2
; 2Nτ

⎞

⎠
∏

1≤ j<k≤N

ϑ1(xk − x j ; Nτ). (2.29)

2.3 Generalized h-transform

The backward Kolmogorov equation for (1.17) is given as

− ∂uA(s, x)
∂s

= 1

2

N∑

j=1

∂2uA(s, x)

∂x2j
+

∑

1≤ j,k≤N ,
j �=k

A2πr
N (t∗ − s, x j − xk)

∂uA(s, x)
∂x j

+
∑

1≤ j≤N

A2πr
N (t∗ − s, xδ)

∂uA(s, x)
∂x j

. (2.30)

Wewrite the tpdof theprocess�A(t), t ∈ [0, t∗) as pA
N (t, y|s, x) = pA

N (t, y|s, x; r, t∗),
0 ≤ s ≤ t < t∗, provided that x, y ∈ A[0,2πr)N and xδ, yδ ∈ (0, 2πr). Since the con-
figuration of the process �A(t), t ∈ [0, t∗) is unlabeled as (1.20), we solve (2.30) to
obtain pA

N under the ‘initial condition’
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Elliptic determinantal process of type A 651

lim
s↑t u

A(s, x) =
∑

σ∈SN

N∏

j=1

δyσ( j) ({x j }), (2.31)

where SN denotes a collection of all permutations of N indices. It is a moderated
version of the usual one lims↑t u A(s, x) = ∏N

j=1 δy j ({x j }) for processes with labeled
configurations.

We consider the Brownian motion Vr (·) started at u ∈ A[0,2πr)N with an index
δ ∈ πrZ chosen as uδ ∈ (0, 2πr), which is killed when it arrives at the boundary of
AAN−1

2πr and when V
r
δ(·) ∈ {0, 2πr}. Let q A

N (t − s, y|x) = q A
N (t − s, y|x; r), x, y ∈

A[0,2πr)N , 0 < s < t < t∗ be the tpd of Vr (·), which satisfies

lim
t↓0 q

A
N (t, y|x) =

∑

σ∈SN

N∏

j=1

δyσ( j) ({x j }), (2.32)

Lemma 2.7 The tpd of the process �A(t), t ∈ [0, t∗) is given by

pA
N (t, y|s, x) = hA

N (t∗ − t, y)

hA
N (t∗ − s, x)

q A
N (t − s, y|x), 0 ≤ s ≤ t < t∗, x, y ∈ A[0,2πr)N ,

where xδ, yδ ∈ (0, 2πr) and

hA
N (t∗ − t, x) = hA

N (t∗ − t, x; r, t∗)
= e−N (N−1)(N−2)t∗/48r2η(e−N (t∗−t)/r2)−(N−1)(N−2)/2

×ϑ1

(
xδ

2πr
; i N (t∗ − t)

2πr2

) ∏

1≤ j<k≤N

ϑ1

(
xk − x j
2πr

; i N (t∗ − t)

2πr2

)
,

(2.33)

t ∈ [0, t∗), x ∈ A[0,2πr)N .

Proof Set

uA(s, x) = f A(s, x)q A
N (t − s, y|x) (2.34)

and put it into (2.30) assuming that f A is C1 in t and C2 in x. Then we have

−∂ f A(s, x)
∂s

q A
N (t − s, y|x)

= 1

2
q A
N (t − s, y|x)

N∑

j=1

∂2 f A(s, x)

∂x2j
+

N∑

j=1

∂ f A(s, x)
∂x j

∂q A
N (t − s, y|x)

∂x j
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+ q A
N (t−s, y|x)

N∑

j=1

⎧
⎪⎪⎨

⎪⎪⎩

∑

1≤k≤N ,
k �= j

A2πr
N (t∗−s, x j −xk) + A2πr

N (t∗−s, xδ)

⎫
⎪⎪⎬

⎪⎪⎭

∂ f A(s, x)
∂x j

+ f A(s, x)
N∑

j=1

⎧
⎪⎪⎨

⎪⎪⎩

∑

1≤k≤N ,
k �= j

A2πr
N (t∗−s, x j −xk)+A2πr

N (t∗ − s, xδ)

⎫
⎪⎪⎬

⎪⎪⎭

∂q A
N (t−s, y|x)

∂x j
,

(2.35)

since q A
N (t − s, y|x) satisfies the diffusion equation. We put

f A(s, x) = gA(s)

⎧
⎨

⎩ϑ1

(
xδ

2πr
; i N (t∗−s)

2πr2

) ∏

1≤ j<k≤N

ϑ1

(
xk−x j
2πr

; i N (t∗−s)

2πr2

)⎫⎬

⎭

−1

,

(2.36)

where gA is a C1 function of time s to be determined. By definition (1.4), we see

∂ f A(s, x)
∂x j

= −

⎧
⎪⎪⎨

⎪⎪⎩

∑

1≤k≤N ,
k �= j

A2πr
N (t∗ − s, x j − xk) + A2πr

N (t∗ − s, xδ)

⎫
⎪⎪⎬

⎪⎪⎭
f A(s, x)

and

∂A2πr
N (t∗ − s, x j − xk)

∂x j
= 1

(2πr)2
ϑ ′′
1 ((x j − xk)/2πr; i N (t∗ − s)/2πr2)

ϑ1((x j − xk)/2πr; i N (t∗ − s)/2πr2)

− (A2πr
N (t∗ − s, x j − xk))

2. (2.37)

Then (2.35) gives the equation

− ∂ f A(s, x)
∂s

= − 1

2(2πr)2
∑

1≤ j,k≤N ,
j �=k

ϑ ′′
1 ((x j − xk)/2πr; i N (t∗ − s)/2πr2)

ϑ1((x j − xk)/2πr; i N (t∗ − s)/2πr2)
f A(s, x)

− 1

2(2πr)2
N

ϑ ′′
1 (xδ/2πr; i N (t∗ − s)/2πr2)

ϑ1(xδ/2πr; i N (t∗ − s)/2πr2)
f A(s, x)

−1

2

∑

1≤ j,k,
≤N ,
j �=k �=


A2πr
N (t∗ − s, x j −xk)A

2πr
N (t∗ − s, x j − x
) f

A(s, x),

(2.38)

where the sum in the last termdenotes the summationover 1 ≤ j, k, 
 ≤ N conditioned
that j, k, 
 are all distinct. By the setting (2.36),
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LHS of (2.38) = − 1

gA(s)

dgA(s)

ds
f A(s, x)

− i N

4πr2
∑

1≤ j,k≤N ,
j �=k

ϑ̇1((x j − xk)/2πr; i N (t∗ − s)/2πr2)

ϑ1((x j − xk)/2πr; i N (t∗ − s)/2πr2)
f A(s, x)

− i N

2πr2
ϑ̇1(xδ/2πr; i N (t∗ − s)/2πr2)

ϑ1(xδ/2πr; i N (t∗ − s)/2πr2)
f A(s, x),

where ϑ̇1(x; τ) = dϑ1(x; τ)/dτ and (2.2) was used. Since (1.3) is satisfied, the above
is equal to

− 1

gA(s)

dgA(s)

ds
f A(s, x)

− N

16π2r2
∑

1≤ j,k≤N ,
j �=k

ϑ ′′
1 ((x j −xk)/2πr; i N (t∗ − s)/2πr2)

ϑ1((x j −xk)/2πr; i N (t∗ − s)/2πr2)
f A(s, x)

− N

8π2r2
ϑ ′′
1 (xδ/2πr; i N (t∗ − s)/2πr2)

ϑ1(xδ/2πr; i N (t∗ − s)/2πr2)
f A(s, x).

Therefore, (2.38) becomes

1

gA(s)

dgA(s)

ds
= 1

2

∑

1≤ j,k,
≤N ,
j �=k �=


A2πr
N (t∗ − s, x j − xk)A

2πr
N (t∗ − s, x j − x
)

− N − 2

16π2r2
∑

1≤ j,k≤N ,
j �=k

ϑ ′′
1 ((x j − xk)/2πr; i N (t∗ − s)/2πr2)

ϑ1((x j − xk)/2πr; i N (t∗ − s)/2πr2)
.

(2.39)

Now we rewrite RHS of (2.39) by using the functions ℘ and ζ through (2.13). First
we see

1

2

∑

1≤ j,k,
≤N ,
j �=k �=


A2πr
N (t∗ − s, x j − xk)A

2πr
N (t∗ − s, x j − x
)

= 1

2

∑

1≤ j,k,
≤N ,
j �=k �=


ζ(x j −xk)ζ(x j −x
) − η1(t∗ − s)

πr

∑

1≤ j,k,
≤N ,
j �=k �=


ζ(x j − xk)(x j − x
)

+ 1

2

(
η1(t∗ − s)

πr

)2 ∑

1≤ j,k,
≤N ,
j �=k �=


(x j − xk)(x j − x
).
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For

∑

1≤ j,k,
≤N ,
j �=k �=


ζ(x j − xk)ζ(x j − x
) = 2
∑

1≤ j<k<
≤N

{
ζ(x j − xk)ζ(x j − x
)

+ ζ(xk − x
)ζ(xk − x j ) + ζ(x
 − x j )ζ(x
 − xk)
}
,

Lemma 2.1 gives

1

2

∑

1≤ j,k,
≤N ,
j �=k �=


ζ(x j −xk)ζ(x j −x
) = 1

4

∑

1≤ j,k,
≤N ,
j �=k �=


ζ(x j −xk)
2− 1

4

∑

1≤ j,k,
≤N ,
j �=k �=


℘ (x j −xk)

= N − 2

4

∑

1≤ j,k≤N ,
j �=k

ζ(x j − xk)
2 − N − 2

4

∑

1≤ j,k≤N ,
j �=k

℘(x j − xk).

On the other hand, differentiation of (2.13) with respect to x gives

∂A2πr
N (t∗ − s, x)

∂x
= ζ ′(x) − η1(t∗ − s)

πr
= −℘(x) − η1(t∗ − s)

πr
,

where (2.10) was used. Combining it with (2.37) gives

1

(2πr)2
ϑ ′′
1 (x/2πr; i N (t∗ − s)/2πr2)

ϑ1(x/2πr; i N (t∗ − s)/2πr2)
= A2πr

N (t∗ − s, x)2 − ℘(x) − η1(t∗ − s)

πr

= ζ(x)2 − 2η1(t∗ − s)

πr
ζ(x)x +

(
η1(t∗ − s)

πr

)2

x2 − ℘(x) − η1(t∗ − s)

πr
.

Then

− N − 2

16π2r2
∑

1≤ j,k≤N ,
j �=k

ϑ ′′
1 ((x j − xk)/2πr; i N (t∗ − s)/2πr2)

ϑ1((x j − xk)/2πr; i N (t∗ − s)/2πr2)

= −N − 2

4

∑

1≤ j,k≤N ,
j �=k

ζ(x j −xk)
2 + N − 2

2

η1(t∗ − s)

πr

∑

1≤ j,k≤N ,
j �=k

ζ(x j −xk)(x j −xk)

−N − 2

4

(
η1(t∗ − s)

πr

)2 ∑

1≤ j,k≤N ,
j �=k

(x j − xk)
2 + N − 2

4

∑

1≤ j,k≤N ,
j �=k

℘(x j − xk)

+η1(t∗ − s)

πr

N (N − 1)(N − 2)

4
.
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It is easy to prove that

∑

1≤ j,k,
≤N ,
j �=k �=


ζ(x j − xk)(x j − x
) − N − 2

2

∑

1≤ j,k≤N ,
j �=k

ζ(x j − xk)(x j − xk) = 0,

∑

1≤ j,k,
≤N ,
j �=k �=


(x j − xk)(x j − x
) − N − 2

2

∑

1≤ j,k≤N ,
j �=k

(x j − xk)
2 = 0,

by using the fact that ζ is odd. Then Eq. (2.39) is reduced to be

d

ds
log gA(s) = η1(t∗ − s)

4πr
N (N − 1)(N − 2).

Since η1(t∗ − t) is explicitly given as (2.14) with α = 2πr , this equation can be solved
as

gA(s) = c′eN (N−1)(N−2)s/48r2
∞∏

n=1

(
1 − e−nN (t∗−s)/r2

1 − e−nNt∗/r2

)(N−1)(N−2)/2

with a constant c′. The solution (2.34) has been determined of the form

uA(s, x) =
∞∏

n=1

(
1 − e−nNt∗/r2

)−(N−1)(N−2)/2 c′

hA
N (t∗ − s, x)

q A
N (t − s, y|x).

For (2.32), the condition (2.31) is satisfied, if and only if

c′ =
∞∏

n=1

(
1 − e−nNt∗/r2

)(N−1)(N−2)/2
hA
N (t∗ − t, y).

Since ϑ1(x/2πr; i N (t∗− t)/2πr2) > 0 if x ∈ (0, 2πr), t ∈ [0, t∗), and q A
N (t−s, y|x)

is assumed to be the tpd of Vr (·), we can conclude that 0 < pA
N (t, y|s, x) < ∞ for

any x, y ∈ A[0,2πr)N , 0 ≤ s ≤ t < t∗, where δ is chosen so that xδ, yδ ∈ (0, 2πr).
Then the proof is completed. ��

Let W̌(t) = (W̌1(t), . . . , W̌N ), t ≥ 0 be N -dimensional Brownian motion on
(S1(r))N started at u ∈ AAN−1

2πr . The expectation with respect to this process is denoted
by Ěu. Consider a stopping time

TW̌ = inf
{
t > 0 : W̌(t) /∈ AAN−1

2πr

}
.

Put W δ = δ + ∑N
j=1 W̌ j (t), where the index δ ∈ πrZ is determined so that uδ ∈

(0, 2πr). Then we also consider the following stopping time

TW δ
= inf{t > 0 : W δ ∈ {0, 2πr}}.
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For the process�A(t), t ∈ [0, t∗) isM([0, 2πr))-valued, measurable functions are
symmetric functions of N variables X A

j , 1 ≤ j ≤ N at each time. By the definition

(1.19) for XA, they should be periodic with period 2πr . Let T ∈ [0, t∗). Then any
F�A(T )-measurable function F will be given as follows. With an arbitrary integer
M ∈ N and arbitrary sequence of times 0 ≤ t1 < · · · < tM ≤ T ,

F(�A(·)) =
M∏

m=1

gm(XA(tm)), (2.40)

where gm(x), 1 ≤ m ≤ M are symmetric functions and

gm((x j + 2πrn j )) = gm(x), n j ∈ Z, 1 ≤ j ≤ N , (2.41)

for 1 ≤ m ≤ M .
The indicator function of ω is denoted by 1(ω); 1(ω) = 1 if ω is satisfied, and

1(ω) = 0 otherwise. Lemma 2.7 implies the following equality.

Proposition 2.8 Suppose ξ = ∑N
j=1 δu j ∈ M0([0, 2πr)). Let T ∈ [0, t∗). For any

F�A(T )-measurable observable F,

E
A
ξ [F(�A(·))] = Ěu

⎡

⎣F

⎛

⎝
N∑

j=1

δW̌ j (·)

⎞

⎠ 1(TW̌ ∧ TW δ
> T )

hA
N (t∗ − T, W̌(T ))

hA
N (t∗,u)

⎤

⎦ .

See Remark 2 at the end of Sect. 3.1.

2.4 Markov process Wr

We write the tpd of BM on R as

pBM(t, y|x) = 1√
2π t

e−(y−x)2/2t , x, y ∈ R, t ∈ [0,∞).

By wrapping it on S1(r), we define

prAN−1
(t, y|x) =

⎧
⎨

⎩

∑

∈Z pBM(t, y + 2πr
|x), if N is even,

∑

∈Z(−1)
 pBM(t, y + 2πr
|x), if N is odd,

(2.42)

x, y ∈ [0, 2πr), t ≥ 0. Using the Jacobi theta functions (2.5), it is written as

prAN−1
(t, y|x) =

⎧
⎪⎪⎨

⎪⎪⎩

pBM(t, y|x)ϑ3

(
i(y − x)r

t
; 2π ir

2

t

)
, if N is even,

pBM(t, y|x)ϑ0

(
i(y − x)r

t
; 2π ir

2

t

)
, if N is odd.

123



Elliptic determinantal process of type A 657

We find that by Jacobi’s imaginary transformations [44],

ϑ0(v; τ) = eπ i/4τ−1/2e−π iv2/τ ϑ2

(
v

τ
;−1

τ

)
,

ϑ3(v; τ) = eπ i/4τ−1/2e−π iv2/τ ϑ3

(
v

τ
;−1

τ

)
,

the above is further rewritten as

prAN−1
(t, y|x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2πr
ϑ3

(
y − x

2πr
; i t

2πr2

)
, if N is even,

1

2πr
ϑ2

(
y − x

2πr
; i t

2πr2

)
, if N is odd.

(2.43)

Lemma 2.6 given by Forrester [15] implies the following.

Proposition 2.9 For N ∈ {2, 3, . . .}, v is given by (1.21). Then for y ∈ A[0,2πr)N ,
t > 0,

q A
N (t, y|v) = det

1≤ j,k≤N

[
prAN−1

(t, y j |vk)
]
. (2.44)

Proof For N odd, we put α = 1/N + τ/2 in (2.28), and for N even, α = 1/N + (1+
τ)/2 in (2.29). Let τ = i t/2πr2. Then we have

det
1≤ j,k≤N

[
prAN−1

(t, y j |vk)
]

=
(√

N

2πr

)N

η(e−Nt/r2)−(N−1)(N−2)/2eNt/8r2

×ϑ1

(
y−πr(N−2)

2πr
; i N t

πr2

) ∏

1≤ j<k≤N

ϑ1

(
yk − y j
2πr

; i N t

2πr2

)
, (2.45)

where quasi-periodicity of ϑμ,μ = 0, 1, 2, 3 has been used. By expression (2.43)
with (2.5), it is obvious that (2.45) satisfies the diffusion equation. This expression
(2.45) guarantees the positivity and finiteness of det1≤ j,k≤N [prAN−1

(t, y j |vk)] for y ∈
A[0,2πr)N and y−πr(N−2) ∈ (0, 2πr). Equation (2.45) also shows that it vanisheswhen
y j = yk for any j �= k and when y−πr(N−2) ∈ {0, 2πr}. By the expression (2.42)
and the argument given by Liechty and Wang [32] (see also [16]), we can prove that
(2.45) satisfies the moderated initial configuration

lim
t↓0 det

1≤ j,k≤N

[
prAN−1

(t, y j |vk)
]

=
∑

σ∈SN

N∏

j=1

δvσ( j) ({y j }).

Then the proof is completed. ��
Remark 1 TheKarlin-McGregor-type [22] determinantal formula (2.44) forq A

N (t, y|x)
given in Proposition 2.9 is crucial for DMR which will be proved in Theorem 3.1. In
the present paper, we obtained it for the special initial configuration (1.21) due to
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658 M. Katori

the explicit evaluation (2.45) given by Lemma 2.6 of Forrester [15]. If we obtain the
Karlin-McGregor-type determinantal formula for q A

N for other initial configuration,
we can prove DMR for the process and it will immediately conclude that the process
is determinantal by Theorem 1.3 of [23].

Given N ∈ N, let Wr (t), t ≥ 0 be a Markov process in [0, 2πr) such that its
transition density is given by prAN−1

(t, y|x), t ≥ 0, x, y ∈ [0, 2πr), defined by (2.42).
Then we introduce an N independent copies of Wr (t), t ≥ 0, denoted by Wr

j (t), t ≥
0, 1 ≤ j ≤ N and let Wr (t) = (Wr

1 (t), . . . ,Wr
N (t)), t ≥ 0. The probability space

of the process is denoted by (�Wr ,FWr ,Prv), and the expectation is written as Er
v ,

where the initial configuration is given by v with (1.21). A filtration {FWr (t) : t ≥ 0}
is generated by Wr (t), t ≥ 0, which satisfies the usual conditions.

2.5 Martingales and complex Brownian motions

Let 0 < t∗ < ∞ and ξ = ∑N
j=1 δu j ∈ M0([0, 2πr)). For 1 ≤ k ≤ N , define

�A
ξ,uk (z) = �A

ξ,uk (z; N , r, t∗)

= ϑ1((uδ+z−uk)/2πr; i N t∗/2πr2)
ϑ1(uδ/2πr; i N t∗/2πr2)

∏

1≤
≤N ,

�=k

ϑ1((z−u
)/2πr; i N t∗/2πr2)
ϑ1((uk−u
)/2πr; i N t∗/2πr2)

, z ∈ C,

(2.46)

and

MA
ξ,uk (t, x) = MA

ξ,uk (t, x; N , r, t∗)

=
∫

R

dw
e−(i x+w)2/2t

√
2π t

�A
ξ,uk (iw), (t, x) ∈ [0, t∗) × [0, 2πr). (2.47)

Since �A
ξ,uk

(z), 1 ≤ k ≤ N are holomorphic for |z| < ∞, (2.47) is written as

MA
ξ,uk (t, x) =

∫

R

dw̃
e−w̃2/2t

√
2π t

�A
ξ,uk (x + iw̃)

= Ẽ[�A
ξ,uk (x + i W̃ (t))], (2.48)

where W̃ denotes a BM on R started at 0, which is independent ofWr , and Ẽ does the
expectation for W̃ . Then the following is proved.

Lemma 2.10 Assume v j , 1 ≤ j ≤ N are given by (1.21) and η = ∑N
j=1 δv j . Then

(i) MA
η,vk

(t,Wr (t)), 1 ≤ k ≤ N , t ∈ [0, t∗) are continuous-time martingales;

Er [MA
η,vk

(t,Wr (t))|FWr (s)] = MA
η,vk

(s,Wr (s)) a.s. for any two bounded stop-
ping times with 0 ≤ s ≤ t < t∗.
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Elliptic determinantal process of type A 659

(ii) For any t ∈ [0, t∗),MA
η,vk

(t, x), 1 ≤ k ≤ N, are linearly independent functions
of x ∈ [0, 2πr),

(iii) MA
η,vk

(0, v j ) = δ jk, 1 ≤ j, k ≤ N.

Proof (i) For the quasi-periodicity (2.3) ofϑ1, the expression (2.48)with (2.46) implies
that, for 
 ∈ Z,

MA
η,vk

(t, x + 2πr
) = (−1)
NMA
η,vk

(t, y)

=
⎧
⎨

⎩

MA
η,vk

(t, y), if N is even,

(−1)
MA
η,vk

(t, y), if N is odd.
(2.49)

Then, for 0 ≤ s ≤ t < t∗, 1 ≤ k ≤ N , (2.42) gives

Er
[
MA

η,vk
(t,Wr (t))|FWr (s)

]
=
∫ 2πr

0
dwMA

η,vk
(t, w)prAN−1

(t − s, w|Wr (s))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

∈Z

∫ 2πr(
+1)

2πr

dwMA

η,vk
(t, w−2πr
)pBM(t−s, w|Wr (s)), if N is even,

∑

∈Z

∫ 2πr(
+1)

2πr

dw (−1)
MA

η,vk
(t, w−2πr
)pBM(t−s, w|Wr (s)), if N is odd.

By (2.49), it is equal to

∫

R

dwMA
η,vk

(t, w)pBM(t − s, w|Wr (s)) a.s.

By Definition (1.2) of ϑ1, we will obtain the following expansions; for 1 ≤ k ≤ N ,

ϑ1((uδ + z − uk)/2πr; i N t∗/2πr2)
ϑ1(uδ/2πr; i N t∗/2πr2)

=
∑

n0∈Z
b0n0e

i(2n0−1)z/2r ,

ϑ1((z − u
)/2πr; i N t∗/2πr2)
ϑ1((uk − u
)/2πr; i N t∗/2πr2)

=
∑

n
∈Z
b

n

ei(2n
−1)z/2r , 1 ≤ 
 ≤ N , 
 �= k,

where the coefficients b

n


, 0 ≤ 
 ≤ N , 
 �= k are functions of {u
}N
=1, t∗, N and r .
Then, if we introduce an N -component index n = (n0, n1, . . . , nk−1, nk+1, . . . , nN )

for each 1 ≤ k ≤ N , and put Bk
n = ∏

0≤
≤N ,
 �=k b


n

, (2.48) with ξ = η, uk = vk, x =

w is expanded as
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MA
η,vk

(t, w) =
∑

n∈ZN

Bk
n exp

⎛

⎝i
∑

0≤
≤N ,
 �=k

(2n
 − 1)
w

2r

⎞

⎠

× Ẽ

⎡

⎣exp

⎛

⎝−
∑

0≤
≤N ,
 �=k

(2n
 − 1)
W̃ (t)

2r

⎞

⎠

⎤

⎦

=
∑

n∈ZN

Bk
nG

⎛

⎝ i

2r

∑

0≤
≤N ,
 �=k

(2n
 − 1); t, w
⎞

⎠ , (2.50)

where

G(α; t, w) = eαw−α2t/2, α ∈ C.

For any α ∈ C, it is easy to confirm that

∫

R

dw G(α; t, w)pBM(t − s, w|x) = G(α; s, x), 0 ≤ s ≤ t, x ∈ R.

Then (2.50) gives

∫

R

dwMA
η,vk

(t, w)pBM(t − s, w|x) = MA
η,vk

(s, x), 0 ≤ s ≤ t, x ∈ R,

and hence (i) is concluded. As a matter of course, η ∈ M0([0, 2πr)), and then the
zeroes of�A

η,v j
(z) are distinct from those of�A

η,vk
(z), if j �= k. Then (ii) is proved. By

(2.48), MA
η,vk

(0, x) = limt↓0 Ẽ
[
�A

η,vk
(x + i W̃ (t))

]
= �A

η,vk
(x), 1 ≤ k ≤ N . Since

�A
η,vk

(v j ) = δ jk, 1 ≤ j, k ≤ N by Definition (2.46), (iii) is also satisfied. ��

Let W̃ j (·), 1 ≤ j ≤ N be independent N copies of W̃ (·). For W̃(t) =
(W̃1(t), . . . , W̃N (t)), t ≥ 0, the probability space is denoted by (�̃W , F̃W , P̃) with
expectation Ẽ. We put

Zr
j (t) = Wr

j (t) + i W̃ j (t), 1 ≤ j ≤ N , t ≥ 0,

which are independent complex Brownian motions on C(r) ≡ [0, 2πr) × iR. The
probability space for Zr (t) = (Zr

1(t), . . . , Z
r
N (t)), t ≥ 0 is given by the direct product

of the two spaces, (�Wr ,FWr ,Pru) for W
r (·) and (�̃W , F̃W , P̃) for W̃(·), which is

denoted by (�r ,Fr ,Pr
u) with expectation Er

u.

Proposition 2.11 Let Z
r
δ(t) = δ +∑N

j=1 Z
r
j (t) and W

r
δ = δ +∑N

j=1 W
r (t), t ≥ 0.

Then the following equality holds,
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Ẽ

⎡

⎣ϑ1

(
Z
r
δ(t)

2πr
; i N t∗
2πr2

)
∏

1≤ j<k≤N

ϑ1

(
Zr
j (t) − Zr

k(t)

2πr
; i N t∗
2πr2

)⎤

⎦

=
[
eNt/24r2

∞∏

n=1

(
1 − e−nN (t∗−t)/r2

1 − e−nNt∗/r2

)]−(N−1)(N−2)/2

×ϑ1

(
W

r
δ(t)

2πr
; i N (t∗ − t)

2πr2

)
∏

1≤ j<k≤N

ϑ1

(
Wr

j (t) − Wr
k (t)

2πr
; i N (t∗ − t)

2πr2

)
.

Proof By (2.25) in Lemma 2.5

Ẽ

⎡

⎣ϑ1

(
Z
r
δ(t)

2πr
; τ

)
∏

1≤ j<k≤N

ϑ1

(
Zr
j (t) − Zr

k(t)

2πr
; τ

)⎤

⎦

= CA
N (τ ) det

1≤ j,k≤N

[
Ẽ

[
ei(k−1)Zr

j (t)/rϑ1

(
N−1

2
+(k−1)τ + δ+N Zr

j (t)

2πr
; Nτ

)]]
,

(2.51)

where the multilinearity of determinant and independence of Zr
j (t)’s have been used.

Using the Laurent expansion (1.2), we have

Ẽ

[
ei(k−1)Zr

j (t)/rϑ1

(
N − 1

2
+ (k − 1)τ + δ + N Zr

j (t)

2πr
; Nτ

)]

= ei(k−1)Wr
j (t)/r i

∑

n∈Z
(−1)ne[(n−(1/2))2Nτ+(2n−1){(N−1)/2+(k−1)τ+(δ+NWr

j (t))/2πr}]π i

×Ẽ
[
e−{2(k−1)+(2n−1)N }W̃ j (t)/2r

]
. (2.52)

Here

Ẽ
[
e−{2(k−1)+(2n−1)N }W̃ j (t)/2r

]
=
∫

R

dw̃
e−w̃2/2t

√
2π t

e−{2(k−1)+(2n−1)N }w̃/2r

= et[2(k−1)+(2n−1)N ]2/8r2

= e(k−1)2t/2r2 exp

[(
n − 1

2

)2

N

(
− i N t

2πr2

)
π i

+(2n − 1)(k − 1)

(
− i N t

2πr2

)
π i

]
.
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Then (2.52) is equal to

e(k−1)2t/2r2ei(k−1)Wr
j (t)/r i

∑

n∈Z
(−1)n exp

[(
n − 1

2

)2

N

(
τ − i N t

2πr2

)
π i

+(2n − 1)

{
N − 1

2
+ (k − 1)

(
τ − i N t

2πr2

)
+ δ + NWr

j (t)

2πr

}
π i

]

= e(k−1)2t/2r2ei(k−1)Wr
j (t)/r

×ϑ1

(
N − 1

2
+ (k − 1)

(
τ − i N t

2πr2

)
+ δ + NWr

j (t)

2πr
; N

(
τ − i N t

2πr2

))
.

Put this into (2.51), we have

Ẽ

⎡

⎣ϑ1

(
Z
r
δ(t)

2πr
; τ

)
∏

1≤ j<k≤N

ϑ1

(
Zr
j (t) − Zr

k(t)

2πr
; τ

)⎤

⎦ = CA
N (τ )et

∑N
k=1(k−1)2/2r2

× det
1≤ j,k≤N

[
ei(k−1)Wr

j (t)/rϑ1

(
N − 1

2
+ (k − 1)

(
τ − i N t

2πr2

)

+δ + NWr
j (t)

2πr
; N

(
τ − i N t

2πr2

))]

= CA
N (τ )

CA
N (τ − i N t/2πr2)

e(N−1)N (2N−1)t/12r2CA
N

(
τ − i N t

2πr2

)

× det
1≤ j,k≤N

[
ei(k−1)Wr

j (t)/rϑ1

(
N − 1

2
+ (k − 1)

(
τ − i N t

2πr2

)

+δ + NWr
j (t)

2πr
; N

(
τ − i N t

2πr2

))]

= CA
N (τ )

CA
N (τ − i N t/2πr2)

e(N−1)N (2N−1)t/12r2

×ϑ1

(
W

r
δ(t)

2πr
; τ − i N t

2πr2

)
∏

1≤ j<k≤N

ϑ1

(
Wr

j (t) − Wr
k (t)

2πr
; τ − i N t

2πr2

)
,

where (2.25) of Lemma 2.5 was used again. By (2.26),

CA
N (τ )

CA
N (τ − i N t/2πr2)

= e−(N−1)N (3N−2)t/16r2
(

q0(τ )

q0(τ − i N t/2πr2)

)(N−1)(N−2)/2

= e−(N−1)N (3N−2)t/16r2
∞∏

n=1

(
1 − e2nπ iτ

1−e2nπ iτ+nNt/r2

)(N−1)(N−2)/2

.

If we set τ = i N t∗/2πr2, the equality is obtained. ��
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For Wr (t), t ≥ 0, define

DA
ξ (t,Wr (t)) = det

1≤ j,k≤N
[MA

ξ,uk (t,W
r
j (t))], t ∈ [0, t∗), (2.53)

which we call the determinantal martingale [23]. By Lemma 2.10, it is a continuous-
time martingale. Then the following equality is established.

Lemma 2.12 Assume that ξ = ∑N
j=1 u j ∈ M0([0, 2πr)) and uδ ∈ (0, 2πr). Then

DA
ξ (t,Wr (t)) = hA

N (t∗ − t,Wr (t))

hA
N (t∗,u)

, t ∈ [0, t∗).

Proof By multilinearity of determinant and independence of W̃ j (·), 1 ≤ j ≤ N ,
(2.53) with (2.46) and (2.48) gives

DA
ξ (t,Wr (t)) = Ẽ

⎡

⎢⎢⎣ det
1≤ j,k≤N

⎡

⎢⎢⎣
ϑ1((uδ + Zr

j (t) − uk)/2πr; i N t∗/2πr2)
ϑ1(uδ/2πr; i N t∗/2πr2)

×
∏

1≤
≤N ,

 �=k

ϑ1((Zr
j (t) − u
)/2πr; i N t∗/2πr2)

ϑ1((uk − u
)/2πr; i N t∗/2πr2)

⎤

⎥⎥⎦

⎤

⎥⎥⎦ .

By Lemma 2.4, it is equal to

Ẽ

⎡

⎣ϑ1(Z
r
δ(t)/2πr; i N t∗/2πr2)

ϑ1(uδ/2πr; i N t∗/2πr2)
∏

1≤ j<k≤N

ϑ1((Zr
j (t) − Zr

k(t))/2πr; i N t∗/2πr2)
ϑ1((u j − uk)/2πr; i N t∗/2πr2)

⎤

⎦ .

Then we apply Proposition 2.11. By definition (2.33) of hA
N , the equality is obtained.

��

3 Main results

3.1 Determinantal martingale representation

By Lemmas 2.12 we obtain the following representation. We call it the determinantal
martingale representation (DMR) for the process (�A(t), t ∈ [0, t∗),PA

η ).

Theorem 3.1 Suppose that N ∈ N, η = ∑N
j=1 δv j with (1.21) and (1.22). Let T ∈

[0, t∗). For any F�A (T )-measurable observable F,
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E
A
η

[
F
(
�A(·)

)]
= Er

v

⎡

⎣F

⎛

⎝
N∑

j=1

δWr
j (·)

⎞

⎠DA
η (T,Wr (T ))

⎤

⎦

= Er
v

⎡

⎣F

⎛

⎝
N∑

j=1

δ�Zr
j (·)

⎞

⎠ det
1≤ j,k≤N

[�A
η,vk

(Zr
j (T ))]

⎤

⎦ . (3.1)

Note that the second representation of (3.1) is an elliptic extension of the com-
plex Brownian motion representation reported in [28] for the Dyson model (i.e. the
noncolliding BM).

Proof It is sufficient to consider the case that F is given as (2.40). Moreover, by
Markov property, it is enough to prove the case M = 1; 0 ≤ t1 ≤ T < ∞. Here we
prove the equalities

E
A
η

[
g1(XA(t1))

]
= Er

v

[
g1(Wr (t1))DA

η (t1,Wr (t1))
]

= Er
v

[
g1(Wr (t1)) det

1≤ j,k≤N
[�A

η,vk
(Zr

j (t1))]
]

, (3.2)

where g1 is a symmetric function having periodicity (2.41). By Proposition 2.8,

E
A
η

[
g1(XA(t1))

]
= Ěv

[
g1(W̌(t1))1(TW̌ ∧ TW δ

> t1)
hA
N (t∗ − t1, W̌(t1))

hA
N (t∗, v)

]
.

(3.3)
The definition of hA

N given by (2.33) and the initial condition η give

(RHS) = Ěv

[
g1(W̌(t1))1(TW̌ ∧ TW δ

> t1)
|hA

N (t∗ − t1, W̌(t1))|
hA
N (t∗, v)

]
.

By the determinantal formula (2.44) of q A
N given in Proposition 2.9, the above iswritten

as

Er
v

⎡

⎣
∑

σ∈SN

sgn(σ )g1(Wr (t1))1(σ (Wr (t1)) ∈ A[0,2πr)N )
|hA

N (t∗ − t1,Wr (t1))|
hA
N (t∗, v)

⎤

⎦ ,

(3.4)

whereWr (t1) = (Wr
1 (t1), . . . ,Wr

N (t1)) and the transition density of eachWr
j is given

by (2.42), 1 ≤ j ≤ N . Here we used the notation σ(x) = (xσ(1), . . . , xσ(N )) for
σ ∈ SN . Since

sgn(σ )1(σ (Wr (t1)) ∈ A[0,2πr)N )|hA
N (t∗ − t1,Wr (t1))|

= 1(σ (Wr (t1)) ∈ A[0,2πr)N )hA
N (t∗ − t1,Wr (t1)), σ ∈ SN ,
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Elliptic determinantal process of type A 665

(3.4) is equal to

Er
v

⎡

⎣
∑

σ∈SN

1(σ (Wr (t1)) ∈ A[0,2πr)N )g1(Wr (t1))
hA
N (t∗ − t1,Wr (t1))

hA
N (t∗,u)

⎤

⎦

= Er
v

[
g1(Wr (t1))

hA
N (t∗ − t1,Wr (t1))

hA
N (t∗,u)

]
.

Then by Lemma 2.12, we obtain the first line of (3.2). By definitions of Er
v and DA

η

given by (2.53) with (2.48), the second line of (3.2) is also obtained. ��
Remark 2 The function hA

N (t∗ − t, x), t ∈ [0, t∗) is not a harmonic function of x, but
Lemma2.10 proves thatDA

η (t,Wr (t)) given by (2.53) is a continuous-timemartingale,
whereWr (t) is aMarkov process defined by using Brownianmotion in Sect. 2.4. Then
Itô’s formula implies

(
∂

∂t
+ 1

2
�

)
DA

η (t, x) = 0,

where � = ∑N
j=1 ∂2/∂x2j . In this sense, DMR is a time-dependent extension of

h-transform [23].

3.2 Determinantal process

For any integer M ∈ N, a sequence of times t = (t1, . . . , tM ) with 0 ≤ t1 < · · · <

tM < t∗, and a sequence of functions f = ( ft1 , . . . , ftM ) ∈ C([0, 2πr))M , themoment

generating function of multitime distribution of
(
�A(t), t ∈ [0, t∗),PA

ξ

)
is defined by

� A
ξ,t[f ] = E

A
ξ

[
exp

{
M∑

m=1

∫ 2πr

0
ftm (x)�(tm, dx)

}]
. (3.5)

It is expanded with respect to ‘test functions’ χtm (·) = e ftm (·) − 1, 1 ≤ m ≤ M as

� A
ξ,t[f ] =

∑

0≤Nm≤N ,
1≤m≤M

∫
∏M

m=1 A[0,2πr)Nm

M∏

m=1

⎧
⎨

⎩dx(m)
Nm

Nm∏

j=1

χtm

(
x (m)
j

)
⎫
⎬

⎭

×ρξ

(
t1, x

(1)
N1

; . . . ; tM , x(M)
NM

)
,

and it defines the spatio-temporal correlation functions ρξ (·) for the process
(�A(t), t ∈ [0, t∗),PA

ξ ).
Given an integral kernel K(s, x; t, y), (s, x), (t, y) ∈ [0, t∗) × [0, 2πr), the Fred-

holm determinant is defined as
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Det
(s,t)∈{t1,...,tM }2,
(x,y)∈[0,2πr)2

[
δstδx (y) + K(s, x; t, y)χt (y)

]

=
∑

0≤Nm≤N ,
1≤m≤M

∑

x(m)
Nm

∈A[0,2πr)Nm ,

1≤m≤M

M∏

m=1

Nm∏

j=1

χtm

(
x (m)
j

)

× det
1≤ j≤Nm ,1≤k≤Nn ,

1≤m,n≤M

[
K(tm, x (m)

j ; tn, x (n)
k )

]
. (3.6)

We put the following definition [7,26].

Definition 3.2 For a given initial configuration ξ , if any moment generating func-
tion (3.5) is expressed by a Fredholm determinant, we say the process

(
�A(t), t ∈

[0, t∗),PA
ξ

)
is determinantal. In this case, all spatio-temporal correlation functions are

given by determinants as

ρξ

(
t1, x

(1)
N1

; . . . ; tM , x(M)
NM

)
= det

1≤ j≤Nm ,1≤k≤Nn ,
1≤m,n≤M

[
Kξ (tm, x (m)

j ; tn, x (n)
k )

]
, (3.7)

0 ≤ t1 < · · · < tM < t∗, 1 ≤ m ≤ M , 1 ≤ Nm ≤ N , x(m)
Nm

∈ [0, 2πr)Nm , 1 ≤
m ≤ M ∈ N. Here the integral kernel Kξ : ([0, t∗) × [0, 2πr))2 �→ R is called the
(spatio-temporal) correlation kernel.

By Theorem 1.3 in [23], DMR given by Theorem 3.1 leads to the following result.

Corollary 3.3 For η = ∑N
j=1 δv j with (1.21) and (1.22), the process (�A(t), t ∈

[0, t∗),PA
η ) is determinantal with the correlation kernel

K
A
η (s, x; t, y) = K

A
η (s, x; t, y; N , r, t∗)

=
∫ 2πr

0
η(du) prAN−1

(s, x |u)MA
η,u(t, y) − 1(s> t)prAN−1

(s−t, x |y),
(3.8)

(s, x), (t, y) ∈ [0, t∗) × [0, 2πr).

3.3 Explicit expression of KA
η and infinite-particle limit

For η = ∑N
j=1 δv j with (1.21) and (1.22), the entire functions (2.46) become
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Elliptic determinantal process of type A 667

�A
η,vk

(z; N , r, t∗) = ϑ1(z/2πr − (k − 1)/N + 1/2; τ)

ϑ1(1/2; τ)

×
∏

1≤
≤N ,

 �=k

ϑ1(z/2πr − (
 − 1)/N ; τ)

ϑ1((k − 
)/N ; τ)

= ϑ1(z/2πr − (k − 1)/N + 1/2; τ)

ϑ1(1/2; τ)

×
N−1∏

n=1

ϑ1(z/2πr − (k − 1)/N + n/N ; τ)

ϑ1(n/N ; τ)
,

1 ≤ k ≤ N , with τ = τ(t∗) = i N t∗/2πr2, where we have used (2.3). Using the
formulas (2.6) and (2.7), it is written as

�A
η,vk

(z; N , r, t∗) = π

Nϑ ′′
1 (0; Nτ)

ϑ1(N {z/2πr − (k − 1)/N }; Nτ)

×ϑ1(z/2πr − (k − 1)/N + 1/2; τ)ϑ ′
1(0; τ)

πϑ1(z/2πr − (k − 1)/N ; τ)ϑ1(1/2; τ)
, (3.9)

1 ≤ k ≤ N . If we apply the formula (2.9) and the Laurent expansion (1.2) of ϑ1, we
have

�A
η,vk

(z; N , r, t∗) = 2πeNπ iτ/4

Nϑ ′
1(0; Nτ)

×
[
cos(z/2r − (k − 1)π/N )

∞∑

n=1

(−1)n−1eNπ iτn(n−1)

×
sin

[
(2n − 1)N {z/2r − (k − 1)π/N }

]

sin(z/2r − (k − 1)π/N )

−4
∞∑

n=1

(−1)n−1eNπ iτn(n−1)
∞∑


=1

e2π iτ


1 + e2π iτ


× sin
[
(2n − 1)N {z/2r − (k − 1)π/N }

]
sin

[
2
{z/2r − (k − 1)π/N }

]
⎤

⎦ ,

since cot(π/2) = 0 and sin(θ + mπ) = (−1)m sin θ,m ∈ Z. For M ∈ N, let

σM (m) =
{
m, ifM is odd,

m − 1/2, ifM is even.
(3.10)
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It is easy to confirm the equality

sin(Mx)

sin x
=

∑

m∈Z,
|σM (m)|≤(M−1)/2

e2iσM (m)x .

Then we see

�A
η,vk

(z; N , r, t∗) = 2πeNπ iτ/4

Nϑ ′
1(0; Nτ)

×
[ ∞∑

n=1

(−1)n−1eNπ iτn(n−1)
{
cos

[
(2n − 1)N {z/2r − (k − 1)π/N }

]

+
∑

m∈Z,
|σN−1(m)|≤{(2n−1)N−2}/2

e2iσN−1(m){z/2r−(k−1)π/N }
}

+ 2
∑

n∈Z
(−1)n−1eNπ iτn(n−1)

∞∑


=1

e2π iτ


1 + e2π i


× cos
[
{(2n − 1)N + 2
}{z/2r − (k − 1)π/N }

]]
.

Here we have used the fact that, for M ∈ N, 2σM (m) + 1 = 2σM−1(m + 1) if M is
odd, and 2σM (m)+1 = 2σM−1(m) if M is even, and that σ(2n−1)N−1(m) = σN−1(m)

for n, N ∈ N.
The functions

MA
η,vk

(t, x; N , r, t∗) = Ẽ[�A
η,vk

(x + i W̃ (t); N , r, t∗)]

=
∫

R

dw̃
e−w̃2/2t

√
2π t

�A
η,vk

(x + iw̃; N , r, t∗), 1 ≤ k ≤ N ,

which give continuous-time martingales if we put x = Wr
j (·), 1 ≤ j ≤ N (Lemma

2.10 (i)), are calculated by performing Gaussian integrals for each term. By setting
τ = i N t∗/2πr2, the result is expressed as

MA
η,vk

(t, x; N , r, t∗) = 2π

Nϑ ′
1(0; i N 2t∗/2πr2)

×
[ ∞∑

n=1

(−1)n−1e−(n−(1/2))2N2(t∗−t)/2r2 cos
[
(2n − 1)N {x/2r − (k − 1)π/N }

]

+
∞∑

n=1

(−1)n−1e−(n−(1/2))2N2t∗/2r2
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×
∑

m∈Z,
|σN−1(m)|≤{(2n−1)N−2}/2

eσN−1(m)2t/2r2+2iσN−1(m){x/2r−(k−1)π/N }

+2
∑

n∈Z
(−1)n−1e−(n−(1/2))2N2(t∗−t)/2r2

∞∑


=1

e−
Nt∗/r2

1 + e−
Nt∗/r2
e
{
+(2n−1)N }t/2r2

× cos
[
{(2n − 1)N + 2
}{x/2r − (k − 1)π/N }

]]
. (3.11)

Then by Corollary 3.3, the correlation kernel is determined as

K
A
η (s, x; t, y; N , r, t∗) = GA

η (s, x; t, y; N , r, t∗) − 1(s > t)prAN−1
(s − t, x |y),

(s, x), (t, y) ∈ [0,∞) × [0, 2πr), where

GA
η (s, x; t, y; N , r, t∗) =

N∑

k=1

prAN−1
(s, x |vk)MA

η,vk
(t, y; N , r, t∗)

with (2.43). We note that, by using (3.10), (2.43) is written as

prAN−1
(t, y|x) = 1

2πr

∑


∈Z
e−σN−1(
)

2t/2r2+iσN−1(
)(y−x)/r , t ≥ 0, x, y ∈ [0, 2πr).
(3.12)

We find that, by using the identity
∑N

k=1 e
−2i(k−1)απ/N = N

∑
k∈Z 1(α = kN ), the

above is expressed as follows,

GA
η (s, x; t, y; N , r, t∗) = 1

ϑ ′
1(0; i N 2t∗/2πr2)r

×
[
1

2

∑

k∈Z
e−k2N2s/2r2+ikNx/rϑ2

(
N (y − x)

2πr
− ikN 2s

2πr2
; i N

2{t∗ − (t − s)}
2πr2

)

+
∞∑

n=1

(−1)n−1e−(n−(1/2))2N2t∗/2r2
∑

m∈Z,
|σN−1(m)|≤{(2n−1)N−2}/2

eσN−1(m)2(t−s)/2r2+iσN−1(m)(y−x)/r

×ϑ3

(
Nx

2πr
− i NσN−1(m)s

2πr2
; i N

2s

2πr2

)

+ 2
∑

k∈Z
e−k2N2s/2r2+ikNx/r

∞∑


=1

∑

n∈Z
(−1)n−1 e−
Nt∗/r2

1 + e−
Nt∗/r2
e−(n−(1/2))2N2t∗/2r2

×e{(n−(1/2))N+
}2(t−s)/2r2 cos

[
{(2n − 1)N + 2
}π

(
y − x

2πr
− ikNs

2πr2

)]
, (3.13)

where ϑ2 and ϑ3 are defined by (2.5).
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We consider the infinite-particle limit with fixed particle-density;

N → ∞, r → ∞ with ρ = N

2πr
= const. (3.14)

We can see that the first term in (3.13) vanishes in this limit because of the overall
factor 1/r , and obtain

GA
η (s, x; t, y; ρ, t∗) ≡ lim

N→∞,r→∞,
ρ=const.

GA
η (s, x; t, y; N , r, t∗)

= 2π

ϑ ′
1(0; 2π iρ2t∗)

[ ∞∑

n=1

(−1)n−1e−2π2(n−(1/2))2ρ2t∗

×
∫

|v|≤(2n−1)ρ
dv eπ2v2(t−s)/2+iπv(y−x)ϑ3

(
ρx − iπvρs; 2π iρ2s

)

+
∑

k∈Z
e−2π2k2ρ2s+2πkρx

∑

n∈Z
(−1)n−1

∫ ∞

0
dv

e−2π2vρt∗

1 + e−2π2vρt∗

× eπ2{(2n−1)ρ+v}2(t−s)/2 cos
[
{(2n − 1)ρ + v}π(y − x − 2π ikρs)

]]
. (3.15)

The correlation kernel in this limit (3.14) is given by

KA
η (s, x; t, y; ρ, t∗) = GA

η (s, x; t, y; ρ, t∗) − 1(s > t)pBM(s − t, x |y), (3.16)

(s, x), (t, y) ∈ [0, t∗) × R. The convergence of correlation kernel (3.15) in the limit
(3.14) implies well-definedness of elliptic determinantal process with an infinite num-
ber of particles. Further study will be reported elsewhere (see Sect. 4.3 below).

4 Reduced processes in temporally homogeneous limit

4.1 Reduction in SDEs

Since we have

lim
t∗→∞ A2πr

N (t∗ − t, x) = 1

2r
cot

( x

2r

)
(4.1)

by (2.15), the limit t∗ → ∞ of (1.17) gives a temporally homogeneous system of the
SDEs,

d X̌ A
j (t) = dB j (t)+ 1

2r

∑

1≤k≤N ,
k �= j

cot

(
X̌ A

j (t) − X̌ A
k (t)

2r

)
dt+ 1

2r
cot

(
X

A
δ (t)

2r

)
dt, t ≥ 0,

(4.2)
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1 ≤ j ≤ N , and (1.18) becomes

dX
A
δ (t) = √

NdB(t) + N

2r
cot

(
X

A
δ (t)

2r

)
dt, t ≥ 0. (4.3)

The system of SDEs without the third term in RHS of (4.2) has been studied as a
dynamical extension of the circular unitary ensemble (CUE) of randommatrix theory
[15,20,34]. It is interesting to see that a one-parameter extension of that system is
discussed as a driving system for a multiple Schramm-Loewner evolution by Cardy
[9]. Moreover, for

lim
r→∞ lim

t∗→∞ A2πr
N (t∗ − t, x) = lim

r→∞
1

2r
cot

( x

2r

)
= 1

x
,

and δ = πrn with a fixed n ∈ Z determined by the initial configuration, the r → ∞
limit of the system (4.2) is given by

dX A
j (t) = dB j (t) +

∑

1≤k≤N ,
k �= j

1

X A
j (t) − X A

k (t)
dt, 1 ≤ j ≤ N , t ≥ 0, (4.4)

where X A
j = X̌ A

j , 1 ≤ j ≤ N in r → ∞. It is the system of SDEs of the Dyson model
(i.e., the noncolliding Brownian motion on R).

4.2 Reduction in correlation kernel of determinantal process

Next we study the reduction as determinantal processes for (�A(t), t ∈ [0, t∗),PA
η ).

For the configuration η = ∑N
j=1 δv j with (1.21) and (1.22), an explicit expression of

correlation kernel KA
η was given in Sect. 3.3. In (3.13) we can take the temporally

homogeneous limit t∗ → ∞ as follows. We see from (2.8) and (2.5) that ϑ ′
1(0; τ) ∼

2πeπ iτ/4, ϑ2(v; τ) ∼ 2eπ iτ/4 cos(πv), and ϑ3(v; τ) → 1 as �τ → +∞. Then, we
have

ĜA
η (s, x; t, y; N , r) ≡ lim

t∗→∞GA
η (s, x; t, y; N , r, t∗)

=
∑

k∈Z
e−k2N2s/2r2+ikNx/r eN

2(t−s)/8r2KA
(

(y − x) − ikNs

r
; N , r

)

+ 1

2πr

∑

m∈Z,
|σN−1(m)|≤(N−2)/2

eσN−1(m)2(t−s)/2r2+iσN−1(m)(y−x)/r

×ϑ3

(
Nx

2πr
− i NσN−1(m)s

2πr2
; i N

2s

2πr

)
, (4.5)
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where

KA(x; N , r) = 1

2πr
cos

(
Nx

2r

)
.

The correlation kernel is given by

K̂
A
η (s, x; t, y; N , r) = ĜA

η (s, x; t, y; N , r) − 1(s > t)prAN−1
(s − t, x |y), (4.6)

(s, x), (t, y) ∈ [0,∞)×[0, 2πr). The determinantal process defined by the correlation
kernel (4.6) is denoted by (�̂A(t), t ∈ [0,∞), P̂A

η ). From the explicit expression

(4.5), we can show that
(
�̂A(t), t ∈ [0,∞)

, P̂A
η ) exhibits a typical nonequilibrium

phenomenon; relaxation to equilibrium.
Let (�̂A(t), t ∈ [0,∞), P̂A

eq) be the equilibrium determinantal process, whose
correlation kernel is homogeneous both in space [0, 2πr) and time [0,∞) and given
by

K̂
A
eq(t − s, y − x; N , r) = ĜA

eq(t − s, y − x; N , r) − 1(s > t)prAN−1
(s − t, x |y)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2πr

∑


∈Z,
|σN−1(
)|≤(N−2)/2

eσN−1(
)
2(t−s)/2r2+iσN−1(
)(y−x)/r + eN

2(t−s)/8r2KA(y − x; N , r),

if s < t,

1

2πr

sin[(N − 1)(y − x)/2r ]
sin[(y − x)/2r ] + KA(y − x; N , r),

if s = t,

− 1

2πr

∑


∈Z,

|σN−1(
)|>(N−2)/2

eσN−1(
)
2(t−s)/2r2+iσN−1(
)(y−x)/r + eN

2(t−s)/8r2KA(y − x; N , r),

if s > t,

(4.7)

(s, x), (t, y) ∈ [0,∞) × [0, 2πr). Note that the spatial dependence of (4.7) is on a
distance of two points |y − x |.

Proposition 4.1 The process (�̂A(t + T ), t ∈ [0,∞), P̂A
η ) converges to (�̂A(t), t ∈

[0,∞), P̂A
eq) as T → ∞ weakly in the sense of finite-dimensional distributions.

Note that if we ignore the terms containing KA, the kernel (4.7) is equal to the
correlation kernel of the equilibrium determinantal process of the noncolliding BM
on a circle S1(r) with N − 1 particles, KCUE

eq (t − s, y − x; N − 1, r) [23,36]. It is a
reversible process with respect to the eigenvalue-angle distribution of unitary random
matrices with size N − 1 in the CUE (if we set r = 1). With contribution from the
term KA, we have the particle density
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ρ = ρ(N , r) = lim|y−x |→0
K̂

A
eq(0, y − x; N , r)

= lim|y−x |→0
K

CUE
eq (0, y − x; N − 1, r) + lim|y−x |→0

KA(y − x; N , r)

= N − 1

2πr
+ 1

2πr
= N

2πr
,

which is uniform on [0, 2πr) as it should be.

Proof of Proposition 4.1 Since e−k2N2T/2r2 → 0, k �= 0 and ϑ3(v; i N 2T/2πr2) →
1 as T → ∞, (4.5) gives

lim
T→∞ ĜA

η (s + T, x; t + T, y; N , r)

= eN
2(t−s)/8r2KA(y − x; N , r)

+ 1

2πr

∑


∈Z,
|σN−1(
)|≤(N−2)/2

eσN−1(
)
2(t−s)/2r2+iσN−1(
)(y−x)/r ,

which is ĜA
eq(t − s, y − x; N , r). If we set t = s, the second term becomes

1

2πr

∑


∈Z,
|σN−1(
)|≤(N−2)/2

eiσN−1(
)(y−x)/r = 1

2πr

sin[(N − 1)(y − x)/2r ]
sin[(y − x)/2r ] .

Combining the above results with the expression (3.12) of prAN−1
, we obtain (4.7). The

convergence of correlation kernel K̂A
η → K̂

A
eq in the long-term limit guarantees the

convergence of moment generating function of multitime distribution � A
η,t[f ] given

by the Fredholm determinant (3.6) of K̂A
η . It implies the convergence P̂A

η → P̂
A
eq in

the long-term limit in the sense of finite-dimensional distributions. Then the proof is
completed. ��

4.3 Reduction in infinite-particle system

The temporally homogeneous limit t∗ → ∞ of (3.16) with (3.15) gives

K̂A
η (s, x; t, y; ρ) ≡ lim

t∗→∞KA
η (s, x; t, y; ρ, t∗)

=
∫

|v|≤ρ

dv eπ2v2(t−s)/2+iπv(y−x)ϑ3

(
ρx − iπvρs; 2π iρ2s

)

−1(s > t)pBM(s − t, x |y), (4.8)

(s, x), (t, y) ∈ [0,∞) × R. If we set ρ = 1, this correlation kernel is exactly the
same as Eq. (1.5) in [26]. There we gave a set X of infinite-particle configurations,
started at which the Dyson model is well defined as a determinantal process. The
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function (4.8) was derived as the correlation kernel of the Dyson model started at
ξZ ≡ ∑

j∈Z δ j ∈ X. As shown in [26], for (s, x), (t, y) ∈ [0,∞) × R,

lim
T→∞ K̂A

η (s + T, x; t + T, y; ρ)

= Ksin(t − s, y − x; ρ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ρ

0
dv eπ2v2(t−s)/2 cos[πv(y − x)], if s < t,

sin[πρ(y − x)]
π(y − x)

, if s = t,

−
∫ ∞

ρ

dv eπ2v2(t−s)/2 cos[πv(y − x)], if s > t.

The limit kernel is the extended sine kernel with density ρ [15]. The convergence
implies the infinite-dimensional relaxation phenomenon of the Dyson model from
ξZ to equilibrium [26]. This observation is consistent with Proposition 4.1, since
limN→∞,r→∞,ρ=const. KA(x; N , r) = 0.

5 Expressions by Gosper’s q-sine function and hyperbolic limit

Gosper defined his q-sine function as [17]

sinq(π z) = q(z−1/2)2 (q2z; q2)∞(q2−2z; q2)∞
(q; q2)2∞

, 0 < q < 1.

By the product form (2.1) of ϑ1(v; τ), we find the equality

ϑ1(v; τ) = −i(q; q2)2∞(q2; q2)∞e−2π iv sinq(−πv/τ)

with (1.1). Then the function Aα
N (t∗ − t, x) defined by (1.4) is expressed as

Aα
N (t∗−t, x) = iα

2N (t∗−t)

d

dz
log(sinq z)

∣∣∣∣
z=iαx/2N (t∗−t)

−2π i

α
, t ∈[0, t∗), x ∈R,

(5.1)
with

q = e−2π2N (t∗−t)/α2
. (5.2)

The entire functions (2.46), with which the determinantal martingales and correlation
functions are expressed, are rewritten as

�A
ξ,uk (z; N , r, t∗) = e−i N (z−uk )/r

sinq(π i(uδ + z − uk)r/Nt∗)
sinq(π iuδr/Nt∗)

×
∏

1≤
≤N ,

 �=k

sinq(π i(z − u
)r/Nt∗)
sinq(π i(uk − u
)r/Nt∗)

, (5.3)
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1 ≤ k ≤ N , z ∈ C, with q = e−N (t∗−t)/2r2 . We remark that, the q-extension of the
gamma function is defined as [1]

�q(z) = (1 − q)1−z (q; q)∞
(qz; q)∞

, 0 < q < 1,

and the q-analogue of Euler’s reflection formula

sinq(π z) = q1/4�q2(1/2)
2 (q2)(

z
2)

�q2(z)�q2(1 − z)
(5.4)

holds. Then (5.1) and (5.3) are also expressed using the q-gamma function �q2 .
In the previous section, we studied the temporally homogeneous limit t∗ → ∞

with fixed α = 2πr . By (5.2), it corresponded to the limit q → 0. In contrast to it,
here we consider the following scaling limit,

t∗ → ∞, α → ∞ with
t∗
α

= a = const.

By (5.2), it gives the limit q → 1. Since limq↑1 sinq(π z) = sin(π z), and sin(π i z) =
i sinh(π z), we obtain the limits

AN (x; a) ≡ lim
t∗→∞,α→∞,

t∗/α=a

Aα
N (t∗ − t, x) = 1

2Na
coth

( x

2Na

)
, (5.5)

�A
ξ,uk (z; N , a) ≡ lim

t∗→∞,r→∞,
t∗/r=2πa

�A
ξ,uk (z; N , r, t∗)

= sinh[(uδ + z − uk)/2Na]
sinh(uδ/2Na)

∏

1≤
≤N ,

 �=k

sinh[(z − u
)/2Na]
sinh[(uk − u
)/2Na] ,

1 ≤ k ≤ N , z ∈ C. (5.6)

In this scaling limit the SDE (1.7) discussed in Sect. 1 becomes a temporally
homogeneous process on R+

dX (t) = dB(t) + 1

2a
coth

(
X (t)

2a

)
, t ∈ [0,∞).

Similarly (5.5) and (5.6) enable us to discuss the determinantal process of a hyperbolic
version of the Dyson model such that

dX A
j (t) = dB j (t)+ 1

2Na

∑

1≤k≤N ,
k �= j

coth

(
X A

j (t)−X A
k (t)

2Na

)
dt+ 1

2Na
coth

(
X

A
δ (t)

2Na

)
dt,

(5.7)
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1 ≤ j ≤ N , t ≥ 0, summation of which over j = 1, 2, . . . , N gives

dX
A
δ (t) = √

NdB(t) + 1

2a
coth

(
X

A
δ (t)

2Na

)
dt. t ≥ 0, (5.8)

Note that limq↑1 �q(z) = �(z) and in this limit (5.4) with z → i z gives sinh(π z) =
−π i/{�(i z)�(1− i z)}, and thus the above limit is expressed also by using the gamma
functions. If we take the further limit a → ∞ with δ/a = constant > 0 in (5.7),
we obtain the Dyson model (4.4). In the argument in the present paper, analyticity of
functions�A

ξ,uk
(z), 1 ≤ k ≤ N plays an essential role to determine correlation kernels

of determinantal processes. Since (5.3) is an entire function of z, the calculations and
results for the trigonometric version of the Dyson model given in Sect. 4.2 will be
readily mapped to those for the hyperbolic versions with (5.7) and (5.8) by analytic
continuation of z and suitable change of parameters.
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