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Abstract A. Vershik discovered that filtrations indexed by the non-positive integers
may have a paradoxical asymptotic behaviour near the time −∞, called non-
standardness. For example, two dyadic filtrations with trivial tail σ -field are not
necessarily isomorphic. Yet, from any essentially separable filtration indexed by the
non-positive integers, one can extract a subsequence which is a standard filtration. In
this paper, we focus on the non-standard filtrations which become standard if (and
only if) infinitely many integers are skipped. We call them filtrations at the threshold
of standardness, since they are as close to standardardness as they can be although
they are non-standard. Two classes of filtrations are studied, first the filtrations of the
split-words processes, second some filtrations inspired by an unpublished example
of B. Tsirelson. They provide examples which disprove some naive intuitions. For
example, it is possible to have a standard filtration extracted from a non-standard one
with no intermediate (for extraction) filtration at the threshold of standardness. It is
also possible to have a filtration which provides a standard filtration on the even times
but a non-standard filtration on the odd times.
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786 G. Ceillier, C. Leuridan

1 Introduction

The notion of standardness has been introduced by Vershik [10] in the context of
decreasing sequences of measurable partitions indexed by the non-negative integers.
Vershik’s definition and characterizations of standardness have been translated from
their original ergodic theoretic formulation into a probabilistic language by Émery
and Schachermayer [2]. In this framework, the objects of focus are the filtrations
indexed by non-positive integers. These are the non-decreasing sequences (Fn)n≤0 of
sub-σ -fields of a probability space (�,A,P).

All the sub-σ -fields of A that we will consider are assumed to be complete and
essentially separable with respect to P. By definition, a sub-σ -field of (�,A,P) is
separable if it can be generated as a complete σ -field by a sequence of events, or
equivalently, by some real random variable. One can check that a sub-σ -field B ⊂ A
is separable if and only if the Hilbert space L2(�,B,P) is separable.

Almost all filtrations that we will consider in this study have the following prop-
erty: for each n,Fn is generated by Fn−1 and by some random variable Un which is
independent of Fn−1 and uniformly distributed on some finite set with rn elements, for
some sequence (rn)n≤0 of positive integers. Such filtrations are called (rn)n≤0-adic.

For such filtrations, as shown by Vershik [10], standardness turns out to be tanta-
mount to a simpler, much more intuitive property: an (rn)-adic filtration F is standard
if and only if F is of product type, that is, F is the natural filtration of some process
V = (Vn)n≤0 where the Vn are independent random variables; in this case, it is easy
to see that the process V can be chosen with the same law as U = (Un)n≤0. So, at
first reading, ‘standard’ can be replaced with ‘of product type’ in this introduction.

Although intuitive, the notion of product-type filtrations is not as simple as one
could believe. For example, the assumption that the tail σ -field F−∞ = ⋂

n≤0 Fn

is trivial, and the property Fn = Fn−1 ∨ σ(Un) for every n ≤ 0 do not ensure that
(Fn)n≤0 is generated by (Un)n≤0. In the standard case, (Fn)n≤0 can be generated by
some other sequence (Vn)n≤0 of independent random variables which has the same law
as (Un)n≤0. In the non-standard case, no sequence of independent random variables
can generate the filtration (Fn)n≤0.

The first examples of such a situation were given by Vershik [10]. By modifying
and generalizing one of these examples, Smorodinsky [8] and Émery and Schacher-
mayer [2] introduced the split-words processes.

The law of a split-words process depends on an alphabet A, endowed with some
probability measure, and a decreasing sequence (�n)n≤0 of positive integers (the
lengths of the words) such that �0 = 1 and the ratios rn = �n−1/�n are integers.
For the sake of simplicity, we consider here only finite alphabets endowed with the
uniform measure.

A split-words process is an inhomogeneous Markov process ((Xn,Un))n≤0 such
that for every n ≤ 0:

• (Xn,Un) is uniform on A�n × [[1, rn]].
• Un is independent of F (X,U )

n−1 .
• if one splits the word Xn−1 (of length �n−1 = rn�n) into rn subwords of lengths
�n , then Xn is the Un-th subword of Xn−1.
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Filtrations at the threshold of standardness 787

Such a process is well-defined since the sequence of uniform laws on the sets A�n ×
[[1, rn]] is an entrance law for the transition probabilities given above. By construction,
the natural filtration F X,U of ((Xn,Un))n≤0 is (rn)n≤0-adic. One can check that the
tail σ -field F X,U

−∞ is trivial. Thus, it is natural to ask whether F X,U is standard or not.
Whether a split-words process with lengths (�n)n≤0 generates a standard filtration

or not is completely characterised: the filtration is non-standard if and only if
∑

n

log rn

�n
< +∞ (�).

Note that this condition does not depend on the alphabet A.
In this statement, the ‘if’ part and a partial converse have been proved by Ver-

shik [10] (in a very similar framework) and by Laurent [5]. The ‘only if’ part has been
proved by Heicklen [4] (in Vershik’s framework) and by Ceillier [1]. The generaliza-
tion to arbitrary alphabets has been performed by Laurent in [7]: the characterisations
and all the results below still hold are when the alphabet is a Polish space endowed
with some probability measure.

Although these examples are rather simple to construct, proving the non-
standardness requires sharp tools like Vershik’s standardness criterion [2,10]. One
can also use the I-cosiness criterion of Émery and Schachermayer [2] which may be
seen as more intuitive by probabilists. Actually, Laurent proved directly that both cri-
teria are equivalent. Moreover, applying these criteria to the examples above leads to
rather technical estimations.

Another question concerns what happens to a filtration when time is accelerated
by extracting a subsequence. Clearly, every subsequence of a standard filtration is
still standard. But Vershik’s lacunary isomorphism theorem [10] states that from any
filtration (Fn)n≤0 such that F0 is essentially separable and F−∞ is trivial, one can
extract a filtration (Fφ(n))n≤0 which is standard. This striking fact is mind-boggling for
anyone who is interested by the boundary between standardness and non-standardness.
A natural question arises:
when (Fn)n≤0 is not standard, how close to identity the increasing map φ (from Z−

to Z−) provided by the lacunary isomorphism theorem can be?
Of course, as standardness is an asymptotic property, the extracting map φ has to

skip an infinity of times integers (equivalently, φ(n)− n → −∞ as n → −∞).
In [10], Vershik provides an example of a non-standard dyadic filtration (Fn)n≤0

such that (F2n)n≤0 is standard. Gorbulsky also provides such an example in [3].
Using the fact that the family of split-words filtrations is stable by extracting subse-

quences, Ceillier exhibits in [1] an example of a non-standard filtration (Fn)n≤0 which
is as close to standardness as it can be: every subsequence (Fφ(n))n≤0 is standard as
soon as φ skips an infinity of integers.

This paper is devoted to the filtrations sharing this property. We call them filtrations
at the threshold of standardness.

1.1 Main results and organization of the paper

Some definitions and classical facts used in the paper are recalled in an Appendix, at
the end of the paper. In the Sects. 2 and 3 which are the core of the paper, two classes
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of filtrations are studied, first the filtrations of the split-words processes, second some
filtrations inspired by an unpublished example of Tsirelson.

The case of split-words filtrations The first part deals with split-words filtrations.
First, we characterise the filtrations at the threshold of standardness among the

split-words filtrations.

Proposition 1 A split-words filtration with lengths (�n)n≤0 is at the threshold of stan-
dardness if and only if

∑

n≤0

log rn

�n
< +∞ (�)

and

inf
n≤0

log rn−1

�n
> 0 (�).

Next, we give a sufficient condition which ensures that a standard split-words filtra-
tion cannot be extracted from any split-words filtration at the threshold of standardness.

Proposition 2 If

∑

n≤0

log rn

�n
= +∞ (¬�)

and

lim
n→−∞

log rn

�n
= 0 (�),

then any split-words filtration with lengths (�n)n≤0 is standard but cannot be extracted
from a split-words filtration at the threshold of standardness.

One could think that the threshold of standardness is a kind of boundary between
standardness and non-standardness. Yet, the situation is not so simple. Indeed, Propo-
sition 2 provides an example (Example 3) of two split-words filtrations, where

• the first one is non-standard,
• the second one is standard,
• the second one is extracted from the first one,
• yet, no intermediate filtration (for extraction) is at the threshold of standardness.

Furthermore, we provide an example of a non-standard split-words filtration from
which no filtration at the threshold of standardness can be extracted (Example 9). The
proof relies on Theorem A below.

Recall that, given any filtration (Fn)n≤0 and an infinite subset B of Z−, the extracted
filtration (Fn)n∈B is standard if and only if the complement Bc = Z− \ B is large
enough in a certain way. Here, the meaning of “large enough” depends on the filtra-
tion F considered. When F is at the threshold of standardness, “large enough” means
exactly “infinite”. But various types of transition from non-standardness to standard-
ness are possible, and the next theorem provides some other possible conditions.
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Filtrations at the threshold of standardness 789

Theorem A Let (αn)n≤0 be any sequence of non-negative real numbers. There exists a
split-words filtration (Fn)n≤0 such that for every infinite subset B of Z−, the extracted
filtration (Fn)n∈B is standard if and only if

∑

n∈Bc

αn = +∞ or
∑

n≤0

1[n /∈B, n+1/∈B] = +∞.

In other words, the extracted filtration (Fn)n∈B is standard if and only if B skips
infinitely many pairs of consecutive integers or if B skips sufficiently many integers
to make the series

∑
n∈Bc αn diverge. The smaller the αn are, the most time must be

accelerated to get a standard filtration. In contrast, if the sequence (αn)n≤0 is bounded
away from 0, the extraction has only to skip infinitely many integers, therefore (Fn)n≤0
is at the threshold of standardness.

Theorem A immediately provides other interesting examples. For example, it may
happen that (F2n)n≤0 is standard while (F2n−1)n≤0 is not, or vice versa. When this
phenomenon occurs, we will say that the filtration (Fn)n≤0 “interlinks” standardness
and non-standardness.

Repeated interlinking is possible. By slowing time suitably in a filtration
at the threshold of standardness (Example 11), one gets a filtration (Fn)n≤0
such that (F2n)n≤0, (F4n)n≤0, (F8n)n≤0, . . . are non-standard, whereas (F2n−1)n≤0,

(F4n−2)n≤0, (F8n−4)n≤0, . . . are standard.

Improving on an example of Tsirelson In a second part, we study another type of
filtrations inspired by a construction of Tsirelson in unpublished notes [9].

Tsirelson has constructed an inhomogeneous discrete Markov process (Zn)n≤0
such that the random variables (Z2n)n≤0 are independent and such that the natural
filtration (F Z

n )n≤0 is non-standard although its tail σ -field is trivial. This example is
illuminating since “simple” reasons explain why the standardness criteria do not hold
and no technical estimates are required. Tsirelson’s construction relies on a particular
structure of the triples (Z2n−2, Z2n−1, Z2n) that we explain. We call “bricks” these
triples.

In this paper, we give a modified and simpler construction which provides stronger
results by requiring more on the bricks: in our construction, for every n ≤ 0, Z2n−2 is a
deterministic function of Z2n−1 and Z2n−1 is a deterministic function of (Z2n−2, Z2n),
hence the filtration (F Z

2n)n≤0 is generated by the sequence (Z2n)n≤0 of independent
random variables. Yet, (F Z

2n−1)n≤0 is not standard. Thus the filtration F Z “interlinks”
standardness and non-standardness. Actually, we have a complete characterisation of
the standard filtrations among the filtrations extracted from F Z .

Theorem B There exists a Markov process (Zn)n≤0 such that

• for each n ≤ 0, Zn takes its values in some finite set Fn,
• the random variables (Z2n)n≤0 are independent,
• for each n ≤ 0, Z2n−1 is a deterministic function of (Z2n−2, Z2n),
• the filtration (Zn)n≤0 is (rn)n≤0-adic for some sequence (rn)n≤0,
• for any infinite subset D of Z−, the filtration (F Z

n )n∈D is standard if and only if
2n − 1 /∈ D for infinitely many n ≤ 0.

In particular, the filtration (F Z
2n−1)n≤0 is at the threshold of standardness.
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In this theorem, the statement that (F Z
2n−1)n≤0 is at the threshold of standardness

cannot be deduced from the standardness of (F Z
2n)n≤0 and the non-standardness of

(F Z
2n−1)n≤0 only. Indeed, the example of repeated interlinking mentioned above (see

Example 11 in Sect. 2) provides a counterexample (modulo a time-translation). The
proof that (F Z

2n−1)n≤0 is at the threshold of standardness actually uses the fact that
(Zn)n≤0 is an inhomogeneous Markov process.

2 The case of split-words filtrations

In the whole section, excepted in Sect. 2.5, F = (Fn)n≤0 denotes a split-words
filtration associated to a finite alphabet A (endowed with the uniform measure) and a
decreasing sequence (�n)n≤0 of positive integers (the lengths) such that �0 = 1 and
the ratios rn = �n−1/�n are integers.

First, we prove the characterisation at the threshold of standardness among the
split-words filtrations stated in Proposition 1.

2.1 Proof of Proposition 1

Preliminary observations: let B be an infinite subset of Z− such that Bc is infinite.
Then (Fn)n∈B is a split-words filtration with lengths (�n)n∈B . The ratios between
successive lengths are the integers (Rn)n∈B given by

Rn = �m(n)/�n where m(n) = sup{k < n : k ∈ B}.

Set B1 = B ∩ (1 + B) and B2 = B\(1 + B). Then B2 is infinite and

• for n ∈ B1, Rn = rn ,
• for n ∈ B2, Rn ≥ rnrn−1 ≥ rn−1.

Furthermore, if Bc does not contain two consecutive integers, then for any n ∈ B2,
one has n − 2 ∈ B since n − 1 /∈ B, thus m(n) = n − 2 and Rn = rnrn−1.

Proof of the “if” part: assume that (�) and (�) hold:

∑

n≤0

log(rn)

�n
< +∞ and inf

n≤0

log rn−1

�n
> 0.

Then F is not standard, and for every infinite subset B of Z− such that Bc is infinite,

∑

n∈B

log(Rn)

�n
≥

∑

n∈B2

log(Rn)

�n
≥

∑

n∈B2

log rn−1

�n
= +∞.

since B2 = B\(1 + B) is infinite. Thus, (Fn)n∈B is standard since the sequence of
lengths (�n)n∈B fulfills condition ¬(�). Therefore F is at the threshold of standard-
ness.
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Filtrations at the threshold of standardness 791

Proof of the “only if” part: condition (�), which is equivalent to the non-standardness
of F , is necessary for F to be at the threshold of standardness. Let us show that if (�)
and ¬(�) hold, then F is not at the threshold of standardness. By (�), log(rn)/�n → 0
as n → −∞, hence

lim inf
n→−∞

log(rnrn−1)

�n
= lim inf

n→−∞
log rn−1

�n
= 0,

since 0 is the greatest lower bound of the positive real numbers log rn−1/�n . Thus one
can find a subsequence such that

∀ n ∈ Z−,
log(rφ(n)rφ(n)−1)

�φ(n)
≤ 2n and φ(n − 1) ≤ φ(n)− 2.

Set B = (φ(Z−)− 1)c. Let us show that the filtration (Fn)n∈B is not standard. By
construction, φ(Z−) is infinite and does not contain two consecutive integers. Hence
B and Bc are both infinite and B2 = B\(B + 1) = φ(Z−). Moreover, according to
the preliminary observations, Rn = rn for every n ∈ B1 and Rn = rnrn−1 for every
n ∈ B2 since Bc does not contain two consecutive integers. Thus

∑

n∈B

log(Rn)

�n
=

∑

n∈B1

log(rn)

�n
+

∑

n∈φ(Z−)

log(rnrn−1)

�n

≤
∑

n≤0

log(rn)

�n
+

∑

m≤0

2m

< +∞.

Therefore (Fn)n∈B is not standard. Thus F is not at the threshold of standardness.

2.2 Proof of Proposition 2 and example

Proof Assume that (¬�) and (�) hold and that F is extracted from some split-
words filtration H with lengths (�′n)n≤0, namely Fn = Hφ(n) for every n ≤ 0, for
some increasing map φ from Z− to Z−. Then for every n ≤ 0, �n = �′φ(n) and
rn = r ′

φ(n−1)+1 · · · r ′
φ(n) where r ′

k = �′k−1/�
′
k . Let us show that H cannot be at the

threshold of standardness.
Condition (¬�) ensures that F is standard. If φ skips only finitely many integers,

then H is standard and the conclusion holds. Otherwise, φ(n − 1) ≤ φ(n) − 2 for
infinitely many n, and for those n,

log
(

r ′
φ(n)−1

)

�′φ(n)
≤

log
(

r ′
φ(n−1)+1 · · · r ′

φ(n)

)

�′φ(n)
= log rn

�n
.
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Thus, (�) implies that

inf
k≤0

log(r ′
k−1)

�′k
= 0.

Since the sequence (r ′
n)n≤0 does not fulfill condition (�),H is not at the threshold of

standardness. �
Example 3 Define the sequence of lengths (�n)n≤0 by �0 = 1, �−1 = 2 and, for every
n ≤ −1,

�n−1 = �n2��n/|n|�,

where �x� denotes the integer part of x .
A recursion shows that for every n ≤ 0, �n is a power of 2, and that �n ≥ 2|n| ≥ |n|,

hence rn = �n−1/�n ≥ 2.
Moreover, for every n ≤ −1,

log2(rn)

�n
= ��n/|n|�

�n
∈

[
1

2|n| ,
1

|n|
]

.

Therefore, (¬�) and (�) hold, hence F is standard but cannot be extracted from any
split-words filtration at the threshold of standardness.

Yet, since each �n is a power of 2,F is extracted from the dyadic split-words
filtration H, which is not standard. Since every filtration extracted from H is a split-
words filtration, one can deduce that no intermediate filtration (for extraction) between
H and F is at the threshold of standardness.

Remark There are trivial examples of standard split-words filtrations which cannot be
extracted from any split-words filtration at the threshold of standardness. For example,
consider any split-words filtrations such that ¬(�) holds and such that rn is a prime
number for every n ≤ 0. The last condition prevents the filtration from being extracted
from any other split-words filtration. Yet, it still could be extracted from some filtration
at the threshold of standardness which is not a split-words filtration.

2.3 Proof of Theorem A

Replacing αn by (αn ∨ |n + 2|−2) ∧ 1 for n ≤ −3 does not change the nature of the
series

∑
k∈Bc αk , hence we may assume that for n ≤ −3,

|n + 2|−2 ≤ αn ≤ 1.

Set �0 = 1, �−1 = 2, �−2 = 8, �−3 = 64, �−4 = 211 = 2,048 and �n−2 = 2�αn−1�n�
for every n ≤ −3, where �x� denotes the integer part of x . We begin with two technical
lemmas.

Lemma 4 For every n ≤ −1, �n ≥ |n|3 and �n ≥ 2|n + 1|2�n+1.
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Proof of Lemma 4 The proof of Lemma 4 is done by induction. One checks that the
above inequalities hold for −4 ≤ n ≤ −1.

Fix some n ≤ −3. Assume that the inequalities hold for n + 1, n and n − 1. Then

log2 �n−2 − log2 �n−1 = �αn−1�n� − �αn�n+1�
≥ αn−1�n − 1 − αn�n+1

≥ |n + 1|−2�n − �n+1 − 1

≥ �n+1 − 1 (since �n ≥ 2|n + 1|2�n+1)

≥ |n + 1|3 − 1 (since �n+1 ≥ |n + 1|3),

hence

�n−2/�n−1 ≥ 2|n+1|3−1 ≥ 2|n − 1|2 (since n ≤ −3).

Since �n−1 ≥ |n − 1|3, one has

�n−2 ≥ 2|n − 1|2�n−1 ≥ 2|n − 1|5 ≥ |n − 2|3 (since n ≤ −3).

Thus the inequalities hold for n − 2. The proof is complete. �
Lemma 5 For every n ≤ −4,

log2 �n−1

�n
≤ 1

2|n + 1|2 ,
αn−1

2
≤ log2 �n−2

�n
≤ αn−1,

log2 �n−3

�n
≥ 1.

Proof of Lemma 5 For n ≤ −3, the assumptions made on the sequence (αk)k≤0, and
Lemma 4 entail �nαn−1 ≥ |n|3/|n + 1|2 ≥ 1, thus αn−1�n/2 ≤ �αn−1�n� ≤ αn−1�n .
Thus, the recursion formula �n−2 = 2�αn−1�n� yields

αn−1

2
≤ log2 �n−2

�n
≤ αn−1.

When n ≤ −4, the same inequalities hold for n + 1 and n − 1, hence by Lemma 4

log2 �n−1

�n
≤ αn

�n+1

�n
≤ �n+1

�n
≤ 1

2|n + 1|2 ,

and

log2 �n−3

�n
≥ αn−2

2

�n−1

�n
≥ 1

2|n|2 2|n|2 = 1.

The proof is complete. �
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We now prove Theorem A.
Let us check that the split-words filtration associated to the to the lengths (�n)n≤0

fulfills the properties of the previous proposition.
Let B be an infinite subset of Z−. Since replacing B by B \ {−2,−1, 0} does not

change the nature of the filtration (Fn)n∈B , one may assume that B ⊂] − ∞,−3].
Set m(n) = sup{k < n : k ∈ B} for every n ≤ 0. Then (�m(n)/�n)n∈B is the

sequence of ratios associated to the lengths (�n)n∈B . Since (�) characterises stan-
dardness of split-words filtrations,

(Fn)n∈B is standard ⇐⇒
∑

n∈B

log2(�m(n)/�n)

�n
= +∞ ⇐⇒

∑

n∈B

log2 �m(n)

�n
= +∞,

where the last equivalence follows from the convergence of the series
∑

n log2 �n/�n

since �n ≥ 2|n| for every n ≤ 0.
Let us split B into three subsets:

• B1 = {n ∈ B : m(n) = n − 1},
• B2 = {n ∈ B : m(n) = n − 2},
• B3 = {n ∈ B : m(n) ≤ n − 3}.

Then

∑

n∈B

log2 �m(n)

�n
=

∑

n∈B1

log2 �n−1

�n
+

∑

n∈B2

log2 �n−2

�n
+

∑

n∈B3

log2 �m(n)

�n
.

The inequality �m(n) ≥ �n−3 for n ∈ B3 and Lemma 5 show that in the right-hand
side,

• the first sum (over B1) is always finite,
• the middle sum (over B2) has the same nature as

∑
n∈B2

αn−1,
• the last sum (over B3) is finite if and only if B3 is finite.

When B3 is finite, any pair of consecutive integers excepted a finite number of
them contain at least one element of B. Hence, (B2 − 1) only differs from Bc by a
finite set of integers. Thus the sum

∑
n∈B2

αn−1 = ∑
n∈B2−1 αn has the same nature

as
∑

n∈Bc αn . Theorem A follows.

2.4 Some applications of Theorem A

Choosing particular sequences (αn)n≤0 in Theorem A provides interesting examples
of non-standard filtrations. In what follows, F denotes the filtration associated to the
sequence (αn)n≤0 given by Theorem A.

Example 6 If αn is bounded away from 0, then F is at the threshold of standardness.

Example 7 If αn = 0 for every even n and αn = 1 for every odd n, then (F2n)n≤0 is
standard whereas (F2n−1)n≤0 is not.
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Example 8 If the series
∑
αn converges, then for every infinite subset B of Z−, the

extracted filtration (Fn)n∈B is standard if and only if (B ∪ (B − 1))c is infinite. In
particular, the filtrations (F2n)n≤0 and (F2n−1)n≤0 are at the threshold of standardness.

Example 9 If αn ∼ 1/|n| as n goes to −∞, then F is not standard and no filtration at
the threshold of standardness can be extracted from F .

Proof of Example 9 The non-standardness of F is immediate by Theorem A.
Call μ the non-finite positive measure on Z− defined by

μ(B) =
∑

n∈B

αn for B ⊂ Z−.

Let (Fn)n∈B be any non-standard filtration extracted from F . We show that (Fn)n∈B

cannot be at the threshold of standardness by constructing a subset B ′ of B such that
(Fn)n∈B′ is not standard although B \ B ′ is infinite.

By the Theorem A, we know that μ(Bc) < +∞ and

n /∈ B and n + 1 /∈ B only for finitely many n ∈ Z−.

Sinceμ(Bc) is finite, the elements of Bc get rarer and rarer as n → −∞. In particular,
the set A = (B − 1) ∩ B ∩ (B + 1) is infinite.

We get B ′ from B by removing a “small” infinite subset of A. Namely, we set
B ′ = B\A′ where A′ is an infinite subset of A which does not contain two consecutive
integers and chosen such that μ(A′) < +∞. By construction, B\B ′ = A′ is infinite
and μ((B ′)c) < +∞ since (B ′)c = Bc ∪ A′. Thus B ′ is an infinite subset of B.

Using the definition of A and the fact that A′ does not contain two consecutive
integers and by construction of A, one checks that (B ′ ∪ (B ′ − 1)) = (B ∪ (B − 1)),
therefore (B ′ ∪ (B ′ − 1))c is infinite.

Thus (Fn)n∈B′ is not standard, which shows that (Fn)n∈B is not at the threshold of
standardness. �

2.5 Interlinking standardness and non standardness

In this subsection, we show that any filtration at the threshold of standardness (not
necessarily a split-words filtration) provides a filtration which interlinks repeatedly
standardness and non-standardness by a suitable slowing-down of time.

Given any filtration (Fn)n≤0, a simple way to get a slowed down filtration is to
repeat each Fn some finite number of times, which may depend of n. We now show
that this procedure does not change the nature of the filtration.

Lemma 10 Let (Fn)n≤0 be any filtration and φ an increasing map from Z− to Z−
such that φ(0) = 0. For every n ≤ 0, set Gn = Fk if φ(k − 1)+ 1 ≤ n ≤ φ(k). Then:

• (Gn)n≤0 is a filtration,
• (Fn)n≤0 is extracted from (Gn)n≤0,
• (Gn)n≤0 is standard if and only if (Fn)n≤0 is standard.
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Proof of Lemma 10 By construction, Gφ(k) = Fk for every k ≤ 0 and the sequence
(Gn)n≤0 is constant on every interval [[φ(k −1)+1, φ(k)]]. The first two points follow.

The “only if” part of the third point is immediate since F is extracted from G.
Assume that F is standard. Then, up to a enlargement of the probability space,

one may assume that F is immersed in some product-type filtration H. Define a
slowed-down filtration by Kn = Hk if φ(k − 1) + 1 ≤ n ≤ φ(k). Then K is still a
product-type filtration To prove that G is immersed in K, we have to check that for
every n ≤ −1,Gn+1 and Kn are independent conditionally on Gn . This holds in any
case since:

• when φ(k − 1)+ 1 ≤ n ≤ φ(k)− 1,Gn+1 = Fk,Kn = Hk and Gn = Fk ;
• when n = φ(k),Gn+1 = Fk+1,Kn = Hk and Gn = Fk .

Hence G is standard. �
Example 11 Assume that (Fn)n≤0 is at the threshold of standardness. Set φ(0) =
0, φ(−1) = −1 and, for every k ≤ −1, φ(2k) = −2|k| and φ(2k − 1) = −2|k| − 1.
Let G be the slowed-down filtration obtained from F as above. Then for any d ≥ 1, the
filtration (G2d n)n≤0 is not standard, whereas the filtration (G2d n−2d−1)n≤0 is standard.

Proof of Example 11 Fix d ≥ 1. The filtrations (G2d n)n≤−2 and (G2d n−2d−1)n≤−1
can be obtained from (Fn)n≤−2d−2 and (F2n−1)n≤−d by time-translations and by
the slowing-down procedure just introduced. And truncations, time-translations and
slowing-down procedure preserve the nature of the filtrations. �

3 Improving on an example of Tsirelson

3.1 A construction of Tsirelson

In some non-published notes, Tsirelson gives a method to construct an inhomoge-
neous Markov process (Zn)n≤0 whose natural filtration is easily proved to be non-
standard, although the tail σ -field F Z−∞ is trivial and the random variables (Z2n)n≤0
are independent. This construction relies on a particular structure of each triple
(Z2n−2, Z2n−1, Z2n). We will call bricks these triples, since the sequence (Zn)n≤0
is obtained by gluing the triples (Z2n−2, Z2n−1, Z2n) in a Markovian way. We now
give a formal definition which is directly inspired by Tsirelson’s construction.

Definition 12 Fix α ∈]0, 1[. Let F0, F1, F2 be finite sets. We will say that a triple
(Z0, Z1, Z2) of uniform random variables with values in F0, F1, F2 is an α-brick if

• the triple (Z0, Z1, Z2) is Markov.
• Z0 and Z2 are independent.
• for any non-anticipative coupling of two copies (Z ′

0, Z ′
1, Z ′

2) and (Z ′′
0 , Z ′′

1 , Z ′′
2 ) of

(Z0, Z1, Z2), defined on some probability space (�̄, Ā, P̄),

P̄
[
Z ′

2 �= Z ′′
2

∣
∣σ

(
Z ′

0, Z ′′
0

)] ≥ 1 − α on the event
[
Z ′

0 �= Z ′′
0

]
.

Here, the expression “non-anticipative” means that the filtrations generated by the
three-time processes Z ′ and Z ′′ are immersed in the natural filtration of (Z ′, Z ′′).
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Filtrations at the threshold of standardness 797

In particular, Z ′
1 and Z ′′

0 are independent conditionally on Z ′
0 (the couple (Z ′

0, Z ′′
0 )

gives no more information on Z ′
1 than Z ′

0 does). Similarly, Z ′
2 and (Z ′′

0 , Z ′′
1 ) are

independent conditionally on (Z ′
0, Z ′

1). And the same holds when the roles of Z ′ and
Z ′′ are exchanged.

The last condition helps to negate the I -cosiness criterion recalled in Sect. 3.3
of the present paper. Actually, Tsirelson used another formulation involving iterated
Kantorovitch–Rubinstein metrics to negate Vershik’s criterion.

The next example is a slight simplification of the example provided by Tsirelson,
which is enlightening.

Example 13 Let p be a prime number, and Zp be the finite field with p elements.
Note F0 the set of all two-dimensional linear subspaces of (Zp)

5, F1 the set of all
two-dimensional affine subspaces of (Zp)

5 and F2 = (Zp)
5. Construct a Markovian

triple (Z0, Z1, Z2) as follows:

• choose uniformly Z0 in F0;
• given Z0, choose uniformly Z1 among the affine planes with direction Z0;
• given Z0 and Z1, choose uniformly Z2 on the affine plane Z1.

Then (Z0, Z1, Z2) is an α-brick with α = 1/p.

Indeed, one checks that Z1 is uniform on F1, Z2 is uniform on F2 and that Z0 and
Z2 are independent. Now, let (Z ′

0, Z ′
1, Z ′

2) and (Z ′′
0 , Z ′′

1 , Z ′′
2 ) be any non-anticipative

coupling of two copies of (Z0, Z1, Z2), defined on some probability space (�̄, Ā, P̄).
Conditionally on (Z ′

0, Z ′′
0 , Z ′

1, Z ′′
1 ), Z ′

2 is uniform on the affine plane Z ′
1 and Z ′′

2 is
uniform on the affine plane Z ′′

1 . Since two affine planes with different directions are
distinct and since two distinct planes have at most p common points, one has

P̄
[
Z ′

2 �= Z ′′
2

∣
∣σ

(
Z ′

0, Z ′′
0 , Z ′

1, Z ′′
1

)] ≥ p2 − p

p2 1[Z ′
1 �=Z ′′

1 ] ≥ p − 1

p
1[Z ′

0 �=Z ′′
0 ].

Thus

P̄
[
Z ′

2 �= Z ′′
2

∣
∣σ

(
Z ′

0, Z ′′
0

)] ≥ (1 − 1/p) 1[Z ′
0 �=Z ′′

0 ].

Remark In Tsirelson’s original example, Z1 was an affine line uniformly chosen among
the lines whose direction are included in the linear plane Z0, and (Z0, Z1, Z2) was an
α-brick with α = 2/(p + 1).

Note that the size of F2, namely |F2| = p5, can be as large as one wants, and that

|F0| =
(

p5 − 1
) (

p5 − p
)

(
p2 − 1

) (
p2 − p

) =
(

p4 + p3 + p2 + p + 1
) (

p2 + 1
)

is much larger. But |F0| has at least two prime divisors since the greatest common
divisor of p4 + p3 + p2 + p + 1 and p2 + 1 is 1, hence |F0| cannot be a power
of a prime number. Thus, such bricks cannot be glued together. Fortunately, a slight
modification solves this problem, and we shall see examples of this later on.

Up to the detail just mentioned, the next theorem achieves Tsirelson’s construction.
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Theorem C Let (Zn)n≤0 be a sequence of uniform random variables with values
in finite sets (Fn)n≤0 and (αn)n≤0 be an ]0, 1[-valued sequence such that the series∑

n αn converges. Assume that

• the sets F2n are not singles,
• (Zn)n≤0 is a non-homogeneous Markov process,
• for each n ≤ 0, the subprocess (Z2n−2, Z2n−1, Z2n) is an αn-brick.

Then the natural filtration F X is not standard. Moreover, if the tail σ -field F Z−∞ is
trivial, then |F2n| → +∞ as n → −∞.

In one excepts the necessary condition |F2n| → +∞ as n → −∞ for F Z−∞ to
be trivial, which is due to the authors of the present paper, the proof is adapted from
Tsirelson’s notes.

Proof of Theorem C First, we show that Z0 does not fulfills the I-cosiness criterion
(see Sect. 3.3). Indeed, set

c =
∏

k≤0

(1 − αk) > 0

and consider any non-anticipative coupling (Z ′
n)n≤0 and (Z ′′

n )n≤0 of the process
(Zn)n≤0, defined on some probability space (�̄, Ā, P̄). By assumption, for every
n ≤ 0,

P̄
[
Z ′

2n �= Z ′′
2n

∣
∣σ

(
Z ′

2n−2, Z ′′
2n−2

)] ≥ (1 − αn) 1[
Z ′

2n−2 �=Z ′′
2n−2

].

By induction, for every n ≤ 0,

P̄
[
Z ′

0 �= Z ′′
0

∣
∣σ

(
Z ′

2n, Z ′′
2n

)] ≥
(

0∏

k=n+1

(1 − αk)

)

1[
Z ′

2n �=Z ′′
2n

] ≥ c1[
Z ′

2n �=Z ′′
2n

]

If, for some N ≤ 0, the σ -fields F Z ′
2N and F Z ′′

2N are independent, then

P̄
[
Z ′

0 �= Z ′′
0

] ≥ cP̄
[
Z ′

2N �= Z ′′
2N

] = c
(

1 − |F2N |−1
)

≥ c/2.

Hence P̄
[
Z ′

0 �= Z ′′
0

]
is bounded away from 0, which negates the I-cosiness criterion.

The non-standardness of F X follows.
The second part of the theorem directly follows from the next proposition, applied

to the sequence (Yn)n≤0 = (Z2n)n≤0. �
Proposition 14 Let (γn)n≤0 be a sequence of real numbers in [0, 1] such that

∏

n≤0

γn > 0.

123



Filtrations at the threshold of standardness 799

Let (Yn)n≤0 be a family of random variables which are uniformly distributed on finite
sets (En)n≤0. Let (Y ′

n)n≤0 and (Y ′′
n )n≤0 be independent copies of the process (Yn)n≤0,

defined on some probability space (�̄, Ā, P̄). Assume that FY−∞ is trivial and that for
every n ≤ 0,

P̄
[
Y ′

n �= Y ′′
n |σ (

Y ′
n−1,Y ′′

n−1

)] ≥ γn1[
Y ′

n−1 �=Y ′′
n−1

].

Then |En| → 1 or |En| → +∞ as n → −∞.

Proof of Proposition 14 By the independence of (Y ′
n)n≤0 and (Y ′′

n )n≤0, the following
exchange properties apply (see [11])

⋂

m≤0

⋂

n≤0

(
FY ′

m ∨ FY ′′
n

)
=

⋂

m≤0

⎛

⎝FY ′
m ∨

⎛

⎝
⋂

n≤0

FY ′′
n

⎞

⎠

⎞

⎠

=
⋂

m≤0

(
FY ′

m ∨ FY ′′
−∞

)

=
⎛

⎝
⋂

m≤0

FY ′
m

⎞

⎠ ∨ FY ′′
−∞

= FY ′
−∞ ∨ FY ′′

−∞.

But, using that FY ′
m ∨ FY ′′

n is non-decreasing with respect to m and n, one gets

(FY ′ ∨ FY ′′
)−∞ =

⋂

n≤0

(
FY ′

n ∨ FY ′′
n

)
=

⋂

m≤0

⋂

n≤0

(
FY ′

m ∨ FY ′′
n

)
.

Hence the tail σ -field (FY ′ ∨ FY ′′
)−∞ is trivial. Thus the asymptotic event

lim inf
n→−∞

[
Y ′

n �= Y ′′
n

]

has probability 0 or 1.
But a recursion shows that for every n ≤ 0

P̄

⎛

⎝
⋂

n≤k≤0

[
Y ′

k �= Y ′′
k

] ∣
∣
∣σ

(
Y ′

n,Y ′′
n

)
⎞

⎠ ≥
⎛

⎝
∏

n+1≤k≤0

γk

⎞

⎠ 1[Y ′
n �=Y ′′

n ].

By taking expectations,

P̄

⎛

⎝
⋂

n≤k≤0

[
Y ′

k �= Y ′′
k

]
⎞

⎠ ≥
(

1 − |En|−1
) ∏

n+1≤k≤0

γk .
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If |En| ≥ 2 for infinitely many n ≤ 0, then

P̄

⎛

⎝
⋂

k≤0

[
Y ′

k �= Y ′′
k

]
⎞

⎠ ≥ 1

2

∏

k≤0

γk > 0.

Thus |En| ≥ 2 for every n ≤ 0 and

P̄

(

lim inf
n→−∞

[
Y ′

n �= Y ′′
n

]
)

= 1.

But by Fatou’s lemma,

P̄

(

lim inf
n→−∞

[
Y ′

n �= Y ′′
n

]
)

≤ lim inf
n→−∞ P̄

[
Y ′

n �= Y ′′
n

]
.

Hence 1 − |En|−1 = P̄
[
Y ′

n �= Y ′′
n

] → 1 thus |En| → +∞ as n → −∞. �

3.2 Strong bricks

The slight variation we made on Tsirelson’s example of a brick when replacing the
affine lines with the affine planes provides two additional properties: Z0 becomes a
deterministic function of Z1 and Z1 becomes a deterministic function of (Z0, Z2). As
we shall see, these properties allow to simplify the construction and the proofs, and
enable us to get stronger results. The next definition exploits this idea and requires
large family of partitions, each with a fixed number of blocks, each block having a
fixed size, such that any two blocks chosen in any two different partitions have a small
intersection.

Definition 15 (Strong bricks) Fix α ∈]0, 1[ and two positive integers r1, r2. Let
F0, F1, F2 be finite sets such that |F1| = |F0|r1 and |F2| = r1r2. Let h be a bijection
from F0 × [[1, r1]] to F1. Let (
z)z∈F0 be a family of partitions of F2 indexed by F0
such that

• each partition 
z has r1 blocks Sz,1, . . . , Sz,r1 ;
• each block has r2 elements.
• for any distinct (z′, i ′) and (z′′, i ′′) in F0 × [[1, r1]], |Sz′,i ′ ∩ Sz′′,i ′′ | ≤ αr2.

We will say that a triple (Z0, Z1, Z2) of random variables with values in F0, F1, F2
is a strong (r1, r2)-adic α-brick, associated to the family (
z)z∈F0 , if

• Z0 and Z2 are independent random variables, uniformly distributed in F0 and F2.
• Z1 = h(Z0, J ), where J is the index of the only block of
Z0 which contains Z2

(that is to say Z2 ∈ SZ0,J ).

The next lemma shows that strong bricks are bricks with some additional properties.

Lemma 16 Let (Z0, Z1, Z2) be strong (r1, r2)-adic α-brick. Then
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Filtrations at the threshold of standardness 801

• Z0 is a deterministic function of Z1;
• Z1 is a deterministic function of (Z0, Z2);
• the conditional law of Z1 given Z0 is uniform on some finite random set of size r1;
• the conditional law of Z2 given Z1 is uniform on some finite random set of size r2;
• for all different z′

1 and z′′
1 of Z1,

∑

z∈F2

P
[
Z2 = z

∣
∣Z1 = z′

1

] ∧ P
[
Z2 = z

∣
∣Z1 = z′′

1

] ≤ α; (1)

• if (Z ′
0, Z ′

1, Z ′
2) and (Z ′′

0 , Z ′′
1 , Z ′′

2 ) is any non-anticipative coupling of (Z0, Z1, Z2),
defined on some probability space (�̄, Ā, P̄), then

P
[
Z ′

2 �= Z ′′
2 |G] ≥ (1 − α)1[Z ′

1 �=Z ′′
1 ] ≥ (1 − α)1[Z ′

0 �=Z ′′
0 ];

• (Z0, Z1, Z2) is an α-brick.

Proof of Lemma 16 Keep the notations of Definition 15.
The first two statements directly follow from the definition, and the triple

(Z0, Z1, Z2) is Markov since Z0 is a function of Z1.
For every z0 ∈ F0, j ∈ [[1, r1]] and z2 ∈ F2,

P [Z0 = z0; J = j; Z2 = z2] = 1[
z2∈Sz0, j

] P [Z0 = z0; Z2 = z2]

= 1[
z2∈Sz0, j

] × 1

|F0| × 1

r1r2
.

Summing over z2 yields

P [Z0 = z0; J = j] = 1

|F0| × 1

r1
,

and, by division,

P
[
Z2 = z2

∣
∣Z0 = z0; J = j

] = 1[
z2∈Sz0, j

] × 1

r2
.

Thus (Z0, J ) is uniform on F0×[[1, r1]], and given (Z0, J ), Z2 is uniform on the block
SZ0,J . Using the equality Z1 = h(Z0, J ), one gets the third and the fourth statements
and the fact that Z1 is uniform on F1.

Let z′
1 and z′′

1 be distinct elements in F1. Since the conditional laws L(Z2|Z1 = z′
1)

and L(Z2|Z1 = z′′
1) are uniform on the blocks Sh−1(z′

1)
and Sh−1(z′′

1)
, one has

∑

z∈F2

P
[
Z2 = z

∣
∣Z1 = z′

1

] ∧ P
[
Z2 = z

∣
∣Z1 = z′′

1

] =
∑

z∈Sh−1(z′1)
∩Sh−1(z′′1 )

1

r2
≤ α,

which is the the fifth statement.
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Let (Z ′
0, Z ′

1, Z ′
2) and (Z ′′

0 , Z ′′
1 , Z ′′

2 ) be any non-anticipative coupling of (Z0, Z1,

Z2), defined on some probability space (�̄, Ā, P̄). Set G = σ(Z ′
0, Z ′

1, Z ′′
0 , Z ′′

1 ). By
the non-anticipative and the Markov properties,

L (
Z ′

2

∣
∣G) = L (

Z ′
2

∣
∣σ

(
Z ′

0, Z ′
1

)) = L (
Z ′

2

∣
∣σ

(
Z ′

1

))

and the same holds with Z ′′.
Thus for all different z′, z′′ in F1, one has, on the event [Z ′

1 = z′; Z ′′
1 = z′′],

P
[
Z ′

2 = Z ′′
2

∣
∣G] =

∑

z∈F2

P
[
Z ′

2 = z; Z ′′
2 = z

∣
∣G]

≤
∑

z∈F2

P
[
Z ′

2 = z
∣
∣G] ∧ P

[
Z ′′

2 = z
∣
∣G]

=
∑

z∈F2

P
[
Z ′

2 = z
∣
∣Z ′

1 = z′] ∧ P
[
Z ′′

2 = z
∣
∣Z ′′

1 = z′′]

=
∑

z∈F2

P
[
Z2 = z

∣
∣Z1 = z′] ∧ P

[
Z2 = z

∣
∣Z1 = z′′]

≤ α.

Hence

P
[
Z ′

2 �= Z ′′
2

∣
∣G] ≥ (1 − α)1[Z ′

1 �=Z ′′
1 ] ≥ (1 − α)1[Z ′

0 �=Z ′′
0 ],

since [Z ′
0 �= Z ′′

0 ] ⊂ [Z ′
1 �= Z ′′

1 ], which shows the sixth statement.
Conditioning by σ(Z ′

0, Z ′′
0 ) completes the proof of the last statement. �

Examples of strong bricks
One checks that Example 13 provides a (p3, p2)-adic 1/p-brick.

More generally, any finite family of partitions (
z)z∈F0 on a finite set F2 satisfying
the conditions of Definition 15 provides a strong brick: simply take two independent
random variables Z0 and Z2, uniformly distributed in F0 and F2, set Z1 = (Z0, J )
and F1 = F0 × [[1, r1]], where J is the index of the only block of
Z0 which contains
Z2.

Algebra helps us to construct large such families of partitions. Here are two exam-
ples using a finite field K with q elements, where q can be any power of a prime
number.

Example 17 We set r1 = r2 = q4, F0 = K 16 identified with the set M4(K ) of all
4 × 4 matrices with entries in K and F2 = K 8 identified with K 4 × K 4.

To each matrix A ∈ M4(K ), one can associate the partition of K 8 given by all four-
dimensional affine subspaces of K 8 with equations y = Ax + b where b ranges over
K 4. Each of these subspaces has size q4. But two subspaces of equations y = A′x +b′
and y = A′′x + b′′ intersect in at most q3 points (a three dimensional affine subspace)
when A′ �= A′′. Hence these partitions provide a (q4, q4)-adic 1/q-brick.
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Filtrations at the threshold of standardness 803

Example 18 We set r1 = r2 = q, F0 = K 4 and F2 = K 2.
To each quadruple (a, b, c, d) ∈ K 4, one can associate the partition of K 2 given

by the q graphs of equations y = ax4 + bx3 + cx3 + dx + e where e ranges over K .
Each of these graphs has size q. But two such graphs with different (a, b, c, d) ∈ K 4

intersect in at most 4 points. Hence, if p ≥ 5 these partitions provide a (q, q)-adic
4/q-brick.

The bricks provided by these two examples can be glued together since the sets
K 16 and K 4 can be identified by bijective maps with L8 and L2, where L denotes the
field with q2 elements. For each n ≤ 0, call Kn the field with qn = q2|n|

elements and
set

∀ n ≤ 0, F2n = K 8
n , r2n−1 = r2n = q4

n and αn = 1/qn,

or

∀ n ≤ 0, F2n = K 2
n , r2n−1 = r2n = qn and αn = 4/qn .

Start with a sequence (Z2n)n≤0 of independent random variables uniformly distributed
in the (F2n)n≤0. For each n ≤ 0, one can construct a random variable Z2n−1 with values
in F2n−1 = F2n−2 × [[1, r2n−1]], using Z2n−2 and Z2n and the family of partitions as
above, to get an (r2n−1, r2n)-adic αn-brick (Z2n−2, Z2n−1, Z2n). The process (Zn)n≤0
thus defined provides an example which proves the existence stated in Theorem B.

3.3 Proof of Theorem B

Indeed, Theorem B directly follows from the construction above and the theorem
below.

Theorem D Let (αn)n≤0 be a sequence of reals in ]0, 1[ such that the series
∑

n αn

converges. Let (Zn)n≤0 be any sequence of random variables taking values in some
finite sets (Fn)n≤0 of size ≥ 2. Assume that

• the random variables (Z2n)n≤0 are independent;
• for each n ≤ 0, (Z2n−2, Z2n−1, Z2n) is a strong (r2n−1, r2n)-adic αn-brick.

Then

• (Zn)n≤0 is a Markov process which generates a (rn)-adic filtration;
• for every infinite subset D of Z−, (F Z

n )n∈D is standard if and only if 2n − 1 /∈ D
for infinitely many n ≤ 0.

In particular, the filtration (F Z
2n−1)n≤0 is at the threshold of standardness.

Proof of Theorem D We now prove the statements.

Proof that (Zn)n≤0 is a Markov process and generates a (rn) -adic filtration

First, note that the filtration (F Z
2n)n≤0 is generated by the independent random

variables (Z2n)n≤0 since for every n ≤ 0, Z2n−1 is a deterministic function of
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(Z2n−2, Z2n). Hence, for every n ≤ 0,

F Z
2n−2 = σ (Z2n−2) ∨ F Z

2n−4,

Moreover, since Z2n−2 is a deterministic function of Z2n−1,

F Z
2n−1 = σ(Z2n−1) ∨ F Z

2n−2 = σ(Z2n−1) ∨ F Z
2n−4.

By independence of (Z2n−2, Z2n−1, Z2n) and F Z
2n−4, we get

L
(

Z2n−1
∣
∣F Z

2n−2

)
= L

(
Z2n−1

∣
∣σ (Z2n−2) ∨ F Z

2n−4

)
= L (

Z2n−1
∣
∣σ (Z2n−2)

)
,

L
(

Z2n
∣
∣F Z

2n−1

)
= L

(
Z2n

∣
∣σ (Z2n−1) ∨ F Z

2n−4

)
= L (

Z2n
∣
∣σ (Z2n−1)

)
.

The Markov property follows. But for every n ≤ 0, (Z2n−2, Z2n−1, Z2n) is an
(r2n−1, r2n)-adic αn-brick. The (rn)-adic character of F Z follows.

Proof that (F Z
n )n∈D is not standard when D contains all but finitely many odd

negative integers

First, we show that (F Z
2n−1)n≤0 is not standard. To do this, we check that the

random variable Z−1 does not satisfy the I-cosiness criterion. Note that (F Z
2n−1)n≤0

is the natural filtration of (Z2n−1)n≤0 only since for every n ≤ 0, Z2n−2 is some
deterministic function fn of Z2n−1.

Let (Z ′
2n−1)n≤0 and (Z ′′

2n−1)n≤0 be two copies of the process (Z2n−1)n≤0, defined
on some probability space (�̄, Ā, P̄). Set Z ′

2n−2 = fn(Z ′
2n−1) and Z ′′

2n−2 =
fn(Z ′′

2n−1) for every n ≤ 0. Then (Z ′
n)n≤0 and (Z ′′

n )n≤0 are copies of the

process (Zn)n≤0. Moreover, (F Z ′
2n−1)n≤0 and (F Z ′′

2n−1)n≤0 are the natural filtrations
of (Z ′

2n−1)n≤0 and (Z ′′
2n−1)n≤0.

Assume that these filtrations are immersed in some filtration (G2n−1)n≤0.
Then, for every n ≤ −1,

L (
Z ′

2n+1

∣
∣G2n−1

) = L
(

Z ′
2n+1

∣
∣F Z ′

2n−1

)
= L (

Z ′
2n+1

∣
∣σ

(
Z ′

2n−1

))
,

and since Z ′
2n is a deterministic function of Z ′

2n+1,

L (
Z ′

2n

∣
∣G2n−1

) = L (
Z ′

2n

∣
∣σ

(
Z ′

2n−1

))
.

The same holds with the process Z ′′.
Hence, since [Z ′

2n+1 = Z ′′
2n+1] ⊂ [Z ′

2n = Z ′′
2n], the same proof as in Lemma 16

yields

P̄
[
Z ′

2n+1 �= Z ′′
2n+1

∣
∣G2n−1

] ≥ P̄
[
Z ′

2n �= Z ′′
2n

∣
∣G2n−1

] ≥ (1 − αn)1[
Z ′

2n−1 �=Z ′′
2n−1

].
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By recursion,

P
[
Z ′−1 �= Z ′′−1

∣
∣G2n−1

] ≥
∏

n≤k≤−1

(1 − αk)1[
Z ′

2n−1 �=Z ′′
2n−1

].

Taking the expectations, one gets

P
[
Z ′−1 �= Z ′′−1

] ≥
∏

n≤k≤−1

(1 − αk)P
[
Z ′

2n−1 �= Z ′′
2n−1

]
.

If, for some N > −∞, the σ -fields F ′
2N−1 and F ′′

2N−1 are independent, then

P
[
Z ′

2N−1 �= Z ′′
2N−1

] = 1 − 1

|F2N−1| ≥ 1

2
,

since Z ′
2N−1 and Z ′′

2N−1 are independent and uniform on F2N−1, and

P
[
Z ′−1 �= Z ′′−1

] ≥ 1

2

∏

N≤k≤−1

(1 − αk) ≥ 1

2

∏

k≤−1

(1 − αk) > 0,

which shows that Z−1 does not satisfy the I-cosiness criterion.
Thus (F Z

2n−1)n≤0 is not standard. Thus, if D is any subset of Z− which contains
all odd negative integers, the filtration (F Z

n )n∈D is not standard (since standardness is
preserved by extraction). This conclusion still holds when D contains all but finitely
many odd negative integers (since standardness is an asymptotic property).

Proof that (F Z
n )n∈D is standard when D skips infinitely many odd negative

integers

Since standardness is preserved by extraction, one only needs to consider the case
where D not only skips infinitely many odd negative integers, but also contains all
even ones. In this case, the filtration (F Z

n )n∈D is generated by (Zn)n∈D only. Indeed,
if n is any integer in Z− \ D, then n is odd, hence n − 1 ∈ D, n + 1 ∈ D and Zn is a
function of (Zn−1, Zn+1).

For each n ≤ 0, the conditional law L(Zn|F Z
n−1) = L(Zn|Zn−1) is (almost surely)

uniform on some random subset of Fn with rn elements. By fixing a total order on the
set Fn , one can construct a uniform random variable Un on [[1, rn]], independent of
F Z

n−1, such that Zn is a function of Zn−1 and Un . Set Yn = Zn if n − 1 /∈ D (which
may happen only for even n) and Yn = Un otherwise. Then Yn is F Z

n -measurable.
This shows that FY

n ⊂ F Z
n for every n ∈ D.

Let us prove the reverse inclusion. Fix n ∈ D, and call m ≤ n the integer such that
m − 1 /∈ D but k ∈ D for all k ∈ [[m, n]]. Then Zn is FY

n -measurable as a function of
Ym = Zm,Ym+1 = Um+1, . . . ,Yn = Un .

Last, for every n ∈ D,Yn is independent of F Z
n−1 if n−1 ∈ D and Yn is independent

of F Z
n−2 otherwise. This shows the independence of the random variables (Yn)n∈D .

Hence the filtration (F Z
n )n∈D is of product type, which completes the proof. �
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Appendix A: Some basic facts on standardness

We summarize here the main definitions and results used in this paper. A complete
exposition can be found in [2]. Recall that we work with filtrations indexed by the non-
positive integers on a probability space (�,A,P), and that all the sub-σ -fields of A
that we consider here are assumed to be complete and essentially separable with respect
to P. The role of the probability measure P is important althought it is often implicit.
Actually, the true object of study are filtered probability spaces (�,A,P, (Fn)n≤0).

A.1 Isomorphisms of filtered probability spaces

Let F = (Fn)n≤0 and F ′ = (F ′
n)n≤0 be filtrations on (�,A,P) and (�′,A′,P′).

Definition 19 An isomorphism of filtered probability spaces from (�,A,P,F) into
(�′,A′,P′,F ′) is a bijective application from the space L0(�,F∞,P) of the real
random variables on (�,F∞,P) into L0(�′,F ′∞,P′)which preserves the laws of the
random variables, commutes with Borelian applications, and sends F on F ′.

By definition, saying that an isomorphism � sends F on F ′ means that for every
n ≤ 0, the random variables�(X) for X ∈ L0(�,Fn,P) generate F ′

n . Saying that�
commutes with Borelian applications means that for every sequence (Xn)n≥1 of real
random variables on (�,A,P), and every Borelian application F : R

∞ → R,

�
(
F ◦ (Xn)n≥1

) = F ◦ (�(Xn))n≥1.

The case where F((xn)n≥1) = αx1 + x2 with α ∈ R shows that � must be linear.
Any bimeasurable application ψ from (�,F∞) to (�′,F ′∞) which sends P on

P
′ induces an isomorphism � from (�,A,P,F) into (�′,A′,P′,F ′), defined by
�(X) = X ◦ψ−1. Yet, an isomorphism from (�,A,P,F) into (�′,A′,P′,F ′) is not
necessarily associated to some bimeasurable application from � to �′ which sends P

on P
′.

Note that for any sequence (Xn)n≤0 of random variables defined on (�,A,P), the
filtrations which are isomorphic to the natural filtration of (Xn)n≤0 are exactly the
filtrations of the copies of (Xn)n≤0 on arbitrary probability spaces.

A.2 Immersion, immersibility and standardness of filtrations

Let F = (Fn)n≤0 and G = (Gn)n≤0 be filtrations on (�,A,P).
Definition 20 One says that F is immersed into G, if, for every n ≤ 0,Fn ⊂ Gn and
Fn is independent of Gn−1 conditionally on Fn−1. Equivalently, F is immersed into
G if and only if every martingale in F is still a martingale in G.

Immersion is stronger than mere inclusion. If F is immersed into G, the additional
information contained in G cannot give information on F in advance: intuitively, the
independence of Fn and Gn−1 conditionally on Fn−1 means that Gn−1 gives no more
information on Fn than Fn−1 does.
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The notion of immersion can be weakened to provide a notion invariant by isomor-
phism.

Definition 21 Let F = (Fn)n≤0 and G′ = (G′
n)n≤0 be filtrations on (�,A,P) and

(�′,A′,P′). One says that F is immersible into G′ if there exists a filtration F ′ on
(�′,A′,P′), isomorphic to F , such that F ′ is immersed into G′.

We can now define the standardness of filtrations.

Definition 22 A filtration is standard if it is immersible into a product-type filtration.

By Kolmogorov’s 0–1 law, any filtration must have a trivial tail σ -field in order to be
standard, but this necessary condition is not sufficient. In [10], Vershik established two
different characterisations of standardness in the context of decreasing sequences of
measurable partitions. Émery and Schachermayer [2] extended and reformulated them
into a probabilistic language and called them Vershik’s “first level” and “second level”
criteria. They also introduced a new standardness criterion, namely the I-cosiness
criterion. The I stands for independence, to distinguish I-cosiness from other variants
of cosiness.

A.3 I-cosiness criterion

Let F = (Fn)n≤0 be a filtration on (�,A,P).
Definition 23 Let R be any F0-measurable real random variable R. One says that R
satisfies I-cosiness criterion for (Fn)n≤0 (to abbreviate, we say that I(R) holds) if for
any positive real number δ, there exists a probability space (�,A,P) supplied with
two filtrations F ′ and F ′′ such that:

• the filtrations F ′ and F ′′ are isomorphic to the filtration F ;
• the filtrations F ′ and F ′′ are immersed into F ′ ∨ F ′′;
• there exists an integer n0 < 0 such that the σ -fields F ′

n0
and F ′′

n0
are independent;

• the copies R′ and R′′ of R given by the isomorphisms of the first condition are
such that P[|R′ − R′′| ≥ δ] ≤ δ.

One says that F is I-cosy when I(R) holds for every R ∈ L0(�,F0,P).

I-cosiness was implicitly used by Smorodinsky [8] to prove that the dyadic split-
words filtration has no “generating parametrization”. Intuitively, condition I(R) means
that one can couple two copies of F in a non-anticipative way so that old enough
independent initial conditions have weak influence on the final value of R.

Laurent noticed that if I (R) holds, then I (φ(R)) holds for every Borel function φ
from R to R. Hence, to prove that F is I-cosy, it is sufficient to check that I (R) for
one real random variable generating F0.

It is also sufficient and sometimes handful to check I (R) for all random variables
with values in an arbitrary finite set, with the discrete distance 1[R′ �=R′′] replacing
|R′ − R′′| in the definition of I (R).

I-cosiness provides a standardness criterion.

Theorem E (Émery and Schachermayer [2]) F is standard if and only if F is I-cosy.
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