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Abstract Wecompute the persistence exponent of the integral of a stableLévy process
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464 C. Profeta, T. Simon

1 Introduction and statement of the results

Let X = {Xt , t ≥ 0} be a real-valued process starting at zero and Tx = inf{t >

0, Xt > x} be its first-passage time above a positive level x . Studying the law of Tx
is a classic problem in probability theory. In general, it is difficult to obtain an explicit
expression of this law. However, it has been observed that in many interesting cases
the survival function has a polynomial decay:

P[Tx > t] = t−θ+o(1), t → +∞, (1.1)

where θ is a positive constant which is called the persistence exponent and usually
does not depend on x . The computation of persistence exponents turns out to have
connections with various problems in probability and mathematical physics.

Physicists consider that the persistence exponent is a parameter providing a crucial
insight on the whole history of a process, and which is more informative than its
correlation structure. The persistence exponent has been measured experimentally
in several situations (fluctuating interfaces, breath figure, nematic systems) and we
refer to the recent survey paper [3] for a list of observations, simulations and rigorous
results in this field. The question is also attractive for the mathematicians since that,
up to now, very few rigorous computations are actually performed, especially in the
non-Markovian framework.

A central result in this topic is Goldman-Sinai’s evaluation of the persistence expo-
nent θ = 1/4 for the integrated Brownian motion [10,25]. There are three natural
generalizations of this result, all in search for a proof. The first one is the persis-
tence exponent for twice integrated, or more generally nth time integrated, Brownian
motion. This simple open problem on Brownian motion is believed to be very chal-
lenging. Some numerical evaluations have been performed by physicists—see again
[3], not leading to a precise conjecture on θ.The second one is the persistence exponent
for integrated fractional Brownian motion with Hurst parameter H , and it has been
conjectured byMolchan and Khokhlov [17] that θ should be H(1−H). The third one
is the persistence exponent for integrated stable Lévy processes, which is the matter
of the present paper. It is important to mention that the first above question has tight
connections with the structure of the real roots of random polynomials with Gaussian
coefficients and large degree, whereas the second and third ones appear naturally when
studying the shock structure of the inviscid Burgers equation with fractional Brown-
ian, resp. Lévy stable, initial data. We refer to [2] and the bibliography therein for
complete details on these three open problems, and their respective connections.

In this paper we investigate this question for the process

Xt =
∫ t

0
Ls ds,

where L = {Lt , t ≥ 0} is a strictly α-stable Lévy process starting from zero, with
law P. This process solves the differential equation
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d2Xt

dt
= L̇ t ,

which describes the dynamics of a particle submitted to a force given by a stable
noise. This is a natural generalization of the so-called acceleration process studied by
physicists—see section 3.2 in [3]. A non-rigorous analysis of the survival function
of this particle in the presence of a potential is performed in Section III. B of [7].
The present paper computes rigorously the persistence exponent of the free particle
of equation (1) in [7].

To state our main result, we need some notation. Our process L is normalized to
have characteristic exponent

Ψ (λ) = log(E[eiλL1 ]) = −(iλ)αe−iπαρ sgn(λ), λ ∈ R, (1.2)

where α ∈ (0, 2] is the self-similarity parameter and ρ = P[L1 ≥ 0] is the positivity
parameter. We refer to [27] and [19] for classic accounts on stable laws and processes.
The strict stability implies the (1/α)-self-similarity of L and the (1 + 1/α)-self-
similarity of X , in other words that

{Lkt , t ≥ 0} d= {k1/αLt , t ≥ 0} and {Xkt , t ≥ 0} d= {k1+1/αXt , t ≥ 0}

for all k > 0. When α = 2, one has ρ = 1/2 and Ψ (λ) = −λ2, so that L = √
2B

is a rescaled Brownian motion. When α = 1, one has ρ ∈ (0, 1) and L is a Cauchy
process with a linear drift. When α ∈ (0, 1) ∪ (1, 2) the characteristic exponent takes
the more familiar form

Ψ (λ) = −κα,ρ |λ|α(1 − iβ tan(πα/2) sgn(λ)),

where β ∈ [−1, 1] is an asymmetry parameter, whose connection with the positivity
parameter is given by Zolotarev’s formula:

ρ = 1

2
+ 1

πα
arctan(β tan(πα/2)),

and κα,ρ = cos(πα(ρ − 1/2)) > 0 is a scaling constant. The latter could have taken
any positive value, changing the normalization (1.2) accordingly, without incidence
on our purposes below. One has ρ ∈ [0, 1] if α < 1 and ρ ∈ [1− 1/α, 1/α] if α > 1.
When α > 1 and ρ = 1/α the process L has no positive jumps, whereas it has no
negative jumps when α > 1 and ρ = 1 − 1/α. When α < 1 and ρ = 0 or ρ = 1,
the process |L| is a stable subordinator and has increasing sample paths, a situation
which will be implicitly excluded throughout this paper. In this case, the process X
is indeed also monotonous and the survival function in (1.1) either is one or decays
towards zero at an exponential speed—see [2] p. 4 for details.

When α = 2, the bivariate process (X, L) is Gaussian with explicit covariance
function and transition density, providing also the basic example of a degenerate
diffusion process—see [14] for details and references.Whenα < 2, the process (X, L)
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466 C. Profeta, T. Simon

is Non-Gaussian α-stable in the broad sense of [19]. The process (X, L) is a strong
Markov process, which is sometimes called the Kolmogorov process in the literature.
In the following we will set P(x,y) for the law of (X, L) starting at (x, y) ∈ R

2. Our
main concern in this paper is the hitting time of zero for X :

T0 = inf{t > 0, Xt = 0}.

Since |L| is not a subordinator, a simple argument using self-similarity and the zero-one
law for Markov processes—see Lemma 3 below for details—shows that P(0,0)[T0 =
0] = 1, in other words that the origin is regular for the vertical axis. If x < 0 or x = 0
and y < 0, the continuity of the sample paths of X shows that a.s. T0 = inf{t >

0, Xt > 0}, and it will be checked in Lemma 3 below that T0 is also a.s. finite. If
x > 0 or x = 0 and y > 0, the law of T0 is obviously deduced from that of the latter
situation in considering the dual Lévy process −L .

When (x, y) �= (0, 0), the difficulty to obtain concrete information on the law
of T0 under P(x,y) comes from the fact that X itself is not a Markov process. In the
Brownian case for example, the density function of T0 is expressed through quite
intricate integral formulæ—see [2] pp. 15–16 and the references therein. On the other
hand, some universal estimates can be obtained for the behaviour of the distribution
function P(x,y)[T0 ≤ t] as t → 0, using self-similarity and Gaussian or stable upper
tails for the supremum process—see e.g. Section 10.4 in [19]. But it is well-known
that the study of P(x,y)[T0 > t] as t → +∞ is a harder problem, where a more exotic
behaviour is expected.

Throughout the paper, for any real functions f and g we will use the standard
notation f (t) 
 g(t) as t → +∞ to express the fact that there exist two positive and
finite constants κ1, κ2 such that κ1 f (t) ≤ g(t) ≤ κ2 f (t) as t → +∞.Our main result
is the following.

Theorem A Assume that x < 0 or x = 0 and y < 0. One has

P(x,y)[T0 > t] 
 t−θ , t → +∞,

with θ = ρ/(1 + α(1 − ρ)).

In the Brownian case α = 2, one has θ = 1/4 = ρ/2 and as mentioned before this
estimate has been known since the works of Goldman—see Proposition 2 in [10], with
a more precise formulation on the density function of T0, following the seminal article
of McKean [16]. This result had then been partially rediscovered by Sinai in [25]. The
universality of the persistence exponent 1/4 for integrals of real-valued Lévy processes
having exponential moments on both sides has been shown in [1], with the help of
strong approximation arguments. Recently, it was proved in [5] that all integrated real
random walks with finite variance also have 1/4 as persistence exponent, extending
[25] in which the particular case of the integrated simple random walk was studied.
Let us also mention that the survival function of the nth hitting time of zero for the
integrated Brownian motion exhibits the same power decay up to a logarithmic term
in ct−1/4(ln(t))n−1 with an explicit constant c, as shown by the first author in [18].
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In the case 1 < α < 2 and with no negative jumps, that is ρ = 1−1/α, one obtains
θ = (α − 1)/2α = ρ/2, an estimate which had been proved by the second author
in [23] with different techniques and a less precise formulation than Theorem A for
the lower bound, involving a logarithmic correction term. It is worth mentioning that
the same persistence exponent (α − 1)/2α appears for the integrals of random walks
which are attracted towards this spectrally positive Lévy process—see Remark 1.2 in
[5] and the main result of [26]. Our result leads therefore to a natural conjecture on
the persistence exponent of general integrated random walks in a stable domain of
attraction.

It had been conjectured in [2]—see Conjecture 4 therein—that the persistence
exponent of X might be ρ/2 in general. This expected value should be compared
with a classic result of Bingham stating that the persistence exponent is ρ for the
stable process L—see (2.16) in [2] and Theorem 3A in [4]. The admissible set of
(α, ρ) and Theorem A entail that θ > ρ/2 as soon as L has negative jumps, hence
providing a negative answer to this conjecture. The fact that θ is an increasing function
of the positivity parameter ρ matches the intuition, however it is harder to explain
heuristically why it is also a decreasing function of α.

Specifying x = −1 and y = 0 in TheoremA entails by self-similarity the following
lower tail probability estimate

P[X∗
1 ≤ ε] 
 ε

θα
α+1 , ε → 0,

with the notation X∗
1 = sup{Xt , t ≤ 1}. Some heuristics on the subordination of

X by the inverse local time of L when α > 1 had led to the conjecture, formulated
in Part 2 of [21], that in the symmetric case ρ = 1/2 one should have P[X∗

1 ≤
ε] = ε(α−1)+/2(α+1)+o(1) as ε → 0. A positive answer to this conjecture had been
announced in [6], with a mistake. The invalidity of this conjecture as soon as α is
close enough to 1 had been observed in [24]. Theorem A shows that Shi’s exponent
is the right one only for integrated Brownian motion: in the symmetric case one has
θα/(α + 1) = α/(α + 1)(α + 2) ≥ (α − 1)+/2(α + 1), with an equality only if
α = 2. Let us mention in passing that lower tail probabilities offer some challenging
problems for Gaussian processes—see [15,20].

Ourmethod to proveTheoremAhinges upon the randomvariable LT0 , the so-called
hitting place of (X, L) on the vertical axis, which has been extensively studied in the
Brownian case—see [10,13,14,16]. Notice that this random variable is positive under
P(x,y) if x < 0 or x = 0 and y < 0. The reason why it is connected to the persistence
exponent comes from the following heuristical equivalence for fractional moments

E(x,y)[T s
0 ] < +∞ ⇔ E(x,y)[Lαs

T0 ] < +∞

for all s > 0, which had been conjectured in [23] p. 176, and turns out to be true as
a consequence of Theorem A and Lemma 5 below. The precise relationship between
the upper tails of T0 and that of LT0 follows from a series of probabilistic estimates
which are the matter of Sect. 4.
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In this paper we also provide a rather complete description of the law of the random
variable LT0 when (X, L) starts from a coordinate axis. To express our second main
result, we need some further notation. For every μ ∈ (0, 1), introduce the μ-Cauchy
random variable Cμ, with density

sin(πμ)

πμ(x2 + 2 cos(πμ)x + 1)
1{x≥0}.

Our above denomination comes from the caseμ = 1/2,whereC1/2 is the half-Cauchy
distribution. If X is a positive random variable and ν ∈ R is such that E[Xν] < ∞,

the positive random variable X (ν) defined by

E[ f (X (ν))] = E[Xν f (X)]
E[Xν]

for all bounded and continuous functions f : R+ → R, is known as the size bias of
order ν of X. Observe that when X is absolutely continuous, the density of X (ν) is
obtained by multiplying that of X by xν and renormalizing. We finally introduce the
parameters

γ = ρα

1 + α
and χ = ρα

1 + α(1 − ρ)
= αθ.

Notice that from the admissible set for (α, ρ), we have γ ∈ (0, 1/2) and χ ∈ (0, 1).

Theorem B (i) For every y < 0, under P(0,y) one has

LT0
d= |y|(C1−γ

χ )(1).

(ii) For every x < 0, under P(x,0) the positive random variable LT0 has Mellin
transform

E(x,0)[Ls−1
T0

] = (1 + α)
1−s
1+α Γ (α+2

α+1 )Γ ( 1−s
α+1 ) sin(πγ )

Γ ( s
α+1 )Γ (1−s) sin(πs(1−γ ))

|x | s−1
α+1 , |s| < 1/(1−γ ).

The proof of this result is given in Sect. 3, following some preliminary computations
involving oscillating integrals and the Fourier transform of Xt , performed in Sect. 2.
Observe that the density in (i) above is explicit and reads for example

3

2π

|y|1/2z3/2
|y|3 + z3

1{z≥0}

in the Brownian case, a formula originally proved by McKean in [16]—see also for-
mulæ (1) and (2) in [13]. As is well-known, the Cauchy random variable appears in
exit or winding problems for two-dimensional Brownian motion. The fact that it is
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also connectedwith similar problems for general integrated stable processes is perhaps
more surprising.

An interesting consequence of (ii) is that the Mellin transform can be inverted in
the Cauchy case α = 1 and exhibits the same type of law as in (i): one obtains

LT0
d= √

2|x | (C1−γ
δ )(1)

with the notation δ = (1 + χ)/2. The Mellin transform of (ii) can also be simply
inverted in the Brownian case in terms of Beta andGamma random variables, shedding
some new light on a formula by Gor’kov [11] which was of the analytical type, and
in the case α < 1 in terms of positive stable random variables. The Mellin inversion
is however more complicated when α ∈ (1, 2), and involves no classical random
variables in general—see Sect. 3.3 below for details.

2 Preliminary computations

The following lemma, which we could not locate in the literature, will be useful in the
sequel.

Lemma 1 Let ν ∈ (0, 1) and X be a real random variable such that E[|X |−ν] < ∞.

One has

∫ ∞

0
λν−1

E[cos(λX)] dλ = Γ (ν) cos(πν/2)E[|X |−ν]

and

∫ ∞

0
λν−1

E[sin(λX)] dλ = Γ (ν) sin(πν/2)E[|X |−νsgn(X)].

Proof The generalized Fresnel integral which is computed e.g. in formula (37) p. 13
of [8] shows that for all u �= 0, ν ∈ (0, 1), one has

∫ ∞

0
λν−1 cos(λu) dλ = Γ (ν) cos(πν/2) |u|−ν . (2.1)

The first statement of the lemma is hence simply a switching of the expectation and the
integral. However, we cannot apply Fubini’s theorem directly. Setμ for the probability
distribution of X. From (2.1) and an integration by parts, we get

Γ (ν) cos(πν/2)E[|X |−ν] =
∫
R

μ(du)

(∫ ∞

0
λν−1 cos(λu) dλ

)

= (1 − ν)

∫
R

μ(du)

(∫ ∞

0

sin(λu)

u
λν−2 dλ

)
.
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Since

∫
R

μ(du)

(∫ ∞

0

∣∣∣∣ sin(λu)

u

∣∣∣∣ λν−2 dλ

)
≤

∫
R

μ(du)

(∫ ∞

0

(
λ ∧ 1

|u|
)

λν−2 dλ

)

≤ E[|X |−ν]
ν(1 − ν)

< +∞,

we may now apply Fubini’s theorem and obtain

Γ (ν) cos(πν/2)E[|X |−ν] = (1 − ν)

∫ ∞

0
λν−2 dλ

(∫
R

sin(λu)

u
μ(du)

)
.

The dominated convergence theorem entails that the function

ψ(λ) =
∫
R

sin(λu)

u
μ(du)

is differentiable, with derivative

ψ ′(λ) =
∫
R

cos(λu) μ(du) = E[cos(λX)].

Thus, another integration by parts yields

Γ (ν) cos(πν/2)E[|X |−ν] =
∫ ∞

0
λν−1

E[cos(λX)] dλ −
[
λν−1ψ(λ)

]+∞

0

and it remains to prove that the last term on the right-hand side is zero. On the one
hand, one has

λν−1|ψ(λ)| ≤ λν → 0 as λ → 0.

On the other hand, using

λν−1
∣∣∣∣ sin(λu)

u

∣∣∣∣ ≤ λν−1 | sin(λu)|1−ν

|u| ≤ |u|−ν,

and the dominated convergence theorem, we see that λν−1|ψ(λ)| → 0 as λ → +∞.

This completes the proof of the first statement of the lemma. The second statement
may be handled similarly with the help of the formula

∫ ∞

0
λν−1 sin(λx) dλ = Γ (ν) sin(πν/2)sgn(x)|x |−ν, |ν| < 1, (2.2)

which is given e.g. in (38) p. 13 in [8]. ��
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Lemma 2 For all x, y ∈ R and t ≥ 0 one has

log(E(x,y)[eiλXt ]) = iλ(x + yt) − tα+1

α + 1
(iλ)αe−iπαρ sgn(λ), λ ∈ R.

Proof It is clearly enough to consider the case x = y = 0. Integrating by parts yields
the following representation of Xt as a stable integral:

Xt =
∫ ∞

0
(t − s)+ dLs =

∫ ∞

0
(t − x)+ M(dx),

where M is an α-stable random measure on R
+ with Lebesgue control measure and

constant skewness intensity β(x) = β—see Example 3.3.3 in [19]. In the case α �= 1,
the statement of the lemma is a direct consequence of Proposition 3.4.1 (i) in [19],
reformulated with the (α, ρ) parametrization. In the case α = 1, ρ = 1/2 we use
Proposition 3.4.1 (ii) in [19] (with β = 0). The case α = 1, ρ �= 1/2 follows from
the symmetric case in adding a drift coefficient μt for some μ �= 0, which integrates
in μt2/2. ��

We now set

sα,ρ = sin(πα(ρ − 1/2))

α + 1
∈ (−1, 1) and cα,ρ = cos(πα(ρ − 1/2))

α + 1
∈ (0, 1).

The next proposition gives a representation for the Mellin transform of Xt restricted
on the event {Xt > 0}. For the sake of simplicity, we shall denote this variable by X+

t
in the following, with the abuse of notation:

E(x,y)
[
(X+

t )−ν
] = E(x,y)

[
X−ν
t 1{Xt>0}

]
.

Proposition 1 For all x, y ∈ R, t > 0 and ν ∈ (0, 1) one has

E(x,y)[(X+
t )−ν] = Γ (1 − ν)

π

∫ ∞

0
λν−1e−cα,ρλα tα+1

sin(λ(x + yt)

+ sα,ρλαtα+1 + πν/2) dλ. (2.3)

Proof Since Xt is a stable random variable, it has a bounded density and E(x,y)

[(X+
t )−ν] is hence finite for all ν ∈ (0, 1). By Lemma 2 we have

log
(
E(x,y)

[
eiλXt

])
= iλ(x + yt) − λαt1+α(cα,ρ − isα,ρ), λ ≥ 0.
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Taking the real part and integrating with respect to λν−1 on ]0,+∞[, we deduce
∫ ∞

0
λν−1e−cα,ρλα t1+α

cos(λ(x + yt) + sα,ρλαt1+α) dλ

=
∫ ∞

0
λν−1

E(x,y) [cos(λXt )] dλ

= Γ (ν) cos
(πν

2

)
E(x,y)

[|Xt |−ν
]
,

where the second equality comes from Lemma 1. Similarly, taking the imaginary part
entails ∫ ∞

0
λν−1e−cα,ρλα t1+α

sin(λ(x + yt) + sα,ρλαt1+α) dλ

= Γ (ν) sin
(πν

2

)
E(x,y)

[|Xt |−νsgn(Xt )
]
.

Multiplying the first relation by sin(πν/2), the second by cos(πν/2), and summing,
we finally obtain

Γ (ν) sin(πν)E(x,y)[(X+
t )−ν] =

∫ ∞

0
λν−1e−cα,ρλα tα+1

sin(λ(x + yt)

+ sα,ρλαtα+1 + πν/2) dλ,

which yields the required expression. ��
Our last proposition provides some crucial computations for the proof of Theorem

B.

Proposition 2 Set ν ∈ (α/(α + 1), 1) and s = (1 − ν)(α + 1) ∈ (0, 1).

(i) For every y > 0, one has

∫ ∞

0
E(0,y)[(X+

t )−ν] dt = (α + 1)1−νΓ (1 − s) sin(πs(1 − γ ))
Γ (1 − ν)2

π
ys−1·

(ii) For every y < 0, one has

∫ ∞

0
E(0,y)[(X+

t )−ν] dt = (α + 1)1−νΓ (1 − s) sin(πγ s)
Γ (1 − ν)2

π
|y|s−1·

(iii) For every x < 0, one has

∫ ∞

0
E(x,0)[(X+

t )−ν] dt

= (α + 1)−
α

α+1 Γ

(
1 − s

α + 1

)
sin(πγ )Γ

(
1

α + 1

)
Γ (1 − ν)

π
|x | s−1

α+1 .
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Proof Suppose first that x = 0 and y ∈ R. Integrating the expression on the right-hand
side of Proposition 1 yields a double integral of the form

Iν =
∫ ∞

0

(∫ ∞

0
λν−1e−cα,ρλα t1+α

sin(λyt + sα,ρλαt1+α + νπ/2) dλ

)
dt

=
∫ ∞

0

(∫ ∞

0
rν−1e−cα,ρrα

sin(r yt−1/α + sα,ρr
α + νπ/2) dr

)
t−ν(1+1/α) dt

=
∫ ∞

0

(∫ ∞

0
rν−1e−cα,ρrα

sin(r yu + sα,ρr
α + νπ/2) dr

)
αu−s du

=
∫ ∞

0

(∫ ∞

0
αu−s sin(r yu + sα,ρr

α + νπ/2) du

)
rν−1e−cα,ρrα

dr,

where the first, resp. second, equality comes from the change of variable λt1+1/α = r ,
resp. u = t−1/α , and the switching of the integrals in the third equality is made exactly
as in Lemma 1, using the fact that s ∈ (0, 1) and s + ν > 1.

Suppose first y > 0. We start by computing the integral in u with the help of
formulæ (2.1) and (2.2) and some trigonometry:

α

∫ ∞

0
u−s sin(r yu + sα,ρr

α + νπ/2) du

= αΓ (1 − s) cos((s − ν)π/2 − sα,ρr
α)(yr)s−1.

We then compute the integral in r with the change of variable z = rα, using the
notation Z = eiπα(ρ−1/2):

Iν = αΓ (1 − s) ys−1
∫ ∞

0
rα(1−ν)−1e−cα,ρrα

cos((s − ν)π/2 − sα,ρr
α) dr

= Γ (1 − s) ys−1
∫ ∞

0
z−νe−cα,ρ z cos((s − ν)π/2 − sα,ρz) dz

= (1 + α)1−νΓ (1 − s)Γ (1 − ν)�(eiπ(s−ν)/2Zν−1) ys−1

= (1 + α)1−νΓ (1 − s)Γ (1 − ν) sin(πs(1 − γ )) ys−1,

where the third line follows after some algebraic simplifications. By Proposition 1,
this completes the proof of (i).

Suppose now y < 0. An analogous computation to the above one shows that

Iν = α

∫ ∞

0
u−s sin(r yu + sα,ρr

α + νπ/2) du

= αΓ (1 − s) sin((s + ν − 1)π/2 + sα,ρr
α)|yr |s−1.

The integral in r is then computed in the same way as before and yields the formula

Iν = (1 + α)1−νΓ (1 − s)Γ (1 − ν)�(eiπ(s+ν−1)/2 Z̄ν−1) |y|s−1

= (1 + α)1−νΓ (1 − s)Γ (1 − ν) sin(πγ s) |y|s−1,

which completes the proof of (ii) by Proposition 1.
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We last suppose x < 0 and y = 0. We again integrate the expression on the right-
hand side of Eq. (2.3), making the changes of variable λt1+1/α = r and u = t−(1+1/α).

This yields a double integral of the form

α

α + 1

∫ ∞

0

(∫ ∞

0
rν−1e−cα,ρrα

sin(r xu + sα,ρr
α + νπ/2) dr

)
u−(s+α)/(1+α) du,

wherewe can switch the orders of integration as in Lemma 1 because (s+α)/(1+α) ∈
(0, 1) and (s + α)/(1 + α) + ν > 1. We then compute the integral in u similarly as
above and find

α

α + 1
Γ

(
1 − s

α + 1

)
sin(πα/2(α + 1) + sα,ρr

α) |xr | s−1
α+1 .

We finally compute the integral in r with the change of variable r = z1/α, and get
after some algebraic manipulations

Iν = (α + 1)−
α

α+1 sin(πγ )Γ

(
1

α + 1

)
Γ

(
1 − s

α + 1

)
|x | s−1

α+1 ,

which completes the proof of (iii) by Proposition 1. ��
Remark 1 It seems hard to find an explicit formula in general for

∫ ∞

0
E(x,y)[(X+

t )−ν] dt

when (x, y) is not on a coordinate axis. In the symmetric Cauchy case, some further
computations show that the integral equals

1

sin(πν)
�

(∫ ∞

0
(−(x + yt + it2/2))−ν dt

)
.

This can be rewrittenwith the hypergeometric function, but apparently not in a tractable
manner when xy �= 0.

3 Proof of Theorem B

The following lemma shows the aforementioned and intuitively obvious fact that T0
is a proper random variable for any starting point.

Lemma 3 For all x, y ∈ R one has P(x,y)[T0 < +∞] = 1.

Proof Suppose first x = −1 and y = 0. Then

P(−1,0)[T0 = +∞] = P(0,0)[X∗∞ < 1] = P(0,0)[X∗∞ = 0] ≤ P(0,0)[X1 ≤ 0] < 1,

where the second equality comes from the self-similarity of X and the strict inequality
from the fact that X1 is a two-sided stable random variable—see Lemma 2. On the
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other hand, setting T = inf{t > 0, Xt > 0}, it is clear by self-similarity that under
the probability measure P(0,0) one has

T
d= kT

for all k > 0. In particular, P(0,0)[T ∈ {0,+∞}] = 1. Moreover, the zero-one law
for the Markov process (X, L) entails that P(0,0)[T = 0] is 0 or 1. Since P(0,0)[T =
+∞] = P(0,0)[X∗∞ = 0] < 1, we get P(0,0)[T = +∞] = 0 whence P(−1,0)[T0 =
+∞] = 0 as desired. Notice that it also entails P(0,0)[T = 0] = 1, as mentioned in
the introduction.

Using again self-similarity, this entails P(x,0)[T0 < +∞] = 1 for all x ≤ 0, and
also for all x ≥ 0 by considering the dual process −L . The fact that P(x,y)[T0 <

+∞] = 1 for all x, y such that xy < 0 follows then by a comparison of the sample
paths.

Suppose now that x ≤ 0 and y < 0. Introduce the stopping time S = inf{t >

0, Lt > 0}, which is a.s. finite under P(x,y) because |L| is not a subordinator. It is
clear that LS ≥ 0 and XS < 0 a.s. Applying the strong Markov property, we see from
the above cases that

P(x,y)[T0 = +∞] ≤ E(x,y)[P(XS ,LS)[T0 = +∞]] = 0.

The same argument holds for x ≥ 0 and y > 0. ��

Assume now x < 0 or x = 0 and y < 0. It is clear that at T0 the process X has a
non-negative speed, which entails by right-continuity that LT0 ≥ 0 a.s. Applying the
Markov property at T0 entails

P(x,y)[Xt ∈ du] =
∫ ∞

0

∫ t

0
P(0,z)[Xt−s ∈ du]P(x,y)[T0 ∈ ds, LT0 ∈ dz] (3.1)

for all t, u > 0. Integrating in time yields after a change of variable and Fubini’s
theorem

∫ ∞

0
P(x,y)[Xt ∈ du] dt =

∫ ∞

0

(∫ ∞

0
P(0,z)[Xt ∈ du] dt

)
P(x,y)[LT0 ∈ dz]

for all u > 0. Integrating in space along u−ν and applying again Fubini’s theorem
finally shows the general formula

∫ ∞

0
E(x,y)[(X+

t )−ν]dt =
∫ ∞

0
P(x,y)[LT0 ∈ dz]

(∫ ∞

0
E(0,z)[(X+

t )−ν] dt
)

(3.2)

which is valid for all ν ∈ R, with possibly infinite values on both sides.
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3.1 Proof of (i)

Assume x = 0 and y < 0. Setting ν ∈ (α/(α + 1), 1), a straightforward application
of Proposition 2 (i) and (ii) is that both sides of (3.2) are finite, which leads to

E(0,y)[Ls−1
T0

] = |y|s−1
(

sin(πγ s)

sin(π(1 − γ )s)

)

for all s ∈ (0, 1). The formula extends then to {|s| < 1/(1− γ )} by analytic continu-
ation. On the other hand, for all μ ∈ (0, 1) and s ∈ (−1, 1), the formula

∫ ∞

0

sin(πμ)xs

πμ(x2 + 2 cos(πμ)x + 1)
dx = sin(πμs)

μ sin(πs)

is a simple and well-known consequence of the residue theorem. Recalling that

χ = γ

1 − γ
∈ (0, 1)

and the definition of Cμ, we deduce

E(0,y)[Ls−1
T0

] = |y|s−1
E[C(1−γ )s

χ ]

for all |s| < 1/(1 − γ ), which concludes the proof of (i) by Mellin inversion. ��

3.2 Proof of (ii)

Assume x < 0 and y = 0. Another application of (3.2) combined with Proposition 2
(i) and (iii) shows that

E(x,0)[Ls−1
T0

] =
(1 + α)

1−s
1+α Γ

(
α+2
α+1

)
Γ

(
1−s
α+1

)
sin(πγ )

Γ
(

s
α+1

)
Γ (1 − s) sin(πs(1 − γ ))

|x | s−1
α+1 (3.3)

for all s ∈ (0, 1). A simple analysis of the Gamma factors shows that the above
expression remains finite for all |s| < 1/(1 − γ ). ��

3.3 Some further Mellin inversions

In this paragraph we would like to invert (3.3) for certain values of the parametrization
(α, ρ). Without loss of generality we set x = −1, y = 0. Applying the complement
formula for the Gamma function, we first deduce from (3.3) the identity:
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E(−1,0)[Ls−1
T0

] = (1 + α)
1−s
1+α

Γ
(

α+2
α+1

)
Γ

(
1−s
α+1

)
Γ (s(1 − γ ))Γ (1 − s(1 − γ ))

Γ
(

s
α+1

)
Γ (1 − s)Γ (γ )Γ (1 − γ )

(3.4)

for |s| < 1/(1−γ ). In particular, this shows that the randomvariable LT0 hasmoments
of Gamma type (see [12] for a recent survey).

3.3.1 The Cauchy case

We have α = 1 and ρ ∈ (0, 1), whence γ = ρ/2 ∈ (0, 1/2). As mentioned in the
introduction, set

δ = 1

2(1 − γ )
= 1 + χ

2
∈ (1/2, 1).

Applying the Legendre-Gauss multiplication formula transforms (3.4) into

E(−1,0)[Ls−1
T0

] = 2
s−1
2 × sin(πγ ) sin(πs/2)

sin(πs(1 − γ ))
·

As above, this entails that under P(x,0) one has

LT0
d= √

2|x | (C1−γ
δ )(1),

which provides a striking similarity with the law of LT0 under P(0,y) for y < 0.Notice
that these two laws are however never the same, because δ �= χ.

3.3.2 The Brownian case

Wehaveα = 2, ρ = χ = 1/2 and γ = 1/3.Applying three times the Legendre-Gauss
multiplication formula and simplifying the quotients shows

E(−1,0)[Ls−1
T0

] = 9
s−1
3 × Γ (1/2 + s/3)

Γ (5/6)
× Γ (1/2 − s/3)Γ (1/3)

Γ (2/3 − s/3)Γ (1/6)

for all s ∈ (0, 1). Inverting the Mellin transform, this entails that under P(x,0) one has

LT0
d= |9x |1/3

(
�5/6

B1/6,1/6

)1/3

,

where �c resp. Ba,b stands for the standard Gamma resp. Beta random variable, and
the quotient is assumed independent. Gor’kov [11] provides an expression of the
density of LT0 under P(x,y) in terms of the confluent hypergeometric function—see
also formula (3) in [13]. It seems however that the above simple identity in law has
passed unnoticed in the literature on integrated Brownian motion.
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Remark 2 It is well-known that log(�c) and log(Ba,b) are infinitely divisible random
variables, and this property is hence also shared by log(LT0) underP(x,0).The question
whether LT0 itself is infinitely divisible is an interesting open problem for Brownian
motion.

3.3.3 The other cases

When α ∈ (0, 1) ∪ (1, 2), the law of LT0 can be expressed as a more complicated
product involving the standard positive μ-stable random variable Zμ,μ ∈ (0, 1).
Recall that the latter is characterized through its Mellin transformation by

E[Zs
μ] =

Γ
(
1 − s

μ

)

Γ (1 − s)
, s < μ.

Suppose first that α ∈ (0, 1). We then have ρ ∈ (0, 1), γ ∈ (0, 1/2) and χ ∈ (0, 1).
Introducing the further parameters

η = 1

(α + 1)(1 − γ )
= 1

1 + α(1 − ρ)
∈ (1/2, 1) and σ = α + 1

2
∈ (1/2, 1),

another application of the Legendre-Gauss formula shows that under P(x,0) one has

LT0
d= 2

∣∣∣∣ x

α + 1

∣∣∣∣
1

α+1

Z
1
2
σ ×

⎛
⎝ Z

1
2
δ

Z
1

α+1
η

⎞
⎠

(1)

,

which is an extension of the Cauchy case since when α = 1 the first multiplicand is

Z
1
2
1 = 1.
Suppose next that α ∈ (1, 2) and assume that γ ≤ 1/3. Notice that this assumption

is fulfilled in the spectrally negative case, where ρ =1−1/α viz. γ =(α −1)/(α +1)
< 1/3. Analogous computations lead to the identity in law

LT0
d= 3.2−2/3

∣∣∣∣ x

α + 1

∣∣∣∣
1

α+1 ×
(

Z α+1
3

B1/6,1/6

) 1
3

×
⎛
⎝ Z2/3

2/3(1−γ )

Z1/(α+1)
1/(1+α(1−ρ))

⎞
⎠

(1)

,

which is an extension of the Brownian case since when α = 2 the first multiplicand is
B−1/3
1/6,1/6, whereas the second one reads

(
Z−1/3
1/2

)(1) d= 22/3
(
�
1/3
1/2

)(1) d= 22/3�1/3
5/6.

The case γ > 1/3 is however more mysterious and the factorization of LT0 seems
then to require less classical random variables than the Beta, Gamma, and positive
stable ones.
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4 Proof of Theorem A

We first reduce the problem to the situation where the bivariate process (X, L) starts
from a coordinate axis.

Lemma 4 Assume that x < 0. For all y ∈ R one has

P(x,y)[T0 > t] 
 P(x,0)[T0 > t], t → +∞.

Proof Fix t > 1 and suppose first that y > 0.One hasP(x,y)[T0 > t] ≤ P(x,0)[T0 > t]
by a direct comparison of the sample paths. On the other hand,

P(x,y)[T0 > t] ≥ P(x,y)[X1 < x, L1 < 0, T0 > t]
= E(x,y)

[
1{X1<x,X∗

1<0,L1<0}P(X1,L1)[T0 > t − 1]
]

≥ E(x,y)

[
1{X1<x,X∗

1<0,L1<0}P(x,0)[T0 > t − 1]
]

≥ c P(x,0)[T0 > t]

for some c > 0, where the equality follows from the Markov property, the sec-
ond inequality from a comparison of the sample paths, and the third inequality from
a support theorem in uniform norm for the Lévy process L . More precisely, since
the Lévy measure of L has full support, it follows from Corollary 1 in [22] that
P(x,y)[supt≤1 |Lt − f (t)| ≤ ε] > 0 for every continuous function f : [0, 1] → R

such that f (0) = x and every ε > 0. In particular, choosing the appropriate function
f shows that P(x,y)[X1 < x, X∗

1 < 0, L1 < 0] > 0.
Fix again t > 1 and suppose now that y < 0.ThenP(x,y)[T0 > t] ≥ P(x,0)[T0 > t],

and similarly as above one has

P(x,0)[T0 > t] ≥ E(x,0)

[
1{X1<x,X∗

1<0,L1<y}P(X1,L1)[T0 > t − 1]
]

≥ P(x,0)[X1 < x, X∗
1 < 0, L1 < y] × P(x,y)[T0 > t − 1]

≥ c P(x,y)[T0 > t]

for some c > 0. This completes the proof. ��
In the remainder of this section, we will implicitly assume, without loss of gener-

ality, that

{x = 0, y < 0} or {x < 0, y = 0}.

We start by studying the asymptotics at infinity of the density function of LT0 under
P(x,y), which we denote by f 0x,y .

Lemma 5 There exists c > 0 such that

f 0x,y(z) ∼ cz−1/(1−γ ), z → +∞.
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Proof If x = 0, the asymptotics is a direct consequence of the explicit expression
of f 0(0,y) which is given in Theorem B (i). If y = 0, Theorem B (ii) shows that the
first positive pole of the Mellin transform of LT0 under P(x,0) is at 1/(1 − γ ), and is
simple. The required asymptotic for f 0(x,0) is then a consequence of a conversemapping
theorem for Mellin transforms (see Theorem 4 in [9] or Theorem 6.4 in [12]). ��

Remark 3 (a) The converse mapping theorem for Mellin transforms yields also an
explicit expression for the constant c, but we shall not need this information in
the sequel.

(b) We believe that the above asymptotic remains true for x < 0 and all y �= 0.
However, the Mellin transform of LT0 under P(x,y) is then expressed with the
help of a double integral which is absolutely divergent, and whose singularities
are difficult to study at first sight.

(c) This lemma entails by integration that

P(x,y)[LT0 > z] ∼ cχ−1 z−χ , z → +∞.

Heuristically, it is tempting to write LT0 = T 1/α
0 |L1| by scaling and, since

P(x,y)[|L1| > z] ∼ cz−α � z−χ at infinity, to infer that

P(x,y)[T0 > t] 
 t−χ/α = t−θ , t → +∞.

This explains the equivalence between finite moments stated in the introduction.
We will prove in the remainder of this section that these heuristics are actually
correct.

The following lemma provides our key-estimate.

Lemma 6 For all ν ∈ (α(1 − θ)/(α + 1), 1) there exists c > 0 such that

E(x,y)

[∫ t

0
1{T0>t−u} E(0,LT0 )

[
(X+

u )−ν
]
du

]
∼ c t1−(1+1/α)ν−θ , t → +∞.

Proof We first assume ν ∈ (α/(α + 1), 1) and transform the expression on the left-
hand side. From (3.1), Fubini’s theorem, and the Markov property, we have

∫ ∞

0
e−λt

E(x,y)
[
(X+

t )−ν
]
dt

= E(x,y)

[
e−λT0

∫ ∞

0
e−λt

E(0,LT0 )

[
(X+

t )−ν
]
dt

]
, λ ≥ 0,
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both sides being finite thanks to Proposition 2. Integrating by parts shows then, with
the help of (3.2) and Proposition 2, that

λ

∫ ∞

0
e−λt

∫ ∞

t

(
E(x,y)

[
(X+

u )−ν
] − E(x,y)

[
E(0,LT0 )

[
(X+

u )−ν
]])

du dt

= E(x,y)

[
(1 − e−λT0)

∫ ∞

0
e−λt

E(0,LT0 )

[
(X+

t )−ν
]
dt

]

= E(x,y)

[∫ ∞

0
λ e−λt

(∫ t

0
1{T0>t−u}E(0,LT0 )

[
(X+

t )−ν
]
du

)
dt

]
.

Inverting the Laplace transforms yields that

E(x,y)

[∫ t

0
1{T0>t−u}E(0,LT0 )

[
(X+

u )−ν
]
du

]
= H(x,y)(t), (4.1)

with the notation

H(x,y)(t) =
∫ +∞

t

(
E(x,y)

[
(X+

u )−ν
] − E(x,y)

[
E(0,LT0 )

[
(X+

u )−ν
]])

du, t > 0.

(4.2)

It remains therefore to compute the asymptotics of the function H(x,y), which only
depends on the law of LT0 under P(x,y). To this end, we shall compute the Mellin
transform of H ′

(x,y) and apply a converse mapping theorem. Recall that s = (1 −
ν)(1 + α) and let z ∈ R such that s + αz ∈ (0, 1). Following the same computations
as in Proposition 2, we deduce that:

(i) for y > 0

π

∫ +∞

0
t zE(0,y)

[
(X+

t )−ν
]
dt = (1+α)1−ν+zΓ (1−ν)Γ (1−ν+z)Γ (1−s−αz)

× sin(π(s + αz) − πsγ − zαπρ) ys+αz−1

(ii) for y < 0

π

∫ +∞

0
t zE(0,y)

[
(X+

t )−ν
]
dt = (1+α)1−ν+zΓ (1−ν)Γ (1−ν+z)Γ (1−s−αz)

× sin(πsγ + zαπρ) |y|s+αz−1.

Hence, the Mellin transform of H ′
(0,y) is explicitly given by
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π

∫ +∞

0
t z H ′

(0,y)(t)dt

= (1 + α)1−ν+zΓ (1 − ν)Γ (1 − ν + z)Γ (1 − s − αz)

×
(
sin(π(s + αz) − πsγ − zαπρ)

sin(πγ (s + αz))

sin(π(1 − γ )(s + αz))

− sin(πsγ + zαπρ)

)
|y|s+αz−1.

Observe that this formula extends by analytic continuation to {|s +αz| < 1/(1− γ )}.
The pole at

z = 1

1 − γ
− s

α
= 1 + α

1 + α(1 − ρ)
− (1 − ν)(1 + α)

α
= θ + ν

(
1 + 1

α

)
− 1

is simple and we may therefore apply the converse mapping theorem for Mellin trans-
forms to obtain the asymptotics:

− H ′
(0,y)(t) = E(0,y)

[
(X+

t )−ν
] − E(0,y)

[
E(0,LT0 )

[
(X+

t )−ν
]]

∼
t→+∞c1 t

−((1+1/α)ν+θ) (4.3)

for some c1 > 0. The announced result then follows by integration. In the case x < 0
and y = 0, we have similarly:

π

∫ +∞

0
t zE(x,0)

[
(X+

t )−ν
]
dt = (1 + α)

z−α
1+α Γ (1 − ν)Γ

(
z + 1

α + 1

)
Γ

(
1 − s − αz

1 + α

)

× sin

(
παρ

1 + z

1 + α

)
|x | s+αz+α

1+α
−1

and we may proceed as before, by extending the Mellin transform of H ′
(x,0) to

{|s + αz| < 1/(1 − γ )} and applying the converse mapping theorem to obtain once
again :

E(x,0)
[
(X+

t )−ν
] − E(x,0)

[
E(0,LT0 )

[
(X+

t )−ν
]] ∼

t→+∞c2 t
−((1+1/α)ν+θ), (4.4)

for some c2 > 0. Suppose now ν ∈ (α(1 − θ)/(α + 1), α/(α + 1)). The left-hand
side of (4.1) is well-defined and the estimates (4.3) and (4.4) entail that the integral in
(4.2) is absolutely convergent, because (1+ 1/α)ν + θ > 1. By analytic continuation
this shows that (4.1) remains valid for ν ∈ (α(1 − θ)/(α + 1), α/(α + 1)), and the
estimates (4.3) and (4.4) hold as well. This completes the proof, again by integration.

��
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4.1 Proof of the upper bound

Fix A > 0 and ν ∈ (α/(α + 1), 1). By continuity and positivity there exists ε > 0
such that for all z ∈ [0, A],

∫ 1

0
E(0,z)

[
(X+

u )−ν
]
du ≥ ε.

For all t > 0, we get from (4.1), a change of variable and the self-similarity of X and
L:

t (1+1/α)ν+θ−1H(x,y)(t) ≥ t (1+1/α)ν+θ−1
E(x,y)

[
1{T0>t}

∫ t

0
E(0,LT0 )

[
(X+

u )−ν
]
du

]

= tθ E(x,y)

[
1{T0>t}

∫ 1

0
E(0, 1

t1/α
LT0 )

[
(X+

u )−ν
]
du

]

≥ εtθ P(x,y)[T0 > t, LT0 ≤ At1/α]
≥ εtθ

(
P(x,y)[T0 > t] − P(x,y)[T0 > t, LT0 ≥ At1/α]

)

≥ εtθ
(
P(x,y)[T0 > t] − P(x,y)[LT0 ≥ At1/α]1/p

)
,

On the one hand, Lemma 5 entails

lim sup
t→+∞

tθ P(x,y)[LT0 ≥ At1/α]1 = K < +∞.

On the other hand, Lemma 6 shows that

t (1+1/α)ν+θ−1H(x,y)(t) → c > 0 as t → +∞.

Putting everything together entails

tθP(x,y)[T0 > t] ≤ K̃

for some finite K̃ as soon as t is large enough. ��

4.2 Proof of the lower bound

We start with the following lemma:

Lemma 7 One has

∫ t

0
P(x,y)[T0 > u] du 
 t1−θ as t → +∞.

123



484 C. Profeta, T. Simon

Proof Firstly, integrating the above upper bound for P(x,y)[T0 > t] entails the exis-
tence of a finite κ2 such that

∫ t

0
P(x,y)[T0 > u] du ≤ κ2 t

1−θ as t → +∞.

To prove the lower inequality, we fix ν ∈ (α(1 − θ)/(1 + α), α/(1 + α)) and deduce
from Proposition 1 the uniform bound

E(0,y)[(X+
u )−ν] ≤ Γ (1 − ν)

π

∫ ∞

0
λν−1e−cα,ρλαuα+1

dλ ≤ Ku−ν(1+1/α), u > 0,

(4.5)

for some finite constant K . Set η = ν(1 + 1/α) ∈ (0, 1) and fix ε ∈ (0, 1). Using
(4.1) and (4.5) we decompose

tη+θ−1H(x,y)(t)

≤ Ktη+θ−1

(∫ t (1−ε)

0

P(x,y)[T0 > u]
(t − u)η

du +
∫ t

t (1−ε)

P(x,y)[T0 > u]
(t − u)η

du

)

≤ K ε−ηtθ−1
∫ t

0
P(x,y)[T0 > u] du + Ktθ ε1−η

1 − η
P(x,y)[T0 > t (1 − ε)]

≤ K̃ ε−η

(
tθ−1

∫ t

0
P(x,y)[T0 > u] du + ε

)

for some finite K̃ , where the third inequality follows from the upper bound. Applying
Lemma 6 and taking ε small enough shows finally that there exists κ1 > 0 such that

∫ t

0
P(x,y)[T0 > u] du ≥ κ1 t

1−θ as t → +∞.

��
We can now finish the proof of the lower bound for P(x,y)(T0 > t). Fixing A > 0 and
applying the mean value theorem entails

A tθ P(x,y)[T0 > t] ≥ tθ−1
∫ t+t A

t
P(x,y)[T0 > u] du ≥ κ1(1 + A)1−θ − κ2

as t → +∞, for some constants 0 < κ1 < κ2 < ∞ given by Lemma 7. Since θ < 1,
the lower bound follows by choosing A large enough. ��
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