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Abstract In this paper we extend some classical results valid for canonical mul-
tiplicative cascades to exact scaling log-infinitely divisible cascades. We present an
alternative construction of exact scaling infinitely divisible cascades based on a family
of cones whose geometry naturally induces the exact scaling property. We complete
previous results on non-degeneracy and moments of positive orders obtained by Barral
and Mandelbrot, and Bacry and Muzy: we provide a necessary and sufficient condi-
tion for the non-degeneracy of the limit measures of these cascades, as well as for
the finiteness of moments of positive orders of their total mass, extending Kahane’s
result for canonical cascades. Our main results are analogues to the results by Kahane
and Guivarc’h regarding the asymptotic behavior of the right tail of the total mass.
They come from a “non-independent” random difference equation satisfied by the total
mass of the measures. The non-independent structure brings new difficulties to study
the random difference equation, which we overcome thanks to Dirichlet’s multiple
integral formula and Goldie’s implicit renewal theory. We also discuss the finiteness
of moments of negative orders of the total mass, and some geometric properties of the
support of the measure.
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522 J. Barral, X. Jin

1 Introduction

This paper studies fine properties of one of the fundamental models of positive ran-
dom measures illustrating multiplicative chaos theory, namely limits of log-infinitely
divisible cascades.

Multiplicative chaos theory originates mainly from the intermittent turbulence mod-
eling proposed by Mandelbrot [27], who introduced a construction of measure-valued
log-Gaussian multiplicative processes. As its mathematical treatment was hard to
achieve in complete rigor, the model was simplified by Mandelbrot [28–30] himself,
who considered the limit of canonical multiplicative cascades. The study of these sta-
tistically self-similar measures gave rise to a number of important contributions that
we will describe in a while. In the eighties, Kahane [18–20] founded multiplicative
chaos theory, in particular for Gaussian multiplicative chaos (but also with applications
to random coverings), providing the expected mathematical framework for Mandel-
brot’s initial construction. Later, fundamental new illustrations of this theory by grid
free statistically self-similar measures appeared, namely the compound Poisson cas-
cades introduced by Barral and Mandelbrot [6] and their generalization to the wide
class of log-infinitely divisible cascades built by Bacry and Muzy [2]; in particular
one finds in [2] a subclass of log-infinitely divisible cascades whose limits possess
a remarkable exact scaling property: let μ be the measure on R+ obtained as the
non-degenerate limit of such a cascade (the construction is made in dimension 1),
there exists an integral scale T > 0 and a Lévy characteristic exponent ψ such that
for all λ ∈ (0, 1), there exists an infinitely divisible random variable �λ such that
E(eiq�λ) = λ−ψ(q) for all q ∈ R, and

(μ([0, λt]))0≤t≤T
law= λe�λ(μ([0, t]))0≤t≤T , (1.1)

where on the right hand side (μ([0, t]))0≤t≤T is independent of �λ. Moreover,
((μ([u, u + t])t≥0)u≥0 is stationary, and the μ-measure of any two intervals being
away from each other by more than T are independent (when the characteris-
tic exponent is quadratic, the construction falls into Gaussian multiplicative chaos
theory).

Higher dimensional versions have been built as well (see [9,18,34]). In particular,
in dimension 2 and in the Gaussian case, they are closely related to the validity of the
so-called KPZ formula and its dual version in Liouville quantum gravity (see [12] and
[35], as well as [3]).

To fix ideas, let us recall the construction of dyadic canonical multiplicative cas-
cades, as well as the construction of the subclass of exact scaling log-infinitely divisible
cascades which are the closer to canonical ones, namely compound Poisson cascades.
To build a dyadic canonical cascade in dimension 1, one can consider the dyadic
tree

{Mu}u∈⋃ j≥1{0,1} j =
⋃

j≥1

⎧
⎨

⎩

⎛

⎝2−( j+1) +
j∑

k=1

uk2−k, 2− j

⎞

⎠

⎫
⎬

⎭
u∈{0,1} j
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(A) (B)

Fig. 1 Grey areas for V2−2 (t). a Dyadic tree. b Poisson point process

embedded in the upper half-plane H (this extends naturally to m-adic trees). Then to
each point Mu one associates a random variable Wu , so that the Wu, u ∈ ⋃ j≥1{0, 1} j ,
are independent and identically distributed with a positive random variable W of
expectation 1, and one defines a sequence of measures on [0, 1] as

μ j (dt) =
j∏

k=1

Wu1···uk · dt if t ∈
⎡

⎣
j∑

k=1

uk2−k, 2− j +
j∑

k=1

uk2−k

⎞

⎠ .

This definition can be put into the same setting as that used to define the log-infinitely
divisible cascades if we write

μ j (dt) = e�(V2− j (t)) dt,

where V2− j (t) is the truncated cone {z = x+iy ∈ H : |x−t | < min(1, y)/2, 2− j ≤ y}
and � is the random measure on (H,B(H)) defined as

�(A) =
∑

u:Mu∈A

log(Wu).

In fact, one obtains examples of the exact scaling compound Poisson cascades men-
tioned above by replacing formally the dyadic tree {Mu} by the points of a Poisson
point process in H with an intensity of the form ay−2dxdy (a > 0), the process being
independent of the copies of W attached to its points (Fig. 1). The cones V2− j (t) have
been exhibited by Bacry and Muzy after a careful inspection of the characteristic func-
tion of the process (�(Ṽ2− j (t)))t∈[0,1] along a large family of cones Ṽ2− j (t) (subject
to contain {z = x + iy ∈ H : |x − t | < y/2, 2− j ≤ y ≤ 1}), leading to choosing
V2− j (t) and deriving (1.1) (this choice is the same for all exact scaling log-infinitely
divisible cascades).

In both situations, the sequence (μ j ) j≥1 is a martingale which converges almost
surely weakly to a limit μ supported on [0, 1]. In the case of canonical cascades, the
self-similar structure of the dyadic tree together with the independence and identical
distribution of the Wu directly yields the fundamental almost sure relation
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μ(A) = 2−1W0μ
(0)(2(A ∩ [0, 1/2]))+ 2−1W1μ

(1)(2(A ∩ [1/2, 1])− 1)

for all Borel sets A, where μ(0) and μ(1) are the independent copies of μ obtained
by making the substitution Wu := W0u , and Wu := W1u respectively, in the con-
struction, these measures being independent of (W0,W1). Denoting the total masses
Z = ‖μ‖, Z(0) = ‖μ(0)‖ and Z(1) = ‖μ(1)‖, this gives the scalar equation,

Z = 2−1(W0 Z(0)+ W1 Z(1)), (1.2)

which plays a crucial role in deriving fine properties of the distribution of Z and
geometric properties of μ.

In the case of exact scaling log-infinitely divisible cascades, such an almost sure
relation between μ and its restrictions to contiguous non-trivial subintervals partition-
ing [0, 1] does not fall automatically from the construction, which is not genuinely
based on geometric scaling properties. Nevertheless, a simple observation based on
Bacry and Muzy’s calculation does provide such an analogue, with additional corre-
lations (see (1.13) below, and Sect. 1.5). On the other hand, it is natural to seek for
a family of cones whose geometric structure directly induces limit of log-infinitely
divisible cascades satisfying both (1.1) and (1.13). We will introduce such a family.
The formal definition of exact scaling log-infinitely divisible cascades built from it
will be explained in the next subsections, as well as the equivalence with Bacry and
Muzy’s original definition. All the proofs in the paper will use the definition based on
the new cones; using the original ones would be equivalent.

Mandelbrot was especially interested in three questions related to canonical cas-
cades: (1) under which necessary and sufficient conditions is μ non-degenerate, i.e.
P(μ �= 0) = 1 ({μ �= 0} is a tail event of probability 0 or 1)? (2) When μ is non-
degenerate, under which necessary and sufficient conditions the total mass has finite
qth moment when q > 1, i.e. E(‖μ‖q) < ∞? (3) When μ is non-degenerate, what
is the Hausdorff dimension of μ? He formulated and partially solved related conjec-
tures, which were finally solved by Kahane and Peyrière [21], who exploited finely
the fundamental Eq. (1.2): let

ϕ(q) = log2 E(W q)− (q − 1). (1.3)

Then μ is non-degenerate if and only if ϕ′(1−) < 0; in this case the convergence of
the total mass ‖μ j‖ holds in L1 norm, and for q > 1 one has E(‖μ‖q) < ∞ if and
only if ϕ(q) < 0; also, the Hausdorff dimension of μ is −ϕ′(1−) (It was assumed in
[21] that E(‖μ‖ log+ ‖μ‖) < ∞, a condition removed in [19]).

It is not hard to see that all the positive moments of Z are finite if and only if
P(W ≤ 2) = 1 and P(W = 2) < 1/2 (recall that this is also equivalent to ϕ(q) < 0
for all q > 1), and in this case it is shown in [21] that

lim
q→∞

log E(Zq)

q log q
= log2 ess sup(W ) ≤ 1. (1.4)
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On exact scaling log-infinitely divisible cascades 525

When there exists a (necessarily unique since ϕ(1) = 0 and ϕ is convex) solution ζ
to the equation ϕ(q) = 0 in (1,∞), Guivarc’h, motivated by a conjecture in [29],
showed in [17] that when the distribution of log(W ) is non-arithmetic, there exists a
constant 0 < d < ∞ such that

lim
x→∞ xζP(Z > x) = d. (1.5)

The proof is based on the connection of (1.2) with the theory of random difference
equations. Regarding moments of negative orders, if ϕ′(1−) < 0, given q > 0 one has
E(Z−2q ′

) < ∞ for all q ′ ∈ (0, q) if and only if ϕ(−q ′) < ∞, i.e. E(W −q ′
) < ∞, for

all q ′ ∈ (0, q) [8,24,31].
The same series of questions arise for the limits of 1-dimensional exact scaling log-

infinitely divisible cascades. In general, one expects answers similar to those obtained
for limits of canonical cascades. We will sharpen some of the already known results,
and provide new ones, especially regarding the right tail asymptotic behavior of the
law of the total mass of such a measure restricted to compact intervals.

Let us now come to the definitions (Sects. 1.1 and 1.2) required to build 1-
dimensional exact scaling log-infinitely divisible cascades from the new family of
cones invoked above (Sect. 1.3). Section 1.4 will present our main results, and Sect. 1.5
the connection between Bacry–Muzy’s original construction and the one adopted in
this paper.

1.1 Independently scattered random measures

Let ψ be a characteristic Lévy exponent given by

ψ : q ∈ R �→ iaq − 1

2
σ 2q2 +

∫

R

(eiqx − 1 − iqx1|x |≤1) ν(dx), (1.6)

where a, σ ∈ R and ν is a Lévy measure on R satisfying

ν({0}) = 0 and
∫

R

1 ∧ |x |2 ν(dx) < ∞.

Let H = R × iR+ be the upper half plane and let λ be the hyperbolic area measure
on H defined as

λ(dxdy) = y−2dxdy.

Let � be an homogenous independently scattered random measure on H with ψ as
Lévy exponent and λ as intensity (see [32] for details). It is characterized by the
following: for every Borel set B ∈ Bλ = {B ∈ B(H) : λ(B) < ∞} and q ∈ R we
have

E(eiq�(B)) = eψ(q)λ(B),
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and for every sequence {Bi }∞i=1 of disjoint Borel subsets of Bλ with ∪∞
i=1 Bi ∈ Bλ, the

random variables �(Bi ), i ≥ 1, are independent and satisfy

�

( ∞⋃

i=1

Bi

)

=
∞∑

i=1

�(Bi ) almost surely. (1.7)

Let Iν be the interval of those q ∈ R such that
∫
|x |≥1 eqx ν(dx) < ∞. Then the function

ψ has a natural extension to {z ∈ C : −Im(z) ∈ Iν}. In particular for any q ∈ Iν and
every B ∈ Bλ we have

E(eq�(B)) = eψ(−iq)λ(B).

Through out the paper we assume that at least one of σ and ν is positive, and assume
that Iν contains the interval [0, 1]. We adopt the normalization

a = −σ
2

2
−
∫

R

(ex − 1 − x1|x |≤1) ν(dx). (1.8)

Then for B ∈ Bλ we define

Q(B) = e�(B),

and by (1.8) we have

E(Q(B)) = 1. (1.9)

More generally for q ∈ Iν we have

E(Q(B)q) = eψ(−iq)λ(B). (1.10)

1.2 Cones and areas

Let I = {[s, t] : s, t ∈ R, s < t} be the collection of all nontrivial compact intervals.
For I = [s, t] ∈ I denote by |I | its length t − s.

For t ∈ R define the cone

V (t) = {z = x + iy ∈ H : −y/2 < x − t ≤ y/2} = V (0)+ t.

For I ∈ I define

V (I ) =
⋂

t∈I

V (t).
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On exact scaling log-infinitely divisible cascades 527

For I ∈ I and t ∈ I define

V I (t) = V (t)\V (I ).

For I, J ∈ I with J ⊆ I define

V I (J ) =
⋂

t∈J

V I (t) = V (J )\V (I ).

A straightforward computation shows that

Lemma 1.1 For I, J ∈ I with J ⊆ I one has

λ(V I (J )) = log
|I |
|J | .

1.3 Exact scaling log-infinitely divisible cascades

For ε > 0 denote by

Hε = {z ∈ H : Im(z) ≥ ε}.

For I ∈ I, t ∈ I and ε > 0 define

V I
ε (t) = V I (t) ∩ Hε .

Clearly we have V I
ε (t) ∈ Bλ. Moreover, for each ε > 0 there exists a càdlàg modifi-

cation of (Q(V I
ε (t)))t∈I . In fact, similar to [2, Definition 4], one can define

�(V I
ε (t)) = �(AI

ε (t))−�(B I
ε (t))+�(C I

ε ), t ∈ I,

where (see Fig. 2)

AI
ε (t) = {x + iy ∈ H : y/2 ≤ x − inf I ≤ t + y/2} ∩ Hε,

B I
ε (t) = {x + iy ∈ H : −y/2 ≤ x − inf I ≤ t − y/2} ∩ Hε,

C I
ε = {x + iy ∈ H : −y/2 ≤ x − inf I ≤ y/2 ∧ (sup I − y/2)} ∩ Hε .

It is easy to see that both�(AI
ε (t)) and�(B I

ε (t)) are Lévy processes and�(C I
ε ) does

not depend on t , thus �(V I
ε (t)) has a càdlàg modification.

We use this to define μI
ε , the random measure on I given by

μI
ε (dx) = 1

|I | · Q(V I
ε (x)) dx, x ∈ I.

The following lemma is due to Kahane [20] combined with Doob’s regularisation
theorem (see [33, Chapter II.2] for example).
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(A) ( B) (C) (D)

Fig. 2 The gray areas for the corresponding sets. a AI
ε (t). b B I

ε (t). c C I
ε . d V I

ε (t)

Lemma 1.2 Given I ∈ I, {μI
1/t }t>0 is measure-valued martingale. It possesses a

right-continuous modification, which converges weakly almost surely to a limit μI .

Throughout, we will work with this right-continuous version of {μI
1/t }t>0, and its

limit μI . We give the proof of this lemma with some details, since this point is not
made explicit in the context of [2].

Proof Let� be a dense countable subset of C0(I ) (the family of nonnegative continu-
ous functions on I ). Let f0 be the constant mapping equal to 1 over I . For f ∈ �∪{ f0}
and t > 0 define

μI
1/t ( f ) =

∫

I

f (x) μI
1/t (dx) = 1

|I |
∫

I

f (x) · Q(V I
1/t (x)) dx

and

Ft = (σ (�(V I
1/s(x)) : x ∈ I ; 0 < s ≤ t))t>0.

Let N be the class of all P-negligible, F∞-measurable sets. Then define G0 = σ(N )

and Gt = σ(Ft ∪ N ) for t > 0. Due to the normalisation (1.8), the measurability of
(ω, x) �→ Q(V I

ε (x)) and the independence properties associated with �, the family
{μI

1/t ( f )}t>0 is a positive martingale with respect to the right-continuous complete

filtration (Gt )t≥0, with expectation E(μI
1/t ) = |I |−1

∫
I f (x) dx < ∞. Then from [33,

Chapter II, Theorem 2.5] one can find a subset �0 ⊂ � with P(�0) = 1 such that
for every ω ∈ �0, for each f ∈ � ∪ { f0} and t ∈ [0,∞), limr↓t;r∈Q μ

I
1/r ( f ) exists.

Define

μ
I,+
1/t ( f ) = lim

r↓t;r∈Q

μI
1/r ( f ) if ω ∈ �0 and μI,+

1/t ( f ) = 0 if ω �∈ �0.

Then from [33, Chapter II, Theorem 2.9 and 2.10] we get that μI,+
1/t ( f ) is a càdlàg

modification of μI
1/t ( f ) for each f ∈ �∪ { f0}, thus limt→∞ μ

I,+
1/t ( f ) exists for each

ω ∈ �0. Now write

μI ( f ) = lim
t→∞μ

I,+
1/t ( f ) if ω ∈ �0 and μI ( f ) = 0 if ω �∈ �0
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On exact scaling log-infinitely divisible cascades 529

for each f ∈ �. Since� is a dense subset of C0(I ), one can extend μI,+
1/t to C0(I ) for

each ω ∈ �0 by letting

μ
I,+
1/t (g) = lim

�� f →g
μ

I,+
1/t ( f ), g ∈ C0(I )

(this limit does exist because for any f1, f2 ∈ � and r ∈ Q we have |μI
1/r ( f1) −

μI
1/r ( f2)| ≤ μI

1/r ( f0)‖ f1 − f2‖∞). This defines a right-continuous version of

(μI
1/t )t>0. Then, since the positive linear formsμI,+

1/t are bounded in norm byμI,+
1/t ( f0)

and converge over the dense family �, they converge. This defines a measure μI as
the weak limit of μI,+

1/t for each ω ∈ �0, hence the conclusion. ��
For the weak limit μI we have:

Lemma 1.3 For I, J ∈ I, μI ◦ f −1
I,J and μJ have the same law, where f I,J : t ∈

I �→ inf J + (t − inf I )|J |/|I |.
Proof Due to the scaling property of λ we have that

{Q(V I
ε ( f −1

I,J (x)), x ∈ J } and {Q(V J
ε|J |/|I |(x)), x ∈ J }

have the same law. This implies that

{μI
1/t ◦ f −1

I,J , t > 0} and {μJ
|I |/(|J |t), t > 0}

have the same law, and so do μI ◦ f −1
I,J and μJ . ��

Now we come to the scaling property of μI . Due to (1.7), for any fixed compact
subinterval J ⊂ I and t > 0 we have the decomposition

Q(V I
1/t (x)) = Q(V I (J )) · Q(V J

|J |/(|I |t)(x)), x ∈ J, (1.11)

hence

(μI
1/t )|J = |J |

|I | Q(V I (J )) · μJ
|J |/(|I |t),

almost surely. Consequently this holds almost surely simultaneously for any at most
countable family of such intervals J , but a priori not for all, since� is not almost surely
a signed measure. This along with Lemma 1.2 and its proof gives simultaneously for
all compact intervals J of such a family the following decomposition

(μI )|J = |J |
|I | Q(V I (J )) · μJ (1.12)

almost surely, where μI ◦ f −1
I,J has the same law as μJ , and it is independent of

Q(V I (J )) (the fact that μI is continuous assures that the weak limit of μI
1/t restricted
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530 J. Barral, X. Jin

to J equals μI restricted to J ; the right-continuous modifications of (μI
1/t )t>0 and the

(μJ
|J |/(|I |t))t>0 are built simultaneously, and the convergence of μI

1/t implies that of

μJ
|J |/(|I |t)). However, (1.12) also holds almost surely simultaneously for all J ∈ I with

J ⊂ I when σ = 0 and the Lévy measure ν satisfies
∫

1 ∧ |u| ν(du) < ∞. Indeed,
in this case � is almost surely a signed measure, which makes it possible to directly
write (1.11) almost surely for all J ∈ I with J ⊂ I and for all t > 0 (notice that
in this case we easily have the nice property that almost surely Q(V I

1/t (x)) is càdlàg
both in x and t).

We notice that (1.12) implies (1.1) (see Sect. 1.5 for details), but we also have now
the following new equation giving ‖μI ‖ as a weighted sum of its copies: given k ≥ 2
and min I = s0 < · · · < sk = max I , for j = 0, . . . , k − 1 write I j = [s j , s j+1];
provided that s1, . . . , sk−1 are not atoms of μI , we have almost surely

‖μI ‖ =
k−1∑

j=0

|I j |
|I | · Q(V I (I j )) · ‖μI j ‖, (1.13)

where for each j, ‖μI j ‖ is independent of Q(V I (I j )) and has the same law as ‖μI ‖.
This equation will be crucial to get our main results.

Another interesting equation is the following. For I ∈ I let

I0 = [min(I ),min(I )+ |I |/2] and I1 = [min(I )+ |I |/2,max(I )].

One can also define I00 and I01 in the same way for I0. Then, provided I00 ∩ I01 is
not an atom of μI0 , we have

(μI )|I0 = 1

2
· Q(V I (I0)) · ((μI0)|I00 + (μI0)|I01), (1.14)

where (μI0)|I00 ◦ f −1
I0,I00

and (μI0)|I00 ◦ f −1
I0,I01

have the same law as (μI )|I0 , and they

are independent of 1
2 Q(V I (I0)).

To complete the proof of (1.13), we now prove the following lemma.

Lemma 1.4 Almost surely μI has no atoms.

Proof We can assume that I = [0, 1]. We start with proving that 1/4 is not an atom.
Let ( fn)n≥1 be uniformly bounded sequence in C0([0, 1]) which converges pointwise
to 11/4, and such that supp( fn) ⊂ [1/4 − ηn, 1/4 + ηn] with 1/4 > ηn ↓ 0. Then

E(μI ({1/4})) ≤ lim inf
n→∞ E(μI ( fn)) ≤ lim inf

n→∞ lim inf
t→∞ E(μI

1/t ( fn))

= lim inf
n→∞

∫

fn(t) dt ≤ lim inf
n→∞ 2ηn‖ fn‖∞.

So E(μI ({1/4})) = 0.
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The fact that 1/4 is not an atom of μI yields the validity of (1.14). Denote by μ̂ =
(μI )|I0 , μ̂0 = (μI0)|I00 , μ̂1 = (μI0)|I01 and Ŵ = 1

2 Q(V I (I0)). From (1.14) we get

μ̂ = Ŵ · (μ̂0 + μ̂1).

Due to Lemma 1.3 we know that whetherμI or μ̂ having an atom is equivalent. Let M
be the maximal μ̂-measure of an atom of μ̂, and let M j be the maximal μ̂ j -measure of
an atom of μ̂ j for j = 0, 1. We have M = Ŵ max(M0,M1), where Ŵ is independent
of (M0,M1), has expectation 1/2 and M,M0,M1 have the same law. Thus

E(M0 + M1)/2 = E(M) = E(Ŵ max(M0,M1)) = E(max(M0,M1))/2.

This implies that, with probability 1, if M j > 0 then M1− j = 0 for j ∈ {0, 1}.
However, {M j > 0} is a tail event of probability 0 or 1, thus the previous fact implies
that M0 = M1 = 0 almost surely, hence μ̂ has no atoms (here we have adapted to our
context the argument of [8, Lemma A.2] for canonical cascades). ��

1.4 Main results

Without loss of generality we may take I = [0, 1]. For convenience we write μ =
μ[0,1] and Z = ‖μ‖. For q ∈ Iν define

ϕ(q) = ψ(−iq)− (q − 1).

Notice that if we set

W = Q(V [0,1]([0, 1/2])),

then this function coincides with that of (1.3) for the canonical cascades.
For the non-degeneracy we have

Theorem 1.1 The following assertions are equivalent:

(i) E(Z) = 1; (ii) E(Z) > 0; (iii) ϕ′(1−) < 0.

Moreover, in case of non-degeneracy the convergence of ‖μI
1/t‖ to Z holds in L1 norm.

For moments of positive orders we have

Theorem 1.2 For q > 1 one has 0 < E(Zq) < ∞ if and only if q ∈ Iν and ϕ(q) < 0.

Remark 1.1 In Theorem 1.1, the main point is the equivalence between (ii) and (iii).
For compound Poisson cascades (iii) ⇒ (ii) was proved in [6], as well as (ii) ⇒
(iii) under the additional assumption ϕ′′(1−) < ∞, while (ii) ⇒ ϕ′(1−) ≤ 0

was known in general (notice that the construction of the measure used the cones
Vε(t) = {z = x + iy ∈ H : −y < x − t ≤ y, ε ≤ y ≤ 1}). For the larger
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class of log-infinitely divisible cascades, (iii) ⇒ (ii) was proved in [2] under the
existence of q > 1 such that ϕ(q) < ∞, i.e. under the sufficient condition implying
the boundedness of ‖με‖ in some L p, p > 1.

Regarding Theorem 1.2, in [6] and [2], (q ∈ Iν and ϕ(q) < 0) ⇒ (0 < E(Zq) <

∞) and (0 < E(Zq) < ∞) ⇒ (q ∈ Iν and ϕ(q) ≤ 0) were known for compound
Poisson cascades and then log-infinitely divisible cascades. We will only prove (0 <
E(Zq) < ∞) ⇒ (q ∈ Iν and ϕ(q) < 0).

We will see that thanks to Eq. (1.13), the sharp Theorems 1.1 and 1.2 concerning
the exact scaling case can be obtained via an adaptation of the arguments used in [21]
for canonical cascades. Then, these results also hold for the more general family of
log-infinitely divisible cascades built in [2], since changing the shape of the cones
used in the definition of the cascade only creates a random measure equivalent to that
corresponding to the exact scaling, and the behaviors of such measures are comparable
(see [2, Appendix E]).

When Z has finite moments of every positive order we have

Theorem 1.3 (1) The following assertions are equivalent: (α) 0 < E(Zq) < ∞ for
all q > 1; (β) σ = 0, and ν is carried by (−∞, 0], ∫ 0

−∞ 1 ∧ |x | ν(dx) < ∞,
and

γ =
0∫

−∞
(1 − ex ) ν(dx) ≤ 1.

(2) If (β) holds, then

lim
q→∞

log E(Zq)

q log q
= γ.

Remark 1.2 Under (β) we have for q ∈ R and W = Q(V [0,1]([0, 1/2])) that

E(W iq) = exp

⎛

⎝

⎡

⎣iqγ +
0∫

−∞
(eiqx − 1) ν(dx)

⎤

⎦ log 2

⎞

⎠ ,

which means that log W is the value at 1 of a Lévy process with negative jumps, local
bounded variations, and drift γ log 2, hence log2 ess sup(W ) = γ . This gives in case
(2) that

lim
q→∞

log E(Zq)

q log q
= log2 ess sup(W ) ≤ 1,

which coincides with (1.4) found for canonical cascades. The situation turns out to be
more involved than in the case of canonical cascades, due to the correlations associated
with (1.13), which are absent in (1.2). We use Dirichlet’s multiple integral formula to
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estimate from above the expectation of moments of positive integer orders of the total
mass, and then follow the same approach as [21] for canonical cascades.

Our main result is the following one. In the case where E(Zq) = ∞ for some q > 1
we have

Theorem 1.4 Suppose that there exists ζ ∈ Iν ∩ (1,∞) such that ϕ(ζ ) = 0; in
particular one has ϕ′(1) < 0. Also suppose that ϕ′(ζ ) < ∞.

(i) If either σ �= 0 or ν is not of the form
∑

n∈Z
pnδnh for some h > 0, then

lim
x→∞ xζP(Z > x) = d,

where

d = 2E(μ([0, 1])ζ−1μ([0, 1/2])− μ([0, 1/2])ζ )
ζϕ′(ζ ) log 2

∈ (0,∞).

(ii) If σ = 0 and ν is of the form
∑

n∈Z
pnδnh for some h > 0, then

0 < lim inf
x→∞ xζP(Z > x) ≤ lim sup

x→∞
xζP(Z > x) < ∞

Remark 1.3 The proof exploits (1.13) and the unexpected fact that in Goldie’s
approach [16] to the right tail behavior of solutions of random difference equa-
tions, it is possible to relax some independence assumptions. It also requires to prove
that at the critical moment of explosion ζ , although E(μ([0, 1])ζ ) = ∞, we have
E(μ([0, 1/2])μ([1/2, 1])ζ−1) < ∞, an inequality which is rather involved, while it
is direct in the case of canonical cascades.

Remark 1.4 From the proof (see Remark 6.1) we know that in case (i), when ζ = 2,

d = 1/ϕ′(2),

which provides us with a family of random difference equations whose solution has a
explicit tail probability constant. See [14] for related topics.

For reader’s convenience we also give the extension to log-infinitely divisible cas-
cades of the result on finiteness of moments of negative orders mentioned for limits
of canonical cascades, though with some effort it may be deduced from [6] and [35]
(the sufficiency result can also be found in the Ph.D. thesis [22]); this result provides
some information on the left tail behavior of the distribution of ‖μ‖. Finally, thanks
to (1.13) again, we can quickly give fine information on the geometry of the support
of μ.

Theorem 1.5 Suppose that ϕ′(1−) < 0. Then for any q ∈ (−∞, 0), E(Zq) < ∞ if
and only if q ∈ Iν .

For the Hausdorff and packing measures of the support of μ we have
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Theorem 1.6 Suppose that ϕ′(1) < 0 and ϕ′′(1) > 0. For b ∈ R and t > 0 let

ψb(t) = t−ϕ′(1)eb
√

log+(1/t) log+ log+ log+(1/t).

Denote by Hψb and Pψb the Hausdorff and packing measures with respect to the
gauge function ψb (see [15] for the definition). Then almost surely the measure μ is
supported by a Borel set K with

Hψb (K ) =
{∞, if b >

√
2ϕ′′(1),

0, if b <
√

2ϕ′′(1),

and

Pψb (K ) =
{∞, if b > −√

2ϕ′′(1),

0, if b < −√
2ϕ′′(1).

Remark 1.5 To complete the previous considerations, it is worth mentioning that the
notes [29,30] also questioned the existence, when the limit μ of the dyadic canonical
cascade is degenerate, of a natural normalization ofμ j by a positive sequence (A j ) j≥1
such that μ j/A j converges, in some sense, to a non trivial limit. This problem was
solved only very recently thanks to the progress made in the study of freezing transition
for logarithmically correlated random energy models [36] and in the study of branching
random walks in which a generalized version of (1.2) appears naturally [1,26]. Under
weak assumptions, whenϕ′(1−) = 0, μ j suitably normalized converges in probability
to a positive random measure μ̃ whose total mass Z still satisfies (1.2), but is not
integrable, while when ϕ′(1−) > 0, after normalization μ j converges in law to the
derivative of some stable Lévy subordinator composed with the indefinite integral of
an independent measure of μ̃ kind [7]. Previously, motivated by questions coming
from interacting particle systems, Durrett and Liggett had achieved in [13] a deep
study of the positive solutions of the Eq. (1.2) assuming that the equality holds in
distribution only. Under weak assumptions, up to a positive multiplicative constant,
the general solution take either the form of the total mass of a non-degenerate measure
μ or μ̃, or it takes the form of the increment between 0 and 1 of some stable Lévy
subordinator composed with the indefinite integral of an independent measure of μ
or μ̃ kind. Also, fine continuity properties of the critical measure μ̃ are analyzed in
[5]. Similar properties are conjectured to hold for log-infinitely divisible cascades, and
some of them have been established in the log-gaussian case [3,4,10,11].

1.5 Connection with Bacry and Muzy’s construction

For a fixed closed interval I of length T > 0, the measure μI has the same law
as the restriction to [0, T ] of the measure defined from the cone V T (·) used in [2],
which is drawn on the picture (Fig. 3); this can be “seen” by an elementary geometric
comparison between the two kinds of cones and the invariance properties of� (invari-
ance in law by horizontal translation and homothetic transformations with apex on the
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(B)(A)

Fig. 3 Two ways of defining the cones. a V |I |(t) by Bacry and Muzy. b V I (t) in this paper

(A) (B)

Fig. 4 Comparing scale invariance derivation. a I = [0, T ]. The light grey domain is V T (0)∩ V T (cT ). The
dark grey domain is the domain used to define (ωε,x )x∈[0,T ], 0 < ε ≤ 1; it is not homothetical to the domain
used to define (�(V T

ε (x)))x∈[0,T ]. Scale invariance is shown via Fourier transform. b I = [0, T ]. The light

grey domain is V I ([0, cT ]). The dark grey domain is the domain used to define (ωε,x )x∈[0,T ], 0 < ε ≤ 1;
in this case, it is homothetical to the domain used to define (�(V I

ε (x))x∈[0,T ], 0 < ε ≤ 1: scale invariance
appears geometrically

real axis), a completely rigorous approach consisting in mimicking the proof of [2,
Lemma 1] to get the joint distribution of the�measures of any finite family of cones
(V [0,T ]
ε (t1), . . . , V [0,T ]

ε (tq)) and find it coincides with the one obtained with the cones
(V T
ε (t1), . . . , V T

ε (tq)).
Relation (1.13) can be obtained from Bacry and Muzy construction by writing, for

any c ∈ (0, 1), the almost sure relation for 0 < ε ≤ 1

(�(V T
cεT (cx)))x∈[0,T ] = �(V T (0) ∩ V T (cT ))+ (ωε,x )x∈[0,1]; (1.15)

this defines the process (ωε,x )x∈[0,T ], obviously independent of�(V T (0)∩ V T (cT )),
and which can be shown to have the same distribution as (�(V T

εT (x))x∈[0,T ] via Fourier
transform, and implies (1.1) (see Fig. 4a).

We have the same equation as (1.15) with the cones considered in this paper, with
(V [0,T ]

cεT (·), V [0,T ]([0, cT ])) in place of (V T
cεT (·), V T (0) ∩ V T (cT )), and the fact that

by the geometry of the construction, (ωε,x )x∈[0,1] is trivially identically distributed
with (�(V [0,T ]

εT (x)))x∈[0,T ] (see Fig. 4b).
An additional observation is that using the cones of Fig. 3b yields a measure on R+,

by considering the vague limit of Q(V T
ε (t)) dt , whose indefinite integral increments
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are stationary. However, there is no long range dependence between the increments
of the indefinite integral of this measure, since two cones have no intersection when
associated to points away from each other by at least T . Notice that this measure can
also be viewed as the juxtaposition of the limits of (Q(V T

ε (t)) dt)|[nT,(n+1)T ], n ∈ N.
Similarly, consider the measure μ over R+ obtained by juxtaposing the limits of
(Q(V [nT,(n+1)T ]

ε (t)) dt)|[nT,(n+1)T ]. Then, only the process μ([nT, (n + 1)T ])n∈N is
stationary, but it has long range dependence: in case of non-degeneracy, if we assume
that ψ(−i2) < ∞, a calculation shows that

cov(μ([0, T ]), μ([nT, (n + 1)T ]) ∼n→∞
2ψ(−i2)T 2

3n
,

so the series
∑

n≥0 cov(μ([0, T ]), μ([nT, (n + 1)T ]) diverges.

2 Preliminaries

Let � = {0, 1}N+ be the dyadic symbolic space. For i = i1i2 · · · ∈ � and n ≥ 1
define i|n = i1 · · · in . Let ρ be the standard metric on �, that is

ρ(i, j) = 2− inf{n≥1:i|n �=j|n}, i, j ∈ �.

Then (�, ρ) forms a compact metric space. Denote by B its Borel σ -algebra.
For i = i1i2 · · · ∈ � define

π(i) =
∞∑

j=1

i j 2
− j .

Then π is a continuous map from � to [0, 1].
For n ≥ 1 let �n = {0, 1}n , and use the convention that �0 = {∅}.
For n ≥ 0 and i = i1 · · · in ∈ �n define

[i] = {i ∈ � : i|n = i} and Ii = π([i]),

with the convention that i|0 = ∅, [∅] = � and I∅ = [0, 1].
Denote by �∗ = ∪n≥0�n . For i ∈ �∗ define

Wi = Q(�(V I (Ii ))) and Zi = ‖μIi ‖.

Then from (1.13) we have for any n ≥ 1,

2n Z =
∑

i∈�n

Wi Zi , (2.1)

where {Wi , i ∈ �n} have the same law, {Zi , i ∈ �n} have the same law as Z and for
each i ∈ �n, Wi and Zi are independent.
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3 Proof of Theorem 1.1

3.1. First we prove (i) ⇔ (ii) and the L1 convergence. Clearly (i) implies (ii). We
suppose that E(Z) = c > 0. For any positive finite Borel measure m on I and t > 0
define

mt ( f ) = 1

|I |
∫

I

f (x) · Q(V I
1/t (x))m(dx), f ∈ C0(I ).

Following the same argument as in Lemma 1.2, mt is a measure-valued right-
continuous martingale, thus the Kahane operator E Q:

E Q(m) = E

(
lim

t→∞ mt

)

is well-defined. Denote by � the Lebesgue measure restricted to [0, 1]. Then we have
E Q(�) = c� since E(limt→∞ �t (J )) = c�(J ) for any compact subinterval J ⊂ I .
From [20] we know that E Q is a projection, so E Q(E Q(�)) = E Q(�). This gives
c = c2, hence c = 1. Consequently, since the limit of the positive martingale ‖μI

1/t‖
with expectation 1 has expectation 1 as well, the convergence also holds in L1 norm.

The rest of the proof adapts to our context, thanks to (1.13), the approach used by
Kahane in [21] for canonical cascades.

3.2. Now we prove that (ii) implies (iii). From (2.1) we have that

2Z = W0 Z0 + W1 Z1. (3.1)

Assume that E(Z) > 0. For 0 < q < 1 the function x �→ xq is sub-additive, hence
(3.1) yields

2q
E(Zq) ≤ E(W q

0 Zq
0 )+ E(W q

1 Zq
1 ) = 2E(W q

0 )E(Z
q). (3.2)

Since E(Z) > 0 implies E(Zq) > 0, we get from (3.2), (1.10) and Lemma 1.1 that

2q ≤ 2E(W q
0 ) = 2eψ(−iq) log 2 = 2ψ(−iq)+1.

This implies ϕ ≤ 0 on interval [0, 1], and it follows that ϕ′(1−) ≤ 0. To prove
ϕ′(1−) < 0 we need the following lemma.

Lemma 3.1 Let Xi = Wi Zi for i = 0, 1. There exists ε > 0 such that

E(Xq
0 1{X0≤X1}) ≥ εE(Xq

0 ) for 0 ≤ q ≤ 1.

Proof If E(Xq
0 1{X0≤X0}) is strictly positive for all q ∈ [0, 1], then it is easy to get the

conclusion, since both expectations, as functions of q, are continuous on [0, 1].
Suppose that there exists q ∈ (0, 1] such that E(Xq

0 1{X0≤X1}) = 0, then almost
surely either X0 > X1 or 0 = X0 ≤ X1. Due to the symmetry of X0 and X1 this
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actually implies that almost surely either X0 = X1 = 0, or X0 = 0, X1 > 0, or
X1 = 0, X0 > 0. This yields

2q
E(Zq) = E(Xq

0 )+ E(Xq
1 ) = 2E(W q

0 )E(Z
q) for 0 ≤ q ≤ 1.

So we have ψ(−iq) = q − 1 for q ∈ [0, 1]. Then from ∂2

∂q2ψ(−iq) = 0 we get that

σ 2 = 0 and ν ≡ 0, which is a contradiction to our assumption. ��
Now as shown in [21], by applying the inequality (x+y)q ≤ xq+qyq for x ≥ y > 0

and 0 < q < 1 we get from (3.1) and Lemma 3.1 that

2q
E(Zq) ≤ 2E(W q

0 )E(Z
q)− (1 − q)εE(W q

0 )E(Z
q).

This implies

ϕ(q)+ log

(

1 − (1 − q)ε

2

)

≥ 0 on [0, 1].

Then it follows that ϕ′(1−)− (ε/2 log 2) ≤ 0, thus ϕ′(1−) < 0.

3.3. Finally we prove that (iii) implies (ii). Assume that ϕ′(1−) < 0. For i ∈ �∗ and
n ≥ 1 define

Yn,i = μI
2−n (Ii ).

Also denote by Yn = μI
2−n (I ). Then for any m ≥ 1 and n ≥ m + 1 we have

Yn =
∑

i∈�m

Yn,i . (3.3)

We need the following lemma from [21].

Lemma 3.2 There exists a constant q0 ∈ (0, 1) such that for any q ∈ (q0, 1) and any
finite sequence x1, . . . , xk > 0,

⎛

⎝
∑

i=1,...,k

xi

⎞

⎠

q

≥
∑

i=1,...,k

xq
i − (1 − q)

∑

i �= j

(xi x j )
q/2.

Applying Lemma 3.2 to (3.3) we get for any q ∈ (q0, 1),

Y q
n ≥

∑

i∈�m

Y q
n,i − (1 − q)

∑

i �= j∈�m

Y q/2
n,i Y q/2

n, j .

Taking expectation from both sides we get

E(Y q
n ) ≥

∑

i∈�m

E(Y q
i,n)− (1 − q)

∑

i �= j∈�m

E

(
Y q/2

n,i Y q/2
n, j

)
. (3.4)
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Let

J1 =
{
(i, j) ∈ �2

m : dist(Ii , I j ) = 0
}

J2 =
{
(i, j) ∈ �2

m : dist(Ii , I j ) ≥ 2−m
}
.

It is easy to check that #J1 = 2(2m − 1) and #J2 = (2m − 1)(2m − 2). Then by using
Hölder’s inequality we get

∑

i �= j∈�m

E

(
Y q/2

n,i Y q/2
n, j

)
=

∑

(i, j)∈J1

E

(
Y q/2

n,i Y q/2
n, j

)
+

∑

(i, j)∈J2

E

(
Y q/2

n,i Y q/2
n, j

)

≤ 2(2m − 1)E
(

Y q
n,0̄

)
+

∑

(i, j)∈J2

E

(
Y q/2

n,i Y q/2
n, j

)
, (3.5)

where we denote by 0̄ = 0 · · · 0 ∈ �m . We need the following lemma:

Lemma 3.3 There exists a constant C such that for any (i, j) ∈ J2 and q ∈ (0, 1),

E

(
Y q/2

n,i Y q/2
n, j

)
≤ C · 2(1+ϕ(q))m · E

(
μ

I0̄
2−n (I0̄)

q/2
)2
.

This gives

∑

(i, j)∈J2

E

(
Y q/2

n,i Y q/2
n, j

)
≤ (2m − 1)(2m − 2) · C · 2(1+ϕ(q))m · E

(
μ

I0̄
2−n (I0̄)

q/2
)2
.

First notice that μ
I0̄
2−n (I0̄) has the same law as Yn−m . Then combing (3.4) and (3.5),

and using the fact that E(Y q
n ) ≤ E(Y q

n−m) ≤ 1 we get

E(Y q
n )

1 − e−ϕ(q)m log 2

1 − q
≤ 2 + C(2m − 1)E(Y q/2

n−m)
2.

By letting q → 1− we obtain

−ϕ′(1−)m log 2 ≤ 2 + C(2m − 1)E(Y 1/2
n−m)

2.

Choosing m large enough so that ϕ′(1−)m log 2 + 2 < 0, we get infn≥1 E(Y 1/2
n ) > 0.

Consequently E(Z1/2) > 0, thus E(Z) > 0. ��

3.1 Proof of Lemma 3.3

The proof can be deduced from [2, Lemma 3, p. 495–496]. For reader’s convenience
we present one here. Write

V I
2−n (t) = V I

2−m (t) ∪ V m
n (t),
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where V m
n (t) = V I

2−n (t)\V I
2−m (t). Define the random measure

μm
n (t) = 1

|I | · Q(V m
n (t)) dt, t ∈ I.

Then for i ∈ �m we have

μI
2−n (Ii ) ≤

(

sup
t∈Ii

e
�
(

V I
2−m (t)

))

μm
n (Ii ).

Notice that for (i, j) ∈ J2, μ
m
n (Ii ) and μm

n (I j ) are independent, and they are inde-

pendent of supt∈Ii
e�(V

I
2−m (t)) and supt∈I j

e�(V
I

2−m (t)). Thus

E

(
Y q/2

n,i Y q/2
n, j

)
≤ E

⎛

⎝
∏

l=i, j

sup
t∈Il

e
q�

(
V I

2−m (t)
)
/2 · μm

n (Il)
q/2

⎞

⎠

=
∏

l=i, j

E

(
μm

n (Il)
q/2
)

· E

⎛

⎝
∏

l=i, j

sup
t∈Il

eq�(V I
2−m (t))/2

⎞

⎠

≤
∏

l=i, j

E

(
μm

n (Il)
q/2
)

·
∏

l=i, j

E

⎛

⎝
∏

l=i, j

sup
t∈Il

e
q�

(
V I

2−m (t)
)
⎞

⎠

1/2

, (3.6)

where the last inequality comes from Hölder’s inequality.
Take J ∈ {Ii , I j } with J = [t0, t1]. For t ∈ J we can divide V I

2−m (t) into three
disjoint parts:

V I
2−m (t) = V I (J ) ∪ V J,l(t) ∪ V J,r (t), (3.7)

where

V J,l(t) = {z = x + iy ∈ V (t) : 2−m ≤ y < 2(t1 − x)},
V J,r (t) = {z = x + iy ∈ V (t) : 2−m ≤ y ≤ 2(x − t0)}.

We need the following lemma.

Lemma 3.4 Let s ∈ {l, r}. For q ∈ Iν there exists constant Cq < ∞ such that

E

(

sup
t∈J

eq�(V J,s (t))
)

≤ Cq;

For q ∈ R there exists constant cq > 0 such that

E

(

inf
t∈J

eq�(V J,s (t))
)

≥ cq .
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By using Lemma 3.4 we get from (3.7) that for q ∈ Iν ∩ (0,∞),

E

(

sup
t∈J

eq�(V I
2−m (t))

)

≤ C2
q · E(eq�(V I (J ))) = C2

q · 2mψ(−iq). (3.8)

Also notice that for t ∈ J we have

V m
n (t) ∪ V J,l(t) ∪ V J,r (t) = V I

2−n (t).

So for any q ′ ∈ R we have

μJ
2−n (J )q

′ ≥ μm
n (J )

q ′ ·
(

inf
t∈J

eq ′�(V J,l (t))
)(

inf
t∈J

eq ′�(V J,r (t))
)

.

Applying Lemma 3.4 we get that

E

(
μm

n (J )
q/2
)

≤ c−2
q · 2−mq/2 · E

(
μJ

2−n (J )q/2
)
. (3.9)

Together with (3.6) and (3.8) this implies

E

(
Y q/2

n,i Y q/2
n, j

)
≤ C2

q c−2
q · 2m(1+ϕ(q)) ·

∏

l=i, j

E

(
μ

Il
2−n (Il)

q/2
)
.

From the prove of Lemma 3.4 one can chose Cqc−1
q as a increasing function of q, and

since 1 ∈ Iν , we get the conclusion by taking C = C2
1 c−2

1 . ��

3.1.1 Proof of Lemma 3.4

First let q ∈ Iν . We have

E(�(V J,r (t))) = aλ(V J,r (t)).

From the fact that λ(V J,r (t)) = (t − t0)/|J | we get

eq�(V J,r (t)) ≤ e|aq| · eq Mt ,

where Mt = �(V J,r (t))− a(t − t1)/|J | is a martingale. As x �→ exq/2 is convex we
have that eq Mt/2 is a positive submartingale. Due to Doob’s L2-inequality we get

E

(

sup
t∈J

eq Mt

)

≤ 4 sup
t∈J

E(eq Mt ) ≤ 4e|aq|+|ψ(−iq)|.

This implies
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E

(

sup
t∈J

eq�(V J,r (t))
)

≤ Cq ,

where the constant Cq only depends on q.
Now let q ∈ R. Notice that

[0, 1] � t �→ �(V J,r (t0 + (t1 − t0)t))

is a Lévy process restricted on [0, 1], thus for Xq = inf t∈J eq�(V J,r (t)) we must have

P{Xq > εq} > 0

for some 1 > εq > 0, otherwise this would contradict the fact that almost surely the
sample path of a Lévy process is càdlàg. Then

E

(

inf
t∈J

eq�(V J,r (t))
)

≥ P{Xq > εq} · εq > 0.

The argument for V J,l(t) is the same. ��

4 Proof of Theorem 1.2

We only need to prove that for q > 1, 0 < E(Zq) < ∞ implies that q ∈ Iν and
ϕ(q) < 0, the rest of the result comes from [2, Lemma 3].

Because the function xq is super-additive, one has

2q Zq ≥ W q
0 Zq

0 + W q
1 Zq

1 ,

and the strict inequality holds if and only if W0 Z0 = W1 Z1. So if W0 Z0 �= W1 Z1
with positive probability, then

2q
E(Zq) > 2E(W q

0 )E(Z
q),

that is E(W q
0 ) < 2q−1, which implies that q ∈ Iν and ϕ(q) < 0. Otherwise W0 Z0 =

W1 Z1 almost surely, thus ϕ(q) = q − 1 for all q ∈ Iν . This yields that σ 2 = 0 and
ν ≡ 0, which is in contradiction to our assumption.

123



On exact scaling log-infinitely divisible cascades 543

5 Proof of Theorem 1.3

5.1 Proof of (1)

According to Theorem 1.2, (α) implies that Iν ⊃ [0,∞) and ϕ(q) < 0 for all q > 1.
Recall that ϕ(q) = ψ(−iq)− q + 1 and

ψ(−iq) = aq + 1

2
σ 2q2 +

∫

R

(eqx − 1 − qx1|x |≤1)ν(dx).

Suppose that ν([ε,∞)) > 0 for some ε > 0, then one can find constant c1, c2 > 0
such that

ψ(−iq) ≥ c1eqε − c2q

as q → ∞, which is in contradiction to ϕ(q) < 0 for all q > 1. It is also easy to
see that ϕ(q) < 0 for all q > 1 implies σ = 0. Thus using the expression of the
normalizing constant a (see (1.8)) we may write

ϕ(q) = 1 − q +
0∫

−∞
(eqx − 1 + q(1 − ex )) ν(dx). (5.1)

It is easy to check that the integral term in (5.1) is non-negative, and goes to ∞ faster
than any multiple of q if

∫ 0
−∞ 1 ∧ |x | ν(dx) = ∞, in which case we cannot have

ϕ(q) < 0 for all q > 1. If
∫ 0
−∞ 1 ∧ |x | ν(dx) < ∞, then

ϕ(q) = (γ − 1)q + 1 −
0∫

−∞
(1 − eqx ) ν(dx), (5.2)

where

γ =
0∫

−∞
(1 − ex ) ν(dx).

Clearly ϕ(q) < 0 for all q > 1 implies that γ − 1 ≤ 0.
Conversely, if (β) holds, then Iν ⊃ [0,∞), since ν is carried by (−∞, 0] thus∫

|x |>1 eqxν(dx) < ∞ for any q > 0. We may write ϕ(q) as in (5.2). If γ < 1, then
limq→∞ ϕ(q) = −∞ since ϕ(q) ∼ (γ − 1)q at ∞. If γ = 1, then

0∫

−∞
(1 − eqx ) ν(dx) >

0∫

−∞
(1 − ex ) ν(dx) = γ = 1
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for any q > 1. Due to the convexity of ϕ, it follows that in both cases ϕ′(1) < 0 and
ϕ(q) < 0 for all q > 1, hence we get (α) from Theorems 1.1 and 1.2.

5.2 Proof of (2)

The proof is inspired by the approach used by Kahane [21] for canonical cascades.
However, here again the correlations between Z0 and Z1 creates complications. For
the sharp upper bound of lim supn→∞

log E(Zn)
n log n , we use a new approach consisting

in writing an explicit formula for the moments of positive integer orders of Z and
then estimate them from above by using Dirichlet’s multiple integral formula. For
the lower bound of lim infn→∞ log E(Zn)

n log n , we first show that under (β) the inequality

E(μ(I0)
kμ(I1)

l) ≥ E(μ(I0)
k)E(μ(I1)

l) holds for any non negative integers k and l,
and then follow [21].

From (β) we have that for q ≥ 0,

ψ(−iq) = γ · q −
0∫

−∞
(1 − eqx ) ν(dx).

We have almost surely

μ(I )n = lim
ε→0

με(I )
n

= lim
ε→0

⎛

⎝
∫

t∈I

e�(V
I
ε (t))dt

⎞

⎠

n

.

Thus we get from the martingale convergence theorem, Fubini’s theorem and domi-
nated convergence theorem that

E(μ(I )n) =
∫

t1,...,tn∈I

lim
ε→∞ E

⎛

⎝
n∏

j=1

e�(V
I
ε (t j ))

⎞

⎠ dt1 · · · dtn .

For integers k ≤ j define

α( j, k) = ψ(−i( j − k + 1))+ ψ(−i(( j − 1)− (k + 1)+ 1))

−ψ(−i(( j − 1)− k + 1))− ψ(−i( j − (k + 1)+ 1))

=
0∫

−∞
e( j−k−1)x (1 − ex )2 ν(dx).

Fix 0 < t1 < · · · < tn < 1. Then for ε small enough one gets from [2, Lemma 1] that
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log E

⎛

⎝
n∏

j=1

e�(V
I
ε (t j ))

⎞

⎠ =
n−1∑

k=1

n∑

j=k+1

α( j, k) · log
1

t j − tk
.

This gives

E(μ(I )n) = n!In,

where

In =
∫

0<t1<···<tn<1

n−1∏

k=1

n∏

j=k+1

(t j − tk)
−α( j,k)dt1 · · · dtn .

Let us use the change of variables x1 = t1 and xk = tk − tk−1 for k = 2, . . . , n. Then
In becomes

In =
∫

x1+···+xn≤1

n−1∏

k=1

n∏

j=k+1

⎛

⎝
j∑

l=k+1

xl

⎞

⎠

−α( j,k)

dx1 · · · dxn .

For every integer l define

γl =
0∫

−∞
elx (1 − ex )2 ν(dx)

so that

α( j, k) = γ j−k−1.

Then we have

n−1∏

k=1

n∏

j=k+1

⎛

⎝
j∑

l=k+1

xl

⎞

⎠

−α( j,k)

=
n−1∏

l=1

⎛

⎝
n−l∏

k=1

⎛

⎝
k+l∑

j=k+1

x j

⎞

⎠

⎞

⎠

−γl−1

.

Since x j ∈ (0, 1), it is easy to deduce that for l = 1, . . . , n − 1,

n−l∏

k=1

⎛

⎝
k+l∑

j=k+1

x j

⎞

⎠ ≥
n∏

j=2

x j .
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This implies

In ≤
∫

x1+···+xn≤1

⎛

⎝
n∏

j=2

x j

⎞

⎠

−∑n−1
l=1 γl−1

dx1 · · · dxn .

Notice that

n−1∑

l=1

γl−1 =
0∫

−∞
(1 − e(n−1)x )(1 − ex ) ν(dx) := γ ′

n−1.

Then we get from Dirichlet’s multiple integral formula that

∫

x1+···+xn≤1

⎛

⎝
n∏

j=2

x j

⎞

⎠

−γ ′
n−1

dx1 · · · dxn

=
∫

x2+···+xn≤1

⎛

⎝1 −
n∑

j=2

x j

⎞

⎠ ·
⎛

⎝
n∏

j=2

x j

⎞

⎠

−γ ′
n−1

dx2 · · · dxn

= �(1 − γ ′
n−1)

n−1�(2)

�((n − 1)(1 − γ ′
n−1)+ 2)

.

Since γ ′
n → γ as n → ∞, by applying Stirling’s formula we finally get

lim sup
n→∞

log E(Zn)

n log n
≤ 1 − (1 − γ ) = γ.

On the other hand, we have

μ(I )n = (μ(I0)+ μ(I1))
n =

n∑

m=0

n!
m!(n − m)!μ(I0)

mμ(I1)
n−m . (5.3)

For 1 ≤ m ≤ n − 1 we have

E(μ(I0)
mμ(I1)

n−m) = m!(n − m)!
∫

0<t1<···<tm<1/2<tm+1<···<tn<1

n−1∏

k=1

n∏

j=k+1

(t j − tk)
−α( j,k) dt1 · · · dtn .
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Also

n−1∏

k=1

n∏

j=k+1

(t j − tk)
−α( j,k) =

m−1∏

k=1

m∏

j=k+1

m∏

k=1

n∏

j=m+1

n−1∏

k=m+1

n∏

j=k+1

(t j − tk)
−α( j,k)

≥
m−1∏

k=1

m∏

j=k+1

n−1∏

k=m+1

n∏

j=k+1

(t j − tk)
−α( j,k),

where the inequality uses the fact that t j − tk ≤ 1 and α( j, k) ≥ 0. This implies that

E(μ(I0)
mμ(I1)

n−m) ≥ E(μ(I0)
m)E(μ(I1)

n−m).

Notice that

E(μ(I0)
m) = 2−m

E(W m
0 )E(Z

m) = 2−m2ψ(−im)
E(Zm).

Since

ψ(−im) = γm −
0∫

−∞
(1 − emx ) ν(dx),

for any ε > 0 there exists c > 0 such that for all m ≥ 0 we have

ψ(−im) ≥ (γ − ε)m + log(c),

and using (5.3)

E(Zn) ≥ c22(γ−ε)n
n∑

m=0

n!
m!(n − m)!2−n

E(Zm)E(Zn−m)

≥ c22(γ−ε)n
E(Zn/2)2.

Hence

log E(Z2n) ≥ 2 log(c)+ (γ − ε)2n log 2 + 2 log E(Zn).

Consequently,

log E(Z2n
)

2n
≥ 2 log(c)

2n
+ (γ − ε) log 2 + log E(Z2n−1

)

2n−1

≥ n(γ − ε) log 2 + 2(1 − 2−n) log(c).
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This easily yields

lim inf
n→∞

log E(Zn)

n log n
≥ γ − ε,

for any ε > 0.

6 Proof of Theorem 1.4

6.1 Reduction to a key proposition

In the case of limits of canonical cascades, Guivarc’h [17] exploited (1.2) to connect
our problem to a random difference equation one; then Liu [23] extended this idea for
the case of supercritical Galton–Watson trees, and for this he used explicitly Peyrière
measure. This is our starting point, the difference being that now we must exploit the
more delicate equation (1.13).

Recall that π(i) = ∑∞
j=1 i j 2− j is a continuous map from� to [0, 1]. We shall use

the same notation μ for the pull-back measure μ ◦π−1 on �. Let�′ = �×� be the
product space, let F ′ = F × B be the product σ -algebra, and let Q be the Peyrière
measure on (�′,F ′), defined as

Q(E) = E

⎛

⎝
∫

�

1E (ω, i) μ(di)

⎞

⎠ , E ∈ F ′.

Then (�′,F ′,Q) forms a probability space.
For ω ∈ � and i ∈ � let

A(ω, i) =
∑

i∈{0,1}
2−1Wi (ω) · 1{i|1=i},

B(ω, i) =
∑

i∈{0,1}
2−1Wi (ω)Zi (ω) · 1{i|1=1−i},

R(ω, i) =
∑

i∈{0,1}
Zi (ω) · 1{i|1=i},

R̃(ω, i) = Z(ω).

We may consider A, B, R and R̃ as random variables on (�′,F ′,Q), and we have
the following equation

R̃ = AR + B.
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First we claim that R and R̃ have the same law. This is due to the fact that for any
non-negative Borel function f we have

EQ( f (R)) = E

⎛

⎝2−1
∑

i∈{0,1}
f (Zi ) · Wi · Zi

⎞

⎠

= E( f (Z)Z)

= EQ( f (R̃)).

Then we claim that A and R are independent, since for any non-negative Borel func-
tions f and g we have

EQ( f (A)g(R)) = E

⎛

⎝2−1
∑

i∈{0,1}n

f (Wi )g(Zi ) · Wi · Zi

⎞

⎠

= E( f (W0)W0)E(g(Z0)Z0)

= EQ( f (A))EQ(g(R)).

We first deal with case (i). The following result comes from the implicit renewal
theory of random difference equations given by Goldie [16] (Lemma 2.2, Theorem
2.3 and Lemma 9.4).

Theorem 6.1 Suppose there exists κ > 0 such that

EQ(A
κ) = 1, EQ(A

κ log+ A) < ∞, (6.1)

and suppose that the conditional law of log A, given A �= 0, is non-arithmetic. For

R̃ = AR + B,

where R̃ and R have the same law, and A and R are independent, we have that if

EQ

(
(AR + B)κ − (AR)κ

)
< ∞,

then

lim
t→∞ tκQ(R > t) = EQ ((AR + B)κ − (AR)κ)

κEQ(Aκ log A)
∈ (0,∞).

It is worth mentioning that the independence between B and R is not necessary,
while in dealing with classical random difference equations it holds systematically and
simplifies the verification of crucial assumptions. In our study, it is crucial that B and R
do not need to be independent because the situation for log-infinitely divisible cascades
presents much more correlations to control than the case of canonical cascades on
homogeneous or Galton–Watson trees.
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For q ∈ Iν we have

EQ(A
q−1) = 21−q

E(W q
0 ) = 2ϕ(q).

Take κ = ζ − 1 then we get EQ(Aκ) = 1. From ϕ′(ζ ) < ∞ it is easy to deduce
that EQ(Aκ log+ A) < ∞. In case (i) we have either σ �= 0 or ν is not of the form∑

n∈Z
pnδnh for some h > 0 and pn ≥ 0, thus the conditional law of log A, given

A �= 0, is non-arithmetic. So in order to apply Theorem 6.1, it is only left to verify
that EQ ((AR + B)κ − (AR)κ) < ∞. To do so, we need the following proposition
(in the framework of canonical cascades such a fact is simple to establish due to the
independences associated with the branching property (see [23, Lemma 4.1])).

Proposition 6.1 E(μ(I0)μ(I1)
κ) < ∞.

We have

EQ((AR + B)κ − (AR)κ) = 2E((μ(I )κ − μ(I0)
κ) · μ(I0)).

By using the following inequality

(x + y)κ − xκ ≤
{

yκ , 0 < κ ≤ 1,
κ2κ−1 y(xκ−1 + yκ−1), 1 < κ < ∞.

x, y > 0,

it is easy to find a constant Cκ such that

EQ((AR + B)κ − (AR)κ) ≤ CκE(μ(I0)μ(I1)
κ).

Then from Proposition 6.1 we get EQ ((AR + B)κ − (AR)κ) < ∞.
We have verified all the assumptions in Theorem 6.1, thus

lim
t→∞ tκQ(R > t) = EQ ((AR + B)κ − (AR)κ)

κEQ(Aκ log A)
= d ′ ∈ (0,∞).

Notice that Q(R > t) = ∫∞
t x P(Z ∈ dx). From [23, Lemma 4.3] we get

lim
t→∞ tζP(Z > t) = d ′(ζ − 1)

ζ
.

It is easy to verify that

d ′ = 2E
(
μ(I )ζ−1μ(I0)− μ(I0)

ζ
)

(ζ − 1)ϕ′(ζ ) log 2
,

and this gives the conclusion.
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For case (ii), we may apply the key renewal theorem in the arithmetic case instead
of the non-arithmetic case used in Goldie’s proof of Theorem 2.3, Case 1 ([16,
page 145, line 21]) to get that for x ∈ R,

ř(x + nh) → d(x), n → ∞,

where 0 < d(x) < ∞, r(t) = eκt
Q(R > et ) and

ř(x) =
x∫

−∞
e−(x−t)r(t) dt.

We have for x + h > y,

ř(x + h)− ř(y) =
ex+h∫

0

e−(x+h)uκ · Q(R > u) du −
ey∫

0

e−yuκ · Q(R > u) du

= e−(x+h) − e−y

e−y
ř(y)+ e−(x+h)

ex+h∫

ey

uκ · Q(R > u) du,

thus

ř(x + h)− ey−x−hř(y) = e−(x+h)

ex+h∫

ey

uκ · Q(R > u) du.

On one hand we have

e−(x+h)

ex+h∫

ey

uκ · Q(R > u) du ≤ e−(x+h) · e(x+h)κ · Q(R > ey) · (ex+h − ey)

= (1 − ey−x−h) · e(x+h)κ · Q(R > ey).

This gives

lim inf
n→∞ e(y+nh)κ · Q(R>ey+nh)≥e−(x+h−y)κ (1 − ey−x−h)−1[d(x)−ey−x−hd(y)].

On the other hand we have

e−(x+h)

ex+h∫

ey

uκ · Q(R > u) du ≥ e−(x+h) · eyκ · Q(R > ex+h) · (ex+h − ey)

= (1 − ey−x−h) · eyκ · Q(R > ex+h).
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This gives

lim sup
n→∞

e(x+nh)κ · Q(R > ex+nh) ≤ e(x+h−y)κ (1 − ey−x−h)−1[d(x)− ey−x−hd(y)].

From these two estimation we can get the conclusion by using the same arguments as
in Lemma 4.3(ii) and Theorem 2.2 in [23]. ��

6.2 Proof of Proposition 6.1

We have almost surely

μ(I0)μ(I1)
κ = lim

ε→0
με(I0)με(I1)

κ

= lim
ε→0

⎛

⎜
⎝

∫

t∈I0

e�(V
I
ε (t)) dt

⎞

⎟
⎠ ·

⎛

⎜
⎝

∫

t∈I1

e�(V
I
ε (t)) dt

⎞

⎟
⎠

κ

.

Let n ≥ 1 be an integer such that n − 1 < κ ≤ n, so q = κ − n + 1 ∈ (0, 1]. Thus

⎛

⎜
⎝

∫

t∈I1

e�(V
I
ε (t)) dt

⎞

⎟
⎠

κ

=
⎛

⎜
⎝

∫

t∈I1

e�(V
I
ε (t)) dt

⎞

⎟
⎠

n−1 ⎛

⎜
⎝

∫

t∈I1

e�(V
I
ε (t)) dt

⎞

⎟
⎠

q

Then we get from Fatou’s lemma and Fubini’s theorem that

E(μ(I0)μ(I1)
κ) ≤ lim inf

ε→∞
∫

t0∈I0,t1,...,tn−1∈I1

E

⎛

⎜
⎝

n−1∏

k=0

e�(V
I
ε (tk )) ·

⎡

⎢
⎣

1∫

1/2

e�(V
I
ε (tn)) dtn

⎤

⎥
⎦

q⎞

⎟
⎠ dt0 · · · dtn−1. (6.2)

Denote by s0 = 1/2, sn = 1 and s1 < · · · < sn−1 the permutation of t1, . . . , tn−1.
Then from the sub-additivity of x �→ xq we get

⎡

⎢
⎣

1∫

1/2

e�(V
I
ε (tn)) dtn

⎤

⎥
⎦

q

≤
n−1∑

j=0

⎡

⎢
⎣

s j+1∫

s j

e�(V
I
ε (tn)) dtn

⎤

⎥
⎦

q

.

Given 0 ≤ j ≤ n−1, define the process Yt = eq�(V I
ε (s j+1−t)∩V I

ε (t0)), t ∈ [0, s j+1−s j ]
and its natural filtration Ft = σ(�(V I

ε (s j+1 − t) ∩ V I
ε (t0)) : 0 ≤ s ≤ t) (see Fig. 5).

For η ∈ {0, 1} define Dη = eη�(V
I
ε (tn)\V I

ε (t0))
∏n−1

k=0 e�(V
I
ε (tk)). Under the probabil-

ity dPη = Dη
E(Dη)

dP we have the following two facts: (1) t �→ EPη
(Yt ) is continuous;

(2) Yt is a positive submartingale with respect to Ft . The continuity and positivity are
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Fig. 5 The gray area for V I
ε

(s j+1 − t) ∩ V I
ε (t0)

obvious, and we leave the reader to check the following fact: for 0 < s < s +ε < s j+1
if we write�s,ε = (V I

ε (s j+1 − t − ε)\V I
ε (s j+1 − t))∩ V I

ε (t0) and let m be the power
to which e�(�s,ε ) appears in Dη, then we have

EPη
(Ys+ε |Fs) = e(ψ(−i(q+m))−ψ(−im))λ(�s,ε ) · EPη

(Ys |Fs)

≥ EPη
(Ys |Fs),

where the inequality comes from the fact that ψ(−i p) is an increasing function of
p on the right of 1 since it is convex and d

dpψ(−i p)|p=1 > 0. Thus (see [33,
Th. 2.5, Prop. 2.6 and Th. 2.9], e.g.) the submartingale (under Pη) (Yt )0≤t≤s j+1−s j

has a right-continuous version (with respect to the filtration made of the completions
σ -algebras Ft+ , 0 ≤ t < s j+1 − s j ) that we use to continue the study.

Now, for each j = 0, . . . , n − 1 we have

⎡

⎢
⎣

s j+1∫

s j

e�(V
I
ε (tn)) dtn

⎤

⎥
⎦

q

≤ sup
s j<t<s j+1

eq�(V I
ε (t)∩V I

ε (t0)) ·
⎡

⎢
⎣

s j+1∫

s j

e�(V
I
ε (tn)\V I

ε (t0)) dtn

⎤

⎥
⎦

q

≤ sup
s j<t<s j+1

eq�(V I
ε (t)∩V I

ε (t0)) ·
⎡

⎢
⎣1 +

s j+1∫

s j

e�(V
I
ε (tn)\V I

ε (t0)) dtn

⎤

⎥
⎦ ,

where we have used the elementary inequality xq ≤ 1 + x for x > 0 and q ∈ (0, 1].
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Then Doob’s inequality applied with Lγ (γ > 1) yields c = c(γ ) such that

E

⎛

⎝eη�(V
I
ε (tn)\V I

ε (t0))

⎛

⎝
n−1∏

k=0

e�(V
I
ε (tk ))

⎞

⎠ sup
s j<t<s j+1

eq�(V I
ε (t)∩V I

ε (t0))

⎞

⎠

≤ cE(Dη)
1−1/γ

⎡

⎣E

⎛

⎝eη�(V
I
ε (tn)\V I

ε (t0))

⎛

⎝
n−1∏

k=0

e�(V
I
ε (tk ))

⎞

⎠ eqγ�(V I
ε (s j )∩V I

ε (t0))

⎞

⎠

⎤

⎦

1/γ

.

Thus

E

⎛

⎜
⎝

n−1∏

k=0

e�(V
I
ε (tk )) ·

⎡

⎢
⎣

s j+1∫

s j

e�(V
I
ε (tn)) dtn

⎤

⎥
⎦

q⎞

⎟
⎠

≤ cE(D0)
1−1/γ

[

E

(
n−1∏

k=0

e�(V
I
ε (tk)) · eqγ�(V I

ε (s j )∩V I
ε (t0))

)]1/γ

+ cE(D1)
1−1/γ ·

s j+1∫

s j

[

E

(

e�(V
I
ε (tn)\V I

ε (t0))

(
n−1∏

k=0

e�(V
I
ε (tk))

)

eqγ�(V I
ε (s j )∩V I

ε (t0))

)]1/γ

dtn .

For η, η′ ∈ {0, 1} and tn ∈ [s j , s j+1) define

�̃η,η′(tn) =
{

qγ η′�(V I
ε (s j ) ∩ V I

ε (t0))+ η�(V I
ε (tn)\V I

ε (t0)) if q < 1,

�(V I
ε (tn)) if q = 1.

Then define

Dη,η′(t0, . . . , tn) = E

⎛

⎝
n−1∏

j=0

e�(V
I
ε (t j )) · e�̃η,η′ (tn)

⎞

⎠ .

It is easy to see that E(D0) = D0,0(t0, . . . , tn), E(D1) = D1,0(t0, . . . , tn),

E

(
n−1∏

k=0

e�(V
I
ε (tk )) · eqγ�(V I

ε (s j )∩V I
ε (t0))

)

= D0,1(t0, . . . , tn)

and

E

(

e�(V
I
ε (tn)\V I

ε (t0))

(
n−1∏

k=0

e�(V
I
ε (tk ))

)

eqγ�(V I
ε (s j )∩V I

ε (t0))

)

= D1,1(t0, . . . , tn).
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Also set γq = γ if q < 1 and γq = 1 if q = 1. We finally get

E

⎛

⎜
⎝

n−1∏

j=0

e�(V
I
ε (t j )) ·

⎡

⎢
⎣

1∫

1/2

e�(V
I
ε (tn)) dtn

⎤

⎥
⎦

q⎞

⎟
⎠

≤ 2c ·
∑

η∈{0,1}
E(Dη,0)(t0, . . . , tn)

1−1/γq

1∫

1/2

Dη,1(t0, . . . , tn)
1/γq dtn

≤ 4c ·
1∫

1/2

max
η,η′∈{0,1}

Dη,η′(t0, . . . , tn) dtn .

Now fix t0, . . . , tn and redefine s0 = t0, s1 = 1/2 and s2 < · · · < sn+1 the
permutation of t1, . . . , tn . Let j∗ be such that s j∗ = tn . Define

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p0 = 1;
p1 = 0;
p j = 1, for j �= j∗;
p j∗ = η, in case of q < 1;
p j∗ = 1, in case of q = 1.

For k = 0, . . . , n and j = k, . . . , n + 1 define

rk, j =
{

qγ η′ +∑
l=k,..., j;s j �=tn pl , if q < 1, k = 0 and tn ∈ {s j , s j+1};

∑
l=k,..., j pl , otherwise.

and let rk, j = 0 for k < j . Then by using the same argument as [2, Lemma 1]

(notice that rk, j represents the power to eV I
ε (sk )∩V I

ε (s j )\(V I
ε (sk−1)∪V I

ε (s j+1))which appears

in the product
∏n−1

j=0 e�(V
I
ε (t j )) · e�̃η,η′ (tn), and that λ(V I

ε (sk) ∩ V I
ε (s j )\(V I

ε (sk−1) ∪
V I
ε (s j+1))) = log 1

s j −sk
+ log 1

s j+1−sk
− log 1

s j −sk−1
− log 1

s j+1−sk−1
, see Fig. 6) we can

get

Dη,η′(t0, . . . , tn) =
n∑

k=0

n+1∑

j=k+1

α( j, k) · log
1

s j − sk
,

where

α( j, k) = ψ(−irk, j )+ ψ(−irk+1, j−1)− ψ(−irk, j−1)− ψ(−irk+1, j ).

Let ψ̃(p) = ψ(−i p). By definition of κ , we have ψ̃(p) < p −1 for all p ∈ (1, n +
q), and ψ̃(n + q) = n + q − 1. Moreover, ψ̃ ′(1) < 1 since ϕ′(1) < 0, and ψ̃(1) = 0.
Consequently, there exists δ ∈ (0, 1) such ψ̃(p) ≤ (1 − δ)(p − 1) for p ∈ [1, n]; in
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Fig. 6 rk, j is the power
corresponding to the gray area

particular by convexity of ψ̃ we have 1 − δ ≥ ψ̃ ′(1). Moreover, notice that ψ̃(p) ≤ 0
for p ∈ (0, 1) since ψ̃(0) = 0 = ψ̃(1) and ψ̃ is convex, and also ψ̃(p) ≥ ψ̃ ′(1)(p−1)
for all p ≥ 0, which yields for p ∈ [0, 1], ψ̃(p) ≥ (1 − δ)(p − 1). Finally, in case of
q < 1, we take γ > 1 small enough such that qγ < 1 and ψ̃(n+qγ )−n+1 = q ′ < 1.

(i) If n = 1, that is 0 < κ ≤ 1, q = κ and ψ̃(1 + qγ ) = q ′ < 1. We have
s0 = t0 ∈ [0, 1/2), s1 = 1/2, s2 = t1 ∈ [1/2, 1) and s3 = 1.

If q < 1, we have

r0,0 = 1, r0,1 = 1 + qγ η′, r0,2 = 1 + qγ η′, r1,1 = 0, r1,2 = η, r2,2 = η.

This gives

α(0, 1) = ψ̃(1 + qγ η′)+ ψ̃(0)− ψ̃(1)− ψ̃(0) ≤ q ′,
α(0, 2) = ψ̃(1 + qγ η′)+ ψ̃(0)− ψ̃(1 + qγ η′)− ψ̃(η) = 0,

α(1, 2) = ψ̃(η)+ ψ̃(0)− ψ̃(0)− ψ̃(η) = 0.

Thus

E(μ(I0)μ(I1)
κ) ≤ 4c ·

1/2∫

0

(1/2 − s)−q ′
ds < ∞.

If q = 1, we have

r0,0 = r0,1 = r1,1 = r1,2 = 1, r0,2 = 2.

This gives α(0, 1) = α(1, 2) = 0 and α(0, 2) = ψ̃(2) = 1. Thus

E(μ(I0)μ(I1)) =
1/2∫

0

1∫

1/2

(t1 − t0)
−1 dt0dt1 = log 2 < ∞.
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Remark 6.1 Here we have an equality since when q is an integer we do not need
to use Doob’s inequality to estimate (6.2) and we can apply the martingale con-
vergence theorem and dominated convergence theorem as in Sect. 5.2. The identity
E(μ(I0)μ(I1)) = log 2 yields the precise formula in Remark 1.4.

(ii) The case n ≥ 2 is more involved. For 0 ≤ k < j ≤ n + 1, write

α( j, k) = β( j, k)− β( j, k + 1), where β( j, k) = ψ̃(rk, j )− ψ̃(rk, j−1).

Then

n∑

k=0

n+1∑

j=k+1

α( j, k) · log
1

s j − sk
=

n∑

k=0

n+1∑

j=k+1

(β( j, k)− β( j, k + 1)) · log
1

s j − sk

=
n+1∑

j=1

j−1∑

k=0

(β( j, k)− β( j, k + 1)) · log
1

s j − sk

= Ã + B̃ + C̃,

where

Ã =
n+1∑

j=1

j−1∑

k=0

β( j, k) · log
s j − sk−1

s j − sk
,

B̃ =
n+1∑

j=1

β( j, 0) · log
1

s j − s0
, C̃ = −

n+1∑

j=1

β( j, j) · log
1

s j − s j−1
.

Now, using the definition of β( j, k) we get

Ã =
n∑

k=1

n+1∑

j=k+1

β( j, k) · log
s j − sk−1

s j − sk
,

=
n∑

k=1

ψ̃(rk,n+1) · log
sn+1 − sk−1

sn+1 − sk

+
n∑

k=1

n∑

j=k+1

ψ̃(rk, j ) ·
(

log
s j − sk−1

s j − sk
− log

s j+1 − sk−1

s j+1 − sk

)

−
n∑

k=1

ψ̃(rk,k) · log
sk+1 − sk−1

sk+1 − sk
,
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B̃ = ψ̃(r0,n+1) · log
1

sn+1 − s0
+

n∑

j=1

ψ̃(r0, j ) · log
s j+1−s0

s j − s0
−ψ̃(r0,0) · log

1

s1 − s0
,

C̃ = −
n∑

j=1

ψ̃(r j, j ) · log
1

s j − s j−1
.

First notice that r j, j ∈ {0, 1} for j = 1, . . . , n, thus C̃ = 0. Let ψ̂(r) = (1 −
δ)(r − 1) for r ≥ 1 and ψ̂(0) = 0. We have ψ̃(r) ≤ ψ̂(r) for 1 ≤ r ≤ ζ − q,
and ψ̃(n + qγ ) = n − 1 + q ′ = ψ̂(n + q ′) + δ(n + q ′ − 1) if q < 1, as well
as ψ̃(n + q) = n + q − 1 = ψ̂(n + q) + δ(n + q − 1) if q = 1. Now, define
formally Â and B̂ as Ã and B̃, by replacing ψ̃ by ψ̂ . Notice that all the log 1

s j −sk

and
(

log
s j −sk−1

s j −sk
− log

s j+1−sk−1
s j+1−sk

)
are positive. Then, remembering that r0,n+1 = n +

qγq and rewriting ψ̃(r0,n+1) = δ(r ′
0,n+1 − 1) + ψ̂(r ′

0,n+1) in expression B̃, where
r ′

0,n+1 = n + q ′ if q < 1 and r ′
0,n+1 = n + q if q = 1, and remembering also that

ψ̃(r j, j ) = ψ̂(r j, j ) for j = 0, . . . , n since r j, j ∈ {0, 1}, the previous inequalities
between ψ̃ and ψ̂ yield:

n∑

k=0

n+1∑

j=k+1

α( j, k) · log
1

s j − sk
≤ δ(r ′

0,n+1 − 1) · log
1

sn − s0
+ Â + B̂.

Now define β̂( j, k) := ψ̂(rk, j )− ψ̂(rk, j−1). It is easy to see that β̂( j, k) ≤ 1 − δ for
0 ≤ k < j ≤ n + 1 since rk, j − rk, j−1 ≤ 1 (when q < 1, we have chosen γ small
enough such that qγ < 1). Thus

Â =
n+1∑

j=1

j−1∑

k=0

β̂( j, k) · log
s j − sk−1

s j − sk
≤ (1 − δ)

n∑

j=1

log
s j − s0

s j − s j−1

B̂ =
n+1∑

j=1

β̂( j, 0) · log
1

s j − s0
≤ (1 − δ)

n∑

j=1

· log
1

s j − s0
.

This gives

Â + B̂ ≤ (1 − δ)

n∑

j=1

log
1

s j − s j−1
,

and bounding r0,n+1 − 1 by n (we have chosen q ′ < 1), we get

n∑

k=0

n+1∑

j=k+1

α( j, k) · log
1

s j − sk
≤ nδ · log

1

sn+1 − s0
+ (1 − δ)

n+1∑

j=1

log
1

s j − s j−1
.
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One has

1/2∫

0

∫

1/2<s2<···<sn+1<1

dsn+1dsn · · · ds2ds0

(sn+1−s0)
nδ[(sn+1−sn)···(s2−1/2)(1/2−s0)]1−δ

=
1/2∫

0

∫

1/2<s2<···<sn<1

1−sn∫

0

dudsn · · · ds2ds0

(u+sn−s0)
nδ[u(sn−sn−1)···(s2−1/2)(1/2−s0)]1−δ

= 1

δ

1/2∫

0

∫

1/2<s2<···<sn<1

(1−sn)
δ

∫

0

dvdsn · · · ds2ds0

(v1/δ+sn−s0)
nδ[(sn−sn−1)···(s2−1/2)(1/2−s0)]1−δ

≤ 2n/δ

δ

1/2∫

0

∫

1/2<s2<···<sn<1

(1−sn)
δ

∫

0

dvdsn · · · ds2ds0

(v+(sn−s0)
δ)n [(sn−sn−1)···(s2−1/2)(1/2−s0)]1−δ

≤ 2n/δ

(n − 1)δ

1/2∫

0

∫

1/2<s2<···<sn<1

dsn · · · ds2ds0

(sn−s0)
(n−1)δ[(sn−sn−1)···(s2−1/2)(1/2−s0)]1−δ

≤ · · ·

≤ 2(n+···+2)/δ

(n − 1)!δ

1/2∫

0

1∫

1/2

ds2ds0

(s2 − s0)δ[(s2 − 1/2)(1/2 − s0)]1−δ

≤ 2(n+···+2+1)/δ

(n − 1)!

1/2∫

0

log
2

1/2 − s0
· ds0

(1/2 − s0)(1−δ)

< ∞.

This yields E(μ(I0)μ(I1)
κ) < ∞. ��

7 Proof of Theorem 1.5

The proof follows the same lines as that given in [6] for compound Poisson cascades,
and uses computations similar to those performed in [35] to find the sufficient condition
of the finiteness.

Let J = [t0, t1] ∈ I. For t ∈ J and ε < |J | we have

V J
ε (t) = Ṽ J

ε (t) ∪ V J,l(t) ∪ V J,r (t),
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where Ṽ J
ε (t) = V J

ε (t)\V J
|J |(t) and recall in Sect. 3.1 that

V J,l(t) = {z = x + iy ∈ V (t) : |J | ≤ y < 2(t1 − x)} ,
V J,r (t) = {z = x + iy ∈ V (t) : |J | ≤ y ≤ 2(x − t0)} .

Let s ∈ {l, r}. Recall in Lemma 3.4 that for q ∈ Iν there exists a constant Cq < ∞
such that

E

(

sup
t∈J

eq�(V J,s (t))
)

≤ Cq , (7.1)

and for q ∈ R there exists a constant cq > 0 such that

E

(

inf
t∈J

eq�(V J,s (t))
)

≥ cq . (7.2)

Let μ̃J
ε (t) = Q(Ṽ J

ε (t)) dt, μ̃J = limε→0 μ̃
J
ε and Z̃(J ) = μ̃J (J )/|J |. Then it is easy

to see that for q ∈ Iν ,

E(Z̃(J )q) < ∞ ⇒ E(Z(J )q) < ∞.

and for q ∈ R,

E(Z(J )q) < ∞ ⇒ E(Z̃(J )q) < ∞.

7.1. First we show that for q ∈ Iν ∩ (−∞, 0) we have E(Zq) < ∞. Let J0 = I00 and
J1 = I11. It is clear that

μ̃I (I ) ≥ μ̃I (J0)+ μ̃I (J1).

For i ∈ {0, 1} define

Vi = V I (Ji ) ∩ {z ∈ H : Im(z) ≤ |I |},
Vi,l(t) = V Ji ,l(t) ∩ {z ∈ H : Im(z) ≤ |I |},
Vi,r (t) = V Ji ,r (t) ∩ {z ∈ H : Im(z) ≤ |I |},

and

mi,l = inf
t∈Ji

e�(Vi,l (t)); mi,r = inf
t∈Ji

e�(Vi,r (t)).

For i = 0, 1 let Ui = 4−1 · mi,l · mi,r · e�(Vi ). Then we have

Z̃(I ) ≥ U0 Z̃(J0)+ U1 Z̃(J1),
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where Z̃(I ), Z̃(J0), Z̃(J1) have the same law; U0, U1 have the same law; Z̃(J0),

Z̃(J1) and (U0,U1) are independent. So by using the approach of Molchan for Man-
delbrot cascades in the general case [31, Theorem 4], we only need to show that
E(U q

0 ) < ∞ to imply that E(Z̃(I )q) < ∞, thus E(Zq) < ∞.
Since q < 0, we have

U q
0 = 4−q · sup

t∈J0

eq�(V0,l (t)) · sup
t∈J0

eq�V0,r (t)) · eq�(V0).

Notice that these random variables are independent, so

E(U q
0 ) = 4−q · E

(

sup
t∈J0

eq�(V0,l (t))

)

· E

(

sup
t∈J0

eq�V0,r (t))

)

· E

(
eq�(V0)

)
.

Then from the fact that q ∈ Iν and (7.1) we get the conclusion. ��
7.2. Now we show that for q ∈ (−∞, 0), if E(Zq) < ∞ then q ∈ Iν . Let J0 =
inf I + |I |[0, 2/3], J1 = inf I + |I |[1/3, 1] and J = inf I + |I |[1/3, 2/3]. Then we
have

μ̃I (I ) ≤ μ̃I (J0)+ μ̃I (J1).

For i ∈ {0, 1} define

Vi = (V I (Ji )\V I (J )) ∩ {z ∈ H : Im(z) < |I |},
Vi,l(t) = V Ji ,l(t) ∩ {z ∈ H : Im(z) < |I |},
Vi,r (t) = V Ji ,r (t) ∩ {z ∈ H : Im(z) < |I |}.

Also define V = V I (J ) ∩ {z ∈ H : Im(z) < |I |}. Then we get

Z̃(I ) ≤ e�(V ) ·
⎛

⎝
∑

i=0,1

4−1 · sup
t∈Ji

e�(Vi,l (t)) · sup
t∈Ji

e�(Vi,l (t)) · e�(Vi ) · Z̃(Ji )

⎞

⎠ .

Since q < 0, this gives

Z̃(I )q ≥ eq�(V ) ·
⎛

⎝
∑

i=0,1

4−q · inf
t∈Ji

eq�(Vi,l (t)) · inf
t∈Ji

eq�(Vi,l (t)) · eq�(Vi ) · Z̃(Ji )
q

⎞

⎠ .

Taking expectation from both side and using (7.2) we get

E(Z̃(I )q) ≥ E(eq�(V )) · 2 · 4−q · c2
q · E(eq�(V0)) · E(Z̃(I )q).

Then from E(Z̃(I )q) < ∞ we get E(eq�(V ∪V0)) ≤ 2−14qc−2
q < ∞. This yields

q ∈ Iν . ��
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8 Proof of Theorem 1.6

The proof is similar to that of [23, Theorem 2.4].
For i ∈ �∗ and j ∈ {0, 1} let W [i]

j = Wi j/Wi .
For n ≥ 1, ω ∈ � and i ∈ � define

An(ω, i) =
∑

i=i1···in∈�n

W [i1···in−1]
in

(ω) · 1{i|n=i}

Rn(ω, i) =
∑

i∈�n

Zi (ω) · 1{i|n=i}.

Thus for any i = i1 · · · in and i ∈ [i] we have

μ(Ii ) =
(

n∏

k=1

Ak(ω, i)

)

· Rn(ω, i).

We claim that for any n ≥ 1, An has the same law as A, and Rn has the same law as R,
where A and R are defined as in the beginning of Sect. 6.1; moreover, A1, . . . , An, Rn

are independent. This is due to the fact that for any non-negative Borel functions
f1, . . . , fn and g one gets

EQ

⎛

⎝g(Rn)

k∏

j=1

f j (A j )

⎞

⎠

= E

⎛

⎝
∑

i=i1···in∈�n

g(Zi )Zi

n∏

k=1

fk

(
W [i1···ik−1]

ik

)
W [i1···ik−1]

ik

⎞

⎠

= E(g(Z)Z)
n∏

k=1

2E( fk(W0)W0)

= EQ(g(R))
n∏

k=1

EQ( fk(A)).

Under the assumptions we have

EQ(log A) = 2E(W0 log W0) = ϕ′(1) log 2 := β1 ∈ (−∞, 0)

and

EQ((log A)2)− EQ(log A)2 = ϕ′′(1) log 2 := β2 ∈ (0,∞).

Denote by Sn = log A1 + · · · + log An . By using law of iterated logarithm we get

lim sup
n→∞

Sn − nβ1√
2β2n log log n

= 1, Q-a.s.
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It follows that for Q-almost all (ω, i) ∈ �×� and all 0 < ε < 1,

enβ1+(1−ε)√2β2n log log n ≤ eSn ≤ enβ1+(1+ε)√2β2n log log n, (8.1)

where the left inequality holds for infinitely many n ∈ N, while the right inequality
holds for all n ∈ N sufficiently large. We also have the following lemma.

Lemma 8.1 For 0 < ε < 1 one has for Q-almost all (ω, i) ∈ �× � and all n ∈ N

sufficiently large,

e−√
nε ≤ Rn ≤ e

√
nε .

Then the rest of the proof is exactly the same as [23, Theorem 2.4]. ��

8.1 Proof of Lemma 8.1

The proof is borrowed from Lemma 12 in [25]. First we have

Q(| log Rn| ≥ √
nε) = Q(Rn ≥ e

√
nε)+ Q(Rn ≤ e−√

nε)

= E(Z · 1{Z≥e
√

nε})+ E(Z · 1{Z≤e−√
nε})

≤ E(Z · 1{Z≥e
√

nε})+ e−√
nε .

Applying the elementary inequality
∑

n≥1 1{X≥√
n} ≤ X2 we get

∑

n≥1

Q(| log Rn| ≥ √
nε) ≤

∑

n≥1

E(Z · 1{Z≥e
√

nε})+
∑

n≥1

e−√
nε

= E

⎛

⎝Z ·
∑

n≥1

1{ log Z
ε

≥√
n
}

⎞

⎠+
∑

n≥1

e−√
nε

≤ ε−2
E(Z(log Z)2)+

∑

n≥1

e−nε .

Since ϕ′(1) < 0, there exists q > 1 such that ϕ(q) < 0, thus due to Theorem 1.2 we
have E(Zq) < ∞. This implies E(Z(log Z)2) < ∞, and the conclusion comes from
Borel–Cantelli lemma.
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