Reactive trajectories and the transition path process

Jianfeng Lu • James Nolen

Received: 5 March 2013 / Revised: 18 November 2013 / Published online: 19 January 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract

We study the trajectories of a solution X_{t} to an Itô stochastic differential equation in \mathbb{R}^{d}, as the process passes between two disjoint open sets, A and B. These segments of the trajectory are called transition paths or reactive trajectories, and they are of interest in the study of chemical reactions and thermally activated processes. In that context, the sets A and B represent reactant and product states. Our main results describe the probability law of these transition paths in terms of a transition path process Y_{t}, which is a strong solution to an auxiliary SDE having a singular drift term. We also show that statistics of the transition path process may be recovered by empirical sampling of the original process X_{t}. As an application of these ideas, we prove various representation formulas for statistics of the transition paths. We also identify the density and current of transition paths. Our results fit into the framework of the transition path theory by Weinan and Vanden-Eijnden.

Keywords Transition path process • Reactive trajectory • Stochastic differential equations

Mathematics Subject Classification 60H10 60H30

[^0]
1 Introduction

In this article we study solutions $X_{t} \in \mathbb{R}^{d}$ of the Itô stochastic differential equation

$$
\begin{equation*}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sqrt{2} \sigma\left(X_{t}\right) \mathrm{d} W_{t}, \tag{1.1}
\end{equation*}
$$

where $\left(W_{t}, \mathcal{F}_{t}^{W}\right)$ is a standard Brownian motion in \mathbb{R}^{d}, defined on a probability space ($\Omega, \mathcal{F}, \mathbb{P}$). This diffusion process in \mathbb{R}^{d} has generator

$$
L u=\operatorname{tr}\left(a \nabla^{2} u\right)+b \cdot \nabla u,
$$

where $a:=\sigma \sigma^{\mathrm{T}}$ is a symmetric matrix. We suppose that $\sigma(x)$ is smooth and that $a(x)$ is uniformly positive definite and bounded:

$$
\begin{equation*}
\lambda|\xi|^{2} \leq\langle\xi, a(x) \xi\rangle \leq \Lambda|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{d}, \quad \forall x \in \mathbb{R}^{d} \tag{1.2}
\end{equation*}
$$

holds for some $\Lambda>\lambda>0$. Although the vector field b may not be bounded, we suppose that b is smooth and satisfies conditions that guarantee the ergodicity of the Markov process X_{t} and the existence of a unique invariant probability distribution $\rho(x)>0$ satisfying the adjoint equation

$$
\begin{equation*}
L^{*} \rho=\left(a_{i j}(x) \rho(x)\right)_{x_{i} x_{j}}-\nabla \cdot(b(x) \rho(x))=0 . \tag{1.3}
\end{equation*}
$$

We also assume that for some $\alpha>1$,

$$
\begin{equation*}
\sup _{|x|<R} \mathbb{E}\left[\tau_{1}^{\alpha} \mid X_{0}=x\right]<+\infty \tag{1.4}
\end{equation*}
$$

for all $R>0$, where τ_{1} is the first hitting time of X_{t} to the unit ball $\left\{z \in \mathbb{R}^{d}| | z \mid \leq 1\right\}$. For example, it follows from Theorems 2 and 3 of [34] that these assumptions will hold if

$$
\limsup _{m \rightarrow+\infty} \sup _{|x|=m} x \cdot b(x)<-r
$$

for some $r>1+(d / 2)$.
Suppose that $A, B \subset \mathbb{R}^{d}$ are two bounded open sets with smooth boundary and such that \bar{A} and \bar{B} are disjoint. Because the process is ergodic, X_{t} will visit both A and B infinitely often. Inspired by the transition path theory developed by Weinan and Vanden-Eijnden [15,24] (see also the review article [16]), our main interest is in those segments of the trajectory $t \mapsto X_{t}$ which pass from A to B. These transition paths and are defined precisely as follows. First, for $k \geq 0$, define the hitting times $\tau_{A, k}^{+}$and $\tau_{B, k}^{+}$inductively by

$$
\begin{aligned}
& \tau_{A, 0}^{+}=\inf \left\{t \geq 0 \mid X_{t} \in \bar{A}\right\} \\
& \tau_{B, 0}^{+}=\inf \left\{t>\tau_{A, 0}^{+} \mid X_{t} \in \bar{B}\right\},
\end{aligned}
$$

Fig. 1 Illustration of a trajectory with entrance and exit times. The transition path from A to B is marked in red (color figure online)
and for $k \geq 0$,

$$
\begin{aligned}
& \tau_{A, k+1}^{+}=\inf \left\{t>\tau_{B, k}^{+} \mid X_{t} \in \bar{A}\right\} \\
& \tau_{B, k+1}^{+}=\inf \left\{t>\tau_{A, k+1}^{+} \mid X_{t} \in \bar{B}\right\}
\end{aligned}
$$

We will call these the entrance times. Then define the exit times

$$
\begin{aligned}
& \tau_{A, k}^{-}=\sup \left\{t<\tau_{B, k}^{+} \mid X_{t} \in \bar{A}\right\} \\
& \tau_{B, k}^{-}=\sup \left\{t<\tau_{A, k+1}^{+} \mid X_{t} \in \bar{B}\right\} .
\end{aligned}
$$

These times are all finite with probability one, and $\tau_{A, k}^{+} \leq \tau_{A, k}^{-}<\tau_{B, k}^{+} \leq \tau_{B, k}^{-}<$ $\tau_{A, k+1}^{+}$for all $k \geq 0$ (see Fig. 1). If $t \in\left[\tau_{A, k}^{-}, \tau_{B, k}^{+}\right]$for some k, we say that the path X_{t} is $A \rightarrow B$ reactive. Let $\Theta=(A \bar{\cup} B)^{c}$, and hence $\partial \Theta=\partial A \cup \partial B$. For $k \in \mathbb{N}$, the continuous process $Y^{k}:[0, \infty) \rightarrow \bar{\Theta}$ defined by

$$
\begin{equation*}
Y_{t}^{k}=X_{\left(t+\tau_{A, k}^{-}\right) \wedge \tau_{B, k}^{+}} \tag{1.5}
\end{equation*}
$$

is the k th $A \rightarrow B$ reactive trajectory or transition path. Observe that $Y_{0}^{k}=X_{\tau_{A, k}^{-}} \in$ ∂A, that $Y_{t}^{k}=X_{\tau_{B, k}^{+}} \in \partial B$ for all $t \geq \tau_{B, k}^{+}-\tau_{A, k}^{-}$, and that $Y_{t}^{k} \in \Theta$ for all $t \in$ $\left(0, \tau_{B, k}^{+}-\tau_{A, k}^{-}\right)$. Unlike the entrance times, the exit times $\tau_{A, k}^{-}$and $\tau_{B, k}^{-}$are not stopping times with respect to the natural filtration. So, one cannot apply the strong Markov property to X_{t} at times $\tau_{A, k}^{-}$and $\tau_{B, k}^{-}$. Indeed, the law of the process Y_{t}^{k} is very different from that of the process X_{t} starting at a point in ∂A.

Our main results describe the probability law of these transition paths in terms of a transition path process, which is a strong solution to an auxiliary stochastic differential equation. In particular, empirical samples of the reactive portions of X_{t} may be regarded as sampling from the transition path process. The motivation comes from
the study of chemical reactions and thermally activated processes where understanding these reactive trajectories are crucial $[6,12]$. In these applications, the domains A and B are usually chosen as regions in configurational space corresponding to reactant and product states. Mathematically, our results fit into the framework of the transition path theory [$15,16,24]$.

Having identified the transition path process, we can compute statistics of the transition paths by sampling directly from the transition path SDE, rather than using acceptance/rejection methods or very long-time integration on the original SDE. Our theoretical results might be used to analyze numerical methods of sampling reactive trajectories.

We will now describe our main results and their relation to other works. Proofs are deferred to later sections.

1.1 The transition path process

Our definition of the transition path process is motivated by the Doob h-transform as follows. Let τ_{A} and τ_{B} denote the first hitting time of X_{t} to the sets \bar{A} and \bar{B}, respectively:

$$
\begin{align*}
\tau_{A} & =\inf \left\{t \geq 0 \mid X_{t} \in \bar{A}\right\}, \\
\tau_{B} & =\inf \left\{t \geq 0 \mid X_{t} \in \bar{B}\right\} . \tag{1.6}
\end{align*}
$$

Let $q(x) \geq 0$ be the forward committor function:

$$
\begin{equation*}
q(x)=\mathbb{P}\left(\tau_{A}>\tau_{B} \mid X_{0}=x\right) \tag{1.7}
\end{equation*}
$$

which satisfies $L q(x)=0$ for $x \in \Theta=(A \bar{\cup} B)^{c}$ and

$$
q(x)= \begin{cases}0, & x \in \bar{A}, \tag{1.8}\\ 1, & x \in \bar{B} .\end{cases}
$$

By the maximum principle, $q(x)>0$ for all $x \in \Theta$. By the Hopf lemma we also have

$$
\begin{equation*}
\sup _{x \in \partial A} \widehat{n}(x) \cdot \nabla q(x)<0, \quad \inf _{x \in \partial B} \widehat{n}(x) \cdot \nabla q(x)>0 \tag{1.9}
\end{equation*}
$$

where $\widehat{n}(x)$ will denote the unit normal exterior to Θ (pointing into A and B). For $x \in \Theta$, consider the stopped process $X_{t \wedge \tau_{A} \wedge \tau_{B}}$ with $X_{0}=x$, and let \mathcal{P}_{x} denote the corresponding measure on $\mathcal{X}=C([0, \infty), \Theta)$:

$$
\mathcal{P}_{x}(U)=\mathbb{P}\left(X \in U \mid X_{0}=x\right), \quad \forall U \in \mathcal{B}
$$

where \mathcal{B} is the Borel σ-algebra on \mathcal{X}. If $\Lambda_{A B}$ denotes the event that $\tau_{A}>\tau_{B}$, the measure \mathcal{Q}_{x}^{q} on $(\mathcal{X}, \mathcal{B})$ defined by

$$
\frac{\mathrm{d} \mathcal{Q}_{x}^{q}}{\mathrm{~d} \mathcal{P}_{x}}=\frac{\mathbb{I}_{\Lambda_{A B}}}{\mathcal{P}_{x}\left(\Lambda_{A B}\right)}=\frac{\mathbb{I}_{\Lambda_{A B}}}{q(x)}
$$

is absolutely continuous with respect to \mathcal{P}_{x}, if $x \in \Theta$. By the Doob h-transform (see e.g. [28, Theorem 7.2.2]), we know that \mathcal{Q}_{x}^{q} defines a diffusion process Y_{t} on $C([0, \infty), \bar{\Theta})$ with generator:

$$
\begin{equation*}
L^{q} f=\frac{1}{q} L(q f)=\operatorname{tr}\left(a \nabla^{2} f\right)+(b \cdot \nabla f)+\frac{2 a \nabla q}{q} \cdot \nabla f=L f+\frac{2 a \nabla q}{q} \cdot \nabla f \tag{1.10}
\end{equation*}
$$

So, the effect of conditioning on the event $\tau_{B}<\tau_{A}$ is to introduce an additional drift term. For $x \in \Theta$, the transition probability for Y_{t} is

$$
\begin{equation*}
p^{q}(t, x, d y)=\frac{1}{q(x)} p(t, x, d y) q(y) \tag{1.11}
\end{equation*}
$$

where $p(t, x, d y)$ is the transition probability for X_{t} killed at ∂B [28, Theorem 4.1.1].
This observation suggests that the $A \rightarrow B$ reactive trajectories should have the same law as a solution to the SDE

$$
\begin{equation*}
\mathrm{d} Y_{t}=\left(b\left(Y_{t}\right)+\frac{2 a\left(Y_{t}\right) \nabla q\left(Y_{t}\right)}{q\left(Y_{t}\right)}\right) \mathrm{d} t+\sqrt{2} \sigma\left(Y_{t}\right) \mathrm{d} \widehat{W}_{t} \tag{1.12}
\end{equation*}
$$

originating at a point $Y_{0}=y_{0} \in \partial A$ and terminating at a point in ∂B. While the SDE (1.12) admits strong solutions for $y_{0} \in \Theta$ since $q(x)>0$ in Θ, the drift term becomes singular at the boundary of A, where q vanishes. Our first result is the following theorem which shows that there is still a unique strong solution to this SDE even for initial condition lying in ∂A. For convenience, let us define the vector field

$$
\begin{equation*}
K(y)=\left(b(y)+\frac{2 a(y) \nabla q(y)}{q(y)}\right) \tag{1.13}
\end{equation*}
$$

Theorem 1.1 Let $\left(\widehat{W}, \mathcal{F}_{t}^{\widehat{W}}\right)$ be a standard Brownian motion in \mathbb{R}^{d}, defined on a probability space $(\widehat{\Omega}, \widehat{\mathcal{F}}, \mathbb{Q})$. Let $\xi: \widehat{\Omega} \rightarrow \bar{\Theta}$ be a random variable defined on the same probability space and independent of \widehat{W}. There is a unique, continuous process $Y_{t}:[0, \infty) \rightarrow \bar{\Theta}$ which is adapted to the augmented filtration $\widehat{\mathcal{F}}_{t}$ and satisfying the following, \mathbb{Q}-almost surely:

$$
\begin{equation*}
Y_{t}=\xi+\int_{0}^{t \wedge \tau_{B}} K\left(Y_{s}\right) \mathrm{d} s+\int_{0}^{t \wedge \tau_{B}} \sqrt{2} \sigma\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s}, \quad t \geq 0 \tag{1.14}
\end{equation*}
$$

where

$$
\tau_{B}=\inf \left\{t>0 \mid Y_{t} \in \bar{B}\right\}
$$

Moreover, $Y_{t} \notin \bar{A}$ for all $t>0$.

The augmented filtration is defined in the usual way, $\widehat{\mathcal{F}}_{t}$ being the σ-algebra generated by $\mathcal{F}_{t}^{\widehat{W}}, Y_{0}$, and the appropriate collection of null sets so that $\widehat{\mathcal{F}}_{t}$ is both left- and right- continuous. We will use $\widehat{\mathbb{E}}$ to denote expectation with respect to the probability measure \mathbb{Q}.

Observe that if $d=1, \sigma=1 / \sqrt{2}$ is constant, and $b \equiv 0$, then $q(x)$ is a linear function, and (1.12) corresponds to a Bessel process of dimension 3. For example, if $A=(-\infty, 0), B=(1, \infty)$, we have

$$
\mathrm{d} Y_{t}=\frac{1}{Y_{t}} \mathrm{~d} t+\mathrm{d} \widehat{W}_{t}
$$

and the function $Z_{t}=\left(Y_{t}\right)^{2}$ satisfies the degenerate diffusion equation

$$
\begin{equation*}
\mathrm{d} Z_{t}=3 \mathrm{~d} t+2 \sqrt{Z_{t}} \mathrm{~d} \widehat{W}_{t} \tag{1.15}
\end{equation*}
$$

In this simple case, existence and uniqueness of a strong solution starting at $Y_{0}=0$ can be shown using arguments involving Brownian local time (see [23,30]). However, those arguments are not applicable to the more general setting we consider here. The work most closely related to Theorem 1.1 in a higher dimensional setting may be that of DeBlaissie [14] who proved pathwise uniqueness for certain SDEs having diffusion coefficients that degenerate like $\sqrt{d\left(Z_{t}\right)}$ where $d(z)$ is the distance to the domain boundary (as in (1.15)). In an earlier work, Athreya et al. [1] proved uniqueness for the martingale problem associated with a similarly degenerate diffusion in a positive orthant in \mathbb{R}^{d}. Nevertheless, those analyses do not apply to the case (1.12) considered here.

The next theorem shows that the law of the reactive trajectories is that of the process Y_{t} with appropriate initial condition. For this reason, we will call the process Y_{t} the transition path process.

Theorem 1.2 Let X_{t} satisfy the $S D E$ (1.1). Let Y^{k} denote the $k t h ~ A \rightarrow B$ reactive trajectory defined by (1.5). Let Y be defined as in Theorem 1.1. Then for any bounded and continuous functional $F: C([0, \infty)) \rightarrow \mathbb{R}$, we have

$$
\mathbb{E}\left[F\left(Y^{k}\right)\right]=\widehat{\mathbb{E}}\left[F(Y) \mid Y_{0} \sim X_{\tau_{A, k}^{-}}\right] .
$$

The processes X_{t} and Y_{t}^{k} may be defined on a probability space that is different from the one on which Y_{t} is defined. The notation $Y_{0} \sim X_{\tau_{A, k}^{-}}$used in Theorem 1.2 means that Y_{0} has the same law as $X_{\tau_{A, k}^{-}}$, meaning $\mathbb{Q}\left(Y_{0} \in U\right)=\mathbb{P}\left(X_{\tau_{A, k}^{-}} \in U\right)$ for any Borel set $U \subset \mathbb{R}^{d}$.

1.2 Reactive exit and entrance distributions

The distribution of the random points $X_{\tau_{A, k}^{-}}$will depend in the initial condition X_{0}. From the point of view of sampling the transition paths, however, there is a very
natural distribution to consider for Y_{0}, which is related to the "equilibrium measure" in the potential theory for diffusion processes $[7,8,32]$. To motivate this distribution formally, let $h>0$ and consider the regularized hitting times

$$
\begin{align*}
& \tau_{A, h}=\inf \left\{t \geq h \mid X_{t} \in \bar{A}\right\} \tag{1.16}\\
& \tau_{B, h}=\inf \left\{t \geq h \mid X_{t} \in \bar{B}\right\} \tag{1.17}
\end{align*}
$$

where X_{t} satisfies (1.1). Then define

$$
q_{h}(x)=\mathbb{P}\left(\tau_{A, h}>\tau_{B, h} \mid X_{0}=x\right)
$$

This is the probability that at some time $s \in[0, h]$, the path X_{t} starting from $x \in \partial A$ becomes a transition path, not returning to \bar{A} before hitting \bar{B}. With this in mind, the quantity

$$
\eta_{A, h}(x)=h^{-1} \rho(x) \mathbb{P}\left(\tau_{A, h}>\tau_{B, h} \mid X_{0}=x\right)=h^{-1} \rho(x) q_{h}(x),
$$

may be interpreted as a rate at which transition paths exit A, when the system is in equilibrium. Therefore, a natural choice for an initial distribution for $Y_{0} \in \partial A$ is:

$$
\eta_{A}(x)=\lim _{h \rightarrow 0} \eta_{A, h} .
$$

By the Markov property, we have

$$
\begin{equation*}
q_{h}(x)=\int_{\mathbb{R}^{d}} \mathbb{P}\left(\tau_{A}>\tau_{B} \mid X_{0}=y\right) \rho(h, x, y) \mathrm{d} y=\mathbb{E}\left[q\left(X_{h}\right) \mid X_{0}=x\right] \tag{1.18}
\end{equation*}
$$

where $\rho(t, x, \cdot)$ is the density for X_{t}, given $X_{0}=x$. Therefore, for any $x \in \partial A$ we have

$$
\lim _{h \rightarrow 0} h^{-1} q_{h}(x)=\lim _{h \rightarrow 0} h^{-1} \mathbb{E}\left[q\left(X_{h}\right)-q\left(X_{0}\right) \mid X_{0}=x\right]=L q(x)
$$

in the sense of distributions, although q is not C^{2} on $\partial \Theta=\partial A \cup \partial B$. Hence $\eta_{A, h}(x) \rightarrow$ $\eta_{A}(x)=\rho(x) L q(x)$ for $x \in \partial A$. The distribution $L q$ is supported on $\partial \Theta$. If ϕ is a smooth test function supported on a set $B_{r}(x)$, a small neighborhood of $x \in \partial A$, then we have

$$
\begin{aligned}
\langle L q, \phi\rangle= & \int_{\mathbb{R}^{d}} q(x) L^{*} \phi(x) \mathrm{d} x \\
= & \int_{B_{r}(x) \cap \Theta} L q(x) \phi(x) \mathrm{d} x+\int_{(\partial A) \cap B_{r}(x)}(q \widehat{n} \cdot \operatorname{div}(a \phi)-(\widehat{n} \cdot a \nabla q) \phi \\
& +q \widehat{n} \cdot b \phi) \mathrm{d} \sigma_{A}(x)
\end{aligned}
$$

where $\widehat{n}(x)$ is the unit normal vector exterior to Θ, and $\mathrm{d} \sigma_{A}$ is the surface measure on ∂A. Since $q=0$ on ∂A and $L q=0$ on Θ, this implies,

$$
\langle L q, \phi\rangle=-\int_{(\partial A) \cap B_{r}(x)} \phi \widehat{n} \cdot a \nabla q \mathrm{~d} \sigma_{A}(x) .
$$

That is (after a similar calculation for points on ∂B),

$$
\begin{equation*}
L q(x)=-\widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{A}(x)-\widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{B}(x), \tag{1.19}
\end{equation*}
$$

in the sense of distributions. Restricting on ∂A, we get

$$
\begin{equation*}
\eta_{A}=-\rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{A}(x) . \tag{1.20}
\end{equation*}
$$

By switching the role of A and B in the above discussion, it is also natural to define a measure on ∂B as

$$
\begin{equation*}
\eta_{B}=\rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{B}(x) \tag{1.21}
\end{equation*}
$$

Note that $1-q$ gives the forward committor function for the transition from B to A and that $L q(x)=\eta_{A}(\mathrm{~d} x)-\eta_{B}(\mathrm{~d} x)$. Although the distributions η_{A} and η_{B} are positive (by (1.9)), they need not be probability distributions. Nevertheless, the mass of the two measures is the same.

Lemma 1.3 The measures η_{A} and η_{B} satisfy $\eta_{A}(\partial A)=\eta_{B}(\partial B)$. That is,

$$
\begin{equation*}
\int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{A}(x)+\int_{\partial B} \rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{B}(x)=0 . \tag{1.22}
\end{equation*}
$$

This computation motivates us to define

$$
\begin{align*}
& \eta_{A}^{-}(\mathrm{d} x)=\frac{1}{\nu} \eta_{A}(\mathrm{~d} x)=-\frac{1}{v} \rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{A}(x), \tag{1.23}\\
& \eta_{B}^{-}(\mathrm{d} x)=\frac{1}{v} \eta_{B}(\mathrm{~d} x)=\frac{1}{v} \rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{B}(x), \tag{1.24}
\end{align*}
$$

We call these distributions the reactive exit distribution on ∂A and on ∂B, respectively. The constant v is a normalizing constant so that η_{A}^{-}and η_{B}^{-}define probability measures on ∂A and ∂B. By Lemma 1.3, the normalizing constant is the same for both measures. Our next result relates the reactive exit distribution on ∂A to the empirical reactive exit distribution on ∂A, defined by

$$
\begin{equation*}
\mu_{A, N}^{-}=\frac{1}{N} \sum_{k=0}^{N-1} \delta_{X_{\tau_{A, k}^{-}}}(x) \tag{1.25}
\end{equation*}
$$

Proposition 1.4 Let $\mu_{A, N}^{-}$be the empirical reactive exit distribution on ∂A defined by (1.25). Then $\mu_{A, N}^{-}$converges weakly to η_{A}^{-}as $N \rightarrow \infty$. That is, for any continuous and bounded $f: \partial A \rightarrow \mathbb{R}$

$$
\lim _{N \rightarrow \infty} \int_{\partial A} f(x) \mathrm{d} \mu_{A, N}^{-}(x)=\int_{\partial A} f(x) \mathrm{d} \eta_{A}^{-}(x)
$$

holds \mathbb{P}-almost surely.
A similar statement holds for the reactive exit distribution on ∂B and the empirical distribution of the points $X_{\tau_{B, k}^{-}}$. The reactive exit distribution $\eta_{A}^{-}(\mathrm{d} x)$ is related to the equilibrium measure $e_{A, B}(\mathrm{~d} x)$ in the potential theory for diffusion processes $[7,8]$, [32, Section 2.3]. In fact, the committor function q is known as the equilibrium potential in those works, and the equilibrium measure $e_{A, B}(\mathrm{~d} x)$ is given by $L q$ restricted on ∂A (see equation (2.11) of [7]). Specifically, we have

$$
\begin{equation*}
\eta_{A}^{-}(\mathrm{d} x)=\frac{1}{v} \rho(x) e_{A, B}(\mathrm{~d} x) . \tag{1.26}
\end{equation*}
$$

The reactive exit distribution was also used in the milestoning algorithm as in [35]. To the best of our knowledge, Proposition 1.4 for the first time characterizes the equilibrium measure from a dynamic perspective. In the case that the drift $b(x)=$ $-\nabla V(x)$ is a gradient field and $\sigma=\sqrt{\epsilon} I$ is a multiple of the identity matrix, the constant v is related to the capacity of the sets A and B :

$$
v=Z^{-1} \operatorname{cap}_{A}(B), \quad Z=\int_{\mathbb{R}^{d}} e^{-V(x) / \epsilon} d x
$$

(See definition (2.13) of [7] for $\operatorname{cap}_{A}(B)$.) The results we present here do not require that $b(x)$ is a gradient field; nevertheless, the constant v still admits the integral representation given below in Proposition 1.8.

We also identify the limit of the empirical reactive entrance distribution on ∂B, defined as

$$
\begin{equation*}
\mu_{B, N}^{+}=\frac{1}{N} \sum_{k=0}^{N-1} \delta_{X_{\tau_{B, k}^{+}}}(x) \tag{1.27}
\end{equation*}
$$

To describe its limit as $N \rightarrow \infty$, let us denote by \widetilde{L} the adjoint of L in $L^{2}\left(\mathbb{R}^{d}, \rho(x) \mathrm{d} x\right)$, given by

$$
\begin{equation*}
\widetilde{L} u=-b \cdot \nabla u+\frac{2}{\rho} \operatorname{div}(a \rho) \cdot \nabla u+\operatorname{tr}\left(a \nabla^{2} u\right) . \tag{1.28}
\end{equation*}
$$

This corresponds to the generator of the time-reversed process $t \mapsto X_{T-t}$ [19]. Note that $\widetilde{L}=L$ if the $\operatorname{SDE}(1.1)$ is reversible, i.e. L is self-adjoint in $L^{2}\left(\mathbb{R}^{d}, \rho(x) \mathrm{d} x\right)$. In addition to the forward committor function $q(x)$ (recall (1.7)), we also define the backward committor function $\widetilde{q}(x)$ to be the unique solution of

$$
\widetilde{L} \widetilde{q}=0, \quad x \in \Theta
$$

with boundary condition

$$
\widetilde{q}(x)= \begin{cases}1, & x \in \partial A \\ 0, & x \in \partial B .\end{cases}
$$

In terms of \tilde{q}, we define the reactive entrance distribution on ∂B as

$$
\begin{equation*}
\eta_{B}^{+}(\mathrm{d} x)=-\frac{1}{v} \rho(x) \widehat{n}(x) \cdot a(x) \nabla \widetilde{q}(x) \mathrm{d} \sigma_{B}(x) \tag{1.29}
\end{equation*}
$$

and analogously the reactive entrance distribution on ∂A

$$
\begin{equation*}
\eta_{A}^{+}(\mathrm{d} x)=\frac{1}{v} \rho(x) \widehat{n}(x) \cdot a(x) \nabla \widetilde{q}(x) \mathrm{d} \sigma_{A}(x) . \tag{1.30}
\end{equation*}
$$

Again, v is a normalizing constant so that these are probability measures; v is the same as the constant in (1.23). The following proposition justifies the definition of the reactive entrance distribution.

Proposition 1.5 Let $\mu_{B, N}^{+}$be the empirical reactive entrance distribution on ∂B defined by (1.27). Then $\mu_{B, N}^{+}$converges weakly to η_{B}^{+}as $N \rightarrow \infty$. That is, for any continuous and bounded $f: \partial B \rightarrow \mathbb{R}$

$$
\lim _{N \rightarrow \infty} \int_{\partial B} f(x) \mathrm{d} \mu_{B, N}^{+}(x)=\int_{\partial B} f(x) \mathrm{d} \eta_{B}^{+}(x)
$$

holds \mathbb{P}-almost surely.
A similar statement holds for the reactive entrance distribution on ∂A and the empirical distribution of the points $X_{\tau_{A, k}^{+}}$.

Remark 1.6 If the SDE (1.1) is reversible, we have $\widetilde{q}=1-q$, and hence $\eta_{A}^{+}(\mathrm{d} x)=$ $\eta_{A}^{-}(\mathrm{d} x)$ and $\eta_{B}^{+}(\mathrm{d} x)=\eta_{B}^{-}(\mathrm{d} x)$.

In view of Proposition 1.4, η_{A}^{-}is a natural choice for the distribution of Y_{0}. With this choice, the transition path process Y_{t} characterizes the empirical distribution of $A \rightarrow B$ reactive trajectories, as the next theorem shows:

Theorem 1.7 Let X_{t} satisfy the SDE (1.1). Let Y^{k} denote the kth $A \rightarrow B$ reactive trajectory defined by (1.5). Let Y be the unique process defined by Theorem 1.1 with initial distribution $Y_{0} \sim \eta_{A}^{-}(\mathrm{d} x)$ on ∂A defined by (1.23), and let $\mathcal{Q}_{\eta_{A}^{-}}$denote the law of this process on $\mathcal{X}=C([0, \infty))$. Then for any $F \in L^{1}\left(\mathcal{X}, \mathcal{B}, \mathcal{Q}_{\eta_{A}^{-}}\right)$, the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} F\left(Y^{k}\right)=\widehat{\mathbb{E}}[F(Y)]
$$

holds \mathbb{P}-almost surely.

In particular, the limit $\widehat{\mathbb{E}}[F(Y)]$ is independent of X_{0}. Using Theorem 1.7, several interesting statistics of the transition paths can be expressed in terms of the quantities we have defined. Actually, Proposition 1.4 is an immediate corollary of Theorem 1.7, by choosing $F\left(Y^{k}\right)=f\left(Y_{0}^{k}\right)$, so we will not give a separate proof of Proposition 1.4.

1.3 Reaction rate

Let N_{T} be the number of $A \rightarrow B$ reactive trajectories up to time T :

$$
N_{T}=1+\max _{k}\left\{k \geq 0 \mid \tau_{B, k}^{+} \leq T\right\} .
$$

The reaction rate v_{R} is defined by the limit

$$
\begin{equation*}
v_{R}=\lim _{T \rightarrow \infty} \frac{N_{T}}{T}=\lim _{k \rightarrow \infty} \frac{k}{\tau_{B, k}^{+}} \tag{1.31}
\end{equation*}
$$

and it is the rate of the transition from A to B. Also, the limits

$$
\begin{equation*}
T_{A B}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\tau_{B, k}^{+}-\tau_{A, k}^{+}\right) \tag{1.32}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{B A}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\tau_{A, k+1}^{+}-\tau_{B, k}^{+}\right) \tag{1.33}
\end{equation*}
$$

are the expected reaction times from $A \rightarrow B$ and $B \rightarrow A$, respectively. The reaction rate from $A \rightarrow B$ and $B \rightarrow A$ are then given by $k_{A B}=T_{A B}^{-1}$ and $k_{B A}=T_{B A}^{-1}$. Another interesting quantity is the expected crossover time from $A \rightarrow B$

$$
\begin{equation*}
C_{A B}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\tau_{B, k}^{+}-\tau_{A, k}^{-}\right) \tag{1.34}
\end{equation*}
$$

which is the typical duration of the $A \rightarrow B$ reactive intervals. Observe that $C_{A B}<$ $T_{A B}$. Similarly, we define

$$
\begin{equation*}
C_{B A}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\tau_{A, k+1}^{+}-\tau_{B, k}^{-}\right) \tag{1.35}
\end{equation*}
$$

The next result identifies these limits in terms of the committor functions and the reactive exit and entrance distributions.

Proposition 1.8 The limits (1.31), (1.32), (1.33), (1.34), and (1.35) hold \mathbb{P}-almost surely, and

$$
\begin{aligned}
& v_{R}=v=\int_{\mathbb{R}^{d}} \rho(x) \nabla q(x) \cdot a(x) \nabla q(x) \mathrm{d} x . \\
& T_{A B}=\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) u_{B}(x)=\frac{1}{v_{R}} \int_{\mathbb{R}^{d}} \rho(x) \widetilde{q}(x) \mathrm{d} x . \\
& T_{B A}=\int_{\partial B} \eta_{B}^{+}(\mathrm{d} x) u_{A}(x)=\frac{1}{v_{R}} \int_{\mathbb{R}^{d}} \rho(x)(1-\widetilde{q}(x)) \mathrm{d} x . \\
& C_{A B}=\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) v_{B}(x)=\frac{1}{v_{R}} \int_{\mathbb{R}^{d}} \rho(x) q(x) \widetilde{q}(x) \mathrm{d} x . \\
& C_{B A}=\int_{\partial B} \eta_{B}^{-}(\mathrm{d} x) v_{A}(x)=\frac{1}{v_{R}} \int_{\mathbb{R}^{d}} \rho(x)(1-q(x))(1-\widetilde{q}(x)) \mathrm{d} x .
\end{aligned}
$$

Here $u_{B}(x)=\mathbb{E}\left[\tau_{B}^{X} \mid X_{0}=x\right]$ is the mean first hitting time of X_{t} to \bar{B}, and $v_{B}(x)=\widehat{\mathbb{E}}\left[\tau_{B}^{Y} \mid Y_{0}=x\right]$ is the mean first hitting time of Y_{t} to \bar{B}. Similarly, if q is replaced by $(1-q)$ in the definition of Y, then $v_{A}(x)=\widehat{\mathbb{E}}\left[\tau_{A}^{Y} \mid Y_{0}=x\right]$. Recall that v is the normalizing factor for the reactive exit and entrance distributions.

The formulas for $\nu_{R}, T_{A B}$, and $T_{B A}$ were obtained in [15]. We believe the formulas for $C_{A B}$ and $C_{B A}$ are new. We also note that the crossover time for the transition path process in one dimension was recently studied in $[4,10]$ by other methods.

1.4 Density of transition paths

We now consider the distribution ρ_{R} as defined in [15]:

$$
\begin{equation*}
\rho_{R}(z)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \delta\left(z-X_{t}\right) \mathbb{I}_{R}(t) \mathrm{d} t, \quad z \in \Theta \tag{1.36}
\end{equation*}
$$

where R is the random set of times at which X_{t} is reactive:

$$
R=\bigcup_{k=0}^{\infty}\left[\tau_{A, k}^{-}, \tau_{B, k}^{+}\right]
$$

This distribution on Θ can be viewed as the density of transition paths. By Proposition 1.8, and Theorem 1.7, we can describe ρ_{R} in terms of the transition density for Y_{t}. Specifically, for any continuous and bounded function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
\int_{\Theta} f(z) \rho_{R}(z) \mathrm{d} z & =v_{R} \lim _{T \rightarrow \infty} \frac{1}{N_{T}} \int_{0}^{T} f\left(X_{t}\right) \mathbb{I}_{R}(t) \mathrm{d} t \\
& =v_{R} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} \int_{0}^{\tau_{B, k}^{+}-\tau_{A, k}^{-}} f\left(Y_{t}^{k}\right) \mathrm{d} t \\
& =v_{R} \widehat{\mathbb{E}}\left[\int_{0}^{t_{B}} f\left(Y_{t}\right) \mathrm{d} t \mid Y_{0} \sim \eta_{A}^{-}\right] \\
& =v_{R} \int_{0}^{\infty} \int_{\Theta} Q_{R}\left(t, \eta_{A}^{-}, z\right) f(z) \mathrm{d} z \mathrm{~d} t
\end{aligned}
$$

Here $Q_{R}\left(t, \eta_{A}^{-}, z\right)$ is the density of Y_{t}, with $Y_{0} \sim \eta_{A}^{-}$, and killed at ∂B

$$
\begin{equation*}
Q_{R}\left(t, \eta_{A}^{-}, z\right)=\mathbb{Q}\left(Y_{t} \in \mathrm{~d} z, t<t_{B} \mid Y_{0} \sim \eta_{A}^{-}\right), \tag{1.37}
\end{equation*}
$$

and t_{B} is the first hitting time of Y_{t} to \bar{B}. Hence, for $z \in \Theta$,

$$
\begin{equation*}
\rho_{R}(z)=v_{R} \int_{0}^{\infty} Q_{R}\left(t, \eta_{A}^{-}, z\right) \mathrm{d} t \tag{1.38}
\end{equation*}
$$

Proposition 1.9 For all $z \in \Theta$,

$$
\begin{equation*}
\rho_{R}(z)=\rho(z) q(z) \widetilde{q}(z) \tag{1.39}
\end{equation*}
$$

This formula for ρ_{R} was first derived in [15,22].

1.5 Current of transition paths

The density $Q_{R}\left(t, \eta_{A}^{-}, z\right)$ satisfies the adjoint equation

$$
\frac{\partial}{\partial t} Q_{R}\left(t, \eta_{A}^{-}, z\right)=\left(L^{q}\right)^{*} Q_{R}\left(t, \eta_{A}^{-}, z\right), \quad z \in \Theta
$$

where $\left(L^{q}\right)^{*}$ is the adjoint of L^{q} :

$$
\left(L^{q}\right)^{*} u=\sum_{i, j}\left(a_{i j}(z) u(z)\right)_{z_{i} z_{j}}-\sum_{i}\left(K_{i}(z) u(z)\right)_{z_{i}}
$$

and K is defined by (1.13). Integrating from $t=0$ to $t=\infty$ we see that $\rho_{R}(z)$ satisfies

$$
\left(L^{q}\right)^{*} \rho_{R}(z)=0, \quad z \in \Theta
$$

In divergence form, this equation is

$$
\begin{equation*}
\nabla_{z} \cdot J_{R}(z)=0, \tag{1.40}
\end{equation*}
$$

where the vector field

$$
\begin{align*}
J_{R}(z)= & \rho_{R}(z)\left(b(z)-\frac{2 a \nabla q(z)}{q(z)}\right)+\operatorname{div}\left(a(z) \rho_{R}(z)\right) \\
= & (b(z) \rho(z)-\operatorname{div}(a(z) \rho(z))) q(z) \widetilde{q}(z) \\
& -\rho(z) a(z)(\widetilde{q}(z) \nabla q(z)-q(z) \nabla \widetilde{q}(z)) . \tag{1.41}
\end{align*}
$$

is continuous over $\bar{\Theta}$. The vector field $J_{R}(z)$, identified in [15], may be regarded as the current of transition paths (see Remark 1.13). Observe that if the SDE (1.1) is reversible, we have $\widetilde{q}=1-q$ and

$$
b(z) \rho(z)-\operatorname{div}(a(z) \rho(z))=0,
$$

and hence the current given by (1.41) simplifies to

$$
J_{R}(z)=\rho(z) a(z) \nabla q(z)
$$

This was observed already in [15]. The current was also discussed in potential theory in the context of reversible Markov chains, see e.g. [9].

On the boundary, the current (1.41) is related to the reactive exit and entrance distributions.

Proposition 1.10 We have

$$
J_{R}=\rho a \nabla q \text { on } \partial A, \quad \text { and } J_{R}=-\rho a \nabla \widetilde{q}, \text { on } \partial B,
$$

and hence,

$$
\eta_{A}^{-}(\mathrm{d} x)=-v_{R}^{-1} \widehat{n}(x) \cdot J_{R}(x) \mathrm{d} \sigma_{A}(x) \text { and } \eta_{B}^{+}(\mathrm{d} x)=v_{R}^{-1} \widehat{n}(x) \cdot J_{R}(x) \mathrm{d} \sigma_{B}(x)
$$

As an immediate corollary, we have an additional formula for the reaction rate.
Corollary 1.11 Let S be a set with smooth boundary that contains A and separates A and B, we have

$$
\begin{equation*}
v_{R}=\int_{\partial S} \widehat{n}(x) \cdot J_{R}(x) \mathrm{d} \sigma_{S}(x) \tag{1.42}
\end{equation*}
$$

where \widehat{n} is the unit normal vector exterior to S.
The current J_{R} generates a (deterministic) flow in $\bar{\Theta}$ stopped at ∂B :

$$
\begin{equation*}
\frac{\mathrm{d} Z_{t}^{z}}{\mathrm{~d} t}=J_{R}\left(Z_{t}^{z}\right), \quad \text { for } 0 \leq t \leq t_{B}, \quad Z_{0}^{z}=z \tag{1.43}
\end{equation*}
$$

where $t_{B}=t_{B}(z)$ is the time at which Z_{t} reaches ∂B. As J_{R} is divergence free in Θ, $J_{R} \cdot \widehat{n}<0$ on ∂A, and $J_{R} \cdot \widehat{n}>0$ on $\partial B, t_{B}(z)$ is finite for any $z \in \bar{\Theta}$. The flow naturally defines a map $\Phi_{J_{R}}: \partial A \rightarrow \partial B$: given any point $z \in \partial A$, we define

$$
\begin{equation*}
\Phi_{J_{R}}(z)=Z_{t_{B}}^{z} \in \partial B \tag{1.44}
\end{equation*}
$$

Proposition 1.12 For any $f \in C^{1}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\int_{\partial B} f(x) \eta_{B}^{+}(\mathrm{d} x)-\int_{\partial A} f(x) \eta_{A}^{-}(\mathrm{d} x)=\frac{1}{v_{R}} \int_{\Theta} J_{R} \cdot \nabla f \mathrm{~d} x . \tag{1.45}
\end{equation*}
$$

In particular,

$$
\Phi_{J_{R}, *}\left(\eta_{A}^{-}\right)=\eta_{B}^{+},
$$

where $\Phi_{J_{R}, *}\left(\eta_{A}^{-}\right)$is the pushforward of the measure η_{A}^{-}by the map $\Phi_{J_{R}}$.
Hence, J_{R} characterizes "the flow of reactive trajectories" from A to B.
Remark 1.13 Note that by Propositions 1.4 and 1.5, the left hand side of (1.45) is equal, \mathbb{P}-almost surely, to the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(f\left(X_{\tau_{B, n}^{+}}\right)-f\left(X_{\tau_{A, n}^{-}}\right)\right) .
$$

If X_{t} was differentiable, we would have

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(f\left(X_{\tau_{B, n}^{+}}\right)-f\left(X_{\tau_{A, n}^{-}}\right)\right)=\lim _{T \rightarrow \infty} \frac{1}{v_{R}} \frac{1}{T} \int_{0}^{T} 1_{R}(t) \frac{\mathrm{d}}{\mathrm{~d} t} f\left(X_{t}\right) \mathrm{d} t \\
"=\frac{1}{v_{R}} \int_{\Theta} \mathrm{d} x \nabla f(x) \cdot \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \dot{X}_{t} \delta\left(x-X_{t}\right) 1_{R}(t) \mathrm{d} t ",
\end{gathered}
$$

Combining this with Proposition 1.12, we arrive at a formal characterization of J_{R}

$$
J_{R} "=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \dot{X}_{t} \delta\left(x-X_{t}\right) 1_{R}(t) \mathrm{d} t "
$$

This formal expression was used in [15] to define J_{R}.

1.6 Related work

As we have mentioned, our work is closely related to the transition path theory developed by Weinan and Vanden-Eijnden [15,16,24], which is a framework for studying
the transition paths. In particular, based on the committor function, formula for reaction rate, density and current of transition paths were obtained in [15]. Our main motivation is to understand the probability law of the transition paths. The main results Theorems $1.1,1.2$, and 1.7 identify an SDE which characterizes the law of the transition paths in $C([0, \infty))$. Therefore, as an application of these results, we are able to give rigorous proofs for the formula for reaction rate, density and current of transition paths in [15]. We note that in the discrete case, a generator analogous to (1.10) was also proposed very recently in [33] for Markov jumping processes.

Our results may be useful in the design of numerical path-sampling algorithms. Specifically, the results indicate that with knowledge of the committor function $q(x)$ one can bias the sampling of X_{t} in order to directly sample the reactive trajectories, without an acceptance/rejection procedure. Of course, this assumes knowledge of the committor function, which is certainly non-trivial as it involves solving a high dimensional PDE; $q(x)$ is explicit only in the simplest of cases (such as when $d=1$). We refer to $[16,27]$ and references therein for efforts in numerical approximations of committor functions. Nevertheless, our theoretical results might be used to analyze methods of sampling reactive trajectories. In particular, it would be important to know what sort of approximation of q could be used to efficiently sample the reactive trajectories. This issue is related to importance sampling algorithms for rare events (see e.g. $[13,36])$. We plan to explore these issues more in future works.

The transition paths start at ∂A and terminate at ∂B, and hence they can be viewed as paths of a bridge process between \bar{A} and \bar{B}. In this perspective, our work is related to the conditional path sampling for SDEs studied in [20,21,29,31]. In those works, stochastic partial differential equations were proposed to sample SDE paths with fixed end points. However, the paths considered were different from the transition paths as their time duration is fixed a priori. It would be interesting to explore SPDE-based sampling strategies for the transition path process identified in Theorem 1.1.

Let us also point out that in the work we present here we do not assume that the noise σ is small, as is the case in the asymptotic results of $[7,8,10]$, which we have mentioned already, and also in some other works, such as the large deviation theory of Freidlin and Wentzell [17].

After this paper was submitted for publication, both Sznitman and one of the editors brought to our attention the relevant work of Meyer et al. [25]. If we define the nondecreasing processes

$$
\begin{aligned}
& V_{t}^{A}=\#\left\{k \in \mathbb{Z}^{+} \mid \tau_{A, k}^{+} \leq t\right\}, \\
& V_{t}^{B}=\#\left\{k \in \mathbb{Z}^{+} \mid \tau_{B, k}^{+} \leq t\right\},
\end{aligned}
$$

where \mathbb{Z}^{+}is the set of non-negative integers, then the triple $\left(X_{t}, V_{t}^{A}, V_{t}^{B}\right)$ is a Markov process on $\mathbb{R}^{d} \times \mathbb{Z}^{+} \times \mathbb{Z}^{+}$. Moreover, the exit times $\tau_{A, k}^{-}$defined above coincide with the random times $L_{k}=\sup \left\{t \geq 0 \mid\left(X_{t}, V_{t}^{A}, V_{t}^{B}\right) \in \bar{A} \times\{k+1\} \times\{k\}\right\}$. Although it is not a stopping time, L_{k} is a coterminal time, as defined in [25]. Theorem 5.1 of [25] applied to $\left(X_{t+L_{k}}, V_{t+L_{k}}^{A}, V_{t+L_{k}}^{B}\right)$ then implies that for $t>0, Y_{t}^{k}$ is a strong Markov process with transition probability (1.11). In particular, this implies that for any $t_{0}>0$ and any bounded and continuous functional $F: C\left(\left[t_{0}, \infty\right)\right) \rightarrow \mathbb{R}$, we have

$$
\mathbb{E}\left[F\left(Y_{t}^{k}, t \geq t_{0}\right)\right]=\widehat{\mathbb{E}}\left[F\left(Y_{t}, t \geq t_{0}\right) \mid Y_{t_{0}}=Y_{t_{0}}^{k}\right]
$$

This is similar to but weaker than the statement of Theorem 1.2, which also applies to $t_{0}=0$. Moreover, the results of [25] do not identify the reactive exit distribution, which plays an important role in Theorem 1.7.

The rest of the paper is organized as follows. Theorems 1.1 and 1.2 are proved in Sect. 2. In Sect. 3 we prove Lemma 1.3, Proposition 1.5 and Theorem 1.7 related to the reactive entrance and exit distributions. As we have mentioned, Proposition 1.4 follows immediately from Theorem 1.7, so we do not give a separate proof of it. Propositions 1.8, 1.9, 1.10, Corollary 1.11, and Proposition 1.12 are proved in Sect. 4.

2 The transition path process

Proof of Theorem 1.1 Without loss of generality, we prove the theorem in the case that $\xi \equiv y_{0}$ is a single point in $\bar{\Theta}$. The interesting aspect of the theorem is that y_{0} is allowed to be on $\partial \Theta$, since the drift term is singular at $\partial \Theta$. If we assume that $y_{0} \in \Theta$, then existence of a unique strong solution up to the time $\tau_{A} \wedge \tau_{B}$ follows from standard arguments, since $K(y)$ is Lipschitz continuous in the interior of Θ. That is, if $y_{0} \in \Theta$, there is a unique, continuous $\widehat{\mathcal{F}}_{t}$-adapted process Y_{t} which satisfies

$$
\begin{equation*}
Y_{t}=y_{0}+\int_{0}^{t \wedge\left(\tau_{A} \wedge \tau_{B}\right)} K\left(Y_{S}\right) \mathrm{d} s+\int_{0}^{t \wedge\left(\tau_{A} \wedge \tau_{B}\right)} \sqrt{2} \sigma\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s}, \quad t \geq 0 . \tag{2.1}
\end{equation*}
$$

Moreover, if $y_{0} \in \Theta$, then we must have $\tau_{A}>\tau_{B}>0$ almost surely. This follows from an argument similar to the proof of [23, Proposition 3.3.22, p. 161]. Specifically, we consider the process $z_{t}=1 / q\left(Y_{t}\right) \in \mathbb{R}$, which satisfies

$$
z_{t \wedge \tau}=z_{0}-\int_{0}^{t \wedge \tau} \sqrt{2}\left(z_{s}\right)^{2} \nabla q \cdot \sigma \mathrm{~d} \widehat{W}_{s}
$$

where $\tau=\tau_{B} \wedge \tau_{\epsilon}$ with $\tau_{\epsilon}=\inf \left\{t>0 \mid q\left(Y_{t}\right)=\epsilon\right\}$. Since $\tau<\infty$ with probability one, we have

$$
z_{0}=\widehat{\mathbb{E}}\left[z_{t \wedge \tau}\right]=\frac{1}{q(\epsilon)} \mathbb{Q}\left(\tau_{\epsilon}<\tau_{B}\right)+\mathbb{Q}\left(\tau_{\epsilon}>\tau_{B}\right)
$$

Hence $\mathbb{Q}\left(\tau_{\epsilon}<\tau_{B}\right) \leq q(\epsilon)\left(z_{0}-1\right)$. So, $\mathbb{Q}\left(\tau_{A}<\tau_{B}\right) \leq \lim _{\epsilon \rightarrow 0} \mathbb{Q}\left(\tau_{\epsilon}<\tau_{B}\right)=0$.
Now suppose $y_{0} \in \partial A$. In consideration of the comments above, it suffices to prove the desired result with τ_{B} replaced by τ_{r}, the first hitting time to $\partial B_{r}\left(y_{0}\right) \cap \Theta$, where $B_{r}\left(y_{0}\right)$ is a ball of radius $r>0$ centered at y_{0}. Thus, we want to prove existence and pathwise uniqueness of a continuous $\widehat{\mathcal{F}}_{t}$-adapted process $Y_{t}:[0, \infty) \rightarrow \bar{\Theta}$ satisfying

$$
\begin{equation*}
Y_{t}=y_{0}+\int_{0}^{t \wedge \tau_{r}} K\left(Y_{s}\right) \mathrm{d} s+\int_{0}^{t \wedge \tau_{r}} \sqrt{2} \sigma\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s}, \tag{2.2}
\end{equation*}
$$

where

$$
\tau_{r}=\inf \left\{t \geq 0 \mid Y_{t} \in \partial B_{r}\left(y_{0}\right) \cap \Theta\right\}
$$

It will be very useful to define a new coordinate system in the set $B_{r}^{+}\left(y_{0}\right)=B_{r}\left(y_{0}\right) \cap \Theta$ and to consider the problem in these new coordinates. For $r>0$ small enough we can define a $C^{3} \operatorname{map}\left(h^{(1)}(y), \ldots, h^{(d-1)}(y), q(y)\right): \overline{B_{r}^{+}\left(y_{0}\right)} \rightarrow \mathbb{R}^{d-1} \times[0, \infty)$, such that the scalar functions $h^{(i)}(y): \overline{B_{r}^{+}\left(y_{0}\right)} \rightarrow \mathbb{R}$ satisfy

$$
\begin{equation*}
\left\langle\nabla h^{(i)}(y), a(y) \nabla q(y)\right\rangle=0, \quad \forall y \in \overline{B_{r}^{+}\left(y_{0}\right)}, \quad i=1, \ldots, d-1 \tag{2.3}
\end{equation*}
$$

Furthermore, the map may be constructed so that it is invertible on its range and that the inverse is C^{3}. The existence of such a map follows from the regularity of ∂A, the regularity of q, and the fact that $\langle\widehat{n}, a \nabla q\rangle \neq 0$ on ∂A by (1.9).

For two initial points $x_{1}, x_{2} \in \Theta$, let $Y_{t}^{x_{1}}$ and $Y_{t}^{x_{2}}$ denote the unique solutions to (2.1) with $Y_{0}^{x_{1}}=x_{1}$ and $Y_{0}^{x_{2}}=x_{2}$ respectively. That is,

$$
\begin{equation*}
Y_{t}^{x}=x+\int_{0}^{t \wedge \tau_{B}^{x}} K\left(Y_{s}^{x}\right) \mathrm{d} s+\int_{0}^{t \wedge \tau_{B}^{x}} \sqrt{2} \sigma\left(Y_{s}^{x}\right) \mathrm{d} \widehat{W}_{s}, \quad t \geq 0, \tag{2.4}
\end{equation*}
$$

where τ_{B}^{x} is the first hitting time of Y_{t}^{x} to ∂B. Changing to the coordinate system defined by $\left(h^{(1)}(y), \ldots, h^{(d-1)}(y), q(y)\right)$, we denote

$$
\left(h_{1, t}, q_{1, t}\right)=\left(h\left(Y_{t}^{x_{1}}\right), q\left(Y_{t}^{x_{1}}\right)\right) \quad \text { and } \quad\left(h_{2, t}, q_{2, t}\right)=\left(h\left(Y_{t}^{x_{2}}\right), q\left(Y_{t}^{x_{2}}\right)\right) .
$$

Let τ_{r}^{1} and τ_{r}^{2} denote the first hitting times of $Y_{t}^{x_{1}}$ and $Y_{t}^{x_{2}}$ to the set $\partial B_{r}\left(y_{0}\right) \cap \Theta$. The processes ($h_{1, t}, q_{1, t}$) and ($h_{2, t}, q_{2, t}$) are well-defined up to the times τ_{r}^{1} and τ_{r}^{2}, respectively.

We can control the difference between $\left(h_{1, t}, q_{1, t}\right)$ and $\left(h_{2, t}, q_{2, t}\right)$:
Lemma 2.1 There is a constant C such that for all $x_{1}, x_{2} \in B_{r / 2}\left(y_{0}\right) \cap \Theta$

$$
\widehat{\mathbb{E}}\left[\max _{t \in[0, T]}\left(q_{1, t \wedge \tau}-q_{2, t \wedge \tau}\right)^{2}\right] \leq C\left|x_{1}-x_{2}\right|^{1 / 2}
$$

and

$$
\widehat{\mathbb{E}}\left[\max _{t \in[0, T]}\left|h_{1, t \wedge \tau}-h_{2, t \wedge \tau}\right|^{2}\right] \leq C\left|x_{1}-x_{2}\right|
$$

where $\tau=\tau_{r}^{1} \wedge \tau_{r}^{2}$.

The proof of Lemma 2.1 will be postponed. One immediate corollary is the following.

Corollary 2.2 There is a constant C such that for all $x_{1}, x_{2} \in B_{r / 2}\left(y_{0}\right) \cap \Theta$

$$
\begin{equation*}
\mathbb{Q}\left(\max _{0 \leq t \leq(T \wedge \tau)}\left|Y_{t}^{x_{1}}-Y_{t}^{x_{2}}\right|>\alpha\right) \leq C \alpha^{-2}\left|x_{1}-x_{2}\right|^{1 / 2}, \quad \forall \alpha>0 \tag{2.5}
\end{equation*}
$$

where $\tau=\tau_{r}^{1} \wedge \tau_{r}^{2}$.
Proof On the closed set $\left\{z \in \mathbb{R}^{d} \mid z=(h(y), q(y)), y \in \overline{B_{r}^{+}\left(y_{0}\right)}\right\}$, the map $y \mapsto$ $(h(y), q(y))$ is invertible with a continuously differentiable inverse. Hence there is a constant C, depending only on the map $y \mapsto(h(y), q(y))$ such that

$$
\left|Y_{t}^{x_{1}}-Y_{t}^{x_{2}}\right| \leq C\left(\left|h_{1, t}-h_{2, t}\right|+\left|q_{1, t}-q_{2, t}\right|\right), \quad \forall t \in[0, \tau] .
$$

By combining this bound with Chebychev's inequality and Lemma 2.1 we obtain (2.5).

Now suppose $y_{0} \in \partial A$. Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \Theta$ be a given sequence such that $x_{n} \rightarrow y_{0}$ as $n \rightarrow \infty$. For each n, define $Y_{t}^{x_{n}}$ by (2.4), and let τ_{r}^{n} denote the first hitting time of $Y_{t}^{x_{n}}$ to $\partial B_{r}\left(y_{0}\right) \cap \Theta$. We may choose the points x_{n} so that $\left|x_{n}-y_{0}\right| \leq 25^{-n}$. Define $\widehat{\tau}^{n}=\tau_{r}^{n+1} \wedge \tau_{r}^{n}$. Applying Corollary 2.2, we conclude

$$
\mathbb{Q}\left(\max _{0 \leq t \leq\left(T \wedge \hat{\tau}^{n}\right)}\left|Y_{t}^{x_{n+1}}-Y_{t}^{x_{n}}\right|>2^{-n}\right) \leq C 2^{2 n} 5^{-n}
$$

Therefore, by the Borel-Cantelli lemma, the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \max _{0 \leq t \leq\left(T \wedge \widehat{\tau}^{n}\right)}\left|Y_{t}^{x_{n+1}}-Y_{t}^{x_{n}}\right|<\infty \tag{2.6}
\end{equation*}
$$

with probability one. Let us define

$$
\begin{equation*}
\tau_{r}=\liminf _{n \rightarrow \infty} \tau_{r}^{n}=\liminf _{n \rightarrow \infty} \hat{\tau}^{n} \tag{2.7}
\end{equation*}
$$

We will prove that τ_{r} is positive:
Lemma 2.3 For all $r>0$ sufficiently small, $\mathbb{Q}\left(\tau_{r}>0\right)=1$.
In view of (2.6) and Lemma 2.3, we conclude that there must be a continuous process Y_{t} such that, with probability one,

$$
Y_{t}^{x_{n}} \rightarrow Y_{t}
$$

uniformly on compact subsets of $\left[0, \tau_{r}\right)$, as $n \rightarrow \infty$. Let us define

$$
\begin{equation*}
\bar{\tau}_{r / 2}=\inf \left\{t \geq 0 \mid Y_{t} \in \partial B_{r / 2}\left(y_{0}\right) \cap \Theta\right\} \tag{2.8}
\end{equation*}
$$

Lemma 2.4 For all $r>0$ sufficiently small, $\mathbb{Q}\left(\bar{\tau}_{r / 2} \in\left(0, \tau_{r}\right)\right)=1$, and $\bar{\tau}_{r / 2}$ is stopping time with respect to $\widehat{\mathcal{F}}_{t}$.

We will postpone the proof of Lemmas 2.3 and 2.4. Since $\bar{\tau}_{r / 2}<\tau_{r}, Y_{t}^{x_{n}} \rightarrow Y_{t}$ uniformly on [0, $\bar{\tau}_{r / 2}$]. Let us now replace Y_{t} by the stopped process $Y_{t \wedge \bar{\tau}_{r / 2}}$. Since each $Y_{t}^{x_{n}}$ is $\widehat{\mathcal{F}}_{t}$-adapted, so is the limit Y_{t}. We claim that Y_{t} satisfies

$$
\begin{equation*}
Y_{t}=y_{0}+\int_{0}^{t \wedge \bar{\tau}_{r} / 2} K\left(Y_{s}\right) \mathrm{d} s+\int_{0}^{t \wedge \bar{\tau}_{r} / 2} \sqrt{2} \sigma\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s}, \quad t \geq 0 \tag{2.9}
\end{equation*}
$$

Since $Y_{t}^{x_{n}} \rightarrow Y_{t}$ uniformly on $\left[0, \bar{\tau}_{r} / 2\right]$, we have $\left(q\left(Y_{t}^{x_{n}}\right), h\left(Y_{t}^{x_{n}}\right)\right) \rightarrow\left(q\left(Y_{t}\right), h\left(Y_{t}\right)\right)$ uniformly on $\left[0, \bar{\tau}_{r} / 2\right]$, and $\left(q_{t}, h_{t}\right)=\left(q\left(Y_{t}\right), h\left(Y_{t}\right)\right)$ satisfies

$$
\begin{equation*}
h_{t}=h_{0}+\int_{0}^{t \wedge \bar{\tau}_{r} / 2} f\left(q_{s}, h_{s}\right) \mathrm{d} s+\int_{0}^{t \wedge \bar{\tau}_{r} / 2} m\left(q_{s}, h_{s}\right) \mathrm{d} \widehat{W}_{s} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{t}-\int_{0}^{t \wedge \bar{\tau}_{r} / 2} g\left(q_{s}, h_{s}\right) \cdot \mathrm{d} \widehat{W}_{s}=\lim _{n \rightarrow \infty} \int_{0}^{t \wedge \tau_{r}^{n}} \frac{\left|g\left(q_{s}^{x_{n}}, h_{s}^{x_{n}}\right)\right|^{2}}{q_{s}^{x_{n}}} \mathrm{~d} s \tag{2.11}
\end{equation*}
$$

for all $t \in\left[0, \bar{\tau}_{r / 2}\right]$, where $\left(q_{t}^{x_{n}}, h_{t}^{x_{n}}\right)=\left(q\left(Y_{t}^{x_{n}}\right), h\left(Y_{t}^{x_{n}}\right)\right)$. (Recall $q_{0}=0$.) Since $q_{s}^{x_{n}}>0$, the last limit can be bounded below using Fatou's lemma:
$q_{t}-\int_{0}^{t \wedge \bar{\tau}_{r} / 2} g\left(q_{s}, h_{s}\right) \cdot \mathrm{d} \widehat{W}_{s} \geq \int_{0}^{t \wedge \bar{\tau}_{r} / 2} \liminf _{n \rightarrow \infty} \frac{\left|g\left(q_{s}^{x_{n}}, h_{s}^{x_{n}}\right)\right|^{2}}{q_{s}^{x_{n}}} \mathrm{~d} s=\int_{0}^{t \wedge \bar{\tau}_{r} / 2} \frac{\left|g\left(q_{s}, h_{s}\right)\right|^{2}}{q_{s}} \mathrm{~d} s$.
Recall that $\left|g\left(q_{s}, h_{2}\right)\right|^{2} \geq C_{r}>0$. In particular, with probability one, the random set $H=\left\{s \in\left[0, \bar{\tau}_{r / 2}\right] \mid q_{s}=0\right\}$ must have zero Lebesgue measure; if that were not the case, then we would have

$$
-\int_{0}^{t \wedge \bar{\tau}_{r} / 2} g\left(q_{s}, h_{s}\right) \cdot \mathrm{d} \widehat{W}_{s}=+\infty
$$

for all t in a set of positive Lebesgue measure, an event which happens with zero probability. Therefore, by Fubini's theorem,

$$
0=\widehat{\mathbb{E}} \int_{0}^{T} \mathbb{I}_{H}(s) \mathrm{d} s=\int_{0}^{T} \mathbb{Q}\left(s<\bar{\tau}_{r / 2}, q_{s}=0\right) \mathrm{d} s
$$

which implies that $\mathbb{Q}\left(s<\bar{\tau}_{r / 2}, q_{s}=0\right)=0$ for almost every $s \geq 0$. Since $\bar{\tau}_{r / 2}>0$ almost surely, this implies that we may choose a deterministic sequence of times $t_{n} \in(0,1 / n]$ such that, almost surely, $q_{t_{n}}>0$ for n sufficiently large. By then applying the same argument as when $y_{0} \in \Theta$, we conclude that $q_{t}>0$ for all $t>t_{n}$. Hence, $q_{t}>0$ for all $t>0$ must hold with probability one.

Since q_{t} is continuous, we now know that for any $\epsilon>0$,

$$
\min _{t>\epsilon} q_{t}>0 .
$$

holds with probability one. In particular,

$$
\liminf _{n \rightarrow \infty} \min _{t>\epsilon} q_{t}^{x_{n}}>0
$$

so that

$$
\lim _{n \rightarrow \infty} \int_{\epsilon}^{t \wedge \tau^{n}} \frac{\left|g\left(q_{s}^{x_{n}}, h_{s}^{x_{n}}\right)\right|^{2}}{q_{s}^{x_{n}}} \mathrm{~d} s=\int_{\epsilon}^{t \wedge \bar{\tau}_{r} / 2} \frac{\left|g\left(q_{s}, h_{s}\right)\right|^{2}}{q_{s}} \mathrm{~d} s
$$

almost surely. Since q_{t} is continuous at $t=0$, we also know that

$$
\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{0}^{t \wedge \tau^{n} \wedge \epsilon} \frac{\left|g\left(q_{s}^{x_{n}}, h_{s}^{x_{n}}\right)\right|^{2}}{q_{s}^{x_{n}}} \mathrm{~d} s=\lim _{\epsilon \rightarrow 0}\left(q_{\epsilon}-\int_{0}^{t \wedge \bar{\tau}_{r} / 2 \wedge \epsilon} g\left(q_{s}, h_{s}\right) \cdot \mathrm{d} \widehat{W}_{s}\right)=0
$$

almost surely. Returning to (2.11) we now conclude that

$$
\begin{align*}
q_{t}-\int_{0}^{t \wedge \bar{\tau}_{r / 2}} g\left(q_{s}, h_{s}\right) \cdot d \widehat{W}_{s}= & \lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{0}^{t \wedge \tau^{n} \wedge \epsilon} \frac{\left|g\left(q_{s}^{x_{n}}, h_{s}^{x_{n}}\right)\right|^{2}}{q_{s}^{x_{n}}} \mathrm{~d} s \\
& +\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\epsilon}^{t \wedge \tau^{n}} \frac{\left|g\left(q_{s}^{x_{n}}, h_{s}^{x_{n}}\right)\right|^{2}}{q_{s}^{x_{n}}} \mathrm{~d} s \\
= & \lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{t \wedge \bar{\tau}_{r} / 2} \frac{\left|g\left(q_{s}, h_{s}\right)\right|^{2}}{q_{s}} \mathrm{~d} s \\
= & \int_{0}^{t \wedge \bar{\tau}_{r} / 2} \frac{\left|g\left(q_{s}, h_{s}\right)\right|^{2}}{q_{s}} \mathrm{~d} s \tag{2.13}
\end{align*}
$$

holds with probability one. Equation (2.9) for Y_{t} now follows from (2.10) and (2.13) by changing coordinates.

Except for the proofs of Lemmas 2.1, 2.3, and 2.4, we have now established existence of a strong solution Y_{t} to (2.2) (with r replaced by $r / 2$). The uniqueness of the solution follows by the same arguments. Suppose that Y_{t}^{1} and Y_{t}^{2} both solve (2.2) with the same Brownian motion and the same initial point $Y_{0}^{1}=Y_{0}^{2}=y_{0}$. Then Corollary 2.2 implies that, \mathbb{Q} almost surely, $Y_{t}^{1}=Y_{t}^{2}$ for all $t \in\left[0, \tau_{r}^{1} \wedge \tau_{r}^{2}\right]$ where τ_{r}^{1} and τ_{r}^{2} are the corresponding hitting times to $\partial B_{r}\left(y_{0}\right) \cap \Theta$. In particular, $\tau_{r}^{1}=\tau_{r}^{2}$. This proves pathwise uniqueness.

We now prove Lemmas 2.1, 2.3 and 2.4 to complete the proof of Theorem 1.1.

Proof of Lemma 2.1 By Itô's formula the process $\left(h_{1}, q_{1}\right)=\left(h_{1, t}, q_{1, t}\right)$ satisfies

$$
\begin{align*}
\mathrm{d} h_{1} & =f\left(q_{1}, h_{1}\right) \mathrm{d} t+m\left(q_{1}, h_{1}\right) \mathrm{d} \widehat{W}_{t}, \tag{2.14}\\
\mathrm{~d} q_{1} & =\frac{\left|g\left(q_{1}, h_{1}\right)\right|^{2}}{q_{1}} \mathrm{~d} t+g\left(q_{1}, h_{1}\right) \cdot \mathrm{d} \widehat{W}_{t}, \tag{2.15}
\end{align*}
$$

for $0 \leq t \leq \tau_{r}^{1}$, where the functions $g=\sqrt{2}(\nabla q)^{\mathrm{T}} \sigma \in \mathbb{R}^{d}, f=L h \in \mathbb{R}^{d-1}$, and $\underline{m}=\sqrt{2}(\nabla h)^{\mathrm{T}} \sigma \in \mathbb{R}^{(d-1) \times d}$, are all Lipschitz continuous in their arguments over $\overline{B_{r}^{+}}$. Similarly, $\left(h_{2}, q_{2}\right)=\left(h_{2, t}, q_{2, t}\right)$ satisfies

$$
\begin{align*}
\mathrm{d} h_{2} & =f\left(q_{2}, h_{2}\right) \mathrm{d} t+m\left(q_{2}, h_{2}\right) \mathrm{d} \widehat{W}_{t} \tag{2.16}\\
\mathrm{~d} q_{2} & =\frac{\left|g\left(q_{2}, h_{2}\right)\right|^{2}}{q_{2}} \mathrm{~d} t+g\left(q_{2}, h_{2}\right) \cdot \mathrm{d} \widehat{W}_{t}, \tag{2.17}
\end{align*}
$$

for $0 \leq t \leq \tau_{r}^{2}$. Notice that the choice of coordinates satisfying (2.3) has eliminated a potentially singular drift term in the equations for $h_{1, t}$ and $h_{2, t}$. On the other hand, the drift term in the equations for q_{1} and q_{2} blows up near the boundary $q=0$. Indeed, if $r>0$ is small enough, by (1.9) there is a constant $C_{r}>0$ such that

$$
\begin{equation*}
\left.\inf _{y \in \overline{B_{r}^{+}}} 2\langle\nabla q(y)), a(y) \nabla q(y)\right\rangle \geq 2 \lambda \inf _{y \in \overline{B_{r}^{+}}}|\nabla q(y)| \geq C_{r} . \tag{2.18}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|g\left(q_{1, t}, h_{1, t}\right)\right|^{2}=2\left\langle\nabla q\left(Y_{t}^{x_{1}}\right), a\left(Y_{t}^{x_{1}}\right) \nabla q\left(Y_{t}^{x_{1}}\right)\right\rangle \geq 2 \lambda \underset{y \in \overline{B_{r}^{+}}}{\inf }|\nabla q(y)| \geq C_{r}>0 \tag{2.19}
\end{equation*}
$$

Letting $\tau=\tau_{r}^{1} \wedge \tau_{r}^{2}$ and using (2.14) and (2.16), we compute

$$
\begin{aligned}
\mathrm{d}\left|h_{1}-h_{2}\right|^{2}= & 2\left(h_{1}-h_{2}\right)^{\mathrm{T}}\left(f\left(q_{1}, h_{1}\right)-f\left(q_{2}, h_{2}\right)\right) \mathrm{d} t \\
& +2\left(h_{1}-h_{2}\right)^{\mathrm{T}}\left(m\left(q_{1}, h_{1}\right)-m\left(q_{2}, h_{2}\right)\right) \mathrm{d} \widehat{W}_{t} \\
& +\operatorname{tr}\left(\left(m\left(q_{1}, h_{1}\right)-m\left(q_{2}, h_{2}\right)\right)\left(m\left(q_{1}, h_{1}\right)-m\left(q_{2}, h_{2}\right)\right)^{\mathrm{T}}\right) \mathrm{d} t
\end{aligned}
$$

for $0 \leq t \leq \tau$. In particular,

$$
\begin{align*}
\widehat{\mathbb{E}}\left[\left|h_{1, t \wedge \tau}-h_{2, t \wedge \tau}\right|^{2}\right] \leq & C \int_{0}^{t} \widehat{\mathbb{E}}\left[\mathbb{I}_{[0, \tau]}(s)\left(q_{1, s}-q_{2, s}\right)^{2}\right] \mathrm{d} s \\
& +C \int_{0}^{t} \widehat{\mathbb{E}}\left[\mathbb{I}_{[0, \tau]}(s)\left|h_{1, s}-h_{2, s}\right|^{2}\right] \mathrm{d} s+C\left|x_{1}-x_{2}\right| \\
\leq & C \int_{0}^{t} \widehat{\mathbb{E}}\left[\left(q_{1, s \wedge \tau}-q_{2, s \wedge \tau}\right)^{2}\right] \mathrm{d} s \\
& +C \int_{0}^{t} \widehat{\mathbb{E}}\left[\left|h_{1, s \wedge \tau}-h_{2, s \wedge \tau}\right|^{2}\right] \mathrm{d} s+C\left|x_{1}-x_{2}\right| \tag{2.20}
\end{align*}
$$

holds for all $t \geq 0$.
From (2.15) and (2.17) we also compute

$$
\begin{align*}
\mathrm{d}\left(q_{1}-q_{2}\right)^{2}= & 2\left(q_{1}-q_{2}\right) \mathrm{d}\left(q_{1}-q_{2}\right)+\left|g_{1}-g_{2}\right|^{2} \mathrm{~d} t \\
= & 2\left(q_{1}-q_{2}\right)\left(\frac{\left|g_{1}\right|^{2}}{q_{1}}-\frac{\left|g_{2}\right|^{2}}{q_{2}}\right) \mathrm{d} t \\
& +2\left(q_{1}-q_{2}\right)\left(g_{1}-g_{2}\right) \cdot \mathrm{d} \widehat{W}_{t}+\left|g_{1}-g_{2}\right|^{2} \mathrm{~d} t \tag{2.21}
\end{align*}
$$

for $0 \leq t \leq \tau$, where we have used the notation $g_{1}=g\left(q_{1}, h_{1}\right)$ and $g_{2}=g\left(q_{2}, h_{2}\right)$. We claim that there is a constant C, depending only on r, such that

$$
\begin{equation*}
2\left(q_{1}-q_{2}\right)\left(\frac{\left|g_{1}\right|^{2}}{q_{1}}-\frac{\left|g_{2}\right|^{2}}{q_{2}}\right) \leq C\left(\left|q_{1}-q_{2}\right|^{2}+\left|h_{1}-h_{2}\right|^{2}\right) \tag{2.22}
\end{equation*}
$$

holds for all $t \leq \tau$, with probability one. Both sides of (2.22) are invariant when $\left(q_{1}, h_{1}\right)$ and $\left(q_{2}, h_{2}\right)$ are interchanged. So, we may assume $q_{1} \leq q_{2}$ without loss of generality. We consider the following two possibilities. First, suppose that

$$
\begin{equation*}
0 \leq\left. q_{1}| | g_{1}\right|^{2}-\left.\left|g_{2}\right|^{2}\left|\leq\left(q_{2}-q_{1}\right)\right| g_{1}\right|^{2} \tag{2.23}
\end{equation*}
$$

Using this and $q_{1} \leq q_{2}$ we have

$$
\begin{align*}
2\left(q_{1}-q_{2}\right)\left(\frac{\left|g_{1}\right|^{2}}{q_{1}}-\frac{\left|g_{2}\right|^{2}}{q_{2}}\right) & =2 \frac{\left(q_{1}-q_{2}\right)}{q_{1} q_{2}}\left(q_{2}\left|g_{1}\right|^{2}-q_{1}\left|g_{2}\right|^{2}\right) \\
& =2 \frac{\left(q_{1}-q_{2}\right)}{q_{1} q_{2}}\left(\left(q_{2}-q_{1}\right)\left|g_{1}\right|^{2}-q_{1}\left(\left|g_{2}\right|^{2}-\left|g_{1}\right|^{2}\right)\right) \\
& \stackrel{(2.23)}{\leq} 0 \tag{2.24}
\end{align*}
$$

The other possibility is

$$
\begin{equation*}
0 \leq\left(q_{2}-q_{1}\right)\left|g_{1}\right|^{2} \leq\left. q_{1}| | g_{1}\right|^{2}-\left|g_{2}\right|^{2} \mid \tag{2.25}
\end{equation*}
$$

In this case, we have (also using $q_{1} \leq q_{2}$)

$$
\begin{align*}
2\left(q_{1}-q_{2}\right)\left(\frac{\left|g_{1}\right|^{2}}{q_{1}}-\frac{\left|g_{2}\right|^{2}}{q_{2}}\right) & =2 \frac{\left(q_{1}-q_{2}\right)}{q_{1} q_{2}}\left(\left(q_{2}-q_{1}\right)\left|g_{1}\right|^{2}-q_{1}\left(\left|g_{2}\right|^{2}-\left|g_{1}\right|^{2}\right)\right) \\
& \leq-2 \frac{\left(q_{1}-q_{2}\right)}{q_{1} q_{2}} q_{1}\left(\left|g_{2}\right|^{2}-\left|g_{1}\right|^{2}\right) \\
& \left.\leq\left. 2 \frac{\left|q_{1}-q_{2}\right|}{\left|q_{2}\right|}| | g_{2}\right|^{2}-\left|g_{1}\right|^{2} \right\rvert\, \\
& \left.\leq\left. 2 \frac{\left|q_{1}-q_{2}\right|}{\left|q_{1}\right|}| | g_{2}\right|^{2}-\left|g_{1}\right|^{2} \right\rvert\, \\
& \stackrel{(2.25)}{\leq} 2 \frac{\left(\left|g_{2}\right|^{2}-\left|g_{1}\right|^{2}\right)^{2}}{\left|g_{1}\right|^{2}} . \tag{2.26}
\end{align*}
$$

Therefore, since $\left|g_{1}\right| \geq C_{r}>0$ (by 2.19), we must have
$2\left(q_{1}-q_{2}\right)\left(\frac{\left|g_{1}\right|^{2}}{q_{1}}-\frac{\left|g_{2}\right|^{2}}{q_{2}}\right) \leq 2 C_{r}^{-2}\left(\left|g_{2}\right|^{2}-\left|g_{1}\right|^{2}\right)^{2} \leq C\left(\left|q_{1}-q_{2}\right|^{2}+\left|h_{1}-h_{2}\right|^{2}\right)$.
where $C>0$ depends only on r. This establishes (2.22).
Returning to (2.21) and controlling the first term on the right hand side of (2.21) with (2.22), we conclude that

$$
\begin{align*}
\widehat{\mathbb{E}}\left[\left(q_{1, t \wedge \tau}-q_{2, t \wedge \tau}\right)^{2}\right] \leq & C \int_{0}^{t} \widehat{\mathbb{E}}\left[\mathbb{I}_{[0, \tau]}(s)\left(q_{1, s}-q_{2, s}\right)^{2}\right] \mathrm{d} s \\
& +C \int_{0}^{t} \widehat{\mathbb{E}}\left[\mathbb{I}_{[0, \tau]}(s)\left|h_{1, s}-h_{2, s}\right|^{2}\right] \mathrm{d} s+C\left|x_{1}-x_{2}\right|, \\
\leq & C \int_{0}^{t} \widehat{\mathbb{E}}\left[\left(q_{1, s \wedge \tau}-q_{2, s \wedge \tau}\right)^{2}\right] \mathrm{d} s \\
& +C \int_{0}^{t} \widehat{\mathbb{E}}\left[\left|h_{1, s \wedge \tau}-h_{2, s \wedge \tau}\right|^{2}\right] \mathrm{d} s+C\left|x_{1}-x_{2}\right| \tag{2.27}
\end{align*}
$$

By combining (2.20) and (2.27) and applying Gronwall's inequality, we conclude that

$$
\begin{equation*}
\widehat{\mathbb{E}}\left[\left|h_{1, t \wedge \tau}-h_{2, t \wedge \tau}\right|^{2}\right]+\widehat{\mathbb{E}}\left[\left(q_{1, t \wedge \tau}-q_{2, t \wedge \tau}\right)^{2}\right] \leq C\left|x_{1}-x_{2}\right|\left(1+t e^{C t}\right), \quad t \geq 0 \tag{2.28}
\end{equation*}
$$

Using (2.21) and (2.22) we also obtain

$$
\begin{align*}
\widehat{\mathbb{E}}\left[\max _{t \in[0, T]}\left(q_{1, t \wedge \tau}-q_{2, t \wedge \tau}\right)^{2}\right] \leq & C \int_{0}^{T} \widehat{\mathbb{E}}\left[\left(q_{1, s \wedge \tau}-q_{2, s \wedge \tau}\right)^{2}\right] \mathrm{d} s \\
& +C \int_{0}^{T} \widehat{\mathbb{E}}\left[\left|h_{1, s \wedge \tau}-h_{2, s \wedge \tau}\right|^{2}\right] \mathrm{d} s+C\left|x_{1}-x_{2}\right| \\
& +\widehat{\mathbb{E}}\left[\max _{t \in[0, T]} V_{t}\right] \tag{2.29}
\end{align*}
$$

where V_{t} is the martingale

$$
V_{t}=\int_{0}^{t \wedge \tau} 2\left(q_{1}-q_{2}\right)\left(g_{1}-g_{2}\right) \cdot \mathrm{d} \widehat{W}_{s} .
$$

By the Burkholder-Davis-Gundy inequality (e.g. [30, Sec IV.4]) and (2.28), we have

$$
\widehat{\mathbb{E}}\left[\max _{t \in[0, T]} V_{t}\right] \leq C\left(\int_{0}^{T} \widehat{\mathbb{E}}\left[\left(q_{1, s \wedge \tau}-q_{2, s \wedge \tau}\right)^{2}\right] \mathrm{d} s\right)^{1 / 2} \leq C_{T}\left|x_{1}-x_{2}\right|^{1 / 2}
$$

This, together with (2.28) and (2.29), gives us

$$
\widehat{\mathbb{E}}\left[\max _{t \in[0, T]}\left(q_{1, t \wedge \tau}-q_{2, t \wedge \tau}\right)^{2}\right] \leq C_{T}\left|x_{1}-x_{2}\right|^{1 / 2}
$$

Similar arguments for $h_{1}-h_{2}$ lead to

$$
\widehat{\mathbb{E}}\left[\max _{t \in[0, T]}\left|h_{1, t \wedge \tau}-h_{2, t \wedge \tau}\right|^{2}\right] \leq C_{T}\left|x_{1}-x_{2}\right|
$$

Proof of Lemma 2.3 Suppose $\tau_{r}=0$ holds with probability $\epsilon>0$. Because of (2.6) we may choose m sufficiently large so that

$$
\sum_{n=m}^{\infty} \max _{0 \leq t \leq\left(T \wedge \widehat{\tau}^{n}\right)}\left|Y_{t}^{x_{n+1}}-Y_{t}^{x_{n}}\right|<r / 4
$$

holds with probability at least $1-\epsilon / 2$. Therefore, with probability at least $\epsilon / 2$ we have both $\tau_{r}=0$ and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left|Y_{\tau_{r}^{n}}^{x_{n}}-Y_{\tau_{r}^{n}}^{x_{m}}\right| \leq r / 4 \tag{2.30}
\end{equation*}
$$

Recall that $\left|Y_{0}^{x_{m}}-y_{0}\right| \leq 25^{-m}$. Let m be larger, if necessary, so that $25^{-m} \leq r / 4$. This and (2.30) imply that

$$
\liminf _{n \rightarrow \infty}\left|Y_{\tau_{r}^{n}}^{x_{n}}-y_{0}\right| \leq \liminf _{n \rightarrow \infty}\left(\left|Y_{\tau_{r}^{n}}^{x_{n}}-Y_{\tau_{r}^{n}}^{x_{m}}\right|+\left|Y_{\tau_{r}^{n}}^{x_{m}}-y_{0}\right|\right) \leq r / 4+25^{-m} \leq r / 2
$$

holds with probability at least $\epsilon / 2$. However, this contradicts the fact that $Y_{\tau_{r}^{n}}^{x_{n}} \in$ $\partial B_{r}\left(y_{0}\right)$ for all n. Hence, we must have $\tau_{r}>0$ with probability one.

Proof of Lemma 2.4 The fact that $\bar{\tau}_{r / 2}>0$ with probability one follows from an argument very similar to the proof of Lemma 2.3. The fact that $\bar{\tau}_{r / 2}<\tau_{r}$ will follow by showing that

$$
\begin{equation*}
\limsup _{t / \tau_{r}}\left|Y_{t}-y_{0}\right| \geq r \tag{2.31}
\end{equation*}
$$

holds with probability one. First, suppose that $\tau_{r}^{n}<\tau_{r}$ and that

$$
\tau_{r}^{n}=\inf _{k \geq n} \tau_{r}^{k}
$$

Then by (2.6) we have

$$
\left|Y_{\tau_{r}^{n}}-y_{0}\right| \geq\left|Y_{\tau_{r}^{n}}^{x_{n}}-y_{0}\right|-\left|Y_{\tau_{r}^{n}}-Y_{\tau^{n}}^{x_{n}}\right|=r-\left|Y_{\tau_{r}^{n}}-Y_{\tau_{r}^{n}}^{x_{n}}\right|=r-R(n) .
$$

where $R(n)$ is the series remainder

$$
R(n)=\sum_{k=n}^{\infty} \max _{0 \leq t \leq \tau_{r}^{n}}\left|Y_{t}^{x_{k+1}}-Y_{t}^{x_{k}}\right|
$$

which converges to zero, with probability one, as $n \rightarrow \infty$. So, with probability one, if there is an increasing sequence of such times $\tau_{r}^{n_{j}} \nearrow \tau_{r}$ as $j \rightarrow \infty$, we see that (2.31) must hold. On the other hand, suppose there is no such sequence. Then we must have $\tau_{r}^{n} \geq \tau_{r}$ for n sufficiently large. Hence $Y_{t}^{x_{n}}$ must converge to Y_{t} uniformly on the closed interval $\left[0, \tau_{r}\right]$. Suppose $\tau_{r}^{n} \geq \tau_{r}$ and $\tau_{r}^{n}=\sup _{k \geq n} \tau_{r}^{k}$. Then for all $k \geq n$, we have

$$
\begin{aligned}
\left|Y_{\tau_{r}^{k}}^{x_{n}}-y_{0}\right| & \geq\left|Y_{\tau_{r}^{k}}^{x_{k}}-y_{0}\right|-\left|Y_{\tau_{r}^{k}}^{x_{n}}-Y_{\tau_{r}^{k}}^{x_{k}}\right| \\
& =r-\left|Y_{\tau_{r}^{k}}^{x_{n}}-Y_{\tau_{r}^{k}}^{x_{k}}\right| \geq r-M(n) .
\end{aligned}
$$

Therefore, since $Y_{t}^{x_{n}}$ is continuous on $\left[0, \tau_{r}^{n}\right]$ and since $\tau_{r}=\lim \inf _{k \geq 0} \tau_{r}^{k}$, we have

$$
\left|Y_{\tau_{r}}^{x_{n}}-y_{0}\right| \geq r-M(n)
$$

Since $Y_{\tau_{r}}^{x_{n}} \rightarrow Y_{\tau_{r}}$ in this case and Y_{t} is continuous on [0, $\left.\tau_{r}\right]$, then with probability one, this case also implies that (2.31) holds. Having established that $0<\bar{\tau}_{r / 2}<\tau_{r}$ we conclude that $Y_{t}^{x_{n}} \rightarrow Y_{t}$ uniformly on [0, $\left.\bar{\tau}_{r} / 2\right]$. Since each $Y_{t}^{x_{n}}$ is $\widehat{\mathcal{F}}_{t}$-adapted, so is the limit Y_{t}. In particular, $\bar{\tau}_{r / 2}$ is a stopping time.

Remark 2.5 Let us point out that if $y_{0} \in \partial A$ and $T>0$ is sufficiently small, the equation

$$
\begin{equation*}
\bar{Y}(t)=y_{0}+\int_{0}^{t} K(\bar{Y}(s)) \mathrm{d} s, \quad t \in[0, T] . \tag{2.32}
\end{equation*}
$$

has a unique solution satisfying $\bar{Y}(t) \in \Theta$ for all $t \in(0, T]$. Indeed, let $z(t)$ solve the ODE

$$
z^{\prime}(t)=2 a(z(t)) \nabla q(z(t))+q(z(t)) b(z(t))
$$

for $t \in[0, T]$, with $z(0)=y_{0}$. For sufficiently small $T, z(s) \in \Theta$ for $t \in(0, T]$. Hence $q(z(s))>0$ for $t \in(0, T]$ and the function $F(t)=\int_{0}^{t} q(z(s)) d s$ is invertible. Now, it is easy to check that the function $\bar{Y}(t)=z\left(F^{-1}(t)\right)$ is continuous on [0,T] and satisfies (2.32). Moreover, $\bar{Y}(t) \in \Theta$ for all $t \in(0, T]$. In fact,

$$
\bar{Y}(t) \sim y_{0}+2 \sqrt{t} \frac{a\left(y_{0}\right) \nabla q\left(y_{0}\right)}{\left\langle\nabla q\left(y_{0}\right), a\left(y_{0}\right) \nabla q\left(y_{0}\right)\right\rangle^{1 / 2}}
$$

for small t.
We state and prove two properties of the transition path process, which will be used later.

Proposition 2.6 Let F be a bounded and continuous functional on $C([0, \infty))$. Define

$$
g(x)=\widehat{\mathbb{E}}\left[F(Y) \mid Y_{0}=x\right]
$$

where Y_{t} satisfies (1.14). Then $g \in C(\bar{\Theta})$.
Proof Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \bar{\Theta}$ and that $x_{n} \rightarrow x \in \bar{\Theta}$ as $n \rightarrow \infty$. We claim that there must be a subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ such that, \mathbb{Q}-almost surely,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} F\left(Y^{j}\right)=F(Y) \tag{2.33}
\end{equation*}
$$

where Y_{t}^{j} satisfies (1.14) with $Y_{0}^{j}=x_{n_{j}}$, and Y_{t} satisfies (1.14) with $Y_{0}=x$. Since F is bounded and continuous on $C([0, \infty)$), the dominated convergence theorem then implies that

$$
\lim _{j \rightarrow \infty} g\left(x_{n_{j}}\right)=\lim _{j \rightarrow \infty} \widehat{\mathbb{E}}\left[F(Y) \mid Y_{0}=x_{n_{j}}\right]=\widehat{\mathbb{E}}\left[F(Y) \mid Y_{0}=x\right]=g(x)
$$

Since the limit is independent of the subsequence, this implies that $g(x)$ is continuous.
To establish (2.33), we must show that $Y_{t}^{j} \rightarrow Y_{t}$ uniformly on compact subsets of $[0, \infty)$. This follows from Corollary 2.2, as in the proof of Theorem 1.1.

Proposition 2.7 For any $R>0$, there is a function $h_{R}:[0,+\infty) \rightarrow[0,1]$ such that $\int_{0}^{\infty} h_{R}(t) d t<+\infty$ and

$$
\sup _{\substack{x \in \Theta \\|x|<R}} \mathbb{Q}\left(Y_{t} \in \Theta \mid Y_{0}=x\right) \leq h_{R}(t) .
$$

holds for all $t \geq 0$.
Proof If $x \in \Theta$, then by the Doob h-transform, we know that

$$
\begin{aligned}
\mathbb{Q}\left(Y_{t} \in \Theta \mid Y_{0}=x\right) & =\frac{\mathbb{P}\left(X_{s} \in \Theta \forall s \in[0, t], \tau_{B}<\tau_{A} \mid X_{0}=x\right)}{\mathbb{P}\left(\tau_{B}<\tau_{A} \mid X_{0}=x\right)} \\
& \leq \frac{\mathbb{P}\left(X_{s} \in \Theta \forall s \in[0, t] \mid X_{0}=x\right) \wedge \mathbb{P}\left(\tau_{B}<\tau_{A} \mid X_{0}=x\right)}{\mathbb{P}\left(\tau_{B}<\tau_{A} \mid X_{0}=x\right)} \\
& =\frac{\mathbb{P}\left(\tau_{A B}>t \mid X_{0}=x\right) \wedge q(x)}{q(x)}
\end{aligned}
$$

where $\tau_{A B}$ is the first hitting time of X to $\bar{A} \cup \bar{B}$. Let $\alpha>1$ be as in assumption (1.4). Since $\bar{A} \cup \bar{B}$ has non-empty interior and since $\sigma \sigma^{T}$ is uniformly positive definite, assumption (1.4) implies that for each $R>0$ there is C_{R} such that

$$
\sup _{|x| \leq R} \mathbb{E}\left[\tau_{A B}^{\alpha} \mid X_{0}=x\right]<C_{R} .
$$

From this and Chebychev's inequality, it follows that

$$
\begin{equation*}
\sup _{|x| \leq R} \mathbb{P}\left(\tau_{A B}>t \mid X_{0}=x\right) \leq t^{-\alpha} \sup _{|x| \leq R} \mathbb{E}\left[\tau_{A B}^{\alpha} \mid X_{0}=x\right] \leq C_{R} t^{-\alpha} \tag{2.34}
\end{equation*}
$$

holds for all $t>0$. So, for any $\epsilon>0$,

$$
\begin{equation*}
\mathbb{Q}\left(Y_{t} \in \Theta \mid Y_{0}=x\right) \leq \frac{C_{R} t^{-\alpha} \wedge \epsilon}{\epsilon} \tag{2.35}
\end{equation*}
$$

holds for all $t>0$ and $x \in\{x \in \Theta||x| \leq R, q(x) \geq \epsilon\}$.
The bound (2.35) does not include points near ∂A, where $q(x)<\epsilon$. Fix $\epsilon \in(0,1)$ and define the set $S=\{x \in \Theta \mid q(x)<\epsilon\} \cup \bar{A}$. If ϵ is small enough, this set is bounded and we may assume $|x|<R$ for all $x \in S$. Suppose $Y_{0}=x$ with $x \in S \cap \bar{\Theta}$. Let $q_{t}=q\left(Y_{t}\right)$, which satisfies

$$
q_{t}=q_{0}+\int_{0}^{t} \frac{\left|g\left(Y_{s}\right)\right|^{2}}{q_{s}} \mathrm{~d} s+\int_{0}^{t} g\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s}
$$

where $g(y)=\sqrt{2}(\nabla q(y))^{\mathrm{T}} \sigma(y)$. By (1.9) we know that if $\epsilon>0$ is small enough, there is a constant $C_{\epsilon}>0$ such that $|g(y)|^{2} \geq C_{\epsilon}$ for all $y \in \bar{S} \cap \bar{\Theta}$. Therefore, if
$Y_{t} \in \bar{S} \cap \bar{\Theta}$ for all $t \in[0, T]$, we must have $q_{t} \leq \epsilon$ for all $t \in[0, T]$ and

$$
q_{t} \geq \int_{0}^{t} \frac{C_{\epsilon}}{q_{s}} \mathrm{~d} s+\int_{0}^{t} g\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s} \geq t \epsilon^{-1} C_{\epsilon}+\int_{0}^{t} g\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s}
$$

for all $t \in[0, T]$. This happens only if the martingale $M_{t}=\int_{0}^{t} g\left(Y_{s}\right) \mathrm{d} \widehat{W}_{s}$ satisfies

$$
M_{t} \leq \epsilon-t \epsilon^{-1} C_{\epsilon}, \quad t \in[0, T] .
$$

To control the probability of this event, for any $\gamma>0, \beta>0, T>0$, Chebychev's inequality implies

$$
\begin{aligned}
\mathbb{Q}\left(M_{T} \leq-\gamma T\right) & \leq e^{-\beta \gamma T} \widehat{\mathbb{E}}\left[e^{-\beta M_{T}}\right] \leq e^{-\beta \gamma T} \widehat{\mathbb{E}}\left[\exp \left(\frac{\beta^{2}}{2} \int_{0}^{T}|g|^{2} d s\right)\right] \\
& \leq e^{-\beta \gamma T+\frac{\beta^{2}}{2}\|g\|_{\infty}^{2} T} .
\end{aligned}
$$

By choosing $\beta=\gamma /\|g\|_{\infty}^{2}$ we have $\mathbb{Q}\left(M_{T} \leq-\gamma T\right) \leq e^{-\gamma^{2} C_{1} T}$. Hence there is a constant $C_{2}>0$ such that

$$
\begin{equation*}
\mathbb{Q}\left(Y_{t} \in \bar{S} \cap \bar{\Theta}, \quad \forall t \in[0, T] \mid Y_{0}=x\right) \leq e^{-\epsilon^{2} C_{2} T} \tag{2.36}
\end{equation*}
$$

holds for all $T>1$ and $x \in \bar{S} \cap \bar{\Theta}$.
Now we combine (2.35) and (2.36). Let $\tau_{S}=\inf \left\{t>0 \mid Y_{t} \in \partial S\right\}$. By (2.36) we have $\mathbb{Q}\left(\tau_{S}>t / 2 \mid Y_{0}=x\right) \leq e^{-C_{3} t}$ holds for all $x \in \bar{S} \cap \bar{\Theta}$. Therefore, since τ_{S} is a stopping time, we conclude that

$$
\begin{aligned}
\mathbb{Q}\left(Y_{t} \in \Theta \mid Y_{0} \in x\right) & \leq \mathbb{Q}\left(Y_{t} \in \Theta, \tau_{S}<t / 2 \mid Y_{0} \in x\right)+e^{-C_{3} t} \\
& \leq \sup _{y \in \partial S} \mathbb{Q}\left(Y_{t / 2} \in \Theta \mid Y_{0} \in y\right)+e^{-C_{3} t} \\
& \leq \frac{C t^{-\alpha} \wedge \epsilon}{\epsilon}+e^{-C_{3} t} .
\end{aligned}
$$

for all $x \in \bar{S} \cap \bar{\Theta}$. Since the last expression is an integrable function of t, this completes the proof.

Proof of Theorem 1.2 Since $\tau_{A, n}^{+}$is a stopping time, it suffices to prove the result for $n=0$. Fix $\epsilon>0$ and let $S \supset \bar{A}$ be the open set

$$
S=\{x \in \Theta \mid q(x)<\epsilon\} \cup \bar{A} .
$$

For $\epsilon>0$ small, this is a bounded set that separates A and B. The boundary ∂S is an isosurface for $q: q(x)=\epsilon$ for $x \in \partial S$. As $\epsilon \rightarrow 0, S$ shrinks to A, and the Hausdorff distance $d_{\mathcal{H}}(\partial S, \partial A)$ is $\mathcal{O}(\epsilon)$ (because of (1.9)).

Fig. 2 Left panel The set S and random times $\tau_{S, j}$. Right panel Zoom-in of the boxed region together with stopping times $r_{S, k}$ and $r_{A, k}$

Recalling that $\tau_{A, 0}^{+}=\inf \left\{t \geq 0 \mid X_{t} \in \bar{A}\right\}$, we define

$$
r_{S, 0}=\inf \left\{t>\tau_{A, 0}^{+} \mid X_{t} \in \partial S\right\} .
$$

which is a stopping time with respect to \mathcal{F}_{t}. Then for $k \geq 0$, we define inductively the stopping times (see Fig. 2)

$$
\begin{aligned}
r_{A, k} & =\inf \left\{t>r_{S, k} \mid X_{t} \in \bar{A}\right\} \\
r_{B, k} & =\inf \left\{t>r_{S, k} \mid X_{t} \in \bar{B}\right\} \\
r_{S, k+1} & =\inf \left\{t>r_{A, k} \mid X_{t} \in \partial S\right\}
\end{aligned}
$$

Observe that $r_{S, k}<r_{A, k}<r_{S, k+1}$, although it is possible that $r_{B, k}=r_{B, k+1}$. Let $r_{A B, k}=r_{A, k} \wedge r_{B, k}$, which is finite with probability one. We also define the random time

$$
\tau_{S, j}=\inf \left\{t>\tau_{A, j}^{-} \mid X_{t} \in \partial S\right\}
$$

Although $\tau_{S, j}$ is not a stopping time with respect to \mathcal{F}_{t}, the relation

$$
\begin{equation*}
\left\{r_{S, k} \mid k \geq 0, \quad r_{B, k}<r_{A, k}\right\}=\left\{\tau_{S, j}\right\}_{j=0}^{\infty} \tag{2.37}
\end{equation*}
$$

holds \mathbb{P}-almost surely.
Now, let

$$
Y_{t}^{0}=X_{\left(t+\tau_{A, 0}^{-}\right) \wedge \tau_{B, 0}^{+}}, \quad t \geq 0
$$

and let $h_{0}=\tau_{S, 0}-\tau_{A, 0}^{-}$. Since F is bounded and continuous, and since $h_{0} \rightarrow 0(\mathbb{P}$ almost surely) as $\epsilon \rightarrow 0$, we have

$$
\begin{equation*}
\mathbb{E}\left[F\left(X_{\cdot+\tau_{A, 0}^{-}}\right)\right]=\mathbb{E}\left[F\left(Y_{\cdot}^{0}\right)\right]=\lim _{\epsilon \rightarrow 0} \mathbb{E}\left[F\left(Y_{\cdot+h_{0}}^{0}\right)\right] \tag{2.38}
\end{equation*}
$$

We will show that

$$
\lim _{\epsilon \rightarrow 0} \mathbb{E}\left[F\left(Y_{\cdot+h_{0}}^{0}\right)\right]=\mathbb{E}\left[g\left(X_{\tau_{A, 0}^{-}}\right)\right]
$$

where $g(x)=\widehat{\mathbb{E}}\left[F(Y) \mid. Y_{0}=x\right]$.
Let M be the unique (random) integer such that

$$
\tau_{S, 0}=r_{S, M}
$$

Equivalently, $M=\min \left\{k \geq 0 \mid r_{B, k}<r_{A, k}\right\}$. Since $r_{B, k}>r_{A, k}$ for all $k<M$, we have

$$
\begin{equation*}
F\left(Y_{\cdot+h_{0}}^{0}\right)=\sum_{k=0}^{M} F\left(X \cdot+r_{S, k}\right) \mathbb{I}_{r_{B, k}<r_{A, k}}=\sum_{k=0}^{\infty} F\left(X_{\cdot+r_{S, k}}\right) \mathbb{I}_{r_{B, k}<r_{A, k}} \mathbb{I}_{k \leq M} . \tag{2.39}
\end{equation*}
$$

Observe that the event $\{k \leq M\}$ coincides with the event that $r_{B, j}>r_{A, j}$ for all $j<k$, so the event $\{k \leq M\}$ is measurable with respect to $\mathcal{F}_{r_{S, k}}$. Therefore, we have

$$
\begin{aligned}
\mathbb{E}\left[F\left(Y_{\cdot+h_{0}}^{0}\right)\right] & =\sum_{k=0}^{\infty} \mathbb{E}\left[F\left(X \cdot+r_{S, k}\right) \mathbb{I}_{r_{B, k}<r_{A, k}} \mathbb{I}_{k \leq M}\right] \\
& =\sum_{k=0}^{\infty} \mathbb{E}\left[\mathbb{E}\left[F\left(X_{\cdot}+r_{S, k}\right) \mathbb{I}_{r_{B, k}<r_{A, k}} \mathbb{I}_{k \leq M} \mid \mathcal{F}_{r_{S, k}}\right]\right] \\
& =\sum_{k=0}^{\infty} \mathbb{E}\left[\mathbb{I}_{k \leq M} \mathbb{E}\left[F\left(X_{\cdot+r_{S, k}}\right) \mathbb{I}_{r_{B, k}<r_{A, k}} \mid \mathcal{F}_{r_{S, k}}\right]\right] \\
& =\sum_{k=0}^{\infty} \mathbb{E}\left[\mathbb{I}_{k \leq M} f\left(X_{r_{S, k}}\right)\right]
\end{aligned}
$$

where

$$
f(x)=\mathbb{E}\left[F(X .) \mathbb{I}_{\tau_{B}<\tau_{A}} \mid X_{0}=x\right]=q(x) \widehat{\mathbb{E}}\left[F(Y .) \mid Y_{0}=x\right] .
$$

The last equality follows from the Doob h-transform (since $x \in \partial S \subset \Theta$ here). Since $q(x)=\epsilon$ for all $x \in \partial S$, this means

$$
\begin{equation*}
\mathbb{E}\left[F\left(Y_{\cdot+h_{0}}^{0}\right)\right]=\epsilon \mathbb{E}\left[\sum_{k=0}^{M} g\left(X_{r_{S, k}}\right)\right] \tag{2.40}
\end{equation*}
$$

where $g(x)=\widehat{\mathbb{E}}\left[F(Y) \mid. Y_{0}=x\right]$. Note that the random integer M depends on ϵ.
Let A_{j} denote the event $\{j<M\}$, which occurs if and only if $r_{A, k}<r_{B, k}$ for all $k \in\{0,1, \ldots, j\}$. Since $q(x)=\epsilon$ for all $x \in \partial S$, the event A_{j} is independent of $X_{r_{S, j}} \in \partial S$. Moreover, $P\left(A_{j}\right)=(1-\epsilon)^{j+1}$, since

$$
\begin{aligned}
\mathbb{P}\left(A_{j}\right) & =\mathbb{E}\left[\prod_{k=0}^{j} \mathbb{I}_{r_{A, k}<r_{B, k}}\right] \\
& =\mathbb{E}\left[\prod_{k=0}^{j-1} \mathbb{I}_{r_{A, k}<r_{B, k}} \mathbb{E}\left[\mathbb{I}_{r_{A, j}<r_{B, j}} \mid \mathcal{F}_{r_{S, j}}\right]\right]=(1-\epsilon) \mathbb{P}\left(A_{j-1}\right)
\end{aligned}
$$

Similarly, $\mathbb{P}(M=j)=\epsilon(1-\epsilon)^{j}$. Now we evaluate (2.40):

$$
\begin{aligned}
\mathbb{E}\left[F\left(Y_{\cdot+h_{0}}^{0}\right)\right] & =\epsilon \mathbb{E}\left[g\left(X_{r_{S, 0}}\right)\right]+\epsilon \mathbb{E}\left[\sum_{k=1}^{M} g\left(X_{r_{S, k}}\right)\right] \\
& \left.=\epsilon \mathbb{E}\left[g\left(X_{r_{S, 0}}\right)\right]+\epsilon \mathbb{E}\left[\sum_{j=0}^{\infty} \mathbb{I}_{A_{j}} g\left(X_{r_{S, j+1}}\right)\right]\right] \\
& =\epsilon \mathbb{E}\left[g\left(X_{r_{S, 0}}\right)\right]+\epsilon \sum_{j=0}^{\infty} \mathbb{E}\left[\mathbb{I}_{A_{j}} g\left(X_{r_{S, j+1}}\right)\right] \\
& =\epsilon \mathbb{E}\left[g\left(X_{r_{S, 0}}\right)\right]+\epsilon \sum_{j=0}^{\infty} \mathbb{P}\left(A_{j}\right) \mathbb{E}\left[g\left(X_{r_{S, j+1}}\right)\right] \\
& =\epsilon \mathbb{E}\left[g\left(X_{r_{S, 0}}\right)\right]+\epsilon \sum_{j=0}^{\infty}(1-\epsilon)^{j+1} \mathbb{E}\left[g\left(X_{r_{S, j+1}}\right)\right] \\
& =\sum_{j=0}^{\infty} \epsilon(1-\epsilon)^{j} \mathbb{E}\left[g\left(X_{r_{S, j}}\right)\right] \\
& =\sum_{j=0}^{\infty} \mathbb{P}(M=j) \mathbb{E}\left[g\left(X_{r_{S, j}}\right)\right]=\mathbb{E}\left[g\left(X_{\tau_{S, 0}}\right)\right]
\end{aligned}
$$

Now let $\epsilon \rightarrow 0$. Since $g(x)$ is bounded and is continuous up to ∂A by Proposition 2.6, we have (by the dominated convergence theorem)

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \mathbb{E}\left[g\left(X_{\tau_{S, 0}}\right)\right]=\mathbb{E}\left[\lim _{\epsilon \rightarrow 0} g\left(X_{\tau_{S, 0}}\right)\right]=\mathbb{E}\left[g\left(X_{\tau_{A, 0}^{-}}\right)\right] \tag{2.41}
\end{equation*}
$$

3 Reactive exit and entrance distributions

Proof of Lemma 1.3 The equality (1.22) is equivalent to

$$
\int_{\partial \Theta} \rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{\Theta}(x)=0 .
$$

Using (1.19), it is then equivalent to

$$
\langle\rho, L q\rangle=\left\langle L^{*} \rho, q\right\rangle=0
$$

which is obvious.
Before proving Proposition 1.5, we will need to establish some properties of the entrance and exit distributions and of the harmonic measure associated with the generator L. These results will also be used later in the paper. First, using integration by parts, we have
Lemma 3.1 Let $D \subset \mathbb{R}^{d}$ be open with smooth boundary. Let $\phi, \psi \in C^{2}(D) \cap C^{1}(\bar{D})$ and bounded. Then

$$
\begin{align*}
& \int_{D} \rho(x)(\phi(x) L \psi(x)-\psi(x) \widetilde{L} \phi(x)) \mathrm{d} x=\int_{\partial D} \rho(x) b \cdot \widehat{n}(x) \phi(x) \psi(x) \mathrm{d} \sigma_{D}(x) \\
& \quad+\int_{\partial D} \rho(x) \phi(x) \widehat{n}(x) \cdot a \nabla \psi(x)-\psi(x) \widehat{n}(x) \cdot \operatorname{div}(a(x) \rho(x) \phi(x)) \mathrm{d} \sigma_{D}(x) \tag{3.1}
\end{align*}
$$

where $\widehat{n}(x)$ is the exterior normal vector at $x \in \partial D$.
Let us recall some tools from potential theory (see for example the books [28, 32] and also [7,8] where potential theory was applied to analyze diffusion processes with metastability). The harmonic measure $H_{D}(x, \mathrm{~d} y)$ is given by the Poisson kernel corresponding to the boundary value problem

$$
\begin{cases}L u(x)=0, & x \in D \tag{3.2}\\ u(x)=f(x), & x \in \partial D\end{cases}
$$

Therefore, for $f \in C(\partial D)$,

$$
\begin{equation*}
u(x)=\int_{\partial D} H_{D}(x, \mathrm{~d} y) f(y) \tag{3.3}
\end{equation*}
$$

is the unique solution to (3.2). Similarly, the harmonic measure $\widetilde{H}_{D}(x, \mathrm{~d} y)$ corresponds to the generator \widetilde{L} (recall (1.28)). For the boundary value problem

$$
\begin{cases}\widetilde{L} \widetilde{u}(x)=0, & x \in D \tag{3.4}\\ \widetilde{u}(x)=f(x), & x \in \partial D\end{cases}
$$

the solution is given by

$$
\begin{equation*}
\widetilde{u}(x)=\int_{\partial D} \widetilde{H}_{D}(x, \mathrm{~d} y) f(y) \tag{3.5}
\end{equation*}
$$

The harmonic measures have a probabilistic interpretation: $H_{D}(x, \mathrm{~d} y)$ (resp. $\left.\widetilde{H}_{D}(x, \mathrm{~d} y)\right)$ gives the probability that the process associated with the generator L (resp. \widetilde{L}) first strikes the boundary ∂D at $\mathrm{d} y$ after starting at x. In particular,

$$
q(x)=H_{D}(x, \partial B) \text { and } \widetilde{q}(x)=\widetilde{H}_{D}(x, \partial A)
$$

We also define the harmonic measures for the conditioned processes as

$$
\begin{equation*}
H_{\Theta}^{q}(x, \mathrm{~d} y)=\frac{q(y)}{q(x)} H_{\Theta}(x, \mathrm{~d} y) \tag{3.6}
\end{equation*}
$$

For $x \in \Theta$ this is a measure on ∂B. For $x \in \partial A$ where $q(x)=0$, we may define $H_{\Theta}^{q}(x, \mathrm{~d} y)$ through a limit:

$$
\begin{equation*}
H_{\Theta}^{q}(x, \mathrm{~d} y)=\lim _{\substack{x^{\prime} \in \Theta \\ x^{\prime} \rightarrow x}} \frac{q(y)}{q(x)} H_{\Theta}(x, \mathrm{~d} y)=\frac{\widehat{n}(x) \cdot a(x) \nabla_{x} H_{\Theta}(x, d y)}{\widehat{n}(x) \cdot a(x) \nabla_{x} q(x)}, \quad x \in \partial A . \tag{3.7}
\end{equation*}
$$

Recall that $q(y)=1$ for $y \in \partial B$.
Recall the reactive exit and entrance measures $\eta_{A}^{-}, \eta_{A}^{+}, \eta_{B}^{-}$and η_{B}^{+}. They are connected by harmonic measures as follows:

Proposition 3.2

$$
\begin{align*}
& \int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) H_{\Theta}^{q}(x, \mathrm{~d} y)=\eta_{B}^{+}(\mathrm{d} y) . \tag{3.8}\\
& \int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) H_{\bar{B}^{c}}(x, \mathrm{~d} y)=\eta_{B}^{+}(\mathrm{d} y) . \tag{3.9}\\
& \int_{\partial B} \eta_{B}^{+}(\mathrm{d} x) H_{\bar{A}^{c}}(x, \mathrm{~d} y)=\eta_{A}^{+}(\mathrm{d} y) . \tag{3.10}
\end{align*}
$$

Proof We prove (3.8) first. If $f \in C(\partial B)$, let $u_{f}(x)$ solve $L u=0$ in Θ with

$$
u= \begin{cases}f(x), & x \in \partial B \tag{3.11}\\ 0, & x \in \partial A\end{cases}
$$

Hence $u(x) \widetilde{q}(x)=0$ on $\partial \Theta$. By applying (3.1) with $\phi(x)=\widetilde{q}(x)$ and $\psi(x)=u_{f}(x)$, we obtain

$$
\begin{align*}
\int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla u_{f}(x) \mathrm{d} \sigma_{A}(x) & =\int_{\partial B} f(x) \widehat{n}(x) \cdot \operatorname{div}(a(x) \rho(x) \widetilde{q}(x)) \mathrm{d} \sigma_{B}(x) \\
& =\int_{\partial B} f(x) \rho(x) \widehat{n}(x) \cdot a(x) \nabla \widetilde{q}(x) \mathrm{d} \sigma_{B}(x) \\
& =-\int_{\partial B} f(x) \eta_{B}^{+}(d x) \tag{3.12}
\end{align*}
$$

From (3.7) and (1.23), we see that for all $x \in \partial A$,

$$
\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) H_{\Theta}^{q}(x, \mathrm{~d} y)=-\int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla_{x} H_{\Theta}(x, \mathrm{~d} y) \mathrm{d} \sigma_{A}(x) .
$$

Hence for any $f \in C(\partial B)$, we have

$$
\begin{aligned}
& \int_{\partial B}\left(\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) H_{\Theta}^{q}(x, \mathrm{~d} y)\right) f(y) \\
& \quad=-\int_{\partial B} \int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla_{x}\left(f(y) H_{\Theta}(x, \mathrm{~d} y)\right) \mathrm{d} \sigma_{A}(x) \\
& \quad=-\int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla_{x}\left(\int_{\partial B} H_{\Theta}(x, \mathrm{~d} y) f(y)\right) \mathrm{d} \sigma_{A}(x) \\
& \quad=-\int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla_{x} u_{f}(x) \mathrm{d} x .
\end{aligned}
$$

Combining this with (3.12), we conclude that

$$
\int_{\partial B}\left(\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) H_{\Theta}^{q}(x, \mathrm{~d} y)\right) f(y)=\int_{\partial B} f(x) \eta_{B}^{+}(\mathrm{d} x), \quad \forall f \in C(\partial B),
$$

which proves (3.8).
To prove (3.9), let ψ solve $L \psi=0$ for $x \in \bar{B}^{c}$ with $\psi=f$ on ∂B. Then by (3.1) with $\phi=1-\widetilde{q}$, we have

$$
\begin{aligned}
\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) \psi(x)= & \int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla \widetilde{q}(x) \psi(x) \mathrm{d} \sigma_{A}(x) \\
= & -\int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla(1-\widetilde{q}(x)) \psi(x) \mathrm{d} \sigma_{A}(x) \\
= & -\int_{\partial A} \psi(x) \widehat{n}(x) \cdot \operatorname{div}(a \rho(1-\widetilde{q})) \mathrm{d} \sigma_{A}(x) \\
& (\text { since } 1-\widetilde{q}=0 \text { on } \partial A) \\
= & \int_{\partial B} f \widehat{n} \cdot \operatorname{div}(a \rho(1-\widetilde{q})) \mathrm{d} \sigma_{B}(x)-\int_{\partial B} f \rho b \cdot \widehat{n} \mathrm{~d} \sigma_{B}(x) \\
& -\int_{\partial B} \rho \widehat{n} \cdot a \nabla \psi \mathrm{~d} \sigma_{B}(x) .
\end{aligned}
$$

Applying (3.1) with the function $\phi \equiv 1$, we also find that

$$
0=-\int_{\partial B} f \widehat{n} \cdot \operatorname{div}(a \rho) \mathrm{d} \sigma_{B}(x)+\int_{\partial B} f \rho b \cdot \widehat{n} \mathrm{~d} \sigma_{B}(x)+\int_{\partial B} \rho \widehat{n} \cdot a \nabla \psi \mathrm{~d} \sigma_{B}(x) .
$$

Therefore, since $1-\widetilde{q}=1$ on ∂B, we conclude that

$$
\begin{aligned}
\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) \psi(x) & =\int_{\partial B} f \widehat{n} \cdot \operatorname{div}(a \rho(1-\widetilde{q})) \mathrm{d} \sigma_{B}(x)-\int_{\partial B} f \widehat{n}(x) \cdot \operatorname{div}(a \rho) \mathrm{d} \sigma_{B}(x) \\
& =\int_{\partial B} f \rho \widehat{n} \cdot a \nabla(1-\widetilde{q}) \mathrm{d} \sigma_{B}(x) \\
& =-\int_{\partial B} f \rho \widehat{n} \cdot a \nabla \widetilde{q} \mathrm{~d} \sigma_{B}(x)=\int_{\partial A} f \eta_{B}^{+}(\mathrm{d} x) .
\end{aligned}
$$

We arrive at (3.9) noting that

$$
\psi(x)=\int_{\partial B} H_{\bar{B}^{c}}(x, \mathrm{~d} y) f(y) .
$$

We omit the proof of (3.10) which is analogous to that of (3.9) by switching the role of A and B.

By combining (3.9) and (3.10) we immediately obtain the following:
Corollary 3.3 Let $P_{B}(x, \mathrm{~d} y)$ be the probability transition kernel

$$
P_{B}(x, \mathrm{~d} y)=\int_{\partial A} H_{\bar{A}^{c}}(x, \mathrm{~d} z) H_{\bar{B}^{c}}(z, \mathrm{~d} y), \quad x, y \in \partial B
$$

on ∂B, and let $P_{A}(x, \mathrm{~d} y)$ be the probability transition kernel

$$
P_{A}(x, \mathrm{~d} y)=\int_{\partial B} H_{\bar{B}^{c}}(x, \mathrm{~d} z) H_{\bar{A}^{c}}(z, \mathrm{~d} y), \quad x, y \in \partial A
$$

on ∂ A. Then

$$
\int_{x \in \partial B} \eta_{B}^{+}(\mathrm{d} x) P_{B}(x, \mathrm{~d} y)=\eta_{B}^{+}(\mathrm{d} y) .
$$

and

$$
\int_{x \in \partial A} \eta_{A}^{+}(\mathrm{d} x) P_{A}(x, \mathrm{~d} y)=\eta_{A}^{-}(\mathrm{d} y) .
$$

That is, η_{B}^{+}and η_{A}^{+}are invariant under P_{B} and P_{A}, respectively.

We are ready to return to the proof of Proposition 1.5.
Proof of Proposition 1.5 We first verify that η_{B}^{+}is a probability measure. Taking $\psi=$ q and $\phi=\widetilde{q}$ in (3.1), we obtain using the boundary conditions of q and \widetilde{q} on ∂A and ∂B,

$$
\begin{aligned}
\eta_{A}^{-}(\partial A)=\frac{1}{v} \int_{\partial A} \rho \widehat{n} \cdot a \nabla q \mathrm{~d} \sigma_{A} & =\frac{1}{v} \int_{\partial B} \widehat{n} \cdot \operatorname{div}(a \rho \widetilde{q}) \mathrm{d} \sigma_{B} \\
& =\frac{1}{v} \int_{\partial B} \widehat{n} \cdot a \rho \nabla \widetilde{q} \mathrm{~d} \sigma_{B}=\eta_{B}^{+}(\partial B) .
\end{aligned}
$$

This shows that $\eta_{B}^{+}(\partial B)=1$ and v is the correct normalization constant.
Let g be a positive continuous function on ∂B. Define for $x \notin \bar{B}$,

$$
\begin{equation*}
u(x)=\mathbb{E}\left[g\left(X_{\tau_{B}}\right) \mid X_{0}=x\right] . \tag{3.13}
\end{equation*}
$$

Hence u satisfies the equation

$$
\begin{cases}L u(x)=0, & x \in \bar{B}^{c} \tag{3.14}\\ u(x)=g(x), & x \in \partial B\end{cases}
$$

Let $H_{\bar{B}^{c}}(x, \mathrm{~d} y)$ be the harmonic measure (the measure of the first hitting point on \bar{B} for the process starting at x). We have

$$
\begin{equation*}
u(x)=\int_{\partial B} H_{\bar{B}^{c}}(x, \mathrm{~d} y) g(y) \tag{3.15}
\end{equation*}
$$

By the maximum principle, $u>0$ in \bar{B}^{c}. By the Harnack inequality for non-divergence form elliptic operators [18, Corollary 9.25] and the compactness of ∂A, we have

$$
\begin{equation*}
\sup _{x \in \partial A} u(x) \leq C \inf _{x \in \partial A} u(x), \tag{3.16}
\end{equation*}
$$

where the constant $C>0$ only depends on the elliptic constants of $a(x)$ and on the maximum of $|b|$ over some compact set A^{\prime} satisfying $A \subset A^{\prime} \subset \bar{B}^{c}$. In particular, C is independent of g. Therefore, we obtain for any $x, x^{\prime} \in \partial A, y \in \partial B$

$$
\begin{equation*}
0<C^{-1} \leq \frac{H_{\bar{B}^{c}}(x, \mathrm{~d} y)}{H_{\bar{B}^{c}}\left(x^{\prime}, \mathrm{d} y\right)} \leq C<\infty . \tag{3.17}
\end{equation*}
$$

If we define

$$
\begin{equation*}
v_{B}(\mathrm{~d} y)=\inf _{x \in \partial A} H_{\bar{B}^{c}}(x, \mathrm{~d} y), \tag{3.18}
\end{equation*}
$$

then $v_{B}(E)>0$ is absolutely continuous with respect to $\sigma_{B}(d y)$ on ∂B, and

$$
\begin{equation*}
H_{\bar{B}^{c}}(x, \mathrm{~d} y) \geq C^{-1} v_{B}(\mathrm{~d} y) \tag{3.19}
\end{equation*}
$$

for any $x \in \partial A$.
Consider the Markov chain given by $\left\{X_{\tau_{B, k}^{+}}\right\}_{k=0}^{\infty}$ on ∂B. Let P_{B} denote its transition kernel, given by

$$
\begin{equation*}
P_{B}\left(y, \mathrm{~d} y^{\prime}\right)=\int_{\partial A} H_{\bar{A}^{c}}(y, \mathrm{~d} x) H_{\bar{B}^{c}}\left(x, \mathrm{~d} y^{\prime}\right) . \tag{3.20}
\end{equation*}
$$

By (3.19), P_{B} satisfies Doeblin's minorization condition:

$$
\begin{equation*}
P_{B}\left(y, \mathrm{~d} y^{\prime}\right) \geq C^{-1} \int_{\partial A} H_{\bar{A}^{c}}(y, \mathrm{~d} x) v_{B}\left(\mathrm{~d} y^{\prime}\right)=C^{-1} v_{B}\left(\mathrm{~d} y^{\prime}\right) \tag{3.21}
\end{equation*}
$$

Therefore, P_{B} has a unique invariant measure [3, Theorem 6.1]. By Corollary 3.3, this invariant measure is given by η_{B}^{+}. Hence, as $N \rightarrow \infty, \int_{\partial B} f(x) \mathrm{d} \mu_{B, N}^{+}(x)$ converges exponentially fast to $\int_{\partial B} f(x) \mathrm{d} \eta_{B}^{+}(x)$ (see e.g. [26, Theorem 17.1.7]). The rate of the convergence depends on the sets A and B.

Proof of Theorem 1.7 Consider the family of processes

$$
X_{t}^{A, n}=X_{\left(t+\tau_{A, n}^{+}\right) \wedge \tau_{B, n}^{+}}
$$

Observe that the nth reactive trajectory $t \mapsto Y_{t}^{n}$ is a subset of the path $t \mapsto X_{t}^{A, n}$; specifically, $Y_{t}^{n}=X_{t+\tau_{A, n}^{-}-\tau_{A, n}^{+}}^{A, n}$ for all $t \geq 0$. The random sequence of points

$$
y_{n}=X_{0}^{A, n}=X_{\tau_{A, n}^{+}} \in \partial A, \quad n=0,1,2, \ldots
$$

corresponds to a Markov chain on the state space ∂A with transition kernel

$$
P_{A}(x, \mathrm{~d} y)=\mathbb{P}\left(y_{n+1} \in \mathrm{~d} y \mid y_{n}=x\right)=\int_{\partial B} H_{\bar{B}^{c}}(x, \mathrm{~d} z) H_{\bar{A}^{c}}(z, \mathrm{~d} y) .
$$

As shown in the proof of Proposition 1.5 (reversing the role of B and A), this chain satisfies a Doeblin minorizing condition

$$
\begin{equation*}
P_{A}(x, \mathrm{~d} y) \geq C^{-1} v_{A}(d y)=C^{-1} \inf _{x \in \partial B} H_{\bar{A}^{c}}(x, \mathrm{~d} y)>0 \tag{3.22}
\end{equation*}
$$

and the chain has a unique invariant probability distribution η_{A}^{+}supported on ∂A :

$$
\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) P_{A}(x, \mathrm{~d} y)=\eta_{A}^{+}(\mathrm{d} y)
$$

The sequence of processes $t \mapsto X_{t}^{A, n}$ corresponds to a homogeneous Markov chain on the metric space $\mathcal{X}=C([0, \infty))$. The transition probability K for this chain may be expressed as follows. If $X \in C([0, \infty))$ is such that $\tau_{B}^{X}=\inf \left\{t \geq 0 \mid X_{t} \in \partial B\right\}$ is finite, then for any set $E \in \mathcal{B}$,

$$
\begin{equation*}
K(X, E)=\mathbb{P}\left(X^{A, n+1} \in E \mid X^{A, n}=X\right)=\int_{\partial A} H_{\bar{A}^{c}}\left(X_{\tau_{B}^{X}}, d y\right) \mathcal{P}_{y}(E) \tag{3.23}
\end{equation*}
$$

where \mathcal{P}_{x} denotes the law on $(\mathcal{X}, \mathcal{B})$ of the process $t \mapsto Z_{t \wedge \tau_{B}}$ where

$$
\mathrm{d} Z_{t}=b\left(Z_{t}\right) \mathrm{d} t+\sqrt{2} \sigma\left(Z_{t}\right) \mathrm{d} W_{t}, \quad Z_{0}=x
$$

and τ_{B} is the first hitting time of Z_{t} to \bar{B}. If $X \in C([0, \infty))$ never hits the set \bar{B}, then we define

$$
\begin{equation*}
K(X, E)=\int_{\partial A} \eta_{A}^{+}(d y) \mathcal{P}_{y}(E), \quad E \in \mathcal{B} . \tag{3.24}
\end{equation*}
$$

This chain on \mathcal{X} has a unique invariant distribution

$$
\overline{\mathcal{P}}(U)=\int_{\partial A} \eta_{A}^{+}(\mathrm{d} y) \mathcal{P}_{y}(U), \quad \forall U \in \mathcal{B},
$$

supported on the set of paths which originate in ∂A and are constant after hitting ∂B. The uniqueness of $\overline{\mathcal{P}}$ follows from the uniqueness of η_{A}^{+}as an invariant distribution for the chain defined by transition kernel P_{A} on ∂A. Since $P_{A}(x, d y)$ satisfies the Doeblin condition (3.22), so does the chain on \mathcal{X} :

$$
\inf _{X \in \mathcal{X}} K(X, E) \geq C^{-1} \int_{\partial A} \nu_{A}(d y) \mathcal{P}_{y}(E)
$$

In particular, it is positive Harris recurrent and aperiodic, and by [26, Theorem 17.1.7], for any $\Phi \in L^{1}(\mathcal{X}, \mathcal{B}, \overline{\mathcal{P}})$ the limit

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \Phi\left(X^{A, k}\right)=\mathbb{E}\left[\Phi\left(Z_{. \wedge \tau_{B}}\right) \mid Z_{0} \sim \eta_{A}^{+}\right] \tag{3.25}
\end{equation*}
$$

holds \mathbb{P}-almost surely.
Using (3.25) we will establish the following relationship between η_{A}^{-}and η_{A}^{+}:
Lemma 3.4 Let X_{t} satisfy the SDE (1.1) with initial distribution $X_{0} \sim \eta_{A}^{+}$on ∂A. Then for any Borel set $U \subset \partial A$,

$$
\mathbb{P}\left(X_{\tau_{A, 0}^{-}} \in U \mid X_{0} \sim \eta_{A}^{+}\right)=\eta_{A}^{-}(U)=-\frac{1}{v} \int_{U} \rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) \mathrm{d} \sigma_{A}(x)
$$

Proof of Lemma 3.4 Let $f \in C\left(\mathbb{R}^{d}\right)$ be bounded and non-negative. Let us recall set S introduced in the proof of Theorem 1.2. Given $\epsilon>0$, we let $S=\{x \in \Theta \mid q(x)<$ $\epsilon\} \cup \bar{A}$. Then by applying (3.25) to the functional $\Phi(X)=f\left(X_{\tau_{S, 0}^{-}}\right)$, we obtain

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(X_{\tau_{S, n}}\right) & =\lim _{\epsilon \rightarrow 0} \mathbb{E}\left[f\left(X_{\tau_{S, 0}}\right) \mid X_{0} \sim \eta_{A}^{+}\right] \\
& =\mathbb{E}\left[f\left(X_{\tau_{A, 0}^{-}}\right) \mid X_{0} \sim \eta_{A}^{+}\right] .
\end{aligned}
$$

We also have,

$$
\begin{align*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(X_{\tau_{S, n}}\right) & =\left(\lim _{K \rightarrow \infty} \frac{K}{N_{K}}\right)\left(\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=0}^{K-1} f\left(X_{r_{S, k}}\right) \mathbb{I}_{r_{B, k}<r_{A, k}}\right) \tag{3.26}\\
& =\int_{\partial S} f(x) \zeta_{S}(\mathrm{~d} x)
\end{align*}
$$

holds \mathbb{P}-almost surely, where $N_{K}=\left|\left\{k \in\{0,1, \ldots, K-1\} \mid r_{B, k}<r_{A, k}\right\}\right|$. Here we have used ζ_{S} to denote the unique invariant distribution (identified below) for the Markov chain defined by $X_{r_{S, k}}$ on ∂S. Therefore,

$$
\mathbb{E}\left[f\left(X_{\tau_{A, 0}^{-}}\right) \mid X_{0} \sim \eta_{A}^{+}\right]=\lim _{\epsilon \rightarrow 0} \int_{\partial S} f(x) \zeta_{S}(\mathrm{~d} x)
$$

We claim that if $f(x)$ is uniformly continuous in a neighborhood of ∂A, then

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{\partial S} \zeta_{S}(\mathrm{~d} x) f(x)=\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) f(x) . \tag{3.27}
\end{equation*}
$$

First, let us identify the invariant distribution ζ_{S}. By applying Corollary 3.3 (replacing B by \bar{S}^{c}) we can identify ζ_{S} as

$$
\zeta_{S}(\mathrm{~d} x)\left(=\eta_{S}^{+}(\mathrm{d} x)\right)=-\frac{\epsilon}{v} \rho(x) \widehat{n}(x) \cdot a(x) \nabla \widetilde{q}_{S}(x) \mathrm{d} \sigma_{S}(x)
$$

where $\widehat{n}(x)$ is the exterior normal at $x \in \partial S$, and \widetilde{q}_{S} satisfies $\widetilde{L} \widetilde{q}_{S}=0$ in S with

$$
\tilde{q}_{S}(x)= \begin{cases}1, & x \in \partial A \\ 0, & x \in \partial S\end{cases}
$$

Note that v is independent of ϵ. Let $\delta>\epsilon$ be small, and suppose that $f(x)$ is continuous on the closed set $\{x \in \bar{\Theta} \mid 0 \leq q(x) \leq \delta\}$. (This set contains both ∂A and ∂S). A computation similar to (3.12) (replacing B by S) shows that for any such function, we have

$$
\begin{equation*}
\int_{\partial S} \zeta_{S}(\mathrm{~d} x) f(x)=-\frac{\epsilon}{\nu} \int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla u_{f, S}(x) \mathrm{d} \sigma_{A}(x), \tag{3.28}
\end{equation*}
$$

where $u_{f, S}$ satisfies $L u=0$ in $S \backslash \bar{A}$, and

$$
u_{f, S}(x)= \begin{cases}f(x), & x \in \partial S \\ 0, & x \in \partial A\end{cases}
$$

Since $f \geq 0$, we have $u>0$ in $S \backslash \bar{A}$. Now, let us define

$$
z_{f, S}(x)=\epsilon \frac{u_{f, S}(x)}{q(x)}, \quad x \in \bar{S} \backslash A,
$$

which satisfies $L^{q} z=0$ in $S \backslash \bar{A}$, with $z=f$ on ∂S (recall that $q(x)=\epsilon$ for all $x \in \partial S$). By the boundary Harnack inequality (see Theorem 2 and Corollary 1 of [2], as well as [5, Theorem 2.1] and [11, Theorem 11.6]), $z_{f, S}(x)$ is bounded and Hölder continuous on $\bar{S} \backslash A$ (including ∂A). We claim that for any $x_{0} \in \partial A$, we have

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \nabla u_{f, S}(x)=\epsilon^{-1} z_{f, S}\left(x_{0}\right) \nabla q\left(x_{0}\right) \tag{3.29}
\end{equation*}
$$

Since $\nabla u_{f, S}, \nabla q$, and $z_{f, S}$ are continuous up to ∂A, this is true if and only if

$$
\lim _{x \rightarrow x_{0}} q(x) \nabla z_{f, S}(x)=0
$$

Suppose $q(x) \nabla z_{f, S}(x) \rightarrow v \neq 0$ as $x \rightarrow x_{0} \in \partial A$. Then we must have

$$
\lim _{x \rightarrow x_{0}} \nabla u_{f, S}(x)-z_{f, S}(x) \nabla q(x)=v
$$

so that v must be a multiple of $\widehat{n}\left(x_{0}\right)$ (since u and q vanish on ∂A). Thus, we would have

$$
\begin{equation*}
\widehat{n}\left(x_{0}\right) \cdot \nabla z_{f, S}(x) \sim\left(\widehat{n}\left(x_{0}\right) \cdot v\right) q(x)^{-1} \tag{3.30}
\end{equation*}
$$

as $x \rightarrow x_{0} \in \partial A$. If $v \neq 0$, then $\left(\widehat{n}\left(x_{0}\right) \cdot v\right) \neq 0$, so (3.30) and the fact that $q=0$ on ∂A would contradict the boundedness of $z_{f, S}(x)$. Therefore, (3.29) must hold.

Combining (3.28) and (3.29) we obtain
$\int_{\partial S} \zeta_{S}(\mathrm{~d} x) f(x)=-\frac{1}{\nu} \int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla q(x) z_{f, S}(x) \mathrm{d} \sigma_{A}(x)=\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) z_{f, S}(x)$.
Therefore, as $\epsilon \rightarrow 0$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{\partial S} \zeta_{S}(\mathrm{~d} x) f(x)=\lim _{\epsilon \rightarrow 0} \int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) z_{f, S}(x)=\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) f(x) . \tag{3.31}
\end{equation*}
$$

This establishes (3.27) and completes the proof of Lemma 3.4.

Now we continue with the proof of Theorem 1.7. We will apply Theorem 1.2. Suppose that $F \in L^{1}\left(\mathcal{X}, \mathcal{B}, \mathcal{Q}_{\eta_{A}^{-}}\right)$, and define the functional

$$
\Phi(X)=F\left(X_{\left(\cdot+\tau_{A, 0}^{-}\right) \wedge \tau_{B, 0}^{+}}\right)
$$

Combining Theorem 1.2 and Lemma 3.4 we see that $\Phi \in L^{1}(\mathcal{X}, \mathcal{B}, \overline{\mathcal{P}})$, since

$$
\begin{aligned}
\overline{\mathcal{P}}(\Phi(X)>\alpha) & =\mathbb{P}\left(\Phi(X)>\alpha \mid X_{0} \sim \eta_{A}^{+}\right) \\
& =\mathbb{P}\left(F\left(X_{\left(\cdot+\tau_{A, 0}^{-}\right) \wedge \tau_{B_{0}}^{+}}\right)>\alpha \mid X_{0} \sim \eta_{A}^{+}\right) \\
& =\mathbb{Q}\left(F(Y)>\alpha \mid Y_{0} \sim \eta_{A}^{-}\right)=\mathcal{Q}(F(Y)>\alpha) .
\end{aligned}
$$

Therefore,

$$
\frac{1}{N} \sum_{k=0}^{N-1} F\left(Y^{k}\right)=\frac{1}{N} \sum_{k=0}^{N-1} F\left(X_{\left(+\tau_{A, k}^{-}\right) \wedge \tau_{B, k}^{+}}^{A, k}\right)=\frac{1}{N} \sum_{k=0}^{N-1} \Phi\left(X_{\cdot}^{A, k}\right)
$$

By (3.25) and Theorem 1.2, we now conclude that the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} F\left(Y^{k}\right)=\mathbb{E}\left[\Phi\left(Z_{. \wedge \tau_{B}}\right) \mid Z_{0} \sim \eta_{A}^{+}\right]=\widehat{\mathbb{E}}\left[F(Y) \mid Y_{0} \sim \eta_{A}^{-}\right]
$$

holds \mathbb{P}-almost surely. This completes the proof of Theorem 1.7.

4 Reaction rate, density and current of transition paths

4.1 Reaction rate

Proof of Proposition 1.8 Denote τ_{B} the first hitting time of X_{t} to \bar{B}. Consider the mean first hitting time

$$
u_{B}(x)=\mathbb{E}\left[\tau_{B} \mid X_{0}=x\right],
$$

which satisfies the equation

$$
\begin{cases}L u_{B}(x)=-1, & x \in \Theta \tag{4.1}\\ u_{B}(x)=0, & x \in \partial B .\end{cases}
$$

By definition of η_{A}^{+}, we have

$$
\begin{equation*}
\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) u_{B}(x)=\frac{1}{v} \int_{\partial A} \rho(x) u_{B}(x) \widehat{n}(x) \cdot a(x) \nabla \widetilde{q}(x) \mathrm{d} \sigma_{A}(x) . \tag{4.2}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \rho(x) \widetilde{q}(x) \mathrm{d} x=\int_{B^{c}} \rho(x) \widetilde{q}(x) \mathrm{d} x \\
& \stackrel{(4.1)}{=}-\int_{B^{c}} \rho(x) \widetilde{q}(x)\left(L u_{B}\right)(x) \mathrm{d} x \\
&=-\int_{A} \rho(x)\left(L u_{B}\right)(x) \mathrm{d} x-\int_{\Theta} \rho(x) \widetilde{q}(x)\left(L u_{B}\right)(x) \mathrm{d} x .
\end{aligned}
$$

Using (3.1) with $D=A, \phi(x)=1$ and $\psi(x)=u_{B}$, we obtain

$$
\begin{aligned}
\int_{A} \rho\left(L u_{B}\right) \mathrm{d} x= & -\int_{\partial A} \rho b \cdot \widehat{n} u_{B} \mathrm{~d} \sigma_{A}(x) \\
& -\int_{\partial A} \rho \widehat{n} \cdot a \nabla u_{B} \mathrm{~d} \sigma_{A}(x)+\int_{\partial A} u_{B} \widehat{n} \cdot \operatorname{div}(a \rho) \mathrm{d} \sigma_{A}(x),
\end{aligned}
$$

where \widehat{n} is the interior normal vector at ∂A. Apply (3.1) again with $D=\Theta, \phi=\widetilde{q}$ and $\psi=u_{B}$,

$$
\begin{aligned}
\int_{\Theta} \rho \widetilde{q}\left(L u_{B}\right) \mathrm{d} x= & \int_{\partial A} \rho b \cdot \widehat{n} u_{B} \mathrm{~d} \sigma_{A}(x) \\
& +\int_{\partial A} \rho \widehat{n} \cdot a \nabla u_{B} \mathrm{~d} \sigma_{A}(x)-\int_{\partial A} u_{B} \widehat{n} \cdot \operatorname{div}(a \rho \widetilde{q}) \mathrm{d} \sigma_{A}(x) .
\end{aligned}
$$

Combining the two with (4.2), we get

$$
\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) u_{B}(x)=\frac{1}{v} \int_{\partial A} \rho u_{B} \widehat{n} \cdot a \nabla \widetilde{q} \mathrm{~d} \sigma_{A}(x)=\frac{1}{v} \int_{\mathbb{R}^{d}} \rho \widetilde{q} \mathrm{~d} x .
$$

Similarly, defining $u_{A}(x)$ to be the mean first hitting time of X_{t} to \bar{A} starting at x, we have

$$
\int_{\partial B} \eta_{B}^{+}(\mathrm{d} x) u_{A}(x)=\frac{1}{v} \int_{\mathbb{R}^{d}} \rho(1-\widetilde{q}) \mathrm{d} x .
$$

Add the integrals together to obtain

$$
\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) u_{B}(x)+\int_{\partial B} \eta_{B}^{+}(\mathrm{d} x) u_{A}(x)=\frac{1}{v} .
$$

On the other hand, observe that

$$
\begin{aligned}
\frac{1}{v_{R}} & =\lim _{N_{T} \rightarrow \infty} \frac{T}{N_{T}} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(\tau_{A, n+1}^{+}-\tau_{A, n}^{+}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(\tau_{B, n}^{+}-\tau_{A, n}^{+}\right)+\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(\tau_{A, n+1}^{+}-\tau_{B, n}^{+}\right) .
\end{aligned}
$$

As $N \rightarrow \infty$, we have

$$
T_{A B}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(\tau_{B, n}^{+}-\tau_{A, n}^{+}\right)=\mathbb{E}\left[\tau_{B} \mid X_{0} \sim \eta_{A}^{+}\right]=\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) u_{B}(x),
$$

and similarly

$$
T_{B A}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left(\tau_{A, n+1}^{+}-\tau_{B, n}^{+}\right)=\int_{\partial B} \eta_{B}^{+}(\mathrm{d} x) u_{A}(x) .
$$

Therefore

$$
\frac{1}{v_{R}}=\int_{\partial A} \eta_{A}^{+}(\mathrm{d} x) u_{B}(x)+\int_{\partial B} \eta_{B}^{+}(\mathrm{d} x) u_{A}(x)=\frac{1}{v}
$$

or equivalently $v=v_{R}$.
From Theorem 1.7 it follows immediately that

$$
C_{A B}=\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) v_{B}(x) .
$$

Indeed, the functional $F: Y \rightarrow \tau_{B}^{Y}$ is in $L^{1}\left(\mathcal{X}, \mathcal{B}, \mathcal{Q}_{\eta_{A}^{-}}\right)$by Proposition 2.7. The function $v_{B}(x)=\widehat{\mathbb{E}}\left[\tau_{B}^{Y} \mid Y_{0}=x\right]$ satisfies

$$
L^{q} v_{B}=-1, \quad x \in \Theta
$$

with $v(x)=0$ for $x \in \partial B$. Hence, the function $w(x)=q(x) v_{B}(x)$ satisfies $L w=-q$ for $x \in \Theta$ with boundary condition $w(x)=0$ for $x \in \partial \Theta$. Moreover, for $x_{0} \in \partial A$, we have

$$
v_{B}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{w(x)}{q(x)}=\frac{\widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla w\left(x_{0}\right)}{\widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla q\left(x_{0}\right)} .
$$

Therefore,

$$
\int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) v_{B}(x)=-\frac{1}{v} \int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla w(x) \mathrm{d} \sigma_{A}(x) .
$$

Now applying (3.1) with $D=\Theta, \phi=\tilde{q}$ and $\psi=w$, we have

$$
-\frac{1}{v} \int_{\partial A} \rho(x) \widehat{n}(x) \cdot a(x) \nabla w(x) \mathrm{d} \sigma_{A}(x)=\frac{1}{v} \int_{\Theta} \rho(x) \tilde{q}(x) q(x) \mathrm{d} x .
$$

It remains to show that

$$
v=\int_{\mathbb{R}^{d}} \rho \nabla q \cdot a \nabla q \mathrm{~d} x
$$

Using integration by parts, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \rho \nabla q \cdot a \nabla q \mathrm{~d} x= & \int_{\Theta} \rho \nabla\left(q-\frac{1}{2}\right) \cdot a \nabla q \mathrm{~d} x \\
= & -\int_{\Theta} \nabla \cdot(\rho a \nabla q)\left(q-\frac{1}{2}\right) \mathrm{d} x+\int_{\partial A} \rho\left(q-\frac{1}{2}\right) \widehat{n} \cdot a \nabla q \mathrm{~d} \sigma_{A}(x) \\
& +\int_{\partial B} \rho\left(q-\frac{1}{2}\right) \widehat{n} \cdot a \nabla q \mathrm{~d} \sigma_{B}(x) .
\end{aligned}
$$

The first term on the right hand side vanishes as

$$
\begin{aligned}
\int_{\Theta} \nabla \cdot(\rho a \nabla q)\left(q-\frac{1}{2}\right) \mathrm{d} x= & \int_{\Theta}\left(\rho \operatorname{tr} a \nabla^{2} q+\rho b \cdot \nabla q\right)\left(q-\frac{1}{2}\right) \mathrm{d} x \\
& +\frac{1}{2} \int_{\Theta}(\operatorname{div}(\rho a) \cdot \nabla-\rho b \nabla)\left(q^{2}-q\right) \mathrm{d} x \\
= & \int_{\Theta} \rho(L q)\left(q-\frac{1}{2}\right) \mathrm{d} x-\frac{1}{2} \int_{\Theta}\left(L^{*} \rho\right)\left(q^{2}-q\right)=0
\end{aligned}
$$

where we have used that $q^{2}-q=0$ on $\partial A \cup \partial B$. The conclusion then follows from Lemma 1.3, $q=0$ on ∂A, and $q=1$ on ∂B.

4.2 Density of transition paths

We define the Green's function G_{Θ} of the operator L in Θ with Dirichlet boundary condition on $\partial \Theta$:

$$
\begin{cases}L G_{\Theta}(x, y)=-\delta_{y}(x), & x \in \Theta \tag{4.3}\\ G_{\Theta}(x, y)=0, & x \in \partial \Theta\end{cases}
$$

The existence of the Green's function is guaranteed by the ergodicity of X_{t} in \mathbb{R}^{d}, which implies that X_{t} is transient in Θ (see e.g. [28, Section 4.2]).

Lemma 4.1 Let G_{Θ} be the Green's function of L in Θ with Dirichlet boundary condition on $\partial \Theta$. We have

$$
\begin{equation*}
G_{\Theta}^{q}(x, y) \equiv \int_{0}^{\infty} Q_{R}(t, x, y) \mathrm{d} t=\frac{q(y) G_{\Theta}(x, y)}{q(x)} \tag{4.4}
\end{equation*}
$$

In particular, for $x \in \partial A, y \in \Theta$

$$
\begin{equation*}
G_{\Theta}^{q}(x, y)=\frac{q(y) \widehat{n}(x) \cdot a(x) \nabla_{x} G_{\Theta}(x, y)}{\widehat{n}(x) \cdot a(x) \nabla q(x)} . \tag{4.5}
\end{equation*}
$$

Proof Fix $y \in \Theta$. For $x \in \Theta$, (4.4) follows from [28, Proposition 4.2.2]. Specifically, the function $G_{\Theta}^{q}(x, y)$ defined by

$$
G_{\Theta}^{q}(x, y)=\int_{0}^{\infty} Q_{R}(t, x, y) \mathrm{d} t
$$

is related to the Green's function (4.3) by the formula

$$
G_{\Theta}^{q}(x, y)=\frac{q(y) G_{\Theta}(x, y)}{q(x)}, \quad x, y \in \Theta .
$$

Because of the regularity of the coefficients $a(x)$ and $b(x)$, Schauder-type interior and boundary estimates imply that $G(\cdot, y) \in C^{2, \alpha}(\bar{\Theta} \backslash\{y\})$. Since $G(x, y)=q(x)=0$ for $x \in \partial A$, the Hopf Lemma implies that for all $x \in \partial A, \nabla_{x} G(x, y)$ is a nonzero multiple of $\widehat{n}(x)$. That is, for all $x \in \partial A, \nabla_{x} G(x, y)=r(x) \widehat{n}(x)$ for some continuous $r(x)<0$. The same is true for q. Therefore, $G_{\Theta}^{q}(x, y)$ is continuous in x up to the boundary $\partial \Theta$ and for $x_{0} \in \partial A$,

$$
\lim _{x \rightarrow x_{0}, x \in \Theta} G_{\Theta}^{q}(x, y)=\frac{q(y) \widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla_{x} G_{\Theta}\left(x_{0}, y\right)}{\widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla q\left(x_{0}\right)} .
$$

It remains to show that for $x_{0} \in \partial A$,

$$
\begin{equation*}
\frac{q(y) \widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla_{x} G_{\Theta}\left(x_{0}, y\right)}{\widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla q\left(x_{0}\right)}=\int_{0}^{\infty} Q_{R}\left(t, x_{0}, y\right) \mathrm{d} t \tag{4.6}
\end{equation*}
$$

Let $\varphi \geq 0$ be smooth and compactly supported in Θ. By Proposition 2.6, we have

$$
\lim _{x \rightarrow x_{0}} \widehat{\mathbb{E}}\left[\varphi\left(Y_{t}\right) \mid Y_{0}=x\right]=\widehat{\mathbb{E}}\left[\varphi\left(Y_{t}\right) \mid Y_{0}=x_{0}\right]
$$

Moreover,

$$
\widehat{\mathbb{E}}\left[\varphi\left(Y_{t}\right) \mid Y_{0}=x\right] \leq\|\varphi\|_{\infty} \mathbb{Q}\left(Y_{t} \in \Theta \mid Y_{0}=x\right)
$$

By Proposition 2.7, for any $R>0$, there a function $h_{R} \in L^{1}(0,+\infty)$ such that $\mathbb{Q}\left(Y_{t} \in \Theta \mid Y_{0}=x\right) \leq h_{R}(t)$ for all $x \in \Theta,|x|<R, t \geq 0$. Therefore, we have $\widehat{\mathbb{E}}\left[\varphi\left(Y_{t}\right) \mid Y_{0}=x\right] \leq\|\varphi\|_{\infty} h_{R}(t)$ so the dominated convergence theorem implies that

$$
\begin{align*}
\lim _{x \rightarrow x_{0}} \int_{\Theta} G_{\Theta}^{q}(x, y) \varphi(y) \mathrm{d} y & =\lim _{x \rightarrow x_{0}} \int_{0}^{\infty} \widehat{\mathbb{E}}\left[\varphi\left(Y_{t}\right) \mid Y_{0}=x\right] \mathrm{d} t \\
& =\int_{0}^{\infty} \widehat{\mathbb{E}}\left[\varphi\left(Y_{t}\right) \mid Y_{0}=x_{0}\right] \mathrm{d} t \\
& =\int_{0}^{\infty}\left(\int_{\Theta} Q\left(t, x_{0}, y\right) \varphi(y) \mathrm{d} y\right) \mathrm{d} t \tag{4.7}
\end{align*}
$$

On the other hand, we also have

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \int_{\Theta} G_{\Theta}^{q}(x, y) \varphi(y) \mathrm{d} y=\int_{\Theta} \frac{q(y) \widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla_{x} G_{\Theta}\left(x_{0}, y\right)}{\widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla q\left(x_{0}\right)} \varphi(y) \mathrm{d} y \tag{4.8}
\end{equation*}
$$

Therefore, by combining (4.7) and (4.8) we conclude

$$
\begin{aligned}
\int_{\Theta} \frac{q(y) \widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla_{x} G_{\Theta}\left(x_{0}, y\right)}{\widehat{n}\left(x_{0}\right) \cdot a\left(x_{0}\right) \nabla q\left(x_{0}\right)} \varphi(y) \mathrm{d} y & =\int_{0}^{\infty} \int_{\Theta} Q\left(t, x_{0}, y\right) \varphi(y) \mathrm{d} y \mathrm{~d} t \\
& =\int_{\Theta}\left(\int_{0}^{\infty} Q\left(t, x_{0}, y\right) \mathrm{d} t\right) \varphi(y) \mathrm{d} y
\end{aligned}
$$

Since φ is arbitrary, this implies (4.6).
Proof of Proposition 1.9 Using Lemma 4.1 and (1.38),

$$
\begin{equation*}
\rho_{R}(z)=v_{R} \int_{\partial A} \eta_{A}^{-}(\mathrm{d} x) G_{\Theta}^{q}(x, z) \tag{4.9}
\end{equation*}
$$

Recall the explicit formula of η_{A}^{-}in terms of q (1.23), we obtain for $z \in \Theta$

$$
\begin{aligned}
\rho_{R}(z) & =-\int_{\partial A} \rho(x) \frac{q(y) \widehat{n}(x) \cdot a \nabla_{x} G_{\Theta}(x, z)}{\widehat{n}(x) \cdot a \nabla q(x)} \widehat{n}(x) \cdot a \nabla q(x) \mathrm{d} \sigma_{A}(x) \\
& =-q(y) \int_{\partial A} \rho(x) \widehat{n}(x) \cdot a \nabla_{x} G_{\Theta}(x, z) \mathrm{d} \sigma_{A}(x) .
\end{aligned}
$$

Apply (3.1) by taking $\psi(x)=G_{\Theta}(x, y)$ and $\phi(x)=\widetilde{q}(x)$, we conclude that

$$
\begin{aligned}
\rho_{R}(y) & =-q(y) \int_{\partial \Theta} \rho(x) \phi(x) \widehat{n}(x) \cdot a \nabla \psi(x) \mathrm{d} \sigma_{\Theta}(x) \\
& =-q(y) \int_{\Theta} \rho(x) \phi(x) L \psi(x) \\
& =\rho(y) q(y) \widetilde{q}(y)
\end{aligned}
$$

Here to get the second equality, we have used that $\widetilde{L} \widetilde{q}=0$ in Θ and $\psi(x)=0$ on $\partial \Theta$.

4.3 Current of transition paths

Proof of Proposition 1.10 It follows from a direct calculation from the definition of J_{R} as (1.41), noticing that $q=0, \widetilde{q}=1$ on ∂A, and $q=1, \widetilde{q}=0$ on ∂B.

Proof of Corollary 1.11 By Proposition 1.10, we have

$$
v_{R}=-\int_{\partial A} \widehat{n}(x) \cdot J_{R}(x) \mathrm{d} \sigma_{A}(x)
$$

Hence, it suffices to show that

$$
\int_{\partial A} \widehat{n}(x) \cdot J_{R}(x) \mathrm{d} \sigma_{A}(x)+\int_{\partial S} \widehat{n}(x) \cdot J_{R}(x) \mathrm{d} \sigma_{S}(x)=0
$$

which follows from the fact that J_{R} is divergence free in Θ (see (1.40)).
Proof of Proposition 1.12 Using Proposition 1.10 for the left hand side of (1.45), we obtain

$$
\int_{\partial B} f(x) \eta_{B}^{+}(\mathrm{d} x)-\int_{\partial A} f(x) \eta_{A}^{-}(\mathrm{d} x)=\frac{1}{v_{R}} \int_{\partial B} f \widehat{n} \cdot J_{R} \mathrm{~d} \sigma_{B}+\frac{1}{v_{R}} \int_{\partial A} f \widehat{n} \cdot J_{R} \mathrm{~d} \sigma_{A},
$$

where \widehat{n} is the unit normal exterior to Θ. Equation (1.45) then follows from the divergence theorem.

Now fix any $g \in C^{1}(\partial B)$, we extend g to $\bar{\Theta}$ using the flow (1.43): for any $x \in \bar{\Theta}$, we define

$$
\begin{equation*}
g(x)=g\left(Z_{t_{B}}^{x}\right), \quad \text { with } Z_{0}^{x}=x \tag{4.10}
\end{equation*}
$$

In particular, for $x \in \partial A$, we have $g(x)=g\left(\Phi_{J_{R}}(x)\right)$, in other words,

$$
\begin{equation*}
\left.g\right|_{\partial A}=\Phi_{J_{R}}^{*}\left(\left.g\right|_{\partial B}\right) \tag{4.11}
\end{equation*}
$$

By the construction (4.10), for any $x \in \Theta, J_{R} \cdot \nabla g=0$. Combining with the first part of the Proposition and (4.11), we obtain

$$
\int_{\partial B} g(x) \eta_{B}^{+}(\mathrm{d} x)=\int_{\partial A} \Phi_{J_{R}}^{*} g \eta_{A}^{-}(\mathrm{d} x) .
$$

Therefore, $\Phi_{J_{R}, *}\left(\eta_{A}^{-}\right)=\eta_{B}^{+}$.

References

1. Athreya, S.R., Barlow, M.T., Bass, R.F., Perkins, E.A.: Degenerate stochastic differential equations and super-Markov chains. Probab. Theory Relat. Fields 123, 484-520 (2002)
2. Athanasopoulos, I., Caffarelli, L.A.: A theorem of real analysis and its application to free boundary problems. Commun. Pure Appl. Math. 38, 499-502 (1985)
3. Athreya, K.B., Ney, P.: A new approach to the limit thoery of recurrent markov chains. Trans. Am. Math. Soc. 245, 493-501 (1978)
4. Bakhtin, Y.: Gumbel distribution in exit problems (2013, preprint) [arXiv:1307.7060]
5. Bauman, P.: Positive solutions of elliptic equations in nondivergence form and their adjoints. Ark. Mat. 22, 153-173 (1984)
6. Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291-318 (2002)
7. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399-424 (2004)
8. Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. 7, 69-99 (2005)
9. Berman, K.A., Konsowa, M.H.: Random paths and cuts, electrical networks, and reversible Markov chains. SIAM J. Discrete Math. 3, 311-319 (1990)
10. Cerou, F., Guyader, A., Lelievre, T., Malrieu, F.: On the length of one-dimensional reactive paths (2012, preprint) [arXiv:1206.0949]
11. Caffarelli, L., Salsa, S.: Geometric Approach to Free Boundary Problems. American Mathematical Society, Providence (2005)
12. Dellago, C., Bolhuis, P.G., Geissler, P.L.: Transition path sampling. Adv. Chem. Phys. 123 (2002)
13. Dean, T., Dupuis, P.: The design and analysis of a generalized RESTART/DPR algorithm for rare event simulation. Ann. Oper. Res. 189, 63-102 (2011)
14. DeBlassie, D.: Uniqueness for diffusions degenerating at the boundary of a smooth bounded set. Ann. Probab. 32, 3167-3190 (2004)
15. Weinan, E., Vanden-Eijnden, E.: Toward a theory of transition paths. J. Stat. Phys. 123, 503-523 (2006)
16. Weinan, E., Vanden-Eijnden, E.: Transition path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391-420 (2010)
17. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1984)
18. Gilberg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)
19. Haussmann, U.G., Pardoux, É.: Time reversal of diffusions. Ann. Probab. 14, 1188-1205 (1986)
20. Hairer, M., Stuart, A.M., Voss, J.: Analysis of SPDEs arising in path sampling part II: the nonlinear case. Ann. Appl. Probab. 17, 1657-1706 (2007)
21. Hairer, M., Stuart, A.M., Voss, J., Wiberg, P.: Analysis of SPDEs airisng in path sampling part I: the Gaussian case. Commun. Math. Sci. 3, 587-603 (2005)
22. Hummer, G.: From transition paths to transition states and rate coefficients. J. Chem. Phys. 120, 516-523 (2004)
23. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)
24. Metzner, P., Schütte, C., Vanden-Eijnden, E.: Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125, 084110 (2006)
25. Meyer, P.A., Smythe, R.T., Walsh, J.B.: Birth and death of markov processes. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III, pp. 295-305 (1972)
26. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge (2009)
27. Prinz, J.-H., Held, M., Smith, J.C., Noé, F.: Efficient computation, sensitivity, and error analysis of committor probabilities for complex dynamical processes. Multiscale Model. Simul. 9, 545-567 (2011)
28. Pinsky, R.G.: Positive Harmonic Functions and Diffusion, Cambridge Studies in Advanced Mathematics, vol. 45. Cambridge University Press, Cambridge (1995)
29. Reznikoff, M.G., Vanden-Eijnden, E.: Invariant measures of stochastic partial differential equations and conditioned diffusions. C. R. Acad. Sci. Paris Ser. I 340, 305-308 (2005)
30. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, New York (1999)
31. Stuart, A.M., Voss, J., Wiberg, P.: Conditional path sampling of SDEs and the Langevin MCMC method. Commun. Math. Sci. 2, 685-697 (2004)
32. Sznitman, A.-S.: Brownian Motion, Obstacles and Random Media. Springer, New York (1998)
33. Vanden-Eijnden, E.: Transition path theory (2013, preprint)
34. Veretennikov, A.Yu.: On polynomial mixing bounds for stochastic differential equations. Stochastic Process Appl. 70, 115-127 (1997)
35. Vanden-Eijnden, E., Venturoli, M., Ciccotti, G., Elber, R.: On the assumptions underlying milestoning. J. Chem. Phys. 129, 174102 (2008)
36. Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Commun. Pure Appl. Math. 65, 1770-1803 (2012)

[^0]: We are grateful to Weinan E, Jonathan Mattingly, and Eric Vanden-Eijnden for helpful discussions. The work of JL was supported in part by the Alfred P. Sloan foundation and the National Science Foundation under Grant No. DMS-1312659. The work of JN was supported by NSF Grant DMS-1007572.
 J. Lu (\boxtimes) • J. Nolen

 Department of Mathematics, Duke University, Box 90320, Durham, NC 27708, USA
 e-mail: jianfeng@math.duke.edu
 J. Nolen
 e-mail: nolen@math.duke.edu
 J. Lu

 Department of Physics, Duke University, Box 90320, Durham, NC 27708, USA

