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Abstract We introduce the notion of an interpolating path on the set of probability
measures on finite graphs. Using this notion, we first prove a displacement convexity
property of entropy along such a path and derive Prékopa-Leindler type inequalities, a
Talagrand transport-entropy inequality, certain HWI type as well as log-Sobolev type
inequalities in discrete settings. To illustrate through examples, we apply our results
to the complete graph and to the hypercube for which our results are optimal—by
passing to the limit, we recover the classical log-Sobolev inequality for the standard
Gaussian measure with the optimal constant.
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1 Introduction

In recent years, Optimal Transport and its link with the Ricci curvature in Riemannian
geometry attracted a considerable amount of attention. The extensive modern book by
Villani [57] is one of the main references on this topic. However, while a lot is now
known in the Riemannian setting (and more generally in geodesic spaces), very little
is known so far in discrete spaces (such as finite graphs or finite Markov chains), with
the notable exception of some notions of (discrete) Ricci curvature proposed recently
by several authors—unfortunately there is not yet a satisfactory (universally agreed
upon) resolution even there—see Bonciocat-Sturm [6], Erbar-Maas [13], Hillion [19],
Joulin [23], Lin-Yau [30], Maas [32], Mielke [38], Ollivier [39], and recent works on
the displacement convexity of entropy by Hillion [20], Lehec [26] and Léonard [29].

In particular, the notions of Transport inequalities, HWI inequalities, interpolating
paths on the measure space, displacement convexity of entropy, are yet to be properly
introduced, analyzed and understood in discrete spaces. This is the chief aim of the
present paper, and of a companion paper [17]. Due to its theoretical as well as applied
appeal, this subject is at the intersection of many areas of mathematics, such as Cal-
culus of Variations, Probability Theory, Convex Geometry and Analysis, as well as
Combinatorial Optimization.

In order to present our results, let us first introduce some of the relevant notions in
the continuous framework of geodesic spaces, see [57].

A complete, separable, metric space (X , d) is said to be a geodesic space, if for
all x0, x1 ∈ X , there exists at least one path γ : [0, 1] �→ X such that γ (0) = x0,
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Displacement convexity on graphs 49

γ (1) = x1 and

d(γ (s), γ (t)) = |t − s|d(x0, x1), ∀s, t ∈ [0, 1].

Such a path is then called a constant speed geodesic between x0 and x1.
Then, for p ≥ 1, let Pp(X ) be the set of Borel probability measures on X having

a finite p-th moment, namely

Pp(X ) :=
⎧
⎨

⎩
μ Borel probability measure :

∫

X
d(xo, x)pμ(dx) < +∞

⎫
⎬

⎭
,

where xo ∈ X is arbitrary (Pp(X ) does not depend on the choice of the point xo) and
define the following L p-Wasserstein distance: for ν0, ν1 ∈ Pp(X ), set

Wp(ν0, ν1) :=
(

inf
π∈�(ν0,ν1)

{∫∫

d(x, y)p dπ(x, y)

})1/p

, (1.1)

where �(ν0, ν1) is the set of couplings of ν0 and ν1.
The metric space (Pp(X ), Wp) is canonically associated to the original metric

space (X , d). Namely, if p > 1, (Pp(X ), Wp) is geodesic if and only if (X , d) is
geodesic, see [54].

A remarkable and powerful fact is that, when X is a Riemannian manifold, one
can relate the Ricci curvature of the space to the convexity of entropy along geodesics
[8,31,36,45,53,56]. More precisely, under the Bakry-Emery CD(K ,∞) condition
(see e.g. [2]), namely if the space (X , d, μ) is such that Ric + Hess V ≥ K , where
μ(dx) = e−V (x) dx , then one can prove that for all ν0, ν1 ∈ P2(X ) whose supports
are included in the support of μ, there exists a constant speed W2-geodesic {νt }t∈[0,1]
from ν0 to ν1 such that

H(νt |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − K

2
t (1 − t)W 2

2 (ν0, ν1) ∀t ∈ [0, 1],
(1.2)

where H(ν|μ) denotes the relative entropy of ν with respect to μ. Equation (1.2) is
known as the K -displacement convexity of entropy. In fact, a converse statement also
holds: if the entropy is K -displacement convex, then the Ricci curvature is bounded
below by K . This equivalence was used as a guideline for the definition of the notion
of curvature in geodesic spaces by Sturm-Lott-Villani in their celebrated works [31,
54,55].

Moreover, it is known that the K -displacement convexity of entropy is a very strong
notion that implies many well-known inequalities in Convex Geometry and in Proba-
bility Theory, such as the Brunn-Minkowski inequality, the Prékopa-Leindler inequal-
ity, Talagrand’s transport-entropy inequality, HWI inequality, log-Sobolev inequality
etc., see [57].
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50 N. Gozlan et al.

The question one would like to address is whether one can extend the above theory
to discrete settings such as finite graphs, equipped with a set of probability measures
on the vertices and with a natural graph distance.

Let us mention two main obstructions. Firstly, W2-geodesics do not exist in discrete
settings (the reader can verify this fact by considering two nearest neighbors x, y in the
graph G = (V, E) and constructing a constant speed geodesic between the two Dirac
measures δx , δy at the vertices x and y). On the other hand, the following Talagrand’s
transport-entropy inequality

W 2
2 (ν0, μ) ≤ C H(ν0|μ), ∀ν0 ∈ P2(V ) (1.3)

(for a suitable constant C > 0) does not hold in discrete settings unless μ is a Dirac
measure! From these simple observations we deduce that W2 is not well adapted either
for defining the path {νt }t∈[0,1] or for measuring the defect/excess in the convexity of
entropy in a discrete context.

In this paper, our contribution is to introduce the notion of an interpolating path
{νt }t∈[0,1] and of a weak transport cost T̃2 (that in a sense goes back to Marton [33,34]).
These will in turn help us to derive the desired displacement convexity results on finite
graphs.

Before presenting our results, we give a brief state of the art of the field (to the best
of our knowledge).

Ollivier and Villani [40] prove that, on the hypercube �n = {0, 1}n , for any proba-
bility measures ν0, ν1, there exists a probability measure ν1/2 (concentrated on the set
of mid-points, see [40] for a precise definition) such that

H(ν1/2|μ) ≤ 1

2
H(ν0|μ) + 1

2
H(ν1|μ) − 1

80n
W 2

1 (ν0, ν1),

where μ ≡ 1/2n is the uniform measure and W1 is defined with the Hamming distance.
They observe that, this in turn implies some curved Brunn-Minkowski inequality on
�n . The constant 1/n encodes, in some sense, the discrete Ricci curvature of the
hypercube in accordance with the various definitions of the discrete Ricci curvature
(see above for references).

Maas [32] introduces a pseudo Wasserstein distance W2 that corresponds to the
geodesic distance on the set, P(�n), of probability measures on the hypercube �n ,
equipped with a Riemannian metric. (In fact, his construction is more general and
applies to a wide class of Markov kernels on finite graphs.) This metric is such that the
continuous time random walk on the graph becomes a gradient flow of the function
H(·|μ). This is further developed by Erbar and Maas [13] who prove, inter alia, that
if {νt }t∈[0,1] is a geodesic from ν0 to ν1, then

H(νt |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − 1

n
t (1 − t)W2

2 (ν0, ν1), ∀t ∈ [0, 1],

where μ ≡ 1/2n is the uniform measure. Independently, Mielke [38] also obtains sim-
ilar results. As a consequence of their displacement convexity property, these authors
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Displacement convexity on graphs 51

derive versions of log-Sobolev, HWI and Talagrand’s transport-entropy inequalities
(involving W2 and W1 distances) with sharp constants. Very recent works of Erbar
[12] and Gigli-Maas [15] derive further results with the pseudo metric, demonstrating
that the metric also works, in a certain sense, in continuous settings.

In a different direction (at the level of functional inequalities), besides the study of
the log-Sobolev inequality which is now classical (see e.g. [1,48]), Sammer and the
last named author [49,50] studied Talagrand’s inequality in discrete spaces, with W1
on the left hand side of (1.3). They also derived a discrete analogue of the Otto-Villani
result [41]: that a modified log-Sobolev inequality implies the W1-type Talagrand
inequality. Connected to this, a few years ago, following seminal work of Bobkov
and Ledoux [3], several researchers independently realized that modified versions of
logarithmic Sobolev inequalities helped capture refined information that was lost while
working with the classic log-Sobolev inequality of Gross. In the discrete setting of finite
Markov chains, one such modified log-Sobolev inequality has been instrumental in
capturing the rate of convergence to equilibrium in the (relative) entropy sense, see e.g.
[5,7,10,14,16,46,48]. The current state of knowledge in identifying precise sufficient
criteria to derive bounds on the entropy decay (or on the corresponding modified log-
Sobolev constants) is unfortunately rather meagre. This is an independent motivation
for our efforts at developing the discrete aspects of the displacement convexity property
and related notions.

Now we describe some of the main results of the present paper. At first, we shall
introduce the notion of an interpolating path {νπ

t }t∈[0,1], on the set of probability
measures on graphs, between two arbitrary probability measures ν0, ν1. In fact, we
define a family of interpolating paths, depending on a parameter π ∈ �(ν0, ν1),
which is a coupling of ν0, ν1. The construction of this interpolating path is inspired by
a certain binomial interpolation due to Johnson [22], see also [19–21]. In particular,
we shall prove that such an interpolating path, for a properly chosen coupling π∗—
namely an optimal coupling for W1—is actually a W1 constant speed geodesic: i.e.,
W1(ν

π∗
t , νπ∗

s ) = |t − s|W1(ν0, ν1) for all s, t ∈ [0, 1], with W1 defined using the
graph distance d (see Proposition 2.2 below). Such a family enjoys a tensorization (see
Lemma 2.3) that is crucial in our derivation of the displacement convexity property
on product of graphs.

Indeed, we shall prove the following tensoring property of a displacement convexity
of entropy along the interpolating path {νπ

t }t∈[0,1]. This is one of our main results (see
Theorem 1.1 below). In order to state the result, we define here the notion of a quadratic
cost, which we will elaborate on, in the later sections.

Let G = (V, E) be a (finite) connected, undirected graph, and let P(V ) denote
the set of probability measures on the vertex set V . Given two probability measures
ν0 and ν1 on V , let �(ν0, ν1) denote the set of couplings (joint distributions) of ν0
and ν1.

Given π ∈ �(ν0, ν1), consider the probability kernels p and p̄ defined by:
p(x, y) = δx (y) (the Dirac mass at x evaluated at site y) if ν0(x) = 0, p̄(x, y) = δy(x)

if ν1(y) = 0, and otherwise

π(x, y) = ν0(x)p(x, y) = ν1(y) p̄(y, x), x, y ∈ V,
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and set

I2(π) :=
∑

x∈V

⎛

⎝
∑

y∈V

d(x, y)p(x, y)

⎞

⎠

2

ν0(x), Ī2(π) :=
∑

y∈V

(
∑

x∈V

d(x, y) p̄(y, x)

)2

ν1(y)

(1.4)

J2(π) :=
⎛

⎝
∑

x∈V

∑

y∈V

d(x, y)π(x, y)

⎞

⎠

2

. (1.5)

Let μ be a (reference) probability measure in P(V ) charging all points (i.e. such
that μ(x) > 0 for all x ∈ V ). We say a graph G, equipped with the distance d and
the probability measure μ, satisfies the displacement convexity property (of entropy),
if there exists a C = C(G, d, μ) > 0, so that for any ν0, ν1 ∈ P(V ), there exists a
π ∈ �(ν0, ν1) satisfying:

H(νπ
t |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − Ct (1 − t)(I2(π) + Ī2(π)) , ∀t ∈ [0, 1].

The quantity I2(π) goes back to Marton [33,34] in her definition of the following
transport cost, we call weak transport cost:

W̃ 2
2 (ν0, ν1) := inf

π∈�(ν0,ν1)
I2(π) + inf

π∈�(ν0,ν1)
Ī2(π).

For more on this Wasserstein-type distance, see [11,35,51]. The precise statement of
our tensorization theorem is as follows. For a graph, by the graph distance between
two vertices, we mean the length of a shortest path between the two vertices.

Theorem 1.1 For i ∈ {1, . . . , n}, let μi be a probability measure on Gi = (Vi , Ei ),
with the graph distance di , that charges all points. Assume also that for each i ∈
{1, . . . , n} there is a constant Ci ≥ 0 such that for all probability measures ν0, ν1 on
Vi , there exists π = π i ∈ �(ν0, ν1) such that it holds

H(νπ
t |μi ) ≤ (1−t)H(ν0|μi )+t H(ν1|μi )−Ci t (1 − t)(I2(π) + Ī2(π)) ∀t ∈ [0, 1].

Then the product probability measure μ = μ1 ⊗ · · · ⊗ μn defined on the Cartesian
product G = (V, E) = G1� · · · �Gn (see Sect. 1.1 for a precise definition) verifies
the following property: for all probability measures ν0, ν1 on V , there exists π =
π(n) ∈ �(ν0, ν1) satisfying,

H(νπ
t |μ) ≤ (1−t)H(ν0|μ)+t H(ν1|μ)−Ct (1 − t)(I (n)

2 (π) + Ī (n)
2 (π)) ∀t ∈ [0, 1],

where C = mini Ci ,

I (n)
2 (π) :=

∑

x∈V1×···×Vn

n∑

i=1

⎛

⎝
∑

y∈V1×···×Vn

di (xi , yi )
π(x, y)

ν0(x)

⎞

⎠

2

ν0(x), (1.6)
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and

Ī (n)
2 (π) :=

∑

y∈V1×···×Vn

n∑

i=1

⎛

⎝
∑

x∈V1×···×Vn

di (xi , yi )
π(x, y)

ν1(y)

⎞

⎠

2

ν1(y). (1.7)

(and with I2(π) := I (1)
2 (π) and similarly for Ī2(π)). The same proposition holds

replacing I2(π) + Ī2(π) by J2(π) and I (n)
2 (π) + Ī (n)

2 (π) by J (n)
2 (π), where

J (n)
2 (π) :=

n∑

i=1

⎛

⎝
∑

x,y∈V1×···×Vn

di (xi , yi )π(x, y)

⎞

⎠

2

. (1.8)

In particular, as a consequence of the above tensorization theorem, we shall prove
that, given two probability measures ν0, ν1 on the hypercube �n = {0, 1}n , there
exists a coupling π such that

H(νπ
t |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − 1

2
t (1 − t)W̃ (n)

2 (ν0, ν1)
2 , ∀t ∈ [0, 1]

(1.9)

where μ is any product of non-trivial Bernoulli measures and W̃ (n)
2 (ν0, ν1)

2 :=
infπ∈�(ν0,ν1) I (n)

2 (π) + infπ∈�(ν0,ν1) Ī (n)
2 (π). As it is easy to see, the weak trans-

port cost W̃2 is weaker than W2, but stronger than W1. Moreover, W̃ 2
2 (ν0, ν1) ≥

2
n W 2

1 (ν0, ν1) (see below) so that (1.9) captures, in a sense, a discrete Ricci curvature
of the hypercube (see [40] and references therein).

As a by-product of the displacement convexity property above, we shall derive a
series of consequences. More precisely, we shall first derive a so-called HWI inequality.

Proposition 1.2 Let μ be a probability measure charging all points on V n, the ver-
tex set of a product graph G = G� · · · �G. Assume that μ verifies the following
displacement convexity inequality: there is some c > 0 such that for any probability
measures ν0, ν1 on V n, there exists a coupling π ∈ �(ν0, ν1) such that

H(νπ
t |μ) ≤ (1−t)H(ν0|μ)+t H(ν1|μ)−ct (1 − t)(I (n)

2 (π) + Ī (n)
2 (π)) ∀t ∈ [0, 1].

Then μ verifies

H(ν0|μ) ≤ H(ν1|μ)

+

√
√
√
√
√

∑

x∈V n

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(

log
ν0(x)

μ(x)
− log

ν0(z)

μ(z)

)
⎤

⎦

2

+
ν0(x)

√

I (n)
2 (π)

− c(I (n)
2 (π) + Ī (n)

2 (π)), (1.10)
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54 N. Gozlan et al.

for the same π ∈ �(ν0, ν1) as above, where Ni (x) is the set of neighbors of x in the
i-th direction: Ni (x) = {z ∈ V n; d(x, z) = 1 and xi �= zi }.

On the hypercube �n = {0, 1}n , the latter implies the following log-Sobolev-type
inequality [that can be seen as a reinforcement of a discrete modified log-Sobolev
inequality (see Corollary 5.4)]: if μ is a product of non-trivial Bernoulli measures, for
any f : �n → (0,∞), it holds

Entμ( f ) ≤ 1

2

∑

x∈�n

n∑

i=1

[
log f (x) − log f (σi (x))

]2
+ f (x)μ(x) − 1

2
W̃ 2

2 ( f μ|μ),

where σi (x) = (x1, . . . , xi−1, 1 − xi , xi+1, . . . , xn) is the vector x = (x1, . . . , xn)

with the i-th coordinate flipped, and the constant 1/2 (in front of the Dirichlet form)
is optimal.

From this, by means of the Central Limit Theorem, the above reinforced modified
log-Sobolev inequality actually leads to the usual logarithmic Sobolev inequality of
Gross [18] for the standard Gaussian, with the optimal constant (see Corollary 5.5).

In a different direction, we also prove that the displacement convexity along the
interpolating path {νπ

t }t∈[0,1] implies a discrete Prékopa-Leindler Inequality (Theo-
rem 6.3), which in turn, as in the continuous setting, implies a logarithmic Sobolev
inequality and a (weak) transport-entropy inequality of the Talagrand-type:

W̃ 2
2 (ν|μ) ≤ C H(ν|μ), ∀ν

for a suitable constant C > 0.
These implications and inequalities are studied in further detail—their various

links with the concentration of measure phenomenon and with other functional
inequalities—in the companion paper [17].

We may summarize the various implications that we prove in the following diagram:

Displacement convexity

⇓
Prekopa-Leindler ⇓ HWI

⇓
Modified log-Sob Weak transport

⇓
log-Sob for the Gaussian

In summary, our paper develops various theoretical objects of much current inter-
est (the interpolating path {νπ

t }t∈[0,1], the weak transport cost W̃2, the displacement
convexity property and its consequences) in a discrete context. Our concrete examples
include the complete graph and the hypercube. However, our theory applies to other
graphs (not necessarily product type) that we will collect in a forthcoming paper. Also,
we believe that our results open a wide class of new problems and new directions of
investigation in Probability Theory, Convex Geometry and Analysis.
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Displacement convexity on graphs 55

Finally, we mention that, during the final preparation of this work, we learned
that Erwan Hillion independently introduced the same kind of interpolating path, but
between a Dirac at a fixed point o ∈ G of the graph and any arbitrary measure (hence
without coupling π ), and derive a certain displacement convexity property [20] along
the interpolation. In [20], the author also deals with the f ·g decomposition introduced
by Léonard [29].

Our presentation follows the following table of contents.

1.1 Notation

Throughout the paper we shall use the following notation.

Graphs G = (V, E) will denote a finite connected undirected graph with the vertex
set V and the edge set E . For any two vertices x and y of G, x ∼ y means that x and
y are nearest neighbors (for the graph structure of G), i.e. (x, y) ∈ E . We use d for
the graph distance defined below.

Given two graphs G1 = (V1, E1), G2 = (V2, E2), with graph distances d1, d2
respectively, we set G1 � G2 = (V1 × V2, E1 � E2) for the Cartesian product of the
two graphs, equipped with the 	1 distance d(x, y) = d1(x1, y1) + d2(x2, y2), for all
x = (x1, x2), y = (y1, y2) ∈ G1×G2. More precisely, ((x1, x2), (y1, y2)) ∈ E1 � E2
if either x1 = y1 and x2 ∼ y2, or x1 ∼ y1 and x2 = y2. The Cartesian product of G
with itself will simply be denoted by G2, and more generally by Gn , for all n ≥ 2.

Paths and geodesics A path γ = (x0, x1, . . . , xn) (of G) is an oriented sequence of
vertices of G satisfying xi−1 ∼ xi for any i = 1 . . . , n. Such a path starts at x0 and
ends at xn and is said to be of length |γ | = n. The graph distance d(x, y) between two
vertices x, y ∈ G is the minimal length of a path connecting x to y. Any path of length
n = d(x, y) between x and y is called a geodesic between x and y. By construction,
any geodesic is self-avoiding. We will denote by 
(x, y) the set of all geodesics from
x to y.

We will say that a path γ = (x0, x1, . . . , xn) crosses the vertex z ∈ V , if there
is some k such that z = xk . In this case, we will write z ∈ γ. Given z ∈ V , we set
C(z) = {(x, y) such that z ∈ γ for some γ ∈ 
(x, y)} for the set of couples such that
some geodesic joining them goes through z. Conversely, if z belongs to some geodesic
between x and y, we shall write z ∈ [[x, y]] and say that z is between x and y. Finally,
for all x, y, z ∈ V , we will denote by 
(x, z, y), the set of geodesics γ ∈ 
(x, y)

such that z ∈ γ . This set is nonempty if and only if z ∈ [[x, y]].
Probability measures and couplings We write P(V ) for the set of probability measures
on V . Given a probability measure ν ∈ P(V ) and a function f : V → R, ν( f ) =∑

z∈V ν(z) f (z) denotes the mean value of f with respect to ν. We may also use the
alternative notation ν( f ) = ∫

f (x) ν(dx) = ∫
f (x) dν(x) = ∫

f dν.
Let ν, μ ∈ P(V ); the relative entropy of ν with respect to μ is defined by

H(ν|μ) =
{∫ dν

dμ
log dν

dμ
dμ if ν � μ

+∞ otherwise
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where ν � μ means that ν is absolutely continuous with respect to μ, and dν
dμ

denotes
the density of ν with respect to μ. Also, the total-variation distance is defined by
‖ν − μ‖T V := ∑

x∈V |ν(x) − μ(x)|.
Given a density f : V → (0,∞) with respect to a given probability measure μ (i.e.

μ( f ) = 1), we shall use the following notation for the relative entropy of f μ with
respect to μ:

Entμ( f ) := H( f μ|μ) =
∫

f log f dμ.

If f : V → (0,∞) is no longer a density, then Entμ( f ) := ∫
f log( f/μ( f )) dμ.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) and a probability measure
μ ∈ P(V1 × V2) on the product, we disintegrate μ as follows: let μ1 be the first
marginal of μ, i.e. μ1(x1) = ∑

x2∈V2
μ(x1, x2) = μ(x1, V2), for all x1 ∈ V1, and set

μ2(x2|x1) so that

μ(x1, x2) = μ1(x1)μ
2(x2|x1), ∀(x1, x2) ∈ V1 × V2, (1.11)

with the convention that μ2(·|x1) = δx1(·) (the Dirac mass at site x1) if μ1(x1) = 0.
Equation (1.11) will be referred to as the disintegration formula of μ.

Recall that a couplingπ of two probability measuresμ and ν inP(V ) is a probability
measure on V 2 so that μ and ν are its first and second marginals, respectively: i.e.
π(x, V ) = μ(x) and π(V, y) = ν(y), for all x, y ∈ V . Given μ, ν ∈ P(V ), the set
of all couplings of μ and ν will be denoted by �(μ, ν).

Moreover, given two probability measures μ and ν in P(V ), we denote by P(μ, ν)

the set of probability kernels1 p such that

∑

x∈V

μ(x)p(x, y) = ν(y), ∀y ∈ V .

By construction, given p ∈ P(μ, ν), one defines a coupling π ∈ �(μ, ν) by setting
π(x, y) = μ(x)p(x, y), x, y ∈ V . Conversely, given a coupling π ∈ �(μ, ν), we
canonically construct a kernel p ∈ P(μ, ν) by setting p(x, y) = π(x, y)/μ(x) when
μ(x) �= 0 and p(x, y) = δx (y) otherwise.

Warning 1: In the sequel, it will always be understood, although not explicitly
stated, that p(x, y) = δx (y) if μ(x) = 0 and similarly in the disintegration formula
(1.11).

Warning 2: Throughout, we will use the French notation Ck
n := (n

k

) = n!
k!(n−k)! for

the binomial coefficients.

1 We recall that p : V × V → [0, 1] is a probability kernel if, for all x ∈ V ,
∑

y∈V p(x, y) = 1.
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2 A notion of a path on the set of probability measures on graphs

The aim of this section is to define a class of paths {{νπ
t }t∈[0,1], π ∈ �(ν0, ν1)},

between probability measures ν0, ν1, on graphs. As proved below, for some optimal
π∗, the path {νπ∗

t }t∈[0,1] is a geodesic, in the space of probability measures equipped
with the Wasserstein distance W1 (see below). It has the nice feature of allowing
tensorization.

2.1 Construction

Inspired by [22], we will first construct an interpolating path between two Dirac
measures δx and δy , for arbitrary x, y ∈ V , on the set of probability measures P(V ).
Fix x, y ∈ V and denote by 
 the random variable that chooses uniformly at random
a geodesic γ in 
(x, y). Also, for any t ∈ [0, 1], let Nt ∼ B(d(x, y), t) be a binomial
variable of parameter d(x, y) and t , independent of 
 (observe that N0 = 0 and
N1 = d(x, y)). Then denote by Xt = 
Nt the random position on 
 after Nt jumps
starting from x . Finally, set ν

x,y
t for the law of Xt .

By construction, ν
x,y
t is clearly a path from δx to δy . Moreover, for all z ∈ V , we

have

ν
x,y
t (z) =

∑

γ∈
(x,y)

P(Xt = z|
 = γ, z ∈ 
)P(
 = γ, z ∈ γ )

=
∑

γ∈
(x,y)

Cd(x,z)
d(x,y)t

d(x,z)(1 − t)d(y,z) 1z∈γ

|
(x, y)| .

Therefore

ν
x,y
t (z) = Cd(x,z)

d(x,y)t
d(x,z)(1 − t)d(y,z) |
(x, z, y)|

|
(x, y)| .

For all z between x and y we observe that

|
(x, z, y)| = |
(x, z)| × |
(z, y)|, (2.1)

since there is a one-to-one correspondence between the sets of geodesics from x to z and
from z to y, and the set of geodesics from x to y that cross the vertex z, just by gluing the
path from x to z to the path from z to y, and by using that d(x, y) = d(x, z)+d(z, y).
Therefore ν

x,y
t takes the form

ν
x,y
t (z) = Cd(x,z)

d(x,y)t
d(x,z)(1 − t)d(y,z) |
(x, z)| × |
(z, y)|

|
(x, y)| 1z∈[[x,y]]. (2.2)

Observe that, for any x, y ∈ V and any t ∈ (0, 1), ν
x,y
t = ν

y,x
1−t .

Remark 2.1 In the construction above of the interpolation ν
x,y
t , the choice of the bino-

mial random variable for the number Nt of jumps might seem somewhat ad hoc;

123



58 N. Gozlan et al.

however, in Proposition 2.5 below, we show that in fact the choice is necessary for
ν

x,y
t to tensorise over a (Cartesian) product of graphs.

Given the family {νx,y
t }x,y , we can now construct a path from any measure ν0 ∈

P(V ) to any measure ν1 ∈ P(V ). Namely, given a coupling π ∈ �(ν0, ν1) of ν0 and
ν1, we define

νπ
t ( · ) =

∑

(x,y)∈V 2

π(x, y)ν
x,y
t ( · ), ∀t ∈ [0, 1]. (2.3)

By construction we have νπ
0 = ν0 and νπ

1 = ν1. Furthermore, observe that, if
ν0 = δx and ν1 = δy , then necessarily π = δx ⊗ δy and thus νπ

t = ν
x,y
t .

We end Sect. 2.1 with two specific examples.

2.1.1 The complete graph Kn

Let Kn be the complete graph with n vertices. Then, given any two points x, y ∈ Kn ,
there exists only one geodesic from x to y, namely 
(x, y) = {(x, y)}. Hence, by
construction of ν

x,y
t , we have

ν
x,y
t (z) = 0 ∀z �= x, y; ν

x,y
t (x) = 1 − t, and ν

x,y
t (y) = t. (2.4)

Therefore, for any coupling π with marginals ν0 and ν1 (two given probability mea-
sures on Kn), we have for any z ∈ Kn ,

νπ
t (z) =

∑

(x,y)∈C(z)

ν
x,y
t (z)π(x, y) =

∑

y∈Kn

ν
z,y
t (z)π(z, y) +

∑

x∈Kn

ν
x,z
t (z)π(x, z)

= (1 − t)
∑

y∈Kn

π(z, y) + t
∑

x∈Kn

π(x, z) = (1 − t)ν0(z) + tν1(z).

As a conclusion, on the complete graph, νπ
t is a simple linear combination of ν0 and

ν1 that does not depend on π , namely {{νπ
t }t∈[0,1], π ∈ �(ν0, ν1)} = {{tν0 + (1 −

t)ν1}t∈[0,1]}.

2.1.2 The n-dimensional hypercube �n

Consider the n-dimensional hypercube �n = {0, 1}n whose edges consist of pairs of
vertices p that differ in precisely one coordinate. The graph distance here coincides
with the Hamming distance:

d(x, y) =
n∑

i=1

1xi �=yi , x, y ∈ �n .

Then, one observes that |
(x, y)| = d(x, y)! [since, in order to move from x to y in
the shortest way, one just needs to choose, among d(x, y) coordinates where x and y
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differ, the order of the flips ( i.e. moves from xi to 1 − xi )]. It follows from (2.2) that,
as soon as z belongs to a geodesic from x to y,

ν
x,y
t (z) = Cd(x,z)

d(x,y)t
d(x,z)(1 − t)d(y,z) d(x, z)!d(y, z)!

d(x, y)! = td(x,z)(1 − t)d(y,z),

and ν
x,y
t (z) = 0 if z does not belong to a geodesic from x to y.

Given two probability measures on �n , and a coupling π on �n × �n , we can
finally define

νπ
t (z) =

∑

(x,y)∈�2
n

td(x,z)(1 − t)d(y,z)1z∈[[x,y]]π(x, y).

2.2 Geodesics for W1

Next we prove that, when π is well chosen, (νπ
t )t∈[0,1] is a geodesic from ν0 to ν1 on

the set of probability measures P(V ) equipped with the Wasserstein L1-distance W1.
Given two probability measures μ and ν on P(V ), recall that

W1(μ, ν) = inf
π∈�(ν0,ν1)

∫∫

d(x, y) π(dx dy) = inf
X∼μ,Y∼ν

E[d(X, Y )].

The following result asserts that (νπ∗
t )t∈[0,1] is actually a geodesic for W1 when

π∗ is an optimal coupling. For simplicity we assume here that V is finite so that π∗
always exists (but is not necessarily unique).

Proposition 2.2 Assume that V is finite. Then, for any probability measures ν0, ν1 ∈
P(V ), it holds

W1(ν
π∗
s , νπ∗

t ) = |t − s|W1(ν0, ν1) ∀s, t ∈ [0, 1]

where π∗ is an optimal coupling in the definition of W1(ν0, ν1) and where νπ∗
t is

defined in (2.3).

Proof Fix two probability measures ν0, ν1 ∈ P(V ) and π∗ an optimal coupling in the
definition of W1(ν0, ν1) (since P(V ) is compact π∗ is well defined). For brevity, set
νt := νπ∗

t .
First, we claim that it is enough to prove that

W1(νs, νt ) ≤ (t − s)W1(ν0, ν1), ∀s, t ∈ [0, 1] with s ≤ t. (2.5)

123



60 N. Gozlan et al.

Indeed, assume (2.5), then recalling that W1 is a distance (see e.g. [57]), by the triangle
inequality we have

W1(ν0, ν1) ≤ W1(ν0, νs) + W1(νs, νt ) + W1(νt , ν1)

≤ sW1(ν0, ν1) + (t − s)W1(ν0, ν1) + tW1(ν0, ν1)

= W1(ν0, ν1).

Hence, all the inequalities used above are actually equalities, which guarantees the
conclusion of the proposition and hence the claim.

Now, we prove (2.5). Let (X, Y ) be a random couple with the law π∗. Fix s ≤ t , it
suffices to construct a random couple (Xs, Xt ) with marginal laws νs and νt so that

E[d(Xs, Xt )] ≤ (t − s)E[d(X, Y )] = (t − s)W1(ν0, ν1).

From the last observation, let us remark that such a couple (Xs, Xt ) will therefore
realize

E[d(Xs, Xt )] = W1(νs, νt ).

Let
(
(Ui

s , V i
t )
)

i≥1 be an independent identically distributed sequence of random

couples in {0, 1}2, independent of X and Y . We choose the law of (U 1
s , V 1

t ) given by

P((U 1
s , V 1

t ) = (0, 0)) = 1 − t, P((U 1
s , V 1

t ) = (0, 1)) = t − s,

P((U 1
s , V 1

t ) = (1, 0)) = 0, P((U 1
s , V 1

t ) = (1, 1)) = s,

so that U 1
s and V 1

t are Bernoulli random variables with respective parameters s and t ,
and we have

E(|U 1
s − V 1

t |) = (t − s).

Given (X, Y ) = (x, y), with x, y ∈ V , let (Ns, Nt ) denote the random couple defined
by

Ns =
d(x,y)∑

i=1

Ui
s , Nt =

d(x,y)∑

i=1

V i
t .

Then the laws of Ns and Nt given (X, Y ) = (x, y) are respectively B(d(x, y), s) and
B(d(x, y), t), the binomial distribution with parameters d(x, y), s and t respectively.

Finally, given (X, Y ) = (x, y), with x, y ∈ V , let 
 denote a random geodesic
chosen uniformly in 
(x, y), independently of the sequence

(
(Ui

s , V i
t )
)

i≥1, and let
Xs = 
Ns be the random position on 
 after Ns jumps and Xt = 
Nt be the random
position on 
 after Nt jumps. By definition, the law of Xs and Xt are respectively νs
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and νt and one has d(Xs, Xt ) = |Ns − Nt |. Moreover, according to this construction,
one has

E[d(Xs, Xt )] = E [|Ns − Nt |] = E

⎡

⎣

∣
∣
∣
∣
∣
∣

d(X,Y )∑

i=1

Ui
s −

d(X,Y )∑

i=1

V i
t

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ E

⎡

⎣
d(X,Y )∑

i=1

∣
∣
∣Ui

s − V i
t

∣
∣
∣

⎤

⎦ = E

⎡

⎣
d(X,Y )∑

i=1

E

[∣
∣
∣Ui

s − V i
t

∣
∣
∣

]
⎤

⎦

= (t − s)E[d(X, Y )].

This completes the proof of (2.5) and Proposition 2.2. ��

2.3 Tensoring property

In this section we prove that the path (ν
x,y
t )t∈[0,1] constructed in Sect. 2.1 does ten-

sorise. This will be crucial in deriving the displacement convexity of the entropy on
product spaces. Moreover we shall prove that, in order to have this tensoring prop-
erty, the law of the random variable Nt introduced in the construction of the path
(ν

x,y
t )t∈[0,1], must be, modulo a change of time, a binomial (see Proposition 2.5 below).

The tensoring property of the path (ν
x,y
t )t∈[0,1] is the following.

Lemma 2.3 Let G1 = (V1, E1), G2 = (V2, E2) be two graphs and let G = G1 � G2
be their Cartesian product. Then, for any x = (x1, x2), y = (y1, y2) and z = (z1, z2)

in V1 × V2,

ν
x,y
t (z) = ν

x1,y1
t (z1)ν

x2,y2
t (z2).

Proof Fix x = (x1, x2), y = (y1, y2) and z = (z1, z2) in V1 × V2. Then, we observe
that, given two geodesics, one from x1 to y1, and one from x2 to y2, one can construct
exactly Cd(x1,y1)

d(x,y) different geodesics from x to y (by choosing the d(x1, y1) positions
where to change the first coordinate, according to the geodesic joining x1 to y1, and
thus changing the second coordinate in the remaining d(x2, y2) = d(x, y)−d(x1, y1)

positions, according to the geodesic joining x2 to y2). This construction exhausts all
the geodesics from x to y. Hence,

|
(x, y)| = Cd(x1,y1)

d(x,y) |
(x1, y1)| × |
(x2, y2)|. (2.6)

Observe also that z belongs to some geodesic from x to y if and only if z1 and z2
belong respectively to some geodesic from x1 to y1, and from x2 to y2. Therefore, by
(2.1), it follows that

|
(x, z, y)| = Cd(x1,z1)
d(x,z) Cd(z1,y1)

d(z,y) |
(x1, z1, y1)| × |
(x2, z2, y2)|.
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So, it holds that

ν
x,y
t (z) = Cd(x,z)

d(x,y)t
d(x,z)(1 − t)d(y,z) |
(x, z, y)|

|
(x, y)|

= Cd(x,z)
d(x,y)C

d(x1,z1)
d(x,z) Cd(y1,z1)

d(y,z)

Cd(x1,y1)

d(x,y)

td(x1,z1)(1 − t)d(y1,z1)
|
(x1, z1, y1)|

|
(x1, y1)| td(x2,z2)

×(1 − t)d(y2,z2)
|
(x2, z2, y2)|

|
(x2, y2)|
= ν

x1,y1
t (z1)ν

x2,y2
t (z2),

where we used that d(x, z) = d(x1, z1)+ d(x2, z2), and similarly for d(y, z), and the
fact (that the reader can easily verify) that

Cd(x,z)
d(x,y)C

d(x1,z1)
d(x,z) Cd(y1,z1)

d(y,z)

Cd(x1,y1)

d(x,y)

= Cd(x1,z1)
d(x1,y1)

Cd(x2,z2)
d(x2,y2)

.

��
Remark 2.4 (The hypercube �n) In the case of the hypercube �n , using the tensoring
property, one can recover that ν

x,y
t (z) = td(x,z)(1 − t)d(y,z) as soon as z belongs to a

geodesic from x to y, and 0 otherwise. Indeed, observe that Eq. (2.4) can be rewritten
for the two-point space as follows, for all coordinates:

ν
xi ,yi
t (zi ) = 1{xi ,yi }(zi )t

d(xi ,zi )(1 − t)d(yi ,zi ).

Hence, by Lemma 2.3,

ν
x,y
t (z) =

n∏

i=1

ν
xi ,yi
t (zi ) = td(x,z)(1 − t)d(y,z),

as soon as z belongs to a geodesic from x to y, and 0 otherwise, which proves the
claim.

Proposition 2.5 In the construction of νx,y
t , t ∈ [0, 1], use a general random variable

N d(x,y)
t ∈ {0, 1, . . . , d(x, y)}, of parameter d(x, y) and t, that satisfies a.s., N d(x,y)

0 =
0 and N d(x,y)

1 = d(x, y) (instead of the Binomial, observe that this condition is here
to ensure that ν

x,y
0 = δx and ν

x,y
1 = δy , namely that ν

x,y
t is still an interpolation

between the two Dirac measures), so that

ν
x,y
t (z) = P

(
N d(x,y)

t = d(x, z)
) |
(x, z, y)|

|
(x, y)| .

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs and let G = G1 � G2 be their
Cartesian product. Assume that for any x = (x1, x2), y = (y1, y2) and z = (z1, z2)

in V1 × V2,
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ν
x,y
t (z) = ν

x1,y1
t (z1)ν

x2,y2
t (z2) ∀t ∈ [0, 1].

Then, there exists a function a : [0, 1] → [0, 1] with a(0) = 0, a(1) = 1, such that
N d(x,y)

t ∼ B(a(t), d(x, y)).

Proof Following the proof of Lemma 2.3 we have,

ν
x,y
t (z) = P

(
N d(x,y)

t = d(x, z)
) |
(x, z, y)|

|
(x, y)|

= Cd(x1,z1)
d(x,z) Cd(y1,z1)

d(y,z)

Cd(x1,y1)

d(x,y)

P

(
N d(x,y)

t = d(x, z)
) |
(x1, z1, y1)|

|
(x1, y1)|
|
(x2, z2, y2)|

|
(x2, y2)| .

On the other hand,

ν
x1,y1
t (z1) = P

(
N d(x1,y1)

t = d(x1, z1)
) |
(x1, z1, y1)|

|
(x1, y1)|
and

ν
x2,y2
t (z2) = P

(
N d(x2,y2)

t = d(x2, z2)
) |
(x2, z2, y2)|

|
(x2, y2)| .

Hence, the identity ν
x,y
t (z) = ν

x1,y1
t (z1)ν

x2,y2
t (z2) ensures that

Cd(x1,z1)
d(x,z) Cd(y1,z1)

d(y,z)

Cd(x1,y1)

d(x,y)

P

(
N d(x,y)

t = d(x, z)
)

= P

(
N d(x1,y1)

t = d(x1, z1)
)

× P

(
N d(x2,y2)

t = d(x2, z2)
)

for any z1 ∈ [[x1, y1]], z2 ∈ [[x2, y2]].
Now, observe that

Cd(x1,z1)
d(x,z) Cd(y1,z1)

d(y,z)

Cd(x1,y1)

d(x,y)

= Cd(x1,z1)
d(x1,y1)

Cd(x2,z2)
d(x2,y2)

Cd(x,z)
d(x,y)

.

Hence, the latter can be rewritten as

P

(
N d(x,y)

t = d(x, z)
)

Cd(x,z)
d(x,y)

=
P

(
N d(x1,y1)

t = d(x1, z1)
)

Cd(x1,z1)
d(x1,y1)

×
P

(
N d(x2,y2)

t = d(x2, z2)
)

Cd(x2,z2)
d(x2,y2)

.

Set, for simplicity, for any n, k with 0 ≤ k ≤ n and any t ∈ [0, 1]

pn,k(t) := P
(
N n

t = k
)

Ck
n

.
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When there is no confusion, we will skip the dependence in t , using the simpler
notation pn,k . We end up with the following induction formula

pn,k = pn1,k1 · pn−n1,k−k1 (2.7)

for any integers k1, n1, k, n satisfying the following conditions

k, n1 ≤ n, k1 ≤ min(k, n1), and n1 − k1 ≤ n − k.

(We set, n = d(x, y), n1 = d(x1, y1), k = d(x, z) and k1 = d(x1, z1)).
Observe that, since by assumption N d(x,y)

t ∈ {0, 1, . . . , d(x, y)}, necessarily, when
x = y, N 0

t = 0 (deterministically) for any t . Hence p0,0 = 1.
The special choice n1 = 1, k1 = 0 in (2.7) leads to

pn,k = p1,0 · pn−1,k . (2.8)

Set b = b(t) = p1,0(t) (that might be 0). From (2.8) we deduce that

pn,k = bn−k pk,k .

Finally, the special choice n = k, n1 = k1 = k − 1, in (2.7), ensures that

pk,k = pk−1,k−1 · p1,1.

Since p1,0 + p1,1 = 1, the latter reads as

pk,k = pk
1,1 = (1 − b)k .

It follows that

pn,k = bn−k(1 − b)k ∀n, ∀k ≤ n.

Now set a(t) = 1 − b(t) to end up with

P
(
N n

t = k
) = Ck

n ak(1 − a)n−k ,

which guarantees that N d(x,y)
t is indeed a binomial variable of parameter a(t) and

d(x, y).
To end the proof, it suffices to observe that N d(x,y)

0 = 0 implies a(0) = 0, and that

N d(x,y)
1 = d(x, y) implies a(1) = 1. ��
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3 Weak transport cost

In this section we recall a notion of a discrete Wasserstein-type distance, called weak
transport cost—introduced and studied in [33,52], developed further in [17]—and col-
lect some useful facts from [17]. Also, we introduce the notion of a Knothe-Rosenblatt
coupling which will play a crucial role in the displacement convexity of the entropy
property on product spaces.

3.1 Definition and first properties

For the notion of a weak transport cost, first recall the definition of P(ν0, ν1) introduced
in Sect. 1.1.

Definition 3.1 Let ν0, ν1 ∈ P(V ). Then, the weak transport cost T̃2(ν1|ν0) between
ν0 and ν1 is defined as

T̃2(ν1|ν0) := inf
p∈P(ν0,ν1)

∑

x∈V

⎛

⎝
∑

y∈V

d(x, y)p(x, y)

⎞

⎠

2

ν0(x).

It can be shown that

(ν0, ν1) �→
√

T̃2(ν1|ν0) +
√

T̃2(ν0|ν1)

is a distance on P(V ), see [17].
Recall the definition of I2(π), Ī2(π) and J2(π) from (1.4) and (1.5) in the intro-

duction, and observe that

T̃2(ν1|ν0) = inf
π∈�(ν0,ν1)

I2(π).

Also, define

T̂2(ν0, ν1) := inf
π∈�(ν0,ν1)

J2(π),

and observe that T̂2(ν0, ν1) = W 2
1 (ν0, ν1) where W1 is the usual L1-Wasserstein

distance associated to the distance d.
When d is the Hamming distance d(x, y) = 1x �=y , x, y ∈ V , the weak transport

cost and the L1-Wasserstein distance take an explicit form. This is stated in the next
lemma. We give the proof for completeness.

Lemma 3.2 ([17]) Let ν0, ν1, μ ∈ P(V ) and assume that μ charges all the points.
Denote by f0 and f1 the relative densities of ν0 and ν1 with respect to μ. Assume that
d(x, y) = 1x �=y , x, y ∈ V . Then it holds
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T̃2(ν1|ν0) =
∫

{ f0>0}

[

1 − f1

f0

]2

+
f0 dμ

where [X ]+ = max(X, 0), and

√

T̂2(ν0, ν1) =
∫

[ f0 − f1]+ dμ = 1

2

∫

| f0 − f1| dμ = 1

2
‖ν0 − ν1‖T V

with ‖ · ‖T V , the total variation norm.

Remark 3.3 Observe that T̃2(ν1|ν0) does not depend on μ.

Proof For any π ∈ �(ν0, ν1) and any x ∈ V with ν0(x) > 0, one has

1 −
∑

y∈V

d(x, y)p(x, y) = π(x, x)

ν0(x)
≤ min(ν0(x), ν1(x))

ν0(x)
= min

(
f1(x)

f0(x)
, 1

)

.

and therefore

[

1 − f1(x)

f0(x)

]

+
≤

∑

y∈V

d(x, y)p(x, y).

By integrating with respect to the measure ν0 and then optimizing over all π ∈
�(ν0, ν1), it follows that

∫

[ f0 − f1]+ dμ ≤
√

T̂2(ν0, ν1),

and

∫

{ f0>0}

[

1 − f1

f0

]2

+
f0 dμ ≤ T̃2(ν1|ν0).

The equality is reached choosing π∗ ∈ �(ν0, ν1) defined by

π∗(x, y) = ν0(x)p∗(x, y) = 1x=y min(ν0(x), ν1(x))

+1x �=y
[ν0(x) − ν1(x)]+[ν1(y) − ν0(y)]+

∑
z∈V [ν1(z) − ν0(z)]+ , (3.1)

since
∑

y∈V d(x, y)p∗(x, y) =
[
1 − f1(x)

f0(x)

]

+ . ��

123



Displacement convexity on graphs 67

3.2 The Knothe-Rosenblatt coupling

In this subsection, we recall a general method, due to Knothe-Rosenblatt [24,47],
enabling to construct couplings between probability measures on product spaces.

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2) and two probability
measures ν0, ν1 ∈ P(V1 × V2). The disintegration formulas of ν0, ν1 (recall (1.11))
read

ν0(x1, x2) = ν1
0(x1)ν

2
0 (x2|x1) and ν1(y1, y2) = ν1

1(y1)ν
2
1 (y2|y1). (3.2)

Let π1 ∈ P(V 2
1 ) be a coupling of ν1

0 , ν1
1 , and for all (x1, y1) ∈ V 2

1 let π2( · |x1, y1) ∈
P(V 2

2 ) be a coupling of ν2
0 ( · |x1) and ν2

1 ( · |y1), x1, y1 ∈ V1. We are now in a position
to define the Knothe-Rosenblatt coupling.

Definition 3.4 (Knothe-Rosenblatt coupling) Let ν0, ν1 ∈ P(V1×V2), and consider a
family of couplings π1, {π2( · |x1, y1)}x1,y1 as above; the coupling π̂ ∈ P([V1×V2]2),
defined by

π̂((x1, x2), (y1, y2)) := π1(x1, y1)π
2(x2, y2|x1, y1), (x1, x2), (y1, y2) ∈ V1 × V2

is called the Knothe-Rosenblatt coupling of ν0, ν1 associated with the family of
couplings

{
π1, {π2( · |x1, y1)}x1,y1

}
.

It is easy to check that the Knothe-Rosenblatt coupling is indeed a coupling of ν0, ν1.
Note that it is usually required that the couplings π1, {π2( · |x1, y1)}x1,y1 are optimal
for some weak transport cost, but we will not make this assumption in what follows.

The preceding construction can easily be generalized to products of n graphs.
Consider n graphs G1 = (V1, E1), . . . , Gn = (Vn, En), and two probability measures
ν0, ν1 ∈ P(V1 × · · · × Vn) admitting the following disintegration formulas: for all
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V1 × · · · × Vn ,

ν0(x) = ν1
0(x1)ν

2
0 (x2|x1)ν

3
0(x3|x1, x2) · · · νn

0 (xn|x1, . . . , xn−1),

ν1(y) = ν1
1(y1)ν

2
1 (y2|y1)ν

3
1(y3|y1, y2) · · · νn

1 (yn|y1, . . . , yn−1).

For all i = 1, . . . , n, let π i ( · |x1, . . . , xi−1, y1, . . . , yi−1) ∈ P(V 2
i ) be a coupling

of νi
0( · |x1, . . . , xi−1) and νi

1( · |y1, . . . , yi−1). The Knothe-Rosenblatt coupling π̂ ∈
P([V1 × · · · × Vn]2) between ν0 and ν1 is then defined by

π̂(x, y) = π1(x1, y1)π
2(x2, y2|x1, y1) · · · πn(xn, yn|x1, . . . , xn−1, y1, . . . , yn−1),

for all x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
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3.3 Tensorization

Another useful property of the weak transport cost defined above is that it tensorises in
the following sense. For 1 ≤ i ≤ n, let Gi = (Vi , Ei ) be a graph with the associated
distance di . Recall the definition of I (n)

2 , Ī (n)
2 and J (n)

2 given in (1.6), (1.7) and (1.8).
Then, given two probability measures ν0, ν1 in P(V1 × · · · × Vn), define

T̃ (n)
2 (ν1|ν0) := inf

π∈�(ν0,ν1)
I (n)
2 (π)

and

T̂ (n)
2 (ν0, ν1) := inf

π∈�(ν0,ν1)
J (n)

2 (π).

Using the notation of Sect. 3.2 above, we can state the result.

Proposition 3.5 Let ν0, ν1 in P(V1 × · · · × Vn); and consider a family of couplings
π1 ∈�(ν1

0 , ν1
1)andπ i ( · |x1, . . . , xi−1)∈�(νi

0( · |x1, . . . , xi−1), ν
i
1( · |y1, . . . , yi−1)),

for all i ∈ {2, . . . , n}, with (x2, . . . , xn), (y2, . . . , yn) ∈ V2×· · ·×Vn, as above. Then,

I (n)
2 (π̂) ≤ I2(π

1) +
n∑

i=2

∑

x,y∈V1×···×Vn

π̂(x, y)I2(π
i ( · |x1, . . . , xi−1, y1 . . . yi−1)).

where π̂ is the Knothe-Rosenblatt coupling of ν0 and ν1 associated with the family of
couplings above. The same holds for Ī (n)

2 and J (n)
2 (π).

In particular, if the couplings π1 and π i ( · |x1, . . . , xi−1, y1 . . . yi−1) are assumed to
achieve the infimum in the definition of the weak transport costs between ν1

0 and
ν1

1 and between νi
0( · |x1, . . . , xi−1) and νi

1( · |y1, . . . , yi−1), for all i ∈ {2, . . . , n},
respectively, we immediately get the following tensorization for T̃2:

T̃ (n)
2 (ν1|ν0) ≤ T̃2(ν1

1 |ν1
0 ) +

n∑

i=2

∑

x,y∈
V1×···×Vn

π̂(x, y)T̃2(νi
1(·|x1, . . . , xi−1)|νi

0(·|y1, . . . , yi−1)).

(3.3)

In an obvious way, the same kind of conclusion holds replacing T̃2 by T̂2.

Proof In this proof, we will use the following shorthand notation: if x ∈ V and if
1 ≤ k ≤ n, we will denote by x1:k the subvector (x1, x2, . . . , xk) ∈ V1 × · · · × Vk .

Define the kernels p̂( · , · ), p1( · , · ) and pk( · , · |x1:k−1, y1:k−1) by the formulas

π̂(x, y) = p̂(x, y)ν0(x)

π1(x1, y1) = p1(x1, y1)ν
1
0(x1),

πk(xk, yk |x1:k−1, y1:k−1) = pk(xk, yk |x1:k−1, y1:k−1)ν
k
0 (xk |x1:k−1), ∀1 < k ≤ n.
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By the definition of the Knothe-Rosenblatt coupling π̂ , it holds

p̂(x, y) =
n∏

k=2

pk(xk, yk |x1:k−1, y1:k−1) × p1(x1, y1).

As a result, for all i ∈ {2, . . . , n},

(
∑

y

di (xi , yi ) p̂(x, y)

)2

=
(
∑

y1:i
di (xi , yi )

i∏

k=2

pk(xk , yk |x1:k−1, y1:k−1)p1(x1, y1)

)2

≤
∑

y1:i−1

i−1∏

k=2

pk(xk , yk |x1:k−1, y1:k−1)p1(x1, y1)

×
(
∑

yi

di (xi , yi )pi (xi , yi |x1:i−1, y1:i−1)

)2

where the inequality comes from Jensen’s inequality. Therefore,

∑

x

(
∑

y

di (xi , yi ) p̂(x, y)

)2

ν0(x)

≤
∑

x1:i−1

∑

y1:i−1

i−1∏

k=2

πk(xk, yk |x1:k−1, y1:k−1)π
1(x1, y1)

∑

xi

νi
0(xi |x1:i−1)

×
(
∑

yi

di (xi , yi )pi (xi , yi |x1:i−1, y1:i−1)

)2

=
∑

x1:i=1

∑

y1:i−1

i−1∏

k=2

πk(xk, yk |x1:k−1, y1:k−1)π
1(x1, y1)I2(π

i ( · |x1:i−1, y1:i−1))

=
∑

x,y

π̂(x, y)I2(π
i ( · |x1:i−1, y1:i−1)).

Moreover

∑

x

(
∑

y

d1(x1, y1) p̂(x, y)

)2

ν0(x) =
∑

x,y

π̂(x, y)I2(π
1).

Summing all these inequalities gives the announced tensorization formula.
The proof for Ī (n)

2 and J (n)
2 is identical and left to the reader. ��
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4 Displacement convexity property of the entropy

Using the weak transport cost defined in the previous section, we can now derive a
displacement convexity property of the entropy on graphs. More precisely, we will
derive such a property for the complete graph. Then we will prove that our definition
of νπ

t allows the displacement convexity to tensorise. As a consequence, we will be
able to derive such a property on the n-dimensional hypercube.

4.1 The complete graph

Consider the complete graph Kn , or equivalently any graph G equipped with the
Hamming distance d(x, y) = 1x �=y (in the definition of the weak transport cost).
Recall the definition of νπ

t given in (2.3), and that we proved, in Sect. 2.1.1, that
νπ

t = (1 − t)ν0 + tν1 for any choice of coupling π . Then, the following holds.

Proposition 4.1 (Displacement convexity on the complete graph) Let ν0,ν1, μ ∈
P(Kn) be three probability measures. Assume that ν0, ν1 are absolutely continuous
with respect to μ. Then for any t ∈ [0, 1],

H(νt |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − t (1 − t)

2

(
T̃2(ν1|ν0) + T̃2(ν0|ν1)

)
,

(4.1)

and

H(νt |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − t (1 − t)

2
‖ν0 − ν1‖2

T V , (4.2)

where νt = (1 − t)ν0 + tν1.

Proof Our aim is simply to bound from below the second order derivative of t �→
F(t) := H(νt |μ). Denote by f0 and f1 the respective densities of ν0 andν1 with respect
to μ and for simplicity set ft := (1− t) f0 + t f1. We have F(t) = ∫

ft log ft dμ. Thus
F ′(t) = ∫

ft >0 log ft d(ν0 − ν1). In turn

F ′′(t) =
∫

{ ft >0}

( f0 − f1)
2

ft
dμ =

∫

{ ft >0}

[ f0 − f1]2+
ft

dμ +
∫

{ ft >0}

[ f1 − f0]2+
ft

dμ

≥
∫

{ f0>0}

[ f0 − f1]2+
f0

dμ +
∫

{ f1>0}

[ f1 − f0]2+
f1

dμ

=
∫

{ f0>0}

[

1 − f1

f0

]2

+
f0 dμ+

∫

{ f1>0}

[

1 − f0

f1

]2

+
f1 dμ= T̃2(ν1|ν0) + T̃2(ν0|ν1),
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where, in the last line, we used Lemma 3.2. As a consequence, the function G : t �→
F(t) − t2

2

(
T̃2(ν1|ν0) + T̃2(ν0|ν1)

)
is convex on [0, 1], so that G(t) ≤ (1 − t)G(0) +

tG(1) which gives precisely, after some algebra, the first desired inequality.
For the second inequality, applying Cauchy-Schwarz yields

F ′′(t) =
∫

{ ft >0}

( | f0 − f1|√
ft

)2

dμ

∫ (√
ft

)2
dμ ≥

(∫

| f0 − f1| dμ

)2

= ‖ν0 − ν1‖2
T V .

Hence the map G : t �→ F(t) − t2

2 ‖ν0 − ν1‖2
T V is convex on [0, 1] which leads to the

desired inequality. ��

Remark 4.2 (Pinsker inequality) Inequality (4.2) is a reinforcement of the well known
Csiszar-Kullback-Pinsker’s inequality (see e.g. [1, Theorem 8.2.7], [9,25,42]) which
asserts that

‖ν0 − ν1‖2
T V ≤ 2H(ν1|ν0).

Indeed, take μ = ν0 together with the fact that H(νt |μ) ≥ 0, and then take the limit
t → 0 in (4.2) to obtain the above inequality. Csiszar-Kullback-Pinsker’s inequality,
and its generalizations, are known to have many applications in Probability theory,
Analysis and Information theory, see [57, Page 636] for a review.

Remark 4.3 (Comparison) Now we compare the displacement convexity property of
Proposition 4.1 with the Wasserstein-type distance and total variation norm. For the
two-point space it is easy to check that the ratio

T̃2(ν1|ν0) + T̃2(ν0|ν1)

‖ν0 − ν1‖2
T V

is not uniformly bounded above over all probability measures ν0 and ν1. On the other
hand, we claim that

T̃2(ν1|ν0) + T̃2(ν0|ν1)

‖ν0 − ν1‖2
T V

≥ 1

2
, ∀ν0, ν1 (4.3)

which implies that (4.1) is stronger than (4.2), up to a constant 2. We also provide an
example below which shows that we cannot exactly recover (4.2) using (4.1).

Let us prove the claim, and more precisely that the following holds

T̃2(ν1|ν0) + T̃2(ν0|ν1) ≥ ‖ν0 − ν1‖2
T V

1 + ‖ν0−ν1‖T V
2

≥ 1

2
‖ν0 − ν1‖2

T V . (4.4)
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This is a consequence of Cauchy-Schwarz inequality, namely, we have

T̃2(ν1|ν0) + T̃2(ν0|ν1) ≥
(∫ [ f1 − f0]+dμ

)2

ν1( f1 ≥ f0)
+

(∫ [ f0 − f1]+dμ
)2

ν0( f0 > f1)
.

Since ‖ν0 − ν1‖T V = 2
∫ [ f1 − f0]+dμ = 2(ν1( f1 ≥ f0) − ν0( f1 ≥ f0)), we get

T̃2(ν1|ν0) + T̃2(ν0|ν1) ≥ inf
u∈[0,1]

(1 + ‖ν0−ν1‖T V
2 )‖ν0 − ν1‖2

T V

4u(1 + ‖ν0−ν1‖T V
2 − u)

= ‖ν0 − ν1‖2
T V

1 + ‖ν0−ν1‖T V
2

.

We now give the non-trivial example that achieves equality in the first inequality of
(4.4), thus confirming that (4.1) can not exactly recover (4.2): Let ν0 and ν1 be two
probability measures on the two-point space {0, 1} defined by ν1(1) = ν0(0) = 3/4
and ν1(0) = ν0(1) = 1/4. Then

‖ν0 − ν1‖T V = 2(ν1(1) − ν0(1)) = 1,

and

T̃2(ν1|ν0) + T̃2(ν0|ν1) = (ν1(1) − ν0(1))2

ν1(1)
+ (ν0(0) − ν1(0))2

ν0(0)
= 2/3,

which gives the (claimed) equality in (4.4).

4.2 Tensorization of the displacement convexity property

In this section we prove that if the displacement convexity property of the entropy holds
on n graphs G1 = (V1, E1), …, Gn = (Vn, En), equipped with probability measures
μ1, . . . , μn and graph distances d1, . . . , dn respectively, then the displacement con-
vexity of the entropy holds on their Cartesian product equipped with μ1 ⊗ · · · ⊗ μn

with respect to the tensorised transport costs I (n)
2 and Ī (n)

2 , i.e. we prove Theorem 1.1
which is one of our main theorems. As an application we shall apply such a property
to the specific example of the hypercube at the end of the section.

Proof of Theorem 1.1 In this proof, we use the notation and definitions introduced in
Sects. 3.2 and 3.3. Fix ν0, ν1 ∈ P(V ) and write the following disintegration formulas

ν0(x) = ν1
0(x1)

n∏

i=2

νi
0(xi |x1:i−1), ∀x = (x1, . . . , xn) ∈ V

ν1(y) = ν1
1(y1)

n∏

i=2

νi
1(yi |y1:i−1), ∀y = (y1, . . . , yn) ∈ V,

where we recall that x1:i−1 = (x1, . . . , xi−1) ∈ V1 × · · · × Vi−1.
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By assumption, for every x, y ∈ V , there are couplings π1 ∈ P(V1 × V1) and
π i ( · |x1:i−1, y1:i−1) ∈ P(Vi × Vi ) such that

π1 ∈ �(ν1
0 , ν1

1) and π i ( · |x1:i−1, y1:i−1) ∈ �(νi
0( · |x1:i−1), ν

i
1( · |y1:i−1)),

and for which the following inequalities hold

H(ν1
t |μ1) ≤ (1 − t)H(ν1

0 |μ1) + t H(ν1
1 |μ1) − C1t (1 − t)R2(π

1),

H(ν
i,x1:i−1,y1:i−1
t |μi ) ≤ (1 − t)H(νi

0( · |x1:i−1)|μi ) + t H(νi
1( · |y1:i−1)|μi )

−Ci t (1 − t)R2(π
i ( · |x1:i−1, y1:i−1)),

where R2 := I2 + Ī2, ν1
t := ν

π1
t , and ν

i,x1:i−1,y1:i−1
t = ν

π i ( · |x1:i−1,y1:i−1)
t .

Now, consider the Knothe-Rosenblatt coupling π̂ ∈ �(ν0, ν1) constructed from the
couplings π1 and π i ( · |x1:i−1, y1:i−1), x, y ∈ V and denote by γt the path νπ̂

t ∈ P(V )

connecting ν0 to ν1.

Let us consider the disintegration of γt with respect to its marginals:

γt (z) = γ 1
t (z1)γ

2
t (z2|z1) · · · γ n

t (zn|z1, . . . , zn−1).

We claim that there exist non-negative coefficients αi
t (x1:i−1, y1:i−1, z1:i−1) such that

∑

x1:i−1,y1:i−1

αi
t (x1:i−1, y1:i−1, z1:i−1) = 1

and such that for all i ∈ {2, . . . , n} it holds

γ i
t ( · |z1:i−1) =

∑

x1:i−1,y1:i−1

ν
i,x1:i−1,y1:i−1
t ( · )αi

t (x1:i−1, y1:i−1, z1:i−1).

Indeed, by definition one has γt (z) = ∑
x,y∈V ν

x,y
t (z)π̂(x, y). So, using the fact that,

according to Lemma 2.3, ν
x,y
t (z) = ∏n

k=1 ν
xk ,yk
t (zk), we see that

∑

u∈V :u1:i =z1:i
γt (u)=

∑

x,y∈V

⎛

⎝
∑

u∈V :u1:i =z1:i
ν

x,y
t (u)

⎞

⎠ π̂(x, y)

=
∑

x,y∈V

i∏

k=1

ν
xk ,yk
t (zk)π̂(x, y)

=
∑

x1:i ,y1:i

i∏

k=1

ν
xk ,yk
t (zk)π

k(xk, yk |x1:k−1, y1:k−1)

=
∑

x1:i−1,y1:i−1

ν
i,x1:i−1,y1:i−1
t (zi )

i−1∏

k=1

ν
xk ,yk
t (zk)π

k(xk, yk |x1:k−1, y1:k−1).
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From this it follows that

γt i (zi |z1:i−1) =
∑

u∈V :u1:i =z1:i γt (u)
∑

u∈V :u1:i−1=z1:i−1
γt (u)

=
∑

x1:i−1,y1:i−1
ν

i,x1:i−1,y1:i−1
t (zi )

∏i−1
k=1 ν

xk ,yk
t (zk)π

k(xk , yk |x1:k−1, y1:k−1)
∑

x1:i−1,y1:i−1

∏i−1
k=1 ν

xk ,yk
t (zk)πk(xk , yk |x1:k−1, y1:k−1)

=:
∑

x1:i−1,y1:i−1

ν
i,x1:i−1,y1:i−1
t (zi )α

i
t (x1:i−1, y1:i−1, z1:i−1),

using obvious notation, from which the claim follows. Similarly, for all z1 ∈ V1, it
holds γ 1

t (z1) = ν1
t (z1). The following equality will be useful below:

αi
t (x1:i−1, y1:i−1, z1:i−1) =

∏i−1

k=1
ν

xk ,yk
t (zk)π

k(xk, yk |x1:k−1, y1:k−1)
∑

u∈V :u1:i−1=z1:i−1
γt (u)

. (4.5)

Now, let us recall the well known disintegration formula for the relative entropy: if
γ ∈ P(V ) is absolutely continuous with respect to μ, then it holds

H(γ |μ) = H(γ 1|μ1) +
n∑

i=2

∑

z∈V

H(γ i ( · |z1:i−1)|μi )γ (z). (4.6)

Applying (4.6) to γt , and the (classical) convexity of the relative entropy, it holds

H(γt |μ) = H(γ 1
t |μ1) +

n∑

i=2

∑

z∈V

H(γ i
t ( · |z1:i−1)|μi )γt (z)

≤ H(ν1
t |μ1) +

n∑

i=2

∑

z∈V

∑

x1:i−1,

y1:i−1

αi
t (x1:i−1, y1:i−1, z1:i−1)H(ν

i,x1:i−1,y1:i−1
t |μi )γt (z).

Now we deal with each term in the sum separately. Fix i ∈ {2, . . . , n}. We have

∑

z∈V

∑

x1:i−1,

y1:i−1

αi
t (x1:i−1, y1:i−1, z1:i−1)H(ν

i,x1:i−1,y1:i−1
t |μi )γt (z)

=
∑

z1:i−1

∑

x1:i−1,

y1:i−1

αi
t (x1:i−1, y1:i−1, z1:i−1)H(ν

i,x1:i−1,y1:i−1
t |μi )

∑

u ∈ V :
u1:i−1 = z1:i−1

γt (u)

=
∑

z1:i−1

∑

x1:i−1,

y1:i−1

H(ν
i,x1:i−1,y1:i−1
t |μi )

i−1∏

k=1

ν
xk ,yk
t (zk)πk(xk , yk |x1:k−1, y1:k−1) (by (4.5))
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=
∑

x1:i−1,

y1:i−1

H(ν
i,x1:i−1,y1:i−1
t |μi )

i−1∏

i=1

πk(xk , yk |x1:k−1, y1:k−1) (integrating over zk)

=
∑

x,y
H(ν

i,x1:i−1,y1:i−1
t |μi )

n∏

k=1

πk(xk , yk |x1:k−1, y1:k−1).

Therefore, H(γt |μ) ≤ H(ν1
t |μ1) + ∑n

i=2
∑

x,y H(ν
i,x1:i−1,y1:i−1
t |μi )π̂(x, y). Now,

applying the assumed displacement convexity inequalities, we get

H(γt |μ) ≤ (1 − t)

[

H(ν1
0 |μ1) +

n∑

i=2

∑

x,y

H(νi
0( · |x1:i−1)|μi )π̂(x, y)

]

+ t

[

H(ν1
1 |μ1) +

n∑

i=2

∑

x,y

H(νi
1( · |y1:i−1)|μi )π̂(x, y)

]

− Ct (1 − t)

[

R2(π
1) +

n∑

i=2

∑

x,y

R2(π
i ( · |x1:i−1, y1:i−1))π̂(x, y)

]

= (1 − t)

[

H(ν1
0 |μ1) +

n∑

i=2

∑

x

H(νi
0( · |x1:i−1)|μi )ν0(x)

]

+ t

[

H(ν1
1 |μ1) +

n∑

i=2

∑

y

H(νi
1( · |y1:i−1)|μi )ν1(y)

]

− Ct (1 − t)

[

R2(π
1) +

n∑

i=2

∑

x,y

R2(π
i ( · |x1:i−1, y1:i−1))π̂(x, y)

]

≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − Ct (1 − t)(I (n)
2 (π̂) + Ī (n)

2 (π̂)),

where the last inequality follows from the disintegration equality (4.6) for the relative
entropy and from the disintegration inequality given in Proposition 3.5. ��

As an application of Theorem 1.1, we derive the displacement convexity of entropy
property on the hypercube.

Corollary 4.4 (Displacement convexity on the hypercube) Let μ be a non-trivial
Bernoulli measure on {0, 1} and define its n-fold product μ⊗n on �n = {0, 1}n. For
any ν0, ν1 ∈ P(�n), there exists a π ∈ �(ν0, ν1) such that for any t ∈ [0, 1],

H(νπ
t |μ⊗n) ≤ (1 − t)H(ν0|μ⊗n) + t H(ν1|μ⊗n) − t (1 − t)

2

(
I (n)
2 (π) + Ī (n)

2 (π)
)

,

(4.7)

and there exists π ∈ �(ν0, ν1) such that for any t ∈ [0, 1],

H(νπ
t |μ⊗n) ≤ (1 − t)H(ν0|μ⊗n) + t H(ν1|μ⊗n) − 2t (1 − t)J (n)

2 (π). (4.8)
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Proof According to Proposition 4.1, for all ν0, ν1 ∈ P({0, 1}), it holds

H(νt |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − t (1 − t)

2

(
T̃2(ν1|ν0) + T̃2(ν0|ν1)

)
, ∀t ∈ [0, 1],

with νt = (1 − t)ν0 + tν1. As we have seen in the proof of Lemma 3.2 the coupling
π defined by (3.1) is optimal for both T̃2(ν1|ν0) and T̃2(ν0|ν1). Since on the two-
point space νt = νπ

t is independent of π , the preceding inequality can be rewritten as
follows:

H(νπ
t |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − t (1 − t)

2

(
I2(π) + Ī2(π)

)
, ∀t ∈ [0, 1].

Therefore, we are in a position to apply Theorem 1.1, and to conclude that μ⊗n verifies
the announced displacement convexity property (4.7).

Similarly, by Lemma 3.2, the displacement convexity property (4.2) ensures that
for all ν0, ν1 ∈ P({0, 1})

H(νπ
t |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − 2t (1 − t)J2(π), ∀t ∈ [0, 1].

The result then follows from Theorem 1.1.

Let π be a coupling of ν0, ν1 ∈ P(�n). By the Cauchy-Schwarz inequality, we
have

J (n)
2 (π) =

n∑

i=1

⎛

⎝
∑

x,y∈�n

1xi �=yi π(x, y)

⎞

⎠

2

≥ 1

n

⎛

⎝
∑

x,y∈�n

n∑

i=1

1xi �=yi π(x, y)

⎞

⎠

2

= 1

n

⎛

⎝
∑

x,y∈�n

d(x, y)π(x, y)

⎞

⎠

2

≥ 1

n
W1(ν1, ν0)

2.

We immediately deduce from Corollary 4.4 the following weaker result.

Corollary 4.5 Let μ be a probability measure on {0, 1} and define its n-fold product
μ⊗n on �n = {0, 1}n. For any ν0, ν1 ∈ P(�n), there exists π ∈ �(ν0, ν1) such that
for t ∈ [0, 1],

H(νπ
t |μ⊗n) ≤ (1 − t)H(ν0|μ⊗n) + t H(ν1|μ⊗n) − 2t (1 − t)

n
W1(ν1, ν0)

2.

The constant 1/n encodes, in some sense, the discrete Ricci curvature of the hypercube
in accordance with the various definitions of the discrete Ricci curvature (see the
introduction).
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Remark 4.6 Since T̃2 is defined as an infimum, one can replace, for free, the term
I (n)
2 (π) by T̃ (n)

2 (ν1|ν0) in (4.7). Moreover, if one chooses ν0 = μ⊗n and uses
that H(νπ

t |μ⊗n) ≥ 0, one easily derives from (4.7) the following transport-entropy
inequality:

T̃ (n)
2 (ν|μ⊗n) + T̃ (n)

2 (μ⊗n|ν) ≤ 2H(ν|μ⊗n), ∀ν ∈ P(�n).

See [17] for more on such an inequality (on graphs). Note that the above argument is
general and that one can always derive from the displacement convexity of the entropy
some Talagrand-type transport-entropy inequality.

5 HWI type inequalities on graphs

As already stated in the introduction, the displacement convexity of entropy property
is usually (i.e., in continuous space settings) the strongest property in the following
hierarchy:

Displacement convexity ⇒ HWI ⇒ Log Sobolev.

Applying an argument based a the differentiation property of νπ
t , in this section,

we derive HWI and log-Sobolev type inequalities from the displacement convexity
property.

We shall start with the aforementioned differentiation property of the path νπ
t . Then,

we derive a general statement on product of graphs that allows to obtain symmetric
HWI inequality from the displacement convexity property of the entropy. As a con-
sequence, we get a new symmetric HWI inequality on the hypercube that implies a
modified log-Sobolev inequality on the hypercube. This modified log-Sobolev inequal-
ity also implies, by means of the Central Limit Theorem, the classical log-Sobolev
inequality for the standard Gaussian measure, with the optimal constant.

Then we move to another HWI type inequality involving the Dirichlet form
Eμ( f, log f ) based on Eq. (5.1) available on complete graph.

5.1 Differentiation property

A second property of the path defined in (2.2) and (2.3) is the following time differ-
entiation property.

For any z on a given geodesic γ from x to y, if z �= y, let γ+(z) denotes the (unique)
vertex on γ at distance d(z, y) − 1 from y (and thus at distance d(x, z) + 1 from x),
and similarly if z �= x , let γ−(z) denote the vertex on γ at distance d(z, y)+ 1 from y
(and hence at distance d(x, z) − 1 from x). In other words, following the geodesic γ

from x toward y, γ−(z) is the vertex just anterior to z, and γ+(z) the vertex posterior
to z.

For any real function f on V , we also define two related notions of gradient along
γ : for all z ∈ γ , z �= y,

∇+
γ f (z) = f (γ+(z)) − f (z),
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and for all z ∈ γ , z �= x ,

∇−
γ f (z) = f (z) − f (γ−(z)).

By convention, we put ∇−
γ f (x) = ∇+

γ f (y) = 0, and ∇+
γ f (z) = ∇−

γ f (z) = 0, if
z /∈ γ. Let ∇γ f denote the following convex combination of these two gradients:

∇γ f (z) = d(y, z)

d(x, y)
∇+

γ f (z) + d(x, z)

d(x, y)
∇−

γ f (z).

Observe that, although not explicitly stated, ∇γ depends on x and y. Finally, for all
z ∈ [[x, y]], we define

∇x,y f (z) = 1

|
(x, z, y)|
∑

γ∈
(x,z,y)

∇γ f (z),

and when z /∈ [[x, y]], we set ∇x,y f (z) = 0.

Proposition 5.1 For all function f : V → R and all x, y ∈ V , it holds

∂

∂t
ν

x,y
t ( f ) = d(x, y)ν

x,y
t (∇x,y f ).

As a direct consequence of the above differentiation property, we are able to give
an explicit expression of the derivative (with respect to time) of the relative entropy
of νπ

t with respect to an arbitrary reference measure.

Corollary 5.2 Let ν0, ν1 and μ be three probability measures on V . Assume that
μ(x) > 0 for all x in V . Then, for any coupling π ∈ �(ν0, ν1), it holds

∂

∂t
H(νπ

t |μ)|t=0 =
∑

x,z∈V :
z∼x

(

log
ν0(z)

μ(z)
− log

ν0(x)

μ(x)

)∑

y∈V

d(x, y)
|
(x, z, y)|
|
(x, y)| π(x, y).

The proof of Corollary 5.2 can be found below. Before, we illustrate Corollary 5.2
on the example of the complete graph.

Example of the complete graph Kn

Let Kn be the complete graph with n vertices. Recall that νπ
t = (1 − t)ν0 + tν1 (see

Sect. 2.1.1). Then, under the assumption of Corollary 5.2, since d(x, y) = |
(x, y)| =
|
(z, y)| = 1, we have

∂

∂t
H(νπ

t |μ)|t=0 =
∑

x∈Kn

∑

z∼x

(log f (z) − log f (x))π(x, z)

=
∑

z∈Kn

log f (z)ν1(z) −
∑

x∈Kn

f (x) log f (x)μ(x)
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where we set for simplicity f = ν0/μ. On the other hand, since f is a density with
respect to μ,

−Eμ( f, log f ) := −1

2

∑

x,z∈Kn

(log f (z) − log f (x))( f (z) − f (x))μ(x)μ(z)

=
∑

z∈Kn

log f (z)μ(z) −
∑

x∈Kn

f (x) log f (x)μ(x).

Hence, if ν1 = μ ≡ 1/n is the uniform measure on Kn (that charges all the points),
we can conclude that

∂

∂t
H(νπ

t |μ)|t=0 = −Eμ( f, log f ). (5.1)

Note that, when μ ≡ 1/n, Eμ corresponds to the Dirichlet form associated to the
uniform chain on the complete graph (each point jumps to any point with probability
1/n).

In order to prove Proposition 5.1, we need some preparation. Recall that B(n, t)
denotes a binomial variable of parameter n and t , and that, for any function
h : {0, 1, . . . , n} → R, B(n, t)(h) = ∑n

k=0 h(k)Ck
n tk(1 − t)n−k .

Lemma 5.3 Let n ∈ N
∗ and t ∈ [0, 1]. For any function h : {0, 1, . . . , n} → R it

holds

∂

∂t
B(n, t)(h)=

n∑

k=0

[(h(k+1)−h(k))(n − k) + (h(k) − h(k − 1))k] Ck
n tk(1 − t)n−k,

with the convention that h(−1) = h(n + 1) = 0.

Proof of Lemma 5.3 By differentiating in t , we have

∂

∂t
B(n, t)(h) =

n∑

k=0

h(k)kCk
n tk−1(1 − t)n−k −

n∑

k=0

h(k)(n − k)Ck
n tk(1 − t)n−k−1.

Now, using that 1 = t + (1 − t) and that kCk
n = (n − k + 1)Ck−1

n , we get

kCk
n tk−1(1 − t)n−k = kCk

n tk(1 − t)n−k + (n − k + 1)Ck−1
n tk−1(1 − t)n−k+1,

with the convention that C−1
n = 0. Similarly, using that (n − k)Ck

n = (k + 1)Ck+1
n ,

we have

(n−k)Ck
n tk(1−t)n−k−1 =(n − k)Ck

n tk(1 − t)n−k + (k + 1)Ck+1
n tk+1(1 − t)n−k−1.
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Hence,

∂

∂t
B(n, t)(h) =

n∑

k=0

h(k)(n − k + 1)Ck−1
n tk−1(1 − t)n−k+1

−
n∑

k=0

h(k)(n − k)Ck
n tk(1 − t)n−k +

n∑

k=0

h(k)kCk
n tk(1 − t)n−k

−
n∑

k=0

h(k)(k + 1)Ck+1
n tk+1(1 − t)n−k−1

=
n∑

k=0

(h(k + 1) − h(k))(n − k)Ck
n tk(1 − t)n−k

+
n∑

k=0

(h(k) − h(k − 1))kCk
n tk(1 − t)n−k,

with the convention that h(−1) = h(n + 1) = 0. ��
We were informed by Hillion [19] that the above elementary lemma also appears

in his thesis. We are now in a position to prove Proposition 5.1.

Proof of Proposition 5.1 Set n = d(x, y) and let 
 be a random variable uniformly
distributed on 
(x, y) and Nt be a random variable with Binomial law B(n, t) inde-
pendent of 
. By definition ν

x,y
t is the law of Xt = 
Nt . Using the independence, we

have

ν
x,y
t ( f ) = E [ f (Xt )] =

n∑

k=0

h(k)Ck
n tk(1 − t)n−k,

with h(k) = E[ f (
k)], k = 0, 1 . . . , n. According to Lemma 5.3, we thus get

∂

∂t
ν

x,y
t ( f ) =

n∑

k=0

[(h(k + 1) − h(k))(n − k) + (h(k) − h(k − 1))k] Ck
n tk(1 − t)n−k

= E [(h(Nt + 1) − h(Nt ))(n − Nt ) + (h(Nt ) − h(Nt − 1))Nt ]

= E
[
( f (
Nt +1) − f (
Nt ))d(
Nt , y) + ( f (
Nt ) − f (
Nt −1))d(x, 
Nt )

]

= E
[
( f (
+(Xt )) − f (Xt ))d(Xt , y) + ( f (Xt ) − f (
−(Xt )))d(x, Xt )

]

= E [d(x, y)∇
 f (Xt )].

Finally, observe that the law of 
 knowing Xt = z ∈ [[x, y]] is uniform on 
(x, z, y).

Indeed,

P(
 = γ, Xt = z) = P(
 = γ, γNt = z) = P(
 = γ, Nt = d(x, z), z ∈ γ )

= 1
(x,z,y)(γ )

|
(x, y)| P(Nt = d(x, z)).

123



Displacement convexity on graphs 81

On the other hand,

P(Xt = z) = ν
x,y
t (z) = P(Nt = d(x, z))

|
(x, z, y)|
|
(x, y)| ,

which proves the claim. By the definition of ∇x,y f , it thus follows that

∂

∂t
ν

x,y
t ( f ) = d(x, y) ν

x,y
t (∇x,y f ),

which completes the proof. ��
Proof of Corollary 5.2 For simplicity, let F = log(ν0/μ). We observe that, since∑

z∈V
∂
∂t ν

π
t (z) = 0, by Proposition 5.1 (recall that νπ

0 = ν0 and ν
x,y
0 = δx by

construction),

∂

∂t
H(νπ

t |μ)|t=0 = ∂

∂t

(
∑

z∈V

νπ
t (z) log

νπ
t (z)

μ(z)

)

|t=0

= ∂

∂t
νπ

t (F)|t=0

=
∑

(x,y)∈V 2

π(x, y)
∂

∂t
ν

x,y
t (F)

=
∑

(x,y)∈V 2

π(x, y)d(x, y)∇x,y F(x).

By the definition of the gradient, for any γ ∈ 
(x, y), it holds ∇γ F(x) = ∇+
γ F(x).

Thus, by the definition of ∇x,y F , we get

∂

∂t
H(νπ

t |μ)|t=0 =
∑

(x,y)∈V 2

π(x, y)d(x, y)

|
(x, y)|
∑

γ∈
(x,y)

∇+
γ F(x).

Now, observe that for (x, y) ∈ V 2 given, it holds

∑

γ∈
(x,y)

∇+
γ F(x) =

∑

γ∈
(x,y)

F(γ +(x)) − F(x) =
∑

z∼x

(F(z) − F(x))|
(x, z, y)| ,

completing the proof. ��

5.2 Symmetric HWI inequality for products of graphs

The aim of this section is to prove Proposition 1.2 and to derive a certain reinforced
log-Sobolev inequality (see below for a brief justification of the name) in the discrete
setting, and as a consequence, the classical log-Sobolev inequality of Gross on the
(continuous) line, with the optimal constant.
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Proof of Proposition 1.2 The displacement convexity inequality ensures that for all
t ∈ [0, 1],

H(ν0|μ) ≤ H(ν1|μ) − H(νπ
t |μ) − H(ν0|μ)

t
− c(1 − t)(I (n)

2 (π) + Ī (n)
2 (π)).

As t goes to 0, this yields

H(ν0|μ) ≤ H(ν1|μ) − ∂

∂t
H(νπ

t |μ)|t=0 − c(I (n)
2 (π) + Ī (n)

2 (π)),

where π ∈ �(ν0, ν1). According to Corollary 5.2, it holds

− ∂

∂t
H(νπ

t |μ)|t=0 =
∑

x,z∈V n :
z∼x

(

log
ν0(x)

μ(x)
− log

ν0(z)

μ(z)

) ∑

y∈V n

d(x, y)
|
(x, z, y)|
|
(x, y)| π(x, y)

≤
∑

x∈V n

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(

log
ν0(x)

μ(x)
− log

ν0(z)

μ(z)

)
⎤

⎦

+

×
∑

y∈V n

d(x, y)
|
(x, z, y)|
|
(x, y)| π(x, y).

According to (2.6), by induction on n ≥ 1, we get that for all u, y ∈ V n ,

|
(u, y)| = d(u, y)!
∏n

j=1 d(u j , y j )!
n∏

j=1

|
(u j , y j )|.

Applying this formula with u = z ∈ Ni (x) for some i ∈ {1, . . . , n} and u = x , we
get that for all y such that z ∈ [[x, y]], it holds

|
(x, z, y)|
|
(x, y)| = |
(z, y)|

|
(x, y)| = d(z, y)!
d(x, y)!

d(xi , yi )!
d(zi , yi )!

|
(zi , yi )|
|
(xi , yi )| = d(xi , yi )

d(x, y)

|
(zi , yi )|
|
(xi , yi )| ,

(5.2)

using that x j = z j for all i �= j and the relations d(x, y) = 1 + d(z, y) and
d(xi , yi ) = 1 + d(zi , yi ). Therefore, when z ∈ Ni (x),

∑

y∈V n

d(x, y)
|
(x, z, y)|
|
(x, y)| π(x, y) =

∑

y∈V

d(xi , yi )
|
(xi , zi , yi )|
|
(xi , yi )| π(x, y)

≤
∑

y∈V

d(xi , yi )π(x, y).

Plugging this inequality into the expression for − ∂
∂t H(νπ

t |μ)|t=0 yields:
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− ∂

∂t
H(νπ

t |μ)|t=0 ≤
∑

x∈V n

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(

log
ν0(x)

μ(x)
− log

ν0(z)

μ(z)

)
⎤

⎦

+

∑

y∈V n

d(xi , yi )π(x, y)

≤
∑

x∈V n

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(

log
ν0(x)

μ(x)
− log

ν0(z)

μ(z)

)
⎤

⎦

+

∑

y∈V n

d(xi , yi )
π(x, y)

ν0(x)
ν0(x)

≤

√
√
√
√
√

∑

x∈V n

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(

log
ν0(x)

μ(x)
− log

ν0(z)

μ(z)

)
⎤

⎦

2

+
ν0(x)

√

I (n)
2 (π),

where the last line follows from the Cauchy-Schwarz inequality. This completes the
proof. ��

We proceed with the announced reinforced log-Sobolev inequality and its conse-
quences.

Choose ν1 = μ in (1.10) and denote by f (x) = ν0(x)/μ(x). Then, using the
elementary inequality

√
ab ≤ a/(2ε)+εb/2, ε > 0, we immediately get the following

corollary.

Corollary 5.4 (Reinforced log-Sobolev) Under the same assumptions of Proposition
1.2, for all f : V n → (0,∞) with μ( f ) = 1, for all ε ≤ 2c, it holds that

Entμ( f ) ≤ 1

2ε

∑

x∈V n

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(log f (x) − log f (z))

⎤

⎦

2

+
× f (x)μ(x) − (c − ε

2
)T̃2(μ| f μ) − cT̃2( f μ|μ). (5.3)

Inequality (5.3) can be seen as a reinforcement of a (discrete) modified log-Sobolev
inequality. The next corollary deals with the special case of the discrete cube.

Corollary 5.5 (Reinforced log-Sobolev on �n and Gross’ Inequality) Let μ be a
non-trivial Bernoulli measure on {0, 1}. Then, for any n and any f : �n → (0,∞), it
holds

Entμ⊗n ( f ) ≤ 1

2

∑

x∈�n

n∑

i=1

[
log f (x) − log f (σi (x))

]2
+ f (x)μ⊗n(x) − 1

2
T̃2( f μ|μ),

(5.4)

where σi (x) = (x1, . . . , xi−1, 1 − xi , xi+1, . . . , xn) is the neighbor of x = (x1, . . . ,

xn) for which the i-th coordinate differs from that of x.
As a consequence, for any n and any g : R

n → R smooth enough, it holds

Entγn (e
g) ≤ 1

2

∫

|∇g|2egdγn (5.5)

where γn is the standard Gaussian measure on R
n, and |∇g| is the length of the

gradient of g.
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Remark 5.6 Note that the constant 1/2 in the above log-Sobolev inequality for the
standard Gaussian is optimal, see e.g. [1, Chapter 1].

Proof of Proposition 1.2 By Corollary 4.4, Inequality (5.3) holds with c = 1/2.
Observe that Ni (x) = {σi (x)} where σi (x) = (x1, . . . , xi−1, 1 − xi , xi+1, . . . , xn)

is the neighbor of x = (x1, . . . , xn) for which the i-th coordinate differs from that of
x . For ε = 1, Corollary 5.4 gives

Entμ⊗n ( f ) ≤ 1

2

∑

x∈�n

n∑

i=1

[
log f (x) − log f (σi (x))

]2
+ f (x)μ⊗n(x) − 1

2
T̃2( f μ|μ),

which is the first part of the corollary.
For the second part, we shall apply the Central Limit Theorem. Our starting point

is the following modified log-Sobolev inequality on the hypercube:

Entμ⊗n ( f ) ≤ 1

2

∑

x∈�n

n∑

i=1

[
log f (x) − log f (σi (x))

]2
+ f (x)μ⊗n(x) (5.6)

that holds for all product probability measures on the hypercube �n = {0, 1}n , for all
dimensions n ≥ 1.

First we observe that, by the tensorization of the log-Sobolev inequality (see e.g. [1,
Chapter 1]), we only need to prove Gross’ Inequality (5.5) in dimension one (n = 1).
Then, thanks to a result by Miclo [37], we know that extremal functions in the log-
Sobolev inequality, in dimension one, are monotone. Hence, we can assume that g
is monotone and non-decreasing (the case g non-increasing can be treated similarly).
Furthermore, for convenience, we first assume that the function g : R → R is smooth
and bounded.

Let μp be the Bernoulli probability measure with parameter p ∈ (0, 1). We apply
(5.6) to the function f = eGn , with

Gn(x) = g

(∑n
i=1 xi − np√
np(1 − p)

)

, x ∈ �n,

so that Entμ⊗n
p

(
eGn

)
tends to Entγ (eg) by the Central Limit Theorem. It remains to

identify the limit, when n tends to infinity, of the Dirichlet form [in the right-hand side
of (5.6)]. Let x̄ i yi denote the vector (x1, . . . , xi−1, yi , xi+1, . . . , xn). Then,

∑

xi ∈{0,1}
[Gn(x) − Gn(σi (x))]2+eGn(x) μp(xi ) = p[Gn(x̄ i 1) − Gn(x̄ i 0)]2+eGn(x̄ i 1)

+ (1 − p)[Gn(x̄ i 0) − Gn(x̄ i 1)]2+eGn(x̄ i 0).
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Now, since

∑n
i=1 xi − np√
np(1 − p)

−
∑

j �=i x j − (n − 1)p√
(n − 1)p(1 − p)

= xi√
np(1 − p)

+ 1√
p(1 − p)

∑

j �=i

x j

(
1√
n

− 1√
n − 1

)

− p√
p(1 − p)

(√
n − √

n − 1
)

= xi√
np(1 − p)

−
∑

j �=i x j√
p(1 − p)

(√
n + √

n − 1
)√

n
√

n − 1

− p√
p(1 − p)

(√
n + √

n − 1
) = O

(
1√
n

)

,

by a Taylor Expansion, we have

Gn(x̄ i 1) − Gn(x̄ i 0) = 1√
np(1 − p)

g′
(∑

j �=i x j − p(n − 1)√
(n − 1)p(1 − p)

)

+ O

(
1

n

)

.

Setting yi (x) =
∑

j �=i x j − p(n − 1)√
(n − 1)p(1 − p)

, it follows that

∑

xi ∈{0,1}
[Gn(x) − Gn(σi (x))]2+eGn(x) μp(xi ) = g′ (yi (x))2 eg(yi (x))

n(1 − p)
+ O

(
1

n3/2

)

.

Now, since all yi (x)’s have the same law under μ⊗n
p , it follows that

∑

x∈�n

n∑

i=1

[Gn(x) − Gn(σi (x))]2+eGn(x) μ⊗n
p (x) =

∑

x∈�n

g′ (y1(x))2 eg(y1(x))

1 − p
μ⊗n

p (x)

+ O

(
1√
n

)

.

The desired result follows by the Central Limit Theorem, then optimizing over all
p ∈ (0, 1), and finally by a standard density argument. This ends the proof. ��

5.3 The complete graph

Combining the differentiation property (5.1) together with the displacement convexity
on the complete graph of Proposition 4.1, we prove the following result.

Proposition 5.7 (HWI type inequality on the complete graph) Let μ ≡ 1/n be the
uniform measure on the complete graph Kn. Then, for any f : V (Kn) → (0,∞) with∫

f dμ = 1, it holds

Entμ( f ) ≤ Eμ( f, log f ) − 1

2

(
T̃2(μ| f μ) + T̃2( f μ|μ)

)
,
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where

Eμ( f, log f ) := 1

2

∑

x,y∈Kn

( f (y) − f (x))(log f (y) − log f (x))μ(x)μ(y)

corresponds to the Dirichlet form associated to the Markov chain on Kn that jumps
uniformly at random from any vertex to any vertex (i.e. with transition probabilities
K (x, y) = μ(y) = 1/n, for any x, y ∈ V (Kn)).

Proof We follow the same line of proof as in Proposition 1.2. Fix f : V (Kn) →
(0,∞) with

∫
f dμ = 1. By Proposition 4.1, applied to ν1 = μ (which implies that

H(ν1|μ) = 0) and ν0 = f μ, we have

H(νt |μ) ≤ (1 − t)H(ν0|μ) − t (1 − t)

2

(
T̃2(ν1|ν0) + T̃2(ν0|ν1)

)
,

where νt = (1 − t)ν0 + tν1. Hence, as t goes to 0, we get

∫

f log f dμ = H(ν0|μ) ≤ − ∂

∂t
H(νt |μ)|t=0 − 1

2

(
T̃2(ν1|ν0) + T̃2(ν0|ν1)

)
.

The expected result follows from (5.1). ��
In the case of the two-point space, one can deal with any Bernoulli measure (not

only the uniform one as in the case of the complete graph).

Proposition 5.8 (HWI for the two-point space) Let μ be a Bernoulli-p, p ∈ (0, 1),
measure on the two-point space �1 = {0, 1}. Then, for any f : �1 → (0,∞) with
μ( f ) = 1, it holds

Entμ( f ) ≤ Eμ( f, log f ) − 1

2
max

{
T̃2(μ| f μ) + T̃2( f μ|μ), ‖ f μ − μ‖T V

}

where,

Eμ( f, log f ) = p(1 − p)( f (1) − f (0))(log f (1) − log f (0)).

See Remark 4.3 for a comparison between T̃2(μ| f μ) + T̃2( f μ|μ) and‖ f μ−μ‖T V.

Proof Reasoning as above, Proposition 4.1, applied to ν1 = μ and ν0 = f μ, implies

Entμ( f ) ≤ − ∂

∂t
H(νt |μ)|t=0 − 1

2
max

{
T̃2(μ| f μ) + T̃2( f μ|μ), ‖ f μ − μ‖T V

}
,

where νt = (1 − t) f μ + tμ. Set q = 1 − p. Since H(νt |μ) = [(1 − t) f (0)q +
tq] log[(1 − t) f (0) + t] + [(1 − t) f (1)p + tp] log[(1 − t) f (1) + t], it immediately
follows that
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∂

∂t
H(νt |μ)|t=0 = q(1 − f (0)) log f (0)+q(1− f (0))+ p(1− f (1)) log f (1)+ p(1− f (1))

= q(1 − f (0)) log f (0) + p(1 − f (1)) log f (1)

where the second equality is a consequence of the fact that p + q = 1 = μ( f ) =
q f (0) + p f (1). Using again that 1 = q f (0) + p f (1), we observe that

q(1 − f (0)) log f (0) = pq( f (1) − f (0)) log f (0)

and

p(1 − f (1)) log f (1) = −pq( f (1) − f (0) log f (1),

from which the expected result follows. ��

6 Prékopa-Leindler type inequality

In this section we show by a duality argument that the displacement convexity property
implies a discrete version of the Prékopa-Leindler inequality. (This argument was
originally done by Lehec [27] in the context of Brascamp-Lieb inequalities.) Then
we show that this Prékopa-Leindler inequality allows to recover the discrete modified
log-Sobolev inequality (5.6) and a weak version of the transport entropy inequality of
Remark 4.6.

Let us first recall the statement of the usual Prékopa-Leindler inequality.

Theorem 6.1 (Prékopa-Leindler [28,43,44]) Let n ∈ N
∗ and t ∈ [0, 1]. For all triples

( f, g, h) of measurable functions on R
n such that

h((1 − t)x + t y) ≥ (1 − t) f (x) + tg(y), ∀x, y ∈ R
n,

it holds

∫

eh(z) dz ≥
(∫

e f (x) dx

)1−t (∫

eg(y) dy

)t

.

Using the identity (with ‖ · ‖ denoting the Euclidean norm),

1

2
‖(1 − t)x + t y‖2

2 = (1 − t)
‖x‖2

2

2
+ t

‖y‖2
2

2
− t (1 − t)

‖x − y‖2
2

2
, x, y ∈ R

n,

one can recast, without loss, the preceding result into an inequality for the Gaussian
distribution.

Theorem 6.2 (Prékopa-Leindler: the Gaussian case) Let γn be the standard normal
distribution on R

n and t ∈ [0, 1]. For all triples ( f, g, h) of measurable functions on
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R
n such that

h((1 − t)x + t y) ≥ (1 − t) f (x) + tg(y) − t (1 − t)

2
‖x − y‖2

2, ∀x, y ∈ R
n,

(6.1)

it holds that

∫

eh(z) γn(dz) ≥
(∫

e f (x) γn(dx)

)1−t (∫

eg(y) γn(dy)

)t

.

The next result shows that a discrete Prékopa-Leindler inequality can be derived
from the displacement convexity property of the relative entropy.

Theorem 6.3 (Prékopa-Leindler (discrete version)) Let n ∈ N
∗, t ∈ [0, 1] and μ ∈

P(V n). Suppose that μ verifies the following property: for any ν0, ν1 ∈ P(V n), there
exists a coupling π ∈ �(ν0, ν1) such that

H(νπ
t |μ) ≤ (1 − t)H(ν0|μ) + t H(ν1|μ) − ct (1 − t)I (n)

2 (π). (6.2)

If ( f, g, h) is a triple of functions on V n such that: ∀x ∈ V n, ∀m ∈ P(V n) ,

∫∫

h(z) ν
x,y
t (dz)m(dy) ≥ (1 − t) f (x) + t

∫

g(y) m(dy) − ct (1 − t)

×
n∑

i=1

(∫

d(xi , yi ) m(dy)

)2

, (6.3)

then it holds

∫

eh(z) μ(dz) ≥
(∫

e f (x) μ(dx)

)1−t (∫

eg(y) μ(dy)

)t

.

Proof Let n ∈ N, f, g, h : V n �→ R, μ ∈ P(V n), t ∈ [0, 1] and c ∈ (0,∞) satisfying
the hypotheses of the theorem. Given ν0, ν1 ∈ P(V n), let π be such that (6.2) holds
and let p be such that π(x, y) = ν0(x)p(x, y), x, y ∈ V n .

Then, integrate (6.4) in the variable x with respect to ν0, with m(y) = p(x, y), so
that (recalling (2.3))

∫

h dνπ
t ≥ (1 − t)

∫

f dν0 + t
∫

g dν1 − ct (1 − t)I (n)
2 (π).

Together with (6.2), we end up with

∫

h dνπ
t − H(νπ

t |μ) ≥ (1 − t)

(∫

f dν0 − H(ν0|μ)

)

+ t

(∫

g dν1 − H(ν1|μ)

)

.
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The result follows by optimization, since by duality (for any α : V n �→ R) ,

sup
m∈P(V n)

{∫

α dm − H(m|μ)

}

= log
∫

eα dμ.

This ends the proof. ��
An immediate corollary is a Prékopa-Leindler inequality on the discrete hypercube.

Corollary 6.4 Let μ be a probability measure on {0, 1}, n ∈ N
∗ and t ∈ [0, 1]. For

all triple ( f, g, h) verifying (6.4) with c = 1/2, it holds

∫

eh(z) μ⊗n(dz) ≥
(∫

e f (x) μ⊗n(dx)

)1−t (∫

eg(y) μ⊗n(dy)

)t

.

It is well known that Talagrand’s transport-entropy inequality and the logarithmic
Sobolev inequality for the Gaussian measure are both consequences of the Prékopa-
Leindler inequality of Theorem 6.2 [4]. Similarly the discrete version of Prékopa-
Leindler inequality implies the modified logarithmic Sobolev inequality induced by
Corollary 5.4 and the transport-entropy inequality associated with the distance T̃2 of
Remark 4.6.

Corollary 6.5 Assume that the following Prékopa-Leindler inequality holds: for
all t ∈ (0, 1), for all triples of functions ( f, g, h) on V n such that: ∀x ∈ V n,
∀m ∈ P(V n) ,

∫∫

h(z) ν
x,y
t (dz)m(dy) ≥ (1 − t) f (x) + t

∫

g(y) m(dy) − ct (1 − t)

×
n∑

i=1

(∫

d(xi , yi ) m(dy)

)2

,

it holds that

∫

eh(z) μ(dz) ≥
(∫

e f (x) μ(dx)

)1−t (∫

eg(y) μ(dy)

)t

.

Then one has, for all functions h : V n → R,

Entμ(eh) ≤ 1

4c

∑

x∈V n

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(h(x) − h(z))

⎤

⎦

2

+
eh(x)μ(x).

and for all probability measures ν, absolutly continous with respect to μ,

c T̃2(μ|ν) ≤ H(ν|μ), (6.4)

c T̃2(ν|μ) ≤ H(ν|μ), (6.5)
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Proof We first prove the transport-entropy inequalities (6.4) and (6.5). Let k be a
function on V n (necessarily bounded, since V is finite). We apply the discrete Prékopa-
Leindler inequality with h = 0, g = −(1 − t)k and f = t Qk, with Qk defined so
that the condition (6.4) holds: for all x ∈ V n ,

Qk(x) = inf
m∈P(V n)

{∫

k(y) m(dy) + c
n∑

i=1

(∫

d(xi , yi ) m(dy)

)2
}

.

Therefore, one has for all t ∈ (0, 1),

(∫

et Qkdμ

)1/t (∫

e−(1−t)k dμ

)1/(1−t)

≤ 1.

As t goes to 1, we get for all functions k on V n ,

∫

eQkdμ ≤ eμ(k),

and this is known to be a dual form of the transport-entropy inequality (6.4) (see [17]).
Similarly as t goes to 0, we get for all functions k on V n ,

∫

e−kdμ ≤ e−μ(Qk),

which is a dual form of the transport-entropy inequality (6.5).
Let us now turn to the proof of the modified discrete logarithmic Sobolev inequality.

Fix a bounded function h : V n → R and choose g = th and f = h + t Rt h with Rt h
designed so that condition (6.4) holds. Namely, for all x ∈ V n ,

Rt h(x) = inf
m

{
1

t (1 − t)

(∫∫

h(z)νx,y
t (dz) m(dy) − (1 − t)h(x)

)

− t

1 − t

∫

h(y) m(dy) + c
n∑

i=1

(∫

d(xi , yi ) m(dy)

)2
}

,

where the infimum runs over all probability measures m ∈ P(V n). Then the Prékopa-
Leindler inequality reads

∫

ehdμ ≥
(∫

ehet Rt hdμ

)1−t (∫

ethdμ

)t

,

which can be rewritten as

1 ≥
(∫

et Rt hdμh

)1/t (∫

e(t−1)hdμh

)1/(1−t)

,
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with dμh = eh
∫

eh dμ
dμ. Letting t go to 0, we easily deduce (leaving some details to

the reader) that,

∫ (

lim inf
t→0

Rt h

)

ehdμ ≤
∫

ehdμ log
∫

ehdμ .

This can equivalently be written as

Entμ(eh) ≤
∫ (

h − lim inf
t→0

Rt h

)

ehdμ.

We conclude using the following claim. ��

Claim 6.6 For all x ∈ R, we have

h(x) − lim inf
t→0

Rt h(x) ≤ 1

4c

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(h(x) − h(z))

⎤

⎦

2

+
.

Proof of Claim 6.6 By a Taylor expansion and by Proposition 5.1, for all x, y ∈ V n ,

∫

h(z)νx,y
t (dz) = ν

x,y
t (h) = ν

x,y
0 (h) + td(x, y)ν

x,y
0

(∇x,yh
) + o(t)

= h(x) + td(x, y)∇x,yh(x) + o(t),

with the quantity o(t) independent of y since h is bounded. Now, from the definition
of the sets Ni (x), i ∈ {1, . . . , n} and using the identity (5.2), one has

∇x,yh(x) = 1

|
(x, y)|
∑

γ∈
(x,y)

(h(γ+(x)) − h(x)) =
∑

z∈Vn ,z∼x

(h(z) − h(x))
|
(x, z, y)|
|
(x, y)|

=
n∑

i=1

∑

z∈Ni (x)

(h(z) − h(x))
d(xi , yi )|
(xi , zi , yi )|

d(x, y)|
(xi , yi )| .

Therefore
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h(x) − Rt h(x) = sup
m

⎧
⎨

⎩

∫ n∑

i=1

∑

z∈Ni (x)

(h(x) − h(z)) d(xi , yi )
|
(xi , zi , yi )|
|
(xi , yi )| m(dy)

− c
n∑

i=1

(∫

d(xi , yi ) m(dy)

)2
}

+ o(1)

≤
n∑

i=1

sup
m

⎧
⎨

⎩

⎡

⎣
∑

z∈Ni (x)

(h(x) − h(z))

⎤

⎦

+

∫

d(xi , yi )m(dy)

− c

(∫

d(xi , yi ) m(dy)

)2
}

+ o(1)

≤
n∑

i=1

sup
v≥0

⎧
⎨

⎩
v

⎡

⎣
∑

z∈Ni (x)

(h(x) − h(z))

⎤

⎦

+
− cv2

⎫
⎬

⎭
+ o(1)

= 1

4c

n∑

i=1

⎡

⎣
∑

z∈Ni (x)

(h(x) − h(z))

⎤

⎦

2

+
+ o(1).

The claim follows by letting t go to 0. ��
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