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Abstract Let G be a locally compact topological group, acting measurably on some
Borel spaces S and T , and consider some jointly stationary random measures ξ on
S × T and η on S such that ξ(· × T ) � η a.s. Then there exists a stationary random
kernel ζ from S to T such that ξ = η ⊗ ζ a.s. This follows from the existence of an
invariant kernel ϕ from S ×MS×T ×MS to T such thatμ = ν⊗ϕ(·, μ, ν)whenever
μ(· × T ) � ν. Also included are some related results on stationary integration,
absolute continuity, and ergodic decomposition.
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1 Introduction

Let G be a locally compact, second countable topological group, acting measurably on
some Borel spaces S and T , and consider some jointly G-stationary random measures
ξ on S × T and η on S such that ξ(· × T ) � η a.s. In Theorem 6.1 we prove the
existence of a random kernel ζ from S to T , which is G-stationary, jointly with the pair
(ξ, η), and such that ξ = η⊗ ζ a.s. Here the G-stationarity is defined as invariance in
distribution under simultaneous shifts in S and T , whereas the disintegration ξ = η⊗ζ
is given, for measurable functions f ≥ 0 on S × T , by
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568 O. Kallenberg

ξ f ≡
∫ ∫

ξ(ds dt) f (s, t) =
∫
η(ds)

∫
ζs(dt) f (s, t). (1)

when T is a singleton, we may regard ξ and η as jointly stationary random measures
on S with ξ � η a.s., in which case the disintegration reduces to ξ = X · η a.s. for
some measurable random process X ≥ 0 on S such that (ξ, η, X) is G-stationary.
Here X · η denotes the random measure on S with η-density X , so that ξ f = η(X f )
a.s. for any measurable function f ≥ 0 on S.

Such problems arise naturally in some areas of stochastic geometry, where they
have been solved in special cases by Papangelou [20], pp. 307, 312ff, and in [7], pp.
164f, and [8], pp. 137ff. Here we attempt a more systematic treatment. The mentioned
problems are highly non-trivial already for non-random measures ξ and η, where the
stationarity reduces to G-invariance, defined for measures μ on S by μ ◦ θ−1

r = μ

for all r ∈ G, and for kernels ϕ from S to T by the condition

ϕrs = ϕs ◦ θ−1
r , r ∈ G, s ∈ S. (2)

Here and below, we define the shifts θr on S and projections πs from G to S by
rs = θr s = πsr for any r ∈ G and s ∈ S. Invariant disintegrations of measures on
product spaces, of crucial importance in the context of Palm and moment measures,
is the subject of an extensive literature, with contributions by (among others) Ryll-
Nardzewski [23], Matthes [15], Mecke [17], Krickeberg [13], Papangelou [19], Rother
and Zähle [22], Last [14], Gentner and Last [4], as well as in [11,12].

The random case is more difficult. Here our strategy is to construct a stationary
disintegration kernel by substituting ξ and η into a deterministic kernel ϕ from S ×
MS×T × MS to T satisfying the disintegration formula

μ = ν ⊗ ϕ(·, μ, ν), μ ∈ MS×T , ν ∈ MS, μ(· × T ) � ν, (3)

along with the more general invariance relation

ϕ(s, μ, ν) ◦ θ−1
r = ϕ

(
rs, (μ, ν) ◦ θ−1

r

)
, r ∈ G, s ∈ S. (4)

Note that (4) reduces to (2) whenμ and ν are invariant. The construction of ϕ is highly
non-trivial already for singleton T , when (3) reduces to the differentiation

μ = ϕ(·, μ, ν) · ν, μ, ν ∈ MS, μ � ν, (5)

and the invariance in (4) simplifies to

ϕ(s, μ, ν) = ϕ
(

rs, (μ, ν) ◦ θ−1
r

)
, r ∈ G, s ∈ S. (6)

In Theorem 4.1 we prove the existence of a kernel ϕ satisfying (3) and (4). The
proof is rather intricate and proceeds in several steps. First we consider the density
problem when S = G is a Lie group. Here we may start from an arbitrary inner product
on the basic tangent space to construct an invariant Riemannian metric on G (cf. [2]).
By an extension of Besicovich’ covering theorem (cf. [6], Theorem 1.14 and Example
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Stationary densities and disintegration 569

1.15c), the associated geodesic balls form a differentiation basis with respect to any
measure ν ∈ MG , which yields the required invariant density.

For general locally compact groups G, there exists an open subgroup G ′ such
that the coset space G/G ′ is discrete and countable, whereas G ′ is a projective limit
of Lie groups (cf. [18]). In other words, there exists a sequence of compact, normal
subgroups Hn ↓ {ι}, such that the quotient groups G ′/Hn are isomorphic to Lie groups.
The corresponding cosets form a nested sequence of invariant partitions of G ′, and
the associated invariant densities may be regarded as functions ϕn on G ′, forming
densities on the induced σ -fields Gn . By a standard martingale argument (cf. [10],
p. 133), the ϕn converge a.e. to a limit ϕ, which is an invariant density on the Borel
σ -field of G ′. It remains to extend ϕ by invariance to a density on all of G.

Next we may extend the density result to any product space G × S such that G
has no action on S. This is accomplished by another martingale argument, based on
a nested sequence of dissections of S. Using a skew transformation (cf. [11,12]), we
may proceed to product spaces G × S with arbitrary group actions on S. Finally, we
may deduce the density result on the space S alone by attaching a factor (G, λ) to the
original measure spaces (S, μ) and (S, ν), where λ denotes a Haar measure on G. The
general disintegration case requires an additional perfection argument, similar to the
standard construction of regular conditional distributions (cf. [10], p. 107).

In Sect. 5 we consider the seemingly much more elementary integration problem,
dealing with random measures of the form η = X ·ξ , where ξ is a random measure and
X ≥ 0 is a measurable process, both defined on a Borel space S. When ξ and X are
jointly G-stationary, one would expect η to be G-stationary as well. Quite surprisingly,
the conclusion may fail without additional conditions on ξ . In Corollary 5.4 we show
that the assertion holds when ξ � μ a.s. for some non-random measure μ, in which
case we may choose μ = Eξ .

This suggests that we study the absolute continuity ξ � η for general random
measures ξ and η. In Theorem 5.2 we show that the relation can be replaced by
ξ � E(ξ |F ) a.s., as long as η is F-measurable. In particular, when ξ is stationary
while η is invariant under the action of a group G, it can be replaced by ξ � E(ξ |I )
a.s., where I denotes the associated invariant σ -field. Finally, using methods from
previous sections, we show in Theorem 6.3 that the conditional expectation E(ξ |I )
and distribution L(ξ |I ) have G-invariant versions.

The theory of Sect. 5 also leads to a significant strengthening of the elementary
notion of stationarity, as defined in terms of finite-dimensional distributions. In Corol-
lary 5.3 we show that, if X is a measurable process on S taking values in a space T ,
then X is G-stationary iff

(μ ◦ θ−1
r )( f ◦ X)

d= μ( f ◦ X), r ∈ G, (7)

for any measure μ ∈ MS and function f ∈ T+. Note that the elementary notion of
stationarity corresponds to the case where μ has finite support.

After presenting some technical prerequisites in Sect. 2, we turn in Sect. 3 to some
basic results from [11,12] on invariant measures and disintegrations, namely the inte-
gral representation of invariant measures on S and the invariant disintegration of a
jointly invariant measure on S × T . Using the methods already discussed, we are able
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570 O. Kallenberg

to give short and transparent proofs of both results. Our arguments, here and else-
where, are often simplified by the use of s-finite rather than σ -finite measures. Recall
that a measure is said to be s-finite if it is a countable sum of bounded measures.
Every σ -finite measure is clearly s-finite (but not conversely), and many basic results
for σ -finite measures, including Fubini’s theorem, extend to the s-finite case. Further-
more, s-finiteness (unlike σ -finiteness) is preserved under measurable mappings and
integrations, so that a verification of the desired σ -finiteness can often be postponed
until the final result.

We conclude this section with some remarks on terminology and notation, not
explained elsewhere. A group G is said to be measurable if it is equipped with a
σ -field G, such that the group operations (r, p) 
→ r p and r 
→ r−1 are measurable.
For any r, p ∈ G, we write r p = θr p = θ̃pr . A measurable group G is said to act
measurably on a measurable space S, if the action map (r, s) 
→ rs is jointly measur-
able from G × S to S. The shifts θr and projections πs are defined by rs = θr s = πsr
for r ∈ G and s ∈ S.

A Haar measure on G is defined as a left-invariant, σ -finite measure λ on G, and we
write λ̃ f = λ f̃ with f̃ (r) = f (r−1), so that λ◦θ−1

r = λ and λ̃◦ θ̃r = λ̃ for all r ∈ G.
Recall that λ exists, uniquely up to a normalization, whenever G is lcscH (locally
compact, second countable, Hausdorff). Conversely, a measurable group G with a
Haar measure is isomorphic to an lcscH group when G is Borel (defined as below), by
a theorem of Mackey (cf. [21], first section), but not in general (cf. [5], last section).

For any measurable spaces S, T, . . . , we write S, T , . . . and S+, T+, . . . for the
associated σ -fields and classes of measurable functions f ≥ 0, except that the Borel
σ -field in R is denoted by B. Absolute continuity, equivalence, and mutual singularity
between measures are denoted by �, ∼, and ⊥, respectively, and we write μ⊗ ν for
product measure or kernel composition, depending on context. For functions f, g >
0, f ∼ g means that f/g → 1. By δs we mean the Dirac measure or function at s, and
we write f ·μ for the measure with μ-density f . Thus, 1Aμ = 1A ·μ is the restriction
of μ to A, where 1A(s) = 1{s ∈ A} is the indicator function of the set A. By ‖ · ‖
we mean the total variation or supremum norm of a measure or function. All random
elements ξ, η, . . . are defined on an abstract space
 with probability measure P and
associated expectation E , their distributions and conditional distributions are denoted

by L(ξ) and L(ξ |F), and ξ
d= η means that L(ξ) = L(η). We use MS to denote the

space of locally finite measures on S, where the local property is explained in Sect. 2.
Finally, we write R+ = [0,∞), Z+ = {0, 1, 2, . . . }, and N = {1, 2, . . . }.

2 Preliminaries

A Borel space is defined as a measurable space (S,S) that is Borel isomorphic to a
Borel set in R. By a localized Borel space we mean a triple (S,S, Ŝ), where (S,S) is
a Borel space and the class Ŝ ⊂ S satisfies the conditions

• Ŝ is a subring of S,
• B ∈ Ŝ and C ∈ S implies B ∩ C ∈ Ŝ,
• S is a countable union of sets in Ŝ.
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Stationary densities and disintegration 571

We may think of Ŝ as the family of bounded Borel sets, and we say that a property
holds locally on S if it holds on every B ∈ Ŝ . To simplify our statements, we assume
every Borel space S in this paper to be localized.

Any Polish space S with associated Borel σ -field S is known to be a Borel space.
By definition S can be metrized as a separable and complete metric space, and we
may choose Ŝ to be the class of all metrically bounded sets in S. An important special
case is when S is lcscH, and we may choose Ŝ to be the class of relatively compact
sets in S.

The class MS of locally finite measures on S is endowed with the σ -field BMS

induced by all evaluation maps πB : μ 
→ μB for B ∈ Ŝ. Note that the measurable
space (MS,BMS ) is again Borel (cf. [9,16]). A random measure ξ on S is defined
as a random element in MS . Equivalently, ξ is a locally finite kernel from the basic
probability space 
 to S. In other words, ξ is a function on (
,S) such that ξ(ω, B)
is measurable in ω for fixed B and a locally finite measure in B for fixed ω.

By a dissection system in S we mean a family I of subsets Inj ∈ Ŝ, n, j ∈ N, such
that

• for fixed n ∈ N, the sets Inj form a partition of S,
• for any m < n in N, the partition (Inj ) is a refinement of (Imj ),
• for fixed n ∈ N, any set B ∈ Ŝ is covered by finitely many Inj ,
• the entire collection {Inj } generates the σ -field S.

When S = R, we may choose I to consist of all dyadic intervals Inj = 2−n( j −
1, j], n ∈ Z+, j ∈ Z, and similarly in higher dimensions.

For any dissection system (Inj ) in S, let In,s denote the set Inj containing s. By
de Possel’s theorem, usually proved by a simple martingale argument (cf. [10], p.
133), the sets In,s form a differentiation basis for any measure ν ∈ MS . Indeed, for
any measures μ, ν ∈ MS , the associated ratios converge a.e. ν to a density of the
absolutely continuous component μa of μ with respect to ν. In particular, this yields
a measurable version of the Lebesgue decomposition and Radon–Nikodym property
(cf. [10], p. 29).

Lemma 2.1 For any localized Borel space S, there exists a measurable function h ≥ 0
on S × M2

S such that

μ = h(·, μ, ν) · ν + μs ≡ μa + μs, μ, ν ∈ MS,

where μa � ν and μs ⊥ ν. The measures μa and μs and relations μ � ν and μ ⊥ ν

all depend measurably on μ and ν, and h(·, μ, ν) is unique a.e. ν for any fixed μ
and ν.

Proof Fix any dissection system (Inj ) in S. For s ∈ S and n ∈ N, let In(s) be the set
Inj containing s, and define

hn(s) = μIn(s)

ν In(s)
, s ∈ S, n ∈ N,
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572 O. Kallenberg

interpreted as 0 when the denominator vanishes. Then hn converges a.e. ν to some limit
h ≥ 0 with μa = h · ν, and we may choose the measurable version h = lim supn hn .
Replacing possibly infinite values by 0, we may ensure that h < ∞. The measurability
of μa and μs now follows by Lemma 2.3 below. ��

The last result is easily extended to the following measurable disintegration, needed
repeatedly below.

Lemma 2.2 For any Borel spaces S and T , there exists a kernel ϕ from S ×MS×T ×
MS to T such that

μ = ν ⊗ ϕ(·, μ, ν), μ ∈ MS×T , ν ∈ MS with μ(· × T ) � ν.

Moreover, ϕ(·, μ, ν) is unique a.e. ν for fixed μ and ν.

The stated disintegration may be written more explicitly, for measurable functions
f ≥ 0 on S × T , as

μ f ≡
∫ ∫

μ(ds dt) f (s, t) =
∫
ν(ds)

∫
ϕ(s, μ, ν)(dt) f (s, t).

Proof By a suitable localization or normalization, we may takeμ and ν to be bounded,
and by the Borel property of T , we may easily reduce to the case where T = R. For
any B ∈ T we have μ(· × B) � ν, and so Lemma 2.1 yields a measurable function
hB ≥ 0 on S × MS×T × MS with

μ(· × B) = hB(·, μ, ν) · ν, B ∈ S. (8)

Using the measure property on the left and the a.e. uniqueness of the density on the
right, we get for any fixed measures μ and ν and sets Bn ↑ B in S

hBn (·, μ, ν) ↑ hB(·, μ, ν) a.e. ν.

Proceeding as in [10], p. 107, we may then construct versions of hB(·, μ, ν) that are
measures in B for fixed μ and ν. Since the construction involves changes on at most
countably many ν-null sets, the resulting version is again measurable for each B ∈ S,
hence a kernel between the stated spaces. Since (8) is not affected by the changes, the
required disintegration formula holds for all measurable product sets A × B in S × T ,
and the general formula follows by a monotone-class argument. ��

Composition of kernels is defined as in (1). The iterated integration on the right is
justified by the measurability of the inner integral, here extended to the s-finite case.
A kernel is said to be s-finite if it is a countable sum of finite kernels.

Lemma 2.3 For any s-finite kernel μ from S to T and measurable function f ≥ 0 on
S × T , the integral μs f (s, ·) is again measurable.

Proof We may assume that μs is bounded for every s. The measurability of μs A,
obvious when A ∈ S × T , extends by a monotone-class argument to arbitrary A ∈
S ⊗ T , and then by linearity and monotone convergence to any measurable function
f ≥ 0 on S × T . ��
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Stationary densities and disintegration 573

The following result shows how densities and disintegration kernels are affected
by shifts of the underlying measures, which justifies that we define invariance of a
kernel ψ from S or S × MS×T × MS to T by the conditions in (2) or (4).

Lemma 2.4 Let G be a measurable group acting measurably on S and T . Then for
any r ∈ G, ν ∈ MS, h ∈ S+, and kernels μ from S to T , we have

(i) (h · ν) ◦ θ−1
r = (h ◦ θr−1) · (ν ◦ θ−1

r ),
(ii) (ν ⊗ μ) ◦ θ−1

r = (ν ◦ θ−1
r )⊗ (μr−1(·) ◦ θ−1

r ).

Proof (i) For any r ∈ G and f ∈ S+,

(
(h · ν) ◦ θ−1

r

)
f = (h · ν)( f ◦ θr ) = ν( f ◦ θr )h

= (ν ◦ θ−1
r )(h ◦ θr−1) f

=
(
(h ◦ θr−1) · (ν ◦ θ−1

r )
)

f.

(ii) For any r ∈ G and f ∈ (S ⊗ T )+,

(
(ν ⊗ μ) ◦ θ−1

r

)
f = (ν ⊗ μ)( f ◦ θr )

=
∫
ν(ds)

∫
μs(dt) f (rs, r t)

=
∫
ν(ds)

∫
(μs ◦ θ−1

r )(dt) f (rs, t)

=
∫
(ν ◦ θ−1

r )(ds)
∫
(μr−1s ◦ θ−1

r )(dt) f (s, t)

=
(
(ν ◦ θ−1

r )⊗ (μr−1(·) ◦ θ−1
r )

)
f.

��

3 Invariant measures and disintegration

For reference we begin with some basic properties of Haar measures, given here
without extra effort in a general non-topological setting.

Lemma 3.1 Let G be a measurable group with Haar measure λ.

(i) For any measurable space S and s-finite, G-invariant measureμ on G × S, there
exists a unique, s-finite measure ν on S such that μ = λ ⊗ ν. The measures μ
and ν are simultaneously σ -finite.

(ii) There exists a measurable homomorphism� : G → (0,∞), such that λ̃ = � ·λ
and λ ◦ θ̃−1

r = �rλ, r ∈ G.
(iii) When ‖λ‖ < ∞ we have � ≡ 1, and λ is also right-invariant with λ̃ = λ.

The G-invariance in (i) clearly refers to shifts in G only, since there is no group
action on S. A similar remark applies to some statements and proofs in subsequent
sections. Note that the factorization property in (i) is given for s-finite rather than
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574 O. Kallenberg

σ -finite measures, which simplifies some arguments in [12] and below. In particular,
any s-finite, left-invariant measure on G equals cλ for some constant c ∈ [0,∞]. The
proof of (i) in [12] is incorrect and may be replaced by the following argument:

Proof of (i): Since λ is σ -finite, we may choose a measurable function h > 0 on G
with λh = 1, and define �r = λ(h ◦ θ̃r ) ∈ (0,∞] for r ∈ G. Using Fubini’s theorem
(three times), the invariance of μ and λ, and the definitions of� and λ̃, we get for any
f ≥ 0

μ( f�) =
∫ ∫

μ(dr ds) f (r, s)
∫
λ(dp) h(pr)

=
∫
λ(dp)

∫ ∫
μ(dr ds) f (p−1r, s) h(r)

=
∫ ∫

μ(dr ds) h(r)
∫
λ(dp) f (p−1, s)

=
∫
λ̃(dp)

∫ ∫
μ(dr ds) h(r) f (p, s).

In particular, we may takeμ = λ for singleton S to get λ̃ f = λ( f�), and so λ̃ = �·λ.
This gives λ = �̃ · λ̃ = �̃� · λ, and so �̃� = 1 a.e. λ, and finally� ∈ (0,∞) a.e. λ.
Hence, for general S

μ( f�) =
∫
λ(dp)�(p)

∫ ∫
μ(dr ds) h(r) f (p, s).

Since � > 0, we have μ(· × S) � λ, and so � ∈ (0,∞) a.e. μ(· × S), which yields
the simplified formula

μ f =
∫
λ(dp)

∫ ∫
μ(dr ds) h(r) f (p, s),

showing that μ = λ⊗ ν with ν f = μ(h ⊗ f ). If μ is σ -finite, then μ f < ∞ for some
measurable function f > 0 on G × S, and Fubini’s theorem yields ν f (r, ·) < ∞ for
r ∈ G a.e. λ, which shows that even ν is σ -finite. The reverse implication is obvious.

��
The following technical result is often useful.

Lemma 3.2 Let G be a measurable group with Haar measure λ, acting measurably
on S and T . Fix a kernelμ from S to T and a measurable, jointly G-invariant function
f on S × T . Then the following sets in S and S × T are G-invariant:

A = {s ∈ S; μrs = μs ◦ θ−1
r , r ∈ G},

B = {(s, t) ∈ S × T ; f (rs, t) = f (ps, t), (r, p) ∈ G2 a.e. λ2}.

Proof When s ∈ A, we get for any r, p ∈ G

μrs ◦ θ−1
p = μs ◦ θ−1

r ◦ θ−1
p = μs ◦ θ−1

pr = μprs,
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Stationary densities and disintegration 575

which shows that even rs ∈ A. Conversely, rs ∈ A implies s = r−1(rs) ∈ A, and so
θ−1

r A = A.
Now let (s, t) ∈ B. Then Lemma 3.1(ii) yields (qs, t) ∈ B for any q ∈ G, and the

invariance of λ gives

f (q−1rqs, t) = f (q−1 pqs, t), (r, p) ∈ G2 a.e. λ2,

which implies (qs, qt) ∈ B by the joint invariance of f . Conversely, (qs, qt) ∈ B
implies (s, t) = q−1(qs, qt) ∈ B, and so θ−1

q B = B. ��
When G is a measurable group with Haar measure λ, acting measurably on S, we

say that G acts properly on S, if there exists a measurable, normalizing function g > 0
on S such that λ(g ◦ πs) < ∞ for all s ∈ S. We may then define a kernel ϕ on S by

ϕs = λ ◦ π−1
s

λ(g ◦ πs)
, s ∈ S. (9)

Note that ϕs is both G-invariant for every fixed s and a G-invariant function of s. In
[11,12] we proved that any s-finite, G-invariant measure ν on S is a unique mixture
of the measures ϕs . Here we extend the representation in [11] to the s-finite case:

Proposition 3.3 Let G be a measurable group with Haar measure λ, acting properly
on S, and define the kernel ϕ by (9), for some normalizing function g > 0 on S. Then
an s-finite measure ν on S is G-invariant iff

ν =
∫
ν(ds) g(s) ϕs .

In that case, there exists a σ -finite, G-invariant measure ν̃ ∼ ν.

The present version may be deduced from some deep results in [12], whose proofs
are based on an elaborate approximation and smoothing technique. Here we give a
short, elementary proof.

Proof The sufficiency is clear, since the measures ϕs are invariant. Now let ν be
s-finite and G-invariant. Using (9), Fubini’s theorem, and Lemma 3.1(ii), we get for
any f ∈ S+

∫
ν(ds) g(s) ϕs f =

∫
ν(ds) g(s)

λ( f ◦ πs)

λ(g ◦ πs)

=
∫
λ(dr)

∫
ν(ds)

g(s) f (rs)

λ(g ◦ πs)

=
∫
λ(dr)

∫
ν(ds)

g(r−1s) f (s)

λ(g ◦ πr−1s)

=
∫
λ(dr)�r

∫
ν(ds)

g(r−1s) f (s)

λ(g ◦ πs)
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576 O. Kallenberg

=
∫
λ(dr)

∫
ν(ds)

g(rs) f (s)

λ(g ◦ πs)

=
∫
ν(ds) f (s) = ν f,

as required. Since g · ν is again s-finite, we may choose a bounded measure ν̂ ∼ g · ν
and define ν̃ = ν̂ϕ, which is again G-invariant. It is also σ -finite, since ν̃g = ν̂ϕg =
ν̂G < ∞. ��

The last proposition may be combined with the following basic result from [11],
where the invariance of kernels is defined as in (2). Extensions will be given in Theo-
rems 4.1 and 6.1 below.

Proposition 3.4 Let G be a measurable group with Haar measure λ, acting measur-
ably on S and T , where T is Borel. Then for any σ -finite, G-invariant measures μ on
S × T and ν on S with μ(· × T ) � ν, there exists a G-invariant kernel ψ from S to
T satisfying μ = ν ⊗ ψ .

This was proved in [11] by an elaborate smoothing argument. Here we give a more
elementary proof based on a simple skew transformation. Similar ideas will be used
in the proofs of Lemma 4.8 and Theorem 6.3.

Proof Applying a skew factorization to the G-invariant measures λ⊗μ on G × S × T
and λ⊗ν on G × S (cf. [11], pp. 293f), we obtain a G-invariant kernel ϕ from G × S to
T such that λ⊗μ = λ⊗ ν ⊗ ϕ. Introducing the kernels ϕr (p, s) = ϕ(r p, s), writing
fr (p, s, t) = f (r−1 p, s, t) for any measurable functions f ≥ 0 on G × S × T , and
using the invariance of λ, we get for any r ∈ G

(λ⊗ ν ⊗ ϕr ) f = (λ⊗ ν ⊗ ϕ) fr

= (λ⊗ μ) fr = (λ⊗ μ) f,

which shows that λ⊗ μ = λ⊗ ν ⊗ ϕr . Hence, by a.e. uniqueness

ϕ(r p, s) = ϕ(p, s), (p, s) ∈ G × S a.e. λ⊗ ν, r ∈ G.

Let A be the set of all s ∈ S satisfying

ϕ(r p, s) = ϕ(p, s), (r, p) ∈ G2 a.e. λ2,

and note that νAc = 0 by Fubini’s theorem. By Lemma 3.1(ii), the defining condition
is equivalent to

ϕ(r, s) = ϕ(p, s), (r, p) ∈ G2 a.e. λ2,

and so for any g, h ∈ G+ with λg = λh = 1,

(g · λ)ϕ(·, s) = (h · λ)ϕ(·, s) = ψ(s), s ∈ A. (10)
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To make this hold identically, we may redefine ϕ(r, s) = 0 when s ∈ Ac, without
affecting the disintegration of λ⊗ μ. By Lemma 3.2 it even preserves the invariance
of ϕ. Fixing any g ∈ G+ with λg = 1, we get for all f ∈ (S ⊗ T )+

μ f = (λ⊗ μ)(g ⊗ f )

= (λ⊗ ν ⊗ ϕ)(g ⊗ f )

= (ν ⊗ (g · λ)ϕ) f = (ν ⊗ ψ) f,

which shows that μ = ν ⊗ ψ . Finally, by (10) and the invariance of ϕ and λ,

ψs ◦ θ−1
r =

∫
λ(dp) g(p) ϕ(p, s) ◦ θ−1

r

=
∫
λ(dp) g(p) ϕ(r p, rs)

=
∫
λ(dp) g(r−1 p) ϕ(p, rs) = ψrs,

which shows that ψ is G-invariant. ��

4 Invariant densities and disintegration

Given a measurable group G, acting measurably on some Borel spaces S and T ,
consider some locally finite measures μ on S × T and ν on S such that μ(·× T ) � ν.
Then Lemma 2.2 yields a disintegration of the form μ = ν ⊗ ϕ(·, μ, ν), where ϕ is
a kernel from S × MS×T × MS to T . When G is lcscH, we show that ϕ has a G-
invariant version, in the sense of (4). The result plays a crucial role for our construction
of G-stationary densities and disintegration kernels in Sect. 6.

Theorem 4.1 Let G be an lcscH group, acting measurably on some Borel spaces S
and T . Then there exists a G-invariant kernel ϕ from S × MS×T × MS to T , such
that μ = ν ⊗ ϕ(·, μ, ν) for all μ ∈ MS×T and ν ∈ MS with μ(· × T ) � ν.

For invariant measures μ and ν, this essentially reduces to Proposition 3.4. When
T is a singleton and G acts measurably on a Borel space S, the invariant disintegration
reduces to an invariant differentiation μ = ϕ(·, μ, ν) · ν, where for any measurable
function ϕ ≥ 0 on S×M2

S , the invariance is defined by (6) for arbitraryμ ≤ ν in MS .
When G acts transitively on S, it is clearly enough to verify (6) for a fixed element
s ∈ S.

Corollary 4.2 Let G be an lcscH group, acting measurably on a Borel space S. Then
there exists a measurable and G-invariant function ϕ ≥ 0 on S × M2

S such that
μ = ϕ(·, μ, ν) · ν for all μ � ν in MS.

The main theorem will be proved in several steps. First we consider some partial
versions of the density result, beginning with the case where S = G is a Lie group.

Lemma 4.3 An invariant density function exists on any Lie group G.
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Proof Since G is an orientable manifold, any inner product on the basic tangent
space generates a left-invariant Riemannian metric ρ on G, given in local coordinates
x = (x1, . . . , xd) by a smooth family of symmetric, positive definite matrices ρi j (x)
(cf. [2], p. 247). The length of a smooth curve in G is obtained by integration of the
length element ds along the curve, where

ds2(x) =
∑
i, j

ρi j (x) dxi dx j , x ∈ G,

(cf. [2], p. 189), and the (geodesic) distance between two points x, y ∈ G may be
defined as the minimum length of all smooth curves connecting x and y. This deter-
mines an invariant metric ρ on G (cf. [2], p. 189), which in turn defines the open balls
Bεr in G of radius ε > 0 centered at r ∈ G.

Besicovich’ covering theorem on Rd (cf. [1], p. 364) extends to the compact subsets
of any Riemannian manifold (cf. [6], Thm. 1.14 and Ex. 1.15.c), and so the open
ρ-balls in G form a differentiation basis for any measure ν ∈ MG (cf. [1], p. 368).
Hence, for measures μ ≤ ν ∈ MG , we may define a measurable density function ϕ
on G by

ϕ(r, μ, ν) = lim sup
n→∞

μB1/n
r

νB1/n
r

, r ∈ G,

where 0/0 is interpreted as 0. To see that ϕ is invariant, let ι denote the identity element
in G, and note that

ϕ
(

r, (μ, ν) ◦ θ−1
r

)
= lim sup

n→∞
(μ ◦ θ−1

r )B1/n
r

(ν ◦ θ−1
r )B1/n

r

= lim sup
n→∞

μB1/n
ι

νB1/n
ι

= ϕ(ι, μ, ν),

since r−1 Bεr = Bει by the invariance of the metric ρ. ��
We now extend the last result to the case where G is a projective limit of Lie groups,

in the sense that every neighborhood of the identity ι contains a compact, invariant
subgroup H such that G/H is isomorphic to a Lie group.

Lemma 4.4 An invariant density function exists on any projective limit G of Lie
groups.

Proof Here G has some compact, invariant subgroups Hn ↓ {ι} such that the quotient
groups G/Hn are isomorphic to Lie groups (cf. [18], p. 177). Since the projection
maps πn : r 
→ r Hn are continuous (cf. [18], p. 27), we have μ ◦ π−1

n ∈ MG/Hn for
any μ ∈ MG . As in Lemma 4.3, we may choose some invariant density functions ψn

on G/Hn , and introduce the functions

ϕn(r, μ, ν) = ψn

(
r Hn, (μ, ν) ◦ π−1

n

)
, r ∈ G, n ∈ N,
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which are ν-densities of μ on the σ -fields Gn generated by the coset partitions G/Hn

of G, so that

μ = ϕn(·, μ, ν) · ν on Gn, n ∈ N.

Since Hn ↓ {ι}, the Gn are non-decreasing and generate the Borel σ -field G on G. By
martingale convergence, we get for fixed μ and ν

ϕn(r, μ, ν) → ϕ(r, μ, ν), r ∈ G a.e. ν,

where the limit ϕ is a density on G. To ensure product measurability, we may choose
the version

ϕ(r, μ, ν) = lim sup
n→∞

ϕn(r, μ, ν), r ∈ G, μ ≤ ν in MG . (11)

To show that ϕ is invariant, we note that an arbitrary shift by r ∈ G preserves the
coset partitions G/Hn of G, since any coset aHn is mapped into the coset r(aHn) =
(ra)Hn . Furthermore, the permutation of G/Hn induced by r ∈ G agrees with a shift
of G/Hn by the group element r Hn , since (r Hn)(aHn) = (ra)Hn = r(aHn) by
definition of the group operation in G/Hn . We further note that πn ◦ θr = θr Hn ◦ πn

on G, since for any r, s ∈ G

πnθr s = πn(rs) = rs Hn = (r Hn)(s Hn) = θr Hn (s Hn) = θr Hnπns.

Using the (G/Hn)-invariance of each ψn , we get for any r ∈ G

ϕn

(
r, (μ, ν) ◦ θ−1

r

)
= ψn

(
r Hn, (μ, ν) ◦ θ−1

r ◦ π−1
n

)

= ψn

(
r Hn, (μ, ν) ◦ π−1

n ◦ θ−1
r Hn

)

= ψn

(
Hn, (μ, ν) ◦ π−1

n

)
= ϕn(ι, μ, ν),

which shows that the functions ϕn are G-invariant. The G-invariance of ϕ now follows
by (11). ��

We proceed to any locally compact group G.

Lemma 4.5 An invariant density function exists on any lcscH group G.

Proof Here G contains an open subgroup H that is a projective limit of Lie groups,
in the sense of Lemma 4.4 (cf. [18], p. 54, 175). Since the cosets of H are again open
and the projection map π : r 
→ r H is both continuous and open (cf. [18], p. 27),
the coset space G/H is countable and discrete (cf. [18], p. 28). Choosing an invariant
density function ψ on H , as in Lemma 4.4, we define

ϕ(r, μ, ν) = ψ
(
ι, (μ, ν)r H ◦ θ−1

r−1

)
, r ∈ G, μ ≤ ν in MG , (12)

where μA = μ(A ∩ ·) denotes the restriction of μ to A.
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By (12), the invariance property (6) for s = ι is equivalent to

ψ(ι, (μ, ν)H ) = ψ
(
ι,

(
(μ, ν) ◦ θ−1

r

)
r H

◦ θ−1
r−1

)
, r ∈ G.

This follows from the relation

μH ◦ θ−1
r = (μ ◦ θ−1

r )r H , r ∈ G, μ ∈ MG , (13)

which holds since for any B ∈ G

(μ ◦ θ−1
r )r H B = (μ ◦ θ−1

r )(r H ∩ B) = μ(r−1(r H ∩ B))

= μ(H ∩ r−1 B) = μH (r
−1 B) = (μH ◦ θ−1

r )B.

Using (12), (13), and the invariance and density properties of ψ , we get for any
measurable function f ≥ 0 on the coset aH

∫
f (r) ϕ(r, μ, ν) ν(dr) =

∫
f (ar) ϕ(r, μ, ν) (ν ◦ θ−1

a−1)(dr)

=
∫

f (ar) ψ
(
ι, (μ, ν)ar H ◦ θ−1

(ar)−1

)
(ν ◦ θ−1

a−1)(dr)

=
∫

f (ar) ψ
(

r, (μ, ν)a H ◦ θ−1
a−1

)
(ν ◦ θ−1

a−1)(dr)

=
∫

f (ar) ψ
(

r,
(
(μ, ν) ◦ θ−1

a−1

)
H

)
(ν ◦ θ−1

a−1)(dr)

=
∫

f (ar) (μ ◦ θ−1
a−1)(dr) =

∫
f (r) μ(dr).

Since G/H is countable and a ∈ G was arbitrary, this proves the density property
μ = ϕ(·, μ, ν) · ν. ��

Next we extend the density version to any product space G × S.

Lemma 4.6 A G-invariant density function exists on G×S when G has no action on S.

Proof Fix a dissection system (Inj ) on S, and put S′ = G × S. For any μ ≤ ν in
MS′ , the measures μnj = μ(· × Inj ) and νnj = ν(· × Inj ) belong to MG and satisfy
μnj ≤ νnj . Choosing an invariant density functionψ on G as in Lemma 4.5, we obtain

μnj = ψ(·, μnj , νnj ) · νnj on G, n, j ∈ N. (14)

Now define some measurable functions ϕn on S′ × M2
S′ by

ϕn(r, s, μ, ν) =
∑

j
ψ(r, μnj , νnj ) 1{s ∈ Inj }, r ∈ G, s ∈ S, n ∈ N.

Writing In for the σ -field on S generated by the sets Inj for fixed n, we see from (14)
that
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μ = ϕn(·, μ, ν) · ν on G ⊗ In, n ∈ N.

Since the σ -fields G ⊗ I n are non-decreasing and generate G ⊗ S, the ϕn form
ν-martingales on bounded sets, and so they converge a.e. ν to a ν-density of μ on
G ⊗ S. Here we may choose the version

ϕ(r, s, μ, ν) = lim sup
n→∞

ϕn(r, s, μ, ν), r ∈ G, s ∈ S,

which inherits the product measurability and G-invariance from the corresponding
properties of each ϕn . ��

The next step is to go from densities to disintegration kernels.

Lemma 4.7 When G acts on S but not on T , there exists a G-invariant disintegration
kernel from S to T , provided that a G-invariant density function exists on S.

Proof Define θr (s, t) = (rs, t) for r ∈ G, s ∈ S, and t ∈ T . Suppose thatμ ∈ MS×T

and ν ∈ MS with μ(· × T ) � ν. By hypothesis, there exists for every B ∈ T̂ a
measurable function ψB ≥ 0 on S × M2

S such that

μ(· × B) = ψB(·, μ, ν) · ν, B ∈ T̂ , (15)

ψB(s, μ, ν) = ψB

(
rs, (μ, ν) ◦ θ−1

r

)
, r ∈ G, s ∈ S. (16)

Writing C for the class of functions f : T̂ → R+, we need to construct a measurable
mapping � : C → MT , such that the kernel ϕ = �(ψ) from S × M2

S to T satisfies

ϕ(s, μ, ν)B = ψB(s, μ, ν), s ∈ S a.e. ν, B ∈ T̂ , (17)

for any μ, ν ∈ MS . Then by (15)

μ(· × B) = ϕ(·, μ, ν)B · ν, B ∈ T̂ ,

which shows that μ = ν⊗ϕ. Since�( f ) depends only on f , (16) is preserved by�,
which means that ϕ is again G-invariant.

To construct �, we may first embed T as a Borel set in R+. Then define f̃ (B) =
f (B ∩ T ) for f ∈ C and B ∈ B̂+, to extend f to a function f̃ on B̂+. If m̃ is a
corresponding measure on R+ with the desired properties, its restriction m to T has
clearly the required properties on T . Thus, we may henceforth take T = R+.

For any f ∈ C, define F(x) = infr>x f [0, r ] for all x ≥ 0, where r is restricted
to Q+. Then F is clearly non-decreasing and right-continuous. Hence, on the set
where F(x) is finite for all x , there exists a locally finite measure m on R+ with
m[0, x] = F(x) for all x ≥ 0. Writing A for the class of functions f ∈ C with
F(r) = f [0, r ] for all r ∈ Q+, we may put �( f ) = m on A and �( f ) = 0 on Ac,
which defines � as a measurable function from C to MT .
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To verify (17), let B1, B2 ∈ B̂ be disjoint with union B. Omitting the arguments of
ψ , we may write

ψB · ν = μ(· × B) = μ(· × B1)+ μ(· × B2)

= ψB1 · ν + ψB2 · ν = (ψB1 + ψB2) · ν,
which implies ψB1 + ψB2 = ψB a.e. ν. In particular, ψ[0,r ] is a.e. non-decreasing
in r ∈ Q+. By a similar argument, Bn ↑ B implies ψBn ↑ ψB a.e. ν, which shows
that ψ[0,r ] is a.e. right-continuous on Q+. Hence, the kernel ϕ = �(ψ) satisfies
ϕ[0, r ] = ψ[0,r ] a.e. for all r ∈ Q+. The extension to (17) now follows by a standard
monotone-class argument. ��

Combining Lemmas 4.6 and 4.7, we see that a G-invariant disintegration kernel
from G × S to T exists when G has no action on S or T . We turn to the case of a
general group action.

Lemma 4.8 When G acts measurably on S and T , there exists a G-invariant disinte-
gration kernel from G × S to T .

Proof Let μ(· × T ) � ν on S′ = G × S. Define ϑ(r, s, t) = (r, rs, r t) with inverse
ϑ̃ = ϑ−1, and put

μ̃ = μ ◦ ϑ̃−1, ν̃ = ν ◦ ϑ̃−1,

μ = μ̃ ◦ ϑ−1, ν = ν̃ ◦ ϑ−1.

By Lemma 4.7 there exists a kernel ψ : S′ × MS′×T × MS′ → T with

μ̃ = ν̃ ⊗ ψ(·, μ̃, ν̃) on G × S × T,

ψ(p, s, μ, ν) = ψ
(

r p, s, (μ, ν) ◦ θ ′
r
−1

)
, r, p ∈ G, s ∈ S,

where θ ′
r (p, s, t) = (r p, s, t). Define a kernel ϕ between the same spaces by

ϕ(r, s, μ, ν) = ψ(r, r−1s, μ̃, ν̃) ◦ θ−1
r , r ∈ G, s ∈ S.

Using the definitions of μ̃, ψ, ν̃, ϑ̃ , and ϕ, we get for any f ∈ (S ′ ⊗ T )+

μ f = (μ̃ ◦ ϑ−1) f = μ̃( f ◦ ϑ)
= (ν̃ ⊗ ψ(·, μ̃, ν̃))( f ◦ ϑ)
=

(
(ν ◦ ϑ̃−1)⊗ ψ(·, μ̃, ν̃)

)
( f ◦ ϑ)

=
∫ ∫

(ν ◦ ϑ̃−1)(dr ds)
∫
ψ(r, s, μ̃, ν̃)(dt) f (r, rs, r t)

=
∫ ∫

ν(dr ds)
∫
ψ(r, r−1s, μ̃, ν̃)(dt) f (r, s, r t)

=
∫ ∫

ν(dr ds)
∫
ϕ(r, s, μ, ν)(dt) f (r, s, t) = (ν ⊗ ϕ) f,

which shows that μ = ν ⊗ ϕ.
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Next we get for any r, p ∈ G, s ∈ S, and t ∈ T

(ϑ̃ ◦ θr )(p, s, t) = ϑ̃(r p, rs, r t) =
(

r p, (r p)−1rs, (r p)−1r t
)

= (r p, p−1s, p−1t) = θ ′
r (p, p−1s, p−1t)

= (θ ′
r ◦ ϑ̃)(p, s, t),

so that ϑ̃ ◦θr = θ ′
r ◦ϑ̃ . Combining with the definitions of ϕ, μ̃, ν̃ and the G-invariance

of ψ , we obtain

ϕ(p, s, μ, ν) ◦ θ−1
r = ψ(p, p−1s, μ̃, ν̃) ◦ θ−1

r p

= ψ
(

r p, p−1s, (μ̃, ν̃) ◦ θ ′
r
−1

)
◦ θ−1

r p

= ψ
(

r p, p−1s, (μ, ν) ◦ θ−1
r ◦ ϑ̃−1

)
◦ θ−1

r p

= ϕ
(

r p, rs, (μ, ν) ◦ θ−1
r

)
,

which shows that ϕ is G-invariant in the sense of joint action on S and T . ��
It remains to replace the product space G × S of the previous lemma by a general

Borel space S.

Lemma 4.9 When G acts measurably on S and T , there exists a G-invariant disinte-
gration kernel from S to T .

Proof Write S′ = G × S. By Lemma 4.8 there exists a G-invariant kernel ψ from
S′×MS′×T ×MS′ to T , such that for anyμ ∈ MS×T and ν ∈ MS withμ(·×T ) � ν

λ⊗ μ = λ⊗ ν ⊗ ψ(·, μ, ν) on S′ × T, (18)

where the G-invariance means that

ψ(p, s, μ, ν) ◦ θ−1
r = ψ

(
r p, rs, (μ, ν) ◦ θ−1

r

)
, r, p ∈ G, s ∈ S. (19)

Fixing μ and ν and defining

ψr (p, s) = ψ(r p, s), fr (p, s, t) = f (r−1 p, s, t),

for all r, p ∈ G, s ∈ S, and t ∈ T , we get by the invariance of λ

(λ⊗ ν ⊗ ψr ) f = (λ⊗ ν ⊗ ψ) fr

= (λ⊗ μ) fr = (λ⊗ μ) f,

which shows that (18) remains valid withψ replaced by anyψr . Hence, by uniqueness,

ψ(r p, s) = ψ(p, s), (p, s) ∈ G × S a.e. λ⊗ ν, r ∈ G.
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Writing A for the set of triples (s, μ, ν) with

ψ(r p, s) = ψ(p, s), (r, p) ∈ G2 a.e. λ2,

and putting Aμ,ν = {s ∈ S; (s, μ, ν) ∈ A}, we get νAc
μ,ν = 0 by Fubini’s theorem.

By Lemma 3.1(ii), the defining condition for A is equivalent to

ψ(r, s) = ψ(p, s), (r, p) ∈ G2 a.e. λ2,

and so for any g, g′ ∈ G+ with λg = λg′ = 1,

λ(gψ(·, s)) = λ(g′ψ(·, s)) ≡ ϕ(s), s ∈ Aμ,ν. (20)

To make this hold identically, we may redefine ψ(·, s) = 0 for s /∈ Aμ,ν , without
affecting the validity of (18). Condition (19) is not affected either, since A is G-
invariant by Lemma 3.2.

Fixing g as above and using (18) and (20), we get for any f ∈ (S ⊗ T )+

μ f = (λ⊗ μ)(g ⊗ f ) = (λ⊗ ν ⊗ ψ)(g ⊗ f )

= (ν ⊗ (g · λ)ψ) f = (ν ⊗ ϕ) f,

which shows that μ = ν⊗ϕ. By (19), (20), and the invariance of λ, we further obtain

ϕ(s, μ, ν) ◦ θ−1
r =

∫
λ(dp) g(p) ψ(p, s, μ, ν) ◦ θ−1

r

=
∫
λ(dp) g(p) ψ

(
r p, rs, (μ, ν) ◦ θ−1

r

)

=
∫
λ(dp) g(r−1 p) ψ

(
p, rs, (μ, ν) ◦ θ−1

r

)

= ϕ
(

rs, (μ, ν) ◦ θ−1
r

)
,

which shows that ϕ is again G-invariant. ��
This completes the proof of Theorem 4.1. In view of the complexity of the argument,

it may be useful to note the following easy proofs when G is compact or countable:

Proof of Theorem 4.1 for compact G: By Lemma 2.2 there exists a kernel ψ : S ×
MS×T × MS → T with μ = ν ⊗ψ(·, μ, ν). Applying this to the measures μ ◦ θ−1

r
and ν ◦ θ−1

r gives

μ ◦ θ−1
r = (ν ◦ θ−1

r )⊗ ψ
(
·, (μ, ν) ◦ θ−1

r

)
, r ∈ G,

and so by Lemma 2.4(ii)

μ = ν ⊗
{
ψ

(
r(·), (μ, ν) ◦ θ−1

r

)
◦ θ−1

r−1

}
, r ∈ G. (21)
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Assuming λG = 1, we may introduce yet another kernel

ϕ(s, μ, ν) =
∫
λ(dr) ψ

(
rs, (μ, ν) ◦ θ−1

r

)
◦ θ−1

r−1 , s ∈ S,

and again μ = ν⊗ϕ(·, μ, ν) by (21) and Fubini’s theorem. Using the right invariance
of λ, we get for any p ∈ G

ϕ(s, μ, ν) ◦ θ−1
p =

∫
λ(dr) ψ

(
rs, (μ, ν) ◦ θ−1

r

)
◦ θ−1

pr−1

=
∫
λ(dr) ψ

(
r ps, (μ, ν) ◦ θ−1

r p

)
◦ θ−1

r−1

= ϕ
(

ps, (μ, ν) ◦ θ−1
p

)
,

which shows that ϕ is G-invariant. ��
Proof of Theorem 4.1 for countable G: For ψ as in the compact case, we get by (21)
and the a.e. uniqueness of the disintegration

ψ(s, μ, ν) = ψ
(

rs, (μ, ν) ◦ θ−1
r

)
◦ θ−1

r−1 , s ∈ S a.e. ν, r ∈ G. (22)

Now let A be the set of triples (s, μ, ν) satisfying

ψ(s, μ, ν) ◦ θ−1
r = ψ

(
rs, (μ, ν) ◦ θ−1

r

)
, r ∈ G.

Since G is countable, (22) yields ν{s ∈ S; (s, μ, ν) /∈ A} = 0 for all μ and ν, which
justifies that we choose ϕ = 1Aψ . Since A is G-invariant by Lemma 3.2, we have

(s, μ, ν) ∈ A ⇔ (rs, (μ, ν) ◦ θ−1
r ) ∈ A.

Thus, ϕ satisfies (22) identically and is therefore G-invariant. ��

5 Random integration and absolute continuity

For any random measure ξ and measurable process X ≥ 0 on a Borel space S, the
integral ξ X is again measurable by Lemma 2.3, hence a random variable. Hence, if
X · ξ is locally finite, it defines a random measure on S. In general, we may define
the distribution of X · ξ as the set of finite-dimensional distributions of the integrals
ξ( f X), for arbitrary f ∈ S+. Under an additional condition (but not in general), the
distribution of X · ξ is uniquely determined by the joint distribution of X and ξ .

Theorem 5.1 Consider some random measures ξ, η and measurable processes

X,Y ≥ 0 on a Borel space S, such that (ξ, X)
d= (η, Y ) and ξ � Eξ a.s. Then

(ξ, X, X · ξ) d= (η, Y,Y · η).

123



586 O. Kallenberg

Proof Since Eξ is s-finite, we may choose a bounded measureμ ∼ Eξ . By monotone
convergence, we may further take X and Y to be bounded. Since ξ � μ and hence
X · ξ � μ a.s, Lemma 2.1 yields a measurable function g ≥ 0 on S × MS such that
a.s.

ξ = g(·, ξ) · μ, X · ξ = g(·, X · ξ) · μ. (23)

By the a.e. uniqueness of the density

Xs g(s, ξ) = g(s, X · ξ), s ∈ S a.e. μ, a.s. P,

and so by Fubini’s theorem

Xs g(s, ξ) = g(s, X · ξ) a.s. P, s ∈ S a.e. μ. (24)

Since (ξ, X)
d= (η, Y ) and MS is Borel, the transfer theorem (cf. [10], p. 112) yields

a random measure ζ on S such that

(ξ, X, X · ξ) d= (η, Y, ζ ). (25)

By (24) and (25) we get

Ys g(s, η) = g(s, ζ ) a.s. P, s ∈ S a.e. μ,

and so by Fubini’s theorem

Ys g(s, η) = g(s, ζ ), s ∈ S a.e. μ, a.s. P.

Since also η = g(·, η) · μ by (23) and (25), we obtain

Y · η = Y g(·, η) · μ = g(·, ζ ) · μ a.s. (26)

Combining (23), (25), and (26) gives

(ξ, X, X · ξ) = (ξ, X, g(·, X · ξ) · μ)
d= (η, Y, g(·, ζ ) · μ) = (η, Y,Y · η),

as required. ��
The last result is false without the condition ξ � Eξ a.s. For a counterexample,

let τ be a uniformly distributed random variable on [0, 1], and define ξ = δτ , Xt ≡
1{τ = t}, and Yt ≡ 0. Then X and Y are measurable with Xt = Yt = 0 a.s. for every

t , and so (ξ, X)
d= (ξ, Y ). However, X · ξ = ξ whereas Y · ξ = 0, and so the asserted

relation fails.
We proceed to show how any a.s. relation ξ � η can be extended to a broader class

of random measures ξ or η.
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Theorem 5.2 Let ξ and η be random measures on a Borel space S such that ξ � η

a.s. Then for any σ -field F ⊃ σ(η), we have

ξ � E(ξ |F) � η a.s.

In particular, the condition ξ � Eξ in Theorem 5.1 can be replaced by ξ � μ for
any fixed, s-finite measure μ on S. More generally, the a.s. relation ξ � η implies
ξ � E(ξ | η ) � η a.s. Since ξ is locally finite, the conditional intensity E(ξ |F) has
a measure-valued version that is again a.s. s-finite, though it may fail to be σ -finite.
Thus, the asserted relations are measurable by Lemma 2.1.

Proof We may clearly assume that Eξ is σ -finite. By Lemma 2.1 there exists a mea-
surable function h ≥ 0 on S × MS such that ξ = h(·, ξ, η) · η = X · η a.s., where
Xs = h(s, ξ, η). Since MS is Borel, we may choose an F-measurable random prob-
ability measure ν on MS such that ν = L(ξ |F) a.s. Using the disintegration theorem
(cf. [10], p. 108) and Fubini’s theorem, we get a.s. for any f ∈ S+

E[ ξ f |F ] = E[ η( f X) |F ] = E

[∫
η(ds) f (s) h(s, ξ, η)

∣∣∣∣F
]

=
∫
ν(dm)

∫
η(ds) f (s) h(s,m, η)

=
∫
η(ds) f (s)

∫
ν(dm) h(s,m, η)

=
∫
η(ds) f (s) E[ h(s, ξ, η) |F ]

= η( f E[X |F ]) = (E[X |F ] · η) f.

Since f was arbitrary, we obtain E(ξ |F) = E(X |F)·η a.s., which implies E(ξ |F) �
η a.s.

The previous calculation shows that the remaining claim, ξ � E(ξ |F) a.s., is
equivalent to

h(·, ξ, η) · η �
∫
ν(dm) h(·,m, η) · η a.s.

Using the disintegration theorem again, we may write this as

Eν

{
μ ∈ MS; h(·, μ, η) · η �

∫
ν(dm) h(·,m, η) · η

}
= 1,

which reduces the assertion to X · η � E X · η a.s., for any non-random measure η
and measurable process X ≥ 0 on S.

To prove this, we note that E Xs = 0 implies Xs = 0 a.s., so that

Xs � E Xs a.s. P, s ∈ S,
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and hence by Fubini’s theorem

Xs � E Xs, s ∈ S a.e. η, a.s. P.

Now fix any ω ∈ 
 outside the exceptional P-null set, and let B ∈ S be arbitrary with
η(E X; B) = 0. Splitting B into the four subsets where

Xs = E Xs = 0, Xs > E Xs = 0, E Xs > Xs = 0, Xs E Xs > 0,

we may easily check that even η(X; B) = 0. This shows that indeed X · η � E X · η
a.s. ��

For measurable processes and group actions, Theorem 5.1 yields the following
strengthening of the elementary notion of stationarity, defined in terms of finite-
dimensional distributions.

Corollary 5.3 For any Borel spaces S and T and a group G acting measurably on
S, let X be a measurable process on S taking values in T . Then X is G-stationary in
the sense of finite-dimensional distributions, iff (7) holds for any measurable function
f ≥ 0 on T and measure μ on S.

Proof If X is G-stationary in the sense of finite-dimensional distributions, then so is

f (X). Hence, f ◦ X ◦ θr
d= f ◦ X for all r ∈ G, and (7) follows by Theorem 5.1 since

X is measurable. Conversely, assume (7). Considering measures μ with finite support
and using the Cramér–Wold theorem, we see that f (X) is G-stationary in the sense of
finite-dimensional distributions. Since T is Borel, the same property holds for X . ��

The property in (7) will be referred to as strong G-stationarity of X . More generally,
a random measure ξ and measurable process X on S are said to be jointly strongly
G-stationary if

(
ξ ◦ θ−1

r , μ( f ◦ X)
)

d=
(
ξ, (μ ◦ θ−1

r )( f ◦ X)
)
, r ∈ G,

for any μ and f as above. Note that the shift of ξ by r ∈ G corresponds to a shift
of X by r−1. (This is only a convention, justified by Lemma 2.4.) Under a suitable
condition, the joint G-stationarity of ξ and X is preserved by integration:

Corollary 5.4 Given a group G acting measurably on a Borel space S, consider a
random measure ξ and a bounded, measurable process X ≥ 0 on S, such that (ξ, X)
is G-stationary and ξ � Eξ a.s. Then (ξ, X, X · ξ) is strongly G-stationary.

Proof By Lemma 2.4, we have

(X · ξ) ◦ θ−1
r = (X ◦ θr−1) · (ξ ◦ θ−1

r ), r ∈ G.

Since ξ � Eξ a.s. and (ξ ◦θ−1
r , X ◦θr−1)

d= (ξ, X), the assertion follows by Theorem
5.1. ��
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Again the a.s. condition ξ � Eξ cannot be omitted. For a counterexample, let ξ be
a unit rate Poisson process on R with first point on R+ at τ , and define Xt ≡ 1{τ = t}.
Then Xt = 0 a.s. for every t ∈ R, and so (ξ, X) is stationary, whereas X · ξ = δτ is
not.

6 Stationary densities and disintegration

Using Theorem 4.1, we may construct stationary densities and disintegration kernels
for stationary random measures ξ and η. By a random kernel ζ : S → T we mean a
σ -finite kernel from
×S to T . The triple (ξ, η, ζ ) is said to be strongly G-stationary if

(ξ, η, μζ ) ◦ θ−1
r

d=
(
ξ, η, (μ ◦ θ−1

r )ζ
)
, r ∈ G, μ ∈ MS .

By Corollary 5.3, this is equivalent to ordinary G-stationarity. Here the stronger version
follows by the same argument.

Theorem 6.1 Let the lcscH group G act measurably on some Borel spaces S and
T , and consider some random measures ξ on S × T and η on S such that (ξ, η) is
G-stationary with ξ(· × T ) � η a.s. Then there exists a (ξ, η)-measurable random
kernel ζ : S → T , such that (ξ, η, ζ ) is strongly G-stationary with ξ = η ⊗ ζ a.s.

For non-random ξ and η, the stationarity becomes invariance, and the result essen-
tially reduces to Proposition 3.4. For singleton T , we obtain conditions for the existence
of a stationary density. Our proof simplifies only marginally in this case. In particular,
we may then omit Lemma 4.7.

Corollary 6.2 Let the lcscH group G act measurably on a Borel space S, and consider
some random measures ξ � η on S such that (ξ, η) is G-stationary. Then there exists
a (ξ, η)-measurable process X ≥ 0 on S, such that (ξ, η, X) is strongly G-stationary
with ξ = X · η a.s.

Proof of Theorem 6.1 Let ϕ be such as in Theorem 4.1, and define ζs = ϕ(s, ξ, η) for
s ∈ S, so that ξ = η⊗ ζ . Since ϕ is G-invariant, we get for any μ ∈ MS and r ∈ G

μζ ◦ θ−1
r =

∫
μ(ds) ϕ(s, ξ, η) ◦ θ−1

r

=
∫
μ(ds) ϕ

(
rs, (ξ, η) ◦ θ−1

r

)

= (μ ◦ θ−1
r ) ϕ

(
·, (ξ, η) ◦ θ−1

r

)
,

and so the G-stationarity of (ξ, η) yields

(ξ, η, μζ ) ◦ θ−1
r =

{
(ξ, η) ◦ θ−1

r , (μ ◦ θ−1
r ) ϕ

(
·, (ξ, η) ◦ θ−1

r

)}
d=

(
ξ, η, (μ ◦ θ−1

r ) ϕ(·, ξ, η)
)

=
(
ξ, η, (μ ◦ θ−1

r )ζ
)
,

which shows that (ξ, η, ζ ) is strongly G-stationary. ��
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If the random measure η of the last result is a.s. G-invariant, then by Theorem 5.2
it can be replaced by the random measure E(ξ |I ), where I denotes the associated
invariant σ -field. Assuming ξ to be G-stationary, we show that E(ξ |I ) (and indeed
even L(ξ |I )) has a G-invariant version. For general results on ergodic decomposition,
see [3], pp. 716f, and [10], pp. 195f.

Theorem 6.3 Let the lcscH group G act measurably on a Borel space S, and consider
a G-stationary random measure ξ on S with associated G-invariant σ -field I. Then
E(ξ |I ) and L(ξ |I ) have G-invariant, measure-valued versions.

Proof For any measure-valued version � = L(ξ |I ), we note that E(ξ |I ) has the
measure-valued version η = ∫

m�(dm). If � is invariant under the shifts θr on MS

given by θrμ = μ ◦ θ−1
r , then

η ◦ θ−1
r =

∫
(m ◦ θ−1

r )�(dm)

=
∫

m (� ◦ θ−1
r )(dm) =

∫
m�(dm) = η,

which shows that η is invariant under shifts on S. It is then enough to prove the assertion
for L(ξ |I ).

Since ξ is stationary and I is invariant, we have for any measurable function f ≥ 0
on MS

E[ f (ξ ◦ θ−1
r ) |I ] = E[ f (ξ) |I ] a.s., r ∈ G. (27)

Fixing a countable, measure-determining class F of functions f and a countable,
dense subset G ′ ⊂ G, we note that (27) holds simultaneously for all f ∈ F and
r ∈ G ′, outside a fixed P-null set. Since the space MS is again Borel, we can choose
a measure-valued version � = L(ξ |I ).

For any non-exceptional realization Q of �, we may choose a random measure η
with distribution Q and write the countably many relations (27) in probabilistic form
as

E f (η ◦ θ−1
r ) = E f (η), f ∈ F , r ∈ G ′.

Since F is measure-determining, we conclude that

η ◦ θ−1
r

d= η, r ∈ G ′.

Using the invariance of Haar measure λ and the measurability of the mapping μ 
→
λ⊗ μ, we get for every r ∈ G ′

(λ⊗ η) ◦ θ−1
r = λ⊗ (η ◦ θ−1

r )
d= λ⊗ η, (28)

where θr on the left denotes the joint shift (p, s) 
→ (r p, rs) on G × S.
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Next introduce on G × S the skew transformation ϑ(r, s) = (r, rs) with inverse ϑ̃ ,
and note as in Lemma 4.8 that

ϑ̃ ◦ θr = θ ′
r ◦ ϑ̃, r ∈ G, (29)

where θ ′
r (p, s) = (r p, s) denotes the shift in G × S acting on G alone. Then (28)

yields for any r ∈ G ′

(λ⊗ η) ◦ ϑ̃−1 ◦ θ ′
r
−1 = (λ⊗ η) ◦ θ−1

r ◦ ϑ̃−1

d= (λ⊗ η) ◦ ϑ̃−1,

which means that the random measure ζ = (λ ⊗ η) ◦ ϑ̃−1 on G × S is invariant in
distribution under shifts by r ∈ G ′ in the component G alone.

To extend this to arbitrary r ∈ G, we may assume that S = R, so that even
S′ = G × S becomes lcscH. Choosing a metrization of S′ such that every bounded
set is relatively compact, we see that the ε-neighborhood of a bounded set is again
bounded. Then for any measures μ ∈ MS′ and continuous functions f ≥ 0 on S′
with compact support, we get by dominated convergence, as r → ι in G,

(μ ◦ θ ′
r
−1
) f =

∫
μ(dp ds) f (r p, s) →

∫
μ(dp ds) f (p, s) = μ f,

which gives μ ◦ θ ′
r
−1 v→ μ by the definition of the vague topology, showing that G

acts continuously on MS′ under shifts in G alone. For any r ∈ G, we may choose a
sequence rn → r in G ′ and conclude that

ζ
d= ζ ◦ θ ′ −1

rn

v→ ζ ◦ θ ′
r
−1
.

Hence, ζ ◦ θ ′
r
−1 d= ζ for all r ∈ G, which means that ζ is stationary under shifts in G

alone.
Reversing the skew transformation and using (29) and the invariance of λ, we get

for any r ∈ G

λ⊗ (η ◦ θ−1
r ) = (λ⊗ η) ◦ θ−1

r
d= λ⊗ η.

Fixing a B ∈ G with 0 < λB < ∞ and using the measurability of the projection
μ 
→ μ(B × ·) on G × S, we obtain

(λB) (η ◦ θ−1
r ) = (λ⊗ (η ◦ θ−1

r ))(B × ·)
d= (λ⊗ η)(B × ·) = (λB) η,

which implies η◦θ−1
r

d= η. This shows that Q is G-invariant, and the a.s. G-invariance
of � follows. ��
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