
Probab. Theory Relat. Fields (2014) 160:1–45
DOI 10.1007/s00440-013-0522-z

Limit theorems for von Mises statistics of a measure
preserving transformation

Manfred Denker · Mikhail Gordin

Received: 31 August 2011 / Revised: 6 January 2013 / Published online: 10 August 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract For a measure preserving transformation T of a probability space (X,F , μ)
and some d ≥ 1 we investigate almost sure and distributional convergence of random
variables of the form

x → 1

Cn

∑

0≤i1,..., id<n

f (T i1 x, . . . , T id x), n = 1, 2, . . . ,

where C1,C2, . . . are normalizing constants and the kernel f belongs to an appropriate
subspace in some L p(Xd, F⊗d, μd). We establish a form of the individual ergodic
theorem for such sequences. Using a filtration compatible with T and the martingale
approximation, we prove a central limit theorem in the non-degenerate case; for a class
of canonical (totally degenerate) kernels and d = 2, we also show that the convergence
holds in distribution towards a quadratic form

∑∞
m=1 λmη

2
m in independent standard

Gaussian variables η1, η2, . . ..
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1 Introduction

1.1 Objectives and contents

The present paper aims to extend the theory of von Mises statistics for independent,
identically distributed random variables to the realm of strictly stationary processes.
Every stationary process will be investigated together with a respective measure pre-
serving transformation of the main probability space. Such a transformation is the
only structure used in the present article to establish a Strong Law of Large Numbers
(SLLN) for von Mises statistics. The Central Limit Theorem (CLT) and other weak
convergence results are treated in the framework of a filtration compatible with the
transformation. A stationary processes generating such a filtration will appear only in
applications. It turns out that a considerable part of the limit theory can be developed
on this basis. One of the objectives of the paper is to show that such a relatively mod-
est additional structure creates a suitable setting to apply some form of the martingale
approximation; indeed, the latter is our main tool when proving the CLT-type results.
Below, we will explain another objective of the present work and its results; the latter
are collected in four statements.

Let T be a measure preserving transformation of a probability space (X,F , μ). For
every d ≥ 1 and every suitable (see the next paragraph for the elaboration) measurable
function f : Xd → R, called a kernel, we investigate, after normalizing appropriately,
the asymptotic behavior of random variables

x �→
∑

0≤i1< n,..., 0≤ id <n

f (T i1 x, . . . , T id x), n = 1, 2, . . . , (1)

as n tends to ∞. Every function of the form (1), normalized by some constant or not,
will be called a von Mises statistic (or a V -statistic) for the transformation T and the
kernel f . Notice that the same class of statistics is determined by symmetric kernels,
so we will assume that f is symmetric whenever it is needed.

At first glance the summands in (1) can be defined in two steps. Firstly, the functions
(x1, . . . , xd) �→ f (T i1 x1, . . . , T id xd) can be obtained using the dynamics coordinate-
wise; secondly, they should be restricted to the main diagonal of Xd . The second step,
however, requires some care. Analysis and clarification of the concept of restriction
became another important objective of this work. This is a crucial point determining
substantially the approach in the present paper. If f : Xd → R is a measurable func-
tion on the Cartesian power (Xd ,F⊗d , μd), it is viewed, as usual, not as an individual
function, but rather as an equivalence class of individual functions any two of which
agree on some set of measure 1. Such an equivalence class, in general, does not have
a well-defined restriction to a subset of measure zero, like the main diagonal is in
the case of the atomless space (X,F , μ). However, some equivalence classes may
contain individual functions with well-defined restrictions (for example, continuous
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Von Mises statistics of a transformation 3

functions, assuming that X is the unit interval with the Lebesgue measureμ). A simple
but important observation made in this article is that suitable nice functions on prod-
uct probability spaces can be described in purely measure-theoretical terms. The key
concept here is the projective tensor product of Banach spaces. First we show that,
under appropriate assumptions, the elements of a respective abstract Banach space
can be viewed as functions from some L p(μ

d). In particular, every such a function
determines an equivalence class discussed above. Analogously to the situation with
continuous functions, nice representatives (non-unique) can be found within every
such equivalence class; in view of specific properties of projective tensor products,
they can be represented by absolutely convergent series of the products of functions
in separate variables. Furthermore, such ‘special representatives’ can be restricted
to the main diagonal in a correct way. Notice, that the main diagonal is considered
here as a probability measure space whose measure is the image of μ under the map
x �→ (x, . . . , x )︸ ︷︷ ︸

d times

; correctness means here that possible uncertainty in the choice of the

restricted function concerns only sets of measure 0 on the diagonal. We emphasize that
this procedure of ‘naive restriction’ applies to ‘special representatives’ of equivalence
classes only. Different choice of a representative within the same equivalence class
may lead to misunderstandings which can be observed in the literature. In the present
paper, however, another approach to the restriction problem is developed. Using gen-
eral properties of projective tensor products, a restriction operator is defined. We will
see that this operator agrees with the ‘naive restriction’ in the case of the sums of
product functions and their proper limits. On the other hand, for every equivalence
class of measurable functions discussed above, the restriction operator can (or can not)
be applied to the entire equivalence class and sends it, if applicable, to an equivalence
class of functions on the diagonal; thus, no special choice of a representative within the
class is needed. Moreover, we show in Proposition 2 that the correct restriction can be
obtained as the result of a natural procedure combining approximation and regulariza-
tion (compare with the Steklov smoothing operators and Theorem 8.4 in [29]). Finally,
we obtain, along with the correctness of the restriction, its continuous dependence on
the kernel; this continuity is critical for our approach. The above discussion introduces
the following result which summarizes Lemma 1 and a particular case of Proposition
1 in Sect. 2 where also some information on projective tensor products can be found.
We denote by L p(μ

d) the space L p
(
Xd ,F⊗d , μd

)
and by | · |p the norm in any

space L p.

Statement A Let p ∈ [1,∞) and dr = p. Then the projective tensor product
L p, π (μ

d) of d copies of L p(μ) is contractively embedded into L p (μ
d) as a dense

subspace. The embedding is given by a linear map sending an elementary tensor
f1 ⊗ · · · ⊗ fd to the function (x1, . . . , xd) �→ f1(x1) · · · fd(xd). Moreover, the linear
map Dd defined on elementary tensors f1 ⊗ · · · ⊗ fd by the relation

Dd( f1 ⊗ · · · ⊗ fd)(x) = f1(x) · · · fd(x), x ∈ X,

is a norm 1 linear map of L p, π (μ
d) ⊂ L p(μ

d) to Lr (μ).
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4 M. Denker, M. Gordin

We shall see that the map Dd is compatible with the dynamics defined by T in the
sense that for every x ∈ X and n1, . . . , nd ∈ Z+

Dd
(
( f1 ◦ T n1)⊗ · · · ⊗ ( fd ◦ T nd )

)
(x) = ( f1 ◦ T n1)(x) · · · ( fd ◦ T nd )(x).

For k = (k1, . . . , kd) and n = (n1, . . . , nd) we use the notation k < n (k ≤ n)
if kl < nl (respectively, kl ≤ nl ) for every l = 1, . . . , d; we set for a function
f : Xd → R

(
V k f

)
(x1, . . . , xn) = f (T k1 x1, . . . , T kd xd), x1, . . . , xd ∈ X.

The operators V k act on every space L p(μ
d) and also on every L p, π (μ

d) (1 ≤ p ≤
∞). So do the (pre-)adjoint operators V ∗ k (details are contained in Sect. 2).

Statement A leads to the following version of the multivariate ergodic theorem
(Corollary 2 in Sect. 3).

Statement B Let p = dr, 1 ≤ r, p < ∞. Then for f ∈ L p, π (μ
d) we have

1

n1 n2 . . . nd

∑

0≤k<n

Dd V k f → Dd E⊗d
inv, π f (2)

almost surely and in the norm of Lr (μ) as n1, . . . , nd → ∞.

Here Einv is the conditional expectation operator with respect to the σ -algebra of
T -invariant sets, and E⊗d

inv, π is the d-th projective tensor power of Einv.

The distributional limit theorems rely on the Hoeffding decomposition. For every
m ∈ {1, . . . , d} let Lsym

p (μm) be the subspace of symmetric elements of L p (μ
m), Sm

d
be the collection of all subsets of {1, . . . , d} of cardinality m and, for every S ∈ Sm

d ,
let πS be the projection map from Xd onto Xm which only keeps coordinates with
indices in S. The symmetric Hoeffding decomposition asserts the existence of operators
Rm : Lsym

p (μd) → Lsym
p (μm) such that every f ∈ Lsym

p (μd) can be represented in
a unique way in the form

f =
d∑

m=0

∑

S∈Sm
d

(Rm f ) ◦ πS

(see Sect. 4 for details). The same or analogous notation will be applied to the spaces
L p, π (μ

d).
In the following Statement C (Theorem 2 in Sect. 7) we assume that T is an exact

transformation in the sense that
⋂

n≥1 T −nF = N , where N is the trivial sub-σ -
field of F . Let E denote the expectation operator. Using the Hoeffding decomposition
and applying to every of its components the multiparameter martingale-coboundary
representation [33], we prove
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Von Mises statistics of a transformation 5

Statement C Let T be an exact transformation and f ∈ Lsym
2 ( μd) be a real-valued

kernel. Assume that for every m = 1, . . . , d, Rm f ∈ Lsym
2m, π ( μ

m) and the series

∑

0≤ k<∞
V ∗ k Rm f

(
def= lim

n→∞
∑

0≤k<n

V ∗ k Rm f

)
(3)

converges in L2m, π ( μ
m) (here k = (k1, . . . , km), n = (n1, . . . , nm)). Then

V (d)
n f

def= 1

nd−1/2

∑

0 ≤ k1, ..., kd ≤ n−1

Dd V (k1, ..., kd )( f − R0 f )

converges in distribution to a centered Gaussian random variable with variance
d2σ 2( f ) ≥ 0, where

σ 2( f ) =
∣∣∣∣

∞∑

k=0

V ∗ k R1 f

∣∣∣∣
2

2
−
∣∣∣∣

∞∑

k=1

V ∗k R1 f

∣∣∣∣
2

2
≥ 0.

The convergence of the second moments

E(V (d)
n f )2 →

n→∞ d 2σ 2( f )

holds as well.

This CLT is complemented by Theorem 3 in Sect. 7 which asserts, under weaker
assumptions, only the convergence of the first absolute moments (besides the con-
vergence to the Gaussian distribution). Last, in Theorem 4 of Sect. 8, we prove the
following distributional result when d = 2 and f is a symmetric canonical kernel
(that is R0 f = 0 and R1 f = 0).

Statement D Let d = 2. For every canonical f satisfying the assumptions in State-
ment C there exists an absolutely summable real sequence (λm)m∈N such that the
random variables

1

n

∑

0≤ k1, k2≤ n−1

DV (k1, k2) f

converge in distribution, as n → ∞, to

ξ =
∞∑

m=1

λmη
2
m

where (ηm)m≥1 is a sequence of independent standard Gaussian random variables.
Moreover,
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6 M. Denker, M. Gordin

E

⎛

⎝ 1

n

∑

0≤ i1, i2≤ n−1

D2V (i1, i2) f

⎞

⎠ →
n→∞

∞∑

m=1

λm .

The main limit theorems are presented with proofs in Sects. 3, 7 and 8. Section 2
contains necessary preliminary material; in particular, the restriction operator is intro-
duced there. The Hoeffding decomposition and filtrations are discussed, respectively,
in Sects. 4 and 5. Section 6 contains the main part of the preparatory work for the
rest of the paper. It is here that the martingale decomposition undergoes the projec-
tive tensor multiplication, leading from the classical Burkholder martingale inequality
to upper bounds for certain multiparameter sums. These bounds allow (Sect. 7) to
neglect the influence of higher degree summands in the Hoeffding decomposition to
the asymptotic behavior when proving the CLT in the non-degenerate case. They are
also applied in Sect. 8 in the proof of Statement D to show that the contribution of
“partial coboundaries” vanishes in the limit; this reduces the proof to the particular
case of a kernel with maximal possible martingale difference properties. Some exam-
ples (in fact, mostly general results treating entire classes of stationary processes and
kernels) are collected in Sect. 9.

The above stated results, along with their modification for the case of invertible
transformations (see Remark 8) and the examples in Sect. 9, clearly show that a sub-
stantial part of the limit theory for V -statistics of stationary processes can be developed,
basing exclusively on projective tensor products and martingale approximations. The
latter is presented only in its original primitive form (moreover, only the adapted
case is considered). Using more recent developments could substantially relax many
assumptions in the paper. Many other limit results can be established similarly or at
the expense of small additional efforts. However, we believe that this presentation is
more suitable for introducing the subject.

Remark 1 For a given function f defined on (Xd ,F⊗d , μd), a natural question arises
to decide whether f ∈ L p, π (μ

d) and to bound its norm. For d = 2 and some
p ∈ (1,∞], p ′ ∈ [1,∞), p−1 + (p ′)−1 = 1, an equivalent question is whether
the integral operator from L p ′ to L p with the kernel f is nuclear [49]. There is an
extensive literature on the topic, especially on nuclear (or trace class: see [47] and
also [49] where Exercise 2.12 shows the difference between the complex and the
real cases) operators in Hilbert spaces. Criteria for integral operators to be nuclear
can be traced back to classical papers of Fredholm and Carleman (see monographs
[28,29] and references therein; in [29] also nuclear operators in Banach spaces are
considered). A special class consists of positive semidefinite kernels. For example,
the well-known Mercer’s theorem implies f ∈ L2, π (μ

2) for such kernels under the
additional assumption that X is a compact space and f is continuous.

To the best of our knowledge, for d ≥ 3, much fewer literature exists on this topic.
The main tool here is the expansion of f into a functional series whose summands
are products of sufficiently regular functions in separate variables x1, . . . , xd (see
Proposition 6 and Sect. 9 for some examples).

Remark 2 The U -statistics [that is, for symmetric kernels f , the off-diagonal modi-
fication of sums (1)] are mentioned but not treated in the present paper. Under some
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Von Mises statistics of a transformation 7

strengthening our assumptions (the series in (3), (29) and (32) should converge uncon-
ditionally; for example, this will be the case if we are in the position to check the
assumptions of Proposition 6) the conclusions of Theorems 2, 3 and 4 can be refor-
mulated for U -statistics. Notice that both advantages of U -statistics compared to
V -statistics in the i.i.d. case (to be unbiased estimates of the mean value of the kernel
with i.i.d. arguments; to require weaker assumptions imposed on the kernel) in general
are no longer valid in the dependent case.

1.2 Some history and earlier results

The theory of U - and V -statistics for i.i.d. variables is well developed (see [2,15,17,
35,36,40] and references therein). Degenerate von Mises statistics for independent
variables have first been treated by von Mises in [52] and Filippova in [27]. Neuhaus
[46] proved a functional form of the weak convergence for degenerate kernels of
degree 2. Although he dealt with the U -statistics only, the method applies as well to
von Mises statistics with properly modified limit distributions. In [23] the functional
form of Filippova’s result is obtained with the distributional limit presented by multiple
stochastic integrals with respect to the Kiefer–Müller process. Many fine results on
U -statistics (maximal inequalities, large deviations, functional CLT) are included or
surveyed in [17] and [45].

For non-independent random variables some progress has been made for weakly
dependent and associated processes (see [18,19] and references therein). More gener-
ally, the Strong Law of Large Numbers (SLLN) for von Mises statistics of an ergodic
stationary real-valued processes ξ = (ξn)n≥0 with one-dimensional distribution ν has
been treated in [1], where it is shown, among other important results and interesting
examples, that almost surely we have

n−d
∑

0≤i1< n,..., 0≤ id <n

F(ξi1, . . . , ξid ) →
n→∞

∫

Xd

F(x1, . . . , xd)ν(dx1) · · · ν(dxd), (4)

the assumptions ranging from continuity of the kernel F to the weak Bernoulli property
of ξ . One of the results in [1] on von Mises statistics is a SLLN under the assumption
that the kernel is bounded by a product of functions in separate variables. In case
of functionals of mixing processes a form of the SLLN has been proven in [10]
which is not contained in [1]. In almost all other papers the CLT (sometimes together
with its functional form) has been considered. Yoshihara [53] was the first to give a
probabilistic treatment of the CLT question when the process is absolutely regular.
Other mixing conditions are investigated in [4,5,7–9,20,39,50,51,54]. Functionals of
absolutely regular processes have been studied in [21]. In [22] these results were used
to construct a new type of asymptotically distribution free confidence intervals for
the correlation dimension (see [34]). Later many limit results have been considerably
improved in [10] and [11] by establishing a functional form of the central limit theorem.
In the weakly dependent case we mention the works of Babbel [4,5] and Amanov [3]
where various types of mixing conditions are considered, including strong mixing.
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8 M. Denker, M. Gordin

The above list is incomplete, more information is contained in the surveys [18] and
[19].

Notice that in a recent paper [41], independently of our research, for a certain class
of canonical symmetric kernels of degree 2 (in 9.2.1 we call them martingale kernels)
a limit distribution of V -statistics is derived which has the same form as in the i.i.d.
case. This conclusion agrees with ours in Statement D above; the result in [41] is a
rather particular case of our Statement D (see 9.2.1 for more details). The paper [41]
and the subsequent papers [42,43] also develop impressive statistical applications of
this and other limit results; some new, compared to [41], limit theorems in [42,43] are
developed by means of methods different from those used in the present paper; the
corresponding assumptions about the process include some decay of the Kantorovich
distance between the conditional and the unconditional distributions of the process
given its past; also some form of the Lipschitz condition is imposed on the kernel. The
spectral decomposition of the kernel or, alternatively, its approximation by Lipschitz
continuous wavelets are used there to derive the results.1

2 Preliminaries

2.1 Multiparameter actions

Let T be a measure preserving transformation of a probability space (X,F , μ) (which
is assumed to be standard, that is a Lebesgue space in the sense of Rokhlin [48]). For
every p ∈ [1,∞] we set L p(μ) = L p(X,F , μ), choosing C as the field of scalars
and denoting by | · |p the norm of L p( μ). Define an isometry V : L p(μ) → L p(μ)

by the relation V f = f ◦ T . For every p ∈ [1,∞) let V ∗ : L p ′(μ) → L p ′(μ) be
the adjoint operator of V : L p(μ) → L p(μ) where p−1 + p ′−1 = 1. The preadjoint
operator (acting in L1(X,F , μ)) of the operator V : L∞(μ) → L∞(μ) will be
loosely called the adjoint of V and denoted by V ∗, too, whenever this does not lead
to a misunderstanding. Analogous notations and agreements will be applied to other
measure spaces, their transformations and related operators.

For every i = 1, . . . , d let (Xi ,Fi , μi , Ti ) be a probability space with a measure
preserving transformation Ti ; let Vi , V ∗

i be the corresponding operators. We assume
that these spaces are copies of (X,F , μ). The direct product

∏
1≤i≤d(Xi ,Fi , μi )

will be denoted by (Xd ,F⊗d , μd). Unlike the spaces, the transformations T1, . . . , Td

can be different; however, from Sect. 6 on we assume that they are copies of the
same transformation T . The notation L p(μ

d) should be understood correspondingly.
Let Z+ = {0, 1, . . .}. For every n = (n1, . . . , nd) ∈ Z

d+ we set T n(x1, . . . , xd) =
(T n1

1 x1, . . . , T nd
d xd). Define a representation of the semigroup Z

d+ by isometries in
L p(μ

d) via

V n f = f ◦ T n, f ∈ L p(μ
d).

1 Though all this creates a favorable environment for employing our Proposition 6, we do not investigate
this possible application in the present paper.
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Von Mises statistics of a transformation 9

We do not assume that the transformation T is invertible. The CLT proved below will
hold for the class of essentially noninvertible T (known as exact transformations ). The
family of adjoint operators (V n∗)n∈Z

d+ is also a representation of Z
d+ (by coisometries

in this case). Note that these two representations do not commute with each other
in the noninvertible case (otherwise they clearly commute). However, if e1, . . . , ed

denote the standard basis of Z
d+, the operators V ei and V ∗ e j commute for i = j

because they act on different coordinates in Xd . This will be used in the proof of
Lemma 5.

2.2 Tensor products and products of functions

We discuss here conditions on kernels under which V -statistics are well-defined. Recall
the concept of the projective tensor product of Banach spaces [16,49]. The main field
is assumed to be C or R.

Let B1, . . . , Bd be Banach spaces with norms | · · · |B1 , . . . , | · |Bd and let B1 ⊗ . . .⊗
Bd be their algebraic tensor product. Elements of B1 ⊗ · · · ⊗ Bd , representable in the
form f1 ⊗ · · · ⊗ fd , are called elementary tensors. The projective tensor product of
d ≥ 2 Banach spaces denoted by B1⊗̂π · · · ⊗̂π Bd is, by definition, the completion
of the algebraic tensor product with respect to the projective norm defined as the
supremum of all cross norms on B1 ⊗ · · · ⊗ Bd . Recall that a norm on B1 ⊗ · · · ⊗ Bd

is said to be a cross norm whenever it equals
∏d

i=1 | fi |Bi for every elementary tensor
f1 ⊗ · · · ⊗ fd .

Recall that for every i = 1, . . . , d (Xi ,Fi , μi ) is a copy of (X,F , μ). For
p1, . . . , pd ∈ [1,∞] we denote by | · |p1, ..., pd , π the norm of the space

L p1(X1,F1, μ1)⊗̂π · · · ⊗̂π L pd (Xd ,Fd , μd).

If p1 = · · · = pd = p ∈ [1,∞], the above projective tensor product and its norm will
be denoted by L p, π (μ

d) and | · |p, d, π , respectively. We show in the following lemma
that L p, π (μ

d) can be thought of as a subspace of L p(μ
d); hence, its elements can be

viewed as functions on Xd . Some useful properties of these functions are established
in 2.3.

Lemma 1 For every p ∈ [1,∞] there exists a unique linear map

Jd : L p,π (μ
d) → L p(μ

d)

of norm 1 which sends every elementary tensor f1 ⊗ · · · ⊗ fd to the function
(x1, . . . , xd) �→ f1(x1) · · · fd(xd). Moreover, Jd maps L p, π (μ

d) into L p(μ
d) injec-

tively. For p ∈ [1,∞)Jd
(
L p, π (μ

d)
)

is dense in L p (μ
d).

Proof The case d = 1 is trivial, so we assume d ≥ 2. For every p ∈ [1,∞], let us
define a linear map Jd of norm 1,

Jd : L p,π (μ
d) → L p( μ

d).
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10 M. Denker, M. Gordin

When we need to specify p we shall use the notation Jd, p. First, sending every
elementary tensor f1 ⊗ · · · ⊗ fd to the function (x1, . . . , xd) �→ f1(x1) · · · fd(xd),

we define a d-linear map of norm 1 from L p(X1,F1, μ1) × · · · × L p(Xd ,Fd , μd)

to L p(μ
d). Then, by a general property of the projective tensor product (see [49],

Theorem 2.9, for d = 2; use induction and associativity for d > 2) this map extends
to L p, π (μ

d) uniquely with norm 1. Denote this resulting map by Jd . Its image is
dense in L p, π (μ

d) for p < ∞ since so is the image under Jd of the algebraic tensor
product.

We prove now that Jd (= Jd, p) is injective. For p = 1 it is so because Jd,1 is
an isometric isomorphism between its domain and its range ([49], Exercise 2.8). Let
now for some p > 1 I1, p : L p(μ) → L1(μ) and Id, p : L p(μ

d) → L1(μ
d) be the

inclusion operators (of norm 1 each). By the metric mapping property ([16], 12.1) of
the projective tensor norm, the inclusion I1, p gives rise to the norm 1 mapping Ad :
L p, π (μ

d) → L1, π (μ
d) (notice that L1, π (μ

d) and L1(μ
d) are identified by Jd, 1).

Since the spaces L p have the approximation property, the operator Ad is injective as
a projective tensor product of injective operators I1, p (see Corollary 4 (1), subsection
5.8, in [16]; then use induction). Starting with algebraic tensor products and passing,
in view of boundedness of all operators involved, to the completions with respect to
corresponding norms, we obtain that the mappings Jd, 1 Ad : L p,π (μ

d) → L1(μ
d)

and Id, p Jd, p : L p, π (μ
d) → L1( μ

d) agree. Since Ad and Jd, 1 are injective, so is
Jd, p. ��

In view of the properties of Jd we shall, when possible, omit the symbol Jd and
consider L p, π (μ

d) as a subspace of L p (μ
d). Set for n = (n1, . . . , nd)

V n
π = V n1

1 ⊗π · · · ⊗πV nd
d , V ∗n

π = V ∗n1
1 ⊗π · · · ⊗πV ∗nd

d . (5)

The operators (V n
π , V ∗n

π )n∈Z
d+ have properties very similar to those of (V n, V ∗n)n∈Z

d+ ;
in particular, they have norm 1 with respect to the projective tensor norm. The relations
Jd, pV n

π = V n Jd, p, Jd, pV ∗n
π = V ∗n Jd, p,n ∈ Z

d+, are obvious for elementary tensors
and immediately extend to the general case. It follows from these relations that the
space L p, π (μ

d) is preserved by the operators (V n, V ∗n)n∈Z
d+ . From now on we shall

use the notation (V n, V ∗n)n∈Z
d+ also to denote the restrictions of these families to the

space L p, π (μ
d) ⊂ L p (μ

d).

Remark 3 The space L2, π (μ
2) can be identified with the space of nuclear (or trace

class) operators from L2(μ)
∗ to L2(μ) ([49]). The operator J2 in Lemma 1 transforms

such (integral) operators to their kernels which form a subspace of L2(μ
2).

2.3 Restriction to the diagonal

In the following Proposition 1, for every p1, . . . , pd ∈ [1,∞] with p−1
1 +· · ·+ p−1

d =
1 and for every f ∈ L p1(μ)⊗̂π · · · ⊗̂π L pd (μ),we define a function Dd f ∈ L1(μ). In
the case of 1 ≤ p1 = · · · = pd = p ≤ ∞ the embedding Jd (Lemma 1) allows us to
consider the space L p(μ)⊗̂π · · · ⊗̂π L p(μ) as a subspace of the L p(μ

d) and interpret
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Von Mises statistics of a transformation 11

its elements as functions defined on Xd . Then Dd f plays the role of the restriction of
f to the principal diagonal {(x1, . . . , xd) : x1 = · · · = xd)} ⊂ Xd . In this particular
case the term ‘restriction’ can be justified by an approximation procedure described
in Proposition 2 below.

Proposition 1 Let p1, . . . , pd ∈ [1,∞], r ∈ [1,∞] satisfy

d∑

i=1

1

pi
= 1

r
.

Then

(1) the map D, sending every d-tuple ( f1, . . . , fd) ∈ L p1(μ)× · · · ×L pd (μ) to the
function

x �→ f1(x) · · · fd(x),

is a norm 1 d-linear map from L p1(μ)× · · · × L pd (μ) to Lr (μ);
(2) there exists a unique linear map (of norm 1)

Dd : L p1(μ)⊗̂π · · · ⊗̂π L pd (μ) → Lr (μ)

such that for every d−tuple ( f1, . . . , fd) ∈ L p1(μ)× · · · × L pd (μ)

Dd( f1 ⊗ . . .⊗ fd) = D( f1, . . . , fd).

Proof The first assertion is a consequence of the multiple Hölder inequality (Exercise
6.11.2 in [24]). The second one follows from the linearization property of the projective
tensor products with respect to polylinear maps. For the case of bilinear maps see
Theorem 2.9 in [49]; for d > 2 use induction and associativity. ��

If p1 = · · · = pd = p, the space L p, π (μ
d) = L p(μ)⊗̂π · · · ⊗̂π L p(μ) is embed-

ded into L p(μ
d) by the operator Jd (Lemma 1); we omit Jd and treat an f ∈ L p, π (μ

d)

as a function. For every finite measurable partition A = {A1 . . . , Am} let us denote by
FA the σ -field of all possible unions of atoms of A and by E(·| A) the correspond-
ing conditional expectation. Let (An)n≥1 be a refining sequence of finite measurable
partitions An = {A1, n, . . . , Amn, n} such that F is the smallest σ -field containing all
FAn , n ≥ 1. Let IA denote the indicator of the set A.

Proposition 2 Let d ≥ 1, p1 = · · · = pd = p ∈ [ d,∞) and r = p/d. Define the
sequence (Dd, n)n≥1 of operators Dd, n : L p, π (μ

d) → Lr (μ) by

Dd, n f =
mn∑

i=1

IAi, n

μ(Ai, n)d

∫

Ad
i, n

f (x1, . . . , xd)μ(dx1) · · ·μ(dxd).

Then Dd, n →
n→∞ Dd in the strong operator topology.
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12 M. Denker, M. Gordin

Proof First let us verify (again using the Hölder inequality) that Dd, n as a map from
L p, π (μ

d) to Lr (μ) does not increase the norms of elementary tensors. From the
relation

Dd, n( f1 ⊗ · · · ⊗ fd) = Dd(E( f1|An)⊗ · · · ⊗ E( fd |An))

= E( f1|An) · · · E( fd |An) (6)

it follows that

|Dd,n( f1 ⊗ · · · ⊗ fd)|r = |E( f1|An) · · · E( fd |An)|r
≤ |E( f1|An)|p · · · |E( fd |An)|p ≤ | f1|p · · · | fd |p.

By the properties of the projective norm, this implies that the norm of every Dd, n :
L p, π (μ

d) → Lr (μ) is also bounded by 1.
Now, using (6), standard properties of conditional expectations and the Hölder

inequality, we obtain

|Dd, n( f1 ⊗ · · · ⊗ fd)− f1 · · · fd |r ≤
d∑

k=1

|E( fk |An)− fk |p

d∏

m=1,m =k

| fm |p.

From the martingale convergence theorem for the space L p we conclude that every
sequence (Dd, n( f1 ⊗ · · · ⊗ fd))n≥1 converges in the norm of Lr (μ) to the function
f1(·) · · · fd(·). The analogous conclusion holds for finite linear combinations of ele-
mentary tensors. Since the norms of the operators Dd, n are uniformly bounded, the
proposition follows. ��

The following corollary will be used in the proof of Proposition 3.

Corollary 1 The restriction operator Dd preserves positivity of real valued functions.

Thus, the function Dd f ∈ Lr (μ) is a well-defined substitute for the naive restriction
of f to the principal diagonal. For example, for n=(n1, . . . , nd) the function Dd V n f
can be viewed as a substitute for the function x �→ f (T n1 x, . . . , T nd x).

3 Strong law of large numbers

3.1 A multivariate ergodic theorem

If T is an ergodic transformation of a probability space, a von Mises statistic may
be considered as an estimate for the multiple integral of the kernel with respect to
the invariant measure. Consistency is one of the desirable statistical properties of a
sequence of estimates; this raises the question of an appropriate ergodic theorem.
Proposition 3, the main result of this subsection, states such a theorem in a general
setting. It asserts, in the ergodic case, the convergence of multiparameter sums (7)
to the average of the kernel with respect to the product measure. This reminds of a
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Von Mises statistics of a transformation 13

Wiener-type ergodic theorem ([24], Theorem 8.6.9) specialized to the case of d one-
parameter coordinatewise actions on the product of d probability spaces. However,
not only the assumptions, but also the conclusions in these results are different: unlike
the Wiener theorem, our result asserts the convergence for almost all initial points with
respect to a probability measure which is in general neither absolutely continuous with
respect to the product measure (being supported on the main diagonal) nor invariant
under the multiparameter action.

We do not assume here symmetry of the kernel and perform summation over
rectangular coordinate domains (which is common in the multiparameter ergodic
theorems, see [24], Chapter 8) rather than over coordinate cubes involved in the
definition of V -statistics. In this subsection we consider several possibly different
μ–preserving transformations T1, . . . , Td of the space (X,F , μ), using the notation
T (n1,...,nd )(x1, . . . , xd)=(T n1

1 x1, . . . , T nd
d xd) and V (n1,...,nd ) f = f ◦ T (n1,...,nd ).

Transformations considered in this subsection in general are not ergodic, so we
need some notations to include the non-ergodic case. Recall that A ∈ F is said to
be T −invariant if T −1 A = A. For every l ∈ {1, . . . , d} let Finv, l denote the σ -field
of all Tl−invariant measurable sets in (X,F , μ), and let Einv, l be the corresponding
conditional expectation considered as an operator in L pl (X,F , μ).
Proposition 3 Let p = rd for some integer d ≥ 1 and a real number r ∈ [1,∞). Let
T1, . . . , Td be measure preserving transformations of a probability space (X,F , μ)
and f ∈ L p,π (μ

d). Then, with n = (n1, . . . , nd), we have

1

n1 · · · nd

∑

0≤ k<n

Dd V k f →
n1, ..., nd →∞ Dd(Einv,1 ⊗π · · · ⊗π Einv, d) f (7)

with probability 1 and in Lr (μ).

Remark 4 The main point of Proposition 3 is the convergence with probability 1 in
the case d ≥ 2. As to the convergence in Lr , it is not hard to prove, for every d ≥ 2
and p1, . . . , pd , r ∈ (1,∞), satisfying

∑d
i=1 p−1

i = r−1, the following multiple
statistical ergodic theorem:

1

n1 · · · nd

∑

0≤ k<n

V k →
n1, ..., nd →∞ (Einv,1 ⊗π · · · ⊗π Einv, d),

asserting the strong convergence in the space L p1(X1,F1, μ1)⊗̂π · · · ⊗̂π L pd

(Xd ,Fd , μd).Applying the operator Dd to the both sides of this relation, we obtain the
convergence in the Lr -norm. Choosing p1 = · · · = pd = rd = p, the convergence
in Lr (μ) in Proposition 3 follows for d ≥ 2. The proof of Proposition 3 contains a
second argument of this fact.

The next lemma will be used in the proof of Proposition 3.

Lemma 2 Let d, p, r and the transformations T1, . . . , Td satisfy the conditions of
Proposition 3. Let, moreover, p > 1. Then there exists a constant C = C(r, d) such
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14 M. Denker, M. Gordin

that for every f ∈ L p,π (μ
d) we have the inequality

∣∣∣∣∣∣∣∣∣∣

sup
1≤n1<∞

...
1≤nd<∞

∣∣∣∣

∑n1−1
k1=0 · · ·∑nd−1

kd=0 Dd V (k1, ..., kd ) f

n1 · · · nd

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
r

≤ C | f |p, d, π .

Proof For the proof we will use the bound in [24], Theorem 8.6.8. Note that this result
is the lemma for d = 1.

Let now d ≥ 2. According to one of the properties of the projective tensor
norm ([49], Proposition 2.8), for every f ∈ L p, π ( μ

d) and ε > 0 there exists a
bounded family of functions fi, l ∈ L p( μ) (1 ≤ i < ∞, 1 ≤ l ≤ d) such that
f = ∑

i fi, 1⊗π · · · ⊗π fi, d and

∑

i

| fi, 1|p · · · | fi, d |p ≤ | f |p, d, π + ε.

Then we have, using Corollary 1, that

∣∣∣∣∣∣∣∣∣∣

sup
1≤n1<∞

...
1≤nd<∞

∣∣∣∣(n1 · · · nd)
−1

n1−1∑

k1=0

· · ·
nd−1∑

kd=0

Dd V (k1, ..., kd ) f

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
r

≤
∑

i

∣∣∣∣Dd

(
sup

1≤n1<∞
|∑n1−1

k1=0 V k1
1 fi,1|

n1
· · · sup

1≤nd<∞
|∑nd−1

k1=0 V kd
d fi,d |

nd

)∣∣∣∣
r

≤
∑

i

C | fi,1|p · · · | fi, d |p ≤ C(| f |p, d, π + ε).

In the above formulas V1, . . . , Vd are the dynamical operators associated with the
transformations T1, . . . , Td . ��

Proof of Proposition 3 For d = 1 the assertions of the proposition are the classical
individual and statistical ergodic theorems. Let now d ≥ 2, hence p ≥ 2. In view of
Lemma 2, the proof is straightforward. First we prove the assertions of the proposition
for elementary tensors f = f1 ⊗ · · · ⊗ fd with fl ∈ L p (μ), 1 ≤ l ≤ d. Then the
corresponding normalized V -statistic can be written in the product form

∑n1−1
k1=0 V k1

1 f1

n1
· · ·

∑nd−1
k1=0 V kd

d fd

nd
,
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Von Mises statistics of a transformation 15

where by the individual ergodic theorem the l-th term in the product converges to
Einv, l fl with probability 1. Hence, the product tends with probability 1 to

(Einv, 1 f1) · · · (Einv, d fd) = Dd Einv, 1⊗π · · · ⊗π Einv, d f.

The same conclusion holds for finite sums of elementary tensors which are dense in
the space L p,π (μ

d). Let now f ∈ L p,π (μ
d). Fix an ε > 0. There exists an element

fε ∈ L p,π (μ
d) with | f − fε |p, d, π < ε such that the a.s. assertion of the proposition

holds for fε and with probability 1

0 ≤ ξ
def= lim

n1→∞
...

nd→∞

∣∣∣∣
1

n1 · · · nd

∑

0≤k<n

Dd V k f − Dd (Einv, 1 ⊗π · · · ⊗π Einv, d ) f

∣∣∣∣

≤ lim
n1→∞
...

nd→∞

∣∣∣∣
1

n1 · · · nd

∑

0≤k<n

Dd V k( f − fε)

∣∣∣∣+
∣∣∣∣Dd (Einv, 1 ⊗π · · · ⊗π Einv, d )( fε− f )

∣∣∣∣

+ lim
n1→∞
...

nd→∞

∣∣∣∣
1

n1 · · · nd

∑

0≤k<n

Dd V k fε − Dd (Einv, 1 ⊗π · · · ⊗π Einv, d ) fε

∣∣∣∣

def= ξ1, ε + ξ2, ε + ξ3, ε .

Since the operators Dd and Dd(Einv,1 ⊗π · · · ⊗π Einv,d) are of norm 1, we have
| ξ2, ε |r ≤ ε, and, in view of the individual ergodic theorem and Lemma 2, ξ3, ε = 0
and |ξ1, ε |r ≤ Cε. This implies ξ = 0 which proves the convergence with probability
1. To establish the Lr -convergence, we observe that we have the convergence with
probability 1 along with the domination by an Lr -function given by Lemma 2. Hence,
we can apply Theorem 3.3.7 in [24]. ��

3.2 Applications to the SLLN for von Mises statistics

We return here to the assumption that the transformations T1, . . . , Td are copies of the
same transformation T . For simplicity we assume that T is ergodic. Symmetry of the
kernel is not assumed.

Theorem 1 Let r = p/d for some integer d ≥ 2 and a real number p ≥ d. Let T
be an ergodic measure preserving transformation of a probability space (X,F , μ).
Assume also that f ∈ L p,π (μ

d). Then, as n → ∞, the sequence

1

nd

∑

0 ≤ k1,..., kd≤ n−1

Dd V (k1, ..., kd ) f (8)

converges with probability 1 and in Lr (μ) to the limit

∫

Xd

(Jd f )(x1, . . . , xd)μ(dx1) · · ·μ(xd).
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16 M. Denker, M. Gordin

Here Jd : L p, π (μ
d) → L p(μ

d) is the operator introduced in Lemma 1.

Proof The theorem follows from Proposition 3. We only need to identify the limits.
Since the limit expressions given in Proposition 3 and in the theorem are both con-
tinuous in the projective norm, it suffices to check that these expressions agree for
elementary tensors f1 ⊗· · ·⊗ fd . It is straightforward to check that in the ergodic case
both expressions reduce to E f1 · · · E fd , where E denotes the integral with respect
to μ. ��

Corollary 2 In the case p = d Theorem 1 applies and gives the convergence with
probability 1 and in L1(μ).

Remark 5 Examples show that it is possible to extend the class of kernels to which the
conclusion in Corollary 2 applies to such kernels f ∈ L p( μ

d) which can be “sand-
wiched” between decreasing and increasing sequences of some L p,π ( μ

d)-kernels
whose common L p( μ

d)−limit is f (notice that bounding by products plays some
role in [1]). This indicates that probably more appropriate functional spaces can be
found in order to treat the SLLN.

Corollary 3 Let T be an ergodic measure preserving transformation of a probability
space (X,F , μ) and let (ek)

∞
k=0 be a sequence of functions in Ld (μ) such that e0 ≡ 1

and for every k ≥ 1 | ek |d = 1,
∫

X ek(x)μ(dx) = 0. Let f ∈ Ld( μ
d) admit the

representation

f (x1, . . . , xd) =
∑

0≤k<∞
λk( f ) ek1(x1) · · · ekd (xd)

for some family (λk( f ))0<k<∞ satisfying the condition

∑

0≤k<∞
| λk ( f ) | < ∞.

Then Corollary 2 applies to f .

Proof The series representing f obviously converges in L p , π (μ
d), and the corollary

follows. ��

4 The Hoeffding decomposition

In this section we recall well-known properties of the Hoeffding decomposition for
kernels in the spaces L p , omitting proofs (see [25] for the proofs in the symmetric
case). It is not hard to see that the results and formulas related to this decomposition
(both general and symmetric) apply also to the spaces L p,π and, in case μ1 = · · · =
μd = μ, to their symmetric subspaces.
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Von Mises statistics of a transformation 17

4.1 The Hoeffding decomposition for general kernels

Let (X1,F1, μ1), . . . , (Xd ,Fd , μd) be probability spaces. We do not assume in this
subsection that all (Xl ,Fl , μl), l = 1, . . . , d, are copies of the same probability space.
Let Sd (Sm

d ) be the set of all subsets (respectively, of all m-subsets) of {1, . . . , d}. For
every S ⊂ {1, . . . , d} we define

(X S,F⊗S, μS) =
(∏

l∈S

Xl ,
⊗

l∈S

Fl ,
∏

l∈S

μl

)
, L p(μ

S) = L p (X
S,F⊗S, μS).

Denoting the conditional expectation with respect to a σ -field G ⊂ F by EG and the
projection map from X {1,...,d} onto X {l} = Xl (l = 1, . . . , d) by πl , we set for every
S ∈ Sd

F S =
∨

l∈S

π−1
l (Fl), E S = EFS , Ěl = E {1,...,d}\{l}.

In other terms, applying Ěl , one integrates out the l−th variable.
The identity operator I in L p(μ

{1...d}) (p ∈ [1,∞]) decomposes as

I =
d∏

l=1

(
Ě l + (I − Ě l)

) =
d∑

m=0

∑

S∈Sm
d

QS,

where QS = ∏
l /∈S Ě l ∏

l ′∈S(I − Ě l ′). In general, the Hoeffding decomposition
assigns to every f ∈ L p(μ

{1,..., d}) the family (RS f )S∈Sd such that

(i) for every S ∈ Sd RS f ∈ L p(μ
S);

(ii) for every S = {l1, . . . , lm} ∈ Sm
d

(RS f ) ◦ πS = QS f,

where πS : Xd �→ X S is defined by πS(x1, . . . , xd) = (xl1 , . . . , xlm );
(iii) every RS f is canonical (or, using an alternate terminology, totally degenerate)

that is for every l ∈ S, f ∈ L{1,..., d}
p

Ěl((RS f ) ◦ πS
) = 0.

Kernels of the form (RS f )◦πS will be also called canonical. RS f (or (RS f )◦πS)
is said to have the degree m whenever it does not vanish identically and S ∈ Sm

d . Every
kernel f ∈ L p (μ

{1,...,d}) can be represented in a unique way as a sum of canonical
kernels (the Hoeffding decomposition) as follows

f =
d∑

m=0

∑

S∈Sm
d

(RS f ) ◦ πS . (9)
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18 M. Denker, M. Gordin

As said before, the Hoeffding decomposition also holds for L p,π ( μ
{1,..., d}) def=

L p( μ1)⊗̂π · · · ⊗̂π L p( μd), and we shall use the above notation for the operators
on these spaces as well.

The degree of a kernel f with decomposition (9) (or the decomposition (10) below)
is, by definition, the smallest degree of non-vanishing summands in (9). A kernel f in
(9) is called degenerate if the degree of f − R∅ f is greater than 1 and non-degenerate
if it equals 1.

4.2 The Hoeffding decomposition of symmetric kernels

We assume in this subsection that all spaces (Xl ,Fl , μl), l = 1, . . . , d, are copies of
the same probability space (X,F , μ). L p ( μ

d ) and L p,π ( μ
d) denote, respectively,

the usual L p–spaces of the product of d identical probability spaces and the projective
tensor product L p(μ)⊗̂π · · · ⊗̂π L p(μ)︸ ︷︷ ︸

d times

with the norms | · |p and | · |p, d, π , respectively.

There is an isometric action of the symmetric group Sd by permutations of the multi-
pliers on every of these spaces. The fixed points of these actions form closed subspaces
called symmetric; their denotations will contain the superscript sym; their elements
are called symmetric functions. The next property of the Hoeffding decomposition is
specific for the symmetric case.

iv) whenever the function f belongs to Lsym
p (μd), the canonical function RS f does

not depend on the choice of S ∈ Sm
d and is symmetric; thus, in this case there exist

operators Rm : Lsym
p (μd) → Lsym

p (μm) such that for every S = {i1, . . . , im} ∈
Sm

d

(Rm f ) ◦ πS = QS f.

Furthermore, every f ∈ Lsym
p (μd) can be represented in a unique way in the form

f =
d∑

m=0

∑

S∈Sm
d

(Rm f ) ◦ πS . (10)

Remark 6 We illustrate the difference between general and symmetric kernels for
d = 2. For a general kernel f ∈ L p (μ

2) we have

f (x1, x2) = f∅ + f{1}(x1)+ f{2}(x2)+ f{1, 2}(x1, x2),

where

f∅ =
∫

X2

f (z1, z2)μ(dz1)μ(dz2),

f{1}(x1) =
∫

X

f (x1, z2)μ(dz2)− f∅, f{2}(x2) =
∫

X

f (z1, x2)μ(dz1)− f∅,

f{1, 2}(x1, x2) = f (x1, x2)− f{1}(x1)− f{2}(x2)− f∅.
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Von Mises statistics of a transformation 19

Notice, in order to illustrate the notion of canonical kernels, that we have for almost
every x1, x2 ∈ X ,

∫

X

f{1}(z)μ(dz) = 0,
∫

X

f{2}(z)μ(dz) = 0,

∫

X

f{1, 2}(z1, x2)μ(dz1) =
∫

X

f{1, 2}(x1, z2)μ(dz2) = 0.

For a kernel f ∈ Lsym
p ( μ2) the above relations reduce to

f (x1, x2) = f0 + f1(x1)+ f1(x2)+ f2(x1, x2),

where

f0 =
∫

X2

f (z1, z2)μ(dz1)μ(dz2),

f1(x) =
∫

X

f (x, z)μ(dz)− f0

(
=
∫

X

f (z, x)μ(dz)− f0

)
,

f2(x1, x2) = f (x1, x2)− f1(x1)− f1(x2)− f0.

Here
∫

X f1(z)μ(dz) = 0, f2 ∈ Lsym
p ( μ2) and for almost every x ∈ X we have

∫

X

f2(z, x)μ(dz)

(
=
∫

X

f2(x, z)μ(dz)

)
= 0.

5 Filtrations: exactness and Kolmogorov property

In the remaining part of the paper we deal with distributional convergence of von
Mises statistics for a measure preserving transformation. Our tool here is a kind of
martingale approximation. For d = 1 this approximation goes back to [30,32] and
[44] (in the latter paper only Harris recurrent Markov chains were considered) and
was developed for higher dimensional random arrays in [33].

The additional structure needed is a filtration compatible with the dynamics defined
by a measure preserving transformation. From now on we restrict ourselves to a class
of measure preserving transformations of probability spaces, which are exact [48].
Let T be a measure preserving transformation of a probability space (X,F , μ). The
transformation T defines a decreasing filtration (T −kF)k≥0. Exactness of T means
that

⋂
k≥0 T −kF = N , where N is the trivial σ -field of the space (X,F , μ). As can

easily be seen, every exact transformation is ergodic. The standard assumption of the
ergodic theory is that (X,F , μ) is a Lebesgue space in the sense of Rokhlin. Under
this assumption it can be shown that, except for the case of the one point measure
space, the Lebesgue space with an exact transformation is an atomless measure space,
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20 M. Denker, M. Gordin

hence, is isomorphic to the unit interval with the Lebesgue measure. As before, by V ∗
we denote the adjoint (for p > 1) and the preadjoint (for p = 1) of the operator V .As
the operator V acts as an isometry in all L p spaces, preserves constants and positivity,
the operator V ∗ also acts on all these spaces as a contraction which preserves constants
and positivity. The operator V ∗ is a particular case of a Markov transition operator.

For every k ≥ 0 we have the relations V ∗k V k = I and V k V ∗k = Ek, where I is
the identity operator and Ek = ET −kF , the corresponding conditional expectation.
Let E denote the expectation operator. We can easily conclude (for example, from
known facts about the convergence of reversed martingales) that the exactness of T
is equivalent to the the strong convergence V ∗n →

n→∞ E in every space L p( μ) with

1 ≤ p < ∞. In the sequel the strong convergence of the series

∑

k≥0

V ∗k f (11)

and other similar conditions will be imposed on f. Set

L0
p(μ) = { f ∈ L p(μ), E f = 0}.

Assuming T is exact, for every 1 ≤ p < ∞ the series (11) converges in the norm
of L p(μ) if and only if f can be represented in the form f = (I − V ∗)g with some
g ∈ L p(μ) (such g is unique up to an additive constant which can be fixed by the
condition g ∈ L0

p(μ)). Observe that, in view of exactness, such f ’s form a dense
subspace in L0

p(μ).

Remark 7 In the rest of the paper we will mainly restrict ourselves to exact trans-
formations. This is just done to simplify the statements of the results and make
the notation more convenient. We could easily extend these results to ergodic
transformations T and to kernels f ∈ L p(μ

d) satisfying the additional condition
E( f | F1 ⊗ · · · ⊗ T −n

l Fl ⊗ · · · ⊗ Fd) →
n→∞ Ěl f , l = 1, . . . , d. Here Tl is the copy of

T acting on the l-th coordinate in Xd , Ěl was defined in Sect. 4.1.

Remark 8 The results of the next sections are primarily concerned with exact (hence,
non-invertible) transformations; however, they can be converted into some results on
invertible transformations furnished with an additional structure. Indeed, assume that
an invertible measure preserving T acts on (X,F , μ) and we are given a σ -field
F0 ⊂ F such that T −1F0 ⊇ F0. Then a theory, totally parallel to that we develop in
the following sections for the exact case, applies to kernels measurable with respect
to F⊗d

0 . The restriction of T −1 to F0 corresponds to a non-invertible transformation.
We leave details of this correspondence to the reader; it will be used when considering
applications in Sect. 9. Just notice that the counterpart of exactness for an invertible T is
the property

⋂
k≥0 T kF0 = N . If, moreover,

∨
k≥0 T −kF0 = F , the transformation T

is called Kolmogorov. Similarly to the exactness property in Remark 7, the Kolmogorov
property can be relaxed to the requirement that T is ergodic and f satisfies an analogue
of the additional condition there.
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6 Growth rates for multiparameter sums

It follows from Lemma 1 for p ∈ [1,∞) that the space Lsym
p, π ( μ

m) can be identified,
using the injective map Jm , with a (non-closed) dense subspace of Lsym

p ( μm). As we
warned the reader above, the symbol Jm will be omitted and the relation Lsym

p, π ( μ
m)

⊂ Lsym
p ( μm) will be assumed instead of Jm(L

sym
p, π ( μ

m))⊂ Lsym
p ( μm). In particular,

it makes sense to speak of canonical elements of Lsym
p, π ( μ

m).

A noninvertible measure preserving transformation T of a probability space
(X,F , μ) has a natural decreasing filtration given by (T −nF)n≥0. We shall use the
following consequence of the Burkholder inequality.

Lemma 3 For every p ∈ [2,∞) there exists a constant C(p) such that for every
stationary sequence (ξn)n∈Z of martingale differences in L p(μ) we have

∣∣∣∣
n−1∑

k=1

ξk

∣∣∣∣
p

≤ C(p)
√

n
∣∣ξ0
∣∣

p .

Proof Let p ∈ [2,∞). Using the Burkholder inequality (Theorem 9 in [13]) for the
original sequence and then applying the triangle inequality for the space L p/2 to the
sequence (ξ2

n )n∈Z , we obtain

1√
n

∣∣∣∣
n−1∑

k=1

ξk

∣∣∣∣
p

≤ C(p)

∣∣∣∣

(
1

n

n−1∑

k=1

ξ2
k

)1/2∣∣∣∣
p

≤ C(p)| ξ2
0 |1/2p/2 = C(p)| ξ0|p .

��

For every m, 0 ≤ m ≤ d, let Sm (Ss
m) be the set of all subsets (respectively, of all

subsets of cardinality s ∈ {0, . . . ,m} ) of the set {1, . . . ,m}. For every S ∈ Sm define
a subsemigroup Z

m,S
+ ⊆ Z

m+ by

Z
m,S
+ = {(n1, . . . , nm) ∈ Z

m+ : nk = 0 for all k /∈ S}.

In this section we write k and n for (k1, . . . , km) and (n1, . . . , nm), respectively;
the notation k < k′ (k ≤ k′) means that k1 < k′

1, . . . , km < k′
m (respectively,

k1 ≤ k′
1, . . . , km ≤ k′

m).

Lemma 4 Let m ∈ {1, . . . , d} and let e1, . . . , em denote the standard basis of Z
m+.

Then, for every real p ∈ [2,∞) and every integer s ∈ {1, . . . ,m}, there exists a
constant C(p, s) > 0 with the following property: For every S ∈ Ss

m and f ∈
L p, π ( μ

m), satisfying

V ∗el f = 0, l ∈ S, (12)
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the relation
∣∣∣∣∣∣∣∣∣

∑

k ∈ Z
m, S
+

0 ≤ kl ≤ nl−1, l ∈ S

V k f

∣∣∣∣∣∣∣∣∣
p,m, π

≤ C(p, s)

(∏

l ∈ S

√
nl

)
| f |p,m, π (13)

holds for every family (nl)l∈S of natural numbers. Moreover, if p ≥ m and r = p/m,
we also obtain

∣∣∣∣∣∣∣∣∣

∑

k ∈ Z
m, S
+

0 ≤ kl ≤ nl−1, l ∈ S

Dm V k f

∣∣∣∣∣∣∣∣∣
r

≤ C(p, s)

(∏

l ∈ S

√
nl

)
| f |p,m, π

for every (nl)l ∈ S.

Proof Let s and S be as in the statement of the lemma. Since the norm of the map
Dm : L p, π (μ

m) → Lr (μ) is 1, it suffices to prove (13). Let 0m denote the neutral
element of Z

m+. Set

M S
p, 0m , π

= { f ∈ L p, π ( μ
m) : V ∗el f = 0 for every l ∈ S}.

Observe that the subspace M S
p, 0m , π

⊂ L p, π ( μ
m) itself can be represented as the

projective tensor product of s copies of the subspace Mp, 0
def= { f ∈ L p( μ) : V f = 0}

and m−s copies of the space L p( μ). Notice that the relations (12) are equivalent to
the following description of the corresponding subspace in terms of projections:

(I − V el V ∗el ) f = f for every l ∈ S.

The subspace M S
p, 0m , π

can also be described as the range of the projection

∏

l∈ S

(I − V el V ∗el ).

We need now the following consequence of Proposition 2.4 in [49]. In general, for
some Banach spaces Al and their closed subspaces Bl ⊂ Al , l = 1, . . . ,m, we only
have a canonical linear map i : B1⊗̂π · · · ⊗̂π Bm → A1⊗̂π · · · ⊗̂π Am of norm 1.
However, if every Bl is a complemented subspace in the corresponding Al (that is the
range of a bounded projection ϕl : Al → Bl ) then this map is a topological linear
isomorphism onto its range (the latter is closed in A1⊗̂π · · · ⊗̂π Am). Moreover, if
every ϕl is a projection of norm 1 then this map is an isometry.

Thus, if bounded projections (ϕl)l=1,...,m exist, we can consider B1⊗̂π · · · ⊗̂π Bm

as a closed subspace of A1⊗̂π · · · ⊗̂π Am , the map ϕ1⊗π · · · ⊗πϕm being a bounded
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projection of A1⊗̂π · · · ⊗̂π Am onto its subspace B1⊗̂π · · · ⊗̂π Bm .The latter subspace
can be described by

B1⊗̂π · · · ⊗̂π Bm = {
f ∈ A1⊗̂π · · · ⊗̂π Am : (ϕ1⊗π · · · ⊗πϕm) f = f }

or, equivalently, by

B1⊗̂π · · · ⊗̂π Bm = {
f ∈ A1⊗̂π · · · ⊗̂π Am :(

(I − ϕ1)⊗π · · · ⊗π I
)

f = 0; . . . ; (I⊗π I⊗π · · · ⊗π (I − ϕm)
)

f = 0
}
.

Moreover, the projective tensor norm on the space B1⊗̂π · · · ⊗̂π Bm and the norm
induced by its embedding into A1⊗̂π · · · ⊗̂π Am are equivalent.

We will apply this assertion to the case when Al = L p(μ) for every l ∈
{1, . . . ,m}, Bl = Mp ,0, ϕl = I − V V ∗ for l ∈ S, and Bl = L p (μ), ϕl = I for
l /∈ S. Since V V ∗ is a conditional expectation, it is clear that ϕl is bounded for every l
(in fact its norm does not exceed 21−(2/p)). With this notation we have that M S

p, 0m , π

and B1⊗̂π · · · ⊗̂π Bm are isomorphic as topological vector spaces. Observe that we
have here a vector space which is equipped with two possibly different norms: the
norm inherited from L p,π (μ

m) and the projective tensor product norm, respectively.
According to one of the properties of the projective tensor norm ([49], Proposition
2.8), for every f ∈ M S

p, 0m , π
and ε > 0 there exists a bounded family of functions

fi, l ∈ Bl(1 ≤ i < ∞, 1 ≤ l ≤ m) such that

f =
∑

i

fi,1 ⊗ · · · ⊗ fi,m and
∑

i

| fi, 1|p · · · | fi,m |p ≤ C ′(p, s)| f |p,m, π + ε.

The constant C ′(p, s) appears here because we put into the right hand side the inherited
norm | f |p,m, π of f rather than its norm in B1⊗̂π · · · ⊗̂π Bm . For l = 1, . . . ,m and
every i let Fi, l = ∑

0≤ k≤ nl−1 V k fi, l if l ∈ S, and Fi, l = fi, l if l /∈ S. Then,

applying Lemma 3 to the sums
∑nl−1

k=0 V k fi, l for l ∈ S (in this case the summands
form a stationary sequence of reversed martingale differences), it follows that

∣∣∣∣∣∣∣∣∣

∑

k∈ Z
m,S
+

0 ≤ kl≤ nl−1, l∈ S

V k f

∣∣∣∣∣∣∣∣∣
p,m, π

≤
∑

i

∣∣∣∣∣∣∣∣∣

∑

k∈ Z
m,S
+

0 ≤ kl ≤ nl−1, l∈ S

V k( fi, 1 ⊗ · · · ⊗ fi,m
)

∣∣∣∣∣∣∣∣∣
p,m, π

=
∑

i

∣∣Fi, 1 ⊗ · · · ⊗ Fi,m
∣∣

p,m, π

=
∑

i

∏

l∈{1,...,m}
|Fi, l |p =

∑

i

∏

l∈S

∣∣∣∣∣

nl−1∑

k=0

V k fi, l

∣∣∣∣∣
p

∏

l /∈S

∣∣ fi, l
∣∣

p
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≤ Cs(p)

(∏

l∈S

√
nl

)∑

i

∏

l∈ {1,...,m}
| fi, 1|p · · · | fi,m |p

≤ Cs(p)
(∏

l∈S

√
nl

)(
C ′(p, s)| f |p,m,π + ε

)
.

Thus inequality (13) follows with C(p, s) = Cs(p)C ′(p, s).

Remark 9 Every f satisfying the assumptions of the above lemma is S-canonical in the
following sense: since every operator V ∗el preserves the integrals with respect to the
l–th variable, it follows from (12) that, under the assumptions of Lemma 4, integrating
f over the l–th variable returns 0 whenever l ∈ S. This implies the assertion.

The following lemma provides a condition under which the martingale-coboundary
decomposition is valid.

Lemma 5 Let p ∈ [1,∞] and f ∈ L p ,π ( μ
m) be a canonical kernel such that the

series in the right hand side of

g =
∑

0≤k<∞
V ∗k f

⎛

⎜⎝ def= lim
n1 → ∞
...

nm → ∞

∑

0≤ k<n

V ∗k f

⎞

⎟⎠ (14)

converges in L p,π ( μ
m). Then f can be represented in the form

f =
∑

S ∈Sm

AS f, (15)

where for every S ∈ Sm

AS f =
(
∏

l /∈ S

(I − V el V ∗el )
∏

l ∈ S

(V el − I )

)
hS (16)

and the function hS ∈ L p,π ( μ
m) is defined by the equation

hS =
(
∏

l ∈ S

V ∗el

)
g. (17)

The functions g and (hS)S∈Sm are canonical; the summands of the form (16) in (15)
are uniquely determined.

Proof The results and the proofs in [33], developed originally for the L p–spaces, apply
to the L p,π -spaces without any changes. The requirement of complete commutativity
imposed in [33] on the multiparameter dynamical system and the invariant measure
is obviously fulfilled for a direct product with a coordinatewise action which we deal
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with in the present paper. Hence, by Proposition 3 in [33], the convergence of the series
(14) implies that the Poisson equation (see [33]) is solvable for f ; therefore, we may
apply Proposition 1 in [33] to f . Then we obtain the representation (15) with AS f
defined by formulas (16), (17) and the assertion on the uniqueness of the summands of
the form (16). Notice that the operator V ∗ preserves integrals of functions with respect
to μ; as a consequence, every V ∗n maps canonical functions to canonical ones. Being
according to (14) a limit of canonical functions, g is canonical. In view of (17), all hS

are canonical, too. ��
Proposition 4 Let 0 ≤ s ≤ m and f be a kernel satisfying the assumptions of Lemma
5 for some p ∈ [2,∞). Let AS f be defined by formulas (16) and (17). Then there
exists a constant C p,m, s > 0 such that for every S ∈ Ss

m and every n1, . . . , nm

∣∣∣∣∣∣

∑

0≤k<n

V k AS f

∣∣∣∣∣∣
p,m, π

≤ C p,m, s

(∏

l /∈S

√
nl

)
| g|p,m, π , (18)

where g is defined in (14). Moreover, for p ≥ m

∣∣∣∣∣∣

∑

0≤k<n

Dm V k AS f

∣∣∣∣∣∣
r

≤ C p,m, s

(∏

l /∈ S

√
nl

)
| g|p,m, π (19)

holds with r = p/m.

Proof Setting S = {1, . . . ,m}\S, we have

∑

0≤k<n

V k AS f =
∑

k ∈ Z
m, S
+

0 ≤ kt ≤ nt −1,t∈S

V k
∏

r /∈S

(I − V er V ∗er )

×
∑

l ∈ Z
m, S
+

0 ≤ lu ≤ nu−1,u∈ S

V l
∏

u ∈ S

(V eu − I ) hS

=
∑

k ∈ Z
m, S
+

0 ≤ kt ≤ nt −1,t∈S

V k
∏

r /∈ S

(I − V er V ∗er )
∏

u∈S

(V nueu − I ) hS . (20)

Since for l /∈ S

V ∗el
∏

r /∈S

(I − V er V ∗er )
∏

u ∈ S

(V nueu − I ) hS = 0

and
∣∣∣
∏

r /∈ S

(I − V er V ∗er )
∏

u ∈S

(V nueu − I ) hS
∣∣∣

p,m, π
≤ 2m

∣∣g
∣∣

p,m, π ,
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the proposition follows with C p,m, s = 2mC(p, s) from Lemma 4 and formula (20).
��

Proposition 5 Let p ≥ 2 and f ∈ L p,π ( μ
m) be a canonical kernel such that the

series on the right hand side of

g =
∑

0≤k<∞
V ∗k f

converges in L p, π (μ
m). Then for every n1, . . . , nm the following inequality holds

∣∣∣∣∣∣

∑

0≤k<n

V k f

∣∣∣∣∣∣
p,m, π

≤ C p,m
√

n1 · · · nm | g|p,m, π , (21)

where Cm, p is a constant depending only on m and p. If, in addition, p ∈ [m,∞)

then, with r = p/m, we also have that

∣∣∣∣∣∣

∑

0≤k<n

Dm V k f

∣∣∣∣∣∣
r

≤ C p,m
√

n1 · · · nm | g|p,m, π .

Proof Again, since the norm of the operator Dm : L p,π (μ
m) → Lr (μ) is 1,

we only need to prove (21). As n1 ≥ 1, . . . , nm ≥ 1, we have for every S ∈
Sm

∏
l ∈ S

1
nl

≤ 1. Using this relation along with (15) and (18) we obtain (21) with

C p,m = ∑m
s=0

(
m
s

)
C p,m, s . ��

The following sufficient condition for convergence of the series in (14) will be used
in Sect. 9 when considering applications. Expansion of a kernel into an absolutely
convergent series whose summands are products of functions in separate variables is
natural in the context of the limit theory of U - and V -statistics (see, for example, [9]).
Projective tensor products call for using such series to representing arbitrary elements
(see Proposition 2.8 in [49]). Neither uniqueness of the representation, nor linear
independence of the ‘basis’ is assumed. Notice that we used such a decomposition in
Corollary 3.

Proposition 6 Let, for some p ∈ [1,∞], (ek)
∞
k=0 be a sequence of functions such that

e0 ≡ 1 and for every k ≥ 1 ek ∈ L p (μ) with
∫

X ek(x)μ(dx) = 0. Assume that for
every k ≥ 1

C p,k
def=
∑

n ≥ 0

| V ∗nek |p < ∞.

Suppose that f ∈ L p( μ
m) admits a representation

f (x1, . . . , xm) =
∑

0<k<∞
λk( f ) ek1(x1) · · · ekm (xm) (22)
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where (λk( f ))0<k<∞ is a family of constants satisfying

C p ( f )
def=

∑

0<k<∞
| λk ( f )| C p,k1 · · · C p,km < ∞. (23)

Then f is a canonical kernel of degree m, f ∈ L p, π ( μ
m), the series in (14) converges

in L p,π ( μ
m) and its sum g satisfies the inequality

| g|p,m, π ≤ C p ( f ). (24)

Proof For every k ≥ 1C p,k ≥ | ek |p . Hence,

∑

0<k<∞
| λk ( f )| | ek1 |p · · · | ekm |p ≤ C p ( f ) < ∞.

Then, according to [49], | f |p,m, π ≤ C p( f ) < ∞ and f ∈ L p,π ( μ
m); f is canonical

because so is every term of the series in (22). Now we obtain

| g|p,m, π ≤
∑

0≤n<∞

∑

0<k<∞
| λk ( f )| |V ∗n(ek1 · · · ekm )|p,m, π

=
∑

0≤n<∞

∑

0<k<∞
| λk ( f )| |V ∗n1ek1 |p · · · |V ∗nm ekm |p

=
∑

0<k<∞
| λk ( f )| C p, k1 · · · C p, km = C p( f ) < ∞.

��

7 Central limit theorems in the non-degenerate case

N (m, σ 2) will denote the Gaussian distribution in R with mean value m ∈ R and
variance σ 2 ≥ 0 including the case σ 2 = 0 of the Dirac measure at m ∈ R. We first
prove a central limit theorem together with the convergence of the second moments.

Theorem 2 Let f ∈ Lsym
2 ( μd) be a real valued kernel with the symmetric Hoeffding

decomposition

f =
d∑

m = 0

∑

S ∈Sm
d

(Rm f ) ◦ πS .

Assume that for every m = 1, . . . , d Rm f ∈ Lsym
2m, π (μ

m) and that the series

∑

k∈Z
m+

0≤k<∞

V ∗k Rm f

⎛

⎜⎜⎝
def= lim

n1→∞
...

nm→∞

∑

k∈Z
m+

0≤k<n

V ∗k Rm f

⎞

⎟⎟⎠ (25)
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converges in L2m, π (μ
m). Then the sequence

V (d)
n f = 1

nd−1/2

∑

0≤k1≤n−1
...

0≤kd≤n−1

Dd V (k1, ..., kd )( f − R0 f )

converges in distribution to N (0, d 2σ 2( f )), where

σ 2( f ) =
∣∣∣∣

∞∑

k=0

V ∗k R1 f

∣∣∣∣
2

2
−
∣∣∣∣

∞∑

k=1

V ∗k R1 f

∣∣∣∣
2

2
≥ 0.

The convergence of the second moments

E(V (d)
n f )2 →

n→∞ d 2σ 2( f )

holds as well.

Remark 10 According to the standard terminology, a kernel f is called non-degenerate
if R1 f does not vanish identically, otherwise f is called degenerate. In the case of
i.i.d. variables such non-degeneracy is equivalent to the non-degeneracy of the limit
Gaussian distribution using normalization by the constants nd−1/2. However, in the
general stationary dependent case such a statical non-degeneracy may occur together
with the degeneracy of the limit distribution. This phenomenon can be viewed as a
dynamical degeneracy.

Proof Decompose f − R0 f in the following way:

f − R0 f =
d∑

m = 1

∑

S ∈Sm
d

(Rm f ) ◦ πS =
d∑

m = 1

fm,

where

fm =
∑

S ∈Sm
d

(Rm f ) ◦ πS, m = 1, . . . , d.

In order to prove the theorem it suffices to establish that

(1) V (d)
n f1 converges in distribution to N (0, d2σ 2( f )),

(2) |V (d)
n f1| 2

2 →
n→∞ d2σ 2( f ),

(3) |V (d)
n

∑d
m=2 fm |2 →

n→∞ 0.

In view of the equality

Dd

⎛

⎝V ( k1, ..., kd )
∑

S∈Sm
d

(Rm f ) ◦ πS

⎞

⎠ =
∑

S={i1, ..., im }∈Sm
d

Dm V ( ki1 ,..., kim )Rm f
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we obtain

V (d)
n fm = V (d)

n

⎛

⎝
∑

S∈Sm
d

(Rm f ) ◦ πS

⎞

⎠

= 1

nd−1/2

∑

0≤k1≤n−1
...

0≤kd≤n−1

Dd

⎛

⎝V ( k1,..., kd )
∑

S ∈Sm
d

(Rm f ) ◦ πS

⎞

⎠

= 1

nd−1/2

∑

0 ≤ k1 ≤ n−1
...

0 ≤ kd ≤ n−1

∑

S={ i1,..., im } ∈Sm
d

Dm V ( ki1 ,..., kim )Rm f

=

(
d
m

)

nm−1/2 Dm

∑

0 ≤ k1 ≤ n−1
...

0 ≤ km ≤ n−1

V ( k1,..., km )Rm f (26)

for every m = 1, . . . , d. It follows from (26), Proposition 5 with p = 2m and the
assumptions of the theorem that the function fm satisfies the inequality

|V (d)
n fm |2 ≤ Cm

(
d
m

)
n−(m−1)/2 | gm |2 m,m, π

where gm denotes the sum of the series (25). This bound for m ≥ 2 proves (3).
Consider now the sums involving f1. We obtain from (26) that

V (d)
n f1 = d

1√
n

n−1∑

k=0

V k R1 f, (27)

where R1 f has the representation R1 f = g1 − V ∗g1 with g1 denoting the series (25)
for m = 1. This representation can be rewritten as

R1 f = (I − V V ∗)g1 + (V − I )V ∗g1. (28)

Here the first summand gives, under the action of the operators (V k)k ≥ 0, an
ergodic stationary sequence of reversed square integrable martingale differences
(V k(I − V V ∗)g1)k≥0. By the Billingsley–Ibragimov CLT [6,37], the variables
1/

√
n
∑n−1

k=0 V k(I − V V ∗)g1 converge in distribution, along with the variance, to the
required centered Gaussian law. The second summand in (28) only makes a uniformly
L2–bounded contributions to each of the sums

∑n−1
k=0 V k R1 f. Thus, the convergence

to the Gaussian distribution in (1) is established.
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The convergence of the second moments can be concluded as follows. In the situ-
ation of the Billingsley–Ibragimov CLT we have

∣∣∣∣

∑n−1
k=0 V k(I − V V ∗)g1√

n

∣∣∣∣
2

2
= |(I − V V ∗)g1|22 = |g1|22 − |V ∗g1|22 = σ 2( f ).

This implies, in view of (27), (28) and the triangle inequality, that

||V (d)
n f1|2 − dσ( f )| ≤ 2d|g1|2√

n
,

which proves (2) and, together with (3), the convergence of the second moments. ��

Under somewhat weaker assumptions we have the following central limit theorem
with the convergence of the first absolute moment.

Theorem 3 Let f ∈ Lsym
1 ( μd) be a real valued kernel with the symmetric Hoeffding

decomposition

f =
d∑

m = 0

∑

S∈S m
d

(Rm f ) ◦ πS .

Assume that

(1) for every m = 1, . . . , d Rm f ∈ Lsym
m, π ( μ

m) and the series

∑

k∈Z
m+

0≤k<∞

V ∗k Rm f

⎛

⎜⎜⎝
def= lim

n1→∞
...

nm→∞

∑

k∈Z
m+

0≤k<n

V ∗k Rm f

⎞

⎟⎟⎠ (29)

converges in Lm, π ( μ
m),

(2) R1 f satisfies the relation

∣∣∣∣∣

n−1∑

k = 0

V k R1 f

∣∣∣∣∣
1

= O(
√

n) as n → ∞. (30)

Then there exists σ 2( f ) ≥ 0 such that the sequence

V (d)
n f = 1

nd−1/2

∑

0 ≤ k1 ≤ n−1
...

0 ≤ kd ≤ n−1

Dd V ( k1,..., kd )( f − R0 f ), n ≥ 1,
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converges in distribution to N (0, d 2σ 2( f )) as n → ∞. The convergence of the first
absolute moments

E | V (d)
n f | →

n→∞ d

√
2

π
σ( f ) (31)

holds as well.

Proof The proof is parallel to that of Theorem 2, so we will concentrate on the essential
changes in the proof. Consider the Hoeffding decomposition of f − R0 f

f − R0 f =
d∑

m=1

∑

S∈Sm
d

(Rm f ) ◦ πS =
d∑

m=1

fm

with

fm =
∑

S∈Sm
d

(Rm f ) ◦ πS, m = 1, . . . , d.

In order to prove the theorem it suffices to establish that

1) for some σ( f ) ≥ 0, V (d)
n f1 converges in distribution to N (0, d2σ 2( f )),

2) |V (d)
n f1|1 →

n→∞ d
√

2
π
σ( f ),

3) |V (d)
n

∑d
m=2 fm |1 →

n→∞ 0.

Analogously to the proof of Theorem 2, the functions fm, 1 ≤ m ≤ d, can be
shown to satisfy the inequality

|V (d)
n fm |1 ≤ Cm

(
d
m

)
n−(m−1)/2 | gm |m,m, π ,

where gm denotes the sum of the series (29). For m ≥ 2 the latter bound implies the
convergence in L1(μ) to zero, proving 3). Taking m = 1, we obtain

V (d)
n f1 = d

1√
n

n−1∑

k=0

V k R1 f,

where R1 f has the representation R1 f = g1 − V ∗g1 with g1 ∈ L1(μ) denoting
the sum of the series (29) with m = 1. As in the proof of Theorem 2, R1 f can be
represented in the form

R1 f = (I − V V ∗)g1 + (V − I )V ∗g1,

where the first summand defines an ergodic stationary sequence of reversed mar-
tingale difference (V k(I − V V ∗)g1)k≥0, while the second one only contributes a
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uniformly L1-bounded amount to each of the sums
∑n−1

k=0 V k R1 f . However, now we
only have (I − V V ∗)g1 ∈ L1(μ), while we need (I − V V ∗)g1 ∈ L2(μ) to apply the
Billingsley–Ibragimov CLT. The latter can be concluded, as suggested in [31], from
(30) using another Burkholder inequality (Theorem 8 in [13]) and the ergodic theorem
(see [12] for details). This proves the convergence in distribution. The convergence of
the first moments can be concluded similarly to the corresponding part in the proof of
Theorem 2. ��

Remark 11 In the statement of Theorem 3 the requirement (30) can be substituted by
the relation

∣∣∣∣∣∣∣∣∣∣

∑

0 ≤ k1 ≤ n−1
...

0 ≤ kd ≤ n−1

Dd V ( k1,..., kd )( f − R0 f )

∣∣∣∣∣∣∣∣∣∣
1

= O(nd−1/2) as n → ∞.

8 A limit theorem for canonical kernels of degree 2

Apart from non-degenerate kernels of the previous section, a different type of von
Mises statistics emerges from canonical symmetric kernels of degree d ≥ 2. Limit
distributions of V -statistics defined by such kernels are usually described in terms
of series (or polynomials) in Gaussian variables, or in terms of multiple stochastic
integrals. In the case of V -statistics of dependent variables some descriptions of the
limits in terms of dependent Gaussian variables or non-orthogonal stochastic integrals
are known [7,8,26]. A rather attractive way is to present the limit distribution, like in
the i.i.d. case, in terms of independent Gaussian variables. This will be done below
in the case d = 2 and is based on the diagonalization of the symmetric kernel.
The point is that the diagonalization here is applied, instead of the original kernel, to a
martingale kernel which emerges as a leading summand in the martingale-coboundary
representation of the original kernel. Notice that the diagonalization of martingale
kernels is also used in [41]; in the present work, however, martingale kernels are
considered as a subclass to which the study of much more general kernels is reduced.

We assume that f = f2 in terms of the Hoeffding decomposition for symmetric
kernels (see Remark 6 in Sect. 4.2). Let θ denote the involution in (X2,F⊗2, μ2) inter-
changing the multipliers in the Cartesian product. We consider the spaces L2, π ( μ

2)

and Lsym
2, π ( μ

2) as embedded in L2( μ
2).

Proposition 7 Let f (= f2) ∈ Lsym
2, π ( μ

2) be a canonical kernel of degree 2. If the
limit

g
def= lim

n1, n2→∞
∑

0 ≤ i1 ≤ n1−1
0 ≤ i2 ≤ n2−1

V ∗(i1, i2) f (32)
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exists in L2,π (μ
2), then f admits a unique representation of the form 2

f = g∅+(V (1,0)− I )g{1} + (V (0,1)− I )g{2} + (V (1, 0)− I )(V (0,1)− I )g{1,2}, (33)

where

E(g∅|T −(1, 0)F ⊗2) = 0, E(g∅|T −(0, 1)F ⊗2) = 0,

E(g{1}|T −(0, 1)F ⊗2) = 0, E(g{2}|T −(1, 0)F ⊗2) = 0
(34)

and g∅, g{1}, g{2}, g{1,2} are canonical. The functions g∅, g{1}, g{2}, g{1,2} in (33)
are uniquely determined by the above properties; moreover, g∅, g{1,2} ∈ Lsym

2,π (μ
2),

g{1}, g{2} ∈ L2,π (μ
2), g{1} ◦ θ=g{2} and g{2} ◦ θ = g{1}.

Proof Up to the details related to symmetry the proposition follows from Example 2.1
in [33]. We propose, however, a partially independent proof based on the decomposi-
tion of f presented by Lemma 5 with m = 2. Set e1 = (1, 0), e2 = (0, 1). Vanishing
of conditional expectations follows from the presence of the operators I − V el V ∗el

(l = 1, 2) in corresponding summands in view of (16) (recall that V e1 , V ∗e1 commute
with V e2 , V ∗e2 ). Further, the operators I − V el V ∗ el preserve canonicity since so do
I, V el and V ∗el . Hence, the functions g∅, g{1}, g{2}, g{1,2} are canonical because so are
the functions hS in Lemma 5; this lemma also implies the uniqueness of the summands
in the representation (33). To establish the uniqueness claimed in the proposition we
need to prove that canonical solutions to the equations

(V e1 − I )g{1} = 0, (V e2 − I )g{2} = 0, (V e1 − I )(V e2 − I )g{1,2} = 0

vanish. Applying V ∗ el to the first equation, we obtain (I − V ∗ el )g{1} = 0 or g{1} =
V ∗ el g{1}. Iterating the latter equation gives g{1} = V ∗ne1 g{1} for every n ≥ 1. For a
canonical g{1} the right hand side of the last equation tends to 0 as n →∞; hence g{1} =
0. Other equations can be treated similarly. The symmetry of g∅ and g{1,2} follows
from the symmetry of f and the uniqueness. Then we apply θ to the decomposition of
a symmetric f and use the uniqueness of summands in the decomposition (33) with
symmetric g∅ and g{1,2}. By uniqueness we obtain g{1} ◦ θ=g{2} and g{2} ◦ θ = g{1}.

��
Assume, in addition, that the kernel f is real-valued. The function g∅ is the real-

valued kernel of a symmetric trace class integral operator in L2(μ). Hence, it admits
the eigenfunction decomposition

g∅(x1, x2) =
∞∑

m=1

λmϕm(x1)ϕm(x2) (35)

where (ϕm)m≥1 is a normalized orthogonal sequence in L2(μ) and (λm)m≥1 is a real
sequence (of not necessarily distinct numbers) for which

∑∞
m=1 | λm | < ∞. We shall

2 Upper indices here follow Lemma 5.
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34 M. Denker, M. Gordin

assume that λm = 0 for every m ≥ 1. Moreover, since we consider L2(μ) over C,
we assume that the functions (ϕm)m≥1 are chosen real-valued (this is always possible
since g is symmetric and real-valued).

Theorem 4 Let f be a real-valued canonical kernel satisfying the assumptions of
Proposition 7. Then, as n → ∞, the sequence of random variables

1

n

∑

0≤ i1,i2≤ n−1

D2V (i1, i2) f, n ≥ 1,

converges in distribution to

ξ
def=

∞∑

m=1

λmη
2
m,

where (ηm)
∞
m=1 is a sequence of independent standard Gaussian variables. Moreover,

E

⎛

⎝ 1

n

∑

0≤ i1, i2 ≤ n−1

D2 V (i1,i2) f

⎞

⎠ →
n→∞

∞∑

m=1

λm .

Proof Setting in (19) m = 2, p = 2, r = 1, we obtain with s = 1

∣∣∣∣∣∣

∑

0≤ i1, i2≤ n−1

D2V (i1, i2)
(
(V (1, 0)− I )g{1} + (V (0,1)− I )g{2})

∣∣∣∣∣∣
1

≤2 C2, 2, 1
√

n | g|2, 2, π

and with s = 2

∣∣∣∣∣∣

∑

0≤ i1, i2≤ n−1

D2V (i1, i2)
(
(V (1,0)− I )(V (0,1)− I )g{1, 2})

∣∣∣∣∣∣
1

≤ C2, 2, 2 | g|2, 2, π .

These two inequalities and decomposition (33) imply that

∣∣∣∣∣∣
1

n

∑

0≤ i1, i2≤ n−1

D2V (i1, i2)( f − g∅)

∣∣∣∣∣∣
1

→
n→∞ 0

which reduces the proof to the special case of the kernel g∅.
Let us show next that for every m ≥ 1

E(ϕm |T −1F) = 0.
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We have μ× μ—almost surely

0 = E(g∅| T −(0,1)F⊗2)(x1, x2) =
∞∑

l=1

λlϕl(x1)E(ϕl | T −1F)(x2)

which for every m implies, via multiplying by ϕm(x1) and integrating over x1 with
respect to μ, that λm E(ϕm | T −1F)(x2) = 0. Thus we have

E(ϕm | T −1F) = 0

μ—almost surely for every m ≥ 1.
Define now a random variable ξN and a truncated kernel g∅

N by setting

ξN =
N∑

m=1

λmη
2
m, g∅

N (x1, x2) =
N∑

m=1

λmϕm(x1)ϕm(x2).

Observe that for every N the assertions of the theorem on the convergence in distri-
bution and the convergence of the first moments hold for for g∅

N and ξN , when f is
replaced by g∅

N . Indeed, the Billingsley–Ibragimov theorem applies to reversed R
N -

valued martingale differences (this is straightforward via the Cramer–Wold device).
So, the random vectors

(
1√
n

n−1∑

k=o

ϕ1 ◦ T k, . . . ,
1√
n

n−1∑

k=o

ϕN ◦ T k

)

converge in distribution to (η1, . . . , ηN ) as n → ∞. Hence, the random variables

1

n

∑

0≤ i1, i2≤ n−1

D2V (i1, i2)g(N )∅ =
N∑

m=1

λm

(
1√
n

n−1∑

k=0

ϕm ◦ T k
)2

converge in distribution to
∑N

m=1 λmη
2
m as n → ∞. The convergence of the first

moments follows here from the convergence of the second moments in the CLT for
martingale differences. Observe now that

| ξ − ξN |1 =
∣∣∣∣∣

∞∑

m=N+1

λm η
2
m

∣∣∣∣∣
1

≤
∞∑

m=N+1

| λm | →
N→∞ 0.

123



36 M. Denker, M. Gordin

Hence, (ξn)n≥1 converges to ξ in distribution along with the first moment. Combining
this with the fact that

∣∣∣∣
1

n

∑

0≤ i1, i2≤ n−1

D2V ( i1, i2 )g∅ − 1

n

∑

0≤ i1, i2≤ n−1

D2V ( i1, i2 )g∅
N

∣∣∣∣
1

≤
∣∣∣∣

∞∑

m=N+1

λm

(
1√
n

∑

0≤ i ≤n−1

ϕm ◦ T i
)

⊗
(

1√
n

∑

0≤ i ≤n−1

ϕm ◦ T i
)∣∣∣∣

2, 2, π

≤
∞∑

m=N+1

|λm | →
N→∞ 0

holds uniformly in n (we used here that the functions (ϕm ◦ T i )1≤m, 1≤i are orthonor-
mal), the proof is completed. ��

9 Exemplary applications

In this section we show how the results of the present paper can be applied in situations
familiar to specialists in limit theorems for dynamical systems or weakly dependent
random variables. We develop only a few of all possible applications and we do not
optimize our assumptions. Instead, we show how certain earlier known and some new
results can be deduced from ours. Applications of Theorem 1 were given in Corollaries
2 and 3.

9.1 Doubling transformation

Let X = {z ∈ C : |z| = 1}, μ be the probability Haar measure on X, T z = z2, z ∈ X.
Clearly,

(V f )(x) = f (x2), (V ∗ f )(x) = 1/2
∑

{u: u2=x}
f (u).

T is known to be exact [48]. If f1 ∈ L2(μ) and
∫

X f1(x)μ(dx) = 0 then the series

∑

k≥0

V ∗ k f1

converges in L2(μ) under very mild conditions. For example, the condition

∑

k≥0

w(2)( f1, 2−k) < ∞

is sufficient. Here w(2)( f1, ·) is the modulus of continuity of f1 in L2(μ).
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(a) Translation-invariant kernels Let now f ∈ L2(μ2) be of the form

f (x1, x2) = g(x1x−1
2 ) (36)

with some g(x) = ∑
k∈Z

gk xk ∈ L2(μ). Assume that f = f2 (that is f is canonical),
real-valued and symmetric. This means that g0 = 0, gk are real and satisfy g−k = gk

for all k ∈ Z. Assume, moreover, that f2 ∈ Lsym
2, π (μ

2). In our setup this is equivalent
to the relation

∑

k∈Z

|gk | < ∞. (37)

The condition of the existence of the limit

limn→∞
∑

0 ≤ i1,i2 ≤ n−1

V ∗( i1, i2) f2

in L2, π ( μ
2) is satisfied if the series

∑∞
k=0 nV ∗ng is norm convergent in the space of

absolutely convergent trigonometric series, that is

∑

k∈Z

∑

n≥0

n| g2nk | < ∞.

The latter condition holds, for example, if for some C > 0 and δ > 0

|gm | ≤ C

|m|(log |m|)1+δ

for every m ∈ Z,m = 0. This condition is a very mild strengthening of (37).

(b) General kernels Consider now (compare Proposition 6) a general kernel f ∈
L2(X2,F⊗2, μ2) with Fourier expansion

f (x1, x2) =
∑

k1, k2∈ Z

fk1, k2 xk1
1 xk2

2 , x1, x2 ∈ X.

Assume that the kernel f is real-valued and symmetric, that is f−k1,−k2 = f k1, k2

and fk2, k1 = fk1, k2 for k1, k2 ∈ Z. Following the notation of Remark 6, we have
f0 = f0, 0, f1(x) = ∑

k∈Z\{0} fk, 0 xk , f2(x1, x2) = ∑
k1, k2∈ Z\{0} fk1, k2 xk1

1 xk2
2 . The

kernel f satisfies all conditions of Theorems 2 and 4 whenever

∑

n≥0

⎛

⎝
∑

k∈ Z\{0}
| f2nk, 0|22

⎞

⎠
1/2

< ∞ and
∑

n1, n2≥ 0

∑

k1, k2∈ Z\{0}
| f2n1 k1, 2n2 k2 | < ∞.
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Remark 12 In this subsection we gave applications of our results to the simplest exam-
ple of a differentiable expanding map. This is based on the group structure of the
example and its Fourier analysis. A more general approach can be developed on the
basis of the transfer operator (V ∗ in our setting) restricted to some spaces of nice
(smooth, Hölder or Sobolev) functions.

9.2 Stationary processes (martingale kernels, mixing conditions, Markov processes)

Let ξ = (ξn)n∈Z be an ergodic stationary random process defined on the space
(X,F , μ) where an invertible measure preserving transformation T acts so that
ξn+1 = ξn ◦ T, n ∈ Z. We assume that all ξn take values in a probability space
(Y,G, ν), ν being the common distribution of (ξn)n∈ Z. Let (Xd ,F⊗d , μd) be the
d-th Cartesian power of (X,F , μ) with the coordinatewise action of (T n)n∈ Zd and
the corresponding operators (V n)n∈ Zd ; let, furthermore, (ξ (i)n )n∈Z, 1 ≤ i ≤ d, be
independent copies of (ξn)n∈Z defined on (Xd ,F⊗d , μd) so that ξ (i)n (x1, . . . , xd) =
ξn(xi ), where x1, . . . , xd ∈ X , 1 ≤ i ≤ d, n ∈ Z. Assume now that we are
given some F ∈ L p, π (Y d ,G⊗d , νd) for some d ∈ N and p ∈ [1,∞). Then

f = F(ξ (1)0 , . . . , ξ
(d)
0 ) ∈ L p, π (Xd ,F⊗d , μd), F(ξ (1)n1 , . . . , ξ

(d)
nd ) = V n f and

F(ξn1, . . . , ξnd ) = Dd V n f for every n = (n1, . . . , nd) ∈ Z
d .

In the rest of the paper, instead of saying that an assertion of the previ-
ous part of the paper applies to a kernel f and a transformation T , we will
usually say that this assertion applies to the kernel F (the process ξ will be
omitted).

9.2.1 Martingale kernels

Let d = 2. Set F0 = σ(ξ0, ξ−1, . . .), the σ -field generated by ξ0, ξ−1, . . ., and Fn =
T −nF0 = σ(ξn, ξn−1, . . .). Assume that f = F(ξ (1)0 , ξ

(2)
0 ) is a canonical kernel.

Obviously, it is measurable with respect to F (1)
0 ⊗ F (2)

0

( def= σ((ξ
(1)
0 , ξ

(1)
−1 , . . . , ξ

(2)
0 ,

ξ
(2)
−1 , . . .)

)
.

The equivalent of (32) for invertible T is the existence of the limit

lim
n1, n2→∞

∑

0 ≤ i1 ≤ n1−1
0 ≤ i2 ≤ n2−1

V (i1, i2)E
(
F(ξ (1)0 , ξ

(2)
0 )| F (1)

−i1
⊗ F (2)

−i2

)

in the space L2, π (X2,F⊗2, μ2). To compare our Theorem 4 (in its invertible
modification, see Remark 8) with the main limit theorem in [41] notice that it is
assumed there that the kernel F is symmetric and satisfies E

(
F(ξ (1)0 , ξ

(2)
0 )| F (1)

−1 ⊗
F (2)

0

) = 0. This implies that a non-vanishing summand may appear in the
above sum only for i1 = i2 = 0, so we have nothing more to check in this
case.
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9.2.2 Processes satisfying mixing conditions

For k ∈ Z we set Fk = σ(ξl , l ≤ k), Fk = σ(ξl , l ≥ k), F(k) = σ(ξk); let
Ek, Ek, E(k) denote the corresponding conditional expectation operators, E being
the unconditional expectation. For the system of σ -fields (Fk,Fk)k∈ Z and n ∈ Z+
define the well-known mixing coefficients by setting

α(n) = sup
A∈Fk ,B∈F k+n

|μ(A ∩ B)− μ(A)μ(B)|,

ϕ(n) = sup
A∈Fk , μ(A)> 0,B∈F k+n

μ−1(A)|μ(A ∩ B)− μ(A)μ(B)|,

ψ(n) = sup
A∈Fk, B∈ F k+n , μ(A) μ(B)> 0

μ−1(A)μ−1(B)|μ(A ∩ B)− μ(A)μ(B)|.

For the norms of the operators Ek+n Ek − E, Ek Ek+n − E which act from Lq( μ) to
L p( μ)(p, q ∈ [1, ∞]) certain bounds in terms of the mixing coefficients are known
[14,38]. Indeed, we have for 1 ≤ p ≤ q ≤ ∞

max (|Ek+n Ek − E |q, p , |Ek Ek+n − E |q, p) ≤ C(q, p) α(n) p−1−q−1
(38)

|Ek Ek+n − E |q, p ≤ 2ϕ(n)1−q−1
, (39)

and for 1 ≤ p , q ≤ ∞

max (|Ek+n Ek − E |q, p, |Ek Ek+n − E |q, p) ≤ ψ(n). (40)

Notice that if at least one of the mixing coefficients tends to 0, the process ξ is
Kolmogorov (see Remark 8) and consequently ergodic. Set

Mq, p =
∑

n≥ 0

|Ek Ek+n − E |q, p,M ′
q, p =

∑

n≥ 0

|Ek+n Ek − E |q, p

(in view of stationarity Mq, p and M ′
q, p do not depend on k).

In the rest of 9.2.2 we show how Proposition 6 (more precisely, its analogue for an
invertible T ) can be used applying the results of the paper to V -statistics of a process
ξ with suitable mixing properties.

Let (εk)
∞
k=0 be a sequence of functions satisfying

εk ∈ Lq (Y,G, ν), |εk |q = 1 (k ≥ 0),

ε0 ≡ 1,
∫

Y

εk(y)ν(dx) = 0 (k ≥ 1). (41)

Set ek = εk ◦ ξ0, k ≥ 0, and fix some p ∈ [1, q ]. Observe that for every k ≥ 1

C p, k =
∑

n≥0

| E−nek |p =
∑

n≥0

| (E−n E0 − E)ek |p ≤ Mq, p| εk |q = Mq, p. (42)
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Assume that a function F ∈ Lq (Y m,G⊗m, νm) expands into the series

F(y1, . . . , ym) =
∑

0<k<∞
λF

k εk1(y1) · · · εkm (ym) (43)

with some family (λF
k )0<k<∞. For the following expression of the type of (23) we

have

C F
p

def=
∑

0<k<∞
| λF

k | C p, k1 · · · C p, km ≤ (Mq, p)
m

∑

0<k<∞
|λF

k |, (44)

so C F
p < ∞ whenever

Mq, p < ∞

(this is a condition on the mixing rate of the process ξ ) and expansion (43) of the
function F satisfies the condition

∑

0<k<∞
| λF

k | < ∞. (45)

Thus, the invertible version of Proposition 6 applies to the kernel f : (x1, . . . , xm) �→
F(ξ0(x1), . . . , ξ0(xm)) with some p ∈ [1,∞] and the system (ek)

∞
k=0 if, for a certain

q ∈ [p,∞], the system (εk)
∞
k=0 satisfies the conditions (41), F ∈ Lq( Y m,G⊗m, νm)

admits the representation (43), satisfying (45), and we have Mq, p < ∞ for the
process ξ . We now indicate conditions (stated in terms of α, ϕ and ψ) under which
Theorems 2, 3 and 4 of the paper, in their invertible forms and numerated by 2 ′, 3 ′ and
4 ′, apply to an F . Theorem 3 needs more substantial changes in case of the mixing
coefficient ϕ. Below (εk)k≥0 is a system satisfying (41) with some parameter q.

(a) Let q ∈ [2d,∞]. We will use (38), (39) and (40), substituting there, in place
of the pair (q, p), the pair (q, 2d); we will employ Proposition 6 and formulas (42),
(44) with p = 2d. Theorem 2 ′ applies to an F ∈ Lsym

2 ( νd) if

(1) at least one of the series

∑

n≥0

α(n)(2d)−1−q−1
,
∑

n≥0

ϕ(n)1−q−1
,
∑

n≥0

ψ(n) (46)

converges (for q = 2d the convergence of the α-series means that α(n) = 0 for
n ≥ n0), and

(2) for every m = 2, . . . , d Rm F belongs to Lsym
q (νm) and admits the representation

Rm F(y1, . . . , ym) =
∑

0<k<∞
λ

Rm F
k εk1(y1) · · · εkm (ym) (47)

where the coefficients satisfy
∑

0 <k < ∞ | λRm F
k | < ∞.
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Under condition 2) with q = 2d Theorem 2 ′ applies, in particular, if∑
n≥0 ϕ(n)

1−(2d)−1
< ∞.

(b) To simplify the statements involving ϕ assume that d ≥ 2. Let q ∈ [d,∞].
We will use (38), (39) and (40), substituting there, in place of the pair (q, p), the pair
(q, d); we will employ Proposition 6 and formulas (42), (44) with p = d. Theorem
3 ′ applies to an F ∈ Lsym

1 ( νd) if

(1) at least one of the series

∑

n≥0

α(n)d
−1−q−1 ∑

n≥0

ϕ(n)1−q−1
,
∑

n≥0

ψ(n) (48)

converges (if q = d the convergence of the α-series means that α(n) = 0 for
n ≥ n0);

(2) R1 F satisfies the relation (30):

∣∣∣∣∣

n−1∑

k=0

(R1 F) ◦ ξk

∣∣∣∣∣
1

= O(
√

n);

(3) for every m = 2, . . . , d Rm F belongs to Lsym
q (νm) and admits the representation

Rm F(y1, . . . , ym) =
∑

0<k<∞
λ

Rm F
k εk1(y1) · · · εkm (ym) (49)

where the coefficients satisfy
∑

0 <k < ∞ | λRm F
k | < ∞.

Under conditions 2) and 3) Theorem 3 ′ applies, in particular, if q = 2d and∑
n ≥ 0 α(n)

1/2d < ∞.

(c) Theorem 4 leads to a result on mixing processes in the following way. Let
F ∈ Lsym

2, π (Y
2,G⊗2, ν2) be a canonical function. Hence, it is the kernel of a nuclear

(or trace class) symmetric integral operator in L2(ν) vanishing on constant functions.
The general theory says that in L2(ν) there exists an orthogonal normalized sequence
ε0 ≡ 1, ε1, . . . and a real sequence γ1, γ2, . . . such that

F(x1, x2) =
∞∑

k=1

γk εk(x1) εk(x2), (50)

where
∑∞

k=1 | γk | < ∞ (k = 0 is omitted because F is canonical). Neglect-
ing the assumption of canonicity and symmetry, such functions form exactly the
space L2,π (ν

2); the projective norm agrees for symmetric functions with the sum
of moduli of the eigenvalues of the corresponding integral operators. Thus f :
(x1, x2) �→ F(ξ0(x1), ξ0(x2)) is a function to apply Proposition 6 with d = 2 and
ek = εk ◦ ξ0 (k ≥ 0). Then for k ≥ 1 C2, k ≤ M2, 2. The latter quantity is bounded
above by any of the series

∑
n≥0 ϕ(n)

1/2,
∑

n≥0 ψ(n). Thus, the invertible version
of Theorem 4 applies whenever at least one of these series converges.
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Remark 13 The last assertion under the assumption
∑

n≥0 ϕ(n)
1/2 < ∞ is, up to

inessential details, Theorem 5 in [26]. In [9] the authors express their doubts on
correctness in [26] to substituting a dependent process into the function (50). Our con-
clusion agrees with that of [26]. In our paper the correctness is a simple consequence
of general properties of projective tensor products. However, an elementary reasoning
shows that the series (50) absolutely converges in L1(X2, κ) where κ is an arbitrary
probability on X2 with one-dimensional marginals μ.

9.2.3 Discrete time Markov processes

Let ξ = (ξn)n ∈Z be a stationary Markov process defined on the space (X,F , μ)where
an invertible measure preserving transformation T acts so that ξn+1 = ξn ◦ T, n ∈ Z.
We assume that all ξn take values in a probability space (Y,G, ν), Y being the state
space of ξ and ν its stationary distribution. We will use the notations Fk , Fk , F(k),
Ek, Ek, E(k) and E as introduced above.

Let Q be the transition operator of ξ acting on every space L p(ν), 1 ≤ p ≤ ∞,

with norm 1 and satisfying Ek f (ξk+1) = (Q f )(ξk) for every f ∈ L1(ν) and k ∈ Z.
Assuming F = σ(ξl , l ∈ Z), the process ξ (that is the transformation T ) is ergodic
if and only if for the transition operator Q : L2(ν) → L2(ν) every solution to the
equation Q f = f is a constant. To stay within the assumptions of the present paper
we assume a stronger relation Qnh →

n→∞
∫

h(y)ν(dy)(h ∈ L1(ν)) which implies the

Kolmogorov property of ξ .
Let d ≥ 1 and (εk)

∞
k=0 be a sequence of functions satisfying (41) with q = 2d. Let

Iν denote the identity operator in every space Lq(ν). Assume that for some C > 0
and every k ≥ 1 the equation (Iν − Q)φk = εk is solvable and |φk |2d ≤ C (notice
that the latter condition is fulfilled if the restriction (Iν − Q)|L0

2d
is invertible, L0

2d

denoting the subspace of functions in L2d with integral 0). Let F ∈ L2 (Y d ,G⊗d , νd)

satisfy assumption 2) of paragraph a) in 9.2.2 with q = 2d. Let, finally, the equation
(Iν − Q)g = R1 F have a solution g ∈ L2(ν). Then Theorem 2 ′ applies to f =
F(ξ (1)0 , . . . , ξ

(d)
0 ).
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