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Abstract We consider a random walk in a random potential on a square lattice of
arbitrary dimension. The potential is a function of an ergodic environment and steps of
the walk. The potential is subject to a moment assumption whose strictness is tied to
the mixing of the environment, the best case being the i.i.d. environment. We prove that
the infinite volume quenched point-to-point free energy exists and has a variational
formula in terms of entropy. We establish regularity properties of the point-to-point
free energy, and link it to the infinite volume point-to-line free energy and quenched
large deviations of the walk. One corollary is a quenched large deviation principle for
random walk in an ergodic random environment, with a continuous rate function.
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712 F. Rassoul-Agha, T. Seppäläinen

1 Introduction

This paper studies the limiting free energy of a class of models with Boltzmann–Gibbs-
type distributions on random walk paths. The energy of a path is defined through a
coupling of the walk with a random environment. Our main interest is the directed
polymer in an i.i.d. random environment, also called the polymer with bulk disorder.
This model was introduced in the statistical physics literature by Huse and Henley
in 1985 [19]. For recent surveys see [7,18]. The free energy of these models is a
central object of study. Its dependence on model parameters gives information about
phase transitions. In quenched settings the fluctuations of the quenched free energy
are closely related to the fluctuations of the path.

Some properties we develop can be proved with little or no extra cost more generally.
The formulation then consists of a general walk in a potential that can depend both on
an ergodic environment and on the steps of the walk. We call the model random walk
in a random potential (RWRP).

This paper concentrates mainly on the point-to-point version of RWRP where the
walk is fixed at two points and allowed to fluctuate in between. The point-to-line
model was studied in the companion paper [34]. The motivation for both papers was
that the free energy was known only as a subadditive limit, with no explicit formulas.
We provide two variational formulas for the point-to-point free energy. One comes in
terms of entropy and we develop it in detail after preliminary work on the regularity of
the free energy. The other involves correctors (gradients of sorts) and can be deduced
by combining a convex duality given in (4.3) below with Theorem 2.3 from [34].

Significant recent progress has taken place in the realm of 1+1 dimensional exactly
solvable directed polymers (see review [10]). Work on general models is far behind.
Here are three future directions opened up by our results in the present work and [34].

(i) One goal is to use this theory to access properties of the limiting free energy,
especially in regimes of strong disorder where the quenched model and annealed
model deviate from each other.

(ii) The variational formulas identify certain natural corrector functions and Markov
processes whose investigation should shed light on the polymer models them-
selves. Understanding this picture for the exactly solvable log-gamma polymer
[37] will be the first step.

(iii) The zero-temperature limits of polymer models are last-passage percolation mod-
els. In this limit the free energy turns into the limit shape. Obtaining information
about limit shapes of percolation models has been notoriously difficult. A future
direction is to extend the variational formulas to the zero-temperature case.

In the remainder of the introduction we describe the model and some examples, give
an overview of the paper, and describe some past literature.

1.1 The RWRP model and examples

Fix a dimension d ∈ N. Let R ⊂ Z
d be a finite subset of the square lattice and let

P denote the distribution of the random walk on Z
d started at 0 and whose transition

probability is p̂z = 1/|R| for z ∈ R and p̂z = 0 otherwise. In other words, the random
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Quenched point-to-point free energy 713

walk picks its steps uniformly at random from R. E denotes expectation under P . R
generates the additive group G = {∑z∈R azz : az ∈ Z}.

An environment ω is a sample point from a probability space (�,S, P). � comes
equipped with a group {Tz : z ∈ G} of measurable commuting transformations that
satisfy Tx+y = Tx Ty and T0 is the identity. P is a {Tz : z ∈ G}-invariant probability
measure on (�,S). This is summarized by the statement that (�,S, P, {Tz : z ∈ G})
is a measurable dynamical system. As usual P is ergodic if T−1

z A = A for all z ∈ R
implies P(A) = 0 or 1, for events A ∈ S. A stronger assumption of total ergodicity
says that P(A) = 0 or 1 whenever T−1

z A = A for some extreme point z of the convex
hull of R. E will denote expectation relative to P.

A potential is a measurable function g : �×R� → R for some integer � ≥ 0. The
case � = 0 means that g = g(ω), a function of ω alone. Given an environment ω and
an integer n ≥ 1 define the quenched polymer measure

Qg,ω
n (A) = 1

Z g,ω
n

E
[
e
∑n−1

k=0 g(TXk ω, Zk+1,k+�)1A(ω, X0,∞)
]
, (1.1)

where A is an event on environments and paths and

Z g,ω
n = E

[
e
∑n−1

k=0 g(TXk ω, Zk+1,k+�)
]

is the normalizing constant called the quenched partition function. This model we call
random walk in a random potential (RWRP). Above Zk = Xk − Xk−1 is a random
walk step and Zi, j = (Zi , . . . , Z j ) a vector of steps. Similar notation will be used for
all finite and infinite vectors and path segments, including Xk,∞ = (Xk, Xk+1, . . . )

and z1,� = (z1, . . . , z�) used above. Note that in general the measures Qg,ω
n defined

in (1.1) are not consistent as n varies. Here are some key examples of the setting.

Example 1.1 (I.I.D. environment) A natural setting is the one where � = �Z
d

is a
product space with generic points ω = (ωx )x∈Zd and translations (Txω)y = ωx+y , the
coordinates ωx are i.i.d. under P, and g(ω, z1,�) a local function of ω, which means
that g depends on only finitely many coordinates ωx . This is a totally ergodic case. In
this setting g has the r0-separated i.i.d. property for some positive integer r0. By this
we mean that if x1, . . . , xm ∈ G satisfy

∣
∣xi − x j

∣
∣ ≥ r0 for i �= j , then the R

R�
-valued

random vectors {(g(Txi ω, z1,�)
)

z1,�∈R� : 1 ≤ i ≤ m} are i.i.d. under P.

Example 1.2 (Strictly directed walk and local potential in i.i.d. environment) A spe-
cialization of Example 1.1 where 0 lies outside the convex hull of R. This is equivalent
to the existence of û ∈ Z

d such that û · z > 0 for all z ∈ R.

Example 1.3 (Stretched polymer) A stretched polymer has an external field h ∈ R
d

that biases the walk, so the potential is g(ω, z) = �(ω) + h · z. See the survey paper
[20] and its references for the state of the art on stretched polymers in a product
potential.

Example 1.4 (Random walk in random environment) To cover RWRE take � = 1
and g(ω, z) = log pz(ω) where (pz)z∈R is a measurable mapping from � into P =

123



714 F. Rassoul-Agha, T. Seppäläinen

{(ρz)z∈R ∈ [0, 1]R : ∑z ρz = 1}, the space of probability distributions on R. The
quenched path measure Qω

0 of RWRE started at 0 is the probability measure on the
path space (Zd)Z+ defined by the initial condition Qω

0 (X0 = 0) = 1 and the transition
probability Qω

0 (Xn+1 = y|Xn = x) = py−x (Txω). The (X0, . . . , Xn)-marginal of
the polymer measure Qg,ω

n in (1.1) is the marginal of the quenched path measure Qω
0 .

1.2 Overview of the paper

Under some assumptions article [34] proved the P-almost sure existence of the limit

��(g) = lim
n→∞ n−1 log E

[
e
∑n−1

k=0 g(TXk ω,Zk+1,k+�)
]
. (1.2)

In different contexts this is called the limiting logarithmic moment generating function,
the pressure, or the free energy. One of the main results of [34] was the variational
characterization

��(g) = sup
μ∈M1(��),c>0

{
Eμ[min(g, c)] − H�(μ)

}
. (1.3)

M1(��) is the space of probability measures on �� = � × R� and H�(μ) is an
entropy, defined in (5.2) below.

In the present paper we study the quenched point-to-point free energy

��(g, ζ ) = lim
n→∞ n−1 log E

[
e
∑n−1

k=0 g(TXk ω,Zk+1,k+�)1{Xn = x̂n(ζ )}] (1.4)

where ζ ∈ R
d and x̂n(ζ ) is a lattice point that approximates nζ . Our main result is

a variational characterization of ��(g, ζ ) which is identical to (1.3), except that now
the supremum is over distributions μ on �� whose mean velocity for the path is ζ .
For directed walks in i.i.d. environments this is Theorem 5.3 in Sect. 5.

We begin in Sect. 2 with the existence of ��(g, ζ ) and regularity in ζ . A
by-product is an independent proof of the limit (1.2). We relate ��(g) and ��(g, ζ )

to each other in a couple different ways. This relationship yields a second variational
formula for ��(g, ζ ). Combining convex duality (4.3) with Theorem 2.3 from [34]
gives a variational formula for ��(g, ζ ) that involves tilts and corrector functions
rather than measures.

Section 3 proves further regularity properties for the i.i.d. strictly directed case:
continuity of ��(g, ζ ) in ζ and L p continuity (p > d) in g.

Section 4 is for large deviations. Limits (1.2) and (1.4) give a quenched large
deviation principle for the distributions Qg,ω

n {Xn/n ∈ · }, with rate function I g(ζ ) =
��(g)−�

usc(ζ )
� (g, ζ ) where �

usc(ζ )
� (g, ζ ) is the upper semicontinuous regularization.

This rate function is continuous on the convex hull of R. We specialize the LDP to
RWRE and give an overview of past work on quenched large deviations for RWRE.
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Quenched point-to-point free energy 715

Section 5 develops the entropy representation of ��(g, ζ ) for the i.i.d. strictly
directed case. The general case can be found in the preprint version [33]. The LDP is
the key, through a contraction principle.

Our results are valid for unbounded potentials, provided we have control of the
mixing of the environment. When shifts of the potential are strongly mixing, g ∈ L p

for p large enough suffices. In particular, for an i.i.d. environment and stricly directed
walks, the assumption is that g is local in its dependence on ω and g(· , z1,�) ∈ L p(P)

for some p > d.
Section 6 illustrates the theory for a directed polymer in an i.i.d. environment in the

L2 region (weak disorder, dimension d ≥ 3). The variational formula is solved by an
RWRE in a correlated environment, and a tilt (or “stretch” as in Example 1.3) appears
as the dual variable of the velocity ζ .

1.3 Literature and past results

Standard references for RWRE are [2,40,44], and for RWRP [7,18,39]. RWRE large
deviations literature is recounted in Sect. 4 after Theorem 4.3. Early forms of our
variational formulas appeared in position-level large deviations for RWRE in [36].

A notion related to the free energy is the Lyapunov exponent defined by

lim
n→∞ n−1 log E

[
e
∑τ (x̂n (ζ ))−1

k=0 g(TXk ω,Zk+1,k+�)1{τ(x̂n(ζ )) < ∞}
]

where τ(x) = inf{k ≥ 0 : Xk = x}. Results on Lyapunov exponents and the quenched
level 1 LDP for nearest-neighbor polymers in i.i.d. random potentials have been proved
by Carmona and Hu [5], Mourrat [28] and Zerner [45]. Some of the ideas originate in
Sznitman [38] and Varadhan [41].

Our treatment resolves some regularity issues of the level 1 rate function raised by
Carmona and Hu [5, Remark 1.3]. We require g to be finite, so for example walks on
percolation clusters are ruled out. Mourrat [28] proved a level 1 LDP for simple random
walk in an i.i.d. potential g(ω0) ≤ 0 that permits g = −∞ as long as g(ωx ) > −∞
percolates.

The directed i.i.d. case of Example 1.2 in dimension d = 2, with a potential g(ω0)

subject to some moment assumptions, is expected to be a member of the KPZ uni-
versality class (Kardar–Parisi–Zhang). The universality conjecture is that the centered
and normalized point-to-point free energy should converge to the Airy2 process. At
present such universality remains unattained. Piza [29] proved in some generality that
fluctuations of the point-to-point free energy diverge at least logarithmically. Among
the lattice models studied in this paper one is known to be exactly solvable, namely the
log-gamma polymer introduced in [37] and further studied in [11,16]. For that model
the KPZ conjecture is partially proved: correct fluctuation exponents were verified in
some cases in [37], and the Tracy–Widom GUE limit proved in some cases in [3].
KPZ universality results are further along for zero temperature polymers (oriented
percolation or last-passage percolation type models). Article [10] is a recent survey of
these developments.
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716 F. Rassoul-Agha, T. Seppäläinen

1.4 Notation and conventions

On a product space � = �Z
d

with generic points ω = (ωx )x∈Zd , a local function g(ω)

is a function of only finitely many coordinates ωx . E and P refer to the background
measure on the environments ω. For the set R ⊂ Z

d of admissible steps we define
M = max{|z| : z ∈ R}, and denote its convex hull in R

d by U = {∑z∈R azz : 0 ≤
az ∈ R,

∑
z az = 1}. The steps of an admissible path (xk) are zk = xk − xk−1 ∈ R.

In general, the convex hull of a set I is co I. A convex set C has its relative interior
ri C, its set of extreme points ex C, and its affine hull aff C. The upper semicontinuous
regularization of a function f is denoted by f usc(x) = infopen B	x supy∈B f (y) with
an analogous definition for f lsc. Eμ[ f ] = ∫

f dμ denotes expectation under the
measure μ. As usual, N = {1, 2, 3, . . . } and Z+ = {0, 1, 2, . . . }. x ∨ y = max(x, y)

and x ∧ y = min(x, y).

2 Existence and regularity of the quenched point-to-point free energy

Standing assumptions for this section are that (�,S, P, {Tz : z ∈ G}) is a measurable
dynamical system and R is finite. This will not be repeated in the statements of the
theorems. When ergodicity is assumed it is mentioned. For the rest of this section we
fix the integer � ≥ 0. Define the space �� = �×R�. If � = 0 then �� = �. Convex
analysis will be important throughout the paper. The convex hull of R is denoted by
U , the set of extreme points of U is ex U ⊂ R, and ri U is the relative interior of U .

The following is our key assumption.

Definition 2.1 Let � ∈ Z+. A function g : �� → R is in class L if for each z̃1,� ∈ R�

these properties hold: g(· , z̃1,�) ∈ L1(P) and for any nonzero z ∈ R

lim
ε↘0

lim
n→∞ max

x∈G:|x |≤n

1

n

∑

0≤k≤εn

∣
∣g(Tx+kzω, z̃1,�)

∣
∣ = 0 for P-a.e. ω.

Membership g ∈ L depends on a combination of mixing of P and moments of g.
If P is an arbitrary ergodic measure then in general we must assume g bounded to
guarantee g ∈ L, except that if d = 1 then g ∈ L1(P) is enough. Strong mixing of
the process {g ◦ Tx : x ∈ G} and g ∈ L p(P) for some large enough p also guarantee
g ∈ L. For example, with exponential mixing p > d is enough. This is the case in
particular if g has the r0-separated i.i.d. property mentioned in Example 1.1. Lemma
A.4 of [34] gives a precise statement.

We now define the lattice points x̂n(ζ ) that appear in the point-to-point free energy
(1.4). For each point ζ ∈ U fix weights βz(ζ ) ∈ [0, 1] such that

∑
z∈R βz(ζ ) = 1 and

ζ =∑z∈R βz(ζ )z. Then define a path

x̂n(ζ ) =
∑

z∈R

(�nβz(ζ )� + b(n)
z (ζ )

)
z, n ∈ Z+, (2.1)
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Quenched point-to-point free energy 717

where b(n)
z (ζ ) ∈ {0, 1} are arbitrary but subject to these constraints: if βz(ζ ) = 0 then

b(n)
z (ζ ) = 0, and

∑
z b(n)

z (ζ ) = n −∑z∈R�nβz(ζ )�. In other words, x̂n(ζ ) is a lattice
point that approximates nζ , is precisely n R-steps away from the origin, and uses
only those steps that appear in the particular convex representation ζ = ∑z βz z that
was picked. When ζ ∈ U ∩ Q

d we require that βz(ζ ) be rational. This is possible by
Lemma A.1 of [34]. If we only cared about ��(g, ζ ) for rational ζ we could allow
much more general paths, see Theorem 2.8 below.

The next theorem establishes the existence of the quenched point-to-point free
energy (a) and free energy (b). Introduce the empirical measure R�

n by

R�
n(g) = n−1

n−1∑

k=0

g(TXk ω, Zk+1,k+�). (2.2)

Theorem 2.2 Fix g ∈ L.

(a) For P-a.e. ω and simultaneously for all ζ ∈ U the limit

��(g, ζ ;ω) = lim
n→∞ n−1 log E

[
en R�

n(g)1{Xn = x̂n(ζ )}] (2.3)

exists in (−∞,∞]. For a particular ζ the limit is independent of the choice of
convex representation ζ = ∑

z βz z and the numbers b(n)
z that define x̂n(ζ ) in

(2.1). When ζ �∈ U it is natural to set ��(g, ζ ) = −∞.
(b) The limit

��(g;ω) = lim
n→∞ n−1 log E

[
e
∑n−1

k=0 g(TXk ω,Zk+1,k+�)
]

(2.4)

exists P-a.s. in (−∞,∞] and satisfies

��(g) = sup
ξ∈Qd∩U

��(g, ξ) = sup
ζ∈U

��(g, ζ ). (2.5)

Formula (4.3) in Sect. 4 shows how to recover ��(g, ζ ) from knowing ��(h) for a
broad enough class of functions h.

Remark 2.3 (Conditions for finiteness) In general, we need to assume that g is bounded
from above to prevent the possibility that ��(g, ζ ) takes the value+∞. When g has the
r0-separated i.i.d. property and 0 /∈ U as in Example 1.2, the assumption E[|g|p] < ∞
for some p > d guarantees that ��(g, ζ ) and ��(g) are a.s. finite (Lemma 3.1). In
fact ��(g, · ) is either bounded or identically +∞ on ri U (Theorem 2.6).

Let us recall facts about convex sets. A face of a convex set U is a convex subset
U0 such that every (closed) line segment in U with a relative interior point in U0 has
both endpoints in U0. U itself is a face. By Corollary 18.1.3 of [35] any other face
of U is entirely contained in the relative boundary of U . Extreme points of U are the
zero-dimensional faces. By Theorem 18.2 of [35] each point ζ ∈ U has a unique
face U0 such that ζ ∈ ri U0. (An extreme case of this is ζ ∈ ex U in which case
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718 F. Rassoul-Agha, T. Seppäläinen

{ζ } = U0 = ri U0. Note that the relative interior of a nonempty convex set is never
empty.) By Theorem 18.1 of [35] if ζ ∈ U belongs to a face U0 then any representation
of ζ as a convex combination of elements of U involves only elements of U0. Lastly,
Theorem 18.3 in [35] says that a face U0 is the convex hull of R0 = R ∩ U0.

We address basic properties of ��(g, ζ ;ω). The first issue is whether it is ran-
dom (genuinely a function of ω) or deterministic (there is a value ��(g, ζ ) such
that ��(g, ζ ;ω) = ��(g, ζ ) for P-almost every ω). This will depend on the set-
ting. If 0 ∈ ex U then the condition Xn = 0 does not permit the walk to move and
��(g, 0;ω) = − log |R| + g(ω, (0, . . . , 0)). But even if the origin does not cause
problems, ��(g, ζ ;ω) is not necessarily deterministic on all of U if P is not totally
ergodic. For example, if 0 �= z ∈ ex U then Xn = nz is possible only by repetition
of step z and ��(g, z;ω) = − log |R| + E[g(ω, (z, . . . , z)) | Iz], where Iz is the
σ -algebra invariant under Tz .

Theorem 2.4 Fix g ∈ L. Let U0 be any face of U , possibly U itself. Suppose P is
ergodic under {Tz : z ∈ R ∩ U0}. Then there exist a nonrandom function ��(g, ζ )

of ζ ∈ ri U0 and an event �0 such that (i) P(�0) = 1 and (ii) for all ω ∈ �0 and
ζ ∈ ri U0 the limit in (2.3) equals ��(g, ζ ).

Remark 2.5 (i) For an ergodic P we get a deterministic function ��(g, ζ ) of ζ ∈ ri U .
We write ��(g, ζ ;ω) = ��(g, ζ ) in this case.

(ii) If P is nondegenerate the assumption rules out the case U0 = {0} because T0 is
the identity mapping. {0} is a face if 0 ∈ ex U .

(iii) An important special case is the totally ergodic P. Then the theorem above applies
to each face except {0}. Since there are only finitely many faces, we get a single
deterministic function ��(g, ζ ) and a single event �0 of full P-probability such
that ��(g, ζ ) is the limit in (2.3) for all ω ∈ �0 and ζ ∈ U � {0}. The point
ζ = 0 is included in this statement if 0 is a non-extreme point of U .

Convexity of ��(g, ζ ) in g follows from Hölder’s inequality. The next theorem
establishes some regularity in ζ for the a.e. defined function ��(g, ζ ;ω).

The infinite case needs to be separated.

Theorem 2.6 Let g ∈ L and assume P is ergodic. Then ��(g) is deterministic. The
following properties hold for P-a.e. ω.

(a) If ��(g) = ∞ then ��(g, ζ ) is identically +∞ for ζ ∈ ri U .
(b) Suppose ��(g) < ∞. Then ��(g, · ;ω) is lower semicontinuous and bounded on

U and concave and continuous on ri U . The upper semicontinuous regularization
of ��(g, · ;ω) and its unique continuous extension from ri U to U are equal and
deterministic.

Remark 2.7 Suppose P is totally ergodic and we are in the finite case of Theorem
2.6(b). Then concavity in ζ extends to all of U (see Remark 2.10 below for the argu-
ment). This is true despite the possibility of a random value ��(g, 0;ω) at ζ = 0 (this
happens in the case 0 ∈ ex U). In other words, concavity and lower semicontinuity
are both valid even with the random value at ζ = 0. However, continuity must fail
because on U � {0} the function ��(g, ζ ) is deterministic. This issue of extending
continuity from ri U to the boundary is tricky. We address this issue in the i.i.d. case
in Theorem 3.2.
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Quenched point-to-point free energy 719

We turn to the proofs of the theorems in this section. Recall M = max{|z| : z ∈ R}.
Let

Dn = {z1 + · · · + zn : z1,n ∈ Rn} (2.6)

denote the set of endpoints of admissible paths of length n. To prove Theorem 2.2 we
first treat rational points ξ ∈ U . In this case we can be more liberal with the function
g and with the paths.

Theorem 2.8 Let g(· , z1,�) ∈ L1(P) for each z1,� ∈ R�. Then for P-a.e. ω and
simultaneously for all ξ ∈ U ∩Q

d the following holds: for any path {yn(ξ)}n∈Z+ such
that yn(ξ) − yn−1(ξ) ∈ R and for some k ∈ N, ymk(ξ) = mkξ for all m ∈ Z+, the
limit

��(g, ξ ;ω) = lim
n→∞ n−1 log E

[
en R�

n(g)1{Xn = yn(ξ)}] (2.7)

exists in (−∞,∞]. For a given ξ ∈ U ∩ Q
d the limit is independent of the choice of

the path {yn(ξ)} subject to the condition above.

Proof of Theorem 2.8 Fix ξ ∈ Q
d ∩ U , the path yn(ξ), and k so that ymk(ξ) = mkξ

for all m ∈ Z+. By the Markov property

log E
[
e(m+n)k R�

(m+n)k (g)
, X(m+n)k = (m + n)kξ

]− 2A�(ω)

≥ log E
[
emk R�

mk (g), Xmk = mkξ
]− 2A�(ω)

+ log E
[
enk R�

nk (g◦Tmkξ ), Xnk = nkξ
]− 2A�(Tmkξω), (2.8)

where Tx acts by g◦Tx (ω, z1,�) = g(Txω, z1,�) and the errors are covered by defining

A�(ω) = � max
y∈G:|y|≤M�

max
z1,�∈R�

max
1≤i≤�

∣
∣g(T−x̃i ω, z1,�)

∣
∣ ∈ L1(P).

Since g ∈ L1(P) the random variable − log E[enk R�
nk (g), Xnk = nkξ ] + 2A�(ω) is

P-integrable for each n. By Kingman’s subadditive ergodic theorem (for example in
the form in [24, Theorem 2.6, p. 277])

��(g, ξ ;ω) = lim
m→∞

1

mk
log E

[
emk R�

mk (g), Xmk = mkξ
]

(2.9)

exists in (−∞,∞] P-almost surely. This limit is independent of k because if k1 and k2
both work and give distinct limits, then the limit along the subsequence of multiples
of k1k2 would not be defined. Let �0 be the full probability event on which limit (2.9)
holds for all ξ ∈ Q

d ∩ U and k ∈ N such that kξ ∈ Z
d .

Next we extend limit (2.9) to the full sequence. Given n choose m so that mk ≤
n < (m + 1)k. By assumption we have admissible paths from mkξ to yn(ξ) and from
yn(ξ) to (m + 1)kξ , so we can create inequalities by restricting the expectations to
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follow these path segments. For convenience let us take k > � so that R�
(m−1)k(g) does

not depend on the walk beyond time mk. Then, for all ω

log E
[
en R�

n(g), Xn = yn(ξ)
]

≥ log E
[
e(m−1)k R�

(m−1)k(g)
, Xmk = mkξ, Xn = yn(ξ)

]− A2k(Tmkξω)

≥ log E
[
e(m−1)k R�

(m−1)k(g)
, Xmk = mkξ

]− (n − mk) log |R| − A2k(Tmkξω)

≥ log E
[
emk R�

mk (g), Xmk = mkξ
]− k log |R| − 2A2k(Tmkξω) (2.10)

and similarly

log E
[
e(m+1)k R�

(m+1)k(g)
, X(m+1)k = (m + 1)kξ

]

≥ log E
[
en R�

n(g), Xn = yn(ξ)
]− k log |R| − 2A2k(Tmkξω).

Divide by n and take n → ∞ in the bounds developed above. Since in general
m−1Ym → 0 a.s. for identically distributed integrable {Ym}, the error terms vanish
in the limit. The limit holds on the full probability subset of �0 where the errors
n−1 A2k(Tmkξω) → 0 for all ξ and k. We also conclude that the limit is independent
of the choice of the path yn(ξ). Theorem 2.8 is proved. ��

The next lemma will help in the proof of Theorem 2.2 and the LDP in Theorem 4.1

Lemma 2.9 Let g ∈ L. Define the paths {yn(ξ)} for ξ ∈ Q
d ∩ U as in Theorem 2.8.

Then for P-a.e. ω, we have the following bound for all compact K ⊂ R
d and δ > 0 :

lim
n→∞n−1 log E

[
en R�

n(g)1{Xn/n ∈ K }] (2.11)

≤ sup
ξ∈Qd∩Kδ∩U

lim
n→∞n−1 log E

[
en R�

n(g)1{Xn = yn(ξ)}] (2.12)

where Kδ = {ζ ∈ R
d : ∃ζ ′ ∈ K with |ζ − ζ ′| < δ}.

Proof Fix a nonzero ẑ ∈ R. Fix ε ∈ (0, δ/(4M)) and an integer k ≥ |R|(1 + 2ε)/ε.
There are finitely many points in k−1 Dk so we can fix a single integer b such that
ymb(ξ) = mbξ for all m ∈ Z+ and ξ ∈ k−1 Dk .

We construct a path from each x ∈ Dn ∩ nK to a multiple of a point ξ(n, x) ∈
Kδ ∩ k−1 Dk . Begin by writing x =∑z∈R azz with az ∈ Z+ and

∑
z∈R az = n. Let

mn = �(1 + 2ε)n/k� and s(n)
z = �kaz/((1 + 2ε)n)�.

(1 − 1
1+2ε

)n−1az − 1
k ≤ n−1az − k−1s(n)

z ≤ (1 − 1
1+2ε

)n−1az .

This implies that

ε
1+2ε

≤ 1 − k−1
∑

z

s(n)
z ≤ 1 − 1

1+2ε
< δ

2M
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Quenched point-to-point free energy 721

and

∣
∣
∣k−1

∑

z∈R
s(n)

z z − n−1x
∣
∣
∣ ≤ M

∑

z∈R
|k−1s(n)

z − n−1az | ≤ M(1 − 1
1+2ε

) < δ
2 .

Define a point ξ(n, x) ∈ Kδ ∩ k−1 Dk by

ξ(n, x) = k−1
∑

z∈R
s(n)

z z +
(

1 − k−1
∑

z∈R
s(n)

z

)
ẑ. (2.13)

Since mns(n)
z ≥ az for each z ∈ R, the sum above describes an admissible path of

mnk − n steps from x to mnkξ(n, x). For each x ∈ Dn and each n, the number of ẑ
steps in this path is at least

mn(k −
∑

z∈R
s(n)

z ) ≥ mnkε/(1 + 2ε) ≥ nε. (2.14)

Next, let �n be an integer such that (�n − 1)b < mn ≤ �nb. Repeat the steps of
kξ(n, x) in (2.13) �nb − mn ≤ b times to go from mnkξ(n, x) to �nkbξ(n, x) =
y�nkb(ξ(n, x)). Thus, the total number of steps to go from x to �nkbξ(n, x) is rn =
�nkb − n. Recall that b is a function of k alone. So rn ≤ 3εn for n large enough,
depending on k, ε. Denote this sequence of steps by u(n, x) = (u1, . . . , urn ).

We develop an estimate. Abbreviate ḡ(ω) = maxz1,�∈R� |g(ω, z1,�)|.

1

n
log E

[
en R�

n(g)1{Xn/n ∈ K }]

= 1

n
log

∑

x∈Dn∩nK

E
[
en R�

n(g), Xn = x
]

≤ max
x∈Dn∩nK

1

n
log E

[
e(n−�)R�

n−�(g), Xn = x
]

+ max
x∈Dn∩nK

max
y∈∪�

s=0 Ds

�

n
ḡ(Tx−yω) + C log n

n

≤ max
x∈Dn∩nK

1

n
log E

[
e�nkbR�

�n kb(g)
, X�nkb = �nkbξ(n, x)

]

+ max
x∈Dn∩nK

1

n

rn∑

i=1

ḡ(Tx+u1+···+ui ω) + rn

n
log |R|

+ max
x∈Dn∩nK

max
y∈∪�

s=0 Ds

2�

n
ḡ(Tx−yω) + C log n

n
. (2.15)

As n → ∞ the limsup of the term in the third-to-last line of the above display is
bounded above, for all ω, by
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(1 + 3ε) sup
ξ∈Qd∩Kδ∩U

lim
n→∞n−1 log E

[
en R�

n(g)1{Xn = yn(ξ)}].

The proof of (2.11) is complete once we show that a.s.

lim
ε→0

lim
n→∞ max

x∈Dn

1

n

rn∑

i=1

ḡ(Tx+u1+···+ui ω) = 0

and lim
ε→0

lim
n→∞ max

x∈Dn
max

y∈∪�
s=0 Ds

1

n
ḡ(Tx−yω) = 0.

(2.16)

To this end, observe that the order in which the steps in u(n, x) are arranged was
so far immaterial. From (2.14) the ratio of zero steps to ẑ steps is at most rn/(nε) ≤ 3.
Start path u(n, x) by alternating ẑ steps with blocks of at most 3 zero steps, until ẑ
steps and zero steps are exhausted. After that fix an ordering R\ {0, ẑ} = {z1, z2, . . . }
and arrange the rest of the path u(n, x) to take first all its z1 steps, then all its z2 steps,
and so on. This leads to the bound

rn∑

i=1

ḡ(Tx+u1+···+ui ω) ≤ 4 |R| max
y∈x+u(n,x)

max
z∈R\{0}

rn∑

i=0

ḡ(Ty+i zω). (2.17)

The factor 4 is for repetitions of the same ḡ-value due to zero steps. By y ∈ x+u(n, x)

we mean that y is on the path starting from x and taking steps in u(n, x). A similar
bound develops for the second line of (2.16). Then the limits in (2.16) follow from
membership in L. The lemma is proved. ��
Proof of Theorem 2.2 Part (a). Having proved Theorem 2.8, the next step is to deduce
the existence of ��(g, ζ ) as the limit (2.3) for irrational velocities ζ , on the event of
full P-probability where ��(g, ξ) exists for all rational ξ ∈ U .

Let ζ ∈ U . It comes with a convex representation ζ =∑z∈R0
βz z with βz > 0 for

z ∈ R0 ⊂ R, and its path x̂�(ζ ) is defined as in (2.1). Let δ = δ(ζ ) = minz∈R0 βz > 0.
We approximate ζ with rational points from co R0. Let ε > 0 and choose ξ =∑
z∈R0

αz z with αz ∈ [δ/2, 1] ∩ Q,
∑

z αz = 1, and |αz − βz | < ε for all z ∈ R0.
Let k ∈ N be such that kαz ∈ N for all z ∈ R0. Let mn = ⌊k−1(1 + 4ε/δ)n

⌋
and

s(n)
z = kmnαz − �nβz� − b(n)

z . Then,

s(n)
z /n → (1 + 4ε/δ)αz − βz ≥ ε > 0. (2.18)

Thus s(n)
z ≥ 0 for large enough n.

Now, starting at x̂n(ζ ) and taking each step z ∈ R0 exactly s(n)
z times arrives at

kmnξ . Denote this sequence of steps by {ui }rn
i=1, with rn = kmn − n ≤ (4ε/δ)n. We

wish to develop an estimate similar to those in (2.10) and (2.15), using again ḡ(ω) =
maxz1,�∈R� |g(ω, z1,�)|. Define
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B(ω, n, ε, κ) = κ |R| · max|x |≤κn
max

z∈R�{0}
κεn∑

i=0
ḡ(Tx+i zω)

+ max
x∈Dn

max
y∈∪�

s=0 Ds

2�ḡ(Tx−yω).

Then develop an upper bound:

log E
[
ekmn R�

kmn
(g)

1{Xkmn =kmnξ}]

≥ log E
[
en R�

n(g)1{Xn = x̂n(ζ )}]−
rn−1∑

i=0

ḡ(Tx̂n(ζ )+u1+···+ui ω)

− max
y∈∪�

s=0 Ds

2�ḡ(Tx̂n(ζ )−yω)−(4ε/δ)n log |R|

≥ log E
[
en R�

n(g)1{Xn = x̂n(ζ )}]−B(ω, n, ε, κ)−(4ε/δ)n log |R|. (2.19)

To get the last inequality above first order the steps of the {ui } path as was done
above to go from (2.16) to (2.17). In particular, the number of zero steps needs to be
controlled. If 0 ∈ R0, pick a step ẑ ∈ R0 � {0}, and from (2.18) obtain that, for large
enough n,

s(n)
0

s(n)

ẑ

≤ 2n
(
(1 + 4ε/δ)α0 − β0

)

nε/2
≤ 4
(

1 + 4

δ

)
.

Thus we can exhaust the zero steps by alternating blocks of �4(1 + 4/δ)� zero steps
with individual ẑ steps. Consequently in the sum on the second line of (2.19) we
have a bound c(δ) on the number of repetitions of individual ḡ-values. To realize the
domination by B(ω, n, ε, κ) on the last line of (2.19), pick κ > c(δ) and large enough
so that κεn ≥ rn and so that {|x | ≤ κn} covers {x̂n(ζ )+ u1 + · · · + ui : 0 ≤ i ≤ rn}.

The point of formulating the error B(ω, n, ε, κ) with the parameter κ is to control
all the errors in (2.19) on a single event of P-measure 1, simultaneously for all ζ ∈ U
and countably many ε ↘ 0, with a choice of rational ξ for each pair (ζ, ε). From
g ∈ L follows that P-a.s.

lim
ε↘0

lim
n→∞n−1 B(ω, n, ε, κ) = 0 simultaneously for all κ ∈ N.

A similar argument, with m̄n = �k−1(1 − 4ε/δ)n� and s̄(n)
z = �nβz� + b(n)

z (ζ ) −
km̄nαz , gives

log E
[
ekm̄n R�

km̄n
(g)

1{Xkm̄n = km̄nξ}
]

≤ log E
[
en R�

n(g)1{Xn = x̂n(ζ )}]+ Cεn log |R| + B(ω, n, ε, κ). (2.20)

Now in (2.19) and (2.20) divide by n, let n → ∞ and use the existence of the limit
��(g, ξ). Since ε > 0 can be taken to zero, we have obtained the following. ��(g, ζ )

exists as the limit (2.3) for all ζ ∈ U on an event of P-probability 1, and
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��(g, ζ ) = lim
ξ j→ζ

��(g, ξ j ), (2.21)

whenever ξ j is a sequence of rational convex combinations of R0 whose coefficients
converge to the coefficients βz of ζ .

At this point the value ��(g, ζ ) appears to depend on the choice of the convex
representation ζ = ∑

z∈R0
βz z. We show that each choice gives the same value

��(g, ζ ) as a particular fixed representation. Let Ū be the unique face containing ζ

in its relative interior and R̄ = R ∩ Ū . Then we can fix a convex representation
ζ = ∑

z∈R̄ β̄z z with β̄z > 0 for all z ∈ R̄. As above, let ξn be rational points from
co R0 such that ξn → ζ . The fact that ζ can be expressed as a convex combination of
R0 forces R0 ⊂ Ū , and consequently ξn ∈ Ū . By Lemma 7.1, there are two rational
convex representations ξn =∑z∈R0

αn
z z =∑z∈R̄ ᾱn

z z with αn
z → βz and ᾱn

z → β̄z .
By Theorem 2.8 the value ��(g, ξn) is independent of the convex representation of
ξn . Hence the limit in (2.21) shows that representations in terms of R0 and in terms
of R̄ lead to the same value ��(g, ζ ).

Part (b). With the limit (2.3) in hand, limit (2.4) and the variational formula (2.5)
follow from Lemma 2.9 with K = U . Theorem 2.2 is proved. ��

Proofs of the remaining theorems of the section follow.

Proof of Theorem 2.4 Fix a face U0 and R0 = R∩U0. If ξ is a rational point in ri U0,
then write ξ =∑z∈R0

αz z with rational αz > 0 (consequence of Lemma A.1 of [34]).
Let k ∈ N such that kαz ∈ Z for each z. Let z ∈ R0. There is a path of k − 1 steps
from (m − 1)kξ + z to mkξ . Proceed as in (2.10) to reach

��(g, ξ) ≥ lim
m→∞

1

mk
log E

[
emk R�

mk (g), Xmk = mkξ

∣
∣
∣ X1 = z

]

≥ lim
m→∞

1

mk
log E

[
e((m−1)k+1)R�

(m−1)k+1(g)
,

X(m−1)k+1 = (m − 1)kξ + z
∣
∣
∣ X1 = z

]

= ��(g, ξ) ◦ Tz .

Thus ��(g, ξ) is Tz-invariant for each z ∈ R0 so by ergodicity ��(g, ξ) is determin-
istic. This holds for P-a.e. ω simultaneously for all rational ξ ∈ ri U0. Since ��(g, ·)
at irrational points of ri U0 can be obtained through (2.21) from its values at rational
points, the claim follows for all ζ ∈ ri U0. ��
Proof of Theorem 2.6 The logical order of the proof is not the same as the ordering of
the statements in the theorem. First we establish concavity for rational points in ri U
via the Markov property. For t ∈ Q ∩ [0, 1] and ξ ′, ξ ′′ ∈ Q

d ∩ ri U choose k so that
kt ∈ Z+, ktξ ′ ∈ Z

d , and k(1 − t)ξ ′′ ∈ Z
d . Then, as in (2.8),

log E
[
emk R�

mk (g), Xmk = mk(tξ ′ + (1 − t)ξ ′′)
]

≥ log E
[
emkt R�

mkt (g), Xmkt = mktξ ′
]
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+ log E
[
emk(1−t)R�

mk(1−t)(g◦Tmktξ ′ ), Xmk(1−t) = mk(1 − t)ξ ′′
]

−2A�(Tmktξ ′ω). (2.22)

Divide by mk and let m → ∞. On ri U ��(g, ·) is deterministic (Theorem 2.4), hence
the second (shifted) logarithmic moment generating function on the right of (2.22)
converges to its limit at least in probability, hence a.s. along a subsequence. In the
limit we get

��(g, tξ ′ + (1 − t)ξ ′′) ≥ t��(g, ξ ′) + (1 − t)��(g, ξ ′′). (2.23)

��
To get concavity on all of ri U , approximate arbitrary points of ri U with rational

convex combinations so that limit (2.21) can be used to pass along the concavity.

Remark 2.10 In the totally ergodic case Theorem 2.4 implies that ��(g, ζ ) is deter-
ministic on all of U , except possibly at ζ = 0 ∈ ex U . If 0 is among {ξ ′, ξ ′′} then
take ξ ′ = 0 in (2.22), so that, as the limit is taken to go from (2.22) to (2.23), we
can take advantage of the deterministic limit ��(g, ξ ′′) for the shifted term on the
right of (2.22). Thus, (2.23) holds for all rational ξ ′, ξ ′′ ∈ U . The subsequent limit to
non-rational points proceeds as above.

Next we address lower semicontinuity of ��(g, ζ ) in ζ ∈ U . Fix ζ and pick
U 	 ζ j → ζ that achieves the liminf of ��(g, ·) at ζ . Since R is finite, one can find a
further subsequence that always stays inside the convex hull U0 of some set R0 ⊂ R
of at most d + 1 affinely independent vectors. Then, ζ ∈ U0 and we can write the
convex combinations ζ =∑z∈R0

βz z and ζ j =∑z∈R0
β

( j)
z z. Furthermore, as before,

β
( j)
z → βz as j → ∞. Let R̂0 = {z ∈ R0 : βz > 0} and define δ = minz∈R̂0

βz > 0.

Fix ε ∈ (0, δ/2) and take j large enough so that |β( j)
z −βz | < ε for all z ∈ R0. Let

mn = �(1 + 4ε/δ)n� and s(n)
z = �mnβ

( j)
z � + b(n)

z (ζ j ) − �nβz� − b(n)
z (ζ ) for z ∈ R0.

(If βz = β
( j)
z = 0, then simply set s(n)

z = 0.) Then, for n large enough, s(n)
z ≥ 0 for

each z ∈ R0. Now, proceed as in the proof of (2.21), by finding a path from x̂n(ζ ) to
x̂mn (ζ j ). After taking n → ∞, j → ∞, then ε → 0, we arrive at

lim
U	ζ ′→ζ

��(g, ζ ′) ≥ ��(g, ζ ).

Note that here random limit values are perfectly acceptable.

Remark 2.11 We can see here why upper semicontinuity (and hence continuity to the
boundary) may in principle not hold: constructing a path from ζ j to ζ is not necessarily
possible since ζ j may have non-zero components on R0 � R̂0.

By lower semicontinuity the supremum in (2.5) can be restricted to ζ ∈ ri U . By
Theorem 2.4 ��(g, ζ ) is deterministic on ri U under an ergodic P, and consequently
��(g) is deterministic.
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Combining Theorems 2.2 and 2.4 and the paragraphs above, we now know that
under an ergodic P, we have the function −∞ < ��(g, ζ, ω) ≤ ∞, P-a.e. defined,
lower semicontinuous for ζ ∈ U and concave and deterministic for ζ ∈ ri U . Lower
semicontinuity and compactness of U imply that ��(g, · , ω) is uniformly bounded
below with a bound that can depend on ω.

Assume now that ��(g) < ∞. Then upper boundedness of ��(g, · , ω) comes from
(2.5). As a finite concave function ��(g, ·) is continuous on the convex open set ri U .
Since it is bounded below, by [35, Theorem 10.3] ��(g, ·) has a unique continuous
extension from the relative interior to the whole of U . This extension is deterministic
since it comes from a deterministic function on ri U . To see that this extension agrees
with the upper semicontinuous regularization, consider this general situation.

Let f be a bounded lower semicontinuous function on U that is concave on ri U . Let
g be the continuous extension of f |ri U and h the upper semicontinuous regularization
of f on U . For x on the relative boundary find ri U 	 xn → x . Then g(x) =
lim g(xn) = lim f (xn) ≥ f (x) and so f ≤ g and consequently h ≤ g. Also g(x) =
lim g(xn) = lim f (xn) = lim h(xn) ≤ h(x) and so g ≤ h.

Finally we check part (a) of the theorem. If ��(g) = ∞ then there exists a sequence
ζn ∈ ri U such that ��(g, ζn) → ∞. One can assume ζn → ζ ∈ U . Let ζ ′ be any
point in ri U . Pick t ∈ (0, 1) small enough for ζ ′′

n = (ζ ′ − tζn)/(1 − t) to be in ri U
for n large enough. Then,

��(g, ζ ′) ≥ t��(g, ζn) + (1 − t)��(g, ζ ′′
n ).

Since ��(g, ·) is bounded below on ri U , taking n → ∞ in the above display implies
that ��(g, ζ ′) = ∞.

3 Continuity in the i.i.d. case

We begin with L p continuity of the free energy in the potential g.

Lemma 3.1 Let U0 be a face of U (the choice U0 = U is allowed), and let R0 = R∩U0
so that U0 = co R0. Assume 0 �∈ U0. Then an admissible n-step path from 0 to a point
in nU0 cannot visit the same point twice.

(a) Let h ≥ 0 be a measurable function on � with the r0-separated i.i.d. property.
Then there is a constant C = C(r0, d, M) such that, P-almost surely,

lim
n→∞ max

x0,n−1:
xk−xk−1∈R0

n−1
n−1∑

k=0

h(Txk ω) ≤ C

∞∫

0

P{h ≥ s}1/d ds. (3.1)

If h ∈ L p(P) for some p > d then the right-hand side of (3.1) is finite by Cheby-
shev’s inequality.

(b) Let f, g : �� → R be measurable functions with the r0-separated i.i.d. property.
Then with the same constant C as in (3.1)
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lim
n→∞ sup

ζ∈U0

∣
∣
∣n−1 log E

[
en R�

n( f )1{Xn = x̂n(ζ )}]

− n−1 log E
[
en R�

n(g)1{Xn = x̂n(ζ )}]
∣
∣
∣

≤ C

∞∫

0

P

{
ω : max

z1,�∈R�

∣
∣ f (ω, z1,�) − g(ω, z1,�)

∣
∣ ≥ s

}1/d
ds. (3.2)

Assume additionally that f (· , z1,�), g(· , z1,�) ∈ L p(P) ∀z1,� ∈ R� for some p > d.
Then f, g ∈ L and for ζ ∈ U0 the limits ��( f, ζ ) and ��(g, ζ ) are finite and
deterministic and satisfy

sup
ζ∈U0

|��( f, ζ ) − ��(g, ζ )| ≤ CE

[
max

z1,�∈R�

∣
∣ f (ω, z1,�) − g(ω, z1,�)

∣
∣p
]
. (3.3)

Strengthen the assumptions further with 0 /∈ U . Then ��( f ) and ��(g) are finite and
deterministic and satisfy

|��( f ) − ��(g)| ≤ CE

[
max

z1,�∈R�

∣
∣ f (ω, z1,�) − g(ω, z1,�)

∣
∣p
]
. (3.4)

Proof If x ∈ nU0 and x = ∑n
i=1 zi gives an admissible path to x , then n−1x =

n−1∑n
i=1 zi gives a convex representation of n−1x ∈ U0 which then cannot use

points z ∈ R � R0. By the assumption 0 /∈ U0, points from R0 cannot sum to 0 and
consequently a loop in an R0-path is impossible.

Part (a) We can assume that r0 > M = max{|z| : z ∈ R}. We bound the quantity on
the left of (3.1) with a greedy lattice animal [12,14,26] after a suitable coarse graining
of the lattice. Let B = {0, 1, . . . , r0−1}d be the cube whose copies {r0 y+B : y ∈ Z

d}
tile the lattice. Let An denote the set of connected subsets ξ of Z

d of size n that contain
the origin (lattice animals). Since the xk’s are distinct,

n−1∑

k=0

h(Txk ω) =
∑

u∈B

∑

y∈Zd

n−1∑

k=0

1{xk=r0 y+u}h(Tr0 y+uω)

≤
∑

u∈B

∑

y∈Zd

1{x0,n−1∩(r0 y+B) �=∅}h(Tu+r0 yω)

≤
∑

u∈B

max
ξ∈An(d−1)

∑

y∈ξ

h(Tu+r0 yω).

The last step works as follows. Define first a vector y0,n−1 ∈ (Zd)n from the condi-
tions xi ∈ r0 yi + B, 0 ≤ i < n. Since r0 is larger than the maximal step size M ,
|yi+1 − yi |∞ ≤ 1. Points yi and yi+1 may fail to be nearest neighbors, but by filling in
at most d − 1 intermediate points we get a nearest-neighbor sequence. This sequence
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728 F. Rassoul-Agha, T. Seppäläinen

can have repetitions and can have fewer than n(d − 1) entries, but it is contained in
some lattice animal ξ of n(d − 1) lattice points.

We can assume that the right-hand side of (3.1) is finite. This and the fact that
{h(Tu+r0 yω) : y ∈ Z

d} are i.i.d. allows us to apply limit (1.7) of Theorem 1.1 in [26]:
for a finite constant c and P-a.s.

lim
n→∞ max

x0,n−1:
xk−xk−1∈R0

n−1
n−1∑

k=0

h(Txk ω) ≤ |B| (d − 1)c

∞∫

0

P{h ≥ s}1/d ds.

With the volume |B| = rd
0 this gives (3.1).

Part (b) Write f = g + ( f − g) in the exponent to get an estimate, uniformly in
ζ ∈ U0:

n−1 log E
[
en R�

n( f )1{Xn = x̂n(ζ )}]

≤ n−1 log E
[
en R�

n(g)1{Xn = x̂n(ζ )}]

+ max
x0,n+�−1:xk−xk−1∈R0

n−1
n−1∑

k=0

∣
∣ f (Txk ω, zk+1,k+�)−g(Txk ω, zk+1,k+�)

∣
∣ .

(3.5)

Switch the roles of f and g to get a bound on the absolute difference. Apply part (a)
to get (3.2).

By Lemma A.4 of [34] the L p assumption with p > d implies that f, g ∈ L.
Finiteness of ��( f, ζ ) comes from (3.2) with g = 0. Chebyshev’s inequality bounds
the right-hand side of (3.2) with the right-hand side of (3.3).

To get (3.4) start with (3.5) without the indicators inside the expectations and with
R0 replaced by R. ��

Next the continuity of ��(g, ζ ) as a function of ζ all the way to the relative boundary
in the i.i.d. case. The main result is part (a) below. Parts (b) and (c) come without extra
work.

Theorem 3.2 Let P be an i.i.d. product measure as described in Example 1.1 and
p > d. Let g : �� → R be a function such that for each z1,� ∈ R�, g(·, z1,�) is a
local function of ω and a member of L p(P).

(a) If 0 �∈ U , then ��(g, ζ ) is continuous on U .
(b) If 0 ∈ ri U and g is bounded above, then ��(g, ζ ) is continuous on U .
(c) If 0 is on the relative boundary of U and if g is bounded above, then ��(g, ζ ) is

continuous on ri U , at nonzero extreme points of U , and at any point ζ such that
the face U0 satisfying ζ ∈ ri U0 does not contain {0}.

In (b) and (c) we assume g bounded above because otherwise ��(g) = ∞ is
possible. If g is unbounded above and a function of ω alone and if admissible paths
can form loops, then ��(g) = ∞ because the walk can look for arbitrarily high values
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of g(Txω) and keep returning to x forever. Then by Theorem 2.6(a) also ��(g, ζ ) = ∞
for all ζ ∈ ri U .

In certain situations our proof technique can be pushed up to faces that include 0.
For example, for R = {(1, 0), (0, 1), (0, 0)} ��(g, ζ ) is continuous in ζ ∈ U � {0}.
Proof of Theorem 3.2 This continuity argument was inspired by the treatment of the
case R = {e1, . . . , ed} in [15,27].

By Lemma A.4 of [34] the L p assumption with p > d implies that g ∈ L. By
Lemma 3.1 in case (a), and by the upper bound assumption in the other cases, ��(g) <

∞. Thereby ��(g, ·) is bounded on U and continuous on ri U (Theorem 2.6). Since
��(g, ·) is lower semicontinuous, it suffices to prove upper semicontinuity at the
relative boundary of U . Let ζ be a point on the relative boundary of U .

We begin by reducing the proof to the case of a bounded g. We can approximate
g in L p with a bounded function. In part (a) we can apply (3.3) to U0 = U . Then the
uniformity in ζ of (3.3) implies that it suffices to prove upper semicontinuity in the
case of bounded g. In parts (b) and (c) g is bounded above to begin with. Assume that
upper semicontinuity has been proved for the bounded truncation gc = g ∨ c. Then

lim
ζ ′→ζ

��(g, ζ ′) ≤ lim
ζ ′→ζ

��(gc, ζ
′) ≤ ��(gc, ζ ).

In cases (b) and (c) the unique face U0 that contains ζ in its relative interior does
not contain 0, and we can apply (3.3) to show that ��(gc, ζ ) decreases to ��(g, ζ )

which proves upper semicontinuity for g. We can now assume g is bounded, and by
subtracting a constant we can assume g ≤ 0.

We only prove upper semicontinuity away from the extreme points of U . The
argument for the extreme points of U is an easier version of the proof.

Assume thus that the point ζ on the boundary of U is not an extreme point. Let U0 be
the unique face of U such that ζ ∈ ri U0. Let R0 = R∩U0. Then U0 = co R0 and any
convex representation ζ =∑z∈R βz z of ζ can only use z ∈ R0 [35, Theorems 18.1
and 18.3].

The theorem follows if we show that for any fixed δ > 0 and ξ ∈ Q
d ∩ U close

enough to ζ and for k ∈ N such that kξ ∈ Z
d ,

lim
m→∞P

{ ∑

x0,mk+�∈�mk,mkξ

emk R�
mk (g) ≥ emk(��(g,ζ )+log |R|)+6mkδ

}

= 0. (3.6)

Here we used the approximation by rational points (2.21). �mk,mkξ is the set of
admissible paths x0,mk+� such that x0 = 0 and xmk = mkξ . It is enough to approach
ζ from outside U0 because continuity on ri U0 is guaranteed by concavity. Fix δ > 0.

Since 0 /∈ U0 we can find a vector û ∈ Z
d such that z · û > 0 for z ∈ R0.

Given a path x0,mk+� let s0 = 0 and, if it exists, let s′0 ≥ 0 be its first regeneration
time: this is the first time i ∈ [0, mk] such that x j · û ≤ xi · û for j ≤ i , zi+1,i+� ∈ R�

0,
and x j · û > xi+� · û for j ∈ {i + �+ 1, . . . , mk + �}. If s′0 does not exist then we set
s′0 = mk + � and stop at that. Otherwise, if s′0 exists, then let
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730 F. Rassoul-Agha, T. Seppäläinen

Fig. 1 Path segments in shaded
regions are bad, the other
segments are good. vi = Xsi and
v′i = Xs′i . Steps going up and to

the right represent steps in R0

s1 = min{ j ∈ (s′0, mk + �) : z j+1 �∈ R0

or ∃i ∈ ( j + 1, mk + �] such that xi · û ≤ x j+1 · û}.

If such a time does not exist, then we set s1 = s′1 = mk+� and stop. Otherwise, define
s1 < s′1 < s2 < s′2 < · · · inductively. Path segments xs′i ,si+1

are good and segments
xsi ,s′i are bad (the paths in the gray blocks in Fig. 1). Good segments have length at
least � and consist of only R0-steps, and distinct good segments lie in disjoint slabs
(a slab is a portion of Z

d between two hyperplanes perpendicular to û).
Time mk + � may belong to an incomplete bad segment and then in the above

procedure the last time defined was sN < mk + � for some N ≥ 0 and we set
s′N = mk+�, or to a good segment in which case the last time defined was s′N−1 ≤ mk
for some N ≥ 1 and we set sN = s′N = mk + �. There are N good segments and
N + 1 bad segments, when we admit possibly degenerate first and last bad segments
xs0,s′0 and xsN ,s′N (a degenerate segment has no steps). Except possibly for xs0,s′0 and
xsN ,s′N , each bad segment has at least one (R � R0)-step. ��
Lemma 3.3 Given ε > 0, we can choose ε0 ∈ (0, ε) such that if |ξ − ζ | < ε0, then
the total number of steps in the bad segments in any path in �mk,mkξ is at most Cεmk
for a constant C. In particular, N ≤ Cεmk.

Proof Given ε > 0 we can find ε0 > 0 such that if |ξ − ζ | < ε0, then any convex
representation ξ = ∑

z∈R αz z of ξ satisfies
∑

z �∈R0
αz ≤ ε. (Otherwise we can let

ξ → ζ and in the limit ζ would possess a convex representation with positive weight
on R � R0.) Consequently, if x0,mk+� ∈ �mk,mkξ and |ξ − ζ | < ε0 the number of
(R � R0)-steps in x0,mk+� is bounded by εmk + �.

Hence it is enough to show that in each bad segment, the number of R0-steps is
at most a constant multiple of (R � R0)-steps. So consider a bad segment xsi ,s′i . If
s′i = mk + � it can happen that xs′i · û < maxsi≤ j≤s′i x j · û. In this case we add more
steps from R0 and increase s′i so that

xs′i · û = max
si≤ j≤s′i

x j · û. (3.7)

This only makes things worse by increasing the number of R0-steps. We proceed now
by assuming (3.7).

Start with γ0 = si . Let

α1 = s′i ∧ inf{n ≥ γ0 : ∃ j > n such that x j · û ≤ xn · û}.
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Fig. 2 Illustration of the stopping times αi , βi , and γi . Note how the immediate backtracking at γ1 makes
α2 = γ1 and β2 = α2 + 1

We first control the number of R0-steps in the segment zγ0+1,α1 . The segment
zγ0+1,α1−1 cannot contain more than � − 1 R0-steps in a row because any �-string
of R0-steps would have begun the next good segment. Thus, the number of R0-steps
in zγ0+1,α1 is bounded by (� − 1) × (the number of (R � R0)-steps) + �. Suppose
α1 = s′i , in other words, we already exhausted the entire bad segment. Since a bad
segment contains at least one (R � R0)-step we are done: the number of R0-steps is
bounded by 2� times the number of (R � R0)-steps. So let us suppose α1 < s′i and
continue with the segment xα1,s′i .

Let

β1 = inf{n > α1 : xn · û ≤ xα1 · û} ≤ s′i

be the time of the first backtrack after α1 and

γ1 = inf
{

n > β1 : xn · û ≥ max
α1≤ j≤β1

x j · û
}

the time when the path gets at or above the previous maximum. Due to (3.7), γ1 ≤ s′i .
We claim that in the segment xα1,γ1 the number of positive steps (in the û-direction)

is at most a constant times the number of nonpositive steps. Since R0-steps are positive
steps while all nonpositive steps are (R � R0)-steps, this claim gives the dominance
(number of R0-steps) ≤ C × (number of (R � R0)-steps).

The claim is proved by counting. Project all steps z onto the û direction by consid-
ering z · û, so that we can think of a path on the 1 dimensional lattice. Then, instead of
the original steps that come in various sizes, count increments of ±1. Up to constant
multiples, counting unit increments is the same as counting steps. By the definition of
the stopping times, at time β1 the segment xα1,γ1 visits a point at or below its starting
level, but ends up at a new maximum level at time γ1. Ignore the part of the last step
zγ1 that takes the path above the previous maximum maxα1≤ j≤β1 x j · û. Then each
negative unit increment in the û-direction is matched by at most two positive unit
increments. (Project the right-hand picture in Fig. 2 onto the vertical û direction.)
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Since the segment xα1,γ1 must have at least one (R�R0)-step, we have shown that
the number of R0-steps in the segment xγ0,γ1 is bounded above by 2(C∨�)× (number
of (R � R0)-steps). Now repeat the previous argument, beginning at γ1. Eventually
the bad segment xsi ,s′i is exhausted. ��

Let v denote the collection of times 0 = s0 ≤ s′0 < s1 < s′1 < s2 < s′2 < · · · <

sN−1 < s′N−1 < sN ≤ s′N = mk + �, positions vi = xsi , v′i = xs′i , and the steps in

bad path segments u(i)
si ,s′i

= zsi+1,s′i . s0 = s′0 means u(0) is empty.

We use the following simple fact below. Using Stirling’s formula one can find a
function h(ε) ↘ 0 such that, for all ε > 0 and n ≥ ε−1,

( n
nε

) ≤ enh(ε).

Lemma 3.4 With ε > 0 fixed in Lemma 3.3, and with m large enough, the number
of vectors v is at most C(mk)c1emkh(ε), where the function h satisfies h(ε) → 0 as
ε → 0.

Proof Recall N ≤ Cεmk for a constant C coming from Lemma 3.3. We take ε > 0
small enough so that Cε < 1/2. A vector v is determined by the following choices.

(i) The times {si , s′i }0≤i≤N can be chosen in at most

Cεmk∑

N=1

(
mk

2N

)

≤ Cmk

(
mk

Cεmk

)

≤ Cmkemkh(ε) ways.

(ii) The steps in the bad segments, in a total of at most |R|Cεmk ≤ emkh(ε) ways.
(iii) The path increments {vi − v′i−1}1≤i≤N across the good segments. Their number

is also bounded by C(mk)c1emkh(ε).

The argument for (iii) is as follows. For each finite R0-increment y ∈ {z1 + · · · +
zk : k ∈ N, z1, . . . , zk ∈ R0}, fix a particular representation y = ∑

z∈R0
az(y)z,

identified by the vector a(y) = (az(y)) ∈ Z
R0+ . The number of possible endpoints η =

∑N
i=1(vi−v′i−1) is at most C(εmk)d because |mkξ−mkζ | < mkε and the total number

of steps in all bad segments is at most Cεmk. Each possible endpoint η has at most
C(mk)|R0| representations η =∑z∈R0

bzz with (bz) ∈ Z
R0+ because projecting to û

shows that each bz is bounded by Cmk. Thus there are at most C(mk)c1 vectors (bz) ∈
Z

R0+ that can represent possible endpoints of the sequence of increments. Each such
vector b = (bz) can be decomposed into a sum of increments b =∑N

i=1 a(i) in at most

∏

z∈R0

(
bz + N

N

)

≤
(

Cmk + Cεmk

Cεmk

)|R0|
≤ emkh(ε)

ways. (Note that
(a+b

b

)
is increasing in both a and b.) So all in all there are

C(mk)c1emkh(ε) possible sequences {a(i)}1≤i≤N of increments in the space Z
R0+ that

satisfy

∑

z∈R0

N∑

i=1

a(i)
z z = η for a possible endpoint η.
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Map {vi − v′i−1}1≤i≤N to {a(vi − v′i−1)}1≤i≤N . This mapping is 1-1. The image is
one of the previously counted sequences {a(i)}1≤i≤N because

∑

z∈R0

N∑

i=1

az(vi − v′i−1)z =
N∑

i=1

∑

z∈R0

az(vi − v′i−1)z =
N∑

i=1

(vi − v′i−1) = η.

We conclude that there are at most C(mk)c1emkh(ε) sequences {vi − v′i−1}1≤i≤N of
increments across the good segments. Point (iii) has been verified.

Multiplying counts (i)–(iii) proves the lemma. ��
Let �v

mk,mkξ denote the paths in �mk,mkξ that are compatible with v, that is, paths
that go through space-time points (xsi , si ), (xs′i , s′i ) and take the specified steps in
the bad segments. The remaining unspecified good segments connect (xs′i−1

, s′i−1) to
(xsi , si ) with R0-steps, for 1 ≤ i ≤ N .

Fix ε > 0 small enough so that for large m, C(mk)c1emkh(ε) ≤ emkδ . Then our goal
(3.6) follows if we show

lim
m→∞

∑

v

P

{ ∑

x0,mk∈�v
mk,mkξ

emk R�
mk (g) ≥ emk(��(g,ζ )+log |R|)+5mkδ

}
= 0. (3.8)

Given a vector v and an environment ω define a new environment ωv by deleting the
bad slabs and shifting the good slabs so that the good path increments {vi −v′i−1}1≤i≤N

become connected. Here is a precise construction. First for x · û < 0 and x · û ≥∑N−1
j=0 (v j+1 − v′j ) · û sample ωv

x fresh (this part of space is irrelevant). For a point x
in between pick i ≥ 0 such that

i∑

j=1

(v j − v′j−1) · û ≤ x · û <

i+1∑

j=1

(v j − v′j−1) · û

and put y =∑i
j=1(v j − v′j−1). Then set ωv

x = ωv′i+x−y .
For a fixed v, each path x0,mk+� ∈ �v

mk,mkξ is mapped in a 1-1 fashion to a new
path xv

0,τ (v)+�−1 as follows. Set

τ(v) =
N∑

j=1

(s j − s′j−1) − �.

Given time point t ∈ {0, . . . , τ (v) + � − 1} pick i ≥ 0 such that

i∑

j=1

(s j − s′j−1) ≤ t <

i+1∑

j=1

(s j − s′j−1).
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Fig. 3 Illustration of the construction. The shaded bad slabs of environments are deleted. The white good
slabs are joined together and shifted so that the good path segments connect. So for example points v1 and
v′1 on the left are identified as v′′1 on the right

Then with s = ∑i
j=0(s

′
j − s j ) and u = ∑i

j=0(v
′
j − v j ) set xv

t = xt+s − u. This
mapping of ω and x0,mk+� moves the good slabs of environments together with the
good path segments so that ωv

xv
t
= ωxt+s . (See Fig. 3.) The sum of the good increments

that appeared in Lemma 3.4 is now

xv
τ(v)+� = xsN −

N−1∑

j=0

(v′j − v j ) = vN −
N−1∑

j=0

(v′j − v j ) =
N∑

j=1

(v j − v′j−1).

Define η(v) ∈ U0 by

xv
τ(v) = τ(v)η(v).

Observe that |τ(v) − mk| and |xv
τ(v) − mkξ | are (essentially) bounded by the total

length of the bad segments and hence by Cεmk. Moreover, due to total ergodicity
��(g, ·) is concave on U0 and hence continuous in its interior. Thus, we can choose
ε > 0 small enough so that

mk��(g, ζ ) + mkδ > τ(v)��(g, η(v)).

(3.8) would then follow if we show

lim
m→∞

∑

v

P

{ ∑

x0,mk∈�v
mk,mkξ

emk R�
mk (g) ≥ eτ(v)(��(g,η(v))+log |R|)+3mkδ

}

= 0.

This, in turn, follows from showing

lim
m→∞

∑

v

P

{ ∑

x0,mk∈�v
mk,mkξ

eτ(v)R�
τ(v)

(g)(ωv,xv
0,τ (v)+�

)

≥ eτ(v)(��(g,η(v))+log |R|)+2mkδ

}

= 0. (3.9)
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To justify the step to (3.9), first delete all terms from

mk R�
mk(g) =

mk−1∑

i=0

g(Txi ω, zi+1,i+�)

that depend on ω or (zi ) outside of good slabs. Since g ≤ 0 this goes in the right
direction. The remaining terms can be written as

∑
i g(Txv

i
ωv, zv

i+1,i+�) for a certain
subset of indices i ∈ {0, . . . , τ (v)−1}. Then add in the terms for the remaining indices
to capture the entire sum

τ(v)R�
τ(v)(g)(ωv, xv

0,τ (v)+�) =
τ(v)−1∑

i=0

g(Txv
i
ωv, zv

i+1,i+�).

The terms added correspond to terms that originally straddled good and bad segments.
Hence since g is local in its dependence on both ω and z1,∞ there are at most Cεmk
such terms. Since g is bounded, choosing ε small enough allows us to absorb all such
terms into one mkδ error.

Observing that ωv has the same distribution as ω, adding more paths in the sum
inside the probability, and recalling that |τ(v)−mk| ≤ Cmkε, we see that it is enough
to prove

lim
m→∞

∑

v

P

{ ∑

x0,τ (v)∈�τ(v),τ (v)η(v)

eτ(v)R�
τ(v)

(g) ≥ eτ(v)(��(g,η(v))+log |R|)+τ(v)δ
}
= 0.

By Lemma 3.4, concentration inequality Lemma 8.1, and τ(v) ≥ mk/2, the sum of
probabilities above is bounded by C(mk)c1emkh(ε)−Bδ2mk/2 ≤ C(mk)c1e−(δ1−h(ε))km

for another small positive constant δ1. Choosing ε small enough shows convergence
to 0 exponentially fast in m.

We have verified the original goal (3.6) and thereby completed the proof of Theorem
3.2.

4 Quenched large deviations for the walk

Standing assumptions for this section are R ⊂ Z
d is finite and (�,S, P, {Tz : z ∈ G})

is a measurable ergodic dynamical system. The theorem below assumes ��(g) finite;
recall Remark 2.3 for conditions that guarantee this. We employ the following notation
for lower semicontinuous regularization of a function of several variables:

F lsc(x)(x, y) = lim
r↘0

inf
z:|z−x |<r

F(z, y),

and analogously for upper semicontinuous regularization.

123



736 F. Rassoul-Agha, T. Seppäläinen

Theorem 4.1 Let � ≥ 0 and let g : � × R� → R. Assume g ∈ L and that ��(g) is
finite. Then for P-a.e. ω, the distributions Qg,ω

n {Xn/n ∈ ·} on R
d satisfy an LDP with

deterministic rate function

I g(ζ ) = ��(g) − �
usc(ζ )
� (g, ζ ). (4.1)

This means that the following bounds hold:

lim
n→∞n−1 log Qg,ω

n {Xn/n ∈ A} ≤ − inf
ζ∈A

I g(ζ ) for closed A ⊂ R
d

and lim
n→∞

n−1 log Qg,ω
n {Xn/n ∈ O} ≥ − inf

ζ∈O
I g(ζ ) for open O ⊂ R

d . (4.2)

Rate function I g : R
d → [0,∞] is convex, and on U finite and continuous.

Proof of Theorem 4.1 Let O ⊂ R
d be open, and ζ ∈ U ∩ O . Then x̂n(ζ ) ∈ nO for

large n.

lim
n→∞

n−1 log Qg,ω
n {Xn/n ∈ O}

≥ lim
n→∞

{
n−1 log E

[
en R�

n(g)1{Xn = x̂n(ζ )}]− n−1 log E
[
en R�

n(g)
]}

= ��(g, ζ ) − ��(g).

A supremum over an open set does not feel the difference between a function and its
upper semicontinuous regularization, and so we get the lower large deviation bound:

lim
n→∞

n−1 log Qg,ω
n {Xn/n ∈ O} ≥ − inf

ζ∈O
{��(g) − �usc

� (g, ζ )}.

For a closed set K ⊂ R
d and δ > 0 Lemma 2.9 implies

lim
n→∞n−1 log Qg,ω

n {Xn/n ∈ K } ≤ − lim
δ↘0

inf
ζ∈Kδ

{��(g) − ��(g, ζ )}
≤ − lim

δ↘0
inf

ζ∈Kδ

{��(g) − �usc
� (g, ζ )}

= − inf
ζ∈K

{��(g) − �usc
� (g, ζ )}.

The last limit δ ↘ 0 follows from the compactness of U . Properties of I g follow from
Theorem 2.6. ��
Remark 4.2 Since the rate function I g is convex, it is the convex dual of the limiting
logarithmic moment generating function

σ(t) = lim
n→∞ n−1 log E Qg,ω

n (et ·Xn ) = ��(g + t · z1) − ��(g)
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on R
d . This gives the identity

− �usc
� (g, ζ ) = sup

t∈Rd
{ζ · t − ��(g + t · z1)}. (4.3)

This identity can be combined with a variational representation for ��(g+ t · z1) from
Theorem 2.3 from [34] to produce a representation for �usc

� (g, ζ ).

As a corollary we state a level 1 LDP for RWRE (see Example 1.4).

Theorem 4.3 Let d ≥ 1. Consider RWRE on Z
d in an ergodic environment with a

finite set R ⊂ Z
d of admissible steps. Assume that g(ω, z) = log pz(ω) is a member

of L. Then there exists a continuous, convex rate function I : U → [0,∞) such that,
for P-a.e. ω, the distributions Qω{Xn/n ∈ · } on U satisfy an LDP with rate I . For
ζ ∈ ri U , I (ζ ) is the limit of point probabilities:

I (ζ ) = − lim
n→∞ n−1 log Qω

0 {Xn = x̂n(ζ )} a.s. (4.4)

This theorem complements our level 3 quenched LDPs in [32,34] with formula
(4.4) and the continuity of the rate function, in particular in the case where 0 �∈ U
and g is unbounded (e.g. if P has enough mixing and g enough moments). To put the
theorem in perspective we give a quick tour of the history of quenched large deviation
theory of RWRE.

The development began with the quenched level 1 LDP of Greven and den Hol-
lander [17] for the one-dimensional elliptic nearest-neighbor i.i.d. case (d = 1,
R = {−1,+1}, and g bounded). Their proof utilized an auxiliary branching process.
The LDP was extended to the ergodic case by Comets et al. [6], using hitting times.
Both results relied on the possibility of explicit computations in the one-dimensional
nearest-neighbor case (which in particular implies 0 ∈ U). When d ≥ 2 Zerner [46]
used a subadditivity argument for certain passage times to prove the level 1 LDP in the
nearest-neighbor i.i.d. nestling case with g ∈ Ld . The nestling assumption (0 belongs
to the convex hull of the support of

∑
z zpz(ω), and thus in particular 0 ∈ U) was cru-

cial for Zerner’s argument. Later, Varadhan [41] used subadditivity directly to get the
result for a general ergodic environment with finite step size, 0 ∈ U , and bounded g.

Subadditivity methods often fail to provide formulas for rate functions. Rosenbluth
[36] used the point of view of the particle, following ideas of Kosygina et al. [22] for
diffusions with random drift, and gave an alternative proof of the quenched level 1
LDP along with two variational formulas for the rate function. The assumptions were
that the walk is nearest-neighbor, P is ergodic, and g ∈ L p for some p > d. That
the walk is nearest-neighbor in [36] is certainly not a serious obstacle and can be
replaced with a finite R as long as 0 ∈ U . Yılmaz [43] extended the quenched LDP
and rate function formulas to a univariate level 2 quenched LDP and Rassoul-Agha
and Seppäläinen [32] extended further to level 3 results.

All the past results mentioned above are for cases with 0 ∈ U . This restriction
eliminates natural important models such as the space-time case. When 0 �∈ U , a
crucial uniform integrability estimate fails and the method of [22,32,36,43] breaks
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738 F. Rassoul-Agha, T. Seppäläinen

down. For diffusions in time-dependent but bounded random potentials this issue was
resolved by Kosygina and Varadhan [23]. For random polymers and RWRE the way
around this problem was found by Rassoul-Agha, Seppäläinen, and Yılmaz [34] who
proved a quenched level 3 LDP with potential g ∈ L even when 0 �∈ U .

For the precise location of the difficulty see step 5 on page 833 of [23] and the proof
of Lemma 2.13 of [34]. In a separate work [4] we showed that the method of [41] works
also in the space-time case R ⊂ {z : z · e1 = 1}, but with g assumed bounded.

Limit (4.4) has been previously shown for various restricted cases: in [17] (d = 1,
P i.i.d., R = {−1, 1}, g bounded), [46] (P i.i.d. , nestling, g ∈ Ld ), [41] (P ergodic,
0 ∈ U , g bounded), and [4] (P ergodic, g bounded, and R ⊂ {z : z · e1 = 1}). [4,17]
also proved continuity of the rate function.

Let us finally point out that [1] obtains homogenization results similar to [23] for
unbounded potentials, but has to compensate with a mixing assumption. This is the
same spirit in which our assumption g ∈ L works.

5 Entropy representation of the point-to-point free energy

With either a compact � or an i.i.d. directed setting, the LDP of Theorem 4.1 can be
obtained by contraction from the higher level LDPs of [34]. This is the route to linking
��(g, ζ ) with entropy. First we define the entropy.

The joint evolution of the environment and the walk give a Markov chain
(TXn ω, Zn+1,n+�) on the state space �� = � × R�. Elements of �� are denoted
by η = (ω, z1,�). The transition kernel is

p̂�(η, S+
z η) = 1

|R| for z ∈ R and η = (ω, z1,�) ∈ �� (5.1)

where the transformations S+
z are defined by S+

z (ω, z1,�) = (Tz1ω, (z2,�, z)). An
entropy H� that is naturally associated to this Markov chain and reflects the role of
the background measure is defined as follows.

Let μ0 denote the �-marginal of a probability measure μ ∈ M1(��). Define

H�(μ) =
{

inf{H(μ × q |μ × p̂�) : q ∈ Q(��) with μq = μ} if μ0 � P,

∞ otherwise.
(5.2)

The infimum is over Markov kernels q on �� that fix μ. Inside the braces the familiar
relative entropy is

H(μ × q |μ × p̂�) =
∫

��

∑

z∈R
q(η, S+

z η) log
q(η, S+

z η)

p̂�(η, S+
z η)

μ(dη). (5.3)

Obviously q(η, S+
z η) is not the most general Markov kernel on ��. But the entropy

cannot be finite unless the kernel is supported on shifts S+
z η, so we might as well

restrict to this case. H� : M1(��) → [0,∞] is convex. (The argument for this can be
found at the end of Section 4 in [32].)
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The quenched free energy has this variational characterization for g ∈ L (Theorem
2.3 in [34]):

��(g) = sup
μ∈M1(��),c>0

{
Eμ[min(g, c)] − H�(μ)

}
. (5.4)

Our goal is to find such characterizations for the point-to-point free energy. We develop
the formula in the i.i.d. directed setting. Such a formula is also valid in the more general
setting of this paper if � is a compact metric space. Details can be found in the preprint
version [33].

Let � = �Z
d

be a product space with shifts {Tx } and P an i.i.d. product measure
as in Example 1.1. Assume 0 /∈ U . Then the free energies ��(g) and ��(g, ζ ) are
deterministic (that is, the P-a.s. limits are independent of the environment ω) and
��(g, ζ ) is a continuous, concave function of ζ ∈ U . Assume also that � is a separable
metric space, and that S is the product of Borel σ -algebras, thereby also the Borel
σ -algebra of �.

To utilize convex analysis we put the space M of finite Borel measures on �� in
duality with Cb(��), the space of bounded continuous functions on ��, via integration:
〈 f, μ〉 = ∫ f dμ. Give M the weak topology generated by Cb(��). Metrize Cb(��)

with the supremum norm. The limit definition (2.3) shows that ��(g) and ��(g, ζ )

are Lipschitz in g, uniformly in ζ . H� is extended to M by setting H�(μ) = ∞ for
measures μ that are not probability measures.

For g ∈ Cb(��) (5.4) says that ��(g) = H∗
� (g), the convex conjugate of H�. The

double convex conjugate

H∗∗
� (μ) = �∗

�(μ) = sup
f ∈Cb(��)

{Eμ[ f ] − ��( f )}, μ ∈ M1(��), (5.5)

is equal to the lower semicontinuous regularization H lsc
� of H� (Propositions 3.3 and

4.1 in [13] or Theorem 5.18 in [31]). Since relative entropy is lower semicontinuous,
(5.2) implies that

H∗∗
� (μ) = H�(μ) for μ ∈ M1(��) such that μ0 � P. (5.6)

There is a quenched LDP for the distributions Qg,ω
n {R�

n ∈ ·}, where R�
n is the

empirical measure defined in (2.2). The rate function of this LDP is H∗∗
� (Theorems 3.1

and 3.3 of [34]).
The reader may be concerned about considering the P-a.s. defined functionals

��(g) or ��(g, ζ ) on the possibly non-separable function space Cb(��). However,
for bounded functions we can integrate over the limits (2.3) and (2.4) and define the
free energies without any “a.s. ambiguity”, so for example

��(g, ζ ) = lim
n→∞ n−1

E

(
log E

[
en R�

n(g)1{Xn = x̂n(ζ )}]
)
.

We extend the duality set-up to involve point to point free energy.
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Theorem 5.1 Let � = �Z
d

be a product of separable metric spaces with Borel σ -
algebra S, shifts {Tx }, and an i.i.d. product measure P. Assume 0 /∈ U . With � ≥ 1,
let μ ∈ M1(��) and ζ = Eμ[Z1]. Then

H∗∗
� (μ) = sup

g∈Cb(��)

{Eμ[g] − ��(g, ζ )}. (5.7)

On the other hand, for f ∈ Cb(��) and ζ ∈ U ,

��( f, ζ ) = sup
μ∈M1(��): Eμ[Z1]=ζ

{Eμ[ f ] − H∗∗
� (μ)}. (5.8)

Equation (5.8) is valid also when H∗∗
� (μ) is replaced with H�(μ):

��( f, ζ ) = sup
μ∈M1(��): Eμ[Z1]=ζ

{Eμ[ f ] − H�(μ)}. (5.9)

Proof With fixed ζ , introduce the convex conjugate of ��(g, ζ ) by

�∗
�(μ, ζ ) = sup

g∈Cb(��)

{Eμ[g] − ��(g, ζ )}. (5.10)

Taking g(ω, z1,�) = a · z1 gives �∗
�(μ, ζ ) ≥ a · (Eμ[Z1] − ζ ) − log |R0| . Thus

�∗
�(μ, ζ ) = ∞ unless Eμ[Z1] = ζ .
From Theorems 2.6 and 3.2, Eμ[g] − ��(g, ζ ) is concave in g, convex in ζ , and

continuous in both over Cb(��) × U . Since U is compact we can apply a minimax
theorem such as König’s theorem [21,31]. Utilizing (2.5),

�∗
�(μ) = sup

g∈Cb(��)

{Eμ[g] − ��(g)}

= sup
g∈Cb(��)

inf
ζ∈U

{Eμ[g] − ��(g, ζ )} = inf
ζ∈U

�∗
�(μ, ζ ).

Thus, if Eμ[Z1] = ζ , then �∗
�(μ) = �∗

�(μ, ζ ). Since H∗∗
� (μ) = �∗

�(μ), (5.7) follows
from (5.10).

By double convex duality (Fenchel-Moreau theorem, see e.g. [31]), for f ∈ Cb(��),

��( f, ζ ) = sup
μ
{Eμ[ f ] − �∗

�(μ, ζ )} = sup
μ: Eμ[Z1]=ζ

{Eμ[ f ] − �∗
�(μ)}

and (5.8) follows.
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To replace H∗∗
� (μ) with H�(μ) in (5.8), first consider the case ζ ∈ ri U .

sup
μ∈M1(��): Eμ[Z1]=ζ

{Eμ[ f ] − H∗∗
� (μ)}

= sup
μ∈M1(��): Eμ[Z1]=ζ

{Eμ[ f ] − H�(μ)}usc(μ)

=
(

sup
μ∈M1(��): Eμ[Z1]=ζ

{Eμ[ f ] − H�(μ)}
)usc(ζ )

= sup
μ∈M1(��): Eμ[Z1]=ζ

{Eμ[ f ] − H�(μ)}.

The first equality is the continuity of μ  → Eμ[ f ]. The second is a consequence of
the compact sublevel sets of {μ : H∗∗

� (μ) ≤ c}. This compactness follows from the
exponential tightness in the LDP controlled by the rate H∗∗

� , given by Theorem 3.3 in
[34]. The last equality follows because concavity gives continuity on ri U .

For ζ ∈ U � ri U , let U0 be the unique face such that ζ ∈ ri U0. Then U0 = co R0
where R0 = U0 ∩R, and any path to x̂n(ζ ) will use only R0-steps. This case reduces
to the one already proved, because all the quantities in (5.9) are the same as those in
a new model where R is replaced by R0 and then U is replaced by U0. (Except for
the extra terms coming from renormalizing the restricted jump kernel { p̂z}z∈R0 .) In
particular, Eμ[Z1] = ζ forces μ to be supported on � × R�

0, and consequently any
kernel q(η, S+

z η) that fixes μ is supported on shifts by z ∈ R0. ��
Next we extend the duality to certain L p functions.

Corollary 5.2 Same assumptions on �, P and R as in Theorem 5.1. Let μ ∈ M1(��)

and ζ = Eμ[Z1]. Then the inequalities

Eμ[g] − ��(g) ≤ H∗∗
� (μ) (5.11)

and

Eμ[g] − ��(g, ζ ) ≤ H∗∗
� (μ) (5.12)

are valid for all functions g such that g(·, z1,�) is local and in L p(P) for all z1,� and
some p > d, and g is either bounded above or bounded below.

Proof Since ��(g, ζ ) ≤ ��(g), (5.11) is a consequence of (5.12). Let H denote the
class of functions g that satisfy (5.12). H contains bounded continuous local functions
by (5.7).

Bounded pointwise convergence implies L p convergence. So by the L p continuity
of ��(g, ζ ) [Lemma 3.1(b)], H is closed under bounded pointwise convergence of
local functions with common support. General principles now imply that H contains
all bounded local Borel functions. To reach the last generalization to functions bounded
from only one side, observe that their truncations converge both monotonically and in
L p, thereby making both Eμ[g] and ��(g, ζ ) converge. ��
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742 F. Rassoul-Agha, T. Seppäläinen

Equation (5.8) gives us a variational representation for ��(g, ζ ) but only for
bounded continuous g. We come finally to one of our main results, the variational
representation for general potentials g.

Theorem 5.3 Let � = �Z
d

be a product of separable metric spaces with Borel σ -
algebra S, shifts {Tx }, and an i.i.d. product measure P. Assume 0 /∈ U . Let g : �� → R

be a function such that for each z1,� ∈ R�, g(·, z1,�) is a local function of ω and a
member of L p(P) for some p > d. Then for all ζ ∈ U ,

��(g, ζ ) = sup
μ∈M1(��):Eμ[Z1]=ζ

c>0

{
Eμ[g ∧ c] − H∗∗

� (μ)
}
. (5.13)

Equation (5.13) is valid also when H∗∗
� (μ) is replaced with H�(μ).

Proof From (5.12),

��(g, ζ ) ≥ ��(g ∧ c, ζ ) ≥ Eμ[g ∧ c] − H∗∗
� (μ).

Supremum on the right over c and μ gives

��(g, ζ ) ≥ sup
μ∈M1(��):Eμ[Z1]=ζ

c>0

{
Eμ[min(g, c)] − H∗∗

� (μ)
}
. (5.14)

For the other direction, let c < ∞ and abbreviate gc = g ∧ c. Let gm ∈ Cb(��) be a
sequence converging to gc in L p(P).

Let ε > 0. By (5.8) we can find μm such that Eμm [Z1] = ζ , H∗∗
� (μm) < ∞ and

��(gm, ζ ) ≤ ε + Eμm [gm] − H∗∗
� (μm). (5.15)

Take β > 0 and write

��(gm, ζ ) ≤ ε + Eμm [gc] − H∗∗
� (μm) + β−1 Eμm [β(gm − gc)]

≤ ε + sup
{

Eμ[gc] − H∗∗
� (μ) : c > 0, Eμ[Z1] = ζ

}

+β−1��

(
β(gm − gc)

)+ β−1 H∗∗
� (μm)

≤ ε + [right-hand side of (5.13)]

+ lim
n→∞ max

xk−xk−1∈R
n−1

n−1∑

k=0

∣
∣gm(Txk ω, z1,�) − gc(Txkω, z1,�)

∣
∣+ β−1 H∗∗

� (μm)

≤ ε + [right-hand side of (5.13)]

+CE
[

max
z1,�∈R�

∣
∣gm − gc

∣
∣p
]+ β−1 H∗∗

� (μm).

The second inequality above used (5.11), and the last inequality used (3.1) and Cheby-
shev’s inequality. Take first β → ∞, then m → ∞, and last c ↗ ∞ and ε ↘ 0.
Combined with (5.14), we have arrived at (5.13).
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Dropping ∗∗ requires no extra work. Since H� ≥ H∗∗
� , (5.14) comes for free. For

the complementary inequality simply replace H∗∗
� (μm) with H�(μm) in (5.15), as

justified by the last line of Theorem 5.1. ��

6 Example: directed polymer in the L2 regime

We illustrate the variational formula of the previous section with a directed polymer in
the L2 regime. The maximizing processes are basically the Markov chains constructed
by Comets and Yoshida [8] and Yilmaz [42]. We restrict to ζ ∈ ri U . The closer ζ is
to the relative boundary, the smaller we need to take the inverse temperature β.

The setting is that of Example 1.2 with some simplifications. � = R
Z

d+1
is a

product space indexed by the space-time lattice where d is the spatial dimension and
the last coordinate direction is reserved for time. The environment is ω = (ωx )x∈Zd+1

and translations are (Txω)y = ωx+y . The coordinates ωx are i.i.d. under P. The set of
admissible steps is of the form R = {(z′, 1) : z′ ∈ R′} for a finite set R′ ⊂ Z

d .
To be in the weak disorder regime we assume that the difference of two R-walks is

at least 3-dimensional. Precisely speaking, the additive subgroup of Z
d+1 generated

by R − R = {x − y : x, y ∈ R} is linearly isomorphic to some Z
m , and we

assume that the dimension m ≥ 3. (6.1)

For example, d ≥ 3 and R′ = {±ei : 1 ≤ i ≤ d} given by simple random walk
qualifies.

The P-random walk has a kernel (pz)z∈R. Earlier we assumed pz = |R|−1, but
this is not necessary for the results, any fixed kernel will do. We do assume pz > 0
for each z ∈ R.

The potential is βg(ω0, z) where β ∈ (0,∞) is the inverse temperature parameter.
Assume

E[ec|g(ω,z)|] < ∞ for some c > 0 and all z ∈ R. (6.2)

Now �1(βg, · ) is well-defined and continuous on U .
Define an averaged logarithmic moment generating function

λ(β, θ) = log
∑

z∈R
pz E[eβg(ω0,z)+θ ·z] for β ∈ [−c, c] and θ ∈ R

d+1.

Under a fixed β, define the convex dual in the θ -variable by

λ∗(β, ζ ) = sup
θ∈Rd+1

{ζ · θ − λ(β, θ)}, ζ ∈ U . (6.3)

For each β ∈ [−c, c] and ζ ∈ ri U there exists θ ∈ R
d+1 such that ∇θλ(β, θ) = ζ

and this θ maximizes in (6.3). A point η ∈ R
d+1 also maximizes if and only if

(θ − η) · z is constant over z ∈ R. (6.4)
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Maximizers cannot be unique now because the last coordinate θd+1 can vary freely
without altering the expression in braces in (6.3). The spatial part θ ′ = (θ1, . . . , θd)

of a maximizer is unique if and only if U has nonempty d-dimensional interior.
Extend the random walk distribution P to a two-sided walk (Xk)k∈Z that satisfies

X0 = 0 and Zi = Xi − Xi−1 for all i ∈ Z, where the steps (Zi )i∈Z are i.i.d. (pz)-
distributed. For n ∈ N define forward and backward partition functions

Z+
n = E

[
eβ
∑n−1

k=0 g(ωXk ,Zk+1)+θ ·Xn ] and Z−
n = E

[
eβ
∑−1

k=−n g(ωXk ,Zk+1)−θ ·X−n ]

and martingales W±
n = e−nλ(β,θ) Z±

n with EW±
n = 1.

Suppose we have the L1 convergence W±
n → W±∞ for some (β, θ). Then EW±∞ = 1,

and by Kolmogorov’s 0-1 law P(W±∞ > 0) = 1. Define a probability measure μθ
0 on

� by

∫

�

f (ω)μθ
0(dω) = E[W−∞W+∞ f ].

Define a stochastic kernel from � to R by

qθ
0 (ω, z) = pzeβg(ω0,z)−λ(β,θ)+θ ·z W+∞(Tzω)

W+∞(ω)
.

Property
∑

z∈R qθ
0 (ω, z) = 1 comes from (one of) the identities

W±∞ =
∑

z∈R
pzeβg(ωa(±) ,z)−λ(β,θ)+θ ·z W±∞ ◦ T±z P-a.s. (6.5)

where a(+) = 0 and a(−) = −z. These are inherited from the one-step Markov
decomposition of Z±

n . For � ≥ 0, on �� define the probability measure μθ by

μθ(dω, z1,�) = μθ
0(dω)q(ω, z1)q(Tx1ω, z2) · · · q(Tx�−1ω, z�) (6.6)

where x j = z1 + · · · + z j , and the stochastic kernel

qθ ((ω, z1,�), (Tz1ω, z2,�z)) = qθ
0 (Tx�

ω, z). (6.7)

We think of β fixed and θ varying and so include only θ in the notation of μθ and
qθ . Identities (6.5) can be used to show that μθ is invariant under the kernel qθ , or
explicitly, for any bounded measurable test function f ,

∑

z1,�,z

∫

�

μθ(dω, z1,�)q
θ
0 (Tx�

ω, z) f (Tz1ω, z2,�z) =
∫

��

f dμθ . (6.8)
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By Lemma 4.1 of [32] the Markov chain with transition qθ started with μθ is an
ergodic process. Let us call in general (μ, q) a measure-kernel pair if q is a Markov
kernel and μ is an invariant probability measure: μq = μ.

Theorem 6.1 Fix a compact subset U1 in the relative interior of U . Then there exists
β0 > 0 such that, for β ∈ (0, β0] and ζ ∈ U1, we can choose θ ∈ R

d+1 such that the
following holds. First ∇θλ(β, θ) = ζ and θ is a maximizer in (6.3). The martingales
W±

n are uniformly integrable and the pair (μθ , qθ ) is well-defined by (6.6)–(6.7). We
have

�1(βg, ζ ) = −λ∗(β, ζ ). (6.9)

A measure-kernel pair (μ, q) on �1 such that μ0 � P satisfies

�1(βg, ζ ) = Eμ[βg] − H(μ × q|μ × p̂1) (6.10)

if and only if (μ, q) = (μθ , qθ ).

Remark 6.2 Note that even though ∇θλ(β, θ) = ζ does not pick a unique θ , by (6.4)
replacing θ by another maximizer does not change the martingales W±

n or the pair
(μθ , qθ ). Thus ζ determines (μθ , qθ ) uniquely.

We omit the proof of Theorem 6.1. Details appear in the preprint [33].
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Appendix A: A convex analysis lemma

Lemma 7.1 Let I be a finite subset of R
d and ζ ∈ co I. Suppose ζ =∑z∈I βz z with

each βz > 0 and
∑

z∈I βz = 1. Let ξn ∈ co I be a sequence such that ξn → ζ . Then
there exist coefficients αn

z ≥ 0 such that
∑

z∈I αn
z = 1, ξn =∑z∈I αn

z z and for each
z ∈ I, αn

z → βz as n → ∞.
Furthermore, assume I ⊂ Q

d and ξn ∈ Q
d . Then the coefficients αn

z can be taken
rational.

Proof First we reduce the proof to the case where there exists a subset I0 ⊂ I such
that I0 is affinely independent and generates the same affine hull as I, and ξn ∈ co I0
for all n. To justify this reduction, note that there are finitely many such sets I0,
and each ξn must lie in the convex hull of some I0 (Carathéodory’s Theorem [35,
Theorem 17.1] applied to the affine hull of I). All but finitely many of the ξn’s are
contained in subsequences that lie in a particular co I0. The coefficients of the finitely
many remaining ξn’s are irrelevant for the claim made in the lemma.
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746 F. Rassoul-Agha, T. Seppäläinen

After the above reduction, the limit ξn → ζ forces ζ ∈ co I0. The points z̃ ∈ I �I0
lie in the affine hull of I0 and hence have barycentric coordinates:

γz,z̃ ∈ R , z̃ =
∑

z∈I0

γz,z̃ z ,
∑

z∈I0

γz,z̃ = 1 for z̃ ∈ I � I0.

Consequently

ζ =
∑

z∈I
βz z =

∑

z∈I0

(
βz +

∑

z̃∈I�I0

γz,z̃βz̃

)
z ≡

∑

z∈I0

β̄z z (7.1)

where the last identity defines the unique barycentric coordinates β̄z of ζ relative to
I0. Define the I0 × I matrix A = [

I
∣
∣ {γz,z̃}

]
where I is the I0 × I0 identity

matrix and (z, z̃) ranges over I0 × (I � I0). Then (7.1) is the identity Aβ = β̄ for the
(column) vectors β = (βz)z∈I and β̄ = (β̄z)z∈I0 . Since η = [β̄ 0]t is also a solution
of Aη = β̄, we can write β = [β̄ 0]t + y with y ∈ ker A.

Let ξn =∑z∈I0
ᾱn

z z define the barycentric coordinates of ξn . Since the coordinates
are unique, ξn → ζ forces ᾱn → β̄. Let αn = [ᾱn 0]t + y. Then Aαn = ᾱn which
says that ξn = ∑

z∈I αn
z z. Also αn → β. Since βz > 0, inequality αn

z ≥ 0 fails at
most finitely many times, and for finitely many ξn we can replace the αn

z ’s with any
coefficients that exist by ξn ∈ co I. Lastly, for

∑
z∈I αn

z = 1 we need
∑

z∈I yz = 0.
This comes from Ay = 0 because the column sums of A are all 1. This completes the
proof of the first part of the lemma.

Assume now that I ⊂ Q
d and ξn ∈ Q

d . Then by Lemma 7.1. in [34] the vector ᾱn

is rational. By Lemma A.2. in [30] we can find rational vectors yn ∈ ker A such that
yn → y. This time take αn = [ᾱn 0]t + yn . ��

Appendix B: A concentration inequality

We state a concentration inequality for the case of a bounded potential g. It comes
from the ideas of Liu and Watbled [25], in the form given by Comets and Yoshida [9].

Lemma 8.1 Let P be an i.i.d. product measure on a product space � = �Z
d

with
generic elements ω = (ωx )x∈Zd . Let g : �� → R be a bounded measurable function
such that, for each z1,� ∈ R�, g(· , z1,�) is a local function of ω. Let ζ ∈ U and

Fn(ω) = log E
[
e
∑n−1

k=0 g(TXk ω,Zk+1,k+�)1{Xn = x̂n(ζ )}]. (8.1)

Let U0 be a face of U such that ζ ∈ U0, and assume that 0 �∈ U0.
Then there exist constants B, c ∈ (0,∞) such that, for all n ∈ N and ε ∈ (0, c),

P{ω : |Fn(ω) − n��(g, ζ )| ≥ nε} ≤ 2e−Bε2n . (8.2)

Proof Since n−1
EFn → ��(g, ζ ), we can prove instead
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P{ω : |Fn(ω) − EFn| ≥ nε} ≤ 2e−Bε2n . (8.3)

As before, with R0 = R ∩ U0 we have U0 = co R0, any admissible path x0,n with
xn = x̂n(ζ ) uses only R0-steps, and from 0 �∈ U0 follows the existence of û ∈ Z

d

such that û · z ≥ 1 for all z ∈ R0. Set M0 = maxz∈R0 û · z.
Fix r0 ∈ N so that g(ω, z1,�) depends on ω only through {ωx : ∣∣x · û

∣
∣ < r0}.

Let n0 ∈ N be such that n0r0 ≥ M0n + r0. On � define the filtration H0 = {∅,�},
H j = σ {ωx : x · û ≤ jr0} for 1 ≤ j ≤ n0. Since xn · û ≤ M0n, Fn is Hn0 -measurable.

To apply Lemma 6.3 of [9] we need to find G1, . . . , Gn0 ∈ L1(P) such that

E[G j |H j−1] = E[G j |H j ] (8.4)

and

E[et|Fn−G j | |H j−1] ≤ b (8.5)

for constants t, b ∈ (0,∞) and all 1 ≤ j ≤ n0.
For the background random walk define stopping times

ρ j = inf{k ≥ 0 : xk · û ≥ ( j − 2)r0}

and

σ j = inf{k ≥ 0 : xk · û ≥ ( j + 1)r0}.

Abbreviate ϕ(x) = 1{x = x̂n(ζ )}. For 1 ≤ j ≤ n0 put

W j = exp
{ ∑

k: 0≤k<n∧ρ j
n∧σ j≤k<n

g(Txk ω, zk+1,k+�)
}

and

G j (ω) = log E[W j ϕ(Xn)].

Then W j does not depend on {ωx : ( j − 1)r0 ≤ x · û ≤ jr0} and consequently (8.4)
holds by the independence of the {ωx }.

Let t ∈ R � (0, 1). By Jensen’s inequality,
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748 F. Rassoul-Agha, T. Seppäläinen

et (Fn−G j ) =
⎛

⎜
⎝

E[W j e
∑n∧σ j−1

k=n∧ρ j
g(TXk ω,Zk+1,k+�)

ϕ(Xn)]
E[W j ϕ(Xn)]

⎞

⎟
⎠

t

≤ E[W j e
t
∑n∧σ j−1

k=n∧ρ j
g(TXk ω,Zk+1,k+�)

ϕ(Xn)]
E[W j ϕ(Xn)]

≤ E[W j eC|t |(σ j−ρ j ) ϕ(Xn)]
E[W j ϕ(Xn)] ≤ eC|t |

since g is bounded and σ j −ρ j ≤ 3r0. This implies (8.5) since t can be taken of either
sign.

Lemma 7.1 of [9] now gives (8.2). Note that parameter n in Lemma 7.1 of [9] is
actually our n0. But the ratio n/n0 is bounded and bounded away from zero so this
discrepancy does not harm (8.3). ��
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