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1 Introduction

Given a random variable X with an absolutely continuous density p, the Fisher infor-
mation of X (or its distribution) is defined by

I (X) = I (p) =
∞∫

−∞

p′(x)2

p(x)
dx,

where p′ denotes a Radon–Nikodym derivative of p. In all other cases, let I (X) = ∞.
With the first two moments of X being fixed, this quantity is minimized for the

normal distribution (which is a variant of Cramér–Rao’s inequality). That is, if EX =
a Var(X) = σ 2, then we have I (X) ≥ I (Z) for Z ∼ N (a, σ 2) with density

ϕa,σ (x) = 1√
2πσ 2

e−(x−a)2/2σ 2
.

Moreover, the equality I (X) = I (Z) holds if and only if X is normal.
In many applications the relative Fisher information

I (X ||Z) = I (X)− I (Z) =
∞∫

−∞

(
p′(x)
p(x)

− ϕ′
a,σ (x)

ϕa,σ (x)

)2

p(x) dx

is used as a strong measure of non-Gaussianity of X . For example, it dominates the
relative entropy, or Kullback-Leibler distance of the distribution of X to the standard
normal distribution; more precisely (cf. Stam [S]),

σ 2

2
I (X ||Z) ≥ D(X ||Z) =

∞∫

−∞
p(x) log

p(x)

ϕa,σ (x)
dx . (1.1)

We consider the scheme of independent identically distributed random variables
(Xn)n≥1. Assuming that EX1 = 0 Var(X1) = 1, define the normalized sums

Zn = X1 + · · · + Xn√
n

.
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Fisher information 3

Since Zn are weakly convergent in distribution to Z ∼ N (0, 1), one may wonder
whether the convergence holds in a stronger sense. A remarkable observation in this
respect is due to Barron and Johnson proving in [3] that

I (Zn) → I (Z), as n → ∞, (1.2)

i.e., I (Zn||Z) → 0, if and only if I (Zn0) is finite for some n0. In particular, it suffices to
require that I (X1) < ∞, although choosing larger values of n0 considerably enhances
the range of applicability of this theorem.

Quantitative estimates on the relative Fisher information in the central limit theorem
are partly developed, as well. In the i.i.d. case Barron and Johnson [3], and Artstein
et al. [1] derived an asymptotic bound I (Zn||Z) = O(1/n) under the hypothesis that
the distribution of X1 admits an analytic inequality of Poincaré-type

c Var(u(X1)) ≤ E u′(X1)
2.

Here, u is an arbitrary bounded smooth function on the real line, and c is a constant
depending on the distribution of X1, only (the spectral gap). More precisely, they
established the bound

I (Zn||Z) ≤ 2

2 + c (n − 1)
I (X1||Z),

leading to the 1/n convergence in case c > 0 and I (X1) < ∞. The work [1], which
brought important ideas from [4], also provides a similar bound for weighted sums
of Xk in terms of the Lyapunov coefficient of order 4. Note that Poincaré inequalities
involve a large variety of “nice” probability distributions on the line all having finite
exponential moments.

One of the aims of this paper is to study the exact asymptotics (or rates) of I (Zn||Z)
under standard moment conditions. We prove:

Theorem 1.1 Let E |X1|s < ∞ for an integer s ≥ 2, and assume that I (Zn0) < ∞,
for some n0. Then for certain coefficients c j we have, as n → ∞,

I (Zn||Z) = c1

n
+ c2

n2 + · · · + c[(s−2)/2)]
n[(s−2)/2)] + o

(
n− s−2

2 (log n)−
(s−3)+

2

)
. (1.3)

As it turns out, a similar expansion holds as well for the entropic distance D(Zn ||Z),
cf. [11], showing a number of interesting analogies in the asymptotic behavior of these
two distances. In particular, in both cases each coefficient c j is given by a certain
polynomial in the cumulants γ3, . . . , γ2 j+1. In order to describe these polynomials,
we first note that, by the moment assumption, the cumulants

γr = i−r dr

dtr
log E eit X1 |t=0
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4 S. G. Bobkov et al.

are well-defined for all positive integers r ≤ s, and one may introduce the well-known
functions

qk(x) = ϕ(x)
∑

Hk+2 j (x)
1

r1! . . . rk !
(γ3

3!
)r1
. . .

(
γk+2

(k + 2)!
)rk

involving the Chebyshev-Hermite polynomials Hl . Here ϕ = ϕ0,1 denotes the density
of the standard normal law, and the summation runs over all non-negative integer
solutions (r1, . . . , rk) to the equation r1 + 2r2 +· · ·+ krk = k with j = r1 +· · ·+ rk .

The functions qk are correctly defined for k = 1, . . . , s − 2. They appear in
Edgeworth-type expansions approximating the density of Zn . We shall employ them
to derive an expansion in powers of 1/n for the distance I (Zn||Z), which leads us to
the following description of the coefficients in (1.3),

c j =
2 j∑

k=2

(−1)k
∑ +∞∫

−∞
(q ′

r1
+ xqr1)(q

′
r2

+ xqr2) qr3 . . . qrk

dx

ϕk−1 . (1.4)

Here, the inner summation is carried out over all positive integer tuples (r1, . . . , rk)

such that r1 + · · · + rk = 2 j .
For example, c1 = 1

2 γ
2
3 , and in the case s = 4 the relation (1.3) becomes

I (Zn||Z) = 1

2n

(
EX3

1

)2 + o

(
1

n (log n)1/2

)
. (1.5)

Hence, under the 4-th moment condition, we have I (Zn||Z) ≤ C
n with some constant

C (which can actually be chosen to depend on EX4
1 and I (X1), only).

For s = 6, the result involves the coefficient c2 which depends on γ3, γ4, and γ5. If
γ3 = 0 (i.e. EX3

1 = 0), we have c1 = 0 c2 = 1
6 γ

2
4 , and then

I (Zn||Z) = 1

6n2

(
EX4

1 − 3
)2 + o

(
1

n2 (log n)3/2

)
.

More generally, (1.3) is simplified, when the first k − 1 moments of X1 coincide
with the corresponding moments of Z ∼ N (0, 1).

Corollary 1.2 Let E |X1|s < ∞ (s ≥ 4), and assume I (Zn0) < ∞, for some n0.
Given k = 3, 4, . . . , s, assume that γ j = 0 for all 3 ≤ j < k. Then

I (Zn||Z) = γ 2
k

(k − 1)! · 1

nk−2 + O

(
1

nk−1

)
+ o

(
1

n(s−2)/2 (log n)(s−3)/2

)
.

(1.6)

This relation is consistent with an observation of Johnson who noticed that, if
γk 	= 0, I (Zn||Z) cannot be asymptotically better than n−(k−2) ([15], Lemma 2.12).
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Fisher information 5

Let us note that if k < s
2 , the O-term in (1.6) dominates the o-term. But when

k ≥ s
2 , it can be removed, and if k > s

2 + 1, (1.6) just says that

I (Zn||Z) = o
(

n−(s−2)/2 (log n)−(s−3)/2
)
. (1.7)

As for the remaining values s = 2, 3, there are no coefficients c j in the sum (1.3).
In case s = 2 Theorem 1.1 reduces to Barron–Johnson’s theorem (1.2), while under a
3-rd moment assumption we only have

I (Zn||Z) = o

(
1√
n

)
.

In fact, a similar observation holds for the whole range of reals 2 < s < 4. Here the
expansion (1.3) should be replaced by the bound (1.7). Although this bound is worse
than (1.5), it cannot be essentially improved. As shown in [11], it may happen that
E |X1|s < ∞ with D(X1) < ∞ (and actually with I (X1) < ∞), while

D(Zn||Z) ≥ c

n(s−2)/2 (log n)η
, n ≥ n1(X1),

where the constant c > 0 depends on s and an arbitrary prescribed value η > s/2. In
view of (1.1), a similar lower bound therefore holds for I (Zn||Z), as well.

Another interesting issue connected with the convergence theorem (1.2) and the
expansion (1.3) is the characterization of distributions for which these results hold.
Indeed, the condition I (X1) < ∞ corresponding to n0 = 1 in Theorem 1.1 seems to
be way too strong. To this aim, we establish an explicit criterion such that I (Zn0) < ∞
holds for sufficiently large n0 in terms of the characteristic function f1(t) = E eit X1

of X1.

Theorem 1.3 Given independent identically distributed random variables (Xn)n≥1
with finite second moment, the following assertions are equivalent:

(a) For some n0, Zn0 has finite Fisher information;
(b) For some n1, Zn1 has density of bounded total variation;
(c) For some n2, Zn2 has a continuously differentiable density pn2 such that

∞∫

−∞
|p′

n2
(x)| dx < ∞;

(d) For some ε > 0, | f1(t)| = O(t−ε), as t → ∞;
(e) For some ν > 0,

∞∫

−∞
| f1(t)|ν |t | dt < ∞. (1.8)

Property (c) is a formally strengthened variant of (b), although in general they are
not equivalent with n1 = n2. (For example, the uniform distribution has density of
bounded total variation, but its density is not everywhere differentiable.)
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6 S. G. Bobkov et al.

Properties (a)–(c) are equivalent to each other without any moment assumption,
while (d)–(e) are always necessary for the finiteness of I (Zn)with large n. These two
last conditions show that the range of applicability of Theorem 1.1 is indeed rather
wide, since almost all reasonable absolutely continuous distributions satisfy (1.8). The
latter should be compared to and viewed as a certain strengthening of the following
condition (sometimes called a smoothness condition)

∞∫

−∞
| f1(t)|ν dt < ∞, for some ν > 0.

It is equivalent to the property that, for some n, Zn has a bounded continuous density
pn (cf. e.g. [5]). In this and only in this case, a uniform local limit theorem holds:

	n = sup
x

|pn(x)− ϕ(x)| → 0, as n → ∞.

That this assertion is weaker compared to the convergence in Fisher information dis-
tance such as (1.2) can be seen by Shimizu’s inequality 	2

n ≤ cI (Zn||Z), which
holds with some absolute constant c ([3,21], Lemma 1.5). Note in this connection that
Shimizu’s inequality may be strengthened in terms of the total variation distance as
‖pn − ϕ‖2

TV ≤ cI (Zn||Z). Using Theorem 1.3, this shows in the i.i.d. case that (1.2)
is equivalent to the convergence ‖pn − ϕ‖TV → 0.

The paper is organized in the following way. We start with the description of gen-
eral properties of densities having finite Fisher information (Sect. 2) and properties
of Fisher information as a functional on spaces of densities (showing lower semi-
continuity and convexity, Sect. 3). Some of the properties and relations which we
state for completeness may be known already. We apologize for being unable to find
references for them.

In Sects. 4 and 5 we turn to upper bounds needed mainly in the proof of Theo-
rem 1.3. Further properties of densities emerging after several convolutions, as well
as, bounds under additional moment assumptions are discussed in Sects. 6–8. In Sect. 9
we complete the proof of Theorem 1.3, and in the next section we state basic lemmas
on Edgeworth-type expansions which are needed in the proof of Theorem 1.1. Sec-
tions 11 and 12 are devoted to the proof itself. Some remarks leading to the particular
case s = 2 in Theorem 1.1 (Barron–Johnson theorem) are given in Sect. 13. Finally,
in the last section we briefly describe the modifications needed to obtain Theorem 1.1
under moment assumptions with arbitrary real values of s.

2 General properties of densities with finite Fisher information

Definition If a random variable X has an absolutely continuous density p with Radon–
Nikodym derivative p′, put

I (X) = I (p) =
∫

{p(x)>0}

p′(x)2

p(x)
dx . (2.1)

123



Fisher information 7

In this case, if p̃(x) = p(x) for almost all x , i.e., if p̃ is another representative of the
density, put I ( p̃) = I (p). In all other cases, put I (X) = ∞. The quantity I (X) is
called the Fisher information of X .

With this definition, I is correctly defined as a functional on the space of all densities
(and on the space of all probability distributions). However, when I (X) < ∞ and p is
the density of X , we will always assume that p is chosen to be absolutely continuous. In
particular, in this case the derivative p′(x) exists and is finite on a set of full Lebesgue
measure.

One may write an equivalent definition by involving the score function ρ(x) =
p′(x)
p(x) . In general P{p(X) > 0} = 1, so the random variable ρ(X) is defined with

probability 1, and thus

I (X) = E ρ(X)2. (2.2)

For different purposes, it is useful to realize how the ratio p′(x)2
p(x) may behave when

p(x) is small and is even vanishing. The behavior cannot be arbitrary, when the Fisher
information is finite. The following statement will allow us to make more rigorous the
derivation of various Fisher information bounds on the density and its derivatives.

Proposition 2.1 Assume X has density p with finite Fisher information. If p is differ-
entiable at the point x0 such that p(x0) = 0, then p′(x0) = 0.

Proof If p is differentiable in some neighborhood of x0, and its derivative is continuous
at this point, the statement is obvious. In the general case, for simplicity of notations
let x0 = 0, and assume c = p′(0) > 0. Since p(ε) = cε + o(ε), as ε → 0, one may
choose ε0 > 0 such that

3c

4
|x | ≤ p(x) ≤ 5c

4
|x |, for all |x | ≤ ε0.

In particular, p is positive on (0, ε0]. Hence, according to (2.1),

I (X) ≥
ε0∫

0

p′(x)2

p(x)
dx ≥ 4

5c

ε0∫

0

p′(x)2

x
dx .

We split the last integral into the intervals 	n = (2−(n+1)ε0, 2−nε0), which leads to

5c

4
I (X) ≥

∞∑
n=0

2n

ε0

∫

	n

p′(x)2 dx .
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8 S. G. Bobkov et al.

Now, applying Cauchy’s inequality and using p(x)− p( x
2 ) ≥ c

8 x for 0 ≤ x ≤ ε0, we
obtain

∫

	n

p′(x)2 dx ≥ 2n+1

ε0

⎛
⎜⎝
∫

	n

p′(x) dx

⎞
⎟⎠

2

= 2n+1

ε0

(
p(2−nε0)− p(2−(n+1)ε0)

)2 ≥ 2−(n−1) c2ε0

64
.

As a result,

5c

4
I (X) ≥

∞∑
n=0

2n · 2−(n−1) · c2

64
= ∞,

a contradiction with finiteness of the Fisher information. ��
As an example illustrating a possible behavior as in Proposition 2.1, one may

consider the beta distribution with parameters α = β = 3, which has the density

p(x) = 30 (x(1 − x))2, 0 ≤ x ≤ 1.

Then X has finite Fisher information, although p(x0) = p′(x0) = 0 at x0 = 0 and
x0 = 1.

More generally, if a density p is supported and twice differentiable on a finite
interval [a, b], and if p has finitely many zeros x0 ∈ [a, b], and p′(x0) = 0 p′′(x0) > 0
at any such point, then X has finite Fisher information.

Now, let us return to the definitions (2.1)–(2.2). By Cauchy’s inequality,

I (X)1/2 =
(

E ρ(X)2
)1/2 ≥ E |ρ(X)| =

∫

{p(x)>0}
|p′(x)| dx .

Here, by Proposition2.1, the last integral may be extended to the whole real line without
any change, and then it represents the total variation of the function p in the usual
sense of the Theory of Functions:

‖p‖TV = sup
n∑

k=1

|p(xk)− p(xk−1)|,

where the supremum runs over all finite collections x0 < x1 < · · · < xn .
In the sequel, we consider this norm also for densities which are not necessarily

continuous, and then it is natural to require that, for each x , the value p(x) lies in
the closed segment 	(x) with endpoints p(x−) and p(x+). Note that if we change
p(x) at a point of discontinuity such that p(x) goes out of 	(x), then the probability
measure μ(dx) = p(x)dx with density p is unchanged, while ‖p‖TV will increase.
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Fisher information 9

Let us note that the same notation ‖ν‖TV in the sense of the Measure Theory is
commonly used to denote the total variation of a signed Borel measure ν on the real
line. The connection with the Theory of Functions is simply ‖ν‖TV = ‖F‖TV in terms
of the cumulative “distribution function” F(x) = ν((−∞, x]).

Returning to the Fisher information, we thus observed that, if I (X) is finite, the
density p of X is a function of bounded variation. Hence, the limits

p(−∞) = lim
x→−∞ p(x), p(∞) = lim

x→∞ p(x)

exist and are finite. But, since p is a density (hence integrable), these limits must be
zero. In addition, for any x ,

p(x) =
x∫

−∞
p′(y) dy ≤

x∫

−∞
|p′(y)| dy ≤ √I (X).

We can summarize these observations in the following:

Proposition 2.2 If X has density p with finite Fisher information I (X), then
p(−∞) = p(∞) = 0, and the density has finite total variation satisfying

‖p‖TV =
∞∫

−∞
|p′(x)| dx ≤ √I (X).

In particular, p is bounded: maxx p(x) ≤ √
I (X).

Let f (t) = E eit X denote the characteristic function of a random variable X with
density p. Since in general | f (t)| ≤ ‖p‖TV

|t | , an immediate consequence of Proposi-
tion 2.2 is a similar bound

| f (t)| ≤ 1

|t |
√

I (X),

involving the Fisher information. Here, as noticed by Zhang [24], the behavior near
the origin can be improved by using the Cramér–Rao inequality which yields:

Proposition 2.3 If X has finite Fisher information, then its characteristic function
f (t) admits the bound

| f (t)|2 ≤ I (X)

I (X)+ t2 , t ∈ R. (2.3)

Indeed, for any smooth function u : R → C such that E |u′(X)| < ∞, one has, by
integration by parts and applying Cauchy’s inequality,

|E u′(X)|2 ≤ I (X)E |u(X)|2.

In case u(x) = eitx − f (t), this gives (2.3); cf. also [24] for a slightly different
argument.
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10 S. G. Bobkov et al.

Another immediate consequence of Proposition 2.2 is that both p and p′ are square
integrable, that is, p belongs to the Sobolev space W 2

1 = W 2
1 (−∞,∞) of all real-

valued absolutely continuous functions on the real line with finite (Hilbert) norm

‖u‖2
W 2

1
=

∞∫

−∞
u(x)2 dx +

∞∫

−∞
u′(x)2 dx .

More precisely,

∞∫

−∞
p′(x)2 dx =

∞∫

−∞

p′(x)2

p(x)
p(x) dx ≤ max

x
p(x)

∞∫

−∞

p′(x)2

p(x)
dx ≤ I (X)3/2.

(2.4)

By the inverse Fourier formula, the resulting inequality in (2.4) is equivalent to the
following integral analogue of the pointwise bound (2.3).

Proposition 2.4 The characteristic function f (t) of any random variable X satisfies

∞∫

−∞
|t f (t)|2 dt ≤ 2π I (X)3/2. (2.5)

In particular, when the Fisher information of X is finite, so is the integral in (2.5)
Let us return to Proposition 2.2. Since the estimate on the total variation norm

‖p‖TV can be given in terms of the Fisher information, it is natural to ask whether or
not it is possible to bound the total variation distance from p to a normal density in
terms of the relative Fisher information. This suggests the following bound.

Proposition 2.5 If X has mean zero, variance one, and a density p with finite Fisher
information, then

‖p − ϕ‖TV ≤ 4
√

I (X ||Z), (2.6)

where Z has the standard normal density ϕ.

Proof Using

p′(x)− ϕ′(x) =
(

p′(x)
p(x)

− ϕ′(x)
ϕ(x)

)
p(x)− x (p(x)− ϕ(x)) (p(x) > 0)

and applying Cauchy’s inequality, we may write

‖p − ϕ‖TV =
∞∫

−∞
|p′(x)− ϕ′(x)| dx

≤ I (X ||Z)1/2 +
∞∫

−∞
|x | |p(x)− ϕ(x)| dx . (2.7)
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The last integral represents a weighted total variation distance between the distributions
of X and Z with weight function w(x) = |x |.

On this step we apply the following extention of Csiszár-Kullback-Pinsker’s
inequality (CKP) to the scheme of weighted total variation distances, which is pro-
posed by Bolley and Villani, cf. [12], Theorem 2.1 (ii). If X and Y are random variables
with densities p and q, and w(x) ≥ 0 is a measurable function, then

⎛
⎝

∞∫

−∞
w(x) |p(x)− q(x)| dx

⎞
⎠

2

≤ C D(X ||Y ) = C

∞∫

−∞
p(x) log

p(x)

q(x)
dx,

where

C = 2

⎛
⎝1 + log

∞∫

−∞
ew(x)

2
q(x) dx

⎞
⎠ .

The inequality also holds in the setting of abstract measurable spaces, and whenw = 1
it yields the classical CKP inequality with an additional factor 2.

In our case, Y = Z , q = ϕ, and taking w(x) = √
t/2 |x | (0 < t < 1), we get

t

2

⎛
⎝

∞∫

−∞
|x | |p(x)− ϕ(x)| dx

⎞
⎠

2

≤
(

2 + log
1

1 − t

)
D(X ||Z).

One may choose, for example, t = 1 − 1
e , and recalling (1.1), we arrive at

∞∫

−∞
|x | |p(x)− ϕ(x)| dx ≤ 3.1 D(X ||Z)1/2 ≤ 3.1√

2
I (X ||Z)1/2.

It remains to use this bound in (2.7), and (2.6) follows. ��

3 Fisher information as a functional

It is worthwile to discuss separately a few general properties of the Fisher information
viewed as a functional on the space of densities. We start with topological properties.

Proposition 3.1 Let (Xn)n≥1 be a sequence of random variables, and X be a random
variable such that Xn ⇒ X weakly in distribution. Then

I (X) ≤ lim inf
n→∞ I (Xn). (3.1)

Denote by P1 the collection of all (probability) densities on the real line with finite
Fisher information, and let P1(I ) denote the subset of all densities which have Fisher
information of at most size I > 0. On the set P1 the relation (3.1) may be written as

123



12 S. G. Bobkov et al.

I (p) ≤ lim inf
n→∞ I (pn), (3.2)

which holds under the condition that the corresponding distributions are convergent
weakly, i.e.,

lim
n→∞

a∫

−∞
pn(x) dx =

a∫

−∞
p(x) dx, for all a ∈ R. (3.3)

Hence, every P1(I ) is closed in the weak topology. In fact, inside such sets (3.3) can
be strengthened to the convergence in the L1-metric,

lim
n→∞

∞∫

−∞
|pn(x)− p(x)| dx = 0. (3.4)

Proposition 3.2 On every set P1(I ) the weak topology with convergence (3.3) and
the topology generated by the L1-norm coincide, and the Fisher information is a lower
semi-continuous functional on this set.

Proof For the proof of Proposition 3.1, one may assume that I (Xn) → I , for some
(finite) constant I . Then, for sufficiently large n, the Xn have absolutely continuous
densities pn with Fisher information at most I + 1. By Proposition 2.2, such densities
are uniformly bounded and have uniformly bounded variations. Hence, by the second
Helly theorem (cf. e.g. [16]), there are a subsequence pnk and a function p of bounded
variation, such that pnk (x) → p(x), as k → ∞, for all points x . Necessarily, p(x) ≥ 0
and

∫∞
−∞ p(x) dx ≤ 1. Since the sequence of distributions of Xn is tight (or weakly

pre-compact), it also follows that
∫∞
−∞ p(x) dx = 1. Hence, X has an absolutely

continuous distribution with p as its density, and the weak convergence (3.3) holds.
For the proof of Proposition 3.2, a similar argument should be applied to an arbi-

trary prescribed subsequence pnk , where we obtain p(x) = liml→∞ pnkl
(x) for some

further subsequence. By Scheffe’s lemma, this property implies the convergence in
L1-norm, that is, (3.4) holds along nkl . This implies the convergence in L1 for the
whole sequence pn , which is the assertion of Proposition 3.2 (the first part).

To continue the proof of Proposition 3.1, for simplicity of notations, assume that
the subsequence constructed in the first step is actually the whole sequence. By (2.4),

∞∫

−∞
p′

n(x)
2 dx ≤ (I + 1)3/2,

which implies that the derivatives are uniformly integrable on every finite interval.
By the Dunford-Pettis compactness criterion for the space L1 (over finite measures),
there is a subsequence p′

nk
which is convergent to some locally integrable function u

in the sense that
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∫

A

p′
nk
(x) dx →

∫

A

u(x) dx, (3.5)

for any bounded Borel set A ⊂ R. (This is the weak σ(L1, L∞) convergence on finite
intervals.) Note that, according to Proposition 2.1, p′

nk
(x) may be replaced in (3.5)

with the sequence p′
nk
(x) 1{pnk (x)>0} which is thus convergent to u(x) as well.

Taking finite intervals A = (a, b) in (3.5), we get

b∫

a

u(x) dx = p(b)− p(a),

which means that p is (locally) absolutely continuous. Furthermore, since

‖p‖TV =
∞∫

−∞
|u(x)| dx,

and since p has finite total variation, we conclude that u ∈ L1(R), thus representing a
Radon–Nikodym derivative: u(x) = p′(x). Again, for simplicity of notations, assume
the subsequence of derivatives obtained is actually the whole sequence.

Next, consider the sequence of functions

ξn(x) = p′
n(x)√
pn(x)

1{pn(x)>0}.

They have L2(R)-norm bounded by
√

I + 1 (for large n). Since the unit ball of L2

is weakly compact, there is a subsequence ξnk which is weakly convergent to some
function ξ ∈ L2, i.e.,

∞∫

−∞
ξnk (x) q(x) dx →

∞∫

−∞
ξ(x) q(x) dx,

for any q ∈ L2. As a consequence,

∞∫

−∞
ξnk (x)

√
pnk (x) q(x) dx →

∞∫

−∞
ξ(x)

√
p(x) q(x) dx,

due to the uniform boundedness and pointwise convergence of pn . In other words,
again omitting sub-indices, the functions p′

n 1{pn>0} are weakly convergent in L2 to
the function ξ

√
p. In particular, for q = 1A with an arbitrary bounded Borel set

A ⊂ R,
∫

A

p′
n 1{pn>0} dx →

∫

A

ξ(x)
√

p(x) dx .
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14 S. G. Bobkov et al.

As a result, we have obtained two limits for p′
n 1{pn>0} which must coincide, i.e.,

we get ξ
√

p = u = p′ a.e. Hence, p = 0 ⇒ p′ = 0 and ξ = p′√
p a.e. on the set

{p(x) > 0}. Finally, the weak convergence ξnk → ξ in L2, as in any Banach space,
yields

I (p) = ‖ξ · 1{p>0}‖2
L2 ≤ ‖ξ‖2

L2 ≤ lim inf
k→∞ ‖ξnk ‖2

L2 = lim inf
n→∞ I (pnk ) = I.

Thus, Proposition 3.1 is proved. ��
Another general property of the Fisher information is its convexity, that is, we have

the inequality

I (p) ≤
n∑

i=1

αi I (pi ), (3.6)

where p = ∑n
i=1 αi pi with arbitrary densities pi and weights αi > 0

∑n
i=1 αi = 1.

This readily follows from the fact that the homogeneous function R(u, v) = u2/v is
convex on the upper half-plane u ∈ R v > 0. Moreover, Cohen [14] showed that the
inequality (3.6) is strict.

As a consequence, the collection P1(I ) of all densities on the real line with Fisher
information ≤ I represents a convex closed set in the space L1 = L1(R) (for strong
or weak topologies).

We need to extend Jensen’s inequality (3.6) to arbitrary “continuous” convex mix-
tures of densities. In order to formulate this more precisely, recall the definition of
mixtures. Denote by P the collection of all densities which represents a closed subset
of L1 with the weak σ(L1, L∞) topology. For any Borel set A ⊂ R, the functionals
q → ∫

A q(x) dx are bounded and continuous on P. So, given a Borel probability
measure π on P, one may introduce the probability measure on the real line

μ(A) =
∫

P

⎡
⎣
∫

A

q(x) dx

⎤
⎦ dπ(q). (3.7)

It is absolutely continuous with respect to Lebesgue measure and has some density
p(x) = dμ(x)

dx called the (convex) mixture of densities with mixing measure π . For
short,

p(x) =
∫

P

q(x) dπ(q).

Proposition 3.3 If p is a convex mixture of densities with mixing measure π , then

I (p) ≤
∫

P

I (q) dπ(q). (3.8)
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Proof Note that the integral in (3.8) makes sense, since the functional q → I (q)
is lower semi-continuous and hence Borel measurable on P (Proposition 3.1). We
may assume that this integral is finite, so that π is supported on the convex (Borel
measurable) set P1 = ∪I P1(I ).

Identifying densities with corresponding probability measures (having these den-
sities), we consider P1 as a subset of the locally convex space E of all finite Borel
measures μ on the real line endowed with the weak topology.

Step 1. Suppose that the measure π is supported on some convex compact set K
contained in P1(I ). Since the functional q → I (q) is finite, convex and lower semi-
continuous on K , it admits the representation

I (q) = sup
l∈L

l(q), q ∈ K ,

where L denotes the family of all continuous affine functionals l on E such that l(q) <
I (q), for all q ∈ K (cf. e.g. Meyer [18], Chapter XI, Theorem T7). In our particular
case, any such functional acts on probability measures as l(μ) = ∫∞

−∞ ψ(x) dμ(x)
with some bounded continuous function ψ on the real line. Hence,

I (q) = sup
ψ∈C

∞∫

−∞
q(x)ψ(x) dx,

for some family C of bounded continuous functionsψ on R. An explicit description of
C would be of interest, but this question will not be pursued here. As a consequence,
by the definition (3.7) for the measure μ with density p,

∫

P

I (q) dπ(q) ≥ sup
ψ∈C

∫

P

⎡
⎣

∞∫

−∞
q(x)ψ(x) dx

⎤
⎦ dπ(q)

= sup
ψ∈C

∞∫

−∞
p(x)ψ(x) dx = I (p),

which is the desired inequality (3.8).

Step 2. Suppose thatπ is supported on P1(I ), for some I > 0. Since any finite measure
on E is Radon, and since the set P1(I ) is closed and convex, there is an increasing
sequence of compact subsets Kn ⊂ P1(I ) such that π(∪n Kn) = 1. Moreover, Kn

can be chosen to be convex (since the closure of the convex hull will be compact, as
well). Let πn denote the normalized restriction of π to Kn with sufficiently large n so
that cn = π(Kn) > 0, and define its baricenter

pn(x) =
∫

Kn

q(x) dπn(q). (3.9)
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16 S. G. Bobkov et al.

From (3.7) it follows that the measures with densities pn are weakly convergent to the
measure μ with density p, hence the relation (3.2) holds: I (p) ≤ lim infn→∞ I (pn).
On the other hand, by the previous step,

I (pn) ≤
∫

Kn

I (q) dπn(q) = 1

cn

∫

Kn

I (q) dπ(q) →
∫

P1(I )

I (q) dπ(q), (3.10)

and we obtain (3.8).

Step 3. In the general case, we may apply Step 2 to the normalized restrictions πn of
π to the sets Kn = P1(n). Again, for the densities pn defined as in (3.9), we obtain
(3.10), where P1(I ) should be replaced with P1. Another application of the lower
semi-continuity of the Fisher information finishes the proof. ��

4 Convolution of three densities of bounded variation

Although densities with finite Fisher information must be functions of bounded varia-
tion, the converse is not always true. Nevertheless, starting from a density of bounded
variation and taking several convolutions with itself, the resulting density will have
finite Fisher information. Our nearest aim is to prove:

Proposition 4.1 If independent random variables X1, X2, X3 have densities p1, p2,

p3 with finite total variation, then S = X1 + X2 + X3 has finite Fisher information,
and moreover,

I (S) ≤ 1

2

[
‖p1‖TV ‖p2‖TV + ‖p1‖TV ‖p3‖TV + ‖p2‖TV ‖p3‖TV

]
. (4.1)

One may further extend (4.1) to sums of more than 3 independent summands,
but this will not be needed for our purposes (since the Fisher information may only
decrease when adding an independent summand.)

In the i.i.d. case the above estimate can be simplified. By a direct application of the
inverse Fourier formula, the right-hand side of (4.1) may be related furthermore to the
characteristic functions of X j . We will return to this in the next section.

First let us look at the particular case where X j are uniformly distributed over
intervals. This important example already shows that the Fisher information I (X1 +
X2) does not need to be finite, while it is finite for 3 summands. (This somewhat
curious fact was pointed out to one of the authors by K. Ball.) In fact, there is a simple
quantitative bound.

Lemma 4.2 If independent random variables X1, X2, X3 are uniformly distributed
on intervals of lengths a1, a2, a3, then

I (X1 + X2 + X3) ≤ 2

[
1

a1a2
+ 1

a1a3
+ 1

a2a3

]
. (4.2)
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Fisher information 17

The density of the sum S = X1 + X2 + X3 may easily be evaluated and leads
to a rather routine problem of estimation of I (S) as a function of the parameters a j .
Alternatively, there is an elegant approach based on the Brunn–Minkowski inequality
and the fact that the density p of S behaves like the beta density near the end points
of the supporting interval.

To describe the argument, first let us recall the volume relation (Brunn’s theorem)

|t A + (1 − t)B|1/2 ≥ t |A|1/2 + (1 − t) |B|1/2, 0 < t < 1, (4.3)

which holds for arbitrary non-empty Borel sets A, B lying in parallel hyperplanes of
the Euclidean space R3. Here

t A + (1 − t)B = { ta + (1 − t)b : a ∈ A, b ∈ B}

stands for the Minkowski sum, and |C | is used to denote the two-dimensional Lebesgue
measure of a set C in the hyperplane where it lies (cf. e.g. [13]). But the random vector
(X1, X2, X3) is uniformly distributed in the cube Q ⊂ R3 with sides a j , so, the density
of S is given by

p(x) = 1

a1a2a3
|{(x1, x2, x3) ∈ Q : x1 + x2 + x3 = x}|.

Hence, by (4.3), the function p1/2 is concave on the supporting interval.
The latter property may also be formulated in terms of the transform

L(t) = p(F−1(t)), 0 < t < 1.

Here, F−1 : (0, 1) → (x0, x1) denotes the inverse of the distribution function
F(x) = μ(x0, x), associated to a given probability measure μwhich is supported and
has a positive continuous density p on some interval (x0, x1), finite or not. Namely,
p1/2 is concave on (x0, x1), if and only if the function L3/2 is concave on (0, 1).
Indeed, assuming without loss of generality that p has a continuous derivative, we
have L ′(F(x)) = p′(x)

p(x) and thus

1

3
(L3/2)′(F(x)) = (p1/2)′(x), x0 < x < x1.

Therefore, the derivative (p1/2)′ does not increase on (x0, x1), if and only if (L3/2)′
does not increase on (0, 1). We refer to [8] for related issues about the so-called
κ-concave probability measures and more general characterizations.

Note also that the Fisher information of a random variable X with density p is
expressed in terms of the associated function L as

I (X) =
1∫

0

L ′(t)2 dt. (4.4)
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18 S. G. Bobkov et al.

This general formula holds whenever p is absolutely continuous and positive on the
supporting interval (without any concavity assumption).

Proof of Lemma 4.2 Let X j take values in [0, a j ]. As was just explained, the distrib-
ution of S = X1 + X2 + X3 has density p such that p1/2 is concave on the interval
[0, a1 + a2 + a3], or equivalently, L3/2 is concave on (0, 1), where L is the associated
function for S.

Note that S has an absolutely continuous density p, which is thus vanishing at the
end points x = 0 and x = a1 + a2 + a3. Hence, L(0+) = L(1−) = 0. By the
concavity, there is a non-increasing Radon–Nikodym derivative (L3/2)′ = 3

2 L1/2 L ′.
Since also L is symmetric about the point 1

2 , we get, for all 0 < t < 1,

L ′(t)2 L(t) ≤ c, where c = lim
t→0

L ′(t)2 L(t).

Hence, by (4.4),

I (X) ≤
1∫

0

c

L(t)
dt = c (a1 + a2 + a3). (4.5)

It remains to find the constant c. Putting a = a1a2a3, it should be clear that, for all
x > 0 and t > 0 small enough,

F(x)=P{S ≤ x}= x3

6a
, p(x)= x2

2a
, F−1(t)=(6at)1/3, L(t)= 1

2a
(6at)2/3,

and finally L ′(t)2 L(t) = 2
a . Hence, c = 2

a . Thus, in (4.5) we arrive at I (X) ≤
2
a (a1 + a2 + a3) which is exactly (4.2). ��

Lemma 4.2 allows us to reduce Proposition 4.1 to the case of uniform distrubutions.
Note that if a density p is written as a convex mixture

p(x) =
∫

P

q(x) dπ(q), (4.6)

then by the convexity of the total variation norm,

‖p‖TV ≤
∫

P

‖q‖TV dπ(q). (4.7)

Recall that we understand (4.6) as the equality (3.7) of the corresponding measures.
So, (4.7) uses our original agreement that, for each x , the value p(x) lies in the closed
segment with endpoints p(x−) and p(x+).

In order to apply Lemma 4.2 together with Jensen’s inequality for Fisher informa-
tion, we need however to require that π has to be supported on uniform densities (that
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Fisher information 19

is, densities of the normalized Lebesgue measures on finite intervals) and secondly to
reverse (4.7). Indeed this turns out to be possible, which may be a rather interesting
observation.

Lemma 4.3 Any density p of bounded variation can be represented as a convex mix-
ture (4.6) of uniform densities with a mixing measure π such that

‖p‖TV =
∫

P

‖q‖TV dπ(q). (4.8)

For example, if p is supported and non-increasing on (0,+∞), there is a canonical
representation

p(x) =
∞∫

0

1

x1
1{0<x<x1} dπ(x1) a.e.

with a unique mixing probability measure π on (0,∞). In this case ‖p‖TV = 2p(0+),
and (4.8) is obvious. One may write a similar representation for densities of unimodal
distributions. In general, another way to write (4.6) and (4.8) is

p(x) =
∫

x1>x0

1

x1 − x0
1{x0<x<x1} dπ(x0, x1),

‖p‖TV = 2
∫

x1>x0

1

x1 − x0
dπ(x0, x1),

where π is a Borel probability measure on the half-plane x1 > x0 (i.e., above the
main diagonal). It was noticed by Maurey [17] that a mixing measure π satisfying
(4.6) and (4.8) is not unique in general. This can be seen on the example of p(x) =
1
4 · 1{0<x<3} + 1

4 · 1{1<x<2}.
Let us also note that the sets BV(c) of all densities p with ‖p‖TV ≤ c are closed

under the weak convergence (3.3) of the corresponding probability distributions. More-
over, the weak convergence in BV(c) coincides with convergence in L1-norm, which
can be proved using the same arguments as in the proof of Proposition 3.2. In particu-
lar, the functional q → ‖q‖TV is lower semi-continuous and hence Borel measurable
on P, so the integrals (4.7)–(4.8) make sense.

Denote by U the collection of all uniform densities which thus may be identified
with the half-plane Ũ = {(a, b) ∈ R2 : b > a} via the map (a, b) → qa,b(x) =

1
b−a 1{a<x<b}. The usual convergence on Ũ in the Euclidean metric coincides with the
weak convergence (3.3) of qa,b. The closure of U for the weak topology contains U
and all delta-measures, hence U is a Borel measurable subset of P.

Proof We split the argument into two steps.

Step 1. First consider the discrete case, where p is piecewise constant. That is,
assume that p is supported and constant on consecutive semiopen intervals 	k =
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20 S. G. Bobkov et al.

[xk−1, xk) k = 1, . . . , n, where x0 < · · · < xn . Putting p(x) = ck on 	k , we then
have

‖p‖TV = c1 + |c2 − c1| + · · · + |cn − cn−1| + cn .

In this case the existence of the representation (4.6), moreover—with a discrete mixing
measure π , satisfying (4.8), can be proved by induction on n.

If n = 1, there is nothing to prove. For n = 2, if c1 = c2 or min(c1, c2) = 0, we
are reduced to the case n = 1. Otherwise, let for definiteness c2 > c1 > 0. Then one
can write

p = c1 1[x0,x2) + (c2 − c1) 1[x1,x2) = α1 q1 + α2 q2,

where q1 is the uniform density on	1 ∪	2 and q2 is the uniform density on	2 (with
certain α1, α2 > 0, α1 + α2 = 1). This representation corresponds to (4.6) with π
having the atoms at q1 and q2. In addition,

α1 ‖q1‖TV + α2 ‖q2‖TV = ‖c1 1[x0,x2)‖TV + ‖(c2 − c1) 1[x1,x2)‖TV = 2c2 = ‖p‖TV,

so (4.8) is fulfilled.
If n ≥ 3, first we distinguish between several cases. If c1 = 0 or cn = 0, we are

reduced to the smaller number of supporting intervals. If ck = 0 for some 1 < k < n,
one can write p = f + g with f (x) = p(x) 1{x<xk−1} g(x) = p(x) 1{x≥xk }. These
functions are supported on disjoint half-axes, so ‖p‖TV = ‖ f ‖TV +‖g‖TV. Moreover,
the induction hypothesis may be applied to both f and g (or one can first normalize
these functions to work with densities, but this is less convenient). As a result,

f = f1 + · · · + fk, g = g1 + · · · + gl a.e.

where each fi is supported and constant on some interval inside [x0, xk−1), each g j

is supported and constant on some interval inside [xk, xn), and

‖ f ‖TV = ‖ f1‖TV + · · · + ‖ fk‖TV, ‖g‖TV = ‖g1‖TV + · · · + ‖gl‖TV.

Hence,

p =
∑

i

fi +
∑

j

g j with ‖ f ‖TV =
∑

i

‖ fi‖TV +
∑

j

‖g j‖TV.

Finally, assume that ck > 0 for all k ≤ n. Putting c∗ = mink ck , write p = f + g,
where f = c∗ 1[x0,xn) and g thus takes the values ck − c∗ on 	k . Clearly,

‖p‖TV = 2c∗ + ‖g‖TV = ‖ f ‖TV + ‖g‖TV.

By the definition, g takes the value zero on one of the intervals (where ck = c∗),
so we are reduced to the previous step. On that step, we obtained a representation
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g = g1 + · · · + gl such that ‖g‖TV = ‖g1‖TV + · · · + ‖gl‖TV, where each g j is
supported and constant on some interval inside [x0, xn). Hence,

p = f +
∑

j

g j with ‖p‖TV = ‖ f ‖TV +
∑

j

‖g j‖TV.

Although the measure π has not been constructed constructively, one may notice
that it should be supported on the densities of the form

qi j (x) = 1

x j − xi
1{xi ≤x<x j }, 0 ≤ i < j ≤ n.

Step 2. (Approximation) In the general case, one may assume that p is right-continuous.
Consider the collection of piecewise constant densities of the form

p̃(x) = dq(x), q(x) =
N∑

k=1

ck 1{xk−1≤x<xk }, ck = min
xk−1≤x≤xk

p(x), (4.9)

with arbitrary points x0 < · · · < xN of continuity of p, such that p is not vanishing
on (x0, xN ), and where d ≥ 1 is a normalizing constant so that

∫∞
−∞ p̃(x) dx = 1.

Denoting by yk a point of minimum of p on [xk−1, xk], we first note that

1

d
‖ p̃‖TV = ‖q‖TV = p(y1)+ p(yN )+

N∑
k=2

|p(yk)− p(yk−1)| ≤ ‖p‖TV.

If the endpoints x0 and xN are fixed, while the maximal step of partition maxk (xk −
xk−1) is getting small, the integral

∫ xN
x0

q(x) dx will approximate
∫ xN

x0
p(x) dx (since

p has bounded total variation). Hence, it is possible to construct a sequence pn(x) =
dnqn(x) of the form (4.9) which is convergent to p in L1-norm and with dn → 1. By
the construction,

pn(x) ≤ dn p(x) and ‖pn‖TV ≤ dn ‖p‖TV. (4.10)

Now, using the previous step, one can define discrete probability measures πn

supported on U and such that

pn(x) =
∫

U

q(x) dπn(q), ‖pn‖TV =
∫

U

‖q‖TV dπn(q). (4.11)

Since U has been identified with the half-plane Ũ , replacing dπn(q) with dπn(a, b)
should not lead to confusion. In particular, the second equality in (4.11) may be written
as
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‖pn‖TV = 2
∫

Ũ

1

b − a
dπn(a, b). (4.12)

Let n be large enough, say n ≥ n0 (when dn ≤ 2). From the first equality in (4.11)
and by (4.10), it then follows that, for any T > 0,

∫

U

⎡
⎢⎣
∫

|x |≥T

q(x) dx

⎤
⎥⎦ dπn(q) =

∫

|x |≥T

pn(x) ≤ 2
∫

|x |≥T

p(x) dx .

Hence, by Chebyshev’s inequality, the sets U (ε, T ) = {q ∈ U : ∫|x |≥T q(x) dx > ε}
have πn-measure

πn(U (ε, T )) ≤ 2

ε

∫

|x |≥T

p(x) dx (ε, T > 0). (4.13)

Next we choose two sequences ε = εk ↓ 0 and T = Tk ↑ ∞, for which the
right-hand side of (4.13), say δk , will tend to zero sufficiently fast, as k → ∞. Let
δk < 2−k . Identifying q with corresponding probability distributions, by the Prokhorov
compactness criterion (cf. e.g. [6]), the collection of densities

Fk =
∞⋂

l=k

⎧⎪⎨
⎪⎩q ∈ P :

∫

|x |≥Tl

q(x) dx ≤ εl

⎫⎪⎬
⎪⎭

is pre-compact in the space M(R) of all probability distributions on the real line with
the weak topology. Moreover, by (4.13),

1 − πn(Fk) ≤
∞∑

l=k

πn(U (εl , Tl)) ≤
∞∑

l=k

δl < 2−(k−1).

Therefore, by the same criterion, but now applied to the Polish space M(M(R)) of
all probability distributions on M(R) (with the weak topology), πn contains a weakly
convergent subsequence πnk with some limit π . This measure is supported on the
weak closure of U , which is a larger set, since it contains delta-measures, or the
main diagonal in R2, if we identify U with Ũ . However, using (4.12) together with
Chebyshev’s inequality, and then applying (4.10), we see that, for any ε > 0 and all
n ≥ n0,

πn{(a, b) : b − a < ε} = πn

{
(a, b) : 1

b − a
>

1

ε

}
≤ ε

2
‖pn‖TV ≤ ε ‖p‖TV.

Since ε > 0 is arbitrary, we conclude that π is actually supported on U .
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Moreover, taking the limit along nk in the first equality in (4.11), we obtain the
representation (4.6). Indeed, (4.11) implies that, for all a < b,

b∫

a

pn(x) dx =
∫

U

⎡
⎣

b∫

a

q(x) dx

⎤
⎦ dπn(q).

The functional q → ∫ b
a q(x) dx is bounded and continuous on the space P with the

weak topology (3.3), so the limit yields a similar equality

b∫

a

p(x) dx =
∫

U

⎡
⎣

b∫

a

q(x) dx

⎤
⎦ dπ(q).

But the latter is equivalent to (4.6).
Finally, the sets G(t) = {q ∈ U : ‖q‖TV > t} are open in the weak topology (by

the lower semicontinuity of the total variation norm), hence, lim infk→∞ πnk (G(t)) ≥
π(G(t)). Applying Fatou’s lemma and then again (4.10) and the second equality in
(4.11), we get

∫

U

‖q‖TV dπ(q) =
∞∫

0

π(G(t)) dt ≤ lim inf
k→∞

∞∫

0

πnk (G(t)) dt

= lim inf
k→∞

∫

U

‖q‖TV dπnk (q) = lim inf
k→∞ ‖pnk ‖TV ≤ ‖p‖TV.

In view of Jensen’s inequality (4.7), we obtain (4.8) thus proving the lemma. ��

Proof of Proposition 4.1 We may write down the representation (4.6) from Lemma 4.2
for each of the densities p j ( j = 1, 2, 3). That is,

p j (x) =
∫

q(x) dπ j (q) a.e.

with some mixing probability measures π j , supported on U and satisfying

‖p j‖TV =
∫

‖q‖TV dπ j (q). (4.14)

Taking the convolution, we have a similar representation

(p1 ∗ p2 ∗ p3)(x) =
∫∫∫

(q1 ∗ q1 ∗ q3)(x) dπ1(q1)dπ2(q2)dπ3(q3) a.e.
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One can now use Jensen’s inequality (3.8) for the Fisher information and apply (4.2)
to bound I (p1 ∗ p2 ∗ p3) from above by

1

2

∫∫∫ [ ‖q1‖TV ‖q2‖TV + ‖q1‖TV ‖q3‖TV + ‖q2‖TV ‖q3‖TV
]

dπ1(q1)dπ2(q2)dπ3(q3).

In view of (4.14), the triple integral coincides with the right-hand side of (4.1). ��

5 Bounds in terms of characteristic functions

In view of Proposition 4.1, let us describe how to bound the total variation norm of a
given density p of a random variable X in terms of the characteristic function

f (t) = E eit X =
∞∫

−∞
eitx p(x) dx .

There are many different bounds depending on the integrability properties of f and
its derivatives, which may also depend on assumptions on the finiteness of moments
of X . We shall present two of them here.

Recall that, if p is absolutely continuous, then

‖p‖TV =
∞∫

−∞
|p′(x)| dx .

Proposition 5.1 If X has finite second moment and

∞∫

−∞
|t | (| f (t)| + | f ′(t)| + | f ′′(t)|) dt < ∞, (5.1)

then X has a continuously differentiable density p with finite total variation

‖p‖TV ≤ 1

2

∞∫

−∞

(|t f ′′(t)| + 2 | f ′(t)| + |t f (t)|) dt. (5.2)

Proof The argument is standard, and we recall it here for completeness.
First, by the moment assumption, f is twice continuously differentiable. Using

the inverse Fourier transform, the assumption (5.1) implies that X has a continuously
differentiable density

p(x) = 1

2π

∞∫

−∞
e−i t x f (t) dt (5.3)
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with derivative

p′(x) = − i

2π

∞∫

−∞
e−i t x t f (t) dt. (5.4)

By the Riemann–Lebesgue theorem, f (t) → 0, as |t | → ∞, and the same is true
for the derivatives f ′(t) and f ′′(t) (since they are Fourier transforms of integrable
functions). Therefore, one may integrate in (5.3) by parts to get, for all x ∈ R,

xp(x) = − i

2π

∞∫

−∞
e−i t x f ′(t) dt (5.5)

and

x2 p(x) = − 1

2π

∞∫

−∞
e−i t x f ′′(t) dt.

By (5.1), we are allowed to differentiate the last equality by performing differentiation
under the integral sign, which together with (5.4) and (5.5) gives

(1 + x2)p′(x) = i

2π

∞∫

−∞
e−i t x (t f ′′(t)+ 2 f ′(t)− t f (t)

)
dt.

Hence, |p′(x)| ≤ C
2π (1+x2)

with a constant described as the integral in (5.2). After
integration of this pointwise bound, the proposition follows. ��

One can get rid of the assumption of existing second derivative in the bound above
and remove any moment assumption in Proposition 5.1. But we still need to insist on
some integrability and differentiability properties for the characteristic function on the
positive half-axis.

Proposition 5.2 Assume that the characteristic function f (t) of a random variable
X has a continuous derivative for t > 0 with

∞∫

−∞
t2
(
| f (t)|2 + | f ′(t)|2

)
dt < ∞. (5.6)

Then X has an absolutely continuous density p with finite total variation

‖p‖TV ≤
⎛
⎝

∞∫

−∞
|t f (t)|2 dt

∞∫

−∞
|(t f (t))′|2 dt

⎞
⎠

1/4

. (5.7)
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Proof First assume additionally that f decays at infinity sufficiently fast. Then t f (t)
is integrable, so that X has a smooth density p with derivative p′ represented by
(5.4). One may integrate therein by parts over the intervals (−T,−ε) and (ε, T ) with
ε ↓ 0, T ↑ ∞, using the property that (t f (t))′ is integrable near zero. Then we get in
the limit a similar representation

xp′(x) = − 1

2π

∞∫

−∞
e−i t x (t f (t))′ dt,

where the integral is understood in the improper sense (at infinity), and with resulting
function in L2(−∞,∞). Write |p′(x)| = 1

|1+i x | |(1 + i x) p′(x)| and use Cauchy’s
inequality together with Plancherel’s formula, to get

⎛
⎝

∞∫

−∞
|p′(x)| dx

⎞
⎠

2

≤
∞∫

−∞

dx

1 + x2

∞∫

−∞
(1 + x2) p′(x)2 dx

= 1

2

∞∫

−∞

[|t f (t)|2 + |(t f (t))′|2] dt.

Applying the same inequality to λX and optimizing over λ > 0, we arrive at (5.7).
In the general case, one may apply (5.7) to the regularized random variables Xσ =

X + σ Z with small parameter σ > 0, where Z ∼ N (0, 1) is independent of X .
They have smooth densities pσ and characteristic functions fσ (t) = f (t) e−σ 2t2/2.
Repeating the previous argument for the difference of densities, we obtain an analogue
of (5.7),

‖pσ1 − pσ2‖4
TV ≤

∞∫

−∞
|t ( fσ1(t)− fσ2(t))|2 dt

∞∫

−∞
|(t ( fσ1(t)− fσ2(t)))

′|2 dt (5.8)

with arbitrary σ1, σ2 > 0. Since the integrals in (5.7) are finite, by the Lebesgue
dominated convergence theorem, the right-hand side of (5.8) tends to zero, asσ1, σ2 →
0. Hence, the family {pσ } is fundamental (Cauchy) for σ → 0 in the Banach space of
all functions of bounded variation on the real line that are vanishing at infinity. As a
result, there exists the limit p = limσ→0 pσ in this space in total variation norm.

Necessarily, p(x) ≥ 0, for all x , and
∫∞
−∞ p(x) dx = 1. Hence, X has an absolutely

continuous distribution with density p. In addition, by (5.7) applied to pσ ,

‖p‖TV = lim
σ→0

‖pσ‖TV ≤ lim
σ→0

⎛
⎝

∞∫

−∞
|t fσ (t)|2 dt

∞∫

−∞
|(t fσ (t))

′|2 dt

⎞
⎠

1/4

.

The last limit exists and coincides with the right-hand side of (5.7).
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Finally, using Plancherel’s formula in (5.4) for the regularized random variables,
we have, for all σ1, σ2 > 0,

∞∫

−∞
|p′
σ1
(x)− p′

σ2
(x)|2 dx = 1

2π

∞∫

−∞
t2 | fσ1(t)− fσ2(t)|2 dt.

This relation shows that {pσ } is a fundamental family also in the Sobolev space
W 2

1 (−∞,∞), and necessarily p = limσ→0 pσ in the norm of W 2
1 . Thus, p belongs

to W 2
1 and is therefore absolutely continuous. ��

Combining Proposition 4.1 with Propositions 5.1–5.2, one can bound the Fisher
information of the sum of three independent random variables in terms of their char-
acteristic functions. In particular, in the i.i.d. case, we have:

Corollary 5.3 If the independent random variables X1, X2, X3 have finite first
absolute moment and a common characteristic function f (t), then

I (X1 + X2 + X3) ≤ 3

2

⎛
⎝

∞∫

−∞
|t f (t)|2 dt

∞∫

−∞
|(t f (t))′|2 dt

⎞
⎠

1/2

. (5.9)

If X1 has finite second moment, we also have

I (X1 + X2 + X3) ≤ 3

8

⎛
⎝

∞∫

−∞

(|t f ′′(t)| + 2 | f ′(t)| + |t f (t)|) dt

⎞
⎠

2

.

It is interesting to note that, in turn, the first integral in (5.9) is bounded from above
by I (X1)

3/2 up to a constant (Proposition 2.4). The same can also be shown for the
second integral under the 4th moment assumption (cf. Sect. 7).

6 Classes of densities representable as convolutions

General bounds like those in Proposition 2.2 may considerably be sharpened in the
case where p is representable as convolution of several densities with finite Fisher
information.

Definition 6.1 Given an integer k ≥ 1 and a real number I > 0, denote by Pk(I ) the
collection of all functions on the real line which can be represented as convolution of
k probability densities with Fisher information at most I . Correspondingly, let

Pk = ∪I>0 Pk(I )

denote the collection of all functions representable as convolution of k probability
densities with finite Fisher information.
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The collection P1 of all densities with finite Fisher information has been already
discussed in connection with general properties of the functional I . For growing k, the
classes Pk(I ) decrease, since the Fisher information may only decrease when adding
an independent summand. This also follows from the following general inequality of
Stam

1

I (X1 + · · · + Xk)
≥ 1

I (X1)
+ · · · + 1

I (Xk)
, (6.1)

which holds for all independent random variables X1, . . . , Xk (cf. [7,15,22]). More-
over, it implies that p = p1∗· · ·∗ pk ∈ P1(I/k), as long as pi ∈ P1(I ), i = 1, . . . , k.

Any function p in Pk is k − 1 times differentiable, and its (k − 1)-th derivative is
absolutely continuous and has a Radon–Nikodym derivative, which we denot by p(k).
Let us illustrate this property in the important case k = 2. Write

p(x) =
∞∫

−∞
p1(x − y)p2(y) dx (6.2)

in terms of absolutely continuous densities p1 and p2 of independent summands X1
and X2 of a random variable X with density p. Differentiating under the integral sign,
we obtain a Radon–Nikodym derivative of the function p,

p′(x) =
∞∫

−∞
p′

1(x − y)p2(y) dy =
∞∫

−∞
p′

1(y)p2(x − y) dy. (6.3)

The latter expression shows that p′ is absolutely continuous and has a Radon–Nikodym
derivative

p′′(x) =
∞∫

−∞
p′

1(y)p
′
2(x − y) dy, (6.4)

which is well-defined for all x . In other words, p′′ appears as the convolution of the
functions p′

1 and p′
2 (which are integrable, according to Proposition 2.2).

These formulas may be used to derive a number of elementary relations within the
class Pk , and here we shall describe some of them for the cases P2 and P3.

Proposition 6.2 Given a density p ∈ P2(I ), for all x ∈ R,

|p′(x)| ≤ I 3/4
√

p(x) ≤ I. (6.5)

Moreover, p′ has finite total variation

‖p′‖TV =
∞∫

−∞
|p′′(x)| dx ≤ I.
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The last bound immediately follows from (6.4) and Proposition 2.2. To obtain the
pointwise bound on the derivative, we appeal to Proposition 2.1 and rewrite the first
equality in (6.3) as

p′(x) =
∞∫

−∞

p′
1(x − y)√
p1(x − y)

1{p1(x−y)>0}
√

p1(x − y) p2(y) dy.

By Cauchy’s inequality,

p′(x)2 ≤ I (X1)

∞∫

−∞
p1(x − y) p2(y)

2 dy

≤ I (X1) max
y

p2(y)

∞∫

−∞
p1(x − y) p2(y) dy ≤ I (X1)I (X2)

1/2 p(x),

where we applied Proposition 2.2 to the random variable X2 on the last step. This
gives the first inequality in (6.5), while the second follows from p(x) ≤ √

I .
Now, we state similar bounds for the second derivative.

Proposition 6.3 For any density p ∈ P2(I ) p(x) = 0 ⇒ p′′(x) = 0, for all x.
Moreover,

∫

{p(x)>0}

p′′(x)2

p(x)
dx ≤ I 2.

Proof Let us start with the representation (6.4) for a fixed value x ∈ R. By Proposi-
tion 2.1, the integral in (6.4) may be restricted to the set {y : p2(y) > 0}. By the same
reason, it may also be restricted to the set {y : p1(x − y) > 0}. Hence,

p′′(x) =
∞∫

−∞
p′

1(y)p
′
2(x − y) 1A(y) dy, (6.6)

where A = {y : p1(x − y)p2(y) > 0}. On the other hand, p(x) = 0 in the equality
(6.2) implies that p1(y)p2(x − y) = 0 for almost all y. Therefore, 1A(y) = 0 a.e.,
and thus the integral (6.6) is vanishing, that is, p′′(x) = 0.

Next, introduce the functions ui (x) = p′
i (x)√
pi (x)

1{pi (x)>0} (i = 1, 2) and rewrite (6.4)
as

p′′(x) =
∞∫

−∞
(u1(x − y)u2(y))

√
p1(x − y)p2(y) dy.
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By Cauchy’s inequality,

p′′(x)2 ≤
∞∫

−∞
u1(x − y)2 u2(y)

2 dy

∞∫

−∞
p1(x − y)p2(y) dy = u(x)2 p(x),

(6.7)

where u ≥ 0 is defined by

u(x)2 =
∞∫

−∞
u1(x − y)2 u2(y)

2 dy. (6.8)

Clearly,

∞∫

−∞
u(x)2 dx = I (X1)I (X2) ≤ I 2,

which is the inequality of the proposition. ��

Proposition 6.4 Given a density p ∈ P3(I ), we have, for all x,

|p′′(x)| ≤ I 5/4
√

p(x) ≤ I 3/2. (6.9)

Proof By the assumption, one may write p = p1 ∗ p2 with p1 ∈ P1(I ) and p2 ∈
P2(I ). Returning to (6.7)–(6.8) and applying Proposition 6.2 to p2, we get u2(y) ≤
I 3/4, so

u(x)2 ≤ I 3/2

∞∫

−∞
u1(x − y)2 dy ≤ I 5/2.

This proves the first inequality in (6.9). The second bound follows from the uniform
bound p(x) ≤ √

I , cf. Proposition 2.2. ��

7 Bounds under moment assumptions

Another way to sharpen the bounds obtained in Sect. 2 for general densities with finite
Fisher information is to invoke conditions on the absolute moments

βs = βs(X) = E |X |s (s > 0 real).
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By Proposition 2.1 and Cauchy’s inequality, if the Fisher information is finite,

∞∫

−∞
|x |s |p′(x)| dx =

∫

{p(x)>0}
|x |s p(x)1/2

|p′(x)|
p(x)1/2

dx

≤
⎛
⎜⎝

∫

{p(x)>0}
|x |2s p(x) dx

⎞
⎟⎠

1/2 ⎛
⎜⎝

∫

{p(x)>0}

p′(x)2

p(x)
dx

⎞
⎟⎠

1/2

.

Hence, we arrive at:

Proposition 7.1 If X has an absolutely continuous density p, then, for any s > 0,

∞∫

−∞
|x |s |p′(x)| dx ≤ √β2s I (X).

This bound holds irrespectively of the Fisher information or the 2s-th absolute
moment β2s being finite or not. Below we describe several applications of this propo-
sition.

First, let us note that, when s ≥ 1, the function u(x) = (1 + |x |s)p(x) is (locally)
absolutely continuous and has a Radon–Nikodym derivative satisfying

|u′(x)| ≤ s|x |s−1 p(x)+ (1 + |x |s) |p′(x)|.

Integrating this inequality and assuming for a moment that both I (X) and β2s are
finite, we see that u is a function of bounded variation. Since u is also integrable,

u(−∞) = lim
x→−∞ u(x) = 0, u(∞) = lim

x→∞ u(x) = 0.

Therefore, applying Propositions 2.2 and 7.1, we get

u(x) =
x∫

−∞
u′(y) dy ≤

∞∫

−∞
|u′(y)| dy

≤ s

∞∫

−∞
|x |s−1 p(x) dx +

∞∫

−∞
(1 + |x |s) |p′(x)| dx

≤ sβs−1 +√I (X)+√β2s I (X).

One can summarize.
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Corollary 7.2 If X has density p, then, given s ≥ 1, for any x ∈ R,

p(x) ≤ C

1 + |x |s

with C = sβs−1 + √
2(1 + β2s) I (X). If this constant is finite, we also have

lim
x→∞ (1 + |x |s) p(x) = 0.

In the resulting inequality no requirements on the density are needed.
Under stronger moment assumptions, one can obtain better bounds for the decay

of the density. For example, if for some λ > 0, the exponential moment

β = E e2λ|X | =
∞∫

−∞
e2λ|x | p(x) dx

is finite, then by similar arguments, p(x) ≤ C e−λ|x |, for any x ∈ R, with some
constant C depending on λ β and I (X).

Applying Proposition 7.1 and Corollary 7.2 (the last assertion) with s = 1, we
obtain the following analogue of Proposition 2.3.

Corollary 7.3 If X has finite second moment and finite Fisher information I (X), then
for its characteristic function f (t) = E eit X we have

| f ′(t)| ≤ C

|t | , t ∈ R,

with constant C = 1 + √
β2 I (X).

Indeed, if p is density of X and t 	= 0, one may integrate by parts

f ′(t) = 1

t

∞∫

−∞
xp(x) deitx = −1

t

∞∫

−∞
(p(x)+ xp′(x)) eitx dx,

which yields |t f ′(x)| ≤ 1 + √
β2 I (X).

One can also derive a similar integral bound with the help of Corollary 7.2 with
s = 2, that is, assuming that β4 is finite. Alternatively (so that to improve the resulting
constant), let us repeat the argument used in the proof of Corollary 7.2 with the
particular function u(x) = x2 p(x). Then we readily get

x2 p(x) ≤ 2β1 +√β4 I (X).
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But, by the Cramér–Rao inequality, β4 I (X) ≥ β2
2 I (X) ≥ β2 ≥ β2

1 , and the above
estimate is simplified to x2 p(x) ≤ 3

√
β4 I (X). Hence,

∞∫

−∞
x2 p′(x)2 dx =

∫

{p(x)>0}
x2 p(x)

p′(x)2

p(x)
dx ≤ 3

√
β4 I (X) I (X).

Since xp′(x) represents the inverse Fourier transform for −(t f (t))′, one may use the
Plancherel formula which leads to:

Corollary 7.4 If X has finite 4th moment and finite Fisher information I (X), then

∞∫

−∞
|(t f (t))′|2 dt ≤ 6π

√
β4 I (X)3/2.

The left integral appeared in the bound (5.9) of Corollary 5.3. Combining Proposi-
tion 2.4 and Corollary 7.4, (5.9) may be thus complemented by a similar I -containing
bound, namely,

I (X1 + X2 + X3) ≤ 3

2

⎛
⎝

∞∫

−∞
|t f (t)|2 dt

∞∫

−∞
|(t f (t))′|2 dt

⎞
⎠

1/2

≤ 3
√

3πβ1/4
4 I (X1)

3/2,

where random variables X1, X2, X3 are independent and have a common characteristic
function f (t) with finite 4th moment β4 = β4(X1).

8 Fisher information in terms of the second derivative

It will be convenient to work with the formulas for the Fisher information and for
the parts of corresponding integrals over half-axes, which involve the second deriva-
tive of the density. First we consider convolutions of two densities with finite Fisher
information.

Proposition 8.1 If a random variable X has density p ∈ P2, then

I (X) = −
∞∫

−∞
p′′(x) log p(x) dx, (8.1)

provided that

∞∫

−∞
|p′′(x) log p(x)| dx < +∞. (8.2)

The latter condition holds, if E |X |s < ∞ for some s > 2.
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Strictly speaking, the integration in (8.1)–(8.2) should be performed over the open
set G = {x : p(x) > 0}. One may extend this integration to the whole real line by
using the convention 0 log 0 = 0. This is consistent with the property that p′′(x) = 0,
as soon as p(x) = 0 (according to Proposition 6.3).

Proof The assumption p ∈ P2 ensures that p has an absolutely continuous derivative
p′ with Radon–Nikodym derivative p′′. By Proposition 6.2, p′ has bounded total
variation, which justifies the possibility of integration by parts.

More precisely, assuming that p ∈ P2, let us decompose the set G into disjoint
open intervals (an, bn), bounded or not. In particular, p(an) = p(bn) = 0, and by the
bound (6.5),

|p′(x) log p(x)| ≤ I 3/4
√

p(x) | log p(x)| → 0, as x ↓ an,

and similarly for bn . Integrating by parts, we get for an < T1 < T2 < bn ,

T2∫

T1

p′(x)2

p(x)
dx =

T2∫

T1

p′(x) d log p(x)

= p′(x) log p(x)

∣∣∣∣
T2

x=T1

−
T2∫

T1

p′′(x) log p(x) dx .

Letting T1 → an and T2 → bn , we get

bn∫

an

p′(x)2

p(x)
dx = −

bn∫

an

p′′(x) log p(x) dx,

where the second integral is understood in the improper sense. It remains to perform
summation over n on the basis of (8.2), and then we obtain (8.1).

To verify the integrability condition (8.2), one may apply an integral bound of
Proposition 6.3. Namely, using Cauchy’s inequality, for the integral in (8.2) we have

⎛
⎜⎝

∫

{p(x)>0}

|p′′(x)|√
p(x)

√
p(x) | log p(x)| dx

⎞
⎟⎠

2

≤ I 2

∞∫

−∞
p(x) log2 p(x) dx .

If the moment βs = E |X |s is finite, Corollary 7.2 yields

p(x) log2 p(x) ≤ C
log2(e + |x |)

1 + |x |s/2

with a constant C depending on I and βs . The latter function is integrable in case
s > 2, so the integral in (8.2) is finite. ��
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As the above argument shows, without the requirement that p ∈ P2 and the inte-
grability condition (8.2), formula (8.1) still remains valid under the following assump-
tions:

• p(x) is twice continuously differentiable on the real line;
• p(x) > 0, for all x ;
• p′(x) log p(x) → 0, as |x | → ∞.

However, then the integral (8.1) should be understood in the improper sense, i.e.,
we have

I (X) = − lim
T1→−∞, T2→∞

T2∫

T1

p′′(x) log p(x) dx,

where the limit exists regardless of whether the Fisher information is finite or not.
In order to involve the standard moment assumption—the finiteness of the sec-

ond moment, we consider densities representable as convolutions of more than two
densities with finite Fisher information.

Proposition 8.2 If a random variable X has finite second moment and density p ∈ P5,
then condition (8.2) holds, and for all −∞ ≤ a < b ≤ ∞,

b∫

a

p′(x)2

p(x)
1{p(x)>0} dx = p′(b) log p(b)− p′(a) log p(a)−

b∫

a

p′′(x) log p(x) dx .

(8.3)

In particular, X has finite Fisher information given by (8.1).

Here we use the convention p′(±∞) log p(±∞) = 0 for the case where a and/or
b are infinite, together with

p′(x) log p(x) = p′′(x) log p(x) = 0 in the case p(x) = 0,

as before in (8.1)–(8.2). To show that (8.2) is indeed fulfilled, it will be sufficient to
prove the following pointwise bounds which are of independent interest.

Proposition 8.3 If EX2 ≤ 1 and X has density p ∈ P5(I ), then with some absolute
constant C, for all x,

|p′′(x)| ≤ C I 3 1

1 + x2 (8.4)

and

|p′′(x) log p(x)| ≤ C I 3 log(e + |x |)
1 + x2 . (8.5)
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Proof The assumption EX2 ≤ 1 implies I ≥ 1 (by Cramer–Rao’s inequality). Also,
the characteristic function f (t) = E eit X is twice differentiable, and by Proposi-
tion 2.3, it satisfies

| f (t)| ≤ I 5/2

|t |5 .

Hence, p may be described as the inverse Fourier transform

p(x) = 1

2π

∞∫

−∞
e−i t x f (t) dt,

and a similar representation is also valid for the second derivative,

p′′(x) = − 1

2π

∞∫

−∞
e−i t x t2 f (t) dt. (8.6)

Write X = X1 + · · · + X5 with independent summands such that I (X j ) ≤ I
and assume (without loss of generality) that they have equal means. Then EX2

j ≤ 1,
hence the characteristic functions f j (t) of X j have second derivatives | f ′′

j (t)| ≤ 1.
Moreover, by Proposition 2.3 and Corollary 7.3,

| f j (t)| ≤ I 1/2

|t | , | f ′
j (t)| ≤ 1 + I 1/2

|t | .

Now, differentiation of the equality f (t) = f1(t) . . . f5(t) leads to

f ′(t) = f ′
1(t) f2(t) . . . f5(t)+ · · · + f1(t) . . . f4(t) f ′

5(t),

hence | f ′(t)| ≤ 5I 2 (1+I 1/2)

|t |5 . Differentiating once more, it should be clear that

| f ′′(t)| ≤ 5I 2

t4 + 20 I 3/2(1 + I 1/2)2

|t |5 .

These estimates imply that

|(t2 f (t))′| ≤ C I 5/2

|t |3 , |(t2 f (t))′′| ≤ C I 5/2

t2 (|t | ≥ 1)

with some absolute constant C . As a consequence, one may integrate in (8.6) by parts
with x 	= 0 to get
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p′′(x) = 1

2πx2

∞∫

−∞
(t2 f (t))′′ e−i t x dx .

Hence, for all x ∈ R,

|p′′(x)| ≤ C I 5/2

1 + x2 (8.7)

with some absolute constant C , implying the required pointwise bound (8.4).
Now, to derive the second pointwise bound, first we recall that p(x) ≤ I 1/2. Hence,

| log p(x)| ≤ log(I 1/2)+ log
I 1/2

p(x)
, (8.8)

where the last term is thus non-negative. Next, we partition the real line into the sets
A = {x : p(x) ≤ I 1/2

2(1+x4)
} and its complement B. On the set A, by Proposition 6.4,

|p′′(x)| log
I 1/2

p(x)
≤ I 5/4

√
p(x) log

I 1/2

p(x)
≤ C1 I 3/2 log(e + |x |)

1 + x2 ,

and similarly, by (8.7), on the set B we have an analogous inequality

|p′′(x)| log
I 1/2

p(x)
≤ |p′′(x)| log

(
2(1 + x4)

)
≤ C2 I 5/2 log(e + |x |)

1 + x2 .

Thus, for all x , applying (8.8) and again (8.7),

|p′′(x) log p(x)| ≤ |p′′(x)| log(I 1/2)+ |p′′(x)| log
I 1/2

p(x)

≤ C I 5/2 (1 + log I )
log(e + |x |)

1 + x2 .

Proposition 8.3 is proved. ��
Proof of Proposition 8.2 Like in the proof of Proposition 8.1, first one should decom-
pose the open set G = {x ∈ (a, b) : p(x) > 0} into disjoint open intervals (an, bn).
If G = (a, b), then for a < T1 < T2 < b, we have

T2∫

T1

p′(x)2

p(x)
dx = p′(x) log p(x)

∣∣∣∣
T2

x=T1

−
T2∫

T1

p′′(x) log p(x) dx . (8.9)

In case b = ∞ p(x) → 0, as x → ∞, by Corollary 7.2, so that p′(x) log p(x) → 0,
due to Proposition 6.2. If b < ∞, then p′(x) log p(x) → p′(b) log p(b), as x → b,
with the limit being zero in case p(b) = 0. A similar conclusion is also true about the
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point a. Hence, letting T1 → a and T2 → b in (8.9), we arrive at the desired equality
(8.3). Moreover, the pointwise bound (8.5) confirms that the right integral in (8.3) is
absolutely convergent.

If the decomposition of G contains more than one interval, similar arguments should
be applied in every interval (an, bn) with the following remark. If bn < b, then
necessarily p(bn) = 0, so p′(x) log p(x) → 0, as x → bn (and likewise for the end
points an > a). Then it will remain to perform summation of the obtained equalities
over all n. ��

9 Normalized sums. Proof of Theorem 1.3

By the definition of classes Pk (k = 1, 2, . . .), the normalized sum

Zn = X1 + · · · + Xn√
n

of independent random variables X1, . . . , Xn with finite Fisher information has density
pn belonging to Pk , as long as n ≥ k.

Moreover, if all I (X j ) ≤ I for all j , then pn ∈ Pk(2k I ). Indeed, one can partition
the collection X1, . . . , Xn into k groups and write Zn = U1 + · · · + Uk with

Ui = 1√
n

m∑
j=i

X(i−1)m+ j (1 ≤ i ≤ k − 1), Uk = 1√
n

n∑
j=(k−1)m+1

X j ,

where m = [ n
k ]. By Stam’s inequality (6.1), for 1 ≤ i ≤ k − 1

1

I (Ui )
≥ 1

n

m∑
j=i

1

I (X(i−1)m+ j )
≥ m

nI
≥ 1

2k I
,

and similarly 1
I (Uk )

≥ 1
2k I .

Therefore, the previous observations about densities from Pk are applicable to
Zn with sufficiently large n, as soon as the X j have finite Fisher information with a
common bound on I (X j ).

In the i.i.d. case, a similar application of (6.1) also yields I (Zn) ≤ 2I (Zn0). Here,
the factor 2 may actually be removed as a consequence of one generalization of Stam’s
inequality obtained by Artstein, Ball, Barthe and Naor. It is formulated below as a
separate proposition (although for our purposes the weaker inequality is sufficient).

Proposition 9.1 [2] If (Xn)n≥1 are independent and identically distributed, then
I (Zn) ≤ I (Zn0), for all n ≥ n0.

We are now ready to return to Theorem 1.3 and complete its proof.
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Proof of Theorem 1.3 Let (Xn)n≥1 have finite second moment and a common char-
acteristic function f1. The characteristic function of Zn is thus

fn(t) = E eit Zn = f1

(
t√
n

)n

. (9.1)

(a) ⇒ (b), according to Proposition 2.2 applied to X = Zn .
(b) ⇒ (a) and (c). If Zn1 has density pn1 of bounded total variation, Proposition 4.1

yields

I (Z3n1) = I (p3n1) ≤ 3

2
‖p3n1‖2

TV < ∞.

In particular, p3n1 has a continuous derivative and finite total variation.
(c) ⇒ (a), by the same reason, and thus the conditions (a)–(c) are equivalent.
(a) ⇒ (d). Assume that I (Zn0) < ∞, for some fixed n0 ≥ 1. Applying Proposi-

tion 2.3 with X = Zn0 , it follows that

| fn0(t)| ≤ 1

t

√
I (Zn0), t > 0.

Hence, | f1(t)| ≤ Ct−ε with constants ε = 1
n0

and C = (I (Zn0)/n0
)1/2n0 .

(d) ⇒ (e) is obvious.
(e) ⇒ (c). Differentiating the formula (9.1) and using the integrability assumption

(1.8) on f1, we see that, for all n ≥ ν + 2, the characteristic function fn and its first
two derivatives are integrable with weight |t |. This implies that Zn has a continuously
differentiable density

pn(x) = 1

2π

∞∫

−∞
e−i t x fn(t) dt, (9.2)

which, by Proposition 5.1, has finite total variation

‖pn‖TV =
∞∫

−∞
|p′

n(x)| dx ≤ 1

2

∞∫

−∞

(|t f ′′
n (t)| + 2 | f ′

n(t)| + |t fn(t)|
)

dt.

Thus, Theorem 1.3 is proved.

Remark 9.2 If we assume in Theorem 1.3 finiteness of the first absolute moment of
X1 (rather than the finiteness of the second moment), the statement will remain valid,
provided that the integrability condition (e) is replaced with a stronger condition like

∞∫

−∞
| f1(t)|ν t2 dt < ∞, for some ν > 0. (9.3)
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In this case, it follows from (9.1) that, for all n ≥ ν+ 1, the characteristic function fn

and its derivative are integrable with weight t2. Therefore, according to Proposition 5.2,
the normalized sum Zn has density pn with finite total variation

‖pn‖TV ≤
⎛
⎝

∞∫

−∞
|t fn(t)|2 dt

∞∫

−∞
|(t fn(t))

′|2 dt

⎞
⎠

1/4

.

As a result, we obtain the chain of implications (9.3) ⇒ (b) ⇒ (a) ⇒ (d). The
latter condition ensures that pn admits the representation (9.2) and has a continuous
derivative for sufficiently large n. That is, we obtain (c).

10 Edgeworth-type expansions

In the sequel, let (Xn)n≥1 be independent identically distributed random variables with
mean EX1 = 0 and variance Var(X1) = 1. Here we collect some auxiliary results
about Edgeworth-type expansions for the distribution functions Fn(x) = P{Zn ≤ x}
and the densities pn of the normalized sums Zn = (X1 + · · · + Xn)/

√
n.

We recall that

ϕ(x) = 1√
2π

e−x2/2, x ∈ R,

stands the density of the standard normal law. If the absolute moment βs = E |X1|s is
finite for a given integer s ≥ 2, define

ϕs(x) = ϕ(x)+
s−2∑
k=1

qk(x) n−k/2

with the functions qk described in the introductory section, i.e.,

qk(x) = ϕ(x)
∑

Hk+2 j (x)
1

r1! . . . rk !
(γ3

3!
)r1
. . .

(
γk+2

(k + 2)!
)rk

. (10.1)

Here, Hl denotes the Chebyshev-Hermite polynomial of degree l ≥ 0 with leading
coefficient 1, and the summation is running over all non-negative solutions (r1, . . . , rk)

to the equation r1 + 2r2 + · · · + krk = k with notation j = r1 + · · · + rk . Put also

�s(x) =
x∫

−∞
ϕs(y) dy = �(x)+

s−2∑
k=1

Qk(x) n−k/2.
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Similarly to qk , the functions Qk have an explicit description involving the cumulants
γ3, . . . , γk+2 of X1, namely,

Qk(x) = −ϕ(x)
∑

Hk+2 j−1(x)
1

r1! . . . rk !
(γ3

3!
)r1
. . .

(
γk+2

(k + 2)!
)rk

, (10.2)

where the summation is the same as in (10.1), cf. [5] or [20].
The functions ϕs and �s are used to approximate the density and the distribution

function of Zn with error of order smaller than n−(s−2)/2. The following lemma is
classical.

Lemma 10.1 Assume that lim sup|t |→∞ | f1(t)| < 1. If E |X1|s < ∞ (s ≥ 2), then
as n → ∞, uniformly over all x

(1 + |x |s) (Fn(x)−�s(x)) = o
(

n−(s−2)/2
)
. (10.3)

Actually, the relation (10.3) remains valid for real values s ≥ 2, in which case �s

should be replaced with �[s]. For the range 2 ≤ s < 3 the Cramer condition for the
characteristic function is not used, cf. [19]; the range s ≥ 3 is treated in [20] (Theorem
2, Ch.VI, p. 168).

We also need to describe the approximation of densities. Recall that Zn have the
characteristic functions

fn(t) = f1

(
t√
n

)n

,

where f1 is for the characteristic function of X1. If the Fisher information I = I (Zn0)

is finite, then, by Proposition 2.3,

| f (t)|2n0 ≤ I

I + n0t2 , t ∈ R. (10.4)

Hence, given m ≥ 1, we have a polynomial bound | fn(t)| ≤ c |t |−m for n ≥ mn0 and
with c which does not depend on t . So, for all sufficiently large n Zn have continuous
bounded densities

pn(x) = 1

2π

∞∫

−∞
e−i t x fn(t) dt,

which have continuous derivatives

p(l)n (x) = 1

2π

∞∫

−∞
(−i t)l e−i t x fn(t) dt

of any prescribed order.
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Lemma 10.2 Assume that I (Zn0) < ∞, for some n0, and let E |X1|s < ∞ (s ≥ 2).
Fix l = 0, 1, . . . Then, for all sufficiently large n,

(1 + |x |s) |p(l)n (x)− ϕ(l)s (x)| ≤ ψl,n(x)
εn

n(s−2)/2
, x ∈ R, (10.5)

where εn → 0, as n → ∞, and

sup
x

|ψl,n(x)| ≤ 1,

∞∫

−∞
ψl,n(x)

2 dx ≤ 1.

For the proof of Theorem 1.1, the lemma will be used with the values l = 0, 1, 2,
only. In case l = 0, this lemma with the first bound supx |ψl,n(x)| ≤ 1 is a well-known
result. It does not need to require the finiteness of Fisher information, but only uses
the assumption of the boundedness of pn for large n. We can refer to [20], p. 211 in
case s ≥ 3 and to [20], pp. 198–201 for the case s = 2 when ϕs = ϕ.

Proof The result follows from the corresponding approximation of fn by the Fourier
transforms of ϕs on growing intervals, and here we remind a standard argument.
Introduce the “corrected normal characteristic” function

gs(t) = e−t2/2 + e−t2/2
s−2∑
k=1

Pk(i t) n−k/2, t ∈ R,

where

Pk(i t) =
∑

r1+2r2+···+kpk=k

1

r1! . . . rk !
(γ3

3!
)p1

. . .

(
γk+2

(k + 2)!
)pk

(i t)k+2(r1+···+rk ).

This function may also be defined as the Fourier transform of ϕs , i.e.,

gs(t) =
∞∫

−∞
eitxϕs(x) dx .

Note that g2(t) = e−t2/2 in the case s = 2.
If s ≥ 3, by Lemma 3 in [20], p. 209, in the interval |t | ≤ n−1/7, or even for

|t | ≤ n−1/6 (cf. e.g. [9,10], Proposition 9.1), we have

∣∣∣ f (m)n (t)− g(m)s (t)
∣∣∣ ≤ εn

n(s−2)/2

(
|t |s−m + |t |2s2

)
e−t2/2, m = 0, 1, . . . , s,

(10.6)

where εn → 0, as n → ∞ (not depending on t). In case s = 2, one only has

| f (m)n (t)− g(m)(t)| ≤ εne−t2/2, |t | ≤ Tn, m = 0, 1, 2, (10.7)
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with some εn → 0 and Tn → ∞, as n → ∞ (cf. e.g. [9,10], Proposition 5.1). On the
other hand, on larger intervals |t | ≤ √

n, with some positive constants C and c, there
is a simple subgaussian bound

∣∣∣ f (m)n (t)
∣∣∣ ≤ Ce−ct2

(0 ≤ m ≤ s, n ≥ 2s), (10.8)

which easily follows from

| f1(u)| ≤ e−c1u2
,
∣∣ f ′

1(u)
∣∣ ≤ |u|,

∣∣∣ f (s)1 (u)
∣∣∣ ≤ βs (|u| ≤ 1).

Combining (10.8) with (10.6)–(10.7), we get a unified estimate

∣∣∣ f (m)n (t)− g(m)s (t)
∣∣∣ ≤ εn

n(s−2)/2
e−ct2

, |t | ≤ √
n, m = 0, 1, . . . , s, (10.9)

with some sequence εn → 0 and some c > 0 depending on the distribution of X1,
only.

Now, since fn is integrable for large n, one may write

pn(x)− ϕs(x) = 1

2π

∞∫

−∞
e−i t x ( fn(t)− gs(t)) dt.

Moreover, with our assumptions on f1, one can differentiate this equality l times and
then integrate by parts m ≤ s times to get

(i x)m
(

p(l)n (x)− ϕ(l)s (x)
)

= 1

2π

∞∫

−∞
e−i t x dm

dtm

[
(−i t)l ( fn(t)− gs(t))

]
dt.

(10.10)

More precisely, by the polynomial differentiation formula, for any r = 0, 1, . . . , s,

∣∣∣ dr

dtr
f1(t)

n
∣∣∣ ≤ βr nr | f1(t)|n−r ,

and then, by the Newton binomial formula,

∣∣∣ dm

dtm

[
t l f1(t)

n]∣∣∣ ≤
m∑

r=0

m!
r ! (m − r)! |(t l)(r)| · βm−r nm−r | f1(t)|n−(m−r)

≤ βmnml!
min(l,m)∑

r=0

m!
r ! (m − r)! |t |l−r · | f1(t)|n−(m−r).
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But sup|t |≥1 | f1(t)| = α < 1, so that, by (10.4), for n ≥ n1 = s + (l + 2)n0, one can
write

| f1(t)|n−(m−r) = | f1(t)|(l−r+2)n0 · | f1(t)|n−(m−r)−(l−r+2)n0

≤
(

I

I + t2

)(l−r+2)/2

αn−n1 .

Hence, just using t2

I+t2 ≤ 1, we have

∣∣∣ dm

dtm

[
t l f1(t)

n]∣∣∣ ≤ βmnml!αn−n1

min(m,l)∑
r=0

m!
r ! (m − r)!

(
I t2

I + t2

)(l−r)/2
I

I + t2

≤ βs(2nI )ml!αn−n1
I

I + t2 .

This estimate easily implies

∣∣∣ dm

dtm

[
t l fn(t)

]∣∣∣ ≤ Cαn
1

1

1 + t2 , for |t | ≥ √
n, n ≥ n1, (10.11)

where the positive constants C and α1 < 1 may depend on m, l, and the distribution
of X1, but not on t . In particular, the representation (10.10) is quite justified.

The estimate (10.11) also shows that the part of the integral in (10.10) over the
region |t | ≥ √

n decays exponentially fast uniformly over all x . As for the interval
|t | ≤ √

n, one may use the bound (10.9) in (10.10), so that eventually

sup
x

|x |m
∣∣∣p(l)n (x)− ϕ(l)s (x)

∣∣∣ ≤ εn

n(s−2)/2
, εn → 0.

By the same reasons, we obtain a similar bound for the L2 norm of the right-hand side
of (10.10) as a function of x , by applying Plancherel’s formula. ��

11 Behaviour of densities not far from the origin

To study the asymptotic behavior of the Fisher information distance

I (Zn||Z) =
∞∫

−∞

(p′
n(x)+ xpn(x))2

pn(x)
dx,

we split the domain of integration into the interval |x | ≤ Tn and its complement. Thus,
define

J0 =
∫

|x |≤Tn

(p′
n(x)+ xpn(x))2

pn(x)
dx
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and similarly J1 for the region |x | > Tn . If Tn is not too large, the first integral can be
treated with the help of Lemma 10.2. Namely, we take

Tn = √(s − 2) log n + s log log n + ρn (s > 2), (11.1)

where ρn → ∞ is a sufficiently slowly growing sequence whose growth is restricted
by the decay of the sequence εn in (10.5). In other words, [−Tn, Tn] represents an
asymptotically largest interval, where we can guarantee that the densities pn of Zn

are separated from zero, and moreover, sup|x |≤Tn
| pn(x)
ϕ(x) − 1| → 0. To cover the case

s = 2, one may put Tn = √
ρn , where Tn → ∞ is a sufficiently slowly growing

sequence. With this choice of Tn , an estimation of the integral J1 can be performed
via moderate inequalities.

In this section we focus on J0 and provide an asymptotic expansion for it with a
remainder term which turns out to be slightly better in comparison with the resulting
expansion (1.3) of Theorem 1.1.

Lemma 11.1 Let s ≥ 3 be an integer. If I (Zn0) < ∞, for some n0, then

J0 = c1

n
+ c2

n2 + · · · + c[(s−2)/2]
n[(s−2)/2] + o

(
1

n(s−2)/2 (log n)(s−1)/2

)
,

where the coefficients c j are defined in (1.4).

Proof Let us adopt the convention to write δn for any sequence of functions satisfying
|δn(x)| ≤ εnn−(s−2)/2 with εn → 0, as n → ∞, at least on the intervals |x | ≤ Tn . For
example, the statement of Lemma 10.2 with l = 0 may be written as

pn(x) = (1 + us(x))ϕ(x)+ δn

1 + |x |s , (11.2)

where

us(x) = ϕs(x)− ϕ(x)

ϕ(x)
=

s−2∑
k=1

qk(x)

ϕ(x)

1

nk/2 .

Combining the lemma with l = 0 and l = 1, we obtain another representation

p′
n(x)+ xpn(x) = ws(x)+ δn

1 + |x |s−1 , (11.3)

where

ws(x) =
s−2∑
k=1

q ′
k(x)+ xqk(x)

nk/2 .
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Note that the functions us and ws depend on n as parameter and are getting small
for growing n. More precisely, it follows from the definition of qk that, for all x ∈ R,

|ws(x)|
ϕ(x)

≤ Cs
1 + |x |3(s−1)

√
n

and |us(x)| ≤ Cs
1 + |x |3(s−2)

√
n

(11.4)

with some constants depending on s and the cumulants of X1, only. In particular, for
|x | ≤ Tn and any prescribed 0 < ε < 1

2 ,

|ws(x)|
ϕ(x)

<
1

n
1
2 −ε and |us(x)| < 1

4
(11.5)

with sufficiently large n. In addition, with a properly chosen sequence ρn , we have

δn

T s
n ϕ(Tn)

<
1

4
. (11.6)

Hence, by Lemma 10.2, | pn(x)
ϕ(x) − 1| < 1

2 on the interval |x | ≤ Tn .
Now, for |x | ≤ Tn

(1 + us(x))
−1 −

(
1 + us(x)+ δn

(1 + |x |s)ϕ(x)
)−1

= δn

(1 + |x |s)ϕ(x) ,

and we obtain from (11.2)

1

pn(x)
= 1

(1 + us(x))ϕ(x)
+ δn

(1 + |x |s)ϕ(x)2 .

Combining this with (11.3) and using (11.5), we will be lead to

(p′
n(x)+ xpn(x))2

pn(x)
= ws(x)2

(1 + us(x))ϕ(x)
+

5∑
j=1

rnj (x), |x | ≤ Tn,

where

rn1 = ws(x)

(1 + |x |s−1)ϕ(x)
δn, rn2 = ws(x)2

(1 + |x |s)ϕ(x)2 δn,

rn3 = ws(x)

(1 + |x |2s−1)ϕ(x)2
δ2

n, rn4 = 1

(1 + |x |2s−2)ϕ(x)
δ2

n,

rn5 = 1

(1 + |x |3s−2)ϕ(x)2
δ3

n .

Here, according to the left inequality in (11.5), the remainder terms rn1(x) and rn2(x)
are uniformly bounded on [−Tn, Tn] by |δn| n−1/3. A similar bound also holds for

123



Fisher information 47

rn3(x), by taking into account (11.6). In addition, integrating by parts, for large n and
with some constants (independent of n), we have

∫

|x |≤Tn

|rn4(x)| dx ≤ Cεn

ns−2

Tn∫

1

1

x2s−2 ex2/2 dx

≤ C ′εn

ns−2

1

T 2s−1
n

eT 2
n /2 = o

(
1

T s−1
n n(s−2)/2

)
.

With a similar argument, the same o-relation also holds for the integral of |rn5(x)|.
Thus,

∫

|x |≤Tn

(p′
n + xpn)

2

pn
dx =

∫

|x |≤Tn

w2
s

(1 + us)ϕ
dx + o

(
1

T s−1
n n(s−2)/2

)
. (11.7)

Now, by Taylor’s expansion around zero, in the interval |u| ≤ 1
4 we have

1

1 + u
=

s−4∑
k=0

(−1)kuk + θus−3, |θ | < 2

(there are no terms in the sum for s = 3). Hence, with some −2 < θn < 2

∫

|x |≤Tn

w2
s

(1 + us)ϕ
dx =

s−4∑
k=0

(−1)k
∫

|x |≤Tn

w2
s uk

s
dx

ϕ
+ θn

∫

|x |≤Tn

w2
s us−3

s
dx

ϕ
.

At the expense of a small error, these integrals may be extended to the whole real line.
Indeed, for large enough n, by (11.4), we have, for k = 0, 1, . . . , s − 4 with some
common constant Cs

∫

|x |>Tn

w2
s |us |k dx

ϕ
≤ Cs

n(k+2)/2

∫

|x |>Tn

(
1+|x |(3k+6)(s−1)

)
ϕ(x) dx =o

(
1

n(s−1)/2

)
.

Moreover,

∞∫

−∞
w2

s |us |s−3 dx

ϕ
= O

(
1

n(s−1)/2

)
.

Therefore,

∫

|x |≤Tn

w2
s

(1 + us)ϕ
dx =

s−4∑
k=0

(−1)k
∞∫

−∞
w2

s uk
s

dx

ϕ
+ O

(
1

n(s−1)/2

)
.

123



48 S. G. Bobkov et al.

Inserting this in (11.7), we thus arrive at

J0 =
s−4∑
k=0

(−1)k
∞∫

−∞
w2

s uk
s

dx

ϕ
+ o

(
1

T s−1
n n(s−2)/2

)
. (11.8)

In the next step, we develop this representation by expressing us and ws in terms
of qk while expanding the sum in (11.8) in powers of 1/

√
n as

s−2∑
j=2

a j

n j/2 + O

(
1

n(s−1)/2

)
.

More precisely, here the coefficients are given by

a j =
j∑

k=2

(−1)k
∞∫

−∞
(q ′

r1
+ xqr1) (q

′
r2

+ xqr2) qr3 , . . . , qrk

dx

ϕk−1 (11.9)

with summation over all positive solutions (r1, . . . , rk) to r1 + · · · + rk = j .
Moreover, when j are odd, the above integrals are vanishing. Indeed, differenti-
ating the equality (10.1) which defines the functions qk and using the property
H ′

n(x) = nHn−1(x) (n ≥ 1), we obtain a similar equality

q ′
k(x)+ xqk(x) = ϕ(x)

∑
(k + 2l) Hk+2l−1(x)

1

r1! . . . rk !
(γ3

3!
)r1

. . .

(
γk+2

(k + 2)!
)rk

(11.10)

with summation over all non-negative solutions (r1, . . . , rk) to r1+2r2+· · ·+krk = k,
and where l = r1 + · · · + rk . Hence, the integrand in (11.9) represents a linear
combination of the functions of the form

Hr1+2l1−1 Hr2+2l2−1 Hr3+2l3 . . . Hrk+2lk ϕ.

Note that here the sum of indices is mod 2 the same as j . We can now apply the
following property of the Chebyshev-Hermite polynomials (see [23]). If the sum of
indices d1, . . . , dk is odd, then necessarily

∞∫

−∞
Hd1(x) . . . Hdk (x) ϕ(x) dx = 0.

Hence, a j = 0, when j is odd, and putting c j = a2 j , we arrive at the assertion of the
lemma. ��
Remark In formula (11.9) with c j = a2 j we perform summation over all integers
rl ≥ 1 such that r1 + · · · + rk = 2 j . Hence, all rl ≤ 2 j − 1, and thus the functions qrl
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are determined by the cumulants up to order 2 j +1. Hence, c j represents a polynomial
in γ3, . . . , γ2 j+1.

12 Moderate deviations

We now consider the second integral

J1 =
∫

|x |>Tn

(p′
n(x)+ xpn(x))2

pn(x)
dx

participating in the Fisher information distance I (Zn||Z).
Lemma 12.1 Let s ≥ 3 be an integer. If I (Zn0) < ∞, for some n0, then

J1 = o

(
1

n(s−2)/2(log n)(s−3)/2

)
.

Proof Write

J1 ≤ 2J1,1 + 2J1,2 = 2
∫

|x |>Tn

p′
n(x)

2

pn(x)
dx + 2

∫

|x |>Tn

x2 pn(x) dx . (12.1)

Using Lemma 10.1, we conclude that, for s = 3, . . .,

J1,2 = o

(
1

(n log n)(s−2)/2

)
. (12.2)

Indeed, integrating by parts we have

∞∫

Tn

x2 pn(x) dx = T 2
n (1 − Fn(Tn))+ 2

∞∫

Tn

x(1 − Fn(x)) dx .

Recalling the definition of the approximating functions �s , cf. (10.2), and applying
an elementary inequality 1 −�(x) < 1

x ϕ(x) (x > 0), we get from (10.3) that

T 2
n (1 − Fn(Tn)) = T 2

n (1 −�s(Tn))+ T 2
n (�s(Tn)− Fn(Tn))

≤ Tnϕ(Tn)+ C ϕ(Tn)

s−2∑
k=1

T 3k
n n−k/2 + o

(
1

T s−2
n n(s−2)/2

)

= o

(
1

(n log n)(s−2)/2

)
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with some constant C . In addition,

∞∫

Tn

x(1 − Fn(x)) dx ≤ 1 −�(Tn)+ C
s−2∑
k=1

1

nk/2

∞∫

Tn

x3kϕ(x) dx

+ o

(
1

T s−2
n n(s−2)/2

)
= o

(
1

(n log n)(s−2)/2

)
.

With similar estimates for the half-axis x < −Tn , we arrive at the relation (12.2).
Let us now estimate J1,1. Denote by J+

1,1 the part of this integral corresponding to
the interval x > Tn . By Propositions 8.2 with a = Tn b = ∞, for sufficiently large n
we have the formula

J+
1,1 = −p′

n(Tn) log pn(Tn)−
∞∫

Tn

p′′
n(x) log pn(x) dx . (12.3)

Since pn(x) ≤ √
I (Zn0), for all x (cf. Propositions 2.2 and 9.1) and since, by

Lemma 10.2, pn(Tn) ≥ 1
2 ϕ(Tn), we see that, for all sufficiently large n | log pn(Tn)| ≤

cT 2
n with some constant c. Therefore, by Lemma 10.2 for the derivative of the density

pn , we get

|p′
n(Tn) log pn(Tn)| ≤ cT 2

n |p′
n(Tn)|

≤ cT 2
n |ϕ′(Tn)| + o

(
1

T s−2
n n(s−2)/2

)
= o

(
1

T s−3
n n(s−2)/2

)
.

(12.4)

A similar relation holds at the point −Tn , as well.
It remains to evaluate the integral in (12.3). First we integrate over the set A =

{x > Tn : pn(x) ≤ ϕ(x)4}. By the upper bound of Proposition 6.4 and applying
Proposition 9.1 once more, we have, for all x and all sufficiently large n,

|p′′
n(x)| ≤ I (pn)

5/4
√

pn(x) ≤ I (Zn0)
5/4
√

pn(x).

Hence, with some constants c, c′

∫

A

|p′′
n(x) log pn(x)| dx ≤ c

∫

A

√
pn(x) | log pn(x)| dx

≤ c′
∞∫

Tn

x2ϕ(x)2 dx = o

(
1

ns−2

)
.
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On the other hand, for the complementary set B = (Tn,∞) \ A, we have

∫

B

|p′′
n(x) log pn(x)| dx ≤ c

∫

B

x2 |p′′
n(x)| dx . (12.5)

We now apply Lemma 10.2 to approximate the second derivative. It yields

+∞∫

Tn

x2 |p′′
n(x)| dx ≤

+∞∫

Tn

x2 |ϕ′′
s (x)| dx +

∞∫

Tn

|ψ2,n(x)|
1 + |x |s−2 dx · o

(
1

n(s−2)/2

)
.

Here, the first integral on the right-hand side is bounded by

∞∫

Tn

x2 |ϕ′′
s (x)− ϕ′′(x)| dx +

∞∫

Tn

x2 |x2 − 1|ϕ(x) dx = o

(
1

T s−3
n n(s−2)/2

)
.

To estimate the second integral, we use Cauchy’s inequality, which gives

∞∫

Tn

1

1 + |x |s−2 |ψ2,n(x)| dx ≤ 1

T s−5/2
n

⎛
⎝

∞∫

−∞
ψ2,n(x)

2 dx

⎞
⎠

1/2

≤ 1

T s−5/2
n

.

Therefore, returning to (12.5), we get

∫

B

|p′′
n(x) log pn(x)| dx = o

(
1

n(s−2)/2 (log n)(s−3)/2

)
.

Together with the bound for the integral over the set A, we thus have

J+
1,1 = o

(
1

n(s−2)/2 (log n)(s−3)/2

)
.

The part of the integral J1,1 taken over the axis x < −Tn admits a similar bound,
hence the lemma is proved. ��

The statement of Theorem 1.1 in case s ≥ 3 thus follows from Lemmas 11.1
and 12.1.

13 Theorem 1.1 in the case s = 2 and Corollary 1.2

In the most general case s = 2 the proof of Theorem 1.1 does no need Edgeworth-type
expansions. With tools developed in the previous sections the argument is straightfor-
ward and may be viewed as an alternative approach to Barron–Johnson’s theorem.

123



52 S. G. Bobkov et al.

Proof of Theorem 1.1 (case s = 2) Once the Fisher information I (Zn0) is finite,
the normalized sums Zn with n ≥ 2n0 have uniformly bounded densities pn with
bounded continuous derivatives p′

n (Proposition 6.2). Moreover, we have a well-known
local limit theorem for densities; we described one of its variants in Lemma 10.2. In
particular,

sup
x
(1 + x2) |pn(x)− ϕ(x)| = o(1), (13.1)

sup
x
(1 + x2) |p′

n(x)− ϕ′(x)| = o(1), (13.2)

as n → ∞, where the convergence of the derivatives relies upon the finiteness of the
Fisher information.

Splitting the integration in

I (Zn||Z) =
∞∫

−∞

(p′
n(x)+ xpn(x))2

pn(x)
dx

into the two regions, we have therefore, for every fixed T > 1,

J0 =
∫

|x |≤T

(p′
n(x)+ xpn(x))2

pn(x)
dx = o(1), n → ∞. (13.3)

On the other hand, write as we did before

J1 =
∫

|x |>T

(p′
n(x)+ xpn(x))2

pn(x)
dx ≤ 2J1,1 + 2J1,2

= 2
∫

|x |>T

p′
n(x)

2

pn(x)
dx + 2

∫

|x |>T

x2 pn(x) dx .

As we saw in (12.3),

J1,1 = −p′
n(T ) log pn(T )+ p′

n(−T ) log pn(−T )−
∫

|x |>T

p′′
n(x) log pn(x) dx .

By (13.1)–(13.2), |p′
n(±T ) log pn(±T )| ≤ 2T 3e−T 2/2 for all sufficiently large n ≥

nT . By Proposition 8.3, with some constant c, for all x ,

u|p′′
n(x) log pn(x)| ≤ c

log(e + |x |)
1 + x2 ,

implying
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∫

|x |>T

|p′′
n(x) log pn(x)| dx ≤ c′T −1/2

with some other constant c′. In addition, by (13.1),

∫

|x |>T

x2 pn(x) dx =
∫

|x |>T

x2(pn(x)− ϕ(x)) dx +
∫

|x |>T

x2ϕ(x) dx

= −
∫

|x |≤T

x2(pn(x)− ϕ(x)) dx +
∫

|x |>T

x2ϕ(x) dx

≤
∫

|x |≤T

x2 |pn(x)− ϕ(x)| dx +
∫

|x |>T

x2ϕ(x) dx ≤ 2T 3 o(1)+ 4Tϕ(T ).

Hence, given ε > 0, one can choose T such that J1 < ε, for all n large enough. This
means that J1 = o(1), and recalling (13.3), we get I (Zn||Z) = o(1). ��

Let us now return to the case s ≥ 3.

Proof of Corollary 1.2 According to the expansion (11.8) which appeared in the proof
of Lemma 11.1, Theorem 1.1 may equivalently be formulated as

I (Zn||Z) =
s−4∑
l=0

(−1)l
∞∫

−∞
ws(x)

2us(x)
l dx

ϕ(x)
+ o

(
1

n(s−2)/2 (log n)(s−3)/2

)
,

(13.4)

where as before

ws(x) =
s−2∑
j=1

(q ′
j (x)+ xq j (x)) n− j/2, us(x) =

s−2∑
j=1

q j (x)

ϕ(x)
n− j/2.

This representation for the Fisher information distance is more convenient for appli-
cations such as Corollary 1.2 in comparison with (1.3). Assume that s ≥ 4 and
γ3 = · · · = γk−1 = 0 for a given integer 3 ≤ k ≤ s (with no restriction when k = 3).
Then, by the definition (10.2), q1 = · · · = qk−3 = 0, so

ws(x) =
s−2∑

j=k−2

(q ′
j (x)+ xq j (x)) n− j/2, us(x) =

s−2∑
j=k−2

q j (x)

ϕ(x)
n− j/2.

(13.5)
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Hence, in order to isolate the leading term in (1.3) with the smallest power of 1/n,
one should take l = 0 in (13.4) and j = k − 2 in the first sum of (13.5). This gives

I (Zn||Z) = n−(k−2)

∞∫

−∞

(
q ′

k−2(x)+ xqk−2(x)
)2 dx

ϕ(x)

+O
(

n−(k−1)
)

+ o

(
1

n(s−2)/2 (log n)(s−3)/2

)
.

Now, again according to (10.2), or as found in (11.10),

q ′
k−2(x)+ xqk−2(x) = γk

(k − 1)! Hk−1(x) ϕ(x).

Therefore, the sum in (1.3) will contain powers of 1/n starting from 1/nk−2 with
leading coefficient

ck−2 = γ 2
k

(k − 1)! 2

∞∫

−∞
Hk−1(x)

2 ϕ(x) dx = γ 2
k

(k − 1)! .

Thus, c1 = · · · = ck−3 = 0 and we get

I (Zn||Z) = γ 2
k

(k − 1)!
1

nk−2 + O
(

n−(k−1)
)

+ o

(
1

n(s−2)/2 (log n)(s−3)/2

)
.

��

14 Extensions to non-integer s. Lower bounds

If s ≥ 2 is not necessary integer, put m = [s] (integer part). Theorem 1.1 admits the
following generalization. As before, let the normalized sums

Zn = X1 + · · · + Xn√
n

be defined for independent identically distributed random variables with mean EX1 =
0 and variance Var(X1) = 1.

Theorem 14.1 If I (Zn0) < ∞ for some n0, and E |X1|s < ∞ (s > 2), then

I (Zn||Z) = c1

n
+ c2

n2 + · · · + c[(s−2)/2]
n[(s−2)/2] + o

(
1

n(s−2)/2 (log n)(s−3)/2

)
, (14.1)

where the coefficients c j are the same as in (1.4).
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The proof is based on a certain extension and refinement of the local limit theorem
described in Lemma 10.2.

Lemma 14.2 Assume that I (Zn0) < ∞ for some n0, and let E |X1|s < ∞ (s ≥ 2).
Fix l = 0, 1, . . .Then for all n large enough, Zn have densities pn of class Cl satisfying,
as n → ∞,

(1 + |x |m)
(

p(l)n (x)− ϕ(l)m (x)
)

= ψl,n(x) o(n−(s−2)/2), m = [s], (14.2)

uniformly for all x, with supx |ψl,n(x)| ≤ 1 and
∫∞
−∞ ψl,n(x)2 dx ≤ 1. Moreover,

(1 + |x |s)
(

p(l)n (x)− ϕ
(l)
m (x)

)
= ψl,n,1(x) o(n−(s−2)/2)

+(1 + |x |s−m) ψl,n,2(x)
(

O(n−(m−1)/2)+o(n−(s−2))
)
,

(14.3)

uniformly for all x, where supx |ψl,n, j (x)| ≤ 1 and
∫∞
−∞ ψl,n, j (x)2 dx ≤ 1 ( j =

1, 2).

Here we use the approximating functions ϕm = ϕ +∑m−2
k=1 qk n−k/2 as before.

When l = 0 and in a simpler form, namely, with ψl,s, j (x, n) = 1, this result has
recently been obtained in [9,10]. In this case, the finiteness of the Fisher information
may be relaxed to the boundedness of the densities. The more general case involving
derivatives can be carried out by a similar analysis as that developed in [9,10], so we
omit details.

If s = m is integer, the Edgeworth-type expansions (14.2) and (14.3) coincide, and
we are reduced to the statement of Lemma 10.2. However, if s > m, (14.3) gives
an improvement over (14.2) on relatively large intervals such as |x | ≤ Tn defined in
(11.1).

Proof of Theorem 14.1 With a few modifications one can argue in the same way as
we did in the proof of Theorem 1.1. First, in case l = 0 (14.3) yields, uniformly in
|x | ≤ Tn

pn(x) = ϕm(x)+ 1

1 + |x |s o
(

n−(s−2)/2
)
,

which being combined with a similar relation for the derivative (l = 1) yields

p′
n(x)+ xpn(x) = wm(x)+ 1

1 + |x |s−1 o
(

n−(s−2)/2
)
,

wherewm(x) =∑m−2
k=1 (q

′
k(x)+xqk(x)) n−k/2. These two relations thus extend (11.2)

and (11.3) which were only needed in the proof of Lemma 11.1. Repeating the same
arguments using the functions um(x) = ϕm (x)−ϕ(x)

ϕ(x) , we can extend the expansion of
Lemma 11.1 with the same remainder term to general values s > 2.
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In order to prove Lemma 12.1 with real s > 2, let us return to (12.1). The fact
that the relation (12.2) extends to non-integer s follows from the extended variant of
Lemma 10.1, which was already mentioned before. Thus our main concern has to be
the integral J1,1 which is responsible for the most essential contribution in the resulting
remainder term. Thus, consider the part of this integral on the positive half-axis

J+
1,1 =

∞∫

Tn

p′
n(x)

2

pn(x)
dx = −p′

n(Tn) log pn(Tn)−
∞∫

Tn

p′′
n(x) log pn(x) dx . (14.4)

Applying (14.3) at x = Tn , we obtain (12.4) for real s > 2, that is,

∣∣p′
n(Tn) log pn(Tn)

∣∣ = o

(
1

n(s−2)/2 (log n)(s−3)/2

)
.

To prove (14.1), it remains to estimate the last integral in (14.4) which has to be
treated with an extra care. The argument uses both (14.2) and (14.3) which are applied
on different parts of the half-axis x > Tn . For the set A = {x ≥ Tn : pn(x) ≤ ϕ(x)4}
we have already obtained a general relation

∫

A

|p′′
n(x) log pn(x)| dx = o

(
1

ns−2

)
,

which holds for all sufficently large n (without any moment assumption). Hence, with
some constant c

4T 4
n∫

Tn

|p′′
n(x) log pn(x)| dx ≤ c

4T 4
n∫

Tn

x2 |p′′
n(x)| dx + o

(
1

ns−2

)
. (14.5)

Now, on the interval [Tn, 4T 4
n ] we apply Lemma 14.2 with l = 2 to approximate

the second derivative. It yields

4T 4
n∫

Tn

x2 |p′′
n(x)| dx ≤

∞∫

Tn

x2 |ϕ′′
m(x)| dx+

4T 2
n∫

Tn

|ψ2,n,1(x)|
1+|x |s−2 dx · o

(
1

n(s−2)/2

)

+
4T 4

n∫

Tn

1

1+|x |m−2 |ψ2,n,2(x)| dx ·
(

O(n−(m−1)/2)+o(n−(s−2))
)
.
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Here, as in the proof of Lemma 12.1, the first integral on the right-hand side is bounded,
up to a constant, by

+∞∫

Tn

x4ϕ(x) dx = o

(
1

T s−3
n n(s−2)/2

)
,

and for the second one, we use Cauchy’s inequality to estimate it by T −(s−5/2)
n . Sim-

ilarly, the last integral is bounded by

2T 2
n

⎛
⎝

∞∫

−∞
ψ2,n,2(x)

2 dx

⎞
⎠

1/2

≤ 2T 2
n .

Since T 2
n has a logarithmic growth, we conclude that

4T 4
n∫

Tn

x2 |p′′
n(x)| dx = o

(
1

n(s−2)/2 (log n)(s−3)/2

)
,

so a similar bound also holds for the left integral in (14.5).
To deal with the remaining values of x , we will consider the set S1 = {

x > 4T 4
n :

pn(x) ≤ 1
2 e−4

√
x
}

and its complement S2 = (4T 4
n ,∞)\S1. By Proposition 6.3, for

all sufficiently large n, and with some constants c, c′ we have

∫

S1

|p′′
n(x) log pn(x)| dx ≤ c

∫

S1

√
pn(x) | log pn(x)| dx

≤ c′
∞∫

4T 4
n

√
x e−2

√
x dx = o

(
1

ns−2

)
.

On the other hand, applying (14.2) on the set S2, we get

∫

S2

|p′′
n(x) log pn(x)| dx | ≤ c

∫

S2

|p′′
n(x)|

√
x dx

≤ c′
∞∫

4T 4
n

x5/2ϕ(x) dx + c′
∞∫

4T 4
n

dx

xm−1/2 · o

(
1

n(s−2)/2

)

= o

(
1

T 2(2m−3)
n n(s−2)/2

)
.

Combining the two estimates, the theorem is proved. ��
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Remark If 2 < s < 4, the expansion (14.1) becomes

I (Zn||Z) = o

(
1

n(s−2)/2 (log n)(s−3)/2

)
. (14.6)

This formulation does not include the case s = 2. In case s > 2, we expect that
the bound (14.6) may be improved further. However, a possible improvement may
concern the power of the logarithmic term, only. This can be illustrated by means of
the example of densities of the form

p(x) =
∞∫

σ0

ϕσ (x) d P(σ ) (x ∈ R),

that is, mixtures of densities of normal distributions on the line with mean zero, where
P is a (mixing) probability measure supported on the half-axis (σ0,∞) with σ0 > 0.
The variance constraint on P is that

∞∫

−∞
x2 p(x) dx =

∞∫

σ0

σ 2 d P(σ ) = 1, (14.7)

so we should assume that 0 < σ0 < 1.
First, let us note that, by the convexity of the Fisher information,

I (p) ≤
∞∫

σ0

I (ϕσ ) d P(σ ) =
∞∫

σ0

1

σ 2 d P(σ ) ≤ 1

σ 2
0

,

hence, I (p) is finite. On the other hand, given η > s/2, it is possible to construct the
measure P to satisfy (14.7) and with

D(Zn||Z) ≥ c

n(s−2)/2 (log n)η
,

for all n large enough, and with a constant c depending on s and η, only (cf. [11]). For
example, one may define P on the half-axis [2,∞) by its density

d P(σ )

dσ
= c

σ s+1(log σ)η
, σ > 2,

and then extend it to any interval [σ0, 2] in an arbitrary way so that to obtain a probabil-
ity measure satisfying the requirement (14.7). Hence, (14.6) is sharp up to a logarithmic
factor.

Finally, let us mention that in case s = 2 D(Zn||Z) and therefore I (Zn||Z) may
decay at an arbitrary slow rate.
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