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Abstract Slepian and Sudakov–Fernique type inequalities, which compare expecta-
tions of maxima of Gaussian random vectors under certain restrictions on the covari-
ance matrices, play an important role in probability theory, especially in empirical
process and extreme value theories. Here we give explicit comparisons of expecta-
tions of smooth functions and distribution functions of maxima of Gaussian random
vectors without any restriction on the covariance matrices. We also establish an anti-
concentration inequality for themaximum of a Gaussian random vector, which derives
a useful upper bound on the Lévy concentration function for the Gaussian maximum.
The bound is dimension-free and applies to vectors with arbitrary covariance matri-
ces. This anti-concentration inequality plays a crucial role in establishing bounds on
the Kolmogorov distance between maxima of Gaussian random vectors. These results
have immediate applications in mathematical statistics. As an example of application,
we establish a conditional multiplier central limit theorem for maxima of sums of
independent random vectors where the dimension of the vectors is possibly much
larger than the sample size.
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1 Introduction

We derive a bound on the difference in expectations of smooth functions of maxima
of finite dimensional Gaussian random vectors. We also derive a bound on the Kol-
mogorov distance between distributions of these maxima. The key property of these
bounds is that they depend on the dimension p of Gaussian random vectors only
through log p, and on the max norm of the difference between the covariance matrices
of the vectors. These results extend and complement the work of [7] that derived an
explicit Sudakov–Fernique type bound on the difference of expectations of maxima
of Gaussian random vectors. See also [1], Chapter 2. As an application, we establish
a conditional multiplier central limit theorem for maxima of sums of independent
random vectors where the dimension of the vectors is possibly much larger than the
sample size. In all these results, we allow for arbitrary covariance structures between
the coordinates in random vectors, which is plausible especially in applications to
high-dimensional statistics.We stress that the derivation of bounds on theKolmogorov
distance is by no means trivial and relies on a new anti-concentration inequality for
maxima of Gaussian random vectors, which is another main result of this paper (see
Comment 4 for what anti-concentration inequalities here precisely refer to and how
they differ from the concentration inequalities). These anti-concentration bounds are
non-trivial in the following sense: (i) they apply to every dimension p and they are
dimension-free in the sense that the bounds depend on the dimension p only through the
expectation of the maximum of the Gaussian random vector, thereby admitting direct
extensions to the infinite dimensional case, namely, separable Gaussian processes
(see [10] for this extension and applications to empirical processes). This dimension-
free nature is parallel to the Gaussian concentration inequality, which states that the
supremum concentrates around the expected supremum. (ii) They allow for arbitrary
covariance structures between the coordinates in Gaussian random vectors, and (iii)
they are sharp in the sense that there is an example for which the bound is tight up to
a dimension independent constant. We note that these anti-concentration bounds are
sharper than those that result from application of the universal reverse isoperimetric
inequality of [2] (see also [3], pp. 386–367).

Comparison inequalities for Gaussian random vectors play an important role in
probability theory, especially in empirical process and extreme value theories. We
refer the reader to [7,12,14,16–18,24], and [30] for standard references on this topic.
The anti-concentration phenomenon has attracted considerable interest in the context
of random matrix theory and the Littlewood–Offord problem in number theory. See,
for example, [22,23], and [29] who remarked that concentration is better understood
than anti-concentration. Those papers were concerned with the anti-concentration in
the Euclidean norm for sums of independent random vectors, and the topic and the
proof technique here are substantially different from theirs.
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Either of the comparison or anti-concentration bounds derived in the paper have
many immediate statistical applications, especially in the context of high-dimensional
statistical inference, where the dimension p of vectors of interest is much larger than
the sample size (see [5] for a textbook treatment of the recent developments of high-
dimensional statistics). In particular, the results established here are helpful in deriving
an invariance principle for sums of high-dimensional random vectors, and also in
establishing the validity of the multiplier bootstrap for inference in practice. We refer
the reader to our companion paper [9], where the results established here are applied
in several important statistical problems, particularly the analysis of Dantzig selector
of [6] in the non-Gaussian setting.

The proof strategy for our anti-concentration inequalities is to directly bound the
density function of the maximum of a Gaussian random vector. The paper by [20] is
concerned with bounding such a density (see [20], Proposition 3.12) but under posi-
tive covariances restriction. This is related to but different from our anti-concentration
bounds. The crucial assumption in their Proposition 3.12 is positivity of all the covari-
ances between the coordinates in the Gaussian random vector, which does not hold
in our targeted applications in high-dimensional statistics, for example, analysis of
Danzig selector. Moreover, their upper bound on the density depends on the inverse of
the lower bound on the covariances—and hence, for example, if there are two indepen-
dent coordinates in theGaussian randomvector, then the upper bound becomes infinite.
Our anti-concentration bounds do not require such positivity (or other) assumptions
on covariances and hence are not implied by the results of [20]. Another method for
deriving reverse isoperimetric inequalities is to use geometric results of [19], as shown
by [13], which leads to dimension-dependent anti-concentration inequalities, which
are essentially different from ours. Moreover, our density-bounding proof technique
is substantially different from that of [20] based on Malliavin calculus or [19] based
on geometric arguments.

The rest of the paper is organized as follows. In Sect. 2, we present compari-
son bounds for Gaussian random vectors and its application, namely the conditional
multiplier central limit theorem. In Sect. 3, we present anti-concentration bounds for
maxima of Gaussian random vectors. In Sects. 4 and 5, we give proofs of the theorems
in Sects. 2 and 3. The Appendix contains a proof of a technical lemma.

Notation. Denote by (�,F ,P) the underlying probability space. For a, b ∈ R, we
write a+ = max{0, a} and a ∨ b = max{a, b}. Let 1(·) denote the indicator function.
The transpose of a vector z is denoted by zT . For a function g : R → R, we use the
notation ‖g‖∞ = supz∈R |g(z)|. Let φ(·) and �(·) denote the density and distribution
functions of the standard Gaussian distribution, respectively: φ(x) = (1/

√
2π)e−x2/2

and �(x) = ∫ x
−∞ φ(t)dt .

2 Comparison bounds and multiplier bootstrap

2.1 Comparison bounds

Let X = (X1, . . . , X p)
T and Y = (Y1, . . . , Yp)

T be centered Gaussian random
vectors in R

p with positive semi-definite covariance matrices �X = (σ X
jk)1≤ j,k≤p
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and �Y = (σ Y
jk)1≤ j,k≤p, respectively. The purpose of this section is to give error

bounds on the difference of the expectations of smooth functions and the distribution
functions of

max
1≤ j≤p

X j and max
1≤ j≤p

Y j

in terms of p,

� := max
1≤ j,k≤p

|σ X
jk − σ Y

jk |, and ap := E

[

max
1≤ j≤p

(Y j/σ
Y
j j )

]

.

The problem of comparing distributions of maxima is of intrinsic difficulty since
the maximum function z = (z1, . . . , z p)

T 	→ max1≤ j≤p z j is non-differentiable. To
circumvent the problem, we use a smooth approximation of the maximum function.
For z = (z1, . . . , z p)

T ∈ R
p, consider the function:

Fβ(z) := β−1 log

⎛

⎝
p∑

j=1

exp(βz j )

⎞

⎠ ,

which approximates the maximum function, where β > 0 is the smoothing parame-
ter that controls the level of approximation (we call this function the “smooth max
function”). Indeed, an elementary calculation shows that for every z ∈ R

p,

0 ≤ Fβ(z) − max
1≤ j≤p

z j ≤ β−1 log p. (1)

This smooth max function arises in the definition of “free energy” in spin glasses. See,
for example, [21,27]. Here is the first theorem of this section.

Theorem 1 (Comparison bounds for smooth functions) For every g ∈ C2(R) with
‖g′‖∞ ∨ ‖g′′‖∞ < ∞ and every β > 0,

E[g(Fβ(X)) − g(Fβ(Y ))] ≤ (‖g′′‖∞/2 + β‖g′‖∞)�,

and hence
∣
∣
∣
∣E

[

g

(

max
1≤ j≤p

X j

)

−g

(

max
1≤ j≤p

Y j

)]∣∣
∣
∣≤(‖g′′‖∞/2+β‖g′‖∞)�+2β−1‖g′‖∞logp.

Proof See Sect. 4. ��
Comment 1 Minimizing the second bound with respect to β > 0, we have
∣
∣
∣
∣E

[

g

(

max
1≤ j≤p

X j

)

− g

(

max
1≤ j≤p

Y j

)]∣∣
∣
∣ ≤ ‖g′′‖∞�/2 + 2‖g′‖∞

√
2� log p.

This result extends the work of [7], which derived the following Sudakov–Fernique
type bound on the expectation of the difference between two Gaussian maxima:

∣
∣
∣
∣E

[

max
1≤ j≤p

X j − max
1≤ j≤p

Y j

]∣∣
∣
∣ ≤ 2

√
2� log p.
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Theorem 1 is not applicable to functions of the form g(z) = 1(z ≤ x) and hence
does not directly lead to a bound on the Kolmogorov distance between max1≤ j≤p X j

and max1≤ j≤p Y j (recall that the Kolmogorov distance between (the distributions) of
two real valued random variables ξ and η is defined by supx∈R |P(ξ ≤ x) − P(η ≤
x)|). Nevertheless, we have the following bounds on the Kolmogorov distance. Recall
ap = E[max1≤ j≤p(Y j/σ

Y
j j )].

Theorem 2 (Comparison of distributions) Suppose that p ≥ 2 and σ Y
j j > 0 for all

1 ≤ j ≤ p. Then

sup
x∈R

∣
∣
∣
∣P

(

max
1≤ j≤p

X j ≤ x

)

− P

(

max
1≤ j≤p

Y j ≤ x

)∣∣
∣
∣

≤ C�1/3
{
1 ∨ a2

p ∨ log(1/�)
}1/3

log1/3 p, (2)

where C > 0 depends only on min1≤ j≤p σ Y
j j and max1≤ j≤p σ Y

j j (the right side is

understood to be 0 when � = 0). Moreover, in the worst case, ap ≤ √
2 log p, so that

sup
x∈R

∣
∣
∣
∣P

(

max
1≤ j≤p

X j ≤ x

)

− P

(

max
1≤ j≤p

Y j ≤ x

)∣∣
∣
∣≤C ′�1/3 {1∨log(p/�)}2/3 ,

where as before C ′ > 0 depends only on min1≤ j≤p σ Y
j j and max1≤ j≤p σ Y

j j .

Proof See Sect. 4. ��
The first bound (2) is generally sharper than the latter. To see this, consider the

simple case where ap = O(1) as p → ∞, which would happen, for example, when
Y1, . . . , Yp come from discretization of a single continuous Gaussian process. Then
the right side on (2) is o(1) if �(log p) log log p = o(1), while the second bound
requires �(log p)2 = o(1).

Comment 2 (On the proof strategy) Bounding the Kolmogorov distance between
max1≤ j≤p X j and max1≤ j≤p Y j is not immediate from Theorem 1 and this step relies
on the anti-concentration inequality for the maximum of a Gaussian random vec-
tor, which we will study in Sect. 3. More formally, by smoothing the indicator and
maximum functions, we obtain from Theorem 1 a bound of the following form:

inf
β,δ>0

{

L
(

max
1≤ j≤p

Y j , β
−1 log p + δ

)

+ C(δ−2 + βδ−1)�

}

,

where L(max1≤ j≤p Y j , ε) is the Lévy concentration function for max1≤ j≤p Y j (see
Definition 1 inSect. 3 for the formal definition), andβ, δ > 0 are smoothing parameters
(see Eqs. (10) and (11) in the proof of Theorem 2 given in Sect. 4 for the derivation of
the above bound). The bound (2) then follows from bounding the Lévy concentration
function by using the anti-concentration inequality derived in Sect. 3, and optimizing
the bound with respect to β, δ.
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The proof of Theorem 2 is substantially different from the (“textbook”) proof of
classical Slepian’s inequality. The simplest form of Slepian’s inequality states that

P

(

max
1≤ j≤p

X j ≤ x

)

≤ P

(

max
1≤ j≤p

Y j ≤ x

)

, ∀x ∈ R,

whenever σ X
j j = σ Y

j j and σ X
jk ≤ σ Y

jk for all 1 ≤ j, k ≤ p. This inequality is immedi-
ately deduced from the following expression:

P

(

max
1≤ j≤p

X j ≤ x

)

− P

(

max
1≤ j≤p

Y j ≤ x

)

=
∑

1≤ j<k≤p

(σ X
jk − σ Y

jk)

1∫

0

⎧
⎨

⎩

x∫

−∞
· · ·

x∫

−∞

∂2 ft (z)

∂z j∂zk
dz

⎫
⎬

⎭
dt, (3)

where we assume �X and �Y are non-singular, and σ X
j j = σ Y

j j , 1 ≤ ∀ j ≤ p. Here

ft denotes the density function of N (0, t�X + (1 − t)�Y ). See [14], p. 82, for this
expression. The expression (3) is of importance and indeed a source ofmany interesting
probabilistic results (see, for example, [18,30] for recent related works). It is not clear
(or at least non-trivial), however, whether a bound similar in nature to Theorem 2 can
be deduced from the expression (3) when there is no restriction on the covariance
matrices except for the condition that σ X

j j = σ Y
j j , 1 ≤ ∀ j ≤ p, and here we take the

different route.

The key features of Theorem 2 are: (i) the bound on the Kolmogorov distance
between the maxima of Gaussian random vectors in R

p depends on the dimension p
only through log p and the maximum difference of the covariance matrices �, and (ii)
it allows for arbitrary covariance matrices for X and Y (except for the nondegeneracy
condition that σ Y

j j > 0, 1 ≤ ∀ j ≤ p). These features have an important implication
to statistical applications, as discussed below.

2.2 Conditional multiplier central limit theorem

Consider the following problem. Suppose that n independent centered random vectors
in R

p of observations Z1, . . . , Zn are given. Here Z1, . . . , Zn are generally non-
Gaussian, and the dimension p is allowed to increase with n (that is, the case where
p = pn → ∞ as n → ∞ is allowed). We suppress the possible dependence of p on
n for the notational convenience. Suppose that each Zi has a finite covariance matrix
E[Zi Z T

i ]. Consider the following normalized sum:

Sn := (Sn,1, . . . , Sn,p)
T = 1√

n

n∑

i=1

Zi .

The problem here is to approximate the distribution of max1≤ j≤p Sn, j .
Statistics of this form arise frequently in modern statistical applications. The exact

distribution of max1≤ j≤p Sn, j is generally unknown. An intuitive idea to approximate
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the distribution ofmax1≤ j≤p Sn, j is to use theGaussian approximation. LetV1, . . . , Vn

be independent Gaussian random vectors in R
p such that Vi ∼ N (0,E[Zi Z T

i ]), and
define

Tn := (Tn,1, . . . , Tn,p) := 1√
n

n∑

i=1

Vi ∼ N

(

0, n−1
n∑

i=1

E[Zi Z T
i ]
)

.

It is expected that the distribution of max1≤ j≤p Tn, j is close to that of max1≤ j≤p Sn, j

in the following sense:

sup
x∈R

∣
∣
∣
∣P

(

max
1≤ j≤p

Sn, j ≤ x

)

− P

(

max
1≤ j≤p

Tn, j ≤ x

)∣∣
∣
∣ → 0, n → ∞. (4)

When p is fixed, (4) will follow from the classical Lindeberg–Feller central limit
theorem, subject to the Lindeberg conditions. The recent paper by [9] established con-
ditions under which this Gaussian approximation (4) holds even when p is comparable
or much larger than n. For example, [9] proved that if c1 ≤ n−1∑n

i=1 E[Z2
i j ] ≤ C1

and E[exp(|Zi j |/C1)] ≤ 2 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p for some 0 < c1 < C1,
then (4) holds as long as log p = o(n1/7).

The Gaussian approximation (4) is in itself an important step, but in the general
case where the covariance matrix n−1∑n

i=1 E[Zi Z T
i ] is unknown, it is not directly

applicable for purposes of statistical inference. In such cases, the following multiplier
bootstrap procedure will be useful. Let η1, . . . , ηn be independent standard Gaussian
random variables independent of Zn

1 := {Z1, . . . , Zn}. Consider the following ran-
domized sum:

Sη
n :=

(
Sη

n,1, . . . , Sη
n,p

)T := 1√
n

n∑

i=1

ηi Zi .

Since conditional on Zn
1 ,

Sη
n ∼ N

(

0, n−1
n∑

i=1
Zi Z T

i

)

,

it is natural to expect that the conditional distribution of max1≤ j≤p Sη
n, j is “close” to

the distribution of max1≤ j≤p Tn, j and hence that of max1≤ j≤p Sn, j . Note here that
the conditional distribution of Sη

n is completely known, which makes this distribu-
tion useful for purposes of statistical inference. The following proposition makes this
intuition rigorous.

Proposition 1 (Conditional multiplier central limit theorem) Work with the setup as
described above. Suppose that p ≥ 2 and there are some constants 0 < c1 < C1
such that c1 ≤ n−1∑n

i=1 E[Z2
i j ] ≤ C1 for all 1 ≤ j ≤ p. Moreover, suppose that

�̂ := max1≤ j,k≤p |n−1∑n
i=1(Zi j Zik − E[Zi j Zik])| obeys the following conditions:

as n → ∞,

�̂

(

E

[

max
1≤ j≤p

Tn, j

])2

log p = oP(1), �̂(log p)(1 ∨ log log p) = oP(1). (5)
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Then we have

sup
x∈R

∣
∣
∣
∣P

(

max
1≤ j≤p

Sη
n, j ≤ x | Zn

1

)

− P

(

max
1≤ j≤p

Tn, j ≤ x

)∣∣
∣
∣

P→ 0, as n → ∞. (6)

Here recall that p is allowed to increase with n.

Proof Follows immediately from Theorem 2. ��
We call this result a “conditional multiplier central limit theorem,” where the ter-

minology follows that in empirical process theory. See [28], Chapter 2.9. The notable
features of this proposition, which inherit from the features of Theorem 2 discussed
above, are: (i) (6) can hold even when p is much larger than n, and (ii) it allows
for arbitrary covariance matrices for Zi (except for the mild scaling condition that
c1 ≤ n−1∑n

i=1 E[Z2
i j ] ≤ C1). The second point is clearly desirable in statistical

applications as the information on the true covariance structure is generally (but not
always) unavailable. For the first point, we have the following estimate on E[�̂].
Lemma 1 Let p ≥ 2. There exists a universal constant C > 0 such that

E[�̂]≤C

⎡

⎣ max
1≤ j≤p

(

n−1
n∑

i=1

E[Z4
i j ]
)1/2√

log p

n
+
(

E

[

max
1≤i≤n

max
1≤ j≤p

Z4
i j

])1/2 log p

n

⎤

⎦ .

Proof See the Appendix. ��
Hence with help of Lemma 2.2.2 in [28], we can find various primitive conditions

under which (5) holds.

Example 1 Consider the following examples. Here for the sake of simplicity, we use
the worst case bound E[max1≤ j≤p Tn, j ] ≤ √

2C1 log p, so that conditions (5) reduce
to �̂ = oP((log p)−2).

Case a Suppose that E[exp(|Zi j |/C1)] ≤ 2 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p for
some C1 > 0. In this case, it is not difficult to verify that �̂ = oP((log p)−2) as soon
as log p = o(n1/5).

Case b Another type of Zi j which arises in regression applications is of the form
Zi j = εi xi j where εi are stochastic with E[εi ] = 0 and max1≤i≤n E[|εi |4q ] = O(1)
for some q ≥ 1, and xi j are non-stochastic (typically, εi are “errors” and xi j are
“regressors”). Suppose that xi j are normalized in such a way that n−1∑n

i=1 x2i j = 1,
and there are bounds Bn ≥ 1 such that max1≤i≤n max1≤ j≤p |xi j | ≤ Bn , where we
allow Bn → ∞. In this case, �̂ = oP((log p)−2) as soon as

max{B2
n (log p)5, B4q/(2q−1)

n (log p)6q/(2q−1)} = o(n),

since max1≤ j≤p(n−1∑n
i=1 E[(εi xi j )

4]) ≤ B2
n max1≤i≤n E[ε4i ] = O(B2

n ) and
E[max1≤i≤n max1≤ j≤p(εi xi j )

4] ≤ B4
nE[max1≤i≤n ε4i ] = O(n1/q B4

n ).
Importantly, in these examples, for (6) to hold, p can increase exponentially in

some fractional power of n.
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3 Anti-concentration bounds

The following theorem provides bounds on the Lévy concentration function of the
maximum of a Gaussian random vector in R

p, where the terminology is borrowed
from [23].

Definition 1 ([23], Definition 3.1) The Lévy concentration function of a real valued
random variable ξ is defined for ε > 0 as

L(ξ, ε) = sup
x∈R

P(|ξ − x | ≤ ε).

Theorem 3 (Anti-concentration) Let (X1, . . . , X p)
T be a centered Gaussian ran-

dom vector in R
p with σ 2

j := E[X2
j ] > 0 for all 1 ≤ j ≤ p. Moreover, let

σ := min1≤ j≤p σ j , σ := max1≤ j≤p σ j , and ap := E[max1≤ j≤p(X j/σ j )].
(i) If the variances are all equal, namely σ = σ = σ , then for every ε > 0,

L
(

max
1≤ j≤p

X j , ε

)

≤ 4ε(ap + 1)/σ.

(ii) If the variances are not equal, namely σ < σ , then for every ε > 0,

L
(

max
1≤ j≤p

X j , ε

)

≤ Cε{ap +√
1 ∨ log(σ/ε)},

where C > 0 depends only on σ and σ .

Since X j/σ j ∼ N (0, 1), by a standard calculation, we have ap ≤ √
2 log p in the

worst case (see, for example, [27], Proposition 1.1.3), so that the following simpler
corollary follows immediately from Theorem 3.

Corollary 1 Let (X1, . . . , X p)
T be a centered Gaussian random vector in R

p with
σ 2

j := E[X2
j ] > 0 for all 1 ≤ j ≤ p. Let σ := min1≤ j≤p σ j and σ := max1≤ j≤p σ j .

Then for every ε > 0,

L
(

max
1≤ j≤p

X j , ε

)

≤ Cε
√
1 ∨ log(p/ε),

where C > 0 depends only on σ and σ . When σ j are all equal, log(p/ε) on the right
side can be replaced by log p.

Comment 3 (Anti-concentration vs. small ball probabilities) The problem of bound-
ing the Lévy concentration functionL(max1≤ j≤p X j , ε) is qualitatively different from
the problem of bounding P(max1≤ j≤p |X j | ≤ x). For a survey on the latter problem,
called the “small ball problem”, we refer the reader to [17].

Comment 4 (Concentration vs. anti-concentration) Concentration inequalities refer
to inequalities bounding P(|ξ−x | > ε) for a randomvariable ξ (typically x is themean
or median of ξ ). See the monograph [15] for a study of the concentration of measure
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phenomenon. Anti-concentration inequalities in turn refer to reverse inequalities, that
is, inequalities bounding P(|ξ − x | ≤ ε). Theorem 3 provides anti-concentration
inequalities for max1≤ j≤p X j . [29] remarked that “concentration is better understood
than anti-concentration”. In the present case, the Gaussian concentration inequality
(see [15], Theorem 7.1) states that

P

(∣∣
∣
∣ max
1≤ j≤p

X j − E

[

max
1≤ j≤p

X j

]∣∣
∣
∣ ≥ r

)

≤ 2e−r2/(2σ 2), r > 0,

where the mean can be replace by the median. This inequality is well known and dates
back to [4] and [26]. To the best of our knowledge, however, the reverse inequalities
in Theorem 3 were not known and are new.

Comment 5 (Anti-concentration for maximum of moduli, max1≤ j≤p |X j |) Versions
ofTheorem3andCorollary 1 continue to hold formax1≤ j≤p |X j |. That is, for example,
when σ j are all equal (σ j = σ ), L(max1≤ j≤p |X j |, ε) ≤ 4(a′

p + 1)/σ , where a′
p :=

E[max1≤ j≤p |X j |/σ ]. To see this, observe that max1≤ j≤p |X j | = max1≤ j≤2p X ′
j

where X ′
j = X j for j = 1, . . . , p and X ′

p+ j = −X j for j = 1, . . . , p. Hence we

may apply Theorem 3 to (X ′
1, . . . , X ′

2p)
T to obtain the desired conclusion.

Comment 6 (A sketch of the proof of Theorem 3) For the reader’s convenience,
we provide a sketch of the proof of Theorem 3. We focus here on the simple case
where all the variances are equal to one (σ1 = · · · = σp = 1). Then the distribution
of Z = max1≤ j≤p X j is absolutely continuous and its density can be written as
φ(z)G(z) where the map z 	→ G(z) is non-decreasing. Consequently, it is then not
difficult to see that G(z) ≤ P(Z > z)/{1−�(z)} ≤ 2(z ∨1)e−(z−ap)2+/2/φ(z), where
the second inequality follows from Mill’s inequality combined with the Gaussian
concentration inequality. Hence the density of Z is bounded by 2(z ∨ 1)e−(z−ap)2+/2,
which immediately leads to the bound L(max1≤ j≤p X j , ε) ≤ 4(ap + 1)ε.

In a trivial example where p = 1, it is immediate to see that P(|X1 − x | ≤ ε) ≤
ε

√
2/(πσ 2

1 ). A non-trivial case is the situation where p → ∞. In such a case, it
is typically not known whether max1≤ j≤p X j has a limiting distribution as p → ∞,
even after normalization (recall that except for σ > 0, we allow for general covariance
structures between X1, . . . , X p), and therefore it is not trivial at all whether, for every
sequence ε = εp → 0 (or at some rate), L(max1≤ j≤p X j , ε) → 0 or how fast
ε = εp → 0 should be to guarantee that L(max1≤ j≤p X j , ε) → 0. Theorem 3
answers this question with explicit, non-asymptotic bounds.

Importantly, the bounds in Theorem 3 are dimension-free in the sense that, similar
to theGaussian concentration inequality, they depend on the dimension p only through
ap—the expectation of the maximum of the (normalized) Gaussian random vector.
Hence Theorem 3 admits direct extensions to the infinite dimensional case, namely
separable Gaussian processes, as long as the corresponding expectation is finite. See
our companion paper [10] for formal treatments and applications of this extension.

The presence of ap on the bounds is essential and can not be removed in general,
as the following example suggests. This shows that there does not exist a substantially
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sharper estimate of the universal bound of the concentration function than that given
in Theorem 3. Potentially, there could be refinements but they would have to rely
on the particular (hence non-universal) features of the covariance structure between
X1, . . . , X p.

Example 2 (Partial converse of Theorem 3) Let X1, . . . , X p be independent standard
Gaussian random variables. By Theorem 1.5.3 of [14], as p → ∞,

bp

(

max
1≤ j≤p

X j − dp

)
d→ G(0, 1), (7)

where

bp := √
2 log p, dp := bp − log(4π) + log log p

2bp
,

and G(0, 1) denotes the standard Gumbel distribution, that is, the distribution having
the density g(x) = e−x e−e−x

for x ∈ R. In fact, we can show that the density of
bp(max1≤ j≤p X j − dp) converges to that of G(0, 1) locally uniformly. To see this,
we begin with noting that the density of bp(max1≤ j≤p X j − dp) is given by

gp(x) = p

bp
φ(dp + b−1

p x)[�(dp + b−1
p x)]p−1.

Pick any x ∈ R. Since, by the weak convergence result (7),

[�(dp + b−1
p x)]p = P

(

bp

(

max
1≤ j≤p

X j − dp

)

≤ x

)

→ e−e−x
, p → ∞,

we have [�(dp + b−1
p x)]p−1 → e−e−x

. Hence it remains to show that

p

bp
φ(dp + b−1

p x) → e−x .

Taking the logarithm of the left side yields

log p − log bp − log(
√
2π) − (dp + b−1

p x)2/2. (8)

Expanding (dp + b−1
p x)2 gives that

d2
p + 2dpb−1

p x + b−2
p x2 = b2p − log log p − log(4π) + 2x + o(1), p → ∞,

by which we have (8) = −x + o(1). This shows that gp(x) → g(x) for all x ∈ R.
Moreover, this convergence takes place locally uniformly in x , that is, for every K > 0,
gp(x) → g(x) uniformly in x ∈ [−K , K ].

On the other hand, the density of max1≤ j≤p X j is given by f p(x) = pφ(x)

[�(x)]p−1. By this form, for every K > 0, there exist a constant c > 0 and a positive
integer p0 depending only on K such that for p ≥ p0,
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inf
x∈[dp−K b−1

p ,dp+K b−1
p ]

b−1
p f p(x) = inf

x∈[−K ,K ] gp(x) ≥ inf
x∈[−K ,K ] g(x) + o(1) ≥ c,

which shows that for p ≥ p0,

f p(x) ≥ cbp, ∀x ∈ [dp − K b−1
p , dp + K b−1

p ].

Therefore, we conclude that for p ≥ p0,

P

(∣∣
∣
∣ max
1≤ j≤p

X j − dp

∣
∣
∣
∣ ≤ ε

)

=
dp+ε∫

dp−ε

f p(x)dx ≥ 2cεbp, ∀ε ∈ [0, K b−1
p ].

By the Gaussian maximal inequality and Lemma 2.3.15 of [11], we have

√
log p/12 ≤ E

[

max
1≤ j≤p

X j

]

≤ √
2 log p.

Hence, by the previous result, for every K ′ > 0, there exist a constant c′ > 0 and a
positive integer p′

0 depending only on K ′ such that for p ≥ p′
0, ap ≥ 1 and

L
(

max
1≤ j≤p

X j , ε

)

≥ P

(∣∣
∣
∣ max
1≤ j≤p

X j − dp

∣
∣
∣
∣ ≤ ε

)

≥ c′εap, ∀ε ∈ [0, K ′a−1
p ].

��

4 Proofs for Section 2

4.1 Proof of Theorem 1

Here for a smooth function f : Rp → R, we write ∂ j f (z) = ∂ f (z)/∂z j for z =
(z1, . . . , z p)

T . We shall use the following version of Stein’s identity.

Lemma 2 (Stein’s identity)Let W = (W1, . . . , Wp)
T be a centered Gaussian random

vector in R
p. Let f : Rp → R be a C1-function such that E[|∂ j f (W )|] < ∞ for all

1 ≤ j ≤ p. Then for every 1 ≤ j ≤ p,

E[W j f (W )] =
p∑

k=1

E[W j Wk]E[∂k f (W )].

Proof of Lemma 2 See Section A.6 of [27]; also [8] and [25].

We will use the following properties of the smooth max function.
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Lemma 3 For every 1 ≤ j, k ≤ p,

∂ j Fβ(z) = π j (z), ∂ j∂k Fβ(z) = βw jk(z),

where

π j (z) := eβz j /

p∑

m=1

eβzm , w jk(z) := 1( j = k)π j (z) − π j (z)πk(z).

Moreover,

π j (z) ≥ 0,
p∑

j=1

π j (z) = 1,
p∑

j,k=1

|w jk(z)| ≤ 2.

Proof of Lemma 3 The first property was noted in [7]. The other properties follow
from a direct calculation. ��
Lemma 4 Let m := g ◦ Fβ with g ∈ C2(R). Then for every 1 ≤ j, k ≤ p,

∂ j∂km(z) = (g′′ ◦ Fβ)(z)π j (z)πk(z) + β(g′ ◦ Fβ)(z)w jk(z),

where π j and w jk are defined in Lemma 3.

Proof of lemma 4 The proof follows from a direct calculation. ��
Proof of Theorem 1 Without loss of generality, we may assume that X and Y are
independent, so that E[X j Yk] = 0 for all 1 ≤ j, k ≤ p. Consider the following
Slepian interpolation between X and Y :

Z(t) := √
t X + √

1 − tY, t ∈ [0, 1].

Let m := g ◦ Fβ and �(t) := E[m(Z(t))]. Then

|E[m(X)] − E[m(Y )]| = |�(1) − �(0)| =
∣
∣
∣
∣
∣
∣

1∫

0

� ′(t)dt

∣
∣
∣
∣
∣
∣
.

Here we have

� ′(t) = 1

2

p∑

j=1

E[∂ j m(Z(t))(t−1/2X j − (1 − t)−1/2Y j )]

= 1

2

p∑

j=1

p∑

k=1

(σ X
jk − σ Y

jk)E[∂ j∂km(Z(t))],

where the second equality follows from applying Lemma 2 to W = (t−1/2X j − (1−
t)−1/2Y j , Z(t)T )T and f (W ) = ∂ j m(Z(t)). Hence
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∣
∣
∣
∣
∣
∣

1∫

0

� ′(t)dt

∣
∣
∣
∣
∣
∣
≤ 1

2

p∑

j,k=1

|σ X
jk − σ Y

jk |
∣
∣
∣
∣
∣
∣

1∫

0

E[∂ j∂km(Z(t))]dt

∣
∣
∣
∣
∣
∣

≤ 1

2
max

1≤ j,k≤p
|σ X

jk − σ Y
jk |

1∫

0

p∑

j,k=1

∣
∣E[∂ j∂km(Z(t))]∣∣ dt

= �

2

1∫

0

p∑

j,k=1

∣
∣E[∂ j∂km(Z(t))]∣∣ dt.

By Lemmas 3 and 4,

p∑

j,k=1

∣
∣∂ j∂km(Z(t))

∣
∣ ≤ ∣

∣(g′′ ◦ Fβ)(Z(t))
∣
∣+ 2β

∣
∣(g′ ◦ Fβ)(Z(t))

∣
∣ .

Therefore, we have

∣
∣E[g(Fβ(X)) − g(Fβ(Y ))]∣∣

≤ � ×
⎧
⎨

⎩
1

2

1∫

0

E[|(g′′ ◦ Fβ)(Z(t))|]dt + β

1∫

0

E[|(g′ ◦ Fβ)(Z(t))|]dt

⎫
⎬

⎭

≤ �(‖g′′‖∞/2 + β‖g′‖∞),

which leads to the first assertion. The second assertion follows from the inequality (1).
This completes the proof. ��

4.2 Proof of Theorem 2

The final assertion follows from the inequality ap ≤ √
2 log p (see, for example,

[27], Proposition 1.1.3). Hence we prove (2). We first note that we may assume that
0 < � < 1 since otherwise the proof is trivial (take C ≥ 2 in (2)). In what follows, let
C > 0 be a generic constant that depends only on min1≤ j≤p σ Y

j j and max1≤ j≤p σ Y
j j ,

and its value may change from place to place. For β > 0, define ep,β := β−1 log p.
Consider and fix a C2-function g0 : R → [0, 1] such that g0(t) = 1 for t ≤ 0 and
g0(t) = 0 for t ≥ 1. For example, we may take

g0(t) =

⎧
⎪⎨

⎪⎩

0, t ≥ 1,

30
∫ 1

t s2(1 − s)2ds, 0 < t < 1,

1, t ≤ 0.
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For given x ∈ R, β > 0 and δ > 0, define gx,β,δ(t) = g0(δ−1(t − x − ep,β)). For this
function gx,β,δ, ‖g′

x,β,δ‖∞ = δ−1‖g′
0‖∞ and ‖g′′

x,β,δ‖∞ = δ−2‖g′′
0‖∞. Moreover,

1(t ≤ x + ep,β) ≤ gx,β,δ(t) ≤ 1(t ≤ x + ep,β + δ), ∀t ∈ R. (9)

For arbitrary x ∈ R, β > 0 and δ > 0, observe that

P

(

max
1≤ j≤p

X j ≤ x

)

≤ P(Fβ(X) ≤ x + ep,β) ≤ E[gx,β,δ(Fβ(X))]
≤ E[gx,β,δ(Fβ(Y ))] + C(δ−2 + βδ−1)�

≤ P(Fβ(Y ) ≤ x + ep,β + δ) + C(δ−2 + βδ−1)�

≤ P

(

max
1≤ j≤p

Y j ≤ x + ep,β + δ

)

+ C(δ−2 + βδ−1)�, (10)

where the first inequality follows from the inequality (1), the second from the inequal-
ity (9), the third from Theorem 1, the fourth from the inequality (9), and the last
from the inequality (1). We wish to compare P(max1≤ j≤p Y j ≤ x + ep,β + δ) with
P(max1≤ j≤p Y j ≤ x), and this is where the anti-concentration inequality plays its
role. By Theorem 3, we have

P

(

max
1≤ j≤p

Y j ≤ x + ep,β + δ

)

− P

(

max
1≤ j≤p

Y j ≤ x

)

= P

(

x < max
1≤ j≤p

Y j ≤ x + ep,β + δ

)

≤ L
(

max
1≤ j≤p

Y j , ep,β + δ

)

(11)

≤ C(ep,β + δ)

√
1 ∨ a2

p ∨ log{1/(ep,β + δ)} ≤ C(ep,β + δ)

√
1 ∨ a2

p ∨ log(1/δ).

Therefore,

P

(

max
1≤ j≤p

X j ≤ x

)

− P

(

max
1≤ j≤p

Y j ≤ x

)

≤ C
{
(δ−2 + βδ−1)� + (ep,β + δ)

√
1 ∨ a2

p ∨ log(1/δ)
}

. (12)

Take a = ap ∨ log1/2(1/�), and choose β and δ in such a way that

β = δ−1 log p and δ = �1/3(1 ∨ a)−1/3(2 log p)1/3.

Recall that p ≥ 2 and 0 < � < 1. Observe that (δ−2 + βδ−1)� ≤ C�1/3(1 ∨
a)2/3 log1/3 p, (ep,β +δ)(1∨ap) ≤ C�1/3(1∨a)2/3 log1/3 p, and since δ ≥ �1/3(1∨
a)−1/3, we have log(1/δ) ≤ (1/3) log((1 ∨ a)/�). Hence the right side on (12) is
bounded by C�1/3{(1 ∨ a)2/3 log1/3 p + (1 ∨ a)−1/3(log1/3 p) log1/2((1 ∨ a)/�)}.
In addition, (1 ∨ a)−1 log1/2(1 ∨ a) is bounded by a universal constant, so that
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right side of (12)

≤ C�1/3{(1 ∨ a)2/3 log1/3 p + (1 ∨ a)−1/3(log1/3 p) log1/2(1/�)}.

The second term inside the bracket is bounded by (log1/3 p) log1/3(1/�) as
(1 ∨ a)−1/3 ≤ (log(1/�))−1/6, and first term is bound by (1 ∨ ap)

2/3 log1/3 p +
(log1/3 p) log1/3(1/�). Adjusting the constant C , the right side on the above dis-
played equation is bounded by C�1/3{1 ∨ a2

p ∨ log(1/�)}1/3 log1/3 p.
For the opposite direction, observe that

P

(

max
1≤ j≤p

X j ≤ x

)

≥ P(Fβ(X) ≤ x) ≥ E[gx−ep,β−δ,β,δ(Fβ(X))]
≥ E[gx−ep,β−δ,β,δ(Fβ(Y ))] − C(δ−2 + βδ−1)�

≥ P(Fβ(Y ) ≤ x − δ) − C(δ−2 + βδ−1)�

≥ P

(

max
1≤ j≤p

Y j ≤ x − ep,β − δ

)

− C(δ−2 + βδ−1)�.

The rest of the proof is similar and hence omitted. ��

5 Proof of Theorem 3

The proof of Theorem 3 uses some properties of Gaussian measures. We begin with
preparing technical tools. The following two facts were essentially noted in [31,32]
(note: [31] and [32] did not contain a proof of Lemma 5, which we find non-trivial).
For the sake of completeness, we give their proofs after the proof of Theorem 3.

Lemma 5 Let (W1, . . . , Wp)
T be a (not necessarily centered) Gaussian random vec-

tor in R
p with Var(W j ) = 1 for all 1 ≤ j ≤ p. Suppose that Corr(W j , Wk) < 1

whenever j �= k. Then the distribution of max1≤ j≤p W j is absolutely continuous with
respect to the Lebesgue measure and a version of the density is given by

f (x) = φ(x)

p∑

j=1

eE[W j ]x−(E[W j ])2/2 · P (Wk ≤ x,∀k �= j | W j = x
)
. (13)

Lemma 6 Let (W0, W1, . . . , Wp)
T be a (not necessarily centered) Gaussian random

vector with Var(W j ) = 1 for all 0 ≤ j ≤ p. Suppose that E[W0] ≥ 0. Then the map

x 	→ eE[W0]x−(E[W0])2/2 · P(W j ≤ x, 1 ≤ ∀ j ≤ p | W0 = x) (14)

is non-decreasing on R.

Let us also recall (a version of) the Gaussian concentration (more precisely, devia-
tion) inequality. See, for example, [15], Theorem 7.1, for its proof.

Lemma 7 Let (X1, . . . , X p)
T be a centered Gaussian random vector in R

p with
max1≤ j≤p E[X2

j ] ≤ σ 2 for some σ 2 > 0. Then for every r > 0,
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P

(

max
1≤ j≤p

X j ≥ E

[

max
1≤ j≤p

X j

]

+ r

)

≤ e−r2/(2σ 2).

We are now in position to prove Theorem 3.

Proof of Theorem 3 The proof consists of three steps.
Step 1. This step reduces the analysis to the unit variance case. Pick any x ≥ 0.

Let W j := (X j − x)/σ j + x/σ . Then E[W j ] ≥ 0 and Var(W j ) = 1. Define Z :=
max1≤ j≤p W j . Then we have

P

(∣∣
∣
∣ max
1≤ j≤p

X j − x

∣
∣
∣
∣ ≤ ε

)

≤ P

(∣∣
∣
∣ max
1≤ j≤p

X j − x

σ j

∣
∣
∣
∣ ≤ ε

σ

)

≤ sup
y∈R

P

(∣∣
∣
∣ max
1≤ j≤p

X j − x

σ j
+ x

σ
− y

∣
∣
∣
∣ ≤ ε

σ

)

= sup
y∈R

P

(

|Z − y| ≤ ε

σ

)

.

Step 2. This step bounds the density of Z . Without loss of generality, we may
assume that Corr(W j , Wk) < 1 whenever j �= k. Since the marginal distribution of
W j is N (μ j , 1) where μ j := E[W j ] = (x/σ − x/σ j ) ≥ 0, by Lemma 5, Z has
density of the form

f p(z) = φ(z)G p(z), (15)

where themap z 	→ G p(z) is non-decreasing by Lemma 6. Define z̄ := (1/σ −1/σ )x ,
so that μ j ≤ z̄ for every 1 ≤ j ≤ p. Moreover, define Z̄ := max1≤ j≤p(W j − μ j ).
Then

∞∫

z

φ(u)duG p(z) ≤
∞∫

z

φ(u)G p(u)du = P(Z > z)

≤ P(Z̄ > z − z̄) ≤ exp

{

− (z − z̄ − E[Z̄ ])2+
2

}

,

where the last inequality is due to the Gaussian concentration inequality (Lemma 7).
Note that W j − μ j = X j/σ j , so that

E[Z̄ ] = E

[

max
1≤ j≤p

(X j/σ j )

]

=: ap.

Therefore, for every z ∈ R,

G p(z) ≤ 1

1 − �(z)
exp

{

− (z − z̄ − ap)
2+

2

}

. (16)

Mill’s inequality states that for z > 0,

z ≤ φ(z)

1 − �(z)
≤ z

1 + z2

z2
,
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and in particular (1+z2)/z2 ≤ 2 when z > 1.Moreover, φ(z)/{1−�(z)} ≤ 1.53 ≤ 2
for z ∈ (−∞, 1). Therefore,

φ(z)/{1 − �(z)} ≤ 2(z ∨ 1), ∀z ∈ R.

Hence we conclude from this, (16), and (15) that

f p(z) ≤ 2(z ∨ 1) exp

{

− (z − z̄ − ap)
2+

2

}

, ∀z ∈ R.

Step 3. By Step 2, for every y ∈ R and t > 0, we have

P (|Z − y| ≤ t) =
y+t∫

y−t

f p(z)dz ≤ 2t max
z∈[y−t,y+t] f p(z) ≤ 4t (z̄ + ap + 1),

where the last inequality follows from the fact that the map z 	→ ze−(z−a)2/2 (with
a > 0) is non-increasing on [a + 1,∞). Combining this inequality with Step 1, for
every x ≥ 0 and ε > 0, we have

P

(∣∣
∣
∣ max
1≤ j≤p

X j − x

∣
∣
∣
∣ ≤ ε

)

≤ 4ε
{(
1/σ − 1/σ

) |x | + ap + 1
}
/σ . (17)

This inequality also holds for x < 0 by the similar argument, and hence it holds for
every x ∈ R.

If σ = σ = σ , then we have

P

(∣∣
∣
∣ max
1≤ j≤p

X j − x

∣
∣
∣
∣ ≤ ε

)

≤ 4ε(ap + 1)/σ, ∀x ∈ R, ∀ε > 0,

which leads to the first assertion of the theorem.
On the other hand, consider the casewhere σ < σ . Suppose first that 0 < ε ≤ σ . By

the Gaussian concentration inequality (Lemma 7), for |x | ≥ ε+σ(ap +√2 log(σ/ε)),
we have

P

(∣∣
∣
∣ max
1≤ j≤p

X j − x

∣
∣
∣
∣ ≤ ε

)

≤ P

(

max
1≤ j≤p

X j ≥ |x | − ε

)

≤ P

(

max
1≤ j≤p

X j ≥ E

[

max
1≤ j≤p

X j

]

+ σ
√
2 log(σ/ε)

)

≤ ε/σ . (18)

For |x | ≤ ε + σ(ap +√
2 log(σ/ε)), by (17) and using ε ≤ σ , we have

P

(∣∣
∣
∣ max
1≤ j≤p

X j − x

∣
∣
∣
∣ ≤ ε

)

≤ 4ε{(σ/σ)ap + (σ/σ − 1)
√
2 log(σ/ε) + 2 − σ/σ }/σ . (19)

123



Gaussian random vectors 65

Combining (18) and (19), we obtain the inequality in (ii) for 0 < ε ≤ σ (with a suitable
choice of C). If ε > σ , the inequality in (ii) trivially follows by taking C ≥ 1/σ . This
completes the proof. ��

Proof of Lemma 5 Let M := max1≤ j≤p W j . The absolute continuity of the distrib-
ution of M is deduced from the fact that P(M ∈ A) ≤ ∑p

j=1 P(W j ∈ A) for every
Borel measurable subset A of R. Hence, to show that a version of the density of M
is given by (13), it is enough to show that limε↓0 ε−1P(x < M ≤ x + ε) equals the
right side on (13) for a.e. x ∈ R.

For every x ∈ R and ε > 0, observe that

{x < M ≤ x + ε}
= {∃i0, Wi0 > x and ∀i, Wi ≤ x + ε}
= {∃i1, x < Wi1 ≤ x + ε and ∀i �= i1, Wi ≤ x}
∪ {∃i1, ∃i2, x < Wi1 ≤ x + ε, x < Wi2 ≤ x + ε and ∀i /∈ {i1, i2}, Wi ≤ x}

...

∪ {∀i, x < Wi ≤ x + ε}
=:Ax,ε

1 ∪ Ax,ε
2 ∪ · · · ∪ Ax,ε

p .

Note that the events Ax,ε
1 , Ax,ε

2 , . . . , Ax,ε
p are disjoint. For Ax,ε

1 , since

Ax,ε
1 = p∪

i=1
{x < Wi ≤ x + ε and W j ≤ x,∀ j �= i},

where the events on the right side are disjoint, we have

P(Ax,ε
1 ) =

p∑

i=1

P(x < Wi ≤ x + ε and W j ≤ x,∀ j �= i)

=
p∑

i=1

x+ε∫

x

P(W j ≤ x,∀ j �= i | Wi = u)φ(u − μi )du,

where μi := E[Wi ]. We show that for every 1 ≤ i ≤ p and a.e. x ∈ R, the map
u 	→ P(W j ≤ x,∀ j �= i | Wi = u) is right continuous at x . Let X j = W j − μ j so
that X j are standard Gaussian random variables. Then

P(W j ≤ x,∀ j �= i | Wi = u) = P(X j ≤ x − μ j ,∀ j �= i | Xi = u − μi ).

Pick i = 1. Let Vj = X j − E[X j X1]X1 be the residual from the orthogonal projec-
tion of X j on X1. Note that the vector (Vj )2≤ j≤p and X1 are jointly Gaussian and
uncorrelated, and hence independent, by which we have
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P(X j ≤ x − μ j , 2 ≤ ∀ j ≤ p | X1 = u − μ1)

= P(Vj ≤ x − μ j − E[X j X1](u − μ1), 2 ≤ ∀ j ≤ p | X1 = u − μ1)

= P(Vj ≤ x − μ j − E[X j X1](u − μ1), 2 ≤ ∀ j ≤ p).

Define J := { j ∈ {2, . . . , p} : E[X j X1] ≤ 0} and J c := {2, . . . , p}\J . Then

P(Vj ≤ x − μ j − E[X j X1](u − μ1), 2 ≤ ∀ j ≤ p)

→ P(Vj ≤ x j ,∀ j ∈ J, Vj ′ < x j ′ ,∀ j ′ ∈ J c), as u ↓ x,

where x j = x −μ j −E[X j X1](x −μ1). Here each Vj either degenerates to 0 (which
occurs only when X j and X1 are perfectly negatively correlated, that is, E[X j X1] =
−1) or has a non-degenerate Gaussian distribution, and hence for every x ∈ R except
for at most (p − 1) points (μ1 + μ j )/2, 2 ≤ j ≤ p,

P(Vj ≤ x j ,∀ j ∈ J, Vj ′ < x j ′ ,∀ j ′ ∈ J c) = P(Vj ≤ x j , 2 ≤ ∀ j ≤ p)

= P(W j ≤ x, 2 ≤ ∀ j ≤ p | W1 = x).

Hence for i = 1 and a.e. x ∈ R, the map u 	→ P(Wi ≤ x,∀ j �= i | Wi = u) is right
continuous at x . The same conclusion clearly holds for 2 ≤ i ≤ p. Therefore, we
conclude that, for a.e. x ∈ R, as ε ↓ 0,

1

ε
P(Ax,ε

1 ) →
p∑

i=1

P(W j ≤ x,∀ j �= i | Wi = x)φ(x − μi )

= φ(x)

p∑

i=1

eμi x−μ2
i /2P(W j ≤ x,∀ j �= i | Wi = x).

In the rest of the proof, we show that, for every 2 ≤ i ≤ p and x ∈ R, P(Ax,ε
i ) =

o(ε) as ε ↓ 0, which leads to the desired conclusion. Fix any 2 ≤ i ≤ p. The
probability P(Ax,ε

i ) is bounded by a sum of terms of the form P(x < W j ≤ x +ε, x <

Wk ≤ x+ε)with j �= k. Recall thatCorr(W j , Wk) < 1.Assume thatCorr(W j , Wk) =
−1. Then for every x ∈ R, P(x < W j ≤ x+ε, x < Wk ≤ x+ε) is zero for sufficiently
small ε. Otherwise, (W j , Wk)

T obeys a two-dimensional, non-degenerate Gaussian
distribution and hence P(x < W j ≤ x + ε, x < Wk ≤ x + ε) = O(ε2) = o(ε) as
ε ↓ 0 for every x ∈ R. This completes the proof.

Proof of Lemma 6 Since E[W0] ≥ 0, the map x 	→ exp{E[W0]x − (E[W0])2/2} is
non-decreasing. Thus it suffices to show that the map

x 	→ P(W1 ≤ x, . . . , Wp ≤ x | W0 = x) (20)

is non-decreasing. As in the proof of Lemma 5, let X j = W j − E[W j ] and let Vj =
X j − E[X j X0]X0 be the residual from the orthogonal projection of X j on X0. Note
that the vector (Vj )1≤ j≤p and X0 are independent. Hence the probability in (20) equals
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P(Vj ≤ x − μ j − E[X j X0](x − E[W0]), 1 ≤ ∀ j ≤ p | X0 = x − E[W0])
= P(Vj ≤ x − μ j − E[X j X0](x − E[W0]), 1 ≤ ∀ j ≤ p),

where the latter is non-decreasing in x on R since E[X j X0] ≤ 1.
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Appendix A: Proof of Lemma 1

Lemma1 follows from the followingmaximal inequality andHölder’s inequality. Here
we write a � b if a is smaller than or equal to b up to a universal positive constant.

Lemma 8 Let Z1, . . . , Zn be independent random vectors in R
p with p ≥ 2. Define

M := max1≤i≤n max1≤ j≤p |Zi j | and σ 2 := max1≤ j≤p
∑n

i=1 E[Z2
i j ]. Then

E

[

max
1≤ j≤p

|
n∑

i=1

(Zi j − E[Zi j ])|
]

� (σ
√
log p +

√
E[M2] log p).

We shall use the following lemma.

Lemma 9 Let V1, . . . , Vn be independent random vectors in R
p with p ≥ 2 such that

Vi j ≥ 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then

E

[

max
1≤ j≤p

n∑

i=1

Vi j

]

� max
1≤ j≤p

E

[
n∑

i=1

Vi j

]

+ E[ max
1≤i≤n

max
1≤ j≤p

Vi j ] log p.

Proof of Lemma 9 We make use of the symmetrization technique. Let ε1, . . . , εn be
independent Rademacher random variables (that is, P(εi = 1) = P(εi = −1) = 1/2)
independent of V n

1 := {V1, . . . , Vn}. Then by the triangle inequality and Lemma 2.3.1
in [28],

I := E

[

max
1≤ j≤p

n∑

i=1

Vi j

]

≤ max
1≤ j≤p

E

[
n∑

i=1

Vi j

]

+ E

[

max
1≤ j≤p

∣
∣
∣
∣
∣

n∑

i=1

(Vi j − E[Vi j ])
∣
∣
∣
∣
∣

]

≤ max
1≤ j≤p

E

[
n∑

i=1

Vi j

]

+ 2E

[

max
1≤ j≤p

∣
∣
∣
∣
∣

n∑

i=1

εi Vi j

∣
∣
∣
∣
∣

]

.
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By Lemmas 2.2.2 and 2.2.7 in [28], we have

E

[

max
1≤ j≤p

∣
∣
∣
∣
∣

n∑

i=1

εi Vi j

∣
∣
∣
∣
∣
| V n

1

]

� max
1≤ j≤p

(
n∑

i=1

V 2
i j

)1/2
√
log p

≤ √
B log p max

1≤ j≤p

(
n∑

i=1

Vi j

)1/2

,

where B := max1≤i≤n max1≤ j≤p Vi j . Hence by Fubini’s theorem and the Cauchy-
Schwarz inequality,

E

[

max
1≤ j≤p

∣
∣
∣
∣
∣

n∑

i=1

εi Vi j

∣
∣
∣
∣
∣

]

�
√
E[B] log p

(

E

[

max
1≤ j≤p

n∑

i=1

Vi j

])1/2

= √
E[B] log p

√
I .

Therefore, we have

I � max
1≤ j≤p

E

[
n∑

i=1

Vi j

]

+√
E[B] log p

√
I =: a + b

√
I .

Solving this inequality, we conclude that I � a + b2. ��
Proof of Lemma 8 Let ε1, . . . , εn be independent Rademacher random variables inde-
pendent of Z1, . . . , Zn . Then arguing as in the previous proof, we have

E

[

max
1≤ j≤p

∣
∣
∣
∣
∣

n∑

i=1

(Zi j − E[Zi j ])
∣
∣
∣
∣
∣

]

≤ 2E

[

max
1≤ j≤p

∣
∣
∣
∣
∣

n∑

i=1

εi Zi j

∣
∣
∣
∣
∣

]

� E

⎡

⎣ max
1≤ j≤p

(
n∑

i=1

Z2
i j

)1/2
⎤

⎦
√
log p

≤
(

E

[

max
1≤ j≤p

n∑

i=1

Z2
i j

])1/2
√
log p. (Jensen)

By Lemma 9 applied to Vi j = Z2
i j , we have

E

[

max
1≤ j≤p

n∑

i=1

Z2
i j

]

� σ 2 + E[M2] log p.

This implies the desired conclusion. ��
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