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Abstract We consider the dyadic model with viscosity and additive Gaussian noise
as a simplified version of the stochastic Navier–Stokes equations, with the purpose of
studying uniqueness and emergence of singularities. We prove pathwise uniqueness
and absence of blow-up in the intermediate intensity of the non-linearity, morally
corresponding to the 3D case, and blow-up for stronger intensity. Moreover, blow-up
happens with probability one for regular initial data.
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1 Introduction

Motivations Uniqueness is a problem with many facets for PDEs and different prob-
lems may require different approaches. When turning to stochastic PDEs, the problem
acquires new levels of complexity, as uniqueness for stochastic processes can be under-
stood in several ways. We refer to [25] for a recent review.

A prototypical example of PDE for which uniqueness is open are the Navier–Stokes
equations, where the issue of uniqueness is mixed with the issue of regularity and
emergence of singularities [22]. The stochastic version shares the same problems. In
recent years, by means of a clever way to solve the Kolmogorov equation, Da Prato and
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896 M. Romito

Debussche [13,19] have shown existence of Markov families of solutions. Moreover,
such Markov families admit a unique invariant measure, with exponential convergence
rate [38]. In [26,28] similar results have been obtained with a completely different
method, based on the Krylov selection method [35]. Related results can be found
in [1,14,24,27,40–44]. Both methods apply equally well in more general situations
[8].

The purpose of this paper is to analyse uniqueness and emergence of blow-up in
a much simpler infinite dimensional stochastic equation. We look for a model that
retains some characteristics of the original problem and is amenable to the analysis of
[13,28]. The main point is the choice of the non-linearity.

The Navier–Stokes non-linearity on the torus with 2π -periodic boundary conditions
reads in Fourier series as

(u · ∇)u = i
∑

k

∑

n+m=k

(un · m)um eik·x .

Here the kth mode interacts with almost every other mode. The most reasonable
simplification is to reduce the interaction to a finite number of modes, while keeping
the orthogonality property in the energy estimate. The simplest possible is the nearest
neighbour interaction and this gives the dyadic model.

The dyadic model The dyadic model has been introduced in [29,33] as a model of
the interaction of the energy of an inviscid fluid among different packets of wave-
modes (shells). It has been lately studied in [4,6,12,34,46] and in the inviscid and
stochastically forced case in [3,5,9].

The viscous version has been studied in [10,11,30]. Blow-up of positive solutions
with non-linearity of strong intensity is proved in [10]. In [7] the authors prove well-
posedness and convergence to the inviscid limit, again for positive solutions, with
non-linearity of intensity of “Navier–Stokes” type.

In this paper we study the dyadic model with additive noise,

d Xn = (−νλ2
n Xn + λ

β
n−1 X2

n−1 − λβn Xn Xn+1
)

dt + σn dWn, n ≥ 1, (1.1)

where λn = 2n and X0 ≡ 0. The noise coefficients satisfy suitable assumptions and
the parameter β measures the relative intensity of the non-linearity with respect to the
linear term. Throughout the paper we consider the viscous problem, namely ν > 0.
The inviscid limit will be addressed in a future work.

The non-linear term cancels out as in Navier–Stokes providing an a-priori bound
in �2(R) independent of β. If λ2

n Xn � λ
β
n X2

n , the linear term dominates the non-linear
term. This is the heuristic reason why local strong solutions exist when the initial
condition decays at least as λ−(β−2)

n . If β ≤ 2 this is always true due to the �2-bound,
and the non-random problem has a unique global solution [10]. Likewise, uniqueness
holds with noise when β ≤ 2.

By a scaling argument (see for instance [10]), one can “morally” identify the dyadic
model with the Navier–Stokes equations when β ≈ 5

2 . In [7] well-posedness is proved
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Uniqueness and blow-up for a stochastic viscous dyadic model 897

in a range which includes the value 5
2 , but only for positive solutions. Positivity is

preserved by the unforced dynamics. It is clear that, as is, positivity is broken by the
random perturbation.

Main results This paper contains a thorough analysis of the case β > 2, which can
be roughly summarised in the table below.

β ≤ 2 2 < β ≤ 3 β > 3

Blow-up NO NOa YES
Uniqueness YES YES ?
a Absence of blow-up is proved up to βc < 3

We prove pathwise uniqueness in the range β ∈ (2, 3] by adapting an idea for
positive solutions of [7]. The solution is decomposed in a quasi-positive component
and a residual term. Quasi-positivity means that there is a lower bound that decays
as a (negative) power of λn . This bound is preserved by the system as long as the
random perturbation is not too strong. Under the same conditions the residual term is
small.

Quasi-positivity and the invariant area argument of [7] together imply smoothness
of the solution. Here by smoothness we mean that (λγn Xn)n≥1 is bounded for every γ .
This result holds for β ∈ (2, βc), where βc ∈ (2, 3] is the value identified in [7].

When β > 3 we use an idea of [10] for positive solutions. We are able to identify
a set of initial conditions that lead to blow-up with positive probability.

Emergence of blow-up has been already proved in several stochastic models. See
for instance [16,17] for the Schrödinger equation [21,36,37] for the nonlinear heat
equation (the result of [23] is basically one dimensional and no ideas for infinite
dimensional systems are involved). All such results ensure that blow-up occurs only
with positive probability.

We first state some general conditions that ensure that blow-up occurs with proba-
bility one. Roughly speaking, one needs first to identify a set of initial states that lead
to blow-up with positive probability. In general, this is not sufficient (see Example
5.6). The crucial idea is to prove that such sets are recurrent for the evolution, condi-
tional to nonappearance of blow-up. We believe that these general results may be of
independent interest.

Our main result on blow-up for the dyadic model ensures that if at least one compo-
nent is forced by noise, then blow-up occurs with full probability. The result holds as
long as the initial state satisfies λαn Xn(0) ≈ O(1) for some α > β−2. This is optimal
since it is the same condition that ensures the existence of a local smooth solution. In
different words, “smoothness” is transient.

The main ingredient to prove recurrence for the sets leading to blow-up is a stronger
form of quasi-positivity. This ensures that the negative parts of the solution become
smaller in a finite time, depending only on the size of the initial condition in H and on
the size of the random perturbation. We remark that recurrence is not at all obvious,
since for β > 3 the dissipation of the system is not strong enough to provide existence
of a stationary solution.
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898 M. Romito

It remains open to understand uniqueness for β > 3, since blow-up rules out the
use of smooth solutions, making pathwise uniqueness a harder problem. Uniqueness
in law may still be achievable.

2 Preliminary results and definitions

The following assumption on the intensity of the noise will be in strength for the whole
paper.

Assumption 2.1 There is α0 > max{ 1
2 (β − 3), β − 3} such that

sup
n≥1

(
λα0

n σn
)
< ∞. (2.1)

2.1 Notations

Set λ = 2 and λn = λn . For α ∈ R let Vα be the (Hilbert) space

Vα =
{
(xn)n≥1 :

∞∑

n=1

(λαn xn)
2 < ∞

}
,

with scalar product 〈x, y〉α = ∑∞
n=1 λ

2α
n xn yn and norm ‖ · ‖α = 〈·, ·〉1/2

α . Set in
particular H = V0 and V = V1.

2.2 Definitions of solution

We turn to the definition of solution. We consider first strong solutions, which are
unique, regular but defined on a (possibly) random interval. Then we will consider
weak solutions, which are global in time.

2.2.1 Strong solutions

We first discuss local strong solution.

Definition 2.2 (Strong solution) Let W be an Hilbert sub-space of H . Given a prob-
ability space (
,F ,P) and a cylindrical Wiener process (Wt ,Ft )t≥0 on H , a strong
solution in W with initial condition x ∈ W is a pair (X (·; x), τW

x ) such that

• τW
x is a stopping time with P[τW

x > 0] = 1,
• X (·; x) is a process defined on [0, τW

x ) with P[X (0, x) = x] = 1,
• X (·; x) is continuous with values in W for t < τW

x ,
• ‖X (t; x)‖W → ∞ as t ↑ τW

x , P−a. s.,
• X (·; x) is solution of (1.1) on [0, τW

x ).
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Uniqueness and blow-up for a stochastic viscous dyadic model 899

The strong solution turns out to be a Markov process (and even a strong Markov
process, but we do not need this fact here) in the following sense (see [31] for further
details). Set W ′ = W ∪{�! }, where the terminal state �! is an isolated point. Define the
set W (W ′) of all paths ω : [0,∞) → W ′ such that there exists a time ζ(ω) ∈ [0,∞]
with ω continuous with values in W on [0, ζ(ω)) and ω(t) = �! for t ≥ ζ(ω). The
strong solution defined above can be extended as a process in [0,∞) with values in
W ′ in a canonical way, achieving value �! for t ≥ τW

x . We say that the strong solution
is Markov when the process on the extended state space W ′ is a Markov process.

Theorem 2.3 Let β > 2 and assume (2.1). Let α ∈ (β − 2, α0 + 1), then for every
x ∈ Vα there exists a strong solution (X (·; x), ταx ) with initial condition x. Moreover,
the solution is unique in the sense that if (X (·; x), τx ) and (X ′(·; x), τ ′

x ) are two
solutions, then P[τx = τ ′

x ] = 1 and X (·; x) = X ′(·; x) for t < τx . Finally, the process
(X (·; x))x∈Vα is Markov, in the sense given above.

Proof Existence and uniqueness are essentially based on the same ideas of [42, Theo-
rem 5.1], but with simpler estimates. We give a quick sketch of the proof to introduce
some of the definitions we will use later. Let χ ∈ C∞([0,∞)) be non increasing and
such that χ(u) = 1 for u ≤ 1 and χ(u) = 0 for u ≥ 2. Consider the problem

d X R
n = −νλ2

n X R
n dt + χR(‖X R‖α)

(
λ
β
n−1(X

R
n−1)

2 − λβn X R
n X R

n+1

)
dt + σn dWn .

(2.2)

The above equation has a (pathwise) unique global solution for every x ∈ Vα ,
which is continuous in time with values in Vα . Given x ∈ Vα , define τα,Rx as the
first time t when ‖X R(t)‖α = R. Then ταx = supR>0 τ

α,R
x and the strong solution

X (t; x) coincides with X R(t; x) for t ≤ τ
α,R
x . By uniqueness the definition makes

sense. Markovianity follows by the Markovianity of each X R . ��
By pathwise uniqueness, if x ∈ Vα , then ταx ≤ τα

′
x for every α′ ∈ (β − 2, α). We

will be able to deduce that ταx = τα
′

x as a consequence of Proposition 4.3.

2.2.2 Weak martingale solutions

The fact that the blow-up time ταx associated to a strong solution may (or may not) be
infinite is the main topic of discussion of the paper. To consider global solutions we
introduce weak solutions.

Given a sequence of independent one-dimensional standard Brownian motions
(Wn)n≥1, let Z = (Zn)n≥1 be the solution of

d Zn + νλ2
n Zn dt = σn dWn, n ≥ 1, (2.3)

with Zn(0) = 0 for all n ≥ 1. Define the functional Gt as

Gt (y, z) = ‖y(t)‖2
H + 2

t∫

0

(
ν‖y(s)‖2

V −
∞∑

n=1

λβn
(
yn + zn)(yn+1zn − ynzn+1

)
)

ds.
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If Y ∈ L∞
loc (0,∞; H) ∩ L2

loc(0,∞; V ) and Assumption 2.1 holds, then by the lemma
below Gt (Y, Z) is finite and jointly measurable in the variables (t, y, z) (see [8,41] for
a related problem). The following regularity result for Z is standard [15].

Lemma 2.4 Assume (2.1) with α0 ∈ R. Given α < α0 + 1, then almost surely Z ∈
C([0, T ]; Vα) for every T > 0. Moreover, for every ε ∈ (0, 1], with ε < α0 + 1 − α,
there are c2.4−1.ε > 0 and c2.4−2.ε > 0, such that for every T > 0,

E

[
exp

(
c2.4−2.ε

T ε
sup
[0,T ]

‖Z(t)‖2
α

)]
≤ c2.4−1.ε .

Definition 2.5 (Energy martingale solution) A weak martingale solution starting at
x ∈ H is a couple (X,W ) on a filtered probability space (
,F (Ft )t≥0,P) such
that W = (Wn)n≥1 is a sequence of independent standard Brownian motions and
X = (Xn)n≥1 is component-wise a solution of (1.1) with X (0) = x .

A weak solution is an energy solution if Y = X − Z ∈ L∞
loc (0,∞; H) ∩

L2
loc([0,∞); V )] with probability one and there is a set TP ⊂ (0,∞) of null Lebesgue

measure such that for every s �∈ TP and every t > s, the following energy
inequality holds,

P[Gt (Y, Z) ≤ Gs(Y, Z)] = 1.

Remark 2.6 Let 
β = C([0,∞); V−β) and define on 
β the canonical process ξ as
ξt (ω) = ω(t) for all t > 0 and ω ∈ 
β . It is a standard interpretation [24] that a
weak solution can be seen as a probability on the path space 
β . Namely, if Px is the
law of a weak solution starting at x ∈ H , then ξ is a weak solution on (
β,Px ). This
interpretation will be used in the rest of the paper.

Remark 2.7 The process Y = X − Z satisfies the equations

Ẏn + νλ2
nYn = λ

β
n−1(Yn−1 + Zn−1)

2 − λβn (Yn + Zn)(Yn+1 + Zn+1), (2.4)

P–almost surely, for every n ≥ 1 and t > 0.

Given α > β − 2 and R > 0, define the following random times on 
β ,

τα∞ = inf{t ≥ 0 : ‖ω(t)‖α = ∞}, τα,R∞ = inf{t ≥ 0 : ‖ω(t)‖α > R}, (2.5)

and each random time is ∞ if the corresponding set is empty. The energy inequality
required in Definition 2.5 ensures that all weak solutions with the same initial condition
coincide with the strong solution up to the blow-up time τα∞.

Theorem 2.8 Let β > 2 and assume (2.1). Then for every x ∈ H there exists at least
one energy martingale solution Px . Moreover,
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Uniqueness and blow-up for a stochastic viscous dyadic model 901

• if α ∈ (β−2, 1+α0), x ∈ Vα and Px is an energy martingale solution with initial
condition x, then ταx = τα∞ under Px and for every t > 0,

ξs = X (s; x), s ≤ t, Px − a.s. on {ταx > t},

where (X (·; x), ταx ) is the strong solution with initial condition x defined on 
β .
• There exists at least one family (Px )x∈H of energy martingale solutions satisfying

the almost sure Markov property. Namely for every x ∈ H and every bounded
measurable φ : H → R,

E
Px
[
φ(ξt )|Bs] = E

Pω(s) [φ(ξt−s)], Px − a.s.,

for almost every s ≥ 0 (including 0) and for all t ≥ s.

Proof The proof of the first fact can be done as in [2]. The proofs of the other two
facts are entirely similar to those of Theorem 2.1 of [41] and Theorem 3.6 of [42] and
we refer to these references for further details. ��

A natural way to prove existence of weak solution (see [2]) is to use finite dimen-
sional approximations. Consider for each N ≥ 1 the solution (X (N )n )1≤n≤N to the
following finite dimensional system,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ẋ (N )1 = −νλ2
1 X (N )1 − λ

β
1 X (N )1 X (N )2 + σ1 dW1,

. . . ,

Ẋ (N )n = −νλ2
n X (N )n + λ

β
n−1(X

(N )
n−1)

2 − λ
β
n X (N )n X (N )n+1 + σn dWn,

. . . ,

Ẋ (N )N = −νλ2
N X (N )N + λ

β
N−1(X

(N )
N−1)

2 + σN dWN .

(2.6)

Given x ∈ H , let P
(N )
x be the probability distribution on 
β of the solution of the

above system with initial condition x (N ) = (x1, x2, . . . , xN ).

Definition 2.9 (Galerkin martingale solution) Given x ∈ H , a Galerkin martingale
solution is any limit point in 
β of the sequence (P(N )x )N≥1.

It is easy to verify (it is the proof of existence in Theorem 2.8, see [2] for details in
a similar problem) that Galerkin martingale solutions are energy solutions.

Remark 2.10 All results of this section hold for any polynomial non-linearity with
finite modes interaction. On the other hand the rest of the paper is strongly based
on the structure of the non-linearity. At least for nearest-neighbour interaction, we
are dealing with the difficult case. Indeed every nearest-neighbour interaction can be
written [34] as a1 B1

n (X) + a2 B2
n (X), where B1

n is the non-linearity of the dyadic

model and B2
n (x) = λ

β
n+1x2

n+1 −λβn xn−1xn . In [34] the authors prove that the inviscid
problem with non-linearity B2

n is well-posed.
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3 Control of the negative components

Given β > 2, α ∈ R and c0 > 0, consider the solution Z of (2.3) and define the
following process,

Nα,c0(t) = min
{
m ≥ 1 : |Zn(s)| ≤ c0νλ

−α
n−1 for s ∈ [0, t] and n ≥ m

}
, (3.1)

with Nα,c0(t) = ∞ if the set is empty.

Lemma 3.1 (Moments of Nα,c0 ) Given β > 2, assume (2.1) and let α < α0 +1. Then
for every γ ∈ (0, α0 + 1 − α) and ε ∈ (0, 1], with ε < α0 + 1 − α− γ , there are two
numbers c3.1−1 > 0 and c3.1−2 > 0, depending only on ε, γ and α0, such that

P[Nα,c0(t) > n] ≤ c3.1−1 exp
(
−c3.1−2

c0ν

tε
λ
γ
n

)
,

for every t > 0 and n ≥ 1. In particular, P[Nα,c0(t) = n] > 0 for every n ≥ 1 and

E
[
exp
(
λ
γ

Nα,c0 (t)

)]
< ∞.

Proof For n ≥ 1,

{Nα,c0(t) ≤ n} =
{

sup
k≥n

sup
[0,t]

λαk−1|Zk(s)| ≤ c0ν

}
.

Hence if γ < α0 + 1 − α and k ≥ n,

sup
[0,t]

λαk−1|Zk(s)| ≤ λ
−γ
n−1 sup

[0,t]
‖Z(s)‖α+γ .

Therefore by Chebychev’s inequality and Lemma 2.4,

P[Nα,c0(t)>n]≤P

[
sup
[0,t]

‖Z(s)‖α+γ >c0νλ
γ
n−1

]
≤c2.4−1.ε exp

(
−c2.4−2.ε

c0ν

tε
λ
γ
n−1

)
,

for every ε ∈ (0, 1] with ε < α0 +1−α−γ . The double-exponential moment follows
from this estimate.

We finally prove that P[Nα,c0(t) = n] > 0. We prove it for n = 1 and all other
cases follow similarly. By independence,

P[Nα,c0(t) = 1] = exp

(
−

∞∑

n=1

− log P
[
sup
[0,t]

λαk−1|Zk(s)| ≤ c0ν
]
)
,

and it is sufficient to show that the series above is convergent. By (2.1),

P

[
sup
[0,t]

λαk−1|Zk(s)| ≤ c0ν

]
≥ P

[
sup
[0,t]

|ζ(λ2
ns)| ≤ 2αc0νλ

α0+1−α
n

]
,
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Uniqueness and blow-up for a stochastic viscous dyadic model 903

where ζ is the solution of the one dimensional SDE dζ +νζ dt = dW , with ζ(0) = 0.
The conclusion follows by standard tail estimates on the one dimensional Ornstein–
Uhlenbeck process (see for instance [20]), since α < 1 + α0. ��

The lemma below is the crucial result of the paper. To formulate its statement, we
introduce suitable finite dimensional approximations. Consider for each integer N ≥ 1
the finite dimensional approximations of (2.4),

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẏ (N )1 = −νλ2
1Y (N )1 − λ

β
1 X (N )1 X (N )2 ,

. . . ,

Ẏ (N )n = −νλ2
nY (N )n + λ

β
n−1(X

(N )
n−1)

2 − λ
β
n X (N )n X (N )n+1,

. . . ,

Ẏ (N )N = −νλ2
N Y (N )N + λ

β
N−1(X

(N )
N−1)

2.

(3.2)

In the above system we have set X (N )n = Y (N )n + Zn for n = 1, . . . , N . It is easy to
verify that the above SDE admits a unique global solution.

Lemma 3.2 (Main lemma) Let β > 2, N ≥ 1 and T > 0, and assume (2.1). Let
α ∈ [β − 2, 1 + α0) and consider c0 > 0, a0 > 0 and n0 ≥ 1 such that

c0 ≤ a0 and c0 <
√

a0
(
λ

1
2 (α+2−β)
n0 − √

a0
)
. (3.3)

Assume that λαn−1 X (N )n (0) ≥ −a0ν for all n = n0, . . . , N. If N > Nα,c0(T ), then

Y (N )n (t) ≥ −a0νλ
−α
n−1 for all t ∈ [0, T ] and all n ≥ n0 ∨ Nα,c0(T ).

Proof For simplicity we drop the superscript (N ). We can first assume that
λαn−1Yn(0) > −νa0 for n ≥ n0, . . . , N (the case of equality follows by continu-
ity). Then the same is true in a neighbourhood of t = 0. Let t0 > 0 be the first time
when at least for one n, λαn−1Yn(t0) = −νa0. Let n ≥ n0 ∨ Nα,c0(T ) be one of such
indices. Then

Ẏn(t0) ≥ −νλ2
nYn(t0)− λβn (Yn(t0)+ Zn(t0))(Yn+1(t0)+ Zn+1(t0))

≥ a0ν
2λ2λ2−α

n−1 + λβn
(
a0νλ

−α
n−1 − Zn(t0)

)
(Yn+1(t0)+ Zn+1(t0))

≥ a0ν
2λ2λ2−α

n−1 − λβn
(
a0νλ

−α
n−1 − Zn(t0)

)
(Yn+1(t0)+ Zn+1(t0))−,

since νa0λ
−α
n−1 − Zn(t0) ≥ 0 for n ≥ Nα,c0(T ). Here x− = max(−x, 0). We also

know that Yn+1(t0) ≥ −a0νλ
−α
n , hence Yn+1(t0) + Zn+1(t0) ≥ −ν(a0 + c0)λ

−α
n

and (Yn+1(t0) + Zn+1(t0))− ≤ ν(a0 + c0)λ
−α
n . We also have a0νλ

−α
n−1 − Zn(t0) ≤

ν(a0 + c0)λ
−α
n−1, so in conclusion

Ẏn(t0) ≥ ν2λ2λ2−α
n−1

(
a0 − λβ−2−α

n (a0 + c0)
2) > 0.

��
The next theorem shows that the process can diverge only in the positive area.
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Theorem 3.3 Given β > 2, assume (2.1). Let α ∈ (β − 2, α0 + 1) and x ∈ Vα , and
let (X (·; x), ταx ) be the strong solution in Vα with initial condition x. Then

E

[
sup
n≥1

sup
t∈[0,T ∧ταx ]

(
λαn−1

(
Xn(t)

)
−
)p

]
< ∞,

for every T > 0 and p ≥ 1. In particular,

inf
n≥1

inf
t∈[0,ταx ∧T ] λ

α
n−1 Xn > −∞, P–a. s.

Proof Fix x ∈ Vα and T > 0. Set a0 = 1
4 and c0 = 1

6 , so that condition (3.3) holds
for any n0. Choose n0 ≥ 1 as the smallest integer such that λαn−1xn ≥ − 1

4ν for all
n ≥ n0. With the choice c0 = 1

6 , define the event Zα,T = {Nα,1/6(T ) < ∞}. By
Lemma 3.1 Zα,T has probability one. Lemma 3.2 implies that on {ταx > T },

Yn(t) ≥ − 1
4νλ

−α
n−1, for n ≥ n0 ∨ Nα, 1

6
(T ).

Indeed, we can set x (N ) = (x1, . . . , xN ) and notice that on the event {ταx > T },
problem (2.4) has a unique solution. Hence for every N the solution of (3.2) with
initial condition x (N ) converges to the solution of (2.4) with initial condition x . Here
the convergence is component-wise uniform in time on [0, T ].

Let N1 = n0 ∨ Nα,1/6(T ). It is clear that N1 has the same finite moments of
Nα,1/6(T ). Moreover on {ταx > T },

λαn−1 Xn(t) ≥
{

−λαN1−1 supt∈[0,T ] ‖X (t)‖H , n < N1,

− 5
12ν, n ≥ N1,

for every n ≥ 1. Therefore

sup
n≥1

sup
t∈[0,T ]

λαn−1

(
Xn(t)

)
− ≤ ν + λαN1−1 sup

t∈[0,T ]
‖X (t)‖H .

From Lemma 3.1 and the fact that E[sup[0,T ] ‖X (t)‖p
H ] is finite for every p ≥ 1, the

estimate in the statement of the theorem readily follows. ��
Remark 3.4 Given an initial condition x ∈ Vα , if we set

ταx,± = sup{t : supn≥1 λ
α
n (Xn)± < ∞},

then ταx = min(ταx,+, ταx,−), and the previous theorem implies that ταx = ταx,+.

Corollary 3.5 Let β > 2, α ∈ (β−2, α0 +1) and x ∈ Vα , and assume (2.1). If either
problem (2.4), with initial state x, admits a unique solution for almost every possible
value assumed by Z, or we are dealing with a Galerkin solution, then
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E

[
sup
n≥1

sup
t∈[0,T ]

(
λαn−1

(
Xn(t)

)
−
)p

]
< ∞,

for every T > 0 and p ≥ 1. In particular,

inf
n≥1

inf
t∈[0,T ] λ

α
n−1 Xn > −∞, P–a. s.

Proof We simply notice that in the proof of the theorem above we have used the piece
of information {ταx > T } only to ensure that (2.4) admits a unique solution.

On the other hand, if we are dealing with a Galerkin solution, then up to a sub-
sequence we still have component-wise uniform convergence in time. ��

4 Uniqueness and regularity for 2 < β ≤ 5
2

In this section we prove two extensions of results given in the non-random case. The
first concerns path-wise uniqueness, the second is about absence of blow-up. Both
extensions are based on the control of negative components shown in Sect. 3.

Theorem 4.1 (Pathwise uniqueness) Let β ∈ (2, 3] and assume that (2.1) holds. Let
X (0) ∈ Vβ−2, then there exists a (pathwise) unique solution of (1.1) with initial
condition X (0), in the class of Galerkin martingale solutions.

We do not know if uniqueness holds in some larger class (energy or weak martingale
solutions), neither we know if a Galerkin solution develops blow-up. By slightly
restricting the range of values of β, we have an improvement.

Theorem 4.2 (Smoothness) There existsβc ∈ ( 5
2 , 3] such that the following statement

holds. Assume (2.1) and let β ∈ (2, βc) and α ∈ (β−2, 1+α0). Then ταx = ∞ for all
x ∈ Vα and path-wise uniqueness holds in the class of energy martingale solutions.

4.1 The proof of Theorem 4.1

The proof is based on [7, Proposition 3.2], which builds up on an idea in [4]. Both
results hold for positive solutions and no noise.

Proof of Theorem 4.1 Fix T > 0. It is sufficient to show uniqueness on [0, T ]. We
will use Lemma 3.2 with c0 = 1

6 and a0 = 1
4 . With these values (3.3) holds for any

n0. Moreover, the bounds of Lemma 3.2 hold for Galerkin solutions, since they are
the component-wise limit of finite dimensional approximations.

Let n0 be the smallest integer such that infn≥n0 λ
β−2
n Xn(0) ≥ − 1

4ν and set N0 =
1 + n0 ∨ Nβ−2,1/6(T ). Let X1, X2 be two solutions with the same initial condition

X (0). By Lemma 3.2, Xi
n(t) ≥ Zn(t)− 1

4νλ
2−β
n−1 for n ≥ N0, t ∈ [0, T ], and i = 1, 2.

Set An = X1
n − X2

n , Bn = X1
n + X2

n , Dn = 1
2νλ

2−β
n−1 − 2Zn , and
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ψ�(t) =
N0−1∑

n=1

A2
n

λn
, ψh,N (t) =

N∑

N0

A2
n

λn
, ψN (t) = ψ�(t)+ ψh,N (t).

Notice that Bn + Dn ≥ 0 if t ∈ [0, T ] and n ≥ N0. A simple computation yields

d

dt
ψh,N + 2ν

N∑

n=N0

λn A2
n = −

N∑

n=N0

λβ−1
n Bn+1 A2

n − λ
β−1
N BN AN AN+1

+ λβ−1
N0−1 BN0−1 AN0−1 AN0 = 1 + 2 N + 3 N0

,

for N > N0. For the first term we notice that Dn+1 ≤ 5
6νλ

2−β
n , hence 1 ≤

∑N
n=N0

λ
β−1
n Dn+1 A2

n ≤ ν
∑N

n=N0
λn A2

n . For the second term,

∞∑

N=1

T∫

0

2 N dt ≤ sup
[0,T ]

‖X1 + X2‖H

T∫

0

‖A‖2
1
2 (β−1)

ds.

The quantity on the right-hand side is a. s. finite since Z ∈ C([0, T ]; V(β−1)/2) by

Lemma 2.4, V ∈ L2([0, T ]; V ) and β ≤ 3. This implies that a. s.
∫ T

0 2 N dt → 0 as
N → ∞. Likewise,

d

dt
ψ� ≤ −

N0−1∑

n=1

λβ−1
n Bn+1 A2

n − 3 N0
≤ λ

β
N0−1

(
sup
[0,T ]

‖X1 + X2‖H

)
ψ� − 3 N0

,

and in conclusion d
dtψN ≤ λ

β
N0−1

(
sup[0,T ] ‖X1 + X2‖H

)
ψ� + 2 N . Set ψ(t) =

‖A(t)‖−1/2, then ψN ↑ ψ . Integrate in time the inequality for ψN and take the limit
as N ↑ ∞ to get

ψ(t) ≤ λ
β
N0−1

(
sup
[0,T ]

‖X1 + X2‖H

) t∫

0

ψ(s) ds.

By Gronwall’s lemma ψ(t) = 0 a. s. for all t ∈ [0, T ]. ��

4.2 The proof of Theorem 4.2

We give a minimal requirement for smoothness of solutions of (1.1). This is analogous
to the criterion developed in [7] without noise. Given T > 0 define the subspace KT

of 
β as

KT =
{
ω ∈ 
β : lim

n

(
max

t∈[0,T ] λ
β−2
n |ωn(t)|

)
= 0

}
.
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Proposition 4.3 Assume (2.1), and let β > 2, α ∈ (β − 2, 1 + α0). Let x ∈ Vα and
Px be an energy martingale solution starting at x. If τα∞ is the random time defined in
(2.5), then {τα∞ > T } = KT under Px , for every T > 0.

Proof Fix α ∈ (β − 2, α0 + 1), x ∈ Vα and a solution Px starting at x , and let τα∞,
τ
α,R∞ be the random times defined in (2.5). Assume τα∞(ω) > T , then τα,R0∞ (ω) > T

for some R0 > ‖x‖α . In particular ‖ξt (ω)‖α ≤ R0 for t ∈ [0, T ]. Hence,

λβ−2
n max[0,T ] |ξn,t (ω)| ≤ λβ−2−α

n sup
[0,T ]

‖ξt (ω)‖α ≤ R0λ
β−2−α
n ,

and ω ∈ KT . Vice versa, let ω ∈ KT and choose (Mn)n≥1 such that Mn ↓ 0 and
λ
β−2
n max[0,T ] |ξn(t)| ≤ Mn . Set un = λαn ξn and mn = max[0,T ] |un(t)|, then

|un(t)| ≤ |un(0)| +
(

sup
[0,T ]

λαn |Zn(t)|
)

+ ν−1λα−2 Mn−1mn−1 + ν−1λ2−βMn−1mn,

and

(1 − ν−1λ2−βMn−1)mn ≤ |un(0)| + (
sup[0,T ] λαn |Zn(t)|

)+ ν−1λα−2 Mn−1mn−1.

Set An = 2λαn |xn|+2
(
sup[0,T ] λαn |Zn(t)|

)
. By Lemma 2.4 applied with an α′ > α, we

know that
∑

n A2
n < ∞ with probability one. For n large enough (depending only on

λ, ν and β), the above inequality reads mn ≤ An + 1
2 mn−1. By solving the recursion

we get
∑

n m2
n < ∞, and in particular τα∞(ω) > T . ��

The basic idea of the proof of Theorem 4.2 is that given a smooth initial state x ,
there is a solution Px that satisfies Px [KT ] = 1. Hence is the unique solution.

Proof of Theorem 4.2 Fix α ∈ (β − 2, α0 + 1), x ∈ Vα , T > 0 and an energy
martingale solution Px starting at x , and let τα∞ be the random time defined in (2.5).
There is no loss of generality in assuming that Px is a Galerkin solution. Indeed, by
Theorem 2.8, τα∞ is equal a. s. to the lifespan ταx of the strong solution with the same
initial state.

Since Px is a Galerkin solution, there are x (Nk ) and the solution P
(Nk ) with initial

state x (Nk ) of (2.6) with dimension Nk , such that x (Nk ) → x in H and P
(Nk ) ⇀ Px in


β . By definition we also have that x (Nk )
n = xn for n ≤ Nk .

By a standard argument (Skorokhod’s theorem) there are a common probability
space (
̄, F̄ , P̄) and random variables X (Nk ), X on 
̄with laws P

(Nk ), Px respectively,
such that X (Nk )

n → Xn , P̄−a. s., uniformly on [0, T ] for all n ≥ 1.
Let ε > 0 be such thatα > β−2 + 2ε and 6 − 2β − 3ε > 0. We will use Lemma 3.2

with a0 <
1
2 (to be chosen later in the proof) and c0 = 1

3 a0. Let n̄ be the smallest
integer such that λαn−1|xn| ≤ a0ν for all n ≥ n̄, and set N0 = n̄ ∨ Nβ−2+2ε,c0(T ).

For each integer n0 ≥ 1 and real M > 0 define the event

AM (n0) =
{

sup
[0,T ]

(|X (Nk )
n0−1| + |X (Nk )

n0
|) ≤ M for all k such that Nk ≥ n0

}
.

123



908 M. Romito

Clearly P̄
[⋃

M AM (n0)
] = 1 since X (Nk )

n → Xn uniformly for n ≥ 1, hence

P̄

⎡

⎣
⋃

n0≥1, M>0

({N0 = n0} ∩ AM (n0)
)
⎤

⎦ = 1.

Fix n0 ≥ 1 and M > 0, then everything boils down to prove that KT happens
on {N0 = n0} ∩ AM (n0) for (X (Nk )

n )n0≤n≤Nk uniformly in k. We work pathwise for
ω ∈ {N0 = n0} ∩ AM (n0) and we adapt the method in [7]. We will prove that the area
in Figure 4.2 is invariant for a suitable rescaling of Y . The area

A is defined by c = λ−(6−2β−3ε), δ = 1
10 , θ = 3

5 and m = 3
4 , and by g(x) =

min(mx + θ, 1) and hη specified later in (4.6). In [7] we used the value η = δ.
First, we change and rescale the solution. Let εn = νλ−2ε

n−1 and define

δ−1
0 = max

{
δ−1, λβ−2+ε

n0
M + 2a0λ

ε
n0
εn0−1, supn≥n0

λεn(λ
β−2
n xn + 2a0εn)

}
,

Un(t) = λεnδ
2
0

(
λβ−2

n Y (Nk )
n (δ0t)+ a0εn

)
, Vn(t) = λεn

(
a0εn − λβ−2

n Zn(δ0t)
)
.

It follows by Lemma 3.2 that

Un ≥ 0, and 2
3 a0λ

ε
nεn ≤ Vn ≤ 5

3 a0λ
ε
nεn, (4.1)

for all n0 ≤ n ≤ Nk . By the choice of δ0 it follows that Un(0) ≤ δ0 ≤ δ for all n ≥ n0,
max[0,T ] Un0−1 ≤ δ, and max[0,T ] Un0 ≤ δ.

Consider for n ≥ n0 the coupled systems in (Un,Un+1),

d

dt

(
Un

Un+1

)
= λ2−ε

n

(
δ3

0B0
n + δ0B

1
n + 1

δ0
λβ−4+2εB2

n

)
, (4.2)

where

Bi
n =

(
Pi

n
λ2−εPi

n+1

)
, i = 0, 1, 2,

P0
n = a0νλ

2ε
n εn + λβ−4+2εV 2

n−1 − λ2−β−εVn Vn+1,
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P1
n = −νλεnUn − 2λβ−4+2εVn−1Un−1 + λ2−β−ε(Vn+1Un + VnUn+1),

P2
n = U 2

n−1 − λ6−2β−3εUnUn+1.

The goal is to prove that (Un(t))n0≤n≤Nk is uniformly bounded in n and t . Indeed,
we will see that 0 ≤ Un(t) ≤ 1 for all n, t . In turns this implies that −λεnεn ≤
λ
β−2+ε
n Y (Nk )

n (t) ≤ δ−2
0 , for all n, t . Since Y (Nk )

n → Yn uniformly on [0, T ] for each
n, the same holds for the limit Y . Due to Lemma 2.4, X ∈ KT .

By the choice of δ0 each pair (Un(t),Un+1(t)) is in the interior of A at t = 0. If
we show that each pair stays in A for all t > 0, then Un ≤ 1. To this end it suffices
to show that each vector field on the right hand side of (4.2) points inwards on the
boundary of A. By Lemma 3.2 it immediately follows that the normal vectors n1 and
n6 point inwards. Moreover, since A is convex, it is sufficient to verify that each of
the products of ni , i = 2, . . . , 5, with the vector fields B0

n , B1
n and B2

n is positive.
The vector field B1. We will use (4.1), that U ≤ 1 in A and that εn is non-increasing.

If a0 is chosen small enough (depending only on m, β and ε, but not on M , n0 or δ0),
then the lower bounds we will obtain are positive numbers.

On the border with normal n2 = (m,−1), λ2Un+1 − mUn ≥ λ2θ , hence

B1
n · n2 = m P1

n − λ2−εP1
n+1 ≥ λεn

(
νλ2θ − a0c(m, β, ε)εn−1

)
. (4.3)

On the border with normal n3 = (0,−1) we have Un+1 = 1, hence

B1
n · n3 = −λ2−εP1

n+1 ≥ λ2−ελεn+1(ν − 4a0λ
2−βεn+1). (4.4)

Similarly, on the border with normal n4 = (−1, 0) we have Un = 1, hence

B1
n · n4 = −P1

n ≥ λεn(ν − 4a0λ
2−βεn). (4.5)

Before computing the scalar product with n5, let us give the definition of hη. For

η ∈ (0, 1) define ϕη(x) = (
(x − η)/(1 − η)

)λ2
, x ∈ [η, 1], and, for η ≤ δ,

hη(x) = c

1 − ϕη(δ)

(
ϕη(x)− ϕη(δ)

)
, x ∈ [δ, 1]. (4.6)

Each hη is positive, increasing, convex, hη(δ) = 0, hη(1) = c and hη → h in
C1([δ, 1]) as η ↑ δ. Moreover, there is cδ,η > 0 such that xh′

η − λ2hη ≥ cδ,η.
With this inequality in hand, we proceed with the estimate of B1

n · n5. On the border
with normal n5 = (−h′

η(Un), 1) we have Un ∈ [δ, 1] and Un+1 = hη(Un). Since
h′
η ≤ cλ2/(1 − 2δ), it follows that

B1
n · n5 = λ2−εP1

n+1 − h′
η(Un)P

1
n ≥ λεn

(
νcδ,η − a0c(β, ε, δ)εn

)
. (4.7)

The vector field B0. Using (4.1) we have that |P0
n | ≤ λ2ε

n (a0νεn + ca2
0ε

2
n−1). This

quantity can be made a small fraction of λεn if a0 is small enough. Therefore, due
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to formulae (4.3), (4.4), (4.5), (4.7), each product (B0
n + B1

n) · ni , i = 2, . . . , 5 is
positive.

The vector field B2. We have chosen the same parameters as in [7], hence the
products B2

n · n3 and B2
n · n4 are positive. A simple computation shows that B2

n · n2
and B2

n · n5 are continuous functions of hη, h′
η, and have positive minima for η = δ.

Then the same is true for η small enough, since hη → h in C1([δ, 1]).
The proof we have given (due to the choice of the numbers m, θ , δ) works for

β ≤ 5
2 . Hence we can consider βc slightly larger than 5

2 . A larger value of βc may be
considered (see [7, Remark 2.2]). ��

5 The blow-up time

We analyse in more detail the blow-up time introduced in Definition 2.2. We give some
general results that hold beyond the dyadic model. Such results are the key to prove in
the next section that blow-up happens with probability one. Example 5.6 shows that
the a. s. emergence of blow-up is a property dependent in general on the structure of
the drift. Hence it strongly motivates our analysis.

Let (X (·; x), τx )x∈W be the local strong solution of a stochastic equation on a
suitable separable Hilbert space W . Having our case in mind, we assume that

• P[τx > 0] = 1 for all x ∈ W ,
• X (·; x) is continuous for t < τx with values in W ,
• X (·; x) is the maximal local solution, namely either τx = ∞ or ‖X (t; x)‖W → ∞

as t ↑ ∞, P−a. s.,
• (X (·; x), τx )x∈W is Markov (in the sense given in Theorem 2.3),
• all martingale solutions coincide with the strong solution up to τx .

The last statement plainly implies that the occurrence of blow-up is an intrinsic property
of the unique local strong solution. Define

�(t, x) = P[τx > t], and �(x) = inf
t≥0
�(t, x) = P[τx = ∞],

for x ∈ W and t ≥ 0. Clearly �(0, x) = 1 and �(·, x) is non-increasing. Next lemma
shows a 0–1 law for the supremum of � over space and time.

Lemma 5.1 Consider the family of processes (X, τ ) on W as above. If there is x0 ∈ W
such that P[τx0 = ∞] > 0, then

sup
x∈W

P[τx = ∞] = 1.

Proof By the Markov property,

�(t + s, x) = P[τx > t + s] = E[1{τx>t}�(s, X (t; x))],

and in the limit as s ↑ ∞, by monotone convergence,

�(x) = E[1{τx>t}�(X (t; x))]. (5.1)
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Set c = sup �(x), then by the above formula,

�(x0) = E[1{τx0>t}�(X (t; x0))] ≤ cE[1{τx0>t}] = c�(t, x0).

As t ↑ ∞, we get �(x0) ≤ c�(x0), that is c ≥ 1, hence c = 1. ��
Remark 5.2 Something more can be said by knowing additionally that there is x0 with
�(x0) = 1. Indeed, 1{τx0>t} = 1 a. s., and, using again formula (5.1),

E[�(X (t; x0))] = E[1{τx0>t}�(X (t; x0))] = �(x0) = 1.

Hence �(X (t; x0)) = 1, a. s. for every t > 0. This is very close to proving that � ≡ 1.
In fact [28, Theorem 6.8] proves, although with a completely different approach, that
�(x0) = 1 implies that � ≡ 1 on W . This holds under the assumptions of strong Feller
regularity and conditional irreducibility, namely that P[X (t; x) ∈ A, τx > t] > 0 for
every x ∈ W , t > 0 and every open set A ⊂ W .

Proposition 5.3 Consider the family (X, τ ) of processes as above. Assume that, given
x ∈ W , there exist a closed set B∞ ⊂ W with non-empty interior and three numbers
p0 ∈ (0, 1), T0 > 0 and T1 > 0 such that

• P[σ x,T1
B∞ = ∞, τx = ∞] = 0,

• P[τy ≤ T0] ≥ p0 for every y ∈ B∞,

where the (discrete) hitting time σ x,T1
B∞ of B∞, starting from x, is defined as

σ
x,T1
B∞ = min{k ≥ 0 : X (kT1; x) ∈ B∞},

and σ x,T1
B∞ = ∞ if the set is empty. Then

P[τx < ∞] ≥ p0

1 + p0
.

Remark 5.4 The first condition in the above proposition can be interpreted as recur-
rence in a conditional sense: knowing that the solution does not explode, it will visit
B∞ in a finite time with probability 1.

Proof The first assumption says that P[σ x,T1
B∞ > n, τx > nT1] ↓ 0 as n → ∞. If

P[τx = ∞] = 0, there is nothing to prove. If on the other hand P[τx = ∞] > 0, then
P[τx > nT1] > 0 for all n ≥ 1 and, since P[τx > nT1] ↓ P[τx = ∞] as n → ∞,

P[σ x,T1
B∞ ≤ n|τx > nT1] = 1 − P[σ x,T1

B∞ > n, τx > nT1]
P[τx > nT1] −→ 1, n → ∞.

For n ≥ 1,

P[τx > nT1 + T0] ≤ P[τx > nT1 + T0, σ
x,T1
B∞ ≤ n] + P[σ x,T1

B∞ > n].
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The strong solution is Markov, hence

P[τx > nT1 + T0, σ
x,T1
B∞ ≤ n] =

n∑

k=0

P[τx > nT1 + T0, σ
x,T1
B∞ = k]

≤ (1 − p0)P[σ x,T1
B∞ ≤ n].

In conclusion

P[τx > nT1 + T0] ≤ (1 − p0)P[σ x,T1
B∞ ≤ n] + P[σ x,T1

B∞ > n]
= 1 − p0P[σ x,T1

B∞ ≤ n] ≤ 1 − p0P[σ x,T1
B∞ ≤ n|τx > nT1]P[τx > nT1],

and, as n → ∞, P[τx = ∞] ≤ 1 − p0P[τx = ∞], that is Px [τx = ∞] ≤ 1
1+p0

. ��
Corollary 5.5 Assume that there are p0 ∈ (0, 1), T0 > 0 and B∞ ⊂ W such that
the assumptions of the previous proposition hold for every x ∈ W (the time T1 may
depend on x). Then for every x ∈ W , P[τx < ∞] = 1.

Proof The previous proposition yields that supx∈W P[τx = ∞] ≤ 1
1+p0

. By the
dichotomy of Lemma 5.1, P[τx < ∞] = 1 for every x ∈ W . ��
Example 5.6 The following simple one dimensional example shows that the a. s.
occurrence of blow-up depends on the structure of the drift. Our proofs below are
elementary and mimic the proofs of the next section. Consider the SDEs,

d X = fi (X) dt + dW, i = 1, 2,

with initial condition X (0) = x ∈ R, where

f1(x) =
{

x2, x ≥ 0,
x, x < 0,

f2(x) =
{

x2, x ≥ 0,
−x, x < 0.

The Feller test [32, Proposition 5.22]) yields 0 < �1(x) < 1 for the blow-up function
corresponding to the drift f1, and �2(x) ≡ 1 for the one of the drift f2.

In view of the results proved above and the analysis of the next section (see Theo-
rem 6.1), we notice that

• if B∞ = {x ≥ 1}, then for both drifts there are p0 > 0 and T0 > 0 such that
P[τx ≤ T0] ≥ p0 for all x ∈ B∞, that is the second assumption of Proposition 5.3
holds,

• the first assumption of Proposition 5.3 holds for f2 but not for f1,
• in both cases E

[
sup[0,T ](Xn)

p
−
]
< ∞ for all T > 0 and p ≥ 1.

Indeed, given an initial condition x ∈ [1,∞), we have that

P

[{
sup

t∈[0,2]
|Wt | ≤ 1

4

}
∩ {τx > 2}

]
= 0.
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Set Yt = Xt − Wt , so that Y0 = x and dY = d X − dW = (Y + W )2, in particular
Yt ≥ 1. On the event {supt∈[0,2] |Wt | ≤ 1

4 },

Ẏ ≥ Y 2 − 2|W |Y ≥ Y

(
Y − 1

2

)
≥ 1

2
Y 2,

hence by comparison Yt (and hence Xt ) explodes before time 2
x ≤ 2.

6 Blow-up for β > 3

In the first part of the section we prove that there are sets in the state space which
lead to blow-up with positive probability. The idea is to use Lemma 3.2 to adapt the
estimates of [10], which work only for positive solutions.

In the second part of the section we show that such sets are recurrent, when the
blow-up time is conditioned to be infinite. The general result of the previous section
immediately implies that blow-up occurs with full probability.

6.1 Blow-up with positive probability

Given α > β − 2, p ∈ (0, β − 3), a0 > 0 and M0 > 0, define the set

B∞(α, p, a0,M0) =
{

x ∈ Vα : ‖x‖p ≥ M0 and inf
n≥1

(
λ
β−2
n−1 xn

) ≥ −νa0

}
. (6.1)

We will show that for suitable values of a0, M0, each solution of (1.1) with initial
condition in the above set blows up in finite time with positive probability.

Theorem 6.1 Let β > 3 and assume (2.1). Given α ∈ (β−2, α0 +1), p ∈ (0, β−3),
and a0 ∈ (0, 1

4 ], there exist p0 > 0, T0 > 0 and M0 > 0 such that for each x ∈
B∞(α, p, a0,M0) and for every energy martingale weak solution Px starting at x,

Px [τα∞ ≤ T0] ≥ p0.

Proof Choose c0 > 0 with c0 ≤ a0 ≤ √
a0(1 − √

a0), and consider the random
integer Nα,c0(T0) defined in (3.1). The value T0 will be specified later. Set

p0 = Px [Nα,c0(T0) = 1].

We recall that p0 > 0 by Lemma 3.1, and that its value depends only on the distribution
of the solution of (2.3). The theorem will be proved if we show that

Px [τα∞ > T0, Nα,c0(T0) = 1] = 0. (6.2)

Indeed Px [τα∞ ≤ T0] = 1 − Px [τα∞ ≤ T0, Nα,c0(T0) > 1] ≥ 1 − Px [Nα,c0(T0) >

1] = p0. We proceed with the proof of (6.2) and we work pathwise on the event
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914 M. Romito


(α, T0) = {τα∞ > T0} ∩ {Nα,c0(T0) = 1}.

Let Z be the solution of (2.3) and Y = X − Z . Equation (2.4) has a unique solution
on [0, T0] on {τα∞ > T0}. On {Nα,c0(T0) = 1} we have λβ−2

n−1 |Zn(t)| ≤ c0 for every
t ∈ [0, T0] and every n ≥ 1. Set

ηn = Xn − Zn + a0νλ
2−β
n−1 .

By this position η = (ηn)n≥1 satisfies the system

{
η̇n = −νλ2

nηn + a0ν
2λ2λ

4−β
n−1 + λ

β
n−1 X2

n−1 − λ
β
n Xn Xn+1,

ηn(0) = Xn(0)+ a0νλ
2−β
n−1 ,

n ≥ 1.

Moreover, by Lemma 3.2 (with a0, c0 as fixed above), it follows that ηn(t;ω) ≥ 0 for
all t ∈ [0, T0], n ≥ 1 and ω ∈ 
(α, T0).

Fix a number b > 0, which will be specified later, then

d

dt

(
η2

n + bηnηn+1
) = −2νλ2

nη
2
n − bν(1 + λ2)λ2

nηnηn+1

+ a0λ
2ν2(2 + bλ4−β)λ4−β

n−1ηn + a0bλ2ν2λ
4−β
n−1ηn+1

+ 2λβn−1 X2
n−1ηn + bλβn−1 X2

n−1ηn+1 + bλβn X2
nηn

− 2λβn Xn Xn+1ηn − bλβn Xn Xn+1ηn+1 − bλβn+1ηn Xn+1 Xn+2.

Since (a0 +c0)
2 ≤ a0 and 0 ≤ (a0νλ

2−β
n−1 − Zn) ≤ ν(a0 +c0)λ

2−β
n−1 , Young’s inequality

and some straightforward computations yield

d

dt

(
η2

n + bηnηn+1
)+ 2νλ2

nη
2
n + bν(1 + λ2)λ2

nηnηn+1 ≥ An + Bn + Cn,

where

An = bλβnη
3
n + λ2p

1+λ2p λ
β
n−1η

2
n−1ηn − 2λβnη

2
nηn+1 − bλβnηnη

2
n+1 − bλβn+1ηnηn+1ηn+2,

Bn = −2bλβ−2ν(a0 + c0)λ
2
nη

2
n, and Cn = −4ν2(a0 + c0)

2 λ2β+2p−4

λ2p−1
λ

4−β
n−1ηn .

The term An is roughly the same as in the deterministic case, hence by proceeding in
the same way as in [10] we have

∞∑

n=1

λ
2p
n An ≥ k1

∞∑

n=1

λ
β+2p
n η3

n + k′
1

∞∑

n=1

λ
β+2p
n η2

nηn+1 = k1

∞∑

n=1

λ
β+2p
n η3

n,

where we have chosen b so that k′
1 = λ2p − 1 − 4b(2 + 2λβ + λ−2p) = 0. The other

two terms are simpler, indeed
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Uniqueness and blow-up for a stochastic viscous dyadic model 915

∞∑

n=1

λ
2p
n Bn = −2bλβ−2ν(a0 + c0)

∞∑

n=1

λ
2+2p
n η2

n = −k2‖η‖2
1+p,

and, by the Cauchy–Schwarz inequality and the fact that p < β − 3,

∞∑

n=1

λ
2p
n Cn ≥ −4ν2(a0 + c0)

2 λ
3β+2p−8

λ2p − 1

(
λ2(3−β+p) − 1

)− 1
2 ‖η‖1+p = −k3‖η‖1+p.

On the other hand,

2ν‖η‖2
1+p + bν(1 + λ2)

∞∑

n=1

λ
2+2p
n ηnηn+1 ≤ k4‖η‖2

1+p,

‖η‖2
1+p =

∞∑

n=1

(
λ

1
3 (β+2p)
n ηn

)2
λ

− 2
3 (β−3−p)

n ≤
(

1

k5

∞∑

n=1

λ
β+2p
n η3

n

) 2
3

.

If we set H(t) = ∑∞
n=1 λ

2p
n
(
η2

n + bηnηn+1
)

and ψ(t) = ‖η‖2
1+p, the estimates

obtained so far together yield

Ḣ + k4ψ ≥ k1k5ψ
3
2 − k2ψ − k3

√
ψ.

Finally, H ≤ (1 + bλ−p)ψ = k6ψ , and it is easy to show by a simple argument (for
instance the one in [10]) that if

H(0) > M2
0 := k6

k1k5

(
k4 + k2 +

√
(k4 + k2)2 + 2k1k3k5

)
and T0 >

4k
3
2
6

k1k5
√

H(0)
,

then H becomes infinite before time T0. ��

6.2 Ineluctable occurrence of the blow-up

So far we know that if the initial condition is not too negative and the noise is not too
strong, then the deterministic dynamics dominates and the process diverges. In this
section we show that the sets that lead to blow-up are recurrent in a conditional sense
(as in Remark 5.4).

Theorem 6.2 Let β > 3 and assume (2.1). Assume moreover that the set {n ≥ 1 :
σn �= 0} is non-empty. Given α ∈ (β − 2, 1 + α0), for every x ∈ Vα and every energy
martingale solution Px with initial condition x,

Px [τα∞ < ∞] = 1.
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Our strategy to prove the theorem is based on Corollary 5.5. We will show that the
sets (6.1) where blow-up occurs satisfy the assumptions of the corollary. Lemma 6.4
shows that the negative part of the solution becomes small. Lemma 6.5 shows that the
size of the solution becomes large. Finally, Lemma 6.6 shows that, without blow-up,
the sets (6.1) are visited with probability one.

Lemma 6.3 Let β > 3 and assume (2.1). There exists c6.3 > 0 such that for α ∈
(β − 2, 1 + α0), for every x ∈ Vα , every energy martingale solution Px starting at x,
every T > 0 and every c0 > 0 with 4c0(1 + λβ−3) ≤ 1,

sup
[0,T ]

‖X (t)‖H ≤ ‖x‖H + c6.3ν,

Px−a. s. on the event {τα∞ > T } ∩ {Nβ−2,c0(T ) = 1}.
Proof Problem (2.4) has a unique solution on {τα∞ > T }, hence we work directly on
Y . We know that λβ−2

n |Zn(t)| ≤ c0ν for t ∈ [0, T ] and n ≥ 1, hence

d

dt
‖Y‖2

H + 2ν‖Y‖2
1 ≤ 2

∞∑

n=1

λβn (YnYn+1 Zn + Yn+1 Z2
n − Y 2

n Zn+1 − Yn Zn Zn+1)

≤ 4c0ν(1 + λβ−3)‖Y‖2
1 + λ2β−4

2(λβ−3−1)
c3

0ν
3.

The assumption on c0 and the inequality ‖Y‖1 ≥ λ‖Y‖H yield

d

dt
‖Y‖2

H + νλ2‖Y‖2
H ≤ k0c3

0ν
3,

where the value of k0 depends only on β. The bound for Y follows by integrating
the differential inequality. The lemma then follows using that X = Y + Z and that
Nβ−2,c0(T ) = 1. ��

The next lemma is a slight improvement of Lemma 3.2. We prove that there is a
drift towards the positive cone and solutions tend to be not too negative if the effect
of noise is small, regardless of the sign of the initial condition.

Lemma 6.4 (Contraction of the negative components) Let β > 3 and assume (2.1).
For every M > 0, a0 ∈ (0, 1

4 ] and c0 < a0, with 4c0(1 + λβ−3) ≤ 1, there exists
TM > 0 such that for every x ∈ Vα , with α ∈ (β − 2, 1 + α0) and ‖x‖H ≤ M, and
every energy martingale solution Px ,

inf
n≥1

(
λ
β−2
n−1 Xn(TM )

) ≥ −(a0 + c0)ν,

Px−a. s. on the event {τα∞ > TM } ∩ {Nβ−2,c0(TM ) = 1}.
Proof Let n0 be the first integer such that infn≥n0 λ

β−2
n xn ≥ −a0ν. If n0 = 1 there is

nothing to prove, so we consider the case n0 > 1. Lemma 3.2 implies thatλβ−2
n Yn(t) ≥

−a0ν holds for every t ∈ [0, TM ] and every n ≥ n0.
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The idea to prove the lemma is to show that (Yn0−1)− becomes closer to 0 within a
time Tn0−1. At time Tn0−1 we can apply again Lemma 3.2. The same contraction idea
yields that the negative part of the component n0 − 2 becomes small as well within a
time Tn0−2, and so on. The sequence of times depends only on the size of the initial
state in H and turns out to be summable. Therefore it suffices to prove the following
statement: given n > 1, if we know that for t0 > 0,

sup
k≥1

sup
[t0,T ]

λ
β−2
k−1 |Zk | ≤ c0ν and sup

[t0,T ]
λβ−2

n (Yn+1)− ≤ a0ν, (6.3)

then at time t0 + Tn we have that Yn(t0 + Tn) ≥ −a0νλ
2−β
n−1 . Here we have set

Tn(‖x‖H , c0, a0) = 2
ν
(β − 2) log

(
λ(n − 1)λ−2

n

)+ 2
ν
λ−2

n log
(
1 ∨ ‖x‖H +c6.3ν

(a0−c0)ν

)
.

We first notice that
∑

n Tn < ∞, hence we can choose TM as the sum TM =∑
n Tn(M, c0, a0). We turn to the proof of the above claim. Set

ηn = Yn + c0νλ
2−β
n−1 .

Then Xn = ηn − (c0νλ
2−β
n−1 − Zn) and

η̇n = −νλ2
nηn + c0ν

2λ2λ
4−β
n−1 + λ

β
n−1 X2

n−1 − λβn Xn Xn+1

≥ −(νλ2
n + λβn Xn+1)ηn + c0ν

2λ2λ
4−β
n−1 − λβn (c0νλ

2−β
n−1 − Zn)(Xn+1)−.

By (6.3), (Xn+1)− ≤ (a0 + c0)νλ
2−β
n and (c0νλ

2−β
n−1 − Zn) ≤ 2c0νλ

2−β
n−1 , hence

η̇n ≥ −(νλ2
n + λ

β
n Xn+1)ηn . Since a0 + c0 ≤ 1

2 , it follows that

νλ2
n + λβn Xn+1 ≥ νλ2

n − ν(a0 + c0)λ
2
n = νλ2

n

(
1 − (a0 + c0)

) ≥ 1

2
νλ2

n .

Therefore for t ≥ t0,

ηn(t) ≥ ηn(t0) exp

⎛

⎝−
t∫

t0

(νλ2
n + λβn Xn+1) ds

⎞

⎠ ≥ −(ηn(t0))− e− 1
2 νλ

2
n(t−t0) .

Finally, by Lemma 6.3, (ηn(t0))− ≤ (Yn(t0))− ≤ ‖Y (t0)‖H ≤ ‖x‖H + c6.3ν. It is
elementary now to check that at time t0 + Tn ,

Yn(t0 + Tn) = ηn(t0 + Tn)− c0νλ
2−β
n−1 ≥ −a0νλ

2−β
n .

��
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918 M. Romito

The last ingredient to show that the hitting time of sets (6.1) is finite is the fact that
the solution can be large enough, while being not too negative. At this stage the noise
is crucial, although one randomly perturbed component is enough for our purposes.
The underlying ideas of the following lemma come from control theory. We do not
need sophisticated results [39,45] though, because a quick and strong impulse turns
out to be sufficient.

Lemma 6.5 (Expansion in H ) Under the assumptions of Theorem 6.2, let m be equal
to min{n ≥ 1 : σn �= 0}. Let M1 > 0, M2 > 0, and a0, a′

0, c0 > 0 be such that
c0 < a0 < a′

0 <
1
4 and c0 + a0 < a′

0. For every X (0) ∈ Vα , with ‖X (0)‖H ≤ M1 and

infn≥1 λ
β−2
n−1 Xn(0) ≥ −a0ν, there exists T = T (M1,M2, c0, a0, a′

0,m) > 0 such that

• λ
β−2
n−1 Xn(t) ≥ −(a′

0 + c0)ν for every n ≥ 1 and t ∈ [0, T ],
• ‖X (T )‖H ≥ M2,

on the event

{τα∞>TM } ∩
{

sup
[0,T ]

λ
β−2
n−1 |Zn(t)| ≤ c0ν for n �= m

}
∩
{

sup
[0,T ]

λ
β−2
m−1|Zm(t)− ψ(t)| ≤ c0ν

}
.

Here ψ : [0, T ] → R is a non-decreasing continuous function such that ψ(0) = 0
and ψ(T ) large enough depending on the above given data (its value is given in the
proof).

Proof We work on the event given in the statement of the theorem.

Step 1: estimate in H . Set ψ̄ = sup[0,T ] ‖Zm‖H ≤ ψ(T )+c0ν, then as in Lemma 6.3,

d

dt
‖Y‖2

H +2ν‖Y‖2
1 ≤ 2

∞∑

n=1

λβn
(|ZnYnYn+1|+Z2

n |Yn+1|+|Zn+1|Y 2
n +|Zn Zn+1Yn|)

+ 2λβm−1

(|Zm |Y 2
m−1 + |Zm−1 ZmYm−1|

)

+ 2λβm
(||ZmYmYm+1 + Z2

m |Ym+1| + |Zm Zm+1Ym |)

≤ ν‖Y‖2
1 + k0ν

3 + 16λβm(1 + ν)(1 + ψ̄2)(1 + ‖Y‖2
H ).

If k1 = k0ν
3, k2 = 16λβm(1 + ν) and M3(T, ψ(T ))2 = (M2

1 + k1/k2) exp
(
k2T (1 +

ψ̄2)
)
, it follows from Gronwall’s lemma that sup[0,T ] ‖Y (t)‖2

H ≤ M3(T, ψ(T ))2.
Since on the given event we have that ‖Z(t)‖H ≤ λ2−β(λ2−β − 1)−1 + ψ̄ for every
t ∈ [0, T ], we finally have that

sup
[0,T ]

‖X (t)‖H ≤ c0ν + λ2−β
λ2−β−1

+ ψ(T )+ M3(T, ψ(T )) =: M4(T, ψ(T )).
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Uniqueness and blow-up for a stochastic viscous dyadic model 919

Step 2: large size at time T . Using the previous estimate we have

Xm(t) = e−νλ2
m t Xm(0)+ Zm(t)+

t∫

0

e−νλ2
m (t−s)(λβm−1 X2

m−1 − λβm Xm Xm+1
)

ds

≥ −a0νλ
2−β
m−1 + (

ψ(t)− c0νλ
2−β
m−1

)− λβmt sup
[0,T ]

‖X‖2
H .

For t = T we have Xm(T ) ≥ ψ(T )− ν − λ
β
m M4(T, ψ(T ))T . If we choose ψ(T ) =

M2 + 2ν, then M4(T,M2 + 2ν)T → 0 as T ↓ 0. Therefore we can choose T small
enough so that λβm M4(T, ψ(T ))T ≤ ν, hence Xm(T ) ≥ M2 and ‖X (T )‖H ≥ M2.

Step 3: Bound from below for n = m. The choice of ψ(T ) and the computations in
the above step yield

λ
β−2
m−1 Xm(t) ≥ −(a0 + c0)ν − λ2−βM4(T,M2 + 2ν)λ2β−2

m T,

since ψ is non-negative. By assumption we have that a0 + c0 < a′
0, hence, possibly

fixing a smaller value of T than the one chosen in the previous step, we can ensure
that Xm ≥ −a′

0νλ
2−β
m−1 on [0, T ].

Step 4: Bound from below for n �= m. If n > m, the proof proceeds as in Lemma 3.2,
since Xm appears in the system of equations for (Yn)n>m only through the positive
term λ

β
m X2

m in the equation for the (m + 1)th component.
If n < m, the proof follows by finite induction. For n = m the lower bound is true

by the previous step. Let now n ≥ m and assume that λ2−β
n Yn+1 ≥ −a′

0ν on [0, T ].
We prove that λ2−β

n−1 Yn ≥ −a′
0ν as in Lemma 6.4. Set ηn = Yn + a′

0νλ
2−β
n−1 . Since

λ
β−2
n−1 |Zn| ≤ c0ν and (Xn+1)− ≤ (a′

0 + c0)νλ
2−β
n on [0, T ],

η̇n ≥ −(νλ2
n + λβn Xn+1)ηn + a′

0ν
2λβ−2λ4−β

n − λβn (a
′
0νλ

2−β
n−1 − Zn)(Xn+1)−

≥ −(νλ2
n + λβn Xn+1)ηn + νλβ−2(a′

0 − (a′
0 + c0)

2)λ4−β
n

≥ −(νλ2
n + λβn Xn+1)ηn,

The fact that ηn(0) ≥ 0 implies that ηn(t) ≥ 0. ��
We systematize the random perturbation that, by Lemma 6.4 and Lemma 6.5, moves

the solution from a ball in H to sets (6.1). Let c0 > 0, t0 > 0, Tc > 0, Te > 0 and
ψ : [0, Te] → R be a non-negative non-increasing function, and define

N (t0; c0, Tc, Te, ψ) = Nc(c0, t0, Tc) ∩ Ne(c0, t0 + Tc, Te, ψ),

where

Nc(c0, t1, t2) = {
λ
β−2
n−1 |Zc

n(t)| ≤ c0ν for all n ≥ 1 and t ∈ [t1, t1 + t2]
}
,
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Ne(c0, t1, t2, ψ) =
{

sup
[t1,t1+t2]

λ
β−2
m−1|Ze

m(t)− ψt1(t)| ≤ c0ν, t ∈ [t1, t1 + t2]
}

∩{λβ−2
n−1 |Ze

n(t)| ≤ c0ν for all n �= m and t ∈ [t1, t1 + t2]
}
.

Here ψs : [s, s + Te] → R is defined for s ≥ 0 as ψs(t) = ψ(t − s), for
t ∈ [s, s + Te], m is the smallest integer of the set {n : σn �= 0}, and for every n ≥ 1,

Zc
n(t) = σn

t∫

t0

e−νλ2
n(t−t0) dWn, t ∈ [t0, t0 + Tc],

Ze
n(t) = σn

t∫

t0+Tc

e−νλ2
n(t−t0−Tc) dWn, t ∈ [t0 + Tc, t0 + Tc + Te].

Under a martingale solution Px starting at x , the two events Nc(c0, t0, Tc) and
Ne(c0, t0 + Tc, Te, ψ) are independent, have positive probability (by Lemma 3.1),
and the values of their probability is independent of t0. Moreover, if t0, Tc, Te and
t ′0 are given such that t0 + Tc + Te ≤ t ′0, then the events N (t0; c0, Tc, Te, ψ) and
N (t ′0; c0, Tc, Te, ψ) are independent.

Lemma 6.6 Assume (2.1) and let β > 3 and α ∈ (β−2, α0+1). There exists c6.6 > 0
such that if M > 0, Tc > 0, Te > 0, c0 > 0, and ψ : [0, Te] → R is a non-negative
non-decreasing function, with

c6.6

M2 + e−νλ2T < 1, (T = Tc + Te),

then for every x ∈ Vα and every energy martingale solution Px starting at x,

Px

⎡

⎣{τα∞ = ∞} ∩
⋂

k≥1

({‖X (kT )‖H ≤ M} ∩ N (kT ; c0, Tc, Te, ψ))
c

⎤

⎦ = 0.

Proof We first obtain a quantitative estimate on the return time in balls of H of the
Markov process X R(·; x), solution of problem (2.2), starting at x ∈ Vα . The same
estimate will hold for the strong solution and the lemma will follow.

Step 1. Standard computations with Itô’s formula and Gronwall’s lemma yield

E[‖X R(t; x)‖2
H ] ≤ ‖x‖2

H e−2νλ2t +c6.6, (6.4)

where c6.6 = (2νλ2)−1∑∞
n=1 σ

2
n . The series converges due to (2.1) and α0 > β − 3.

Step 2. We use the previous estimate to show that

P
[‖X R(kT ; x)‖H ≥ M for k = 1, . . . , n

] ≤ (
e−νλ2T + c6.6

M2

)n−1
. (6.5)
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We proceed as in [18, Lemma III.2.4]. Define, for k integer, Ck = {‖X R(kT ; x)‖H ≥
M} and Bk = ⋂k

j=0 C j . Set αk = E[1Bk ‖X R(kT ; x)‖2
H ] and pk = P[Bk]. By the

Markov property, Chebychev’s inequality and (6.4),

P[Ck+1|FkT ] ≤ 1
M2 e−νλ2T ‖X R(kT ; x)‖2

H + c6.6
M2 ,

hence

pk+1 = E
[
1Bk P[Ck+1|FkT ]] ≤ 1

M2 e−νλ2T αk + c6.6
M2 pk .

On the other hand, by integrating (6.4) on Bk , we get

αk+1 ≤ E[1Bk ‖X R((k + 1)T ; x)‖2
H ] ≤ e−νλ2T αk + c6.6 pk .

Let (ᾱk)k∈N and ( p̄k)k∈N be the solutions to the recurrence system
{
ᾱk+1 = e−νλ2T ᾱk + c6.6 p̄k,

p̄k+1 = 1
M2 e−νλ2T ᾱk + c6.6

M2 p̄k,
k ≥ 1,

with p̄1 = p1 and ᾱ1 = α1. Then ᾱk = M2 p̄k for k ≥ 2 and αk ≤ ᾱk , pk ≤ p̄k for all
k ≥ 1. The inequality (6.5) easily follows.

Step 3. We recall that ταx = supR>0 τ
α,R
x , hence by (6.5),

P[‖X (kT ; x)‖H ≥ M, k ≤n, ταx =∞]
≤ lim

R↑∞ P[‖X (kT ; x)‖H ≥ M, k ≤n, τα,Rx >nT ]
= lim

R↑∞ P[‖X R(kT ; x)‖H ≥ M, k ≤n, τα,Rx >nT ]

≤
(

e−νλ2T +c6.6

M2

)n−1
.

Define the hitting time K1 = min{k ≥ 0 : ‖X (kT ; x)||H ≤ M} of the ball BM (0) in
H (K1 = ∞ if the set is empty). Clearly K1 < ∞ on {ταx = ∞}. Likewise, define the
return times K j = min{k > K j−1 : ‖X (kT ; x)||H ≤ M}, j ≥ 2 (K j = ∞ if the set
is empty). By the previous step, K j < ∞ on {ταx = ∞} for each j ≥ 1.

Step 4. Consider for k ≥ 1 the events Nk = N (kT ; c0, Tc, Te, ψ). We know that
P[Nk] is constant in k, so we set p = P[Nk]. Moreover, by the choice of T , it turns
out that N1,N2, . . . ,Nk, . . . are independent. Set N∞ = ∅ and define the time

L0 = min{ j ≥ 1 : 1NK j
= 1},

with L0 = ∞ if the set is empty. Notice that if L0 is finite, then ‖X (KL0 T ; x)‖H ≤ M
and the random perturbation leads the system to a set (6.1) within time KL0 T +Tc+Te.
Hence the lemma is proved if we show that

P[L0 = ∞, ταx = ∞] = 0. (6.6)
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Step 5. Given an integer � ≥ 1, we have that

P[L0 > �, ταx = ∞] = P[N c
K1

∩ · · · ∩ N c
K� ∩ {ταx = ∞}]

=
∞∑

k1=1

· · ·
∞∑

k�=k�−1+1

P[S�(k1, . . . , kl) ∩ {ταx = ∞}],

where S�(k1, . . . , k�) = N c
K1

∩ . . .N c
K�

∩ {K1 = k1, . . . , K� = k�}. Notice that
S�(k1, . . . , k�) ∈ F(k�+1)T , hence by the Markov property,

P[S�(k1, . . . , kl) ∩ {ταx > (k� + 1)T }]
= E

[
1S�−1(k1,...,k�−1)1{ταx >(k�−1+1)T }1{K�=k�}P[N c

k� ∩ {ταX (k�T ;x) > T }|Fk�T ]]
≤ (1 − p)P[S�−1(k1, . . . , k�−1) ∩ {ταx > (k�−1 + 1)T } ∩ {K� = k�}].

By summing up over k�, we have

∞∑

k�=k�−1+1

P[S�(k1, . . . , k�) ∩ {ταx > (k� + 1)T }]

≤ (1 − p)P[S�−1(k1, . . . , k�−1) ∩ {ταx > (k�−1 + 1)T }].

By iteration, P[L0 > �, ταx = ∞] ≤ (1 − p)� and (6.6) follows. ��
Proof of Theorem 6.2 Fix α ∈ (β − 2, 1 + α0), p̄ ∈ (0, β − 3) and ā0 ∈ (0, 1

4 ]. Let
p̄0 > 0, and M̄0 > 0 be the values given by Theorem 6.1. In view of Corollary 5.5,
it suffices to prove that the (sampled) arrival time to B∞(α, p̄, ā0, M̄0) is finite on
{ταx = ∞}, for all x ∈ Vα . By virtue of Lemma 6.6, it is sufficient to prove that there

are M, Tc, Te, c0 > 0 and ψ such that e−νλ2Tc + c6.6
M2 < 1 and

‖X (t0; x)‖H ≤ M
N (t0; c0, Tc, Te, ψ)

}
⇒ X (t0 + Tc + Te; x) ∈ B∞(α, p̄, ā0, M̄0). (6.7)

Indeed, the left-hand side of the above implication happens almost surely on {ταx < ∞}
for some integer k such that t0 = k(Tc + Te). Hence the right-hand side happens with
probability one as well and P[σ x,Tc+Te

B∞ = ∞, τ∞
x = ∞] = 0.

We finally prove (6.7). We first notice that in Lemma 6.4, the larger we choose
M , the larger is the time Tc. Hence we apply Lemma 6.4 with a0 = ā0/8, c0 <

min{ā0/8, (4(1 + λβ−3))−1} and M > 0 large enough so that the time Tc satisfies
e−νλ2Tc + c6.6

M2 < 1. Moreover we know that

• infn≥1
(
λ
β−2
n−1 Xn(t0+Tc)

) ≥ −(a0+c0)ν ≥ − 1
4 ā0ν on {ταx = ∞}∩Nc(c0, t0, Tc),

• ‖X (t0 + Tc)‖H ≤ ‖X (t0)‖H + c6.3ν ≤ M + c6.3ν.

The second statement follows from Lemma 6.3. By Lemma 6.5 with M1 = M +c6.3ν,
M2 = M̄0, a0 = ā0/4, a′

0 = 2a0 and c0 as above, there is Te > 0 such that

• infn≥1
(
λ
β−2
n−1 Xn(t0 + Tc + Te)

) ≥ −ā0ν on {ταx = ∞} ∩ Ne(c0, t0 + Tc, Te, ψ),
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• ‖X (t0 + Tc + Te)‖ p̄ ≥ λ p̄‖X (t0 + Tc + Te)‖H ≥ M̄0,

that is X (t0 + Tc + Te) ∈ B∞(α, p̄, ā0, M̄0). ��
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33. Hawk Katz, N., Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations. Trans.
Am. Math. Soc. 357(2), 695–708 (2005)

34. Kiselev, A., Zlatoš, A.: On discrete models of the Euler equation. Int. Math. Res. Notices 2005(38),
2315–2339 (2005)

35. Krylov, N.V.: The selection of a Markov process from a Markov system of processes, and the con-
struction of quasidiffusion processes. Izv. Akad. Nauk SSSR Ser. Mat. 37, 691–708 (1973)

36. Mueller, C.: The critical parameter for the heat equation with a noise term to blow up in finite time.
Ann. Probab. 28(4), 1735–1746 (2000)

37. Mueller, C., Sowers, R.: Blowup for the heat equation with a noise term. Probab. Theory Relat. Fields
97(3), 287–320 (1993)

38. Odasso, C.: Exponential mixing for the 3D stochastic Navier–Stokes equations. Commun. Math. Phys.
270(1), 109–139 (2007)

39. Romito, M.: Ergodicity of the finite dimensional approximation of the 3D Navier–Stokes equations
forced by a degenerate noise. J. Stat. Phys. 114(1–2), 155–177 (2004)

40. Romito, M.: Analysis of equilibrium states of Markov solutions to the 3D Navier–Stokes equations
driven by additive noise. J. Stat. Phys. 131(3), 415–444 (2008)

41. Romito, M.: An almost sure energy inequality for Markov solutions to the 3D Navier–Stokes equations.
In: Da Prato, G., Tubaro, L. (eds.) Stochastic Partial Differential Equations and Applications. Quad.
Mat. vol. 25, pp. 243–255 (2010)

42. Romito, M.: Critical strong Feller regularity for Markov solutions to the Navier–Stokes equations. J.
Math. Anal. Appl. 384, 115–129 (2010)

43. Romito, M.: The martingale problem for Markov solutions to the Navier–Stokes equations. In: Seminar
on Stochastic Analysis, Random Fields and Applications VI. Progress in Probability, vol. 63, pp. 227–
244. Birkhäuser, Basel (2011)

44. Romito, M., Xu, L.: Ergodicity of the 3D stochastic Navier–Stokes equations driven by mildly degen-
erate noise. Stoch. Proc. Appl. 121(4), 673–700 (2011)

45. Shirikyan, A.: Approximate controllability of three-dimensional Navier–Stokes equations. Commun.
Math. Phys. 266(1), 123–151 (2006)

46. Waleffe, F.: On some dyadic models of the Euler equations. Proc. Am. Math. Soc. 134(10), 2913–2922
(2006)

123


	Uniqueness and blow-up for a stochastic viscous dyadic model
	Abstract
	1 Introduction
	2 Preliminary results and definitions
	2.1 Notations
	2.2 Definitions of solution
	2.2.1 Strong solutions
	2.2.2 Weak martingale solutions


	3 Control of the negative components
	4 Uniqueness and regularity for 2<beta<=5/2
	4.1 The proof of Theorem 4.1
	4.2 The proof of Theorem 4.2

	5 The blow-up time
	6 Blow-up for beta>3
	6.1 Blow-up with positive probability
	6.2 Ineluctable occurrence of the blow-up

	Acknowledgments
	References


