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Abstract We prove that under Hörmander’s type conditions on the coefficients of
the unobservable component of a partially observable diffusion process the filtering
density is infinitely differentiable and can be represented as the integral of an infinitely
differentiable kernel against the prior initial distribution. These results are derived from
more general results obtained for SPDEs. One of the main novelties of the paper is the
existence and smoothness of the kernel, another one is that we allow the coefficients of
our partially observable process to be just measurable with respect to the time variable
and Lipschitz continuous with respect to the observation variable.
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1 Introduction

Let (�,F , P) be a complete probability space with an increasing filtration {Ft , t ≥ 0}
of complete with respect to (F , P) σ -fields Ft ⊂ F . Let wk

t , k = 1, 2, . . . , d1, be
independent one-dimensional Wiener processes with respect to {Ft }, where d1 ≥ 1 is
an integer.

Let d, d ′ ≥ 1 be integers. Consider a d + d ′-dimensional two-component process
zt = (xt , yt ) with xt being d-dimensional and yt d ′-dimensional. We assume that zt
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688 N. V. Krylov

is a diffusion process defined as a solution of the system

dxt = b(t, zt ) dt + θk(t, zt ) dwk
t ,

dyt = B(t, zt ) dt + �k(t, yt ) dwk
t

(1.1)

with some initial data independent of the process wt , where and below the summation
convention over repeated indices is enforced regardless of whether they stand at the
same level or at different ones. The coefficients of (1.1) are assumed to be vector-valued
functions of appropriate dimensions defined on [0,∞) × R

d+d ′
. Actually �k(t, y)

are assumed to be independent of x , so that they are functions on [0,∞) × R
d ′

rather
than [0,∞) × R

d+d ′
but as always we may think of �k(t, y) as functions of (t, z) as

well.
One of the main goals of the paper is to show that under Hörmander’s type conditions

satisfied for x lying in a ball B, in some sense uniformly with respect to t and y, there
exists a function p(t, y, x) = p(ω, t, y, x) ≥ 0, which is infinitely differentiable with
respect to (y, x) ∈ B2 for any t > 0 and ω, such that for any f ∈ C∞

0 (B) and t > 0
with probability one

E{ f (xt ) | F y
t } =

∫

B

∫

B

f (x)p(t, y, x) P0(dy) dx,

where P0 is the conditional distribution of x0 given y0 and F y
t = σ {ys, s ≤ t}.

Naturally,

∫

B

p(t, y, x) P0(dy) (1.2)

turns out to be infinitely differentiable with respect to x ∈ B and represent the condi-
tional density πt (x) of xt given F y

t .
In the literature two approaches to prove infinite differentiability of πt (x) for degen-

erate processes under Hörmander’s type conditions are known. The first one is based on
filtering equations for πt , which are stochastic partial differential equations (SPDEs).
This approach was initiated by Wentzell [17] and in a more general and time inhomo-
geneous case outlined by Kunita in [12] and [13]. It is worth noting that in [17] the
coefficient B is supposed to be independent of x and in [13] the functions b and θ

are independent of y. Equations in [12] seem not to cover general filtering equations
either, since it is assumed there that � is an identity matrix and the coefficients are con-
tinuously differentiable with respect to t . In [17], [12], and [13] the SPDE is reduced
to an ordinary parabolic equation with random coefficients by using a random change
of coordinates. Without this reduction Chaleyat-Maurel and Michel in [3] achieve the
goal in the time homogeneous case by mimicking some steps which are used in the
proof of the deterministic Hörmander theorem. In their case as well as in a recent
publication [2] the matrix (�1, . . . , �d ′

) is assumed to have form (0, I ) where I is
d ′ × d ′ identity matrix.
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Hypoellipticity for filtering problems of partially 689

However, some of the arguments in [12] and [13] are based on the claim that
Hörmander’s type theorem holds and can be proved by using the Malliavin calculus
for equations whose coefficients are only continuous with respect to t . Such a proof
is unknown even now, and for us assuming that the coefficients are continuous in t is
no better than assuming that they are just measurable. It also looks like in [3] there is
a gap at the point where the authors claim without proof that, roughly speaking, what
holds for the unknown function also holds for its fractional derivatives.

Our approach is also based on using filtering equations but since we allow the
coefficients of (1.1) to be just measurable with respect to t and be only Lipschitz
continuous with respect to y, our type of Hörmander’s condition is more restrictive
than in [3] where the coefficients are time independent and infinitely differentiable in
z. In contrast with [12] and [13] we do not appeal to the Malliavin calculus and instead
rely on some analytical facts which we prove for more general SPDEs.

The second approach to proving infinite differentiability of πt (x) almost com-
pletely ignores filtering equations and is based on the Malliavin calculus and first
appeared in the paper by Bismut and Michel [1]. In their model the coefficients are
time independent and infinitely differentiable with respect to z, and the Hörmander
type condition imposed is the most general in their situation and is much weaker than
ours. Kusuoka and Stroock [15] further relax the Hörmander type condition in [1] (see
our Remark 4.3) again in the time independent case but in what concerns filtering they
assume that B(t, x, y) is independent of x , so that the problem becomes a problem in
the theory of conditional Markov processes rather than a more or less general filtering
problem, because the coefficients of the equation for the observation process yt are
supposed to be independent of the signal process xt . This result can also be found
in [16]. In the recent publication by Chaleyat-Maurel [2] and references therein one
can find a detailed account of the progress concerning Malliavin calculus and filtering
equations. In particular, in [2] local versions of Hörmander’s type condition from [3]
are used to obtain the local regularity of solutions. It seems that these methods are not
applicable in our case of coefficients only measurable with respect to t and Lipschitz
in y.

It is worth reiterating that in [1–3,15] the coefficients are supposed to be infinitely
differentiable with respect to z. In our case they are only infinitely differentiable
with respect to x and Lipschitz continuous with respect to z = (x, y). This alone,
even without allowing the coefficients to arbitrarily depend on t , makes applying the
methods from [1–3,15] impossible.

Apart from this novelty concerning t and z dependence, the fact that the condi-
tional density πt (x) is represented as (1.2) with infinitely differentiable kernel seems
to be new for degenerate diffusions zt under Hörmander’s type condition. Also our
Hörmander’s type conditions are only required on a part �0 of � and all smoothness
assertions then are also made for almost all ω ∈ �0. It seems that this localization in
ω was never addressed before.

We derive our results about filtering densities in Sect. 4 from the results of Sects. 2,
3, and 5. In these sections we treat SPDEs more general than the filtering equation.
In the beginning of each section we list the assumptions which are supposed to hold
throughout the section. In the formulations of some lemmas, theorems,…additional
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690 N. V. Krylov

assumptions are imposed and they are supposed to hold only in these lemmas, theo-
rems,….

The reader understands that R
d is a Euclidean space of column-vectors (written in

a common abuse of notation as) x = (x1, . . . , xd). Denote

Di = ∂/∂xi , Di j = Di D j ,

and for an R
d -valued function σt (x) = σt (ω, x) on � × [0,∞) × R

d and functions
ut (x) = ut (ω, x) on � × [0,∞) × R

d set

Lσt ut (x) = [Dut (x)]σt (x) = [Di ut (x)]σ i
t (x),

where Du is the row-vector gradient of u.
Next take an integer d2 ≥ 1 and assume that we are given R

d -valued functions σ k
t =

(σ ik
t ), k = 0, . . . , d2 + d1, on � × [0,∞) × R

d , which are infinitely differentiable
with respect to x for any (ω, t), and define the operator

Lt = (1/2)

d2+d1∑
k=1

L2
σ k

t
+ Lσ 0

t
. (1.3)

Assume that on � × [0,∞) × R
d we are also given certain real-valued functions

ct (x) andνk
t (x), k = 1, . . . , d1, which are infinitely differentiable with respect to x , and

that on �×[0,∞)×R
d we are given real-valued functions ft and gk

t , k = 1, . . . , d1.
Then under natural additional assumptions which will be specified later the SPDE

dut = (Lt ut + ct ut + ft ) dt + (Lσ k
t

ut + νk
t ut + gk

t ) dwk
t (1.4)

makes sense.
One of the main results of this paper is Theorem 2.4 saying that if the initial condition

is a generalized functions of class Hn
2 , then (1.4) has a unique solution with this initial

data without any nondegeneracy or Hörmander’s type condition. Before this result
was known only if n ≥ 1 is an integer (see [11]). The result is important because it
allows one to take a δ-function as the initial condition.

After the existence of solutions is secured we continue our investigation under
Hörmander’s type condition and in Sect. 3 prove, roughly speaking, that, if (s1, s2) ∈
(0, T ) and for any ω ∈ �0 and t ∈ (s1, s2) the Lie algebra generated by the vector-
fields σ

d1+k
t , k = 1, . . . , d2, has dimension d everywhere in BR = {x : |x | < R}

and ft and gk
t are infinitely differentiable in BR for any ω ∈ � and t ∈ (s1, s2), then

the generalized function ut satisfying (1.4) coincides on (s1, s2) × BR , for almost all
ω ∈ �0, with a function which is infinitely differentiable with respect to x . In Sect. 4
we apply this result to filtering problems. In the same section we apply the results of
Sect. 5 to derive the existence of smooth filtering kernels. The results of Sect. 5 bear
on kernels (or fundamental solutions) for more general SPDEs.

In the whole article T is a fixed number from (0,∞).
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Hypoellipticity for filtering problems of partially 691

2 An existence theorem for degenerate SPDEs

Denote by D the space of generalized functions on R
d , and as usual introduce � =

(1 − �)1/2, Hn
2 = �−nL2, where L2 is the Hilbert space of real-valued square

integrable functions on R
d with usual norm. The scalar product and the norm in Hn

2
will be denoted by (·, ·)n and ‖ · ‖n , respectively.

Denote by Hn
2 (T ) the set of D-valued functions ut on � × [0, T ] such that (ut , φ)

is predictable and (u0, φ) is F0-measurable for any φ ∈ C∞
0 (Rd) and

T∫

0

‖ut‖2
n dt < ∞ (a.s.).

Sometimes it is necessary to indicate which filtration of σ -fields is involved in the
definition of predictable functions. In these cases we write Hn

2 (T ) = Hn
2 (T,F·)

Introduce Hn
2 as the set of F0-measurable Hn

2 -valued function on �. For an open

ball B by
0

Hn
2(B) we mean the subset of Hn

2 consisting of generalized functions with
(closed) support in B. Define

H
n
2(T ) =

⎧⎨
⎩u ∈ Hn

2 (T ) : E

T∫

0

‖ut‖2
n dt < ∞

⎫⎬
⎭ .

In this section n is a fixed number.

Assumption 2.1

(i) The functions σ k
t (x), k = 0, . . . , d2 + d1, ct , νk

t , k = 1, . . . , d1, are infinitely
differentiable with respect to x and each of their derivatives of any order is
bounded on � × [0, T ] × R

d . These functions are predictable with respect to
(ω, t) for any x ∈ R

d ;
(ii) We have that f ∈ Hn

2 (T ), gk ∈ Hn+1
2 (T ), k = 1, . . . , d1;

(iii) We have that u0 ∈ Hn
2.

Definition 2.1 By a normal solution of (1.4) of class Hn
2 (T ) with initial condition

u0 we mean a function u which belongs to Hn
2 (T ), such that (a.s.) ut is a continuous

Hn−1
2 -valued function and with probability one

ut = u0 +
t∫

0

(Lsut + csus + fs) ds +
t∫

0

(Lσ k
s

us + νk
s us + gk

s ) dwk
s (2.1)

for all t ∈ [0, T ].
Remark 2.1 The usual and stochastic integrals of Hilbert space valued functions are
well defined, so that the right-hand side of (2.1) is a continuous Hn−2

2 -valued process.
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692 N. V. Krylov

Remark 2.2 We say that a function u of class Hn
2 (T ) is a generalized solution of (1.4)

with initial condition u0 if for any φ ∈ C∞
0 (Rd)

(ut , φ) = (u0, φ) +
t∫

0

(Lsut + csus + fs, φ) ds

+
t∫

0

(Lσ k
s

us + νk
s us + gk

s , φ) dwk
s (2.2)

for almost all (ω, t) ∈ � × [0, T ], where by (·, ·) we mean the pairing between test
functions and generalized ones.

By the way, recall that if u ∈ Hn
2 and φ ∈ C∞

0 (Rd), then

(u, φ) = (�ku,�mφ)0,

as long as k ≤ n and k + m = 2n.
It is a well-known result (see, for instance, [10]) that if a function u of class Hn

2 (T )

is a generalized solution of (1.4) with f, g, and u0 as in Assumption 2.1, then there
exists a normal solution û of (1.4) of class Hn

2 (T ) with initial condition u0 such that
ût and ut coincide as generalized functions for almost all (ω, t).

This result implies, in particular, that if a generalized solution of class Hn
2 (T ) is

such that ut is a continuous Hm
2 -valued function for some m, then (a.s.) ût = ut for

all t ∈ [0, T ], so that ut itself is a continuous Hn−1
2 -valued function (a.s.) and thus is

a normal solution of class Hn
2 (T ). These observations will be crucial in the proof of

Theorem 2.4.

Next we need the following technical lemma which enables us to integrate by parts
in Hn

2 -spaces.

Lemma 2.3 Let n ∈ R and ν ∈ C∞
b (Rd). Then there exists a constant N such that

for any u ∈ Hn+1
2 , k = 0, 1, . . . , d1 + d2, t ∈ [0, T ] and ω ∈ � we have

|(�n Lσ k
t

u,�n(νu))0| ≤ N‖u‖2
n, (2.3)

〈�nu,�n(L2
σ k

t
u)〉 + ‖�n Lσ k

t
u‖2

0 ≤ N‖u‖2
n, (2.4)

where 〈·, ·〉 is the natural pairing between H1
2 and H−1

2 .

Proof By obvious reasons we may assume that u ∈ C∞
0 (Rd) and we drop the indices

k and t to simplify notation.
We are going to rely on some well-known properties of pseudo-differential opera-

tors. The order of a pseudo-differential operator S is a number n ∈ R such that �−n S
and S�−n are bounded operators in L2. If the orders of two operators S1 and S2 are n1
and n2, respectively, then the order of [S1, S2] = S1S2 − S2S1 is at most n1 + n2 − 1.
One also knows that the first order linear differential operators with coefficients whose
every derivative of any order is bounded are pseudodifferential operator of order one.

123



Hypoellipticity for filtering problems of partially 693

Next, observe that if a pseudo-differential operator S is self adjoint, then for any
u ∈ C∞

0 (Rd)

(Lσ u, S(νu))0 = (Lσ Su, νu)0 + ([S, Lσ ]u, νu)0

= −(Su, νLσ u)0 + (aSu, u)0 + ([S, Lσ ]u, νu)0

= −(S(νu), Lσ u)0 − ([ν·, S]u, Lσ u)0 + (aSu, u)0 + ([S, Lσ ]u, νu)0,

where a = L∗
σ ν is a smooth bounded function. It follows that

(Lσ u, S(νu))0 = (1/2) [(aSu, u)0 + ([S, Lσ ]u, νu)0 − ([ν·, S]u, Lσ u)0] . (2.5)

It is important to note for the future that if the order of S is 2n, then the order of
[S, Lσ ] is at most 2n, the order of [ν·, S] is at most 2n − 1, and consequently

|(Lσ u, S(νu))0| ≤ N‖u‖2
n . (2.6)

This with S = �2n yields (2.3).
By applying (2.5) with S = �2n and ν ≡ 1, we get

(�n Lσ u,�nu)0 = (1/2)(a�2nu, u)0 + (1/2)([�2n, Lσ ]u, u)0,

which after being polarized yields that

(�n Lσ v,�nu)0 + (�n Lσ u,�nv)0 = (a�2nu, v)0

+(a�2nv, u)0 + ([�2n, Lσ ]u, v)0 + ([�2n, Lσ ]v, u)0

if u, v ∈ C∞
0 (Rd). We plug in here v = Lσ u and obtain

(L2
σ u, u)n + ‖Lσ u‖2

n = (a�2nu, Lσ u)0

+(a�2n Lσ u, u)0 + ([�2n, Lσ ]u, Lσ u)0 + ([�2n, Lσ ]Lσ u, u)0.

After introducing the self adjoint operators

S1 = a�2n + (a�2n)∗, S2 = [�2n, Lσ ] + ([�2n, Lσ ])∗

we rewrite the last equation as

(L2
σ u, u)n + ‖Lσ u‖2

n = (Lσ u, S1u)0 + (Lσ u, S2u)0

and obtain (2.4) owing to (2.6). The lemma is proved.

Theorem 2.4 In class Hn
2 (T ) there exists an (a.s.) unique normal solution u of (1.4)

with initial condition u0. Furthermore, there exists a constant N independent of u, f, g
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694 N. V. Krylov

such that

E sup
t≤T

‖ut‖2
n ≤ N E‖u0‖2

n + N E

T∫

0

(
‖ ft‖2

n +
d1∑

k=1

‖gk
t ‖2

n+1

)
dt. (2.7)

Proof Step 1. First we want to derive an a priori estimate assuming that we are given
a normal solution of (1.4) of class Hn+1(T ). We apply the operator �n to both sides
of (1.4) written in the integral form and observe that after that the stochastic integral
will belong to L2, whereas the deterministic integral will belong to H−1

2 . This allows
us to apply Itô’s formula for Banach space valued processes and shows that

d‖ut‖2
n = d‖�nut‖2

0 = It dt + 2
(
�nut ,�

n(Lσ k
t

ut + νk
t ut + gk

t )
)

0
dwk

t ,

where

It = 〈�nut , 2�n(Lt ut + ct ut + ft )〉 +
d1∑

k=1

‖�n(Lσ k
t

ut + νk
t ut + gk

t )‖2
0

= I 1
t + I 2

t + I 3
t + 2I 4

t + 2I 5
t + I 6

t ,

I 1
t =

d1∑
k=1

[
〈�nut ,�

n(L2
σ k

t
ut )〉 + ‖�n Lσ k

t
ut‖2

0

]
,

I 2
t = (�nut , 2�n Lσ 0

t
ut )0,

I 3
t = (�nut , 2�n(ct ut + ft ))0,

I 4
t = (�n Lσ k

t
ut ,�

n(νk
t ut ))0,

I 5
t = (�n Lσ k

t
ut ,�

ngk
t )0,

I 6
t =

d1∑
k=1

‖�n(νk
t ut + gk

t )‖2
0.

The term I 1
t is estimated in (2.4) and I 2

t in (2.3) (with ν ≡ 1), which also provides
an estimate for I 4

t . Almost obviously

|I 3
t | + |I 6

t | ≤ N‖ut‖2
n + N‖ ft‖2

n + N
d1∑

k=1

‖gk
t ‖2

n,

where and below we denote by N various constants independent of u, f, gk , t , and ω.
Finally,

I 5
t = (Lσ k

t
�nut ,�

ngk
t )0 + ([�n, Lσ k

t
]ut ,�

ngk
t )0

= (�nut , (Lσ k
t
)∗�ngk

t )0 + ([�n, Lσ k
t
]ut ,�

ngk
t )0

123



Hypoellipticity for filtering problems of partially 695

and, since the order of the operator [�n, Lσ k
t
] is at most n, we have

|I 5
t | ≤ N‖ut‖2

n + N
d1∑

k=1

‖gk
t ‖2

n+1.

Upon collecting our estimates we conclude that

d‖ut‖2
n ≤ N

(
‖ut‖2

n + ‖ ft‖2
n +

d1∑
k=1

‖gk
t ‖2

n+1

)
dt

+2
(
�nut ,�

n(Lσ k
t

ut + νk
t ut + gk

t )
)

0
dwk

t . (2.8)

Step 2. Uniqueness. Now assume that we are given two natural solutions of (1.4)
of class Hn

2 (T ) with the same initial condition. Then for their difference, say ut , we
have

d‖ut‖2
n−1 ≤ N1‖ut‖2

n−1 dt + dmt ,

where mt is a local martingale. Next, comparing the differentials we obtain

‖ut‖2
n−1e−N1t ≤

t∫

0

e−N1s dms .

Since the right-hand side is a local martingale starting at zero and the left-hand
side is nonnegative, it follows, that the right-hand side is zero as is the left-hand side,
which proves uniqueness.

Step 3. Here we prove (2.7) as an a priori estimate under the assumptions of Step
1. We follow an absolutely standard and well-known by now way first introduced by
Pardoux. With N from (2.8) we have

d(e−Nt‖ut‖2
n) ≤ N

(
‖ ft‖2

n +
d1∑

k=1

‖gk
t ‖2

n+1

)
dt + dmt ,

where mt is a local martingale. Since the left-hand side is nonnegative, for any t ∈
[0, T ],

e−Nt E‖ut‖2
n ≤ E‖u0‖2

n + N E

t∫

0

(
‖ fs‖2

n +
d1∑

k=1

‖gk
s ‖2

n+1

)
ds,

sup
t∈[0,T ]

E‖ut‖2
n ≤ N E‖u0‖2

n + N E

T∫

0

(
‖ fs‖2

n +
d1∑

k=1

‖gk
s ‖2

n+1

)
ds. (2.9)
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696 N. V. Krylov

Next, notice that since ‖ut‖n is continuous

τm := T ∧ inf{t ≥ 0 : ‖ut‖n ≥ m}

are stopping times and τm ↑ T as m → ∞. By Davis’s inequality (2.8) and (2.9)
imply that

E sup
t≤τm

‖ut‖2
n ≤ N E‖u0‖2

n + N E

T∫

0

(
‖ fs‖2

n +
d1∑

k=1

‖gk
s ‖2

n+1

)
ds

+6E

⎛
⎝

τm∫

0

d1∑
k=1

∣∣∣
(
�nut ,�

n(Lσ k
t

ut + νk
t ut + gk

t )
)

0

∣∣∣2
dt

⎞
⎠

1/2

.

(2.10)

By the above what is inside the square by magnitude is dominated by

N‖ut‖n(‖ut‖n + ‖gk
t ‖n).

Hence the last term in (2.10) is less than

N E

⎛
⎝

τm∫

0

‖ut‖2
n

(
‖ut‖2

n +
d1∑

k=1

‖gk
t ‖2

n

)
dt

⎞
⎠

1/2

≤ N E

⎛
⎝ sup

t≤τm

‖ut‖n

τm∫

0

(
‖ut‖2

n +
d1∑

k=1

‖gk
t ‖2

n

)
dt

⎞
⎠

1/2

≤ (1/2)E sup
t≤τm

‖ut‖2
n + N E

τm∫

0

(
‖ut‖2

n +
d1∑

k=1

‖gk
t ‖2

n

)
dt,

which after coming back to (2.10), using again (2.9), and sending m → ∞, by Fatou’s
lemma yields the a priori estimate (2.7).

Step 4. Existence in a particular case. If the norms on the right in (2.7) are finite,
u0 ∈ L2(�,F0, Hn+1

2 ), and our equation is uniformly nondegenerate, then (see, for
instance, [6]) there exists a unique normal solution of our problem of class Hn+2

2 (T ).
For this solution (2.7) is valid.

If the norms on the right in (2.7) are finite, but u0 ∈ L2(�,F0, Hn
2 ) and there is

no nondegeneracy assumption, we approximate u0 in the L2(�,F0, Hn
2 )-norm by a

sequence um
0 ∈ L2(�,F0, Hn+1

2 ), m = 1, 2, . . ., and add into the right-hand side of
(1.4) the term (1/m)�ut dt to make the equation uniformly nondegenerate. Denote
by um the normal solutions of the so modified problems. Then (2.7) will hold with N
independent of m because no constant of nondegeneracy was involved in the derivation
of (2.7).
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Hypoellipticity for filtering problems of partially 697

According to (2.7) the sequence um is bounded in H
n
2(T ). In particular,

(1/m)�um → 0 in H
n−2
2 (T ). Having in mind this fact and applying (2.7) to the

difference um
t − uk

t and n − 2 in place of n we see that the sequence um is Cauchy in
the space with norm, whose square is given by

E sup
t≤T

‖ut‖2
n−2,

in particular, in H
n−2
2 (T ). Let u be its limit in H

n−2
2 (T ) such that

E sup
t≤T

‖ut − um
t ‖2

n−2 → 0 (2.11)

as n → ∞. Then Eq. (1.4) in the integral form holds in H
n−4
2 (T ) so that u is a

generalized solution. Now, since the sequence um is bounded in H
n
2(T ) and converges

to u in H
n−2
2 (T ), u ∈ H

n
2(T ). After that we apply a classical result saying that if

u ∈ H
n
2(T ) satisfies (2.7) in the generalized sense with initial condition u0 ∈ Hn−1

2 ,
then (a.s.) ut is a continuous Hn−1

2 -valued function (see Remark 2.2).
To establish (2.7) for thus found normal solution take a sequence φr ∈ C∞

0 (Rd)

such that it is dense in the unit ball of Hn
2 . Then owing to (2.7) write for any j = 1, 2, . . .

E sup
t≤T

max
r=1,..., j

(�num
t ,�nφr )2

0 ≤ N E‖um
0 ‖2

n + I, (2.12)

where I is the second term on the right in (2.7). Since

(�n(um
t − ut ),�

nφr )2
0 ≤ ‖�n−2(um

t − ut )‖2
0‖�n+2φr‖2

0,

estimate (2.11) allows us to conclude from (2.12) that

E sup
t≤T

max
r=1,..., j

(�nut ,�
nφr )2

0 ≤ N E‖u0‖2
n + I.

By letting j → ∞ and using the monotone convergence theorem and the fact that
φr are dense in the unit ball of Hn

2 , we get (2.7).
Step 5. Existence in the general case. The first assertion of the theorem in the general

case is proved as always by using stopping times like

γm = inf

⎧⎨
⎩t ≥ 0 : ‖u0‖2

n +
t∫

0

(
‖ fs‖2

n +
d1∑

k=1

‖gk
s ‖2

n+1

)
ds ≥ m

⎫⎬
⎭ .

The theorem is proved.

In the remaining part of this section by ut we mean the normal solution from
Theorem 2.4. We remind the reader that the common way of saying that a generalized
function in a domain is smooth means that there is a smooth function which, as a
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698 N. V. Krylov

generalized function, coincides with the given generalized one in the domain under
consideration.

Theorem 2.4 and Sobolev embedding theorems immediately imply the following.

Corollary 2.5 Suppose that Assumption 2.1 is satisfied for all n. Then (a.s.) the solu-
tion ut is infinitely differentiable with respect to x and every its derivative is a bounded
continuous function of (t, x).

Corollary 2.6 Suppose that Assumption 2.1 is satisfied for all n. Let D be a domain
in R

d with ∂ D �= ∅ and assume that for x ∈ D, t ∈ [0, T ], and ω ∈ � we have

u0(x), ct (x), ft (x) ≤ 0, νk
t (x) = gk

t (x) = 0, k = 1, . . . , d.

Then (a.s.) for all t ∈ [0, T ] on D we have

ut ≤ max
s≤t

max
∂ D

(us)+. (2.13)

This result follows from Theorem 1.2 of [7] in which one takes ξ = 0, ū ≡ 1,
f̄ ≡ −c, f̄ i ≡ 0, ḡ ≡ 0, and ρt equal the right-hand side of (2.13) plus a constant
ε > 0. One adds ε to be sure that

(ut − ρt ūt )+ = (ut − ρt )+

vanishes near the boundary of D and hence belongs to
0

W 1
2(D). Then after applying

Theorem 1.2 of [7] one sets ε ↓ 0.

Theorem 2.7 Take an R ∈ [0,∞) and suppose that σ k
t (x) = 0 and Dνk

t (x) = 0 for
k = 1, . . . , d1, t ∈ [0, T ], and ω ∈ � as long as |x | > R. Also assume that gk ≡ 0
for k = 1, . . . , d1. Then there exists a (random finite) constant N independent of f
and u0 such that (a.s.)

sup
t≤T

‖ut‖2
n ≤ N‖u0‖2

n + N

T∫

0

‖ ft‖2
n dt. (2.14)

Proof For smooth R
d -valued functions σ(x) on R

d (whose points are always consid-
ered as column vectors) by Dσ we mean a matrix with entries (Dσ)i j = D jσ

i and if
we are given two such functions σ and γ , then we set

Dσγ := [Dσ ]γ. (2.15)

Consider the equation

xt = x −
t∫

0

σ k
s (xs) dwk

s −
t∫

0

bt (xs) ds, (2.16)
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where

bt (x) = σ 0
t (x) − (1/2)

d1∑
k=1

Dσ k
t (x)σ k

t (x).

As is well known (see, for instance, [14] for more advanced treatment of the subject
or see [8]), there exists a function Xt (x) on � × [0, T ] × R

d , such that

(i) it is continuous in (t, x) for any ω along with each derivative of Xt (x) of any
order with respect to x ,

(ii) for each ω and t the mapping x → Xt (x) of R
d to R

d is one-to-one and onto and
its inverse mapping X−1

t (x) has bounded and continuous in (t, x) derivatives of
any order with respect to x for any ω.

(iii) it is Ft -adapted for any x ,
(iv) for each x with probability one it satisfies (2.16) for all t ∈ [0, T ].

Observe that Xt (x) = x for |x | ≥ R, and X−1
t (x) = x for all t ∈ [0, T ] if |x | is

large enough (depending on ω).
Next, define the operations “hat” and “check” which transform any function φt (x)

into

φ̂t (x) := φt (Xt (x)), φ̌ = φt (X−1
t (x)).

Also define ρt (x) from the equation

ρt (Xt (y)) det DXt (y) = 1

and observe that by the change of variables formula

∫

Rd

F(Xt (y))φ(y) dy =
∫

Rd

F(x)φ̌t (x)ρt (x) dx, (2.17)

whenever at least one side of the equation makes sense. Finally, define the mapping
“bar” which transforms any R

d -valued function σt (x) into

σ̄t (x) = Yt (x)σ̂t (x) = Yt (x)σt (Xt (x)), (2.18)

where

Y = (DX)−1.

By Corollary 6.5 of [8] (also see Remark 2.2) the function ût is well defined and is
a normal solution of class Hn

2 (T ) of the equation

dût =
[

d2∑
k=1

L2
σ̄

d1+k
t

ût + ĉt ût + f̂t

]
dt + ût ν̂

k
t dwk

t .
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700 N. V. Krylov

By using Kolmogorov’s continuity theorem for random fields one easily shows that
there exists a function It (x) = It (ω, x) which along with each its derivative of any
order with respect to x is continuous with respect to (t, x) ∈ [0, T ] × R

d for each ω

and such that for each (t, x) with probability one

It (x) =
t∫

0

ν̂k
s (x) dwk

s .

Then define

γt (x) = exp

⎡
⎣−It (x) − (1/2)

d1∑
k=1

t∫

0

|ν̂k
s (x)|2 ds

⎤
⎦ , vt = ûtγt .

Of course, Dγt (x) = 0 if |x | ≥ R, so that γt (x) along with each its derivative of any
order with respect to x is continuous and bounded with respect to (t, x) ∈ [0, T ]×R

d

for each ω. We want to apply Itô’s formula to write an equation for vt , that is, for any
φ ∈ C∞

0 (Rd) find the stochastic differential of

It (φ) := (vt , φ) = (ût , γtφ) =
(
�−(n−1)ût ,�

n−1(γtφ)
)

0
.

Here ξt := �−(n−1)ût and ηt := �n−1(γtφ) are continuous L2-valued processes,
admitting stochastic differentials such that the classical formula for the squared norm
is applicable. Then this formula is also applicable to ξt + ληt for any number λ.
By comparing the coefficients of λ in ‖ξt + ληt‖2

0 and in the formula we obtain the
stochastic differential of (ξt , ηt )0 that is of It (φ).

In this way we get that with probability one for all t ∈ [0, T ]

vt = v0 +
t∫

0

[
d2∑

k=1

γs L2
σ̄

d1+k
s

(γ −1
s vs) + ĉsvs + γs f̂s

]
ds. (2.19)

Fix an ω such that (2.19) holds for all t ∈ [0, T ],
T∫

0

‖ut‖2
n dt < ∞,

u0(ω, ·) ∈ Hn
2 , and ut (ω, ·) is an Hn−1

2 -valued continuous function. Then (2.19)
becomes a deterministic equation, to which Theorem 2.4 is applicable because the
differential operators in (2.19) can be rewritten in a canonical form as in (1.4) with
coefficients satisfying Assumption 2.1. Then applying Theorem 2.4 to each particular
ω, the set of which has full probability, we obtain (2.14). The theorem is proved.
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Lemma 2.8 Take

ft (x) = u0(x) = (1 + |x |2)−d , gk
t (x) = 0

and call vt the normal solution of (1.4) on [0, T ] with so prescribed data. By Corol-
lary 2.5 the function vt is (a.s.) infinitely differentiable with respect to x and every its
derivative is a bounded continuous function of (t, x). We assert that with probability
one for every r ∈ (0,∞) there exists a (random constant) ε > 0 such that vt (x) ≥ ε

for t ∈ [0, T ] and x ∈ B̄r .

Proof First observe that vt ≥ 0 by the maximum principle. We take an R > 2r and
concentrate on Eq. (1.4) only for x ∈ B2r . Then equation in B2r will still hold if we
change all σ k

t and νk
t outside B2r so that they will vanish outside BR . For simplicity

of notation we assume that σ k = 0 and νk = 0 outside BR for k = 1, . . . , d1 for the
original coefficients.

Then making the same transformations as in the proof of Theorem 2.7 we come to
the conclusion that for almost any ω

(i) Equation (2.19) holds on {(t, x) : t ∈ [0, T ], x ∈ X−1
t (B̄2r )} with v̂tγt in place

of vt .
For each ω this is a deterministic (degenerate) parabolic equation with bounded
coefficients. Furthermore, for almost any ω.

(ii) γt f̂t > 0 and v̂tγt ≥ 0 on � := {(t, x) : t ∈ [0, T ], x ∈ X−1
t (B̄2r )} and γt f̂t , v̂tγt

are continuous on this set.

Now we want to use the maximum principle to show that vt (x) cannot take zero
value in [0, T ] × B̄r whenever ω is such that (i) and (ii) hold. Were the coefficients of
(2.19) continuous in t , this would be just a trivial matter. In our case we still need a
little argument. Assume the contrary: there is a point (t0, x0) ∈ [0, T ] × B̄r such that
vt0(x0) = 0. Obviously, t0 > 0. Then, for y0 = Xt0(x0) we have that (t, y0) ∈ � for
t ≤ t0 and sufficiently close to t0. Furthermore, since v̂t (y0) ≥ 0 for those t , we get

0 = v̂t (y0)γt (y0) +
t0∫

t

γs(y0)

[
d2∑

k=1

L2
σ̄

d1+k
s

v̂s + ĉs v̂s + f̂s

]
(y0) ds

≥
t0∫

t

γs(y0)

[
d2∑

k=1

L2
σ̄

d1+k
s

v̂t0 + ĉs v̂t0 + f̂s

]
(y0) ds + It ,

where It is defined as the difference of the above two integrals. Since v̂t (x) and its
derivatives with respect to x are continuous with respect to t , we have

lim
t↑t0

1

t0 − t
It = 0.
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702 N. V. Krylov

By taking into account that v̂t0(y0) = 0, the first-order derivatives of v̂t0(x) vanish
at y0, and the Hessian is nonnegative at y0, we conclude that

0 ≥ lim
t↑t0

1

t0 − t

t0∫

t

γs f̂s(y0) ds,

which is impossible because the limit is just γt0 f̂t0(y0) > 0. The lemma is proved.

Theorem 2.9 Suppose that Assumption 2.1 is satisfied for all n. Also assume that
there is an r ∈ (0,∞) such that u0(x), ft (x) ≤ 0, and gk

t (x) = 0 for k = 1, . . . , d1
and x �∈ Br . Then there exists a (random finite) constant N independent of f, gk, and
u0 such that (a.s.) for t ∈ [0, T ] and |x | ≥ r we have

ut (x) ≤ N max
s≤t

max
∂ Br

(us)+. (2.20)

Proof Take vt from Lemma 2.8 and set

ρt = max
s≤t

max|x |=r
(ut (x)/vt (x))+.

By Lemma 2.8 the process ρt is finite, nonnegative, increasing, and continuous with
probability one. Furthermore, (ut − ρtvt )+ vanishes on ∂ Br . This along with the fact
that u0(x) = ft (x) ≤ 0 and gk

t (x) = 0 for k = 1, . . . , d1 and x �∈ Br by Theorem 1.2
of [7] implies that ut − ρtvt ≤ 0 in [0, T ] × Bc

R (a.s.), which obviously proves the
theorem.

3 Hypoellipticity

Recall the notation associated with (2.15) and for two smooth R
d -valued functions σ

and γ on R
d set, as usual,

[σ, γ ] = Dγ σ − Dσγ.

Assumption 3.1 Assumption 2.1 (i) is satisfied, Assumption 2.1 (ii) is satisfied for
all n and, for an n, the function u0 is an F0-measurable Hn

2 -valued function on �.

Introduce the collections of R
d -valued functions defined on �×[0, T ]×R

d induc-
tively as L0 = {σ d1+1

t , . . . , σ
d1+d2
t },

Ln+1 = Ln ∪ {[σ d1+k
t , M] : k = 1, . . . , d2, M ∈ Ln}, n ≥ 0.

For any multi-index α = (α1, . . . , αd), αi ∈ {0, 1, . . .}, introduce as usual

Dα = Dα1
1 · · · · Dαd

d , |α| = α1 + · · · + αd .
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Also define BC∞
b as the set of real-valued measurable functions a on �×[0, T ]×R

d

such that for each t ∈ [0, T ] and ω ∈ �, at (x) is infinitely differentiable with respect
to x , and for any ω ∈ � and multi-index α we have

sup
t,x∈[0,T ]×Rd

|Dαat (x)| < ∞.

We denote by Lie n the set of (finite) linear combinations of elements of Ln with
coefficients which are of class BC∞

b . Observe that the vector-field σ 0 is not explicitly
included into Lie n . Finally, fix S ∈ [0, T ), R0 ∈ (0,∞), introduce

G = (S, T ) × BR0 ,

and fix an �0 ∈ F .

Assumption 3.2 For every ω ∈ �0 and ζ ∈ C∞
0 (BR0) there exists an n such that we

have ξ I[S,T ]ζ ∈ Lie n for any ξ ∈ R
d .

The following Theorem 2.4 of [8] will be used a few times. By u here and everywhere
below in this section we mean the normal solution which exists due to Theorem 2.4.

Theorem 3.1 Take s0 ∈ (S, T ), r ∈ (0, R0) and take a ζ ∈ C∞
0 (BR0) such that ζ = 1

on a neighborhood of B̄r . Then

(i) for almost any ω ∈ �0, ut (x) is infinitely differentiable with respect to x for
(t, x) ∈ (S, T ]×BR0 and each derivative is a continuous function in (S, T ]×BR0 .

(ii) for any multi-index α and l such that

2(l − |α| − 2) > d + 1, (3.1)

there exists a (random, finite) constant N , independent of u, f , and gk, such that,
for almost any ω ∈ �0,

sup
(t,x)∈[s0,T ]×Br

|Dαut (x)|2 ≤ N

T∫

S

[
‖ ftζ‖2

Hl
2
+ ‖utζ‖2

Hn
2

]
dt, (3.2)

provided that gk
t ζ I�0 ≡ 0, k = 1, . . . , d1.

If we additionally assume that uS is infinitely differentiable in BR0 for every ω ∈ �0,
then assertion (i) holds true with [S, T ]× BR0 in place of (S, T ]× BR0 , and assertion
(ii) holds true with s0 = S if we add to the right-hand side of (3.2) a constant
(independent of u) times ‖ζuS‖2

Hl+1
2

.

Here is a generalization of the corresponding results of paper [4], where there is
no stochastic terms in the equation. This is a generalization because no continuity
hypothesis in time on the coefficients is imposed. The types of Hörmander’s condition
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imposed in [4] and here coincide. It is worth noting, however, that the result of [4] bears
on the equation formally adjoint to the one we consider when there is no stochastic
terms and no dependence on ω. Such equations have the same form as ours and have
the same Lie n .

Recall that
0

Hn
2(Br ) is introduced before Assumption 2.1.

Theorem 3.2 Suppose that S = 0, take s0 ∈ (0, T ), r ∈ (0, R0), and suppose that

u0 ∈ 0

Hn
2(Br ). Then, for almost any ω ∈ �0, u is infinitely differentiable with respect

to x for (t, x) ∈ ([s0, T ] × R
d) ∪ ([0, T ] × Bc

R0
) and each derivative is a bounded

continuous function in ([s0, T ] × R
d) ∪ ([0, T ] × Bc

R0
).

Proof Take r < r1 < r2 < R and observe that Br2\Br1 can be covered by a finite
number of balls lying inside BR0 \ Br , where u0 = 0. By applying Theorem 3.1 to each
such ball we conclude that, for almost any ω ∈ �0, ut is infinitely differentiable with
respect x in [0, T ] × (Br2\Br1) and each its derivatives is bounded and continuous in
[0, T ] × (Br2\Br1).

Then take a ζ ∈ C∞
0 (Br2) such that ζ = 1 in a neighborhood of B̄r1 and set

η = 1 − ζ . In this case utη satisfies an equation similar to (1.4) but with different f
and gk which are obtained by adding to the original ones ut or its first-order derivatives
multiplied by C∞

0 (Rd) functions which vanish outside Br2\Br1 . The initial condition
for utη is obviously zero. By Theorem 2.4 and embedding theorems we conclude that,
for almost any ω ∈ �, utη is infinitely differentiable with respect to x for (t, x) ∈
[0, T ] × R

d and each derivative is a bounded continuous function in [0, T ] × R
d .

The function utζ satisfies an equation with the properties similar to those of the
equation for utη and by Theorem 3.1, for almost any ω ∈ �0, it is infinitely differen-
tiable with respect to x for (t, x) ∈ [s0, T ] × BR0 and each derivative is a continuous
function in [s0, T ] × BR0 . This proves the present theorem since ut = utη + utζ and
ζ = 0 outside BR0 .

4 Applications to filtering problems

Here we come back to system (1.1). Let K , δ > 0 be some fixed constants. We denote
by θ and � the matrix-valued functions having θk and �k , respectively, as their kth
columns.

Assumption 4.1 The functions b, θ , B, and � are Borel measurable and bounded
functions of their arguments. Each of them satisfies the Lipschitz condition with respect
to z with constant K . These functions are infinitely differentiable with respect to x
and each derivative of any order is a bounded function of (t, z).

Assumption 4.2 For all ξ ∈ R
d ′

and (t, y)

|�∗(t, y)ξ | ≥ δ|ξ |.
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Notice that in [3] and [2] this condition is satisfied since there � = (0, I ), where I
is the unit d ′ × d ′-matrix. In [1] and [15] this nondegeneracy condition is not imposed
and the filtering density is not characterized as a solution of an SPDE.

Remark 4.1 Owing to Assumption 4.2, d ′ ≤ d1, the symmetric matrix ��∗ is invert-
ible, and

� := (��∗)−
1
2 (4.1)

is a bounded function of (t, y).

Assumption 4.3 The random vector z0 = (x0, y0) is independent of the process wt .

Next, we introduce a few more notation. Let

�t = �(t, yt ), �t = �(t, yt ),

at (x) = 1

2
θθ∗(t, x, yt ), bt (x) = b(t, x, yt ), Bt (x) = B(t, x, yt ),

θt (x) = θ(t, x, yt ), σt (x) = −θt (x)�∗
t �t , βt (x) = �t Bt (x).

The columns σ k
t (x), k = 1, . . . , d1, of the matrix-valued function σt (x) will play

the role of σ k
t (x), k = 1, . . . , d1, in the setting of Sect. 2. For i = 1, . . . , d1 the

vector-valued functions σ
d1+i
t (x) are defined as the i th columns of

θt (x) − θt (x)�∗
t �

2
t �t

(so that d2 = d1 in the notation of Sect. 2, σ 0
t will be introduced later). Observe that

if d ′ = d1, then �t takes values in the set of square d1 × d1 matrices and owing
to Assumption 4.2 is nondegenerate. It follows that �∗�2� is the identity operator
for all (t, y). In that case σ

d1+i
t ≡ 0, i = 1, . . . , d1, and there is no hope to get

any smoothness of the posterior distribution of xt unless the initial distribution has a
smooth density. Therefore, we impose the following.

Assumption 4.4 We have d ′ < d1 and, for an S ∈ [0, T ) and R0 ∈ (0,∞), Assump-
tion 3.2 is satisfied.

Remark 4.2 In a very popular so-called triangular scheme in which � = (0, �̂), where
�̂ is a nondegenerate square d ′ × d ′-matrix valued function, one can easily check that
for i = 1, . . . , d1 − d ′

σ
d1+i
t (x) = θ i

t (x)

and σ
d1+i
t (x) ≡ 0 for i = d1 − d ′ + 1, . . . , d1.

Remark 4.3 If the system (1.1) has a triangular form, say, as in Remark 4.2 with
coefficients that are independent of t and are infinitely differentiable with respect to
(x, y) a wider sets Ln+1, n ≥ 0, are allowed in [1] in the analog of our Assumption 3.2.

123



706 N. V. Krylov

Introduce d + d ′-dimensional vector function Y i (x, y), i = 1, . . . , d1, as the i th
column of the matrix

(
θ(x, y)

�(y)

)
.

Fix a point z0 = (x0, y0) ∈ R
d × R

d ′
and denote by Tz0 the subspace of R

d × R
d ′

generated by Y i (z0), i = 1, . . . , d1 − d ′, and by the Lie brackets at z0 of Y i (z),
i = 1, . . . , d1, in which at least one of Y i (z), i = 1, . . . , d1 − d ′ appears. Then the
requirement in [1] is that Tz0 = R

d (more precisely Tz0 = R
d × {0}).

If, in addition, B is independent of x , then in [15] the requirement in [1] is further

relaxed to include

(
b
B

)
into the set of vector-fields participating in forming the Lie

brackets.
In our situation adding these vector-fields is impossible because our coefficients

are only Lipschitz continuous with respect to y.

Introduce F y
t as the completion of σ {ys : s ≤ t} and denote by P0 the regular

version of the conditional distribution of x0 given y0.

Theorem 4.4 Take an s0 ∈ (S, T ]. Let n be a negative integer such that n < −1−d/2.
Then there exists a function π of class Hn+1

2 (T,F y· ), such that

(i) πt is a continuous Hn
2 -valued function on [0, T ],

(ii) for almost any ω ∈ �0, πt (x) is infinitely differentiable with respect to x for
(t, x) ∈ [s0, T ] × BR0 and each derivative is a continuous function in [s0, T ] ×
BR0 ,

(iii) if S = 0 and the closed support of P0 is a subset of BR0 , then, for almost
any ω ∈ �0, πt (x) is infinitely differentiable with respect to x for (t, x) ∈
([s0, T ] × R

d) ∪ ([0, T ] × Bc
R0

) and each derivative is a bounded continuous

function in ([s0, T ] × R
d) ∪ ([0, T ] × Bc

R0
),

(iv) for any f ∈ C∞
0 (Rd) and t ∈ [0, T ] with probability one

(πt , f ) = E{ f (xt ) | F y
t }.

Before proving the theorem we prove the following.

Lemma 4.5 There exists an Hn+1
2 -valued weakly continuous F y

t -adapted process πt

such that assertion (iv) of Theorem 4.4 holds.

Proof Take an f ∈ C∞
0 (Rd). By the famous Fujisaki–Kallianpur–Kunita theorem the

process E{ f (xt ) | F y
t } has a continuous modification, which we denote by Pt ( f ).

Then a well-known procedure (see, for instance, Chapter 5, §3.3 [16] or the Appendix
in [9]) allows us to further modify, if necessary, Pt ( f ), so that the new modification
for which we use the same notation

(i) is continuous in t and F y
t -adapted,
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(ii) for any ω ∈ �, t ≥ 0, and any nonnegative f ∈ C∞
0 (Rd) we have

0 ≤ Pt ( f ) ≤ sup f,

(iii) for any ω ∈ �, t ≥ 0, f, g ∈ C∞
0 (Rd), and numbers α, β we have

Pt (α f + βg) = αPt ( f ) + β Pt (g).

Then by Riesz–Markov theorem, there exists a measure-valued function Pt (dx)

with Pt (R
d) ≤ 1 such that

Pt ( f ) =
∫

Rd

f (x) Pt (dx)

for any ω ∈ �, t ≥ 0, and f ∈ C∞
0 (Rd).

By recalling that finite measures on R
d belong to Hn+1

2 , we identify Pt (dx) with
a generalized function πt ∈ Hn+1

2 . Observe that

‖πt‖Hn+1
2

≤ N Pt (R
d),

where N is the embedding constant. This and the continuity of (πt , f ) for f ∈ C∞
0 (Rd)

shows that πt is weakly continuous as a Hn+1
2 -valued function. All other assertions

of the lemma follow from the above. The lemma is proved.

Remark 4.6 If f (t, x, y) is a Borel bounded function, then for any t ≥ 0 with proba-
bility one

E{ f (t, xt , yt ) | F y
t } =

∫

Rd

f (t, x, yt ) Pt (dx), (4.2)

where the right-hand side is a predictable function with respect to {F y
t }.

Indeed, we have seen that

E{ f (xt ) | F y
t } =

∫

Rd

f (x) Pt (dx)

(a.s.) for any t ≥ 0 and f ∈ C∞
0 (Rd), where the right-hand side is F y

t -predictable.
This implies our claim in an absolutely standard way.
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Proof of Theorem 4.4 Set

Lt (x) = ai j
t (x)Di j + bi

t (x)Di ,

L∗
t (x)ut (x) = Di j (a

i j
t (x)ut (x)) − Di (b

i
t (x)ut (x)),

(4.3)

�k
t (x)ut (x) = βk

t (x)ut (x) + σ ik
t (x)Di ut (x),

�k∗
t (x)ut (x) = βk

t (x)ut (x) − Di (σ
ik
t (x)ut (x))

(4.4)

where t ∈ [0,∞), x ∈ R
d , k = 1, . . . , d1, and as above we use the summation

convention over all “reasonable” values of repeated indices, so that the summation in
(4.3) and (4.4) is done for i, j = 1, . . . , d (whereas in (4.5) for k = 1, . . . , d1).

By the Fujisaki–Kallianpur–Kunita theorem, Lemma 4.5, and Remark 4.6 for any
f ∈ C∞

0 (Rd) with probability one for all t ≥ 0

(πt , f ) = (π0, f ) +
t∫

0

(πs, Ls f ) ds +
t∫

0

(πs,�
k
s f − β̄k

s f ) dŵk
s , (4.5)

where (ŵ1
t , . . . , ŵ

d1
t ) is a standard Wiener process with respect to the filtration {F y

t }
and

β̄t =
∫

Rd

β(t, x, yt ) Pt (dx).

By a classical result about the Itô formula for the squared norm of Banach space-
valued processes, Eq. (4.5) implies that (a.s.) πt is a continuous Hn

2 -valued process
(see Remark 2.2). Next, elementary computations show that

at = (1/2)

2d1∑
k=1

σ k
t σ k∗

t , L∗
t = (1/2)

2d1∑
k=1

L2
σ k

t
+ Lσ 0

t
+ ct ,

where

σ 0
t = (1/2)Lσ k

t
σ k

t + (divσ k
t )σ k

t − bt , ct = Di j a
i j
t − divbt

and for k = 1, . . . , d1

�k∗
t − β̄k

t = Lσ k
t

+ νk
t ,

where

νk
t = βk

t − β̄k
t − divσ k

t .
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After that the remaining assertion (ii) and (iii) of the present theorem follows directly
from Theorems 3.1 and 3.2. The theorem is proved.

In the following two theorems we, actually, speak about πt (y, x) which is defined
as πt (x) when P0 is the δ-function concentrated at y. These theorems are just
direct consequences of Theorems 5.4 and 5.5 and of what was said in the proof of
Theorem 4.4. It is worth drawing the reader’s attention to the fact that no continuity
with respect to (t, y, x) is claimed in assertions (i) and (iv) of Theorem 4.7 and no
continuity with respect to y is claimed in assertion (iii).

Theorem 4.7 Assume that �0 = �, S = 0 and take r ∈ (0, R0) and s0 ∈ (0, T ).
Then there exists a nonnegative function pt (y, x) = pt (ω, y, x) defined for

(ω, t, y, x) ∈ � × (0, T ] × Br × R
d

such that

(i) it is infinitely differentiable with respect to y in Br , each of its y-derivative of
any order is a bounded function of (t, y, x) ∈ [s0, T ] × Br × R

d for any ω ∈ �

and multi-index α,
(ii) for any probability distribution P0, which is concentrated in Br , for almost any

ω ∈ �, we have

πt (x) =
∫

Br

pt (y, x) P0(dy)

for all (t, x) ∈ (0, T ] × R
d ,

(iii) for any y ∈ Br , for almost any ω ∈ �, for any t ∈ (0, T ] and multi-index α

the function Dα
y pt (y, x) is infinitely differentiable with respect to x and each of

its x-derivative of any order is a bounded function of (t, x) ∈ ([s0, T ] × R
d) ∪

((0, T ] × Bc
R0

),
(iv) the function pt (y, x) is infinitely differentiable with respect to (x, y) ∈ Br × Br

and each its derivative of any order is a bounded function of (t, y, x) ∈ [s0, T ]×
B2

r for almost any ω ∈ �.

We have somewhat better properties of pt (x, y) for a special class of filtering
problems.

Theorem 4.8 Assume that S > 0, take r ∈ (0, R0), s0 ∈ (S, T ) and assume that
there exists an R ∈ (0,∞) such that, if |x | ≥ R, then both σt (x) = 0 and B(t, x, yt )

is independent of x. Then there exists a nonnegative function pt (x, y) = pt (ω, y, x)

defined for

(ω, t, y, x) ∈ �0 × (S, T ] × R
d × Br

such that
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(i) it is infinitely differentiable with respect to (y, x) ∈ R
d × Br , each its derivative of

any order is a bounded function of (t, y, x) ∈ [s0, T ]×R
d × Br and the functions

‖pt (·, x)‖l are bounded on [s0, T ] × Br for any ω ∈ �0 and l ≥ 0,
(ii) for almost any ω ∈ �0 we have

πt (x) =
∫

Rd

pt (y, x) P0(dy)

for all (t, x) ∈ (S, T ] × Br .

Remark 4.9 An example when σt = 0 is given by the block-diagonal matrix

(
θt

�t

)
=

(
θ ′

t 0
0 �′

t

)
,

where θ ′
t and �′

t are d × (d1 − d ′)- and d ′ × d ′-matrix valued functions, respectively.

5 Fundamental solutions of SPDEs

Here we continue our investigation of solutions of general equations (1.4) under the
assumptions stated in Sect. 3. We also assume that

gk ≡ 0, k = 1, . . . , d1.

Here again u is the normal solution from Theorem 2.4 and n is from Assumption 2.1
(iii).

Lemma 5.1 Take an R ∈ [0,∞), s0 ∈ (S, T ), r ∈ (0, R0), and assume that σ k
t = 0

and Dνk
t = 0 outside BR for any k = 1, . . . , d1, t , and ω. Then, for any l and

multi-index α, such that

2(l − |α| − 2) > d + 1, (5.1)

there exists a (random, finite) constant N independent of u such that, for almost any
ω ∈ �0,

sup
(t,x)∈[s0,T ]×Br

|Dαut (x)|2 ≤ N‖u0‖2
n + N

T∫

0

‖ ft‖2
l dt. (5.2)

Proof Obviously, it suffices to concentrate on n ≤ l. Take a ζ ∈ C∞
0 (BR0) such that

ζ = 1 in a neighborhood of B̄r . Then by Theorem 3.1 for any l and multi-index α

satisfying (5.1), there exists a (random, finite) constant N independent of u such that,
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for almost any ω ∈ �0,

sup
(t,x)∈[S,T ]×Br

|Dαut (x)|2 ≤ N

T∫

S

[
‖ ftζ‖2

l + ‖utζ‖2
n

]
dt. (5.3)

Owing to Theorem 2.7

‖utζ‖2
n ≤ N‖ut‖2

n ≤ N‖u0‖2
n + N

T∫

0

‖ fs‖2
n ds

and this proves the lemma.

Lemma 5.2 In the setting of of Lemma 5.1 suppose that S = 0 and u0 is infinitely
differentiable in BR0 for every ω ∈ �0. Then for any ζ ∈ C∞

0 (BR0) such that ζ = 1 in
a neighborhood of B̄r , any l and multi-index α satisfying (5.1), there exists a (random,
finite) constant N independent of u such that, for almost any ω ∈ �0,

sup
(t,x)∈[0,T ]×Br

|Dαut (x)|2 ≤ N‖ζu0‖2
l+1 + N

T∫

0

‖ ft‖2
l dt + N‖u0‖2

n .

This lemma is derived from Theorems 3.1 and 2.7 in the same way as Lemma 5.1.

Theorem 5.3 Assume that �0 = �, S = 0 and take s0 ∈ (0, T ) and 0 < r < r1 <

r2 < R0. Suppose that u0 ∈ 0

Hn
2(Br ). Finally, let ft (x) = 0 for |x | ≥ r .

Then for any l and multi-index α satisfying (5.1), and n ∈ R, there exists a (random,
finite) constant N independent of u such that, for almost any ω ∈ �,

sup
(t,x)∈�

|Dαut (x)|2 ≤ N J, (5.4)

where

� = ([0, T ] × Br2

) \ ([0, s0] × Br1

)
, J =

T∫

0

‖ ft‖2
l dt + N‖u0‖2

n .

Proof We take r2 < r3 < R0, ζ ∈ C∞
0 (Br3), and η ∈ C∞

0 (Br2) such that ζ = 1 in a
neighborhood of B̄r2 and η = 1 in a neighborhood of B̄r1 .

As in the proof of Theorem 3.2 by covering Br2\Br1 with appropriate balls and
applying Theorem 3.1 we see that, for almost any ω ∈ �,

sup
(t,x)∈[0,T ]×(Br2 \Br1 )

|Dαut (x)|2 ≤ N

T∫

0

[‖ ft‖2
l + ‖ζut‖2

n] dt,
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where the (random) constant N is independent of u, f . All such constants will be
denoted by N . Furthermore, by the same theorem

sup
(t,x)∈[s0,T ]×Br2

|Dαut (x)|2 ≤ N

T∫

0

[‖ ft‖2
l + ‖ζut‖2

n] dt.

It follows that to prove (5.4), it suffices to show that there exists a (random, finite)
constant N independent of u such that, for almost any ω ∈ �,

T∫

0

‖ζut‖2
n dt ≤ N J. (5.5)

Observe that, obviously, we may assume that n < 0, 2|n| > d.

Set

Pt = ‖utζ‖2
n, Qt = ‖utη‖2

n

and observe that

Pt ≤ 2Qt + 2‖ut (ζ − η)‖2
n,

where, as in the proof of Theorem 3.2, for almost any ω ∈ �, ut (ζ − η) is infinitely
differentiable with respect to x for (t, x) ∈ [0, T ] × R

d and each derivative is a
bounded continuous function in [0, T ] × R

d . In particular, for almost any ω ∈ �,

‖ut (ζ − η)‖n ≤ N sup
[0,t]×Rd

|us(ζ − η)(x)| ≤ N sup
[0,t]

sup
Bc

r1

|us(x)|

where the first inequality holds by embedding theorems since n < 0 and 2|n| > d.
Next, we take an infinitely differentiable function κ(x) ≥ 0 such that κ(x) = 1 for
|x | ≥ r1 and κ(x) = 0 for |x | ≤ r and apply Theorems 3.1 and 2.9 (for this we needed
the condition that �0 = �) to the function utκ to see that

sup
[0,t]

sup
Bc

r1

|us(x)| ≤ N sup
[0,t]

sup
|x |=r1

|us(x)|,

Pt ≤ 2Qt + N sup
[0,t]

sup
|x |=r1

|us(x)|2.
(5.6)

To continue, we need an auxiliary function. Take a ξ ∈ C∞
0 (B2R0) such that ξ = 1

on BR0 and define vt as a normal Hn
2 (T )-solution of the equation

dvt = (Ltvt + ctvt + ft ) dt + (Lξσ k
t
vt + ξνk

t vt ) dwk
t
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with initial condition u0. By Theorem 2.7

sup
t≤T

‖vt‖2
n ≤ N J. (5.7)

By Theorem 3.1, for almost any ω ∈ �,

sup
[0,T ]

sup
|x |=r1

|vs(x)|2 ≤ N

T∫

0

[‖ ft‖2
l + ‖vt‖2

n] dt,

which after being combined with (5.7) shows that

sup
[0,T ]

sup
|x |=r1

|vs(x)|2 ≤ N J

and

sup
[0,t]

sup
|x |=r1

|us(x)|2 ≤ 2 sup
[0,t]

sup
|x |=r1

|us(x) − vs(x)|2 + N J

for almost any ω ∈ �.
By applying Theorem 3.1 to ut −vt we conclude that for t ∈ [0, T ] and almost any

ω ∈ �

sup
[0,t]

sup
Br1

|us − vs |2 ≤ N

t∫

0

‖η(us − vs)‖2
n ds. (5.8)

Hence,

sup
[0,t]

sup
|x |=r1

|us(x)|2 ≤ N

t∫

0

‖η(us − vs)‖2
n ds + N J ≤ N

t∫

0

‖ηus‖2
n ds + N J,

which along with (5.6) show that

Pt ≤ 2Qt + N

t∫

0

‖ηus‖2
n ds + N J ≤ 2Qt + N

t∫

0

Ps ds + N J. (5.9)

Then

Qt ≤ 2‖(ut − vt )η‖2
n + 2‖ηvt‖2

n ≤ N sup
Br2

|ut − vt |2 + N J
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and similarly to (5.8)

sup
Br2

|ut − vt |2 ≤ N

t∫

0

‖ζ(us − vs)‖2
n ds ≤ N

t∫

0

Ps ds + N J.

By coming back to (5.9) and using Gronwall’s inequality we conclude Pt ≤ N J
and this proves (5.5) and the theorem.

In the following theorem we prove the existence of a kernel for our SPDE. It is worth
drawing the reader’s attention to the fact that no continuity with respect to (t, y, x) is
claimed in (i) and (iv) and no continuity with respect to y is claimed in (iii).

Theorem 5.4 Assume that �0 = �, S = 0, and take r ∈ (0, R0) and s0 ∈ (0, T ).
Then there exists a nonnegative function pt (y, x) = pt (ω, y, x) defined for

(ω, t, y, x) ∈ � × (0, T ] × Br × R
d

such that

(i) it is infinitely differentiable with respect to y in Br , each of its y-derivative of
any order is a bounded function of (t, y, x) ∈ [s0, T ] × Br × R

d , ω ∈ �,

(ii) if u0 ∈ 0

Hn
2(Br ) and f ≡ gk ≡ 0, k = 1, . . . , d1, then, for almost any ω ∈ �,

ut (x) coincides (as a generalized function with respect to x) with

(u0, pt (·, x)) =
∫

Br

u0(y)pt (y, x) dy (5.10)

for all (t, x) ∈ (0, T ] × R
d .

(iii) for any y ∈ Br , for almost any ω ∈ �, for any t ∈ (0, T ] and multi-index α

the function Dα
y pt (y, x) is infinitely differentiable with respect to x and each of

its x-derivative of any order is a bounded and continuous function of (t, x) ∈
([s0, T ] × R

d) ∪ ((0, T ] × Bc
R0

),
(iv) the function pt (y, x) is infinitely differentiable with respect to (x, y) ∈ Br × Br

and each its derivative of any order is a bounded function of (t, y, x) ∈ [s0, T ]×
B2

r for any ω ∈ �.

Proof Let Z+ = {ζ1, ζ2, . . .} be a countable subset of C∞
0 (Br ) consisting of non-

negative functions such that Z+ is dense in the sup-norm in the subset of C∞
0 (Br )

consisting of nonnegative functions. Also set Z = Z+ − Z+.

For ζ ∈ 0

H−l
2 (Br ), l ≥ 0, denote by ut [ζ ](x) the normal solution of (1.4) with

initial condition ζ and with f ≡ gk ≡ 0, k = 1, . . . , d1. By Theorems 5.3 and 2.9 for
any l ≥ 0 and t ∈ (0, T ], there exists a (random) constant Nt (l) such that, for almost

any ω ∈ �, for any x ∈ R
d and ζ ∈ 0

H−l
2 (Br ) we have

|ut [ζ ](x)| ≤ Nt (l)‖ζ‖−l , (5.11)
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and if ζ ∈ Z+ then by the maximum principle

ut [ζ ](x) ≥ 0. (5.12)

Furthermore, owing to uniqueness for any collection of rational numbers p1, p2, . . .

only finite number of which is different from zero, for almost any ω ∈ �,

∣∣∣∣∣
∑

i

pi ut [ζi ](x)

∣∣∣∣∣ =
∣∣∣∣∣ut

[∑
i

piζi

]
(x)

∣∣∣∣∣ ≤ Nt (l)

∥∥∥∥∥
∑

i

piζi

∥∥∥∥∥
−l

. (5.13)

Obviously, one can choose Nt (l) so that it is a monotone function of t . Owing to
this and the fact that other expressions entering (5.13) and (5.12) are continuous in
(t, x) for almost any ω ∈ � and the fact that the set of rational numbers is countable,
there is a set �′ ⊂ � with P(�\�′) = 0 such that (5.13) is satisfied for any l, any
collection of rational numbers p1, p2, . . ., only finite number of which is different
from zero, any ω ∈ �′, and any (t, x) ∈ (0, T ] × R

d , and (5.12) is satisfied for any
ω ∈ �′ and any (t, x) ∈ (0, T ] × R

d and ζ ∈ Z+. By setting ut [ζ ](x) = 0 on �\�′,
we may assume that �′ = �.

By a theorem of Hahn (see, for instance, Section II.5 of [5] (where set X = H−l
2 ,

αi = pi , ci = ut [ζi ](x), xi = ζi ), for any x ∈ R
d , t ∈ (0, T ], l ≥ 0, and ω ∈ � there

exists a linear functional Qt [·](x) on H−l
2 such that

Qt [ζi ](x) = ut [ζi ](x), ∀i, ‖Qt [·](x)‖ ≤ Nt (l).

The general form of linear functionals Q on H−l
2 is well known and for smooth

elements f ∈ H−l
2 it is given by

Q( f ) =
∫

Rd

f (x)p(x) dx,

where p ∈ Hl
2 and ‖p‖l = ‖Q‖.

Hence, for any x ∈ R
d , t ∈ (0, T ], l ≥ 0, and ω ∈ � there exists a function

pt (·, x) ∈ Hl
2 such that

‖pt (·, x)‖l ≤ Nt (l),
∫

Rd

ζi (y)pt (y, x) dy = ut [ζi ](x) ∀i. (5.14)

In principle pt (y, x) is not unique, it might be changed for y �∈ Br . In addition it
may depend on l. To choose a better representative, without losing generality we take
l = 2m, where m = 1, 2, . . ., so that

‖u‖l = ‖(1 − �)mu‖0
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and then set pt (y, x) = 0 for y �∈ Br . Then the new pt (·, x) for which we keep the
same notation will satisfy the second relation in (5.14), hence will be independent of
l. Also, owing to (5.14) and the choice of l, for thus modified pt (y, x) the functions

∫

Br

|Dα
y pt (y, x)|2 dy

are bounded on [s0, T ] × R
d for any ω ∈ � and multi-index α. Since this holds for

any multi-index, applying embedding theorems we obtain assertion (i). The second
relation in (5.14) along with (5.12) and the choice of {ζi } implies that pt (y, x) ≥ 0
for any x ∈ R

d , y ∈ Br , t ∈ (0, T ], and ω ∈ �.

The relations in (5.14), and the fact that Z is dense in
0

Hn
2(Br ) imply assertion

(ii). For almost all ω ∈ � the expressions in (5.10) are infinitely differentiable with
respect to x and each of the derivatives is bounded and continuous in ([s0, T ]×R

d)∪
([0, T ] × Bc

R0
) by Theorem 3.2 if u0 ∈ 0

Hn
2(Br ). This proves assertion (iii) if we set

u0 = Dαδy , where δy is the delta-function concentrated at y ∈ Br .
To prove assertion (iv) observe that, owing to Theorem 5.3, for ζ ∈ Z we can

modify the functions ut [ζ ](x), if necessary, in such a way that for any ω ∈ � and
t ∈ (0, T ] they will be infinitely differentiable with respect to x in Br and for any
multi-index α and l > 0 satisfy

sup
Br

|Dαut [ζ ](x)| ≤ Nt (|α|, l)‖ζ‖−l , (5.15)

where Nt (|α|, l) are independent of ζ . In particular, for x, x ′, x ′′ ∈ Br and ζ, ζ ′, ζ ′′ ∈
Z

|ut [ζ ](x ′) − ut [ζ ](x ′′)| ≤ Nt (1, l)‖ζ‖−l |x ′ − x ′′|,
|ut [ζ ′](x) − ut [ζ ′′](x)| ≤ Nt (0, l)‖ζ ′ − ζ ′′‖−l .

(5.16)

Since Z is dense in
0

H−l
2 (Br ) and (5.14) holds, estimates (5.16) hold for all

ζ, ζ ′, ζ ′′ ∈ 0

H−l
2 (Br ), which after taking an appropriate l and ζ, ζ ′, ζ ′′ as δ-functions

show that pt (x, y) is a continuous function of (x, y) on B2
r .

Estimate (5.15) also implies that the generalized derivatives of (ζ, pt (·, x)) of order

|α| are bounded on Br by the right-hand side of (5.15) for any ζ ∈ 0

H−l
2 (Br ). Since

this holds for any α and (ζ, pt (·, x)) is continuous with respect to x ∈ Br (owing to
(5.16)), the generalized derivatives are, actually, usual ones, which are bounded and
continuos.

By taking ζ = Dβ
y δy in (5.15), we find that the usual (and hence generalized)

functions Dα
x [Dβ

y pt (y, x)] are bounded for (x, y) ∈ B2
r . It follows that pt (y, x) admits

a modification with respect to (y, x) which is infinitely differentiable. However, the
modification coincides with pt (y, x) on B2

r since pt (y, x) is continuous there.
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The asserted boundedness of the derivatives of pt (y, x) is easily derived from the
above argument. The theorem is proved.

In the following theorem we assert the regularity of pt (y, x) not only for y ∈ Br

but for all y ∈ R
d albeit for x ∈ Br , the latter being of course inevitable. However

the result is proved under a somewhat restrictive assumption. This assumption arose
because of our inability to control ‖ut‖n through ‖u0‖n times a (random) constant
independent of u0.

Theorem 5.5 Suppose that S > 0, take an R ∈ [0,∞), r ∈ (0, R0), s0 ∈ (S, T ), and
assume that σ k

t = 0 and Dνk
t = 0 outside BR for any k = 1, . . . , d1, t ∈ [0, T ], and

ω ∈ �. Then there exists a nonnegative function pt (y, x) = pt (ω, y, x) defined for

(ω, t, y, x) ∈ �0 × (S, T ] × R
d × Br

such that

(i) it is infinitely differentiable with respect to (y, x) ∈ R
d × Br , each its derivative of

any order is a bounded function of (t, y, x) ∈ [s0, T ]×R
d × Br and the functions

‖pt (·, x)‖l are bounded on [s0, T ] × Br for any ω ∈ �0 and l ≥ 0,
(ii) if f ≡ gk ≡ 0, k = 1, . . . , d1, then (a.s.) on �0

ut (x) =
∫

Rd

pt (y, x)u0(y) dy

for all (t, x) ∈ (S, T ] × Br .

Proof It suffices to repeat the proof of Theorem 5.4 using the same notation as there,
replacing Z+ with a countable subset of C∞

0 (Rd), and using Lemma 5.1 to conclude
that for any and l ≥ 0 and t ∈ (S, T ] there exists a (random) constant Nt (l) such that,
for any ζ ∈ H−l

2 and x ∈ Br , estimate (5.11) holds for almost any ω ∈ �0. After that
the proof goes almost exactly the same way as that of Theorem 5.4. The theorem is
proved.

Acknowledgments The author is sincerely grateful to the referee for a few comments which helped
improve the presentation.
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