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Abstract We prove the dynamic programming principle for uniformly nondegen-
erate stochastic differential games in the framework of time-homogeneous diffusion
processes considered up to the first exit time from a domain. In contrast with previous
results established for constant stopping times we allow arbitrary stopping times and
randomized ones as well. There is no assumption about solvability of the the Isaacs
equation in any sense (classical or viscosity). The zeroth-order “coefficient” and the
“free” term are only assumed to be measurable in the space variable. We also prove that
value functions are uniquely determined by the functions defining the corresponding
Isaacs equations and thus stochastic games with the same Isaacs equation have the
same value functions.
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1 Introduction

The dynamic programming principle is one of basic tools in the theory of controlled
diffusion processes. It seems to the author that Fleming and Souganidis in [2] were
the first authors who proved the dynamic programming principle with nonrandom
stopping times for stochastic differential games in the whole space on a finite time
horizon. They used rather involved technical constructions to overcome some measure-
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752 N. V. Krylov

theoretic difficulties, a technique somewhat resembling the one in Nisio [12], and the
theory of viscosity solutions.

In [4] Kovats considers time-homogeneous stochastic differential games in a
“weak” formulation in smooth domains and proves the dynamic programming prin-
ciple again with nonrandom stopping times. He uses approximations of policies by
piece-wise constant ones and proceeds similarly to [12].

Świȩch in [13] reverses the arguments in [2] and proves the dynamic programming
principle for time-homogeneous stochastic differential games in the whole space with
constant stopping times “directly” from knowing that the viscosity solutions exist.
His method is quite similar to the so-called verification principle from the theory of
controlled diffusion processes.

It is also worth mentioning the paper [1] by Buckdahn and Li where the dynamic
programming principle for constant stopping times in the time-inhomogeneous setting
in the whole space is derived by using the theory of backward–forward stochastic
equations.

In this paper we will be only dealing with the dynamic programming principle for
stochastic differential games and its relation to the corresponding Isaacs equations.
Concerning all other aspect of the theory of stochastic differential games we refer the
reader to [1,2,4,12], and [13], and the references therein.

In [10] we adopted the strategy of Świȩch [13] which is based on using the fact that
in many cases the Isaacs equation has a sufficiently regular solution. In [13] viscosity
solutions are used and we relied on classical ones. In the present article no assumptions
are made on the solvability of Isaacs equations. Here we use a very general result of
[9] (see Theorem 1.1 there) about solvability of approximating Isaacs equations and
our Theorem 5.2 implying that the solutions of approximating equations approximate
the value function in the original problem. Then we basically pass to the limit in the
formulas obtained in [10].

The main emphasis of [2,4,12], and [13] is on proving that the value functions
for stochastic differential games are viscosity solutions of the corresponding Isaacs
equations and the dynamic programming principle is used just as a tool to do that.
In our setting the zeroth-order coefficient and the running payoff function can be just
measurable and in this situation neither our methods nor the methods based on the
notion of viscosity solution seem to be of much help while characterizing the value
function as a viscosity solution.

Our main future goal is to develop some tools which would allow us in a subsequent
article to show that the value functions are of class C0,1, provided that the data are
there, for possibly degenerate stochastic differential games without assuming that the
zeroth-order coefficient is large enough negative (see [11]). On the way to achieve this
goal one of the main steps, apart from proving the dynamic programming principle,
consist of proving certain representation formulas like the ones in Theorems 3.2 and
3.3 of [10] in which the process is not assumed to be uniformly nondegenerate. Next
important ingredient consists of approximations results stated as Theorem 5.2 again
for possibly degenerated processes. By combining Theorem 1.1 of [9] with Theorems
3.2 and 3.3 of [10] and 5.2, we then come to one of the main results of the present
article, Theorem 2.1, about the dynamic programming principle in a very general form
including stopping and randomized stopping times. Speaking somewhat informally
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On the dynamic programming principle 753

using randomized stopping times is equivalent to introducing a nonnegative random
process, which multipied by dt would give us the probability that we stop the process
on time interval (t, t + dt) given that it was not stoped before.

In Theorem 2.2 we assert the Hölder continuity of the value function in our case
where the zeroth-order coefficient and the running payoff function can be discontin-
uous.

Theorem 2.1 concerns time-homogeneous stochastic differential games unlike the
time inhomogeneous in [2] and generalizes the corresponding results of [13] and [4],
where however degenerate case is not excluded.

Our Theorem 2.3 shows that the value function is uniquely defined by the corre-
sponding Isaacs equation and is independent of the way the equation is represented
as sup inf of linear operators (provided that they satisfy our basic assumptions). This
fact in a somewhat more restricted situation is also noted in Remark 2.4 of [13].

The article is organized as follows. In Sect. 2 we state our main results to which
actually, as we pointed out implicitly above, belongs Theorem 5.2. In Sect. 3 we give
a version of Theorem 2.1 for the whole space. Then in Sect. 4 we prove a very simple
result allowing us to compare the value functions corresponding to different data.

Sections 5 and 6 are devoted to deriving approximation results. In Sect. 5 we
consider the approximations from above whereas in Sect. 6 from below. The point is
that we know from [9] that one can slightly modify the underlying Isaacs equation
in such a way that the modified equation would have rather smooth solutions. These
smooth solutions are shown to coincide with the corresponding value functions, which
in addition satisfy the dynamic programming principle, and the goal of Sects. 5 and 6 is
to show that when the modification “fades away” we obtain the dynamic programming
principle for the original value function. Theorem 5.2 is proved for the case that the
process can degenerate. Its version for the uniformly nondegenerate case is given
in Sect. 7 where we also prove Theorem 2.3 about the characterization of the value
function by the Isaacs equation. In the final short Sect. 8 we combine previous results
and prove Theorems 2.1 and 2.2.

The author is sincerely grateful too the referee’s comments which allowed him to
clear up some obscure places.

2 Main results for bounded domains

Let R
d = {x = (x1, . . . , xd)} be a d-dimensional Euclidean space and let d1 ≥ d

be an integer. Assume that we are given separable metric spaces A and B and let, for
each α ∈ A and β ∈ B the following functions on R

d be given:

(i) d × d1 matrix-valued σαβ(x) =
(
σ
αβ
i j (x)

)
,

(ii) R
d -valued bαβ(x) =

(
bαβi (x)

)
, and

(iii) real-valued functions cαβ(x), f αβ(x), and g(x).

Take a ζ ∈ C∞
0 (R

d) with unit integral and for ε > 0 introduce ζε(x) = ε−dζ(x/ε).
For locally summable functions u = u(x) on R

d define

u(ε)(x) = u ∗ ζε(x).
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754 N. V. Krylov

Assumption 2.1 (i) a) All the above functions are continuous with respect to β ∈ B
for each (α, x) and continuous with respect to α ∈ A uniformly with respect to
β ∈ B for each x . b) These functions are Borel measurable functions of (α, β, x),
the function g(x) is bounded and uniformly continuous on R

d , and cαβ ≥ 0.
(ii) For any x ∈ R

d

sup
(α,β)∈A×B

(|cαβ | + | f αβ |)(x) < ∞, (2.1)

and for any x, y ∈ R
d and (α, β) ∈ A × B

‖σαβ(x)− σαβ(y)‖ ≤ K1|x − y|, |bαβ(x)− bαβ(y)| ≤ K1|x − y|,
‖σαβ(x)‖, |bαβ(x)| ≤ K0,

where K0 and K1 are some fixed constants.
(iii) For any bounded domain D ⊂ R

d we have

‖ sup
(α,β)∈A×B

| f αβ | ‖Ld (D) + ‖ sup
(α,β)∈A×B

cαβ ‖Ld (D) < ∞,

‖ sup
(α,β)∈A×B

| f αβ − ( f αβ)(ε)| ‖Ld (D) → 0,

‖ sup
(α,β)∈A×B

|cαβ − (cαβ)(ε)| ‖Ld (D) → 0,

as ε ↓ 0.
(iv) There is a constant δ ∈ (0, 1] such that for α ∈ A, β ∈ B, and x, λ ∈ R

d we
have

δ|λ|2 ≤ aαβi j (x)λiλ j ≤ δ−1|λ|2,

where aαβ = (aαβi j ) = (1/2)σαβ(σαβ)∗.

The reader understands, of course, that the summation convention is adopted through-
out the article.

Let (	,F , P) be a complete probability space, let {Ft , t ≥ 0} be an increasing
filtration of σ -fields Ft ⊂ F such that each Ft is complete with respect to F , P , and
let wt , t ≥ 0, be a standard d1-dimensional Wiener process given on 	 such that wt

is a Wiener process relative to the filtration {Ft , t ≥ 0}.
The set of progressively measurable A-valued processes αt = αt (ω) is denoted by

A. Similarly we define B as the set of B-valued progressively measurable functions.
By B we denote the set of B-valued functions β(α·) on A such that, for any T ∈ (0,∞)

and any α1· , α2· ∈ A satisfying

P(α1
t = α2

t for almost all t ≤ T ) = 1, (2.2)
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On the dynamic programming principle 755

we have

P(β t (α
1· ) = β t (α

2· ) for almost all t ≤ T ) = 1.

For α· ∈ A, β· ∈ B, and x ∈ R
d define xα·β·x

t as a unique solution of the Itô
equation

xt = x +
t∫

0

σαsβs (xs) dws +
t∫

0

bαsβs (xs) ds. (2.3)

For a sufficiently smooth function u = u(x) introduce

Lαβu(x) = aαβi j (x)Di j u(x)+ bαβi (x)Di u(x)− cαβ(x)u(x),

where, naturally, Di = ∂/∂xi , Di j = Di D j . Also set

H [u](x) = sup inf
α∈A β∈B

[Lαβu(x)+ f αβ(x)]. (2.4)

Denote

φ
α·β·x
t =

t∫

0

cαsβs (xα·β·x
s ) ds.

Next, fix a bounded domain D ⊂ R
d , define τα·β·x as the first exit time of xα·β·x

t
from D, and introduce

v(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x

⎡
⎣

τ∫

0

f (xt )e
−φt dt + g(xτ )e

−φτ
⎤
⎦ , (2.5)

where the indices α·,β, and x at the expectation sign are written to mean that they
should be placed inside the expectation sign wherever and as appropriate, that is

Eα·β·
x

⎡
⎣

τ∫

0

f (xt )e
−φt dt + g(xτ )e

−φτ
⎤
⎦

:= E

⎡
⎢⎣g

(
xα·β·x
τα·β·x

)
e
−φα·β·x

τα·β·x +
τα·β·x∫

0

f αtβt
(

xα·β·x
t

)
e−φα·β·xt dt

⎤
⎥⎦ .

Observe that this definition makes perfect sense due to Theorem 2.2.1 of [6] and
v(x) = g(x) in R

d\D.
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756 N. V. Krylov

Here is our first main result before which we introduce one more assumption.

Assumption 2.2 There exists a nonnegative G ∈ C(D̄) ∩ C2
loc(D) such that G = 0

on ∂D and

LαβG ≤ −1

in D for all α ∈ A and β ∈ B.

Theorem 2.1 Under the above assumptions

(i) The function v(x) is bounded and continuous in R
d .

(ii) Let γ α·β·x be an {Ft }-stopping time defined for each α· ∈ A, β· ∈ B, and x ∈ R
d

and such that γ α·β·x ≤ τα·β·x . Also let λα·β·x
t ≥ 0 be progressively measurable

functions on 	× [0,∞) defined for each α· ∈ A, β· ∈ B, and x ∈ R
d and such

that they have finite integrals over finite time intervals (for anyω). Then for any x

v(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x

⎡
⎣v(xγ )e−φγ−ψγ +

γ∫

0

{ f (xt )+ λtv(xt )}e−φt −ψt dt

⎤
⎦ ,

(2.6)

where inside the expectation sign γ = γ α·β(α·)x and

ψ
α·β·x
t =

t∫

0

λα·β·x
s ds.

Remark 2.1 The above setting is almost identical to that of [10] and statement of
Theorem 2.1 is almost identical to that of Theorem 2.2 of [10]. However, here we did
not impose a quite strong assumption from [10] that D be approximated by domains in
which the Isaacs equation has regular solutions. On the other hand, we pay for that by
excluding parameters p, which are present in Theorem 2.2 of [10] and will reappear
in our Theorem 2.3.

Note that the possibility to vary λ in Theorem 2.1 might be useful while considering
stochastic differential games with stopping in the spirit of [5].

Theorem 2.2 The function v is locally Hölder continuous in D with exponent θ ∈
(0, 1) depending only on d and δ.

Next, we state a comparison result, for which we need some new objects and
additional assumptions. Take an integer k ≥ d and assume that on R

k we are given a
mapping

� : x̌ ∈ R
k → �(x̌) ∈ R

d

which is twice continuously differentiable with bounded and uniformly continuous
first- and second-order derivatives.
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On the dynamic programming principle 757

The reader understands that the case k = d is not excluded in which case�(x̌) ≡ x̌
is allowed.

Assume that we are given a separable metric space P and let, for eachα ∈ A, β ∈ B,
and p ∈ P , the following functions on R

k be given:

(i) k × d1 matrix-valued σ̌ αβ(p, x̌) = (σ̌
αβ
i j (p, x̌)),

(ii) R
k-valued b̌αβ(p, x̌) = (b̌αβi (p, x̌)), and

(iii) real-valued functions řαβ(p, x̌), čαβ(p, x̌), and f̌ αβ(p, x̌).

As usual we introduce

ǎαβ(p, x̌) = (1/2)σ̌ αβ(p, x̌)(σ̌ αβ(p, x̌))∗

and for a fixed p̄ ∈ P define

(ā, σ̄ , b̄, c̄, f̄ , r̄)αβ(x̌) = (ǎ, σ̌ , b̌, č, f̌ , ř)αβ( p̄, x̌).

Assumption 2.3 (i) All the above functions apart from ř are continuous with respect
to β ∈ B for each (α, p, x̌) and continuous with respect to α ∈ A uniformly
with respect to β ∈ B for each (p, x̌). Furthermore, they are Borel measurable
functions of (p, x̌) for each (α, β) and čαβ ≥ 0.

(ii) The functions σ̄ αβ(x̌) and b̄αβ(x̌) are uniformly continuous with respect to x̌
uniformly with respect to (α, β) ∈ A × B and for any x̌ ∈ R

k and (α, β, p) ∈
A × B × P

‖σαβ(p, x̌)‖, |bαβ(p, x̌)| ≤ K0.

(iii) We have r̄ ≡ 1 and there is a constant δ̌1 ∈ (0, 1] such that on A × B × P × R
k

we have

řαβ(p, x̌) ∈ [δ̌1, δ̌
−1
1 ], f̌ αβ(p, x̌) = řαβ(p, x̌) f̄ αβ(x̌). (2.7)

(iv) The functions cαβ(x) and f αβ(x) are bounded on A × B × R
d . (This part bears

on the objects introduced before Theorem 2.1.)
(v) For any x̌ ∈ R

k

sup
(α,β)∈A×B

(|c̄αβ | + | f̄ αβ |)(x̌) < ∞. (2.8)

A function pα·β·
t = pα·β·

t (ω) given on A × B × 	 × (0,∞) is said to be control
adapted if, for any (α·, β·) ∈ A × B it is progressively measurable in (ω, t) and, for
any T ∈ (0,∞), we have

P
(

p
α1· β1·
t = p

α2· β2·
t for almost all t ≤ T

)
= 1
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as long as

P
(
α1

t = α2
t , β

1
t = β2

t for almost all t ≤ T
)

= 1.

The set of P-valued control adapted processes is denoted by P.
We discussed a way in which control adapted processes appear naturally in Remark

2.4 of [10].
Fix a p ∈ P and for α· ∈ A, β· ∈ B, and x̌ ∈ R

k consider the following equation

x̌t = x̌ +
t∫

0

σ̌ αsβs (pα·β·
s , x̌s) dws +

t∫

0

b̌αsβs (pα·β·
s , x̌s) ds. (2.9)

Assumption 2.4 Equation (2.9) satisfies the usual hypothesis, that is for any α· ∈
A, β· ∈ B, and x̌ ∈ R

k it has a unique solution denoted by x̌α·β· x̌
t and x̌α·β· x̌

t is a
control adapted process for each x̌ .

In order to state additional assumptions, we need a possibly unbounded domain
Dˇ ⊂ R

k such that

�(Dˇ) = D.

Denote by τ̌ α·β· x̌ the first exit time of x̌α·β· x̌
t from Dˇ and set

φ̌
α·β· x̌
t =

t∫

0

čαsβs
(

pα·β·
s , x̌α·β· x̌

s

)
ds,

Next, suppose that for each ε > 0 we are given real-valued Borel measurable
functions c̄αβε (x̌) and f̄ αβε (x̌) defined on A × B × R

k and impose

Assumption 2.5 (i) For each ε > 0 the functions (c̄ε, f̄ε)αβ are bounded on A ×
B × D̄ˇ and uniformly continuous with respect to x̌ ∈ D̄ˇ uniformly with respect
to α, β.

(ii) For any x̌ ∈ Dˇ

sup
(α·,β·)∈A×B

Eα·β·
x̌

τ̌∫

0

sup
α∈A,β∈B

|c̄αβ − c̄αβε |(x̌t )e
−φ̌t dt → 0,

sup
(α·,β·)∈A×B

Eα·β·
x̌

τ̌∫

0

sup
α∈A,β∈B

| f̄ αβ − f̄ αβε |(x̌t )e
−φ̌t dt → 0 (2.10)

with the second convergence in (2.10) being uniform in Dˇ.
(iii) There exists a constant δ̌ ∈ (0, 1] such that for x̌ ∈ R

k, p ∈ P, α ∈ A, β ∈ B,
and λ ∈ R

d we have
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On the dynamic programming principle 759

δ̌|λ|2 ≤ ∣∣λ∗ ∂�
∂ x̌
(x̌)σ̌ αβ(p, x̌)

∣∣2 ≤ δ̌−1|λ|2.

Remark 2.2 Assumption 2.5 (iii) is equivalent to saying that for solutions of (2.9) the
processes �(x̌t ) are uniformly nondegenerate.

It is convenient to always lift functions u given on R
d to functions given on R

k by
the formula

u(x̌) := u(�(x̌)). (2.11)

For sufficiently smooth functions u = u(x̌) introduce

Ľαβu(p, x̌) = ǎαβi j (p, x̌)Di j u(x̌)+ b̌αβi (p, x)Di u(x̌)− čαβ(p, x̌)u(x̌),

L̄αβu(x̌) = Ľαβu( p̄, x̌)

(naturally, Di = ∂/∂ x̌i , Di j = Di D j ). Also set

Ȟ [u](x̌) = sup inf
α∈A β∈B

[L̄αβu(x̌)+ f̄ αβ(x̌)].

Assumption 2.6 There exists a nonnegative (bounded) function Ǧ ∈ C(D̄ˇ
) ∩

C2
loc(D

ˇ) such that Ǧ(x̌) → 0 as x̌ ∈ D̄ˇ and dist (�(x̌), ∂D) → 0 (Ǧ = 0 on
∂D if k = d and �(x̌) ≡ x̌) and

Ľαβ Ǧ(p, x̌) ≤ −1

in P × Dˇ for all α ∈ A and β ∈ B.

Next, take a real-valued function ψ on R
k with finite C2(Rk)-norm and introduce

v̌(x̌) = inf sup
β∈B α·∈A

Eα·β(α·)
x̌

⎡
⎢⎣

τ̌∫

0

f̌ (pt , x̌t )e
−φ̌t dt + ψ(x̌τ̌ )v(x̌τ̌ )e

−φ̌τ̌

⎤
⎥⎦ ,

where, naturally, v is taken from Theorem 2.1. Assumption 2.5 (iii) (and the bound-
edness of D) and Theorem 2.2.1 of [6] allow us to conclude that that Pα·β·

x̌ (τ̌ α·β· x̌ <

∞) = 1. Also notice that (2.7) and Assumptions 2.6 imply that for any x̌ ∈ Dˇ

δ1 sup
(α·,β·)∈A×B

Eα·β·
x̌

τ̌∫

0

| f̌ (pt , x̌t )|e−φ̌t dt

≤ sup
(α·,β·)∈A×B

Eα·β·
x̌

τ̌∫

0

| f̄ (x̌t )|e−φ̌t dt
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≤ sup
(α·β·)∈A×B

Eα·β·
x̌

τ̌∫

0

| f̄ (x̌t )− f̄ε(x̌t )|e−φ̌t dt + Ǧ(x̌) sup
α,β,y̌

| f̄ αβε (y̌)|,

which is finite at least for small ε > 0 owing to (2.10). Hence, v̌ is well defined.
By the way, observe also that, if k = d and�(x̌) ≡ x̌ , thenψ(x̌)v(x̌) = ψ(x)g(x)

on ∂Dˇ = ∂D.

Assumption 2.7 For any function u ∈ C2
loc(D) (not C2

loc(D
ˇ)), the functionψ(x̌)u(x̌)

is p-insensitive in Dˇ relative to (řαβ(p, x̌), Ľαβ(p, x̌)) in the terminology of [10],
that is, for any α·, β·, and x̌ we have

d

[
(ψu)(x̌α·β· x̌

t )e−φ̌α·β· x̌t

]
= dmt

+e−φ̌α·β· x̌t řαtβt (pα·β·
t , x̌α·β· x̌

t )L̄αtβt (ψu)(x̌α·β· x̌
t ) dt,

whenever t < τ̌α·β· x̌ , where mt is a local martingale starting at zero.

We discuss this assumption in Remark 2.6.
Finally, take some {Ft }-stopping times γ α·β· x̌ and progressively measurable func-

tions λα·β· x̌
t ≥ 0 on 	 × [0,∞) defined for each α· ∈ A, β· ∈ B, and x̌ ∈ R

k and

such that λα·β· x̌
t have finite integrals over finite time intervals (for any ω). Introduce

ψ
α·β· x̌
t =

t∫

0

λα·β· x̌
s ds.

In the following theorem by quadratic functions we mean quadratic functions on
R

d (not R
k) (and if u is a function defined in D then we extend it to a function in a

domain in R
k following notation (2.11)).

Theorem 2.3 (i) If for any x̌ ∈ Dˇ and quadratic function u, we have

H [u](�(x̌)) ≤ 0 ⇒ Ȟ [uψ](x̌) ≤ 0, (2.12)

then v̌ ≤ ψv in R
k and for any x̌ ∈ R

k

vψ(x̌) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x̌

⎡
⎢⎣vψ(x̌γ∧τ̌ )e−φ̌γ∧τ̌−ψγ∧τ̌

+
γ∧τ̌∫

0

{ f̌ (pt , x̌t )+ λtvψ(x̌t )}e−φ̌t −ψt dt

⎤
⎥⎦ . (2.13)

(ii) If for any x̌ ∈ Dˇ and quadratic function u, we have

H [u](�(x̌)) ≥ 0 ⇒ Ȟ [uψ](x̌) ≥ 0, (2.14)
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then v̌ ≥ ψv in R
k and for any x̌ ∈ R

k

vψ(x̌) ≤ inf sup
β∈B α·∈A

Eα·β(α·)
x̌

[
vψ(x̌γ∧τ̌ )e−φ̌γ∧τ̌−ψγ∧τ̌

+
γ∧τ̌∫

0

{ f̌ (pt , x̌t )+ λtvψ(x̌t )}e−φ̌t −ψt dt

]
. (2.15)

Remark 2.3 Under the assumptions of Theorem 2.1 suppose that c and f are bounded.
Take a global barrier �, which is an infinitely differentiable function on R

d such that
� ≥ 1 on R

d and (Lαβ + cαβ)� ≤ −1 on D for all α, β. The existence of such
functions is a simple and well-known fact.

In Theorem 2.3 take k = d, Dˇ = D, and independent of p functions ř ≡ 1,

σ̌ αβ(x) = �1/2(x)σαβ(x), b̌αβ(x) = �(x)bαβ(x)+ 2aαβ(x)D�(x),

čαβ(x) = −Lαβ�(x), f̌ αβ(x) = f αβ(x), ǧ(x) = �−1(x)g(x),

where D� is the gradient of � (a column vector).
A simple computation shows that

Ľαβu(x)+ f̌ αβ = Lαβ(u�)(x)+ f αβ(x)

and therefore both conditions in (2.12) and (2.14) are satisfied with ψ = �−1 and
by Theorem 2.3 we conclude that v̌ = �−1v. It is still probably worth noting that to
check Assumption 2.5 in this case we take (c̄ε, f̄ε)αβ = [(č, f̌ )αβ ](ε).

This simple observation sometimes helps introducing a new c ≥ 1 when the initial
one was zero.

Remark 2.4 If ǎ, b̌, č, and f̌ are independent of p and k = d,�(x) ≡ x , and ψ ≡ 1,
then Theorem 2.3 implies that v = v̌ whenever the functions H and Ȟ coincide.
Therefore, v and v̌ are uniquely defined by H and not by its particular representation
(2.4) and, for that matter, not by the choice of probability space, filtration, and the
Wiener process including its dimension. By Theorem 2.3 we also have that v = v̌ if
k = d,�(x) ≡ x , and if ǎ, b̌, č, and f̌ do depend on p but in such a way that

(ǎ, b̌, č, f̌ )(p, x) = ř(p, x)(a, b, c, f )(x)

since in that case any smooth function is p-insensitive. In such a situation we see that
v̌ is independent of p ∈ P as well.

Also notice that, if in Theorem 2.1 the functions c and f are bounded (see Assump-
tion 2.3 (iv)) and one takes k = d, assumes that the checked functions are indepen-
dent of p, and finally takes the checked functions equal to the unchecked ones and
(c̄ε, f̄ε)αβ = [(c, f )αβ ](ε), then one sees that assertion (ii) of Theorem 2.1 follows
immediately from Theorem 2.2.1 of [6] and Theorem 2.3.
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Remark 2.5 Here we discuss the possibility to use dilations. Take a constant μ > 0
and consider the following modification of (2.3)

xt = x +
t∫

0

σαsβs (μxs) dws +
t∫

0

μbαsβs (μxs) ds. (2.16)

The solution of this equation is denoted by xα·β·x
t (μ). Then let

φ
α·β·x
t (μ) =

t∫

0

μ2cαsβs (μxα·β·x
s (μ)) ds,

denote by τα·β·x (μ) the first exit time of xα·β·x
t (μ) from μ−1 D, and set

v(x, μ) = inf sup
β∈B α·∈A

Eα·β(α·)
x

⎡
⎢⎣
τ(μ)∫

0

μ2 f (μxt (μ))e
−φt (μ) dt

+g(μxτ (μ))e
−φτ(μ)(μ)

⎤
⎥⎦ .

A simple application of Theorem 2.3 with �(x) = μx and ψ ≡ 1 shows that
v(μx) = v(x, μ). Of course, other types of changing the coordinates are also covered
by Theorem 2.3.

Remark 2.6 The case k > d will play a very important role in a subsequent article (see
[11]) about stochastic differential games. To illustrate one of applications consider the
one-dimensional Wiener process wt , define τx as the first exit time of x + wt from
(−1, 1) and introduce

v(x) = E

τx∫

0

f (x + wt ) dt,

so that the corresponding (Isaacs) equation becomes

H [v] := (1/2)D2v + f = 0

in (−1, 1) with zero boundary data at ±1. We want to show how Theorem 2.3 allows
one to derive the following

v(x) = E

τ̌x∫

0

e−wt −(1/2)t f (x + wt + t) dt, (2.17)
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where τ̌x is the first exit time of x +wt + t from (−1, 1). (Of course, (2.17) is a simple
corollary of Girsanov’s theorem.)

In order to do that consider the two-dimensional diffusion process given by

dxt = dwt + dt, dyt = −yt dwt (2.18)

starting at

(x, y) ∈ Dε̌ = (−1, 1)× (ε, ε−1),

where ε ∈ (0, 1), let τ εx,y be the first time the process exits from this domain, and
introduce

v̌(x, y) = E

⎡
⎢⎣
τ εx,y∫

0

yt f (xt ) dt + yτ εx,yv(xτ εx,y )

⎤
⎥⎦ .

In this situation we take �(x, y) = x . The corresponding (Isaacs) equation is now

Ȟ [v̌](x, y) := (1/2)
∂2

(∂x)2
v̌(x, y)− y

∂2

∂x∂y
v̌(x, y)+ (1/2)y2 ∂2

(∂y)2
v̌(x, y)

+ ∂

∂x
v̌(x, y)+ y f (x) = 0.

As G(x) and Ǧ(x, y) one can take 1 − |x |2 and set r(x, y) = y.
It is a trivial computation to show that if u(x) satisfies H [u](x) ≤ 0 at a point

x ∈ (−1, 1), then for ǔ(x, y) := yu(x) we have Ȟ [ǔ](x, y) ≤ 0 for any y > 0 and if
we reverse the sign of the first inequality the same will happen with the second one.
By Theorem 2.3 we have that v̌(x, y) = yv(x) in Dε̌ and since for y = 1

yt = e−wt −(1/2)t ,

we conclude that for any ε ∈ (0, 1)

v(x) = E

⎡
⎢⎣

τ εx∫

0

e−wt −(1/2)t f (x + wt + t) dt + yτ εx v(xτ εx )

⎤
⎥⎦ , (2.19)

where τ εx is the minimum of the first exit time of x + wt + t from (−1, 1) and the
first exit time of e−wt −(1/2)t from (ε, ε−1). The latter tends to infinity as ε ↓ 0 and we
obtain (2.17) from (2.19) and the fact that v = 0 at ±1.

The reader might have noticed that the process given by (2.18) is degenerate. It
shows why in Assumption 2.5 we require only�(x̌t ) to be uniformly nondegenerate.
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3 Main results for the whole space

In this section we keep the assumptions of Sect. 2 apart from Assumptions 2.2 and 2.6
concerning the existence of the barrier functions G and Ǧ and take D = R

d . In case
we encounter expressions like v(xγ ) we set them to be zero on the event {γ = ∞}. In
the whole space we need the following.

Assumption 3.1 (i) The functions c, f, č, f̌ are bounded.
(ii) For a constant χ > 0 we have cαβ(p, x), čαβ(p, x̌) ≥ χ for all α, β, p, x and x̌ .

Notice that in this situation τα·β·x = ∞, however τ̌ α·β· x̌ may still be finite.

Theorem 3.1 Under the above assumptions all assertions of Theorems 2.1 and 2.3
hold true.

Proof First we deal with Theorem 2.1. Take D = Dn = {x : |x | < n} and 0 in
the original Theorem 2.1 in place of D and g, respectively, and denote thus obtained
function v by vn . It is not hard to check that, due to the boundedness of f and the
condition that c ≥ χ , in any compact set � ⊂ R

d we have vn → v uniformly on �
as n → ∞. Furthermore, since the boundary of Dn is smooth and σ, b, c are bounded
and a is uniformly nondegenerate, for each n there exists a global barrier Gn satisfying
Assumption 2.2 with Dn in place of D. Therefore, by Theorem 2.1, vn are continuous
and so is v.

For each n ≥ m ≥ 1 we also have by Theorem 2.1 that

vn(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x

[
vn(xγ∧τm )e

−φγ∧τm −ψγ∧τm

+
γ∧τm∫

0

{ f (xt )+ λtvn(xt )}e−φt −ψt dt

]
,

where τα·β·x
m is the first exit time of xα·β·x

t from Dm . Since vn → v uniformly on D̄m ,
we conclude that

v(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x

[
v(xγ∧τm )e

−φγ∧τm −ψγ∧τm

+
γ∧τm∫

0

{ f (xt )+ λtv(xt )}e−φt −ψt dt

]
.

Passing to the limit as m → ∞ proves our theorem in what concerns Theorem 2.1.
In case of Theorem 2.3 the argument is quite similar and we only comment on

the existence of Ǧn satisfying Assumption 2.6 with Dň = {x̌ ∈ Dˇ : �(x̌) ∈ Dn}.
Under obvious circumstances one can take Ǧn(x̌) = Gn(�(x̌)). In the general case
one should construct Gn for operators with, perhaps, a smaller ellipticity constant and
larger drift terms. The theorem is proved. ��
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4 An auxiliary result

In this section D is not assumed to be bounded. We need a bounded continuous function
� on D̄ such that � ≥ 0 in D and � = 0 on ∂D (if ∂D �= ∅). We assume that we
are given two continuous Ft -adapted processes x ′

t and x ′′
t in R

d with x ′
0, x ′′

0 ∈ D
(a.s.) and progressively measurable real-valued processes c′

t , c′′
t , f ′

t , f ′′
t . Suppose that

c′, c′′ ≥ 0.
Define τ ′ and τ ′′ as the first exit times of x ′

t and x ′′
t from D, respectively. Then

introduce

φ′
t =

t∫

0

c′
s ds, φ′′

t =
t∫

0

c′′
s ds,

and suppose that

E

τ ′∫

0

| f ′
t |e−φ′

t dt + E

τ ′′∫

0

| f ′′
t |e−φ′′

t dt < ∞. (4.1)

Remark 4.1 According to Theorem 2.2.1 of [6] the above requirements about f and
c are fulfilled if Assumption 2.1 is satisfied and we take xt and ( f, c) with prime and
double prime of the type

xα·β·x
t , ( f, c)αtβt (xα·β·x

t ),

respectively, where α· ∈ A, β· ∈ B, and x ∈ R
d .

Finally set

v′ = E

τ ′∫

0

f ′
t e−φ′

t dt, v′′ = E

τ ′′∫

0

f ′′
t e−φ′′

t dt.

Now comes our main assumption.

Assumption 4.1 The processes

�(x ′
t∧τ ′)e

−φ′
t∧τ ′ +

t∧τ ′∫

0

e−φ′
s ds, �(x ′′

t∧τ ′′)e
−φ′′

t∧τ ′′ +
t∧τ ′′∫

0

e−φ′′
s ds

are supermartingales.

Remark 4.2 Observe that Assumption 4.1 is satisfied under the assumptions of The-
orem 2.1 if we take � = G from Theorem 2.1 and other objects from Remark 4.1.
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Indeed, by Itô’s formula

G(xt∧τ )e−φt∧τ +
t∧τ∫

0

e−φs ds

is a local supermartingale, where

xt = xα·β·x
t , τ = τα·β·x , φt = φ

α·β·x
t . (4.2)

Since it is nonnegative or constant, it is a supermartingale.

Denote

�t = e−φ′
t + e−φ′′

t , �c = E

τ ′∧τ ′′∫

0

|c′
t − c′′

t |�t dt,

and by replacing c with f define � f .

Lemma 4.1 Introduce a constant M f (perhaps M f = ∞) such that for each t ≥ 0
(a.s.)

Iτ ′∧τ ′′>t E

⎧⎪⎨
⎪⎩

τ ′∧τ ′′∫

t

| f ′′
s |�s ds | Ft

⎫⎪⎬
⎪⎭

≤ �t M f . (4.3)

Then

|v′ − v′′| ≤ � f + M f�c + sup | f ′|E Iτ ′′<τ ′ [�(x ′
τ ′′)−�(x ′′

τ ′′)]e−φ′
τ ′′

+ sup | f ′′|E Iτ ′<τ ′′ [�(x ′′
τ ′)−�(x ′

τ ′)]e−φ′′
τ ′ , (4.4)

where the last two terms can be dropped if τ ′ = τ ′′ (a.s.).

Proof We have

∣∣v′′ − E

τ ′∧τ ′′∫

0

f ′′
t e−φ′′

t dt
∣∣ ≤ sup | f ′′|E

τ ′′∫

τ ′∧τ ′′
e−φ′′

t dt,

where owing to (4.1), Assumption 4.1, and the fact that bounded � ≥ 0, the last
expectation is dominated by

E�(x ′′
τ ′∧τ ′′)e

−φ′′
τ ′∧τ ′′ Iτ ′<τ ′′ = E Iτ ′<τ ′′�(x ′′

τ ′)e
−φ′′

τ ′

= E Iτ ′<τ ′′ [�(x ′′
τ ′)−�(x ′

τ ′)]e−φ′′
τ ′ .
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Similar estimates hold for v′ and this shows how the last terms in (4.4) appear and
when they disappear.

Next,

E

τ ′∧τ ′′∫

0

∣∣ f ′
t e−φ′

t − f ′′
t e−φ′′

t
∣∣ dt ≤ � f + J,

where

J = E

τ ′∧τ ′′∫

0

| f ′′
t | |e−φ′′

t − e−φ′
t | dt ≤ E

τ ′∧τ ′′∫

0

| f ′′
t |Ct�t dt,

Ct =
t∫

0

|c′
s − c′′

s | ds.

By using Fubini’s theorem it is easily seen that the last expectation above equals

E

τ ′∧τ ′′∫

0

⎛
⎜⎝
τ ′∧τ ′′∫

s

| f ′′
t |�t dt

⎞
⎟⎠ |c′

s − c′′
s | ds,

which owing to (4.3) is less than M f�c. This proves the lemma. ��
Remark 4.3 Assumption (4.3) is satisfied if, for instance, for each t ≥ 0

Iτ ′′>t E

⎧⎪⎨
⎪⎩

τ ′′∫

t

| f ′′
s | ds | Ft

⎫⎪⎬
⎪⎭

≤ M f . (4.5)

Indeed, in that case the left-hand side of (4.3) is less that �t times the left-hand side
of (4.5) just because �t is a decreasing function of t .

This observation will be later used in conjunction with Theorem 2.2.1 of [6].

5 A general approximation result from above

In this section Assumption 2.1 (iv) about the uniform nondegeneracy as well as
Assumption 2.2 concerning G are not used and the domain D is not supposed to
be bounded.

We impose the following.

Assumption 5.1 (i) Assumptions 2.1 (i) b), (ii) are satisfied.
(ii) The functions cαβ(x) and f αβ(x) are bounded on A × B × R

d and uniformly
continuous with respect to x ∈ R

d uniformly with respect to α, β.
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Set

A1 = A

and let A2 be a separable metric space having no common points with A1.

Assumption 5.2 The functions σαβ(x), bαβ(x), cαβ(x), and f αβ(x) are also defined
on A2 × B × R

d in such a way that they are independent of β (on A2 × B × R
d ) and

Assumptions 2.1 (i) b), (ii) are satisfied with, perhaps, larger constants K0, K1 and,
of course, with A2 in place of A. The functions cαβ(x) and f αβ(x) are bounded on
A2 × B × R

d .

Define

Â = A1 ∪ A2.

Then we introduce Â as the set of progressively measurable Â-valued processes
and B̂ as the set of B-valued functions β(α·) on Â such that, for any T ∈ [0,∞) and
any α1· , α2· ∈ Â satisfying

P(α1
t = α2

t for almost all t ≤ T ) = 1,

we have

P(β t (α
1· ) = β t (α

2· ) for almost all t ≤ T ) = 1.

Assumption 5.3 There exists a nonnegative bounded uniformly continuous in D̄ func-
tion G ∈ C2

loc(D) such that G = 0 on ∂D (if D �= R
d ) and

LαβG(x) ≤ −1

in D for all α ∈ Â and β ∈ B.

Here are a few consequences of Assumption 5.3.

Lemma 5.1 For any constant χ ≤ (2 supD G)−1 and any α· ∈ Â, β· ∈ B, and x ∈ D̄
the process

G(xt∧τ )eχ(t∧τ)−φt∧τ + (1/2)

t∧τ∫

0

eχs−φs ds,

where we use notation (4.2), is a supermartingale and

Eα·β·
x

τ∫

0

eχ t−φt dt ≤ 2G(x).
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In particular, for any T ∈ [0,∞)

Eα·β·
x Iτ>T

τ∫

T

e−φt dt = e−χT Eα·β·
x Iτ>T

τ∫

T

eχT −φt dt

≤ e−χT Eα·β·
x

τ∫

0

eχ t−φt dt ≤ 2e−χT G(x).

Finally, for any stopping time γ ≤ τα·β·x

Eα·β·
x Iγ>T G(xγ )e

−φγ ≤ Eα·β·
x Iγ>T G(xT )e

−φT

≤ e−χT Eα·β·
x Iγ>T G(xT )e

χT −φT

≤ e−χT Eα·β·
x G(xT ∧γ )eχ(T ∧γ )−φT ∧γ ≤ e−χT G(x).

The proof of this lemma is easily achieved by using Itô’s formula and the fact that
LαβG + χG ≤ −1/2 on D for all α, β.

Take a constant K ≥ 0 and set

vK (x) = inf sup
β∈B̂ α·∈Â

v
α·β(α·)
K (x),

where

v
α·β·
K (x) = Eα·β·

x

⎡
⎣

τ∫

0

fK (xt )e
−φt dt + g(xτ )e

−φτ
⎤
⎦

=: vα·β·(x)− K Eα·β·
x

τ∫

0

Iαt ∈A2 e−φt dt,

f αβK (x) = f αβ(x)− K Iα∈A2 .

Observe that

v(x) = inf sup
β∈B α·∈A

vα·β(α·)(x).

These definitions make sense owing to Lemma 5.1, which also implies that vα·β·
K

and vα·β· and bounded in D̄.

Theorem 5.2 We have vK → v uniformly on D̄ as K → ∞.

We need the following in which π : Â → A1 is a mapping defined as πα = α if
α ∈ A1 and πα = α∗ if α ∈ A2, where α∗ is a fixed point in A.

123



770 N. V. Krylov

Lemma 5.3 There exists a constant N depending only on K0, K1, and d such that for
any α· ∈ Â, β· ∈ B, x ∈ R

d , T ∈ [0,∞), and stopping time γ

Eα·β·
x sup

t≤T ∧γ
|xt − yt | ≤ NeN T

⎛
⎜⎝Eα·β·

x

T ∧γ∫

0

Iαt ∈A2 dt

⎞
⎟⎠

1/2

,

where

yα·β·x
t = xπα·β·x

t .

Proof For simplicity of notation we drop the superscripts α·, β·, x . Observe that xt

and yt satisfy

xt = x +
t∫

0

σαsβs (xs) dws +
t∫

0

bαsβs (xs) ds,

yt = x +
t∫

0

σαsβs (ys) dws +
t∫

0

bαsβs (ys) ds + ηt ,

where ηt = It + Jt ,

It =
t∫

0

[σπαsβs (ys)− σαsβs (ys)] dws,

Jt =
t∫

0

[bπαsβs (ys)− bαsβs (ys)] ds.

By Theorem II.5.9 of [6] (where we replace the processes xt and x̃t with appropri-
ately stopped ones) for any T ∈ [0,∞) and any stopping time γ

E sup
t≤T ∧γ

|xt − yt |2 ≤ NeN T E sup
t≤T ∧γ

|It + Jt |2, (5.1)

where N depends only on K1 and d, which by Theorem III.6.8 of [8] leads to

E sup
t≤T ∧γ

|xt − yt | ≤ NeN T E sup
t≤T ∧γ

|It + Jt | (5.2)

with the constant N being three times the one from (5.1).
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By using Davis’s inequality we see that for any T ∈ [0,∞)

E sup
t≤T ∧γ

|It | ≤ N E

⎛
⎜⎝

T ∧γ∫

0

Iαs∈A2 ds

⎞
⎟⎠

1/2

≤ N

⎛
⎜⎝E

T ∧γ∫

0

Iαs∈A2 ds

⎞
⎟⎠

1/2

.

Furthermore, almost obviously

E sup
t≤T ∧γ

|Jt | ≤ N E

T ∧γ∫

0

Iαs∈A2 ds ≤ N T 1/2

⎛
⎜⎝E

T ∧γ∫

0

Iαs∈A2 ds

⎞
⎟⎠

1/2

and this in combination with (5.2) proves the lemma. ��
Proof of Theorem 5.2 Without losing generality we may assume that g ∈ C3(Rd)

since the functions of this class uniformly approximate any g which is uniformly con-
tinuous in R

d . Then notice that by Itô’s formula and Lemma 5.1 for g ∈ C3(Rd) we
have

Eα·β·
x

⎡
⎣

τ∫

0

fK (xt )e
−φt dt + g(xτ )e

−φτ
⎤
⎦

= g(x)+ Eα·β·
x

τ∫

0

[ f̂ (xt )− K Iαt ∈A2 ]e−φt dt,

where

f̂ αβ(x) := f αβ(x)+ Lαβg(x),

which is bounded and, for (α, β) ∈ A × B, is uniformly continuous in x uniformly
with respect to α, β. This argument shows that without losing generality we may (and
will) also assume that g = 0.

Next, since A ⊂ Â and for α· ∈ Â and β ∈ B̂ we have β(α·) ∈ B, it holds that

vK ≥ v.

To estimate vK from above, take β ∈ B and define β̂ ∈ B̂ by

β̂ t (α·) = β t (πα·).

Also take any sequence xn ∈ D̄, n = 1, 2, ..., and find a sequence αn· ∈ Â such that

vK (x
n) ≤ sup

α∈Â

Eα·β̂(α·)
xn

τ∫

0

fK (xt )e
−φt dt

= 1/n + vα
n· β̂(αn· )(xn)− K E

τ n∫

0

Iαn
t ∈A2 e−φn

t dt, (5.3)
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where

(τ n, φn
t ) = (τ, φt )

αn· β̂(αn· )xn
.

It follows from Lemma 5.1 that there is a constant N independent of n and K such

that |vαn· β̂(αn· )(xn)| ≤ N , |v| ≤ N , vK ≥ v ≥ −N and we conclude from (5.3) that
for any T ∈ [0,∞) and

c̄ := sup c

we have

E

τ n∫

0

Iαn
t ∈A2 e−t c̄ dt ≤ N/K , E

τ n∧T∫

0

Iαn
t ∈A2 dt ≤ NeN T /K , (5.4)

where and below in the proof by N we denote constants which may change from one
occurrence to another and independent of n, K , and T .

Next, introduce

xn
t = x

αn· β̂(αn· )xn

t , yn
t = x

παn· β̂(αn· )xn

t , πφn
t =

t∫

0

cπα
n
s β̂s (α

n· )(yn
s ) ds,

define γ n as the first exit time of yn
t from D, and, with the aim of applying Lemma

4.1, observe that by identifying xn
t , yn

t , τ
n, γ n and the objects related to them with

x ′
t , x ′′

t , τ
′, τ ′′ and the objects related to them, respectively, we have

|c′
t − c′′

t | = |cαn
t β̂ t (α

n· )(xn
t )− cπα

n
t β̂ t (α

n· )(yn
t )|.

Hence for any T ∈ (0,∞)

�n
c = E

τ n∧γ n∫

0

|cαn
t β̂ t (α

n· )(xn
t )− cπα

n
t β̂ t (α

n· )(yn
t )|(e−φn

t + e−πφn
t ) dt

≤ E

τ n∧γ n∧T∫

0

Wc(|xn
t − yn

t |) dt + In + Jn,

where Wc is the modulus of continuity of c and

In = N E

τ n∧γ n∧T∫

0

Iαn
t ∈A2 dt,
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Jn = N E

τ n∧γ n∫

τ n∧γ n∧T

(e−φn
t + e−πφn

t ) dt.

By virtue of (5.4) we have In ≤ NeN T /K and Jn ≤ Ne−χT by Lemma 5.1, say with
χ = (2 supD G)−1. Therefore,

�n
c ≤ T EWc

(
sup

t≤τ n∧T
|xn

t − yn
t |
)

+ NeN T /K + Ne−χT .

A similar estimate holds if we replace c with f .
As long as the last terms in (4.4) are concerned, observe that

E |G(xn
τ n )− G(yn

τ n )|e−πφn
τn Iτ n<γ n

≤ EWG

(
sup

t≤τ n∧γ n∧T
|xn

t − yn
t |
)

+ Rn,

where WG is the modulus of continuity of G and

Rn = E Iγ n>τ n>T G(yn
τ n )e−πφτn ≤ E Iγ n∧τ n>T G(yn

γ n∧τ n )e−πφγ n∧τn ≤ Ne−χT ,

with the second inequality following from Lemma 5.1.
Finally, in light of Lemma 5.1 one can take M f in Lemma 4.1 to be a constant N

independent of n and K and then by applying Lemma 4.1 we conclude from (5.3) that

vK (x
n) ≤ 1/n + vπα

n· β(παn· )(xn)

+ (T + 1)EW

(
sup

t≤τ n∧γ n∧T
|xn

t − yn
t |
)

+ NeN T /K + Ne−χT ,

where W (r) is a bounded function such that W (r) → 0 as r ↓ 0.
This result, (5.4), and Lemma 5.3 imply that, for any T ,

vK (x
n) ≤ 1/n + vπα

n· β(παn· )(xn)+ w(T, K )+ NeN T /K + Ne−χT , (5.5)

where w(T, K ) is independent of n and w(T, K ) → 0 as K → ∞ for any T . Hence

vK (x
n) ≤ sup

α·∈A
vα·β(α·)(xn)+ w(T, K )+ NeN T /K + Ne−χT + 1/n.

Owing to the arbitrariness of β ∈ B we have

vK (x
n) ≤ v(xn)+ w(T, K )+ NeN T /K + Ne−χT + 1/n,
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and the arbitrariness of xn yields

sup
D̄

(vK − v) ≤ w(T, K )+ NeN T /K + Ne−χT ,

which leads to the desired result after first letting K → ∞ and then T → ∞. The
theorem is proved. ��

6 A general approximation result from below

As in Sect. 5, Assumption 2.1 (iv) about the uniform nondegeneracy as well as Assump-
tion 2.2 concerning G are not used and the domain D is not supposed to be bounded.

However, we suppose that Assumption 5.1 is satisfied. Here we allow β to change
in a larger set penalizing using controls other than initially available.

Set

B1 = B

and let B2 be a separable metric space having no common points with B1.

Assumption 6.1 The functions σαβ(x), bαβ(x), cαβ(x), and f αβ(x) are also defined
on A × B2 × R

d in such a way that they are independent of α (on A × B2 × R
d )

and Assumptions 2.1 (i) b), (ii) are satisfied with, perhaps, larger constants K0 and K1
and, of course, with B2 in place of B. The functions cαβ(x) and f αβ(x) are bounded
on A × B2 × R

d .

Define

B̂ = B1 ∪ B2.

Then we introduce B̂ as the set of progressively measurable B̂-valued processes
and B̂ as the set of B̂-valued functions β(α·) on A such that, for any T ∈ [0,∞) and
any α1· , α2· ∈ A satisfying

P(α1
t = α2

t for almost all t ≤ T ) = 1,

we have

P(β t (α
1· ) = β t (α

2· ) for almost all t ≤ T ) = 1.

Assumption 6.2 There exists a nonnegative bounded uniformly continuous in D̄ func-
tion G ∈ C2

loc(D) such that G = 0 on ∂D (if D �= R
d ) and

LαβG(x) ≤ −1

in D for all α ∈ A and β ∈ B̂.
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Take a constant K ≥ 0 and set

v−K (x) = inf
β∈B̂

sup
α·∈A

v
α·β(α·)
−K (x),

where

v
α·β·
−K (x) = Eα·β·

x

⎡
⎣
γ∧τ∫

0

f−K (xt )e
−φt dt + g(xγ∧τ )e−φγ∧τ

⎤
⎦

=: vα·β·(x)+ K Eα·β·
x

γ∫

0

Iβt ∈B2 e−φt dt,

f αβ−K (x) = f αβ(x)+ K Iβ∈B2 .

We reiterate that

v(x) = inf sup
β∈B α·∈A

vα·β(α·)(x).

These definitions make sense by the same reason as in Sect. 5.

Theorem 6.1 We have v−K → v uniformly on D̄ as K → ∞.

Proof As in the proof of Theorem 5.2 we may assume that g = 0. Then since B ⊂ B̂

we have that v−K ≤ v. To estimate v−K from below take any sequence xn ∈ D̄ and
find a sequence βn ∈ B̂ such that

v−K (x
n) ≥ −1/n + sup

α·∈A
Eα·βn(α·)

xn

τ∫

0

f−K (xt )e
−φt dt.

Since the last supremum is certainly greater than a negative constant independent of
n plus

K sup
α·∈A

Eα·βn(α·)
xn

τ∫

0

Iβ t (α·)∈B2 e−c̄t dt,

where c̄ is the same as in Sect. 5, we conclude that

sup
α·∈A

Eα·βn(α·)
xn

τ∫

0

Iβ t (α·)∈B2 e−c̄t dt ≤ N/K . (6.1)
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Next, introduce πβ similarly to how πα was introduced and find a sequence of
αn· ∈ A such that

E
αn· πβn(αn· )
xn

τ∫

0

f (xt )e
−φt dt ≥ v(xn)− 1/n.

By using (6.1) and arguing as in the proof of Theorem 5.2 one proves that

In := ∣∣Eαn· πβn(αn· )
xn

τ∫

0

f (xt )e
−φt dt − E

αn· βn(αn· )
xn

τ∫

0

f (xt )e
−φt dt

∣∣

tends to zero as n → ∞. This leads to the desired result since

v−K (x
n) ≥ −1/n + E

αn· βn(αn· )
xn

τ∫

0

f (xt )e
−φt dt

≥ −1/n + In + E
αn· πβn(αn· )
xn

τ∫

0

f (xt )e
−φt dt

≥ −2/n + In + v(xn).

The theorem is proved. ��

7 Versions of Theorems 5.2 and 6.1 for uniformly nondegenerate case and Proof
of Theorem 2.3

In Theorem 7.1 below we suppose that Assumptions 2.1 (i) b), (ii) are satisfied and
domain D is bounded . We also take extensions of σ, b, c and f as in Sects. 5 and 6
satisfying Assumptions 5.2 and 6.1 and additionally require the extended σαβ to also
satisfy Assumption 2.1 (iv), perhaps with a different constant δ.

Finally, we suppose that Assumptions 5.3 and 6.2 are satisfied.
Then take γ and λ as in Sect. 5 (and Sect. 6) and introduce the functions v±K and

v as in Sects. 5 and 6.

Theorem 7.1 We have v±K → v uniformly on D̄ as K → ∞.

Proof For ε > 0 we construct vε,±K (x) and vε(x) from σ, b, c(ε), f (ε) (mollifying
only the original c, f and not their extensions) and g in the same way as v±K and v
were constructed fromσ, b, c, f , and g. By Theorems 5.2 and 6.1 we have vε,±K → vε
uniformly on D̄ as K → ∞ for any ε > 0.

Therefore, we only need to show that |vε,±K − v±K | + |vε − v| ≤ W (ε), where
W (ε) is independent of K and tends to zero as ε ↓ 0. However, by Theorem 2.2.1 of
[6] and Lemma 4.1 (see also Remarks 4.1 and 4.2)
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|vε,±K − v±K | + |vε − v| ≤ N‖ sup
α∈A,β∈B

| f αβ − ( f αβ)(ε)| ‖Ld (D)

+ N‖ sup
α∈ Â,β∈B̂

| f αβ | ‖Ld (D)‖ sup
α∈A,β∈B

|cαβ − (cαβ)(ε)| ‖Ld (D).

This proves the theorem. ��
In the remaining part of the section the assumption of Theorem 2.3, that is all the

assumptions stated in Sect. 2, are supposed to be satisfied.

Proof of Theorem 2.3 For obvious reasons while proving the inequalities (2.13) and
(2.15) in assertions (i) and (ii) we may assume that g ∈ C2(Rd).

(i) First suppose that D ∈ C2. By Theorem 1.1 of [9] there is a set A2 and bounded
continuous functions σα = σαβ, bα = bαβ, cα = cαβ (independent of x and β), and
f αβ ≡ 0 defined on A2 such that Assumption 2.1 (iv) about the uniform nondegeneracy
of aα = aαβ = (1/2)σα(σα)∗ is satisfied forα ∈ A2 (perhaps with a different constant
δ > 0) and such that for any K ≥ 0 the equation (the following notation is explained
below)

HK [u] = 0 (7.1)

(a.e.) in D with boundary condition u = g on ∂D has a unique solution

uK ∈ C1(D̄)
⋂
p≥1

W 2
p(D)

(recall Assumption 2.3 (iv) and that g ∈ C2(Rd)). Here

HK [u](x) := max(H [u](x), P[u](x)− K ), (7.2)

P[u](x) = sup
α∈A2

[
aαi j Di j u(x)+ bαi Di u(x)− cαu(x)

]
. (7.3)

Observe that

max(H [u](x), P[u](x)− K )

= max

{
sup inf
α∈A1 β∈B

[Lαβu(x)+ f αβ(x)], sup inf
α∈A2 β∈B

[Lαβu(x)+ f αβ(x)− K ]
}

= sup inf
α∈ Â β∈B

[
Lαβu(x)+ f αβK (x)

]
( f αβK (x) = f αβ(x)Iα∈A1 − K Iα∈A2),

where the first equality follows from the definition of H [u], (7.3), and the fact that
Lαβ is independent of β for α ∈ A2.

We set uK (x) = g(x) if x �∈ D.
Since D is sufficiently regular by assumption, there exists a sequence un(x) of

functions of class C2(D̄), which converge to uK as n → ∞ uniformly in D̄ and in
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W 2
p(D) for any p ≥ 1. Hence, by Theorem 4.2 of [10] we have

uK (x) = inf sup
β∈B̂ α∈Â

Eα·β(α·)
x

⎡
⎣

τ∫

0

fK (xt )e
−φt dt + g(xτ )e

−φτ
⎤
⎦ .

By Theorem 7.1 we have that uK → v uniformly on D̄ and, since they coincide
outside D, the convergence is uniform on R

d . In particular,

v ∈ C(Rd). (7.4)

On the other hand by assumption, (7.1), and (7.2) we have Ȟ [ψuK ] ≤ 0 (a.e.
Dˇ). We also know that uK ≥ v and, in particular, ψuK ≥ v̌ on ∂Dˇ Furthermore,

ψun ∈ C2(D̄ˇ
), ψun are p-insensitive by Assumption 2.7, and, for each n, the second-

order derivatives ofψun are uniformly continuous in D̄ˇ
) (because of our assumptions

on � and ψ). Also ψun converge to ψuK as n → ∞ uniformly in D̄ˇ and, as is easy
to see, for any x̌ ∈ Dˇ

Eα·β·
x̌

τ̌∫

0

(
|D2

x̌ (ψun)− D2
x̌ (ψuK )| + |Dx̌ (ψun)− Dx̌ (ψuK )|

)
(x̌t )e

−φ̌t dt

≤ N Eα·β·
x̌

τ̌∫

0

(
|D2un − D2uK | + |Dun − DuK | + |un − uK |

)
(�(x̌t )) dt,

where, as always, uK (x̌) = uK (�(x̌)) and un(x̌) = un(�(x̌)) and the constant N
depends only on ‖ψ,�‖C1,1 , d, and k. By Assumption 2.5 (iii) and Theorem 2.2.1 of
[6] the last expression tends to zero as n → ∞ uniformly with respect to α· ∈ A and
β· ∈ B. We also recall that the remaining parts of Assumption 2.5 are imposed and
this allows us to apply Theorem 4.1 of [10] and conclude that ψuK ≥ v̌, which after
setting K → ∞ yields ψv ≥ v̌. Theorem 4.1 of [10] also says that

ψuK (x̌) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x̌

⎡
⎢⎣ψuK (x̌γ∧τ̌ )e−φ̌γ∧τ̌−ψγ∧τ̌

+
γ∧τ̌∫

0

{ f̌ (pt , x̌t )+ λtψuK (x̌t )}e−φ̌t −ψt dt

⎤
⎥⎦ . (7.5)

By letting K → ∞ in (7.5) and using the uniform convergence of uK to v we easily
get the desired result in our particular case of smooth D.

So far we did not use the assumption concerning the boundary behavior of G and
Ǧ which we need now to deal with the case of general D. Take an expanding sequence
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of smooth domains Dn ⊂ D such that D = ⋃
Dn and construct the functions vn in

the same way as v by replacing D with Dn . We extend vn to R
k as in (2.11).

Also construct v̌n by replacing Dˇ with

Dň = Dˇ ∩ {x̌ : �(x̌) ∈ Dn} (= Dn if k = d and �(x) ≡ x)

and the boundary data ψvn in place of ψv, that is

v̌n(x̌) = inf sup
β∈B α·∈A

Eα·β(α·)
x̌

⎡
⎢⎣ψvn(x̌τ̌ (n))e

−φ̌τ̌ (n) +
τ̌ (n)∫

0

f̌ (pt , x̌t )e
−φ̌t dt

⎤
⎥⎦ ,

where τ̌ α·β· x̌ (n) is the first exit time of x̌α·β· x̌
t from Dň . Then by the above we have

that

ψvn ≥ v̌n (7.6)

and

ψvn(x̌) ≥ inf sup
β∈B α·∈A

Eα·β(α·)
x̌

⎡
⎢⎣ψvn(x̌γ∧τ̌ (n))e−φ̌γ∧τ̌ (n)−ψγ∧τ̌ (n)

+
γ∧τ̌ (n)∫

0

{ f̌ (pt , x̌t )+ λtψv
n(x̌t )}e−φ̌t −ψt dt

⎤
⎥⎦ . (7.7)

We now claim that, as n → ∞,

sup
Rd

|vn − v| → 0, (7.8)

sup
Rk

|v̌n − v̌| → 0. (7.9)

That (7.8) holds is proved in [10] (see Sect. 6 there). Owing to (7.8) to prove (7.9)
it suffices to show that uniformly in R

k (notice the replacement of vn by v)

inf sup
β∈B α·∈A

Eα·β(α·)
x̌

⎡
⎢⎣ψv(x̌τ̌ (n))e−φ̌τ̌ (n) +

τ̌ (n)∫

0

f̌ (pt , x̌t )e
−φ̌t dt

⎤
⎥⎦

→ inf sup
β∈B α·∈A

Eα·β(α·)
x̌

⎡
⎢⎣ψv(x̌τ̌ )e−φ̌τ̌ +

τ̌∫

0

f̌ (pt , x̌t )e
−φ̌t dt

⎤
⎥⎦ (7.10)
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(recall that τ̌ α·β· x̌ is the first exit time of x̌α·β· x̌
t from Dˇ). Both sides of (7.10) coincide

if x̌ �∈ Dˇ. Therefore, we need to prove the uniform convergence only in Dˇ.
Here v ∈ C(D̄) and it is convenient to prove (7.10) just for any such v, regardless

of its particular construction. In that case, relying on Assumption 2.7, as in the proof
of Theorem 2.2 of [10] (see Section 6 there), we reduce our problem to proving that
uniformly in Dˇ

v̂n(x) := inf sup
β∈B α·∈A

Eα·β(α·)
x̌

τ̌ (n)∫

0

f̌ (pt , x̌t )e
−φ̌t dt

→ v̂(x) := inf sup
β∈B α·∈A

Eα·β(α·)
x̌

τ̌∫

0

f̌ (pt , x̌t )e
−φ̌t dt

with perhaps modified f̌ still satisfying (2.7) and (2.8) and satisfying Assumptions
2.5 (i), (ii) with (modified f̄ε).

For ε > 0 introduce

Nε = sup
(α,β,x̌)∈A×B×Dˇ

| f̄ αβε (x̌)|

and observe that

|v̌(x̌)− v̌n(x̌)| ≤ δ−1
1 In(x),

where

δ1 In(x) := δ1 sup
α·∈A,β·∈B

Eα·β·
x̌

τ̌∫

τ̌n

| f (pt , x̌t )|e−φ̌t dt

≤ sup
α·∈A,β·∈B

Eα·β·
x̌

τ̌∫

τ̌n

| f̄ (x̌t )|e−φ̌t dt ≤ Nε sup
α·∈A,β·∈B

Eα·β·
x̌

τ̌∫

τ̌n

e−φ̌t dt + Jn(x),

where

Jn(x) = sup
α·∈A,β·∈B

Eα·β·
x̌

τ̌∫

0

| f̄ (x̌t )− f̄ε(x̌t )|e−φ̌t dt.

By Assumption 2.5 (ii) we have that Jn(x) → 0 as ε ↓ 0 uniformly in Dˇ (this is
the only place where we use the uniformity in (2.10)). Furthermore, by Lemma 5.1 of
[10]
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sup
α·∈A,β·∈B

Eα·β·
x̌

τ̌∫

τ̌n

e−φ̌t dt ≤ sup
∂Dň

Ǧ. (7.11)

As is easy to check�(∂Dň) ⊂ ∂Dn , so that, if we have a sequence of points x̌n ∈ ∂Dň ,
then dist (�(x̌n), ∂D) → 0 as n → ∞. It follows by Assumption 2.6 that the right-
hand side of (7.11) goes to zero as n → ∞. This proves that In(x) → 0 uniformly
in Dˇ, yields (7.10) and (7.9) and along with (7.8) and (7.6) proves that ψv ≥ v̌. One
passes to the limit in (7.7) similarly and this finally brings the proof of assertion (i) to
an end.

(ii) As above first suppose that D ∈ C2. By Theorem 1.3 of [9] there is a set B2
and bounded continuous functions σβ = σαβ, bβ = bαβ, cβ = cαβ (independent of x
and α), and f αβ ≡ 0 defined on B2 such that Assumption 2.1 (iv) about the uniform
nondegeneracy of aβ = aαβ = (1/2)σβ(σβ)∗ is satisfied for β ∈ B2 (perhaps with
a different constant δ > 0) and such that for any K ≥ 0 the equation (the following
notation is explained below)

H−K [u] = 0

(a.e.) in D with boundary condition u = g on ∂D has a unique solution

u−K ∈ C1(D̄)
⋂
p≥1

W 2
p(D).

Here

H−K [u](x) := max(H [u](x), P[u](x)+ K ),

P[u](x) = inf
β∈B2

[
aβi j Di j u(x)+ bβi Di u(x)− cβu(x)

]
.

We introduce

f αβK (x) = f αβ(x)Iβ∈B1 + K Iβ∈B2 .

and note that

sup inf
α∈A β∈B̂

[
Lαβu(x)+ f αβK (x)

]

= sup
α∈A

min

{
inf
β∈B

[Lαβu(x)+ f αβ(x)], inf
β∈B2

[Lαβu(x)+ f αβ(x)+ K ]
}

= min(H [u](x), P[u](x)+ K ).

After that it suffices to repeat the above proof relying again on Theorem 7.1.
The theorem is proved. ��
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8 Proof of Theorems 2.1 and 2.2

Here all assumptions of Theorem 2.1 are supposed to be satisfied.

Proof of Theorem 2.1 If the functions (c, f )αβ(x) are bounded on A × B × R
d , then

according to Remark 2.4 assertion (ii) of Theorem 2.1 follows immediately from
Theorem 2.3. The continuity of v also follows from the proof of Theorem 2.3.

In the general case, for ε > 0, define

(cε, fε)
αβ(x) = (cαβ, f αβ)(ε)(x)

and construct vε(x) from σ, b, cε, fε, and g in the same way as v was constructed
from σ, b, c, f , and g. By the above (2.6) holds if we replace f and c with fε and cε
respectively.

We first take λ ≡ 0 and γ α·β· = τα·β·x in the counterpart of (2.6) corresponding to
vε. Then by Theorem 2.2.1 of [6] and Lemma 4.1 (see also Remarks 4.1 and 4.2)

|v(x)− vε(x)| ≤ N‖ sup
α∈A,β∈B

| f αβ − ( f αβ)(ε)| ‖Ld (D)

+N‖ sup
α∈A,β∈B

| f αβ | ‖Ld (D)‖ sup
α∈A,β∈B

|cαβ − (cαβ)(ε)| ‖Ld (D).

It follows by Assumption 2.1 (iii) that vε → v uniformly on D̄ and v is continuous in
D̄. After that we easily pass to the limit in the counterpart of (2.6) corresponding to
vε for arbitrary λ and γ again on the basis of Lemma 4.1. The theorem is proved. ��
Proof of Theorem 2.2 We know from [9] (see Remark 1.3 there) that uK introduced
in the proof of Theorem 2.3 (see Sect. 7) satisfies an elliptic equation

aK
i j Di j uK + bK

i Di uK − cK uK + f K = 0,

where (aK
i j ) satisfies the uniform nondegeneracy condition (see Assumption 2.1 (iv))

with a constant δ1 = δ1(δ, d) > 0, |bK |, cK are bounded by a constant depending
only on K0, δ, and d, cK ≥ 0 and

| f K | ≤ sup
α,β

| f αβ |.

Then according to classical results (see, for instance, [3] or [7]) there exists a constant
θ ∈ (0, 1) depending only on δ1 and d, that is on δ and d, such that for any subdomain
D′ ⊂ D̄′ ⊂ D and x, y ∈ D′ we have

|uK (x)− uK (y)| ≤ N |x − y|θ , (8.1)

where N depends only on δ, d, the distance between the boundaries of D′ and D, on
the diameter of D, and on K0. It is seen that (8.1) will be preserved as we let K → ∞
and then perform all other steps in the above proof of Theorem 2.1 which will lead us
to the desired result. The theorem is proved. ��
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