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Abstract The planted partition model (also known as the stochastic blockmodel) is
a classical cluster-exhibiting random graph model that has been extensively studied
in statistics, physics, and computer science. In its simplest form, the planted partition
model is a model for random graphs on n nodes with two equal-sized clusters, with an
between-class edge probability of q and awithin-class edge probability of p. Although
most of the literature on this model has focused on the case of increasing degrees
(ie. pn, qn → ∞ as n → ∞), the sparse case p, q = O(1/n) is interesting both
from a mathematical and an applied point of view. A striking conjecture of Decelle,
Krzkala, Moore and Zdeborová based on deep, non-rigorous ideas from statistical
physics gave a precise prediction for the algorithmic threshold of clustering in the
sparse planted partition model. In particular, if p = a/n and q = b/n, then Decelle et
al. conjectured that it is possible to cluster in a way correlated with the true partition if
(a−b)2 > 2(a+b), and impossible if (a−b)2 < 2(a+b). By comparison, the best-
known rigorous result is that of Coja-Oghlan, who showed that clustering is possible
if (a−b)2 > C(a+b) for some sufficiently largeC . We prove half of their prediction,
showing that it is indeed impossible to cluster if (a−b)2 < 2(a+b). Furthermore we
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show that it is impossible even to estimate the model parameters from the graph when
(a − b)2 < 2(a + b); on the other hand, we provide a simple and efficient algorithm
for estimating a and b when (a − b)2 > 2(a + b). Following Decelle et al, our work
establishes a rigorous connection between the clustering problem, spin-glass models
on the Bethe lattice and the so called reconstruction problem. This connection points
to fascinating applications and open problems.

Mathematics Subject Classification (2010) Primary 05C80; Secondary 60J85 ·
90B15 · 91D30

1 Introduction

1.1 The planted partition problem

The clustering problem in its general form is, given a (possibly weighted) graph, to
divide its vertices into several strongly connected classes with relatively weak cross-
class connections. This problem is fundamental in modern statistics, machine learning
and data mining, but its applications range from population genetics [29], where it is
used to find genetically similar sub-populations, to image processing [33,36], where
it can be used to segment images or to group similar images, to the study of social
networks [28],where it is used tofind strongly connectedgroups of like-mindedpeople.

The algorithms used for clustering are nearly as diverse as their applications. On one
side are the hierarchical clustering algorithms [22] which build a hierarchy of larger
and larger communities, by either recursive aggregation or division. On the other hand
model-based statistical methods, including the celebrated EM algorithm [10], are used
to fit cluster-exhibiting statistical models to the data. A third group ofmethods work by
optimizing some sort of cost function, for example by finding a minimum cut [16,33]
or by maximizing the Girvan–Newman modularity [1,27].

Despite the variety of available clustering algorithms, the theory of clustering con-
tains some fascinating and fundamental algorithmic challenges. For example, the “min-
bisection” problem—which asks for the smallest graph cut dividing a graph into two
equal-sized pieces—is well-known to be NP-hard [14]. Going back to the 1980s, there
has been much study of the average-case complexity of the min-bisection problem.
For instance, the min-bisection problem is much easier if the minimum bisection is
substantially smaller than most other bisections. This has led to interest in random
graph models for which a typical sample has exactly one good minimum bisection.
Perhaps the simplest such model is the “planted bisection” model, which is similar to
the Erdös–Renyi model.

Definition 1 (Theplanted bisectionmodel) Forn ∈ N and p, q ∈ (0, 1), letG(n, p, q)

denote the model of random, ±-labelled graphs in which each vertex u is assigned
(independently and uniformly at random) a label σu ∈ {±}, and then each possible
edge (u, v) is included with probability p if σu = σv and with probability q if σu �= σv .

If p = q, the planted partition model is just an Erdös–Renyi model, but if p � q
then a typical graph will have two well-defined clusters. Actually, the literature on
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the min-bisection problem usually assumes that the two classes have exactly the same
size (instead of a random size), but this modification makes almost no difference in
the context of this work.

The planted bisection model was not the earliest model to be studied in the context
of min-bisection—Bui et al. [6] and Boppana [5] considered graphs chosen uniformly
at random from all graphs with a given number of edges and a small minimum bisec-
tion. Dyer and Frieze [11] were the first to study the min-bisection problem on the
planted bisection model; they showed that if p > q are fixed as n → ∞ then the
minimum bisection is the one that separates the two classes, and it can be found in
expected O(n3) time.

The result ofDyer andFriezewas improved by JerrumandSorkin [21],who reduced
the running time to O(n2+ε) and allowed p − q to shrink at the rate n−1/6+ε . More
interesting than these improvements, however, was the fact that Jerrum and Sorkin’s
analysis applied to the popular and fast-in-practice Metropolis algorithm. Later, Con-
don and Karp [8] gave better theoretical guarantees with a linear-time algorithm that
works for p − q ≥ Ω(n−1/2+ε).

With the exception of Boppana’s work (which was for a different model), the
aforementioned results applied only to relatively dense graphs. McSherry [25] showed
that a spectral clustering algorithm works as long as p − q ≥ Ω(

√
q(log n)/n). In

particular, his result is meaningful as long as p and q are at least Ω((log n)/n). These
are essentially the sparsest possible graphs for which the minimum cut will agree
with the planted bisection, but Coja-Oghlan [7] managed to obtain a result for even
sparser graphs by studying a relaxed problem. Instead of trying to recover theminimum
bisection, he showed that a spectral algorithm will find a bisection which is positively
correlated with the planted bisection. His result applies as long as p−q ≥ Ω(

√
q/n),

and so it is applicable even when p and q are O(1/n); that is, it is relevant even for
graphs with a constant average degree.

1.2 Block models in statistics

The statistical literature on clustering is more closely focused on real-world network
data, with the planted bisection model (or “stochastic blockmodel,” as it is known
in the statistics community) used as an important test-case for theoretical results.
Its study goes back to Holland et al. [18], who discussed parameter estimation and
gave a Bayesian method for finding a good bisection, without theoretical guarantees.
Snijders and Nowicki [35] studied several different statistical methods—including
maximum likelihood estimation and the EM algorithm—for the planted bisection
model with p − q = Ω(1). They then applied those methods to social networks data.
More recently, Bickel and Chen [1] showed that maximizing the Girvan–Newman
modularity—a popular measure of cluster strength—recovers the correct bisection,
for the same range of parameters as the result of McSherry. They also demonstrated
that their methods performwell on social and telephone network data. Spectral cluster-
ing, the method studied by Boppana and McSherry, has also appeared in the statistics
literature: Rohe et al. [32] gave a theoretical analysis of spectral clustering under the
planted bisection model and also applied the method to data from Facebook.
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1.3 Sparse graphs and insights from statistical physics

The case of sparse graphs with constant average degree is well motivated from the
perspective of real networks. Indeed, Leskovec et al. [24] collected and studied a vast
collection of large network datasets, ranging from social networks like LinkedIn and
MSN Messenger, to collaboration networks in movies and on the arXiv, to biological
networks in yeast. Many of these networks had millions of nodes, but most had an
average degree of no more than 20; for instance, the LinkedIn network they studied
had approximately seven million nodes, but only 30 million edges. Similarly, the real-
world networks considered by Strogatz [37]—which include coauthorship networks,
power transmission networks andweb link networks—also had small average degrees.
Thus it is natural to consider the planted partition model with parameters p and q of
order O(1/n).

Although sparse graphs are natural for modelling many large networks, the planted
partition model seems to be most difficult to analyze in the sparse setting. Despite the
large amount of work studying this model, the only results we know of that apply in
the sparse case p, q = O( 1n ) are those of Coja-Oghlan. Recently, Decelle et al. [9]
made some fascinating conjectures for the cluster identification problem in the sparse
planted partition model. In what follows, we will set p = a/n and q = b/n for some
fixed a > b > 0.

Conjecture 1 ([9]) If (a−b)2 > 2(a+b) then the clustering problem in G(n, a
n , b

n ) is
solvable as n → ∞, in the sense that one can a.a.s. find a bisection which is positively
correlated with the planted bisection.

To put Coja-Oghlan’s work into the context of this conjecture, he showed that if
(a−b)2 > C(a+b) for a large enough constantC , then the spectral method solves the
clustering problem. Decelle et al.’s work is based on deep but non-rigorous ideas from
statistical physics. In order to identify the best bisection, they use the sum-product
algorithm (also known as belief propagation). Using the cavity method, they argue
that the algorithm should work, a claim that is bolstered by compelling simulation
results.

What makes Conjecture 1 even more interesting is the fact that it might represent
a threshold for the solvability of the clustering problem.

Conjecture 2 ([9]) If (a − b)2 < 2(a + b) then the clustering in G(n, a
n , b

n ) problem
is not solvable as n → ∞, in the sense that not even a computationally unbounded
algorithm can find a partition whose correlation with the planted bisection is bounded
away from zero, with probability bounded away from zero, as n → ∞.

This second conjecture is based on a connection with the tree reconstruction prob-
lem (see [26] for a survey). Consider a multi-type branching process where there are
two types of particles named + and −. Each particle gives birth to Pois(a) (ie. a Pois-
son distribution with mean a) particles of the same type and Pois(b) particles of the
complementary type. In the tree reconstruction problem, the goal is to recover the label
of the root of the tree from the labels of level r where r → ∞. This problem goes back
to Kesten and Stigum [23] in the 1960s, who showed that if (a − b)2 > 2(a + b) then
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it is possible to recover the root value with non-trivial probability. The converse was
not resolved until 2000, when Evans et al. [12] proved that if (a−b)2 ≤ 2(a+b) then
it is impossible to recover the root with probability bounded above 1/2 independent of
r . This is equivalent to the reconstruction or extremality threshold for the Ising model
on a branching process.

At the intuitive level the connection between clustering and tree reconstruction,
follows from the fact that the neighborhood of a vertex in G(n, a

n , b
n ) should look like

a random labelled tree with high probability.Moreover, the distribution of that labelled
tree should converge as n → ∞ to the multi-type branching process defined above.
We will make this connection formal later.

Decelle et al. alsomade a conjecture related to the the parameter estimation problem
that was previously studied extensively in the statistics literature. Here the problem is
to identify the parameters a and b; note that if the blocks can be recovered exactly,
then the parameters may easily be estimated simply by counting edges between dif-
ferent blocks; this was noted, for example, in [1]. Nevertheless, parameter estimation
is interesting on its own, for instance because it is a first step for some clustering algo-
rithms. Hence, [18] and [35] both discussed ML and Bayesian methods for parameter
estimation, although neither work gave theoretical guarantees.

As in the clustering problem, Decelle et al. provided a parameter-estimation algo-
rithm based on belief propagation and they used physical ideas to argue that there is a
threshold above which the parameters can be estimated, and below which they cannot.

Conjecture 3 ([9]) If (a − b)2 > 2(a + b) then there is a consistent estimator for a
and b under G(n, a

n , b
n ). Conversely, if (a−b)2 < 2(a+b) then there is no consistent

estimator.

2 Our results

Our main contribution is to establish Conjectures 2 and 3. Recall that a, b > 0 are
fixed as n → ∞, and let Pn denote the probability with respect to G(n, a

n , b
n ).

Theorem 1 If (a − b)2 ≤ 2(a + b) then, for any fixed vertices u and v,

Pn(σu = +|G, σv = +) → 1

2
a.a.s.

Remark 1 Theorem 1 is stronger than Conjecture 2 because it says that an even easier
problem cannot be solved: if we take two random vertices of G, Theorem 1 says that
no algorithm can tell whether or not they have the same label. This is an easier task
than finding a bisection, because finding a bisection is equivalent to labeling all the
vertices; we are only askingwhether two of themhave the same label or not. Theorem1
is also stronger than the conjecture because it includes the case (a − b)2 = 2(a + b),
for which Decelle et al. did not conjecture any particular behavior.

To prove Conjecture 3, we compare the planted partition model to an appropriate
Erdös–Renyi model: let Pn = G(n, a

n , b
n ) and take P′

n = G(n, a+b
2n ) to be the Erdös–

Renyi model that has the same average degree as Pn .
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Theorem 2 If (a − b)2 < 2(a + b) then Pn and P′
n are mutually contiguous i.e., for

a sequence of events An, Pn(An) → 0 if, and only if, P′
n(An) → 0.

Moreover, if (a − b)2 < 2(a + b) then there is no consistent estimator for a and b.

Note that the second part of theTheorem2 follows from the first part, since it implies
that G(n, a

n , b
n ) and G(n, α

n ,
β
n ) are contiguous as long as a+b = α+β > 1

2 max{(a−
b)2, (α − β)2}. Indeed one cannot even consistently distinguish the planted partition
model from the corresponding Erdös–Renyi model! The question of contiguity was
previously studied by Janson [20] in a more general setting: he studied contiguity
for vectors of conditionally independent Bernoulli variables. In our setting, however,
Theorem2 ismuch stronger than the results of [20], which imply contiguity if |a−b| =
O(n−1/2).

The other half of Conjecture 3 follows from a converse to Theorem 2:

Theorem 3 If (a − b)2 > 2(a + b), then Pn and P
′
n are asymptotically orthogonal.

Moreover, a consistent estimator for a, b can be obtained as follows: let Xk be the
number of cycles of length k, and define

d̂n = 2|E |
n

f̂n = (2kn Xkn − d̂knn )1/kn

where kn = �log1/4 n�. Then d̂n + f̂n is a consistent estimator for a and d̂n − f̂n is a
consistent estimator for b.

Finally, there is an efficient algorithm whose running time is polynomial in n to
calculate d̂n and f̂n.

2.1 Proof techniques

2.1.1 Short cycles

To establish Theorem 3 we count the number of short cycles in G ∼ Pn . It is well-
known that the number of k-cycles in a graph drawn fromP

′
n is approximately Poisson-

distributed with mean 1
k (

a+b
2 )k . The proof of this fact can be modified as in [4] to

show a Poisson limit for cycle counts in more general inhomogeneous graphs. For
completeness, we include the proof of our special case showing that the number of
k-cycles in Pn is approximately Poisson-distributed with mean 1

k

(
( a+b

2 )k + ( a−b
2 )k

)
.

By comparing the first and secondmoments of Poisson random variables and taking
k to increase slowly with n, one can distinguish between the cycle counts of G ∼ Pn

and G ∼ P
′
n as long as (a − b)2 > 2(a + b).

The first half of Conjecture 3 follows because the same comparison of first and
second moments implies that counting cycles gives a consistent estimator for a + b
and a − b (and hence also for a and b).

While there is in general no efficient algorithm for counting cycles in graphs, we
show that with high probability the number of short cycles coincides with the number
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of non-backtracking walks of the same length which can be computed efficiently using
matrix multiplication.

The proof of Theorem 3 is carried out in Sect. 3.

2.1.2 Non-reconstruction

As mentioned earlier, Theorem 1 intuitively follows from the fact that the neighbor-
hood of a vertex in G(n, a

n , b
n ) should look like a random labelled tree with high

probability and the distribution of that labelled tree should converge as n → ∞ to
the multi-type branching process defined above. While this intuition is not too hard to
justify for small neighborhoods (by proving there are no short cycles etc.) the global
ramifications are more challenging to establish. This is because, conditioned on the
graph structure, the model is neither an Ising model, nor a Markov random field! This
is due to two effects:

– The fact that the two clusters are of the same (approximate) size. This amounts to
a global conditioning on the number of +/−’s.

– The model is not even a Markov random field conditioned on the number of + and
− vertices. This follows from the fact that for every two vertices u, v that do not
form an edge, there is a different weight for σu = σv and σu �= σv . In other words,
if a > b, then there is a slight repulsion (anti-ferromagnetic interaction) between
vertices not joined by an edge.

In Sect. 4, we prove Theorem 1 by showing how to overcome the challenges above.

2.1.3 The second moment

A major effort is devoted to the proof Theorem 2. In the proof we show that the
random variables Pn(G)

P′
n(G)

don’t have much mass near 0 or ∞. Since the margin of Pn is

somewhat complicated to work with, the first step is to enrich the distribution P
′
n by

adding random labels. Then we show that the random variables Yn := Pn(G,σ )
P′
n(G,σ )

don’t
have mass near 0 or ∞. We derive an explicit formula for the second moment of Yn
in Lemma 9. In particular we show that

EY 2
n = (1 + o(1))

e−t/2−t2/4

√
1 − t

, t = (a − b)2

2(a + b)

This already shows that the second moment is bounded if (a − b)2 < 2(a + b).
However, in order to establish the existence of a density, we also need to show that
Yn is bounded away from zero asymptotically. In order to establish this, we utilize the
small graph conditioningmethod by calculating joint moments of the number of cycles
and Yn . It is quite surprising that this calculation can be carried out in rather elegant
manner, since many other applications of this method are much more technically
involved.
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3 Counting cycles

The main result of this section is that the number of k-cycles of G ∼ Pn is approxi-
mately Poisson-distributed. We will then use this fact to show the first part of Theo-
rem 2. The cycle counting result that we present is actually a special case of a result
by Bollobás et al. [4], who show a Poisson limit for cycle counts in more general inho-
mogeneous graphs, which have continuous edge labels and a kernel that defines edge
probabilities; our special case is recovered by taking the obvious two-valued kernel
in [4, Theorem 17.1]. For completeness, we include the proof of our special case.

Actually, Theorem 2 only requires us to calculate the first two moments of the
number of k-cycles, but the rest of the moments require essentially no extra work.
Indeed, once we compute the first moment, the others will follow by appealing to a
classical result of Bollobás [3].

Theorem 4 Let Xk,n be the number of k-cycles of G, where G ∼ Pn. If k =
O(log1/4(n)) then

Xk,n
d→ Pois

(
1

k2k+1

(
(a + b)k + (a − b)k

)
)

.

Before we prove this, let us explain how it implies Theorem 3. From now on, we
will write Xk instead of Xk,n .

Proof of Theorem 3 We start by proving the first statement of the theorem. Let’s

recall the standard fact (which we have mentioned before) that under P′
n , Xk

d→
Pois

(
(a+b)k

k2k+1

)
. With this and Theorem 4 in mind,

EPXk,VarP Xk → (a + b)k + (a − b)k

k2k+1

EP′ Xk,VarP′ Xk → (a + b)k

k2k+1 .

Set k = k(n) = log1/4 n (although any sufficiently slowly increasing function of

n would do). Choose ρ such that a−b
2 > ρ >

√
a+b
2 . Then VarP Xk and VarP′ Xk

are both o(ρ2k) as k → ∞. By Chebyshev’s inequality, Xk ≤ EP′ Xk + ρk
P

′-
a.a.s. and Xk ≥ EPXk − ρk

P-a.a.s. Since EPXk − EP′ Xk = 1
2k (

a−b
2 )k = ω(ρk),

it follows that EPXk − ρk ≥ EP′ Xk + ρk for large enough k. And so, if we set
An = {Xk(n) ≤ EP′ Xk(n) + ρk} then P

′(An) → 1 and P(An) → 0.
We next show that Theorem 4 gives us an estimator for a and b that is consistent

when (a−b)2 > 2(a+b). First of all, we have a consistent estimator d̂ for d := (a+
b)/2 by simply counting the number of edges. Thus, if we can estimate f := (a−b)/2
consistently then we can do the same for a and b. Our estimator for f is

f̂ = (2kXk − d̂k)1/k,
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where d̂ is some estimator with d̂ → d P-a.a.s. and k = k(n) increases to infinity

slowly enough so that k(n) = o(log1/4 n) and d̂k − dk → 0 P-a.a.s. Take
√

a+b
2 <

ρ < a−b
2 = f ; by Chebyshev’s inequality, 2kXk − dk ∈ [ f k − ρk, f k + ρk] P-a.a.s.

Since k = k(n) → ∞, ρk = o( f k). Thus, 2kXk − dk = (1 + o(1)) f k P-a.a.s. Since
d̂k − dk → 0 and f > 1, 2kXk − d̂k = f k + o(1) = (1 + o(1)) f k P-a.a.s. and so f̂
is a consistent estimator for f . Finally we take â = d̂ + f̂ and b̂ = d̂ − f̂ . ��

We observe that the estimator in the preceeding proof can be computed in almost
linear time (i.e. in time O(n1+ε) for any ε > 0).

Proposition 1 The estimator of the previous proof can be computed in expected time
O(n(a + b)k).

Proof Recall f̂ and d̂ from the proof of Theorem 3. Clearly, we can compute d̂ in
time which is linear in the number of edges. Thus, we need to show how to find Xk

efficiently. The essential idea is to count non-backtracking loops instead of cycles; we
say that a path v1, v2, . . . , vk is a non-backtracking loop if v1 = vk and vi �= vi−2 for
all i . Indeed, a straightforward firstmoment argument shows that with high probability,
each neighborhood of radius 2k(n) contains at most one cycle. On this event, every
non-backtracking loop of length k is either a k-cycle, or it is an m-cycle that was
traversed m/k times for some m dividing k. Thus, if we can compute, for every m
dividing k, the number of non-backtracking loops of lengthm thenwe can also compute
the number of cycles of length k.

To count the number of non-backtracking loops of length m, note that we can
recursively count non-backtracking paths as follows: if Nm

u,v is the number of non-
backtracking paths from u to v and dv is the degree of v then Nm+1

u,v = ∑
w∼v N

m
u,w −

(dv −1)Nm−1
u,v . Now, with high probability there are at most n(a+b)m choices of u, v

with Nm
u,v �= 0 (this may be checked by a simple first moment argument, because for

any u, E#{v : Nm
u,v �= 0} ≤ ((a + b)/2)m}); hence (Nm

u,v)u,v∈V (G) may be computed
in time O(n(a + b)m). ��

We remark that a slight adaptation of the preceding two proofs would show that if
one is only interested in a constant accuracy, instead of asymptotic consistency, then
it suffices to take k to be a sufficiently large constant, and the running time will be
linear in n.

Now we will prove Theorem 4 using the method of moments. Recall, therefore,
that if Y ∼ Pois(λ) then EY[m] = λm , where Y[m] denotes the falling factorial
Y (Y − 1) · · · (Y − m + 1). It will therefore be our goal to show that E(Xk)[m] →(

(a+b)k+(a−b)k

k2k+1

)m
. It turns out that this follows almost entirely from the correspond-

ing proof for the Erdös–Renyi model. The only additional work we need to do is in
the case m = 1.

Lemma 1 If k = o(
√
n) then

EPXk =
(
n

k

)
(k − 1)!

2
(2n)−k

(
(a+b)k+(a − b)k

)
∼ 1

k2k+1

(
(a + b)k + (a − b)k

)
.
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Proof Let v0, . . . , vk−1 be distinct vertices. Let Y be the indicator that v0 . . . vk−1 is a
cycle in G. Then EPXk = (n

k

)
(k−1)!

2 EPY , so let us compute EPY . Define N to be the
number of times in the cycle v1 . . . vk that σvi �= σvi+1 (with addition taken modulo k).
Then

EPY =
k∑

m=0

P(N = m)P((v1 · · · vk) ∈ G|N = m) = n−k
k∑

m=0

P(N = m)ak−mbm .

On the other hand, we can easily compute P(N = m): for each i = 0, . . . , k−2, there
is probability 1

2 to have σvi = σvi+1 , and these events are mutually indepedent. But
whether σvk−1 = σv0 is completely determined by the other events since there must be
an even number of i ∈ {0, . . . , k − 1} such that σvi �= σvi+1 . Thus,

P(N = m) = Pr
(
Binom

(
k − 1,

1

2

)
∈ {m − 1,m}

)

= 2−k+1
((

k − 1

m − 1

)
+

(
k − 1

m

))
= 2−k+1

(
k

m

)

for even m, and zero for odd m. Hence,

EPY = n−k2−k+1
∑

m even

ak−mbm
(
k

m

)

= n−k2−k
(
(a + b)k + (a − b)k

)
.

The second part of the claim amounts to saying that n[k] ∼ nk , which is trivial
when k = o(

√
n). ��

Proof of Theorem 4 Let μ = 1
k2k

(
(a + b)k + (a − b)k

)
; our goal, as discussed before

Lemma 1, is to show thatE(Xk)[m] → μm . Note that (Xk)[m] is the number of ordered
m-tuples of k-cycles in G. We will divide these m-tuples into two sets: A is the set of
m-tuples for which all of the k-cycles are disjoint, while B is the set of m-tuples in
which at least one pair of cycles is not disjoint.

Now, take (C1, . . . ,Cm) ∈ A. Since the Ci are disjoint, they appear independently
in G. By the proof of Lemma 1, the probability that cycles C1, . . . ,Cm are all present
is

n−km2−km
(
(a + b)k + (a − b)k

)m
.

Since there are
( n
km

)
(km)!
km elements of A, it follows that the expected number of vertex-

disjoint m-tuples of k-cycles is

(
n

km

)
(km)!
km

n−km2−km
(
(a + b)k + (a − b)k

)m ∼ μm .
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It remains to show, therefore, that the expected number of non-vertex-disjoint m-
tuples converges to zero. Let Y be the number of non-vertex-disjoint m-tuples,

Y =
∑

(C1,...,Cm )∈B

m∏

i=1

1{Ci⊂G}.

Then the distribution of Y under P is stochastically dominated by the distribution of
Y under the Erdös–Renyi model G(n,

max{a,b}
n ). It’s well-known (see, eg. [3], Chapter

4) that as long as k = O(log1/4 n), EY → 0 under G(n, c
n ) for any c; hence EY → 0

under P also. ��

4 Non-reconstruction

The goal of this section is to prove Theorem 1. As we said in the introduction, the
proof of Theorem 1 uses a connection between G(n, a

n , b
n ) and Markov processes on

trees. Before we go any further, therefore, we should define a Markov process on a
tree and state the result that we will use.

Let T be an infinite rooted tree with root ρ. Given a number 0 ≤ ε < 1, we will
define a random labelling τ ∈ {±}T . First, we draw τρ uniformly in {±}. Then, con-
ditionally independently given τρ , we take every child u of ρ and set τu = τρ with
probability 1 − ε and τu = −τρ otherwise. We can continue this construction recur-
sively to obtain a labelling τ for which every vertex, independently, has probability
1 − ε of having the same label as its parent.

Back in 1966,Kesten andStigum [23] asked (although they used somewhat different
terminology) whether the label of ρ could be deduced from the labels of vertices at
level R of the tree (where R is very large). There are many equivalent ways of stating
the question. The interested reader should see the survey [26], because we will only
mention two of them.

Let TR = {u ∈ T : d(u, ρ) ≤ R} and define ∂TR = {u ∈ T : d(u, ρ) = R}. We
will write τTR for the configuration τ restricted to TR .

Theorem 5 Suppose T is a Galton–Watson tree where the offspring distribution has
mean d > 1. Then

lim
R→∞Pr(τρ = +|τ∂TR ) = 1

2
a.s.

if, and only if d(1 − 2ε)2 ≤ 1.

In particular, if d(1− 2ε)2 ≤ 1 then τ∂TR contains no information about τρ . Theo-
rem 5 was established by several authors over the course of more than 30 years. The
non-reconstruction regime (ie. the case d(1 − 2ε)2 ≤ 1) is the harder one, and that
part of Theorem 5 was first proved for d-ary trees in [2], and for Galton–Watson trees
in [12]. This latter work actually proves the result for more general trees in terms of
their branching number.
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We will be interested in trees T whose offspring distribution is Pois( a+b
2 ) and we

will take 1− ε = a
a+b . Some simple arithmetic applied to Theorem 5 then shows that

reconstruction of the root’s label is impossible whenever (a − b)2 ≤ 2(a + b). Not
coincidentally, this is the same threshold that appears in Theorem 1.

4.1 Coupling of balls in G to the broadcast process on trees

The first step in applying Theorem 5 to our problem is to observe that a neighborhood
of (G, σ ) ∼ G(n, a

n , b
n ) looks like (T, τ ). Indeed, fix ρ ∈ G and letGR be the induced

subgraph on {u ∈ G : d(u, ρ) ≤ R}.
Proposition 2 Let R = R(n) = � 1

10 log(2(a+b)) log n�. There exists a coupling between
(G, σ ) and (T, τ ) such that (GR, σGR ) = (TR, τTR ) a.a.s.

For the rest of this section, we will take R = � 1
10 log(2(a+b)) log n�.

The proof of this proposition essentially follows from the fact that (T, τ ) can be
constructed from a sequence of independent Poisson variables, while (GR, σGR ) can
be constructed from a sequence of binomial variables, with approximately the same
means. This argument is therefore quite similar to the analogous argument forG(n, a

n );
readers who are already familiar with this sort of argument may therefore wish to skip
to Sect. 4.2.

For a vertex v ∈ T , let Yv be the number of children of v; let Y=
v be the number

of children whose label is τv and let Y �=
v = Yv − Y=

v . By Poisson thinning, Y=
v ∼

Pois(a/2), Y �=
v ∼ Pois(b/2) and they are independent. Note that (T, τ ) can be entirely

reconstructed from the label of the root and the two sequences (Y=
i ), (Y �=

i ).
We can almost do the same thing for GR , but it is a little more complicated. We

will write V = V (G) and VR = V (G)\V (GR). For every subset W ⊂ V , denote
by W+ and W− the subsets of W that have the corresponding label. For example,
V+
R = {v ∈ VR : σv = +}. For a vertex v ∈ ∂GR , let Xv be the number of neighbors

that v has in Vr ; then let X=
v be the number of those neighbors whose label is σv and

set X �=
v = Xv − X=

v . Then X=
v ∼ Binom(|V σv

r |, a), X �=
v ∼ Binom(|V−σv

r |, b) and
they are independent. Note, however, that they do not contain enough information to
reconstruct GR : it’s possible to have u, v ∈ ∂Gr which share a child in Vr , but this
cannot be determined from Xu and Xv . Fortunately, such events are very rare and so
we can exclude them. In fact, this process of carefully excluding bad events is all that
needs to be done to prove Proposition 2.

In order that we can exclude their complements, let us give names to all of our
good events. For any r , let Ar be the event that no vertex in Vr−1 has more than one
neighbor in Gr−1. Let Br be the event that there are no edges within ∂Gr . Clearly, if
Ar and Br hold for all r = 1, . . . , R then GR is a tree. In fact, it’s easy to see that Ar

and Br are the only events that prevent {X=
v , X �=

v }v∈G from determining (GR, σGR ).

Lemma 2 If

1. (Tr−1, τTr−1) = (Gr−1, σGr−1);

2. X=
u = Y=

u and X �=
u = Y �=

u for every u ∈ ∂Gr−1; and
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3. Ar and Br hold

then (Tr , τTr ) = (Gr , σGr ).

Proof The proof is essentially obvious from the construction of Xu and Yu , but we
will be pedantic about it anyway. The statement (Tr−1, τTr−1) = (Gr−1σGr−1) means
that there is some graph homomorphism φ : Gr−1 → Tr−1 such that σu = τφ(u). If

u ∈ ∂Gr−1 and X=
u = Y=

φ(u) and X �=
u = Y �=

φ(u) then we can extend φ to Gr−1 ∪ N (u)

while preserving the fact that σv = τφ(v) for all v. On the event Ar , this extension
can be made simultaneously for all u ∈ ∂Gr−1, while the event Br ensures that this
extension remains a homomorphism. Thus, we have constructed a label-preserving
homomorphism from (Gr , σGr ) to (Tr , τTr ), which is the same as saying that these
two labelled graphs are equal.

From now on, we will not mention homomorphisms; we will just identify u with
φ(u). ��

In order to complete our coupling, we need to identify one more kind of good event.
Let Cr be the event

Cr = {|∂Gs | ≤ 2s(a + b)s log n for all s ≤ r + 1}.

The eventsCr are useful because they guarantee that Vr is large enough for the desired
binomial-Poisson approximation to hold. The utility ofCr is demonstrated by the next
two lemmas.

Lemma 3 For all r ≤ R,

P(Cr |Cr−1, σ ) ≥ 1 − n− log(4/e).

Moreover, |Gr | = O(n1/8) on Cr−1.

Lemma 4 For any r,

P(Ar |Cr−1, σ ) ≥ 1 − O(n−3/4)

P(Br |Cr−1, σ ) ≥ 1 − O(n−3/4).

Proof of Lemma 3 First of all, Xv is stochastically dominated by
Binom(n, a+b

n ) for any v. On Cr−1, |∂Gr | ≤ 2r (a + b)r log n and so |∂Gr+1| is
stochastically dominated by

Z ∼ Binom
(
2r (a + b)r n log n,

a + b

n

)
.

Thus,

P(¬Cr |Cr−1, σ ) = P
(|∂Gr+1| > 2r+1(a + b)r+1 log n

∣
∣Cr−1, σ

)

≤ P(Z ≥ 2EZ) ≤
( e
4

)EZ
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by a multiplicative version of Chernoff’s inequality. But

EZ = 2r (a + b)r+1 log n ≥ log n,

which proves the first part of the lemma.
For the second part, on Cr−1

|Gr | =
R∑

r=1

|∂Gr | ≤
R∑

r=1

2r (a + b)r log n ≤ (2(a + b))R+1 log n = O(n1/8).

��
Proof of Lemma 4 For the first claim, fix u, v ∈ ∂Gr . For any w ∈ Vr , the probability
that (u, w) and (v,w) both appear is O(n−2). Now, |Vr | ≤ n and Lemma 3 implies
that |∂Gr |2 = O(n1/4). Hence the result follows from a union bound over all triples
u, v, w.

For the second part, the probability of having an edge between any particular u, v ∈
∂Gr is O(n−1). Lemma 3 implies that |∂Gr |2 = O(n1/4) and so the result follows
from a union bound over all pairs u, v. ��

The final ingredient we need is a bound on the total variation distance between
binomial and Poisson random variables.

Lemma 5 If m and n are positive integers then

∥
∥
∥Binom

(
m,

c

n

)
− Pois(c)

∥
∥
∥
T V

= O
(max{1, |m − n|}

n

)
.

Proof of Lemma 4 Assume that m ≤ 2n, or else the result is trivial. A classical result
of Hodges and Le Cam [17] shows that

∥
∥
∥Binom

(
m,

c

n

)
− Pois

(mc

n

)∥
∥
∥
T V

≤ c2m

n2
= O(n−1).

With the triangle inequality in mind, we need only show that Pois(cm/n) is close to
Pois(c). This follows from a direct computation: ifλ < μ then

∥
∥ Pois(λ)−Pois(μ)

∥
∥
T V

is just

∑

k≥0

|e−μμk − e−λλk |
k! ≤ |e−μ − e−λ|

∑

k≥0

μk

k! + e−λ
∑

k≥0

|μk − λk |
k! .

Now the first term is eμ−λ − 1 and we can bound μk − λk ≤ k(μ − λ)μk−1 by the
mean value theorem. Thus,

∥
∥Pois(λ) − Pois(μ)

∥
∥
T V ≤ eμ−λ − 1 + eμ−λ(μ − λ) = O(μ − λ).

The claim follows from setting μ = c and λ = cm
n . ��
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Finally, we are ready to prove Proposition 2.

Proof of Proposition 2 Let Ω̃ be the event that
∣
∣
∣|V+|−|V−|

∣
∣
∣ ≤ n3/4. By Hoeffding’s

inequality, P(Ω̃) → 1 exponentially fast.
Fix r and suppose that Cr−1 and Ω̃ hold, and that (Tr , τr ) = (Gr , σr ). Then for

each u ∈ ∂Gr , X=
u is distributed as Binom(|V σu

r |, a/n). Now,

n

2
+ n3/4 ≥ |V σu | ≥ |V σu

r | ≥ |V σu | − |Gr−1| ≥ n

2
− n3/4 − O(n1/8)

and so Lemma 5 implies that we can couple X=
u with Y=

u such that P(X=
u �=Y=

u ) =
O(n−1/4) (and similarly for X �=

u and Y �=
u ). Since |∂Gr−1| = O(n1/8) by Lemma 3,

the union bound implies that we can find a coupling such that with probability at
least 1 − O(n−1/8), X=

u = Y=
u and X �=

u = Y �=
u for every u ∈ ∂Gr−1. Moreover,

Lemmas 3 and 4 imply Ar , Br and Cr hold simultaneously with probability at least
1 − n− log(4/e) − O(n−3/4). Putting these all together, we see that the hypothesis of
Lemma 2 holds with probability at least 1 − O(n−1/8). Thus,

P

(
(Gr+1, σr+1) = (Tr+1, τr+1),Cr

∣
∣
∣(Gr , σr ) = (Tr , τr ),Cr−1

)
≥ 1 − O(n−1/8).

But P(C0) = 1 and we can certainly couple (G1, σ1) with (T1, τ1). Therefore, with a
union bound over r = 1, . . . , R, we see that (GR, σR) = (TR, τR) a.a.s. ��

4.2 No long range correlations in G

We have shown that a neighborhood in G looks like a Galton–Watson tree with a
Markov process on it. In this section, we will apply this fact to prove Theorem 1. In
the statement of Theorem 1, we claimed that E(σρ |G, σv) → 0, but this is clearly
equivalent to Var(σρ |G, σv) → 1. This latter statement is the one that we will prove,
because the conditional variance has a nice monotonicity property.

The idea behind the proof of Theorem 1 is to condition on the labels of ∂GR ,
which can only make reconstruction easier. Then we can remove the conditioning
on σv , because σ∂GR gives much more information anyway. Since Theorem 5 and
Proposition 2 imply that σv cannot be reconstructed from σ∂GR , we conclude that it
cannot be reconstructed from σv either.

The goal of this section is to prove that once we have conditioned on σ∂GR , we can
remove the conditioning on σv . If σ |G were distributed according to aMarkov random
field, thiswould be trivial because conditioning onσ∂GR would turnσv andσρ indepen-
dent. For our model, unfortunately, there are weak long-range interactions. However,
these interactions are sufficiently weak that we can get an asymptotic independence
result for separated sets as long as one of them takes up most of the graph.

In what follows, we say that X = o(a(n)) a.a.s. if for every ε > 0, Pr(|X | ≥
εa(n)) → 0 as n → ∞, and we say that X = O(a(n)) a.a.s. if

lim sup
K→∞

lim sup
n→∞

Pr(|X | ≥ Ka(n)) = 0.
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Lemma 6 Let A = A(G), B = B(G),C = C(G) ⊂ V be a (random) partition of
V such that B separates A and C in G. If |A ∪ B| = o(

√
n) for a.a.e. G

P(σA|σB∪C ,G) = (1 + o(1))P(σA|σB,G)

for a.a.e. G and σ .

Note that Lemma 6 is only true for a.a.e. σ . In particular, the lemma does not hold
for σ that are very unbalanced (eg. σ = +V ).

Before proving Lemma 6, let us show how it and Proposition 2 imply Theorem 1.

Proof of Theorem 1 By the monotonicity of conditional variances,

Var(σρ |G, σv, σ∂GR ) ≤ Var(σρ |G, σv).

Since |GR | = o(
√
n) a.a.s. and v �∈ GR a.a.s, it follows from Lemma 6

that σv and σρ are a.a.s. conditionally independent given σ∂GR and G. Thus,
Var(σρ |G, σv, σ∂GR ) → Var(σρ |G, σ∂GR ). Finally, Proposition 2 implies that

|Var(σρ |G, σ∂GR ) − Var(τρ |T, τ∂TR )| → 0;

since Theorem 5 says that Var(τρ |T, τ∂TR ) converges to 1 a.a.s., it follows that
Var(σρ |G, σ∂GR ) → 1 a.a.s. also. ��
Proof of Lemma 6 As in the analogous proof for a Markov random field, we factorize
P(G, σ ) into parts depending on A, B and C . We then show that the part which
measures the interaction between A and C is negligible. The rest of the proof is then
quite similar to the Markov random fields case.

Define

ψuv(G, σ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
n if (u, v) ∈ E(G) and σu = σv

b
n if (u, v) ∈ E(G) and σu �=σv

1 − a
n if (u, v) �∈ E(G) and σu = σv

1 − b
n if (u, v) �∈ E(G) and σu �=σv.

For arbitrary subsets U1,U2 ⊂ V , define

QU1,U2 = QU1,U2(G, σ ) =
∏

u∈U1,v∈U2

ψuv(G, σ ).

(If U1 and U2 overlap, the product ranges over all unordered pairs (u, v) with u �= v;
that is, if (u, v) is in the product then (v, u) is not.) Then

2nP(G, σ ) = P(G|σ) = QA∪B,A∪BQB∪C,C QA,C . (1)
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First, we will show that QA,C is essentially independent of σ . Take a deterministic
sequence αn with αn/

√
n → ∞ but αn|A| = o(n) a.a.s. Define sA(σ ) = ∑

v∈A σv

and sC (σ ) = ∑
v∈C σv and let

Ω = {τ ∈ {±}V : |sC (τ )| ≤ αn}
ΩU = ΩU (σ ) = {τ ∈ {±}V : τU = σU and |sC (τ )| ≤ αn}.

By the definition of αn , if τ ∈ Ω then |sA(τ )sC (τ )| ≤ |A|αn = o(n) a.a.s. Thus,
τ ∈ Ω implies

QA,C (G, τ ) =
∏

u∈A,v∈C
ψuv(G, τ )

=
(
1 − a

n

)(|A||C|+sA(τ )sC (τ ))/2(
1 − b

n

)(|A||C|−sA(τ )sC (τ ))/2

= (1 + o(1))
(
1 − a

n

)|A||C|/2(
1 − b

n

)|A||C|/2
a.a.s. (2)

where we have used the fact that u ∈ A, v ∈ C implies that (u, v) �∈ E(G), and
thus ψuv is either 1 − a

n or 1 − b
n . Moreover, 1 − a

n appears once for every pair
(u, v) ∈ A × C where τu = τv . The number of such pairs is |A+||C+| + |A−||C−|
where A+ = {u ∈ A : τu = +} (and similarly for C+, etc.); it’s easy to check, then,
that 2(|A+||C+| + |A−||C−|) = |A||C | + sAsC , which explains the exponents in (2).

Note that the right hand side of (2) depends on G (through A(G) and C(G)) but
not on τ . Writing 2−nK (G) for the right hand side of (2), (1) implies that if τ ∈ Ω

then

P(G, τ ) = (1 + o(1))K (G)QA∪B,A∪B(G, τ )QB∪C,C (G, τ ) (3)

for a.a.e. G. Moreover, αn/
√
n → ∞ implies that σ ∈ Ω for a.a.e. σ , and so for any

U = U (G), P(σU ,G) = (1 + o(1))P(σU , σ ∈ Ω,G) a.a.s; therefore,

P(σU ,G) = (1 + o(1))P(σU,G)1{σ∈Ω}
= (1 + o(1))

∑

τ∈ΩU (σ )

P(τ,G)

= (1 + o(1))K (G)
∑

τ∈ΩU (σ )

QA∪B,A∪B(G, τ )QB∪C,C (G, τ ) (4)

for a.a.e. G and σ . (Note that the o(1) term in (3) depends only on G, so there is no
problem in pulling it out of the sum.) Applying (4) twice, withU = A∪B andU = B,

P(σA|σB,G) = P(σA∪B,G)

P(σB,G)

= (1 + o(1))

∑
τ∈ΩA∪B

QA∪B,A∪B(G, τ )QB∪C,C (G, τ )
∑

τ∈ΩB
QA∪B,A∪B(G, τ )QB∪C,C (G, τ )

. (5)
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Note that QU1,U2(τ ) depends on τ only through τU1∪U2 . In particular, in the numerator
of (5), QA∪B,A∪B(G, τ ) doesn’t depend on τ since we only sum over τ with τA∪B =
σA∪B . Hence, the right hand side of (5) is just

(1 + o(1))
QA∪B,A∪B(G, σ )

∑
τ∈ΩA∪B

QB∪C,C (G, τ )
( ∑

τ∈ΩB∪C QA∪B,A∪B(G, τ )
)( ∑

τ∈ΩA∪B
QB∪C,C (G, τ )

) , (6)

where we could factorize the denominator because with τB fixed, QA∪B,A∪B depends
only on τA, while QB∪C,C depends only on τC . Cancelling the common terms, then
multiplying top and bottom by QB∪C,C (G, σ ), we have

(6) = (1 + o(1))
QA∪B,A∪B(G, σ )

∑
τ∈ΩB∪C QA∪B,A∪B(G, τ )

= (1 + o(1))
QA∪B,A∪B(G, σ )QB∪C,C (G, σ )

∑
τ∈ΩB∪C QA∪B,A∪B(G, τ )QB∪C,C (G, τ )

= (1 + o(1))
P(G, σ )

P(G, σB∪C )

= (1 + o(1))P(σA|σB∪C ,G) a.a.s.

where the penultimate line used (4) for the denominator and (3) (plus the fact that
σ ∈ Ω a.a.s.) for the numerator. On the other hand, recall from (5) that (6) = (1 +
o(1))P(σA|σB,G) a.a.s. ��

5 The second moment argument

In this section, we will prove Theorem 2. The general direction of this proof was
already described in the introduction, but let’s begin here with a slightly more detailed
overview. Recall that P′

n denotes the Erdös–Renyi model G(n, a+b
2n ). The first thing

we will do is to extend P
′
n to be a distribution on labelled graphs. In order to do this,

we only need to describe the conditional distribution of the label given the graph. We
will take

P
′
n(σ |G) = Pn(G|σ)

Zn(G)
,

where Zn(G) is the normalization constant for which this is a probability. Now, our
goal is to show that Pn(G,σ )

P′
n(G,σ )

is well-behaved; with our definition of P′
n(σ |G), we have

Pn(G, σ )

P′
n(G, σ )

= Pn(σ )Zn(G)

P′
n(G)

= 2−n Zn(G)

P′
n(G)

.

Thus, Theorem 2 reduces to the study of the partition function Zn(G). To do this,
we will use the small subgraph conditioning method. This method was developed
by Robinson and Wormald [30,31] in order to prove that most d-regular graphs are
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Hamiltonian. Janson [19] then showed that themethod can be used to prove contiguity,
and it has since been applied in many different settings (see the survey [38] for a more
detailed discussion). Essentially, the method is useful for studying a sequence Yn(Gn)

of random variables which are not concentrated around their means, but which become
concentratedwhenwe condition on the number of short cycles thatGn has. Fortunately
for us, this method has been developed into an easily applicable tool, the application
of which only requires the calculation of some joint moments. The formulation below
comes from [38], Theorem 4.1.

Theorem 6 Fix two sequences of probability distributions P′
n and Pn on a common

sequence of discrete measure spaces, and let Yn = Pn
P′
n
be the density of Pn with respect

to Pn. Let λk > 0 and δk ≥ −1 be real numbers. For each n, suppose that there are
random variables Xk = Xk(n) ∈ N for k ≥ 3 such that

(a) For each fixed m ≥ 1, {Xk(n)}mk=3 converge jointly under P
′
n to independent

Poisson variables with means λk;
(b) For every j1, . . . , jm ∈ N,

EP′
n

(
Yn[X3(n)] j1 · · · [Xm(n)] jm

)

EP′
n
Yn

→
m∏

k=3

(λk(1 + δk))
jk ;

(c)

∑

k≥3

λkδ
2
k < ∞;

(d)

EP′
n
Y 2
n

(EP′
n
Yn)2

→ exp

⎛

⎝
∑

k≥3

λkδ
2
k

⎞

⎠ .

Then P
′
n and Pn are contiguous.

In our application of Theorem 6 the discussion at the beginning of this section
implies thatYn = Yn(G) = 2−n Zn(G)

P′
n(G)

.Wewill take Xk(n) to be the number of k-cycles

in Gn . Thus, condition (a) in Theorem 6 is already well-known, with λk = 1
2k

( a+b
2

)k .
This leaves us with three conditions to check. We will start with (d), but before we do
so, let us fix some notation.

Let σ and τ be two labellings in {±}n . We will also omit the subscript n in Pn and
P

′
n , and when we write

∏
(u,v), we mean that u and v range over all unordered pairs

of distinct vertices u, v ∈ G. Let t (for “threshold”) be defined by t = (a−b)2

2(a+b) .
For the rest of this section, G ∼ P

′. Therefore we will drop the P′ from EP′ and
just write E.
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5.1 The first two moments of Yn

Since Yn = P(G,σ )
P′(G,σ )

, EYn = 1 trivially. Let’s do a short computation to double-check
it, though, because it will be useful later. Define

Wuv = Wuv(G, σ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2a
a+b if σu = σv, (u, v) ∈ E
2b
a+b if σu �= σv, (u, v) ∈ E

n−a
n−(a+b)/2 if σu = σv, (u, v) /∈ E

n−b
n−(a+b)/2 if σu �= σv, (u, v) /∈ E

and define Vuv by the same formula, but with σ replaced by τ . Then

Yn = 2−n
∑

σ∈{±}n

∏

(u,v)

Wuv

and

Y 2
n = 2−2n

∑

σ,τ∈{±}n

∏

(u,v)

WuvVuv.

Since {Wuv}(u,v) are independent given σ , it follows that

EYn = 2−n
∑

σ∈{±}n

∏

(u,v)

EWuv (7)

and

EY 2
n = 2−2n

∑

σ,τ∈{±}n

∏

(u,v)

EWuvVuv. (8)

Thus, to compute EYn , we should compute EWuv , while computing EY 2
n involves

computing EWuvVuv .

Lemma 7 For any fixed σ ,

EWuv(G, σ ) = 1.

Proof of Lemma 4 Suppose σu = σv . Then P
′((u, v) ∈ E) = a+b

2n , so

EWuv = 2a

a + b
· a + b

2n
+ n − a

n − (a + b)/2
·
(
1 − a + b

2n

)
= a

n
+ 1 − a

n
= 1.

The case for σu �= σv is similar. ��
Notwithstanding that computing EYn is trivial anyway, Lemma 7 and (7) together

imply that EYn = 1. Let us now move on to the second moment.
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Lemma 8 If σuσvτuτv = + then

EWuvVuv = 1 + 1

n
· (a − b)2

2(a + b)
+ (a − b)2

4n2
+ O(n−3).

If σuσvτuτv = − then

EWuvVuv = 1 − 1

n
· (a − b)2

2(a + b)
− (a − b)2

4n2
+ O(n−3).

Proof Suppose σuσv = τuτv = +1. Then

EWuvVuv =
(

2a

a + b

)2

· a + b

2n
+

(
n − a

n − (a + b)/2

)2

·
(
1 − a + b

2n

)

= 2a2

n(a + b)
+ (1 − a

n )2

1 − a+b
2n

= 2a2

n(a + b)
+

(
1 − a

n

)2 (
1 + a + b

2n
+ (a + b)2

4n2
+ O(n−3)

)

= 1 + 1

n
· (a − b)2

2(a + b)
+ (a − b)2

4n2
+ O(n−3).

The computation for σuσv = τuτv = −1 is analogous.
Now assume σuσv = +1 while τuτv = −1. By a very similar computation,

EWuvVuv = 4ab

(a + b)2
· a + b

2n
+ (1 − a

n )(1 − b
n )

(1 − a+b
2n )2

(
1 − a + b

2n

)

= 1 − 1

n
· (a − b)2

2(a + b)
− (a − b)2

4n2
+ O(n−3).

The computation for σuσv = −1, τuτv = +1 is analogous. ��
Given what we said just before Lemma 7, we can now computeEY 2

n just by looking
at the number of (u, v) where σuσvτuτv = ±1. To make this easier, we introduce
another parameter, ρ = ρ(σ, τ ) = 1

n

∑
i σiτi . Writing s± for the number of {u, v}

with u �= v for which σuσvτuτv = ± we get:

ρ2 = n−1 + 2n−2
∑

u �=v

σuσvτuτv = n−1 + 2n−2(s+ − s−)

Since we also have 2n−2(s+ + s−) = 1 − n−1, we obtain

s+ = (1 + ρ2)
n2

4
− n

2
, s− = (1 − ρ2)

n2

4
.
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Lemma 9

EY 2
n = (1 + o(1))

e−t/2−t2/4

√
1 − t

.

Before we proceed to the proof, recall (or check, by writing out the Taylor series
of the logarithm) that

(
1 + x

n

)n2 = (1 + o(1))enx−
1
2 x

2

as n → ∞.

Proof Define γn = t
n + (a−b)2

4n2
; note that

(1 + γn)
n2 = (1 + o(1)) exp

(
(a − b)2

4
+ tn − t2

2

)

(1 − γn)
n2 = (1 + o(1)) exp

(
− (a − b)2

4
− tn − t2

2

)

(1 + γn)
n = (1 + o(1)) exp(t).

Then, by Lemma 8,

22nEY 2
n =

∑

σ,τ

∏

(u,v)

EWuvVuv

=
∑

σ,τ

(1 + γn + O(n−3))s+(1 − γn + O(n−3))s−

= (1 + o(1))e−t/2
∑

σ,τ

(1 + γn)
(1+ρ2)n2/4(1 − γn)

(1−ρ2)n2/4

= (1 + o(1))e−t/2−t2/4
∑

σ,τ

exp

(
ρ2

2

(
(a − b)2

4
+ tn

))
.

Computing the last termwould be easy if ρ
√
nwere normally distributed. Instead, it

is binomially distributed, which—unsurprisingly—is just as good. To show it, though,
will require a slight digression.

Lemma 10 If ξi ∈ {±} are taken uniformly and independently at random and Zn =
1√
n

∑n
i=1 ξi then

E exp(sZ2
n/2) → 1√

1 − s

whenever s < 1.
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Proof Since z �→ exp(sz2/2) is a continuous function, the central limit theorem

implies that exp(sZ2
n/2)

d→ exp(sZ2/2), where Z ∼ N (0, 1). Now, E exp(sZ2/2) =
1√
1−s

and so the proof is complete if we can show that the sequence exp(sZ2
n/2) is

uniformly integrable. But this follows from Hoeffding’s inequality:

Pr(exp(sZ2
n/2) ≥ M) = Pr

(

|Zn| ≥
√
2 logM

s

)

≤ M−1/s,

which is integrable near ∞ (uniformly in n) whenever s < 1. ��
To finish the proof of Lemma 9, take Zn as in Lemma 10 and note that

2−2n
∑

σ,τ

exp

(
ρ2

2

(
(a − b)2

4
+ tn

))
= E exp

(
t (1 + o(1))

2
Z2
n

)
→ 1√

1 − t
.

5.2 Dependence on the number of short cycles

Our next task is to check condition (b) in Theorem 6. Note, therefore, that
[X3] j3 · · · [Xm] jm is the number of ways to have an ordered tuple containing j3 3-
cycles of G, j4 4-cycles of G, and so on. Therefore, if we can compute EYn1H where
1H indicates that any particular union of cycles occurs in Gn , then we can compute
EYn[X3]m3 · · · [Xm] jm . Computing EYn1H is the main task of this section; we will do
it in three steps. First, we will get a general formula for EYn1H in terms of H . We
will apply this general formula in the case that H is a single cycle and get a much
simpler formula back. Finally, we will extend this to the case when H is a union of
vertex-disjoint cycles.

As promised, we begin the program with a general formula for E1HYn . Let H be a
graph on some subset of [n], with |V (H)| = m.With some slight abuse of notation,We
write 1H for the random variable that is 1 when H ⊂ G, and P′(H) for the probability
that H ⊂ G.

Lemma 11

E1HYn = 2−m
P

′(H)
∑

σ∈{±1}m

∏

(u,v)∈E(H)

wuv(σ ),

where

wuv(σ ) =
{

2a
a+b if (u, v) ∈ S(σ )
2b
a+b otherwise.

Proof of Lemma 4 Webreakupσ ∈ {±1}n into (σ1, σ2) ∈ {±1}V (H)×{±1}V (G)\V (H)

and sum over the two parts separately. Note that if (u, v) ∈ E(H) then Wuv(G, σ )
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depends on σ only through σ1. Let D(H) = E(G)\E(H), so that (u, v) ∈ D(H)

implies that Wuv and 1H are independent. Then

E1HYn = 2−n
∑

σ1

∑

σ2

E1H
∏

(u,v)

Wuv(G, σ )

= 2−n
∑

σ1

((
E1H

∏

(u,v)∈E(H)

Wuv

)∑

σ2

∏

(u,v)∈D(H)

EWuv

)

= 2−m
∑

σ1

(
E1H

∏

(u,v)∈E(H)

Wuv

)
,

because if (u, v) ∈ D(H) then, for every σ , Lemma 7 says that EWuv(G, σ ) = 1. To
complete the proof, note that if (u, v) ∈ E(H) then for any σ , Wuv(G, σ ) ≡ wuv(σ )

on the event H ⊆ G. ��
The next step is to compute the right hand side of Lemma 11 in the case that H is

a cycle. This computation is very similar to the one in Lemma 1, when we computed
the expected number of k-cycles in G(n, a

n , b
n ). Essentially, we want to compute the

expected “weight” of a cycle, where the weight of each edge depends only on whether
its endpoints have the same label or not.

Lemma 12 If H is a k-cycle then

∑

σ∈{±1}H

∏

(u,v)∈E(H)

wuv(σ ) = 2k
(

1 +
(
a − b

a + b

)k
)

.

Proof of Lemma 4 Let e1, . . . , ek be the edges of H . Provided that we renormalize, we
can replace the sum over σ by an expectation, where σ is taken uniformly in {±1}H .
Now, let N be the number of edges of H whose endpoints have different labels. As
discussed in the proof of Lemma 1, Pr(N = j) = 2−k+1

(k
j

)
for even j , and zero

otherwise. Then

Eσ

∏

(u,v)∈E(H)

wuv(σ ) = Eσ

(
2a

a + b

)k−N (
2b

a + b

)N

= 2

(a + b)k
∑

j even

(
k

j

)
ak− j b j

= 1 +
(
a − b

a + b

)k

.

��
Extending this calculation to vertex-disjoint unions of cycles is quite easy: suppose

H is the union of cycles Hi . Since wuv(σ ) only depends on σu and σv , we can just
split up the sum over σ ∈ {±}H into a product of sums, where each sum ranges over
{±}Hi . Then applying Lemma 12 to each Hi yields a formula for H .
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Lemma 13 Define

δk =
(
a − b

a + b

)k

.

If H = ⋃
i Hi is a vertex-disjoint union of graphs and each Hi is a ki -cycle, then

∑

σ∈{±1}H

∏

(u,v)∈E(H)

wuv(H, σ ) = 2|H | ∏

i

(1 + δki ).

We we need one last ingredient, which we hinted at earlier, before we can show
condition (b) of Theorem 6. We only know how to exactly compute EYn1H when
H is a disjoint union of cycles. Now, most tuples of cycles are disjoint, but in order
to dismiss the contributions from the non-disjoint unions, we need some bound on
EYn1H that holds for all H :

Lemma 14 For any H,

∑

σ∈{±1}H

∏

(u,v)∈E(H)

wuv(σ ) ≤ 2|H |+|E(H)|.

Proof

wuv(σ ) ≤ 2max{a, b}
a + b

≤ 2

for any i, j, H and σ . ��
Finally, we are ready to put these ingredients together and prove condition (b) of

Theorem 6. For the rest of the section, take δk = ( a−b
a+b )k as it was in Lemma 13. Also,

recall that λk = 1
2k

( a+b
2

)k is the limit of EXk as n → ∞.

Lemma 15 Let Xk be the number of k-cycles in G. For any j3, . . . , jm ∈ N,

EYn

m∏

k=3

[Xk] jk →
m∏

k=3

(λk(1 + δk))
jk .

Proof Set M = ∑
k kmk . First of all,

[Xk] j =
∑

H1,...,Hj

∏

i

1Hi

where the sum ranges over all j-tuples of distinct k-cycles, and 1H indicates the event
that the subgraph H appears in G. Thus,

m∏

k=3

[Xk] jk =
∑

(Hki )

m∏

k=3

jk∏

i=1

1Hki =
∑

(Hki )

1{⋃ Hki },
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where the sum ranges over all M-tuples of cycles (Hki )k≤m,i≤ jk for which each Hki

is an k-cycle, and every cycle is distinct. Let H be the set of such tuples; let A ⊂ H
be the set of such tuples for which the cycles are vertex-disjoint, and let B = H\A.
Thus, if H = ⋃

Hki for (Hki ) ∈ A, then

EYn1H =
∏

k

(1 + δk)
jkP′(H)

by Lemmas 11 and 13. Note also that standard counting arguments (see, for exam-
ple, [3], Chapter 4) imply that |A|P′(H) → ∏

k λ
jk
k .

On the other hand, if (Hki ) ∈ B then H := ⋃
ki Hki has at most M − 1 vertices,

M edges, and its number of edges is strictly larger than its number of vertices. Thus,
P

′(H)
( n
|H |

) → 0, so Lemmas 11 and 14 imply that

∑

H ′∼H

EYn1H ≤ P
′(H)|H |!

(
n

|H |
)
2M → 0,

where the sum ranges over all ways to make an isomorphic copy of H on n vertices.
Since there are only a bounded number of isomorphism classes in

{
⋃

ki

Hki : (Hki ) ∈ B

}

,

it follows that
∑

H EYn1H → 0, where the sum ranges over all unions of non-disjoint
tuples inH. Thus,

EYn

m∏

k=3

[Xk] jk = EYn

⎛

⎝
∑

(Hki )∈A

1⋃
Hki +

∑

(Hki ) �∈B
1⋃

Hki

⎞

⎠

= |A|P′(H)
∏

k

(1 + δk)
jk + o(1)

→
∏

k

(λk(1 + δk))
jk .

To complete the proof of Theorem 2, note that δ2kλk = tk
2k . Thus,

∑
k≥3 δ2kλk =

1
2 (log(1 − t) − t − t2/2). When t < 1, this (with Lemma 9) proves conditions (c)
and (d) of Theorem 6. Since condition (a) is classical and condition (b) is given by
Lemma 15, the conclusion of Theorem 6 implies the first statement in Theorem 2.

We finally apply the first half of Theorem 2 to show that no estimator can be
consistent when (a − b)2 < 2(a + b). In fact, if â and b̂ are estimators for a and b
which converge in probability, then their limit when (a−b)2 < 2(a+b) depends only
on a+b. To see this, let α, β be another choice of parameters with (α−β)2 < 2(α+β)

and α + β = a + b; let Qn = Gn(α, β); take a∗ to be the in-probability limit of â
under Pn and α∗ to be its limit under Qn . For an arbitrary ε > 0, let An be the event

123



Reconstruction and estimation in the planted partition model 457

|â − a∗| > ε; thus, Pn(An) → 0. By the first part of Theorem 2, P′
n(An) → 0 also.

Since α + β = a + b, we can apply the first part of Theorem 2 to Qn , implying that
Qn(An) → 0 and so α∗ = a∗. That is, â converges to the same limit under Qn and
Pn .

6 Conjectures and open problems

6.1 Regular models

We briefly discuss how can one define a regular version of the model and what we
expect from the behavior of such amodel. A regularmodel should satisfy the following
properties:

– The graph G is a.s. a simple d-regular graph.
– For each vertex u among the d neighbors it is connected to, it is connected to
Binom(d, 1 − ε) vertices v with σv = σu .

– Choices at different vertices are (almost) independent.

As is often the case with random regular graphs, the construction is not completely
trivial. Here are two possible constructions:

– Let {Xv : v ∈ V } be a collection of independent Binom(d, 1 − ε) variables,
conditioned on

∑

v:σv=+
Xv =

∑

v:σv=−
Xv is even.

Now the (+,+) edges are defined by sampling a uniform random graph on {v :
σv = +} with degree distribution given by {Xv : σv = +}, while the (−,−) edges
are defined by sampling a uniform random graph on {v : σv = −} with degree
distribution given by {Xv : σv = −}. To construct the (+,−) edges we take a
uniformly random bipartite graph with left degrees given by {d − Xv : σv = +}
and right degrees given by {d − Xv : σv = −}.

– The second construction uses a variant of the configuration model. We generate the
graph by generating d independent matchings. The probability of each matching is
proportional to (1−ε)n=εn �=, where n= is the number of edges (u, v)with σu = σv

points and n �= is the number of edges (u, v) with σu �= σv .

We conjecture that the results of the paper should extend to the models above where
the quantity (a − b)2/2(a + b) is now replaced by (d − 1)θ2, where θ = 1 − 2ε.
Friedman’s proof ofAlon’s conjecture [13] gives a very accurate information regarding
the spectrum of uniformly random d-regular graphs. We propose the following related
conjecture.

Conjecture 4 Assume (d − 1)θ2 > 1. Then there exist an δ > 0, s.t. with high
probability, the second eigenvalue of the graph generated λ2(G) satisfies λ2(G) >

2
√
d − 1 + δ. Moreover, all other eigenvalues of G are smaller than 2

√
d − 1, and

the eigenvector associated to λ2(G) is correlated with the true partition.
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By comparison, the results of [13] imply that for all δ > 0 with high probability, if
G is a uniformly random d-regular graph then λ2(G) < 2

√
d − 1+ δ. Thus the result

above provides a simple spectral algorithm to distinguish between the standard random
d-regular model and the biased d-regular model when (d − 1)θ2 > 1. Moreover, our
conjecture also says that a spectral algorithm can be used to solve the clustering
problem.

Below we sketch a proof for part of Conjecture 4. Specifically, we will show that if
(d − 1)θ2 > 1 then there is an approximate eigenvalue-eigenvector pair (λ, f ) (in the
sense that A f ≈ λ f where A is the adjacencencymatrix ofG) where λ > 2

√
d − 1+δ

and f is correlated with the true partition. The more difficult part of the conjecture
would be to show that all other eigenvalues are smaller than 2

√
d − 1. If this were

true, it would imply that λ2(G) ≈ λ and that the eigenvector of λ2(G) is close to f .

Proof We will assume that G satisfies the following two properties:

– The process around each vertex looks like the Ising model on a d regular tree.
– Given two different vertices u, v, the process in neighborhoods of u and v are
asymptotically independent.

Let r be a large constant and let f (v) = ∑{σw : d(w, v) = r}. Then∑
v f (v) = 0

and it is therefore orthogonal to the leading eigenvector. Let A be the adjacency
matrix of the graph. We claim that ‖A f − λ f ‖2 is much smaller than ‖ f ‖2, where
λ = θ−1 + (d − 1)θ . Note that λ > 2

√
d − 1 if and only if |θ | > (d − 1)−1/2.

Assuming that the neighborhood of v is a d-regular tree,

(A f )(v) =
∑

w:d(v,w)=r+1

σw + (d − 1)
∑

w:d(v,w)=r−1

σw

and so we can write (A f )(v) − λ f (v) as

A f (v) − λ f (v) =
⎛

⎝
∑

w:d(v,w)=r+1

σw − θ(d − 1)
∑

w:d(v,w)=r

σw

⎞

⎠

−θ−1

⎛

⎝
∑

w:d(v,w)=r

σw − θ(d − 1)
∑

w:d(v,w)=r−1

σw

⎞

⎠ (9)

We can re-arrange the first sum as

∑

{w:d(v,w)=r}

∑

{w′∼w,d(w′,v)=r+1}
σw − θσw′ .

Noting that all the summands are independent given {σw : d(v,w) = r}, we see that
the above sum has expectation zero and variance of the order C(d − 1)r for some
constant C . Applying a similar decomposition (but at level r − 1) to the second sum
in (9), we get

E[(A f (v) − λ f (v))2] ≤ C(d − 1)r .
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Summing over all v, we conclude that

E[‖A f − λ f ‖22] ≤ Cn(d − 1)r .

On the other hand, from [15] it follows that for each v individually

E[ f (v)2] ≥ C ′((d − 1)θ)2r ,

for some absolute constant C ′. Since the value of f (v) and f (w) for v �= w are
essentially independent, it follows that with high probability ‖ f ‖22 > C ′n((d−1)θ)2r .
Taking r sufficiently large we see that ‖A f −λ f ‖2 ≤ δ(r)‖ f ‖2 with high probability
where δ(r) → 0 as r → ∞. ��

6.2 Open problems for the non-regular model

Of the conjectures that we mentioned in the introduction, Conjecture 1 remains open.
However, there are variations and extensions of Conjectures 1–3 that may be even
more interesting. For example, we could ask whether Conjecture 1 can be realized by
one of several popular and efficient algorithms.

Conjecture 5 1. If (a − b)2 > 2(a + b) then the clustering problem in G(n, a
n , b

n )

can be solved by a spectral algorithm.
2. If (a − b)2 > 2(a + b) then the clustering problem in G(n, a

n , b
n ) can be solved by

the belief propogation algorithm of [9].
3. If (a − b)2 > 2(a + b) then the clustering problem in G(n, a

n , b
n ) can be solved by

simulating an Ising model on G, conditioned to be almost balanced.

Of these conjectures, part 1 is closely related to the work of Coja-Oghlan [7], while
part 3 would substantially extend the result of Dyer and Frieze [11].

Another way to extend Conjectures 1–3 would be to increase the number of clusters
from two to k. The model G(n, p, q) is well-studied for more than two clusters, in
which case it is known as the “planted partition”model. In fact, many of the results that
we cited in the introduction extend to k > 2 also. However, the work of [9] suggests
that the case of larger k is rather more delicate than the case k = 2, and that it contains
interesting connections to complexity theory. The following conjecture comes from
their work, and it is based on a connection to phase transitions in the Potts model on
trees:

Conjecture 6 For any k, there exists c(k) such that if a > b then:

1. If (a−b)2

a+(k−1)b < c(k) then the clustering problem cannot be solved;

2. If c(k) <
(a−b)2

a+(k−1)b < k then the clustering problem is solvable, but not in polyno-
mial time;

3. If (a−b)2

a+(k−1)b > k then the clustering problem can be solved in polynomial time.

When k ≤ 4, c(k) = k and so case 2 does not occur. When k ≥ 5, c(k) < k.
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Part of the difficulty in studying Conjecture 6 can be seen from work of the third
author [34]. His work contains the best known non-reconstruction results for the Potts
model on trees, but the results for k > 2 are less precise and more difficult to prove
than what is known for k = 2.

Decelle et al. also state a version of Conjecture 6 in the case a < b. Although
this case is not naturally connected to clustering, it has close connections to random
Boolean satisfiability problems and to spin glasses. In particular, they conjecture that
when a < b, case 2 above becomes much larger.
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