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Abstract Convergence of the Bayes posterior measure is considered in canonical
statistical settings where observations sit on a geometrical object such as a compact
manifold, or more generally on a compact metric space verifying some conditions. A
natural geometric prior based on randomly rescaled solutions of the heat equation is
considered. Upper and lower bound posterior contraction rates are derived.
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1 Introduction

Let M be a compact metric space, equipped with a Borel measure μ and the cor-
responding Borel-sigma field. Let L

p := L
p(M, μ), p ≥ 1 and C0(M) respec-

tively denote the real vector spaces of real-valued functions defined on M that are
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666 I. Castillo et al.

p-integrable with respect to μ and of real-valued continuous functions on M. Also,
denote by D(R) the algebra of real-valued infinitely differentiable functions on the
real line.

In this paper we investigate rates of contraction of posterior distributions for non-
parametric models on geometrical structures such as

1. Gaussian white noise on a compact metric spaceM, where, for n ≥ 1, one observes

d X (n)(x) = f (x)dx + 1√
n

d Z(x), x ∈ M,

where f is in L
2 and Z is a white noise on M.

2. Fixed design regression where one observes, for n ≥ 1,

Yi = f (xi ) + εi , 1 ≤ i ≤ n.

The design points {xi } are fixed on M and the variables {εi } are assumed to be
independent standard normal.

3. Density estimation on a manifold where the observations are a sample

(Xi )1≤i≤n ∼ f,

X1, . . . , Xn are independent identically distributed M-valued random variables
with positive density function f on M.

Although an impressive amount of work has been done using frequentist approachs
to estimation on manifolds, see [20] and the references therein, we focus in this paper
on the Bayes posterior measure.

Works devoted to deeply understanding the behaviour of Bayesian nonparametric
methods have recently experienced a considerable development in particular after the
seminal works of A. W. van der Vaart, H. van Zanten, S. Ghosal and J. K. Ghosh [12],
[27]. Especially, the class of Gaussian processes forms an important family of nonpara-
metric prior distributions, for which precise rates have been obtained in [31], see also
[5] for lower bound counterparts. In [33], the authors obtained adaptive performance
up to logarithmic terms by introducing a random rescaling of a very smooth Gaussian
random field. In these results, the considered rescaling corresponds to shrinking the
paths of the process. These results have been obtained on [0, 1]d , d ≥ 1. Our point
in this paper is to develop a Bayesian procedure adapted to the geometrical structure
of the data. Among the examples covered by our results, we can cite directional data
corresponding to the spherical case and more generally data supported by a compact
manifold.

We follow the illuminating approach of [31] and [33] and use a fixed prior distrib-
ution, constructed by rescaling a smooth Gaussian random field. For a recent survey
on Gaussian processes and their basic properties, see [19]. Basically our aim will be
twofold:

First, because the ‘shrinking of paths’ approach from [33] has no natural analogue
on a general manifold, this type of rescaling cannot be used. In our more general
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Thomas Bayes’ walk on manifolds 667

setting, we show how a rescaling is made possible by introducing a notion of time
decoupled from the underlying space and issued from the semigroup property of a
family of operators. Another important difference brought by the geometrical nature
of the problem is the underlying Gaussian process, which now originates from an
harmonic analysis of the data space M, with the rescaling naturally acting on the
frequency domain. More precisely, we suppose that M is equipped with a positive
self-adjoint operator L such that the associated semigroup e−t L , t > 0, the heat
kernel, allows a smooth functional calculus, which in turn allows the construction of
the Gaussian random field. A central example of operator is L = −�, where � is the
Laplacian on M. Our prior can then be interpreted as a randomly rescaled (random)
solution of the heat equation.

This construction enables to obtain rates of contraction of the posterior distribution
depending on the ‘regularity’ of the estimated function (defined in terms of approxi-
mation rates) and a ‘dimension’ of the geometrical object at hand.

Secondly, we prove a lower bound for the posterior contraction rate showing in
particular that the logarithmic factor appearing in the upper evaluations of the posterior
rate is necessary.

We also took inspiration on earlier work by [1], where the authors consider a
symmetry-adaptive Bayesian estimator in a regression framework. Precise minimax
rates in the L

2-norm over Sobolev spaces of functions on compact connected orientable
manifolds without boundary are obtained in [11]. We also mention a recent develop-
ment by [2], where Bayesian consistency properties are derived for priors based on
mixture of kernels over a compact manifold.

The paper is mostly self-contained and does not require prior knowledge of heat
kernel theory. Definitions and notation for the heat kernel can be found in Sect. 2.4.
To obtain sharp entropy bounds for some compact sets appearing in the proof, we
use the existence of needlet-type basis on M, as established in [9]. Standard general
conditions to obtain rates for Bayesian posteriors are used following [12,13].

Here is an outline of the paper. We first detail in Sect. 2 the properties assumed
on the structure M and the associated heat kernel allowing our construction. We
then construct the associated Gaussian prior defining the procedure. Examples are
considered in Sect. 3. The main results are stated in Sect. 4, that is: rates of contraction
for the procedure, as well as a lower bound proving that the logarithmic factor present
in the rates is, in fact, sharp. The rest of the paper is devoted to the proofs of these
results. In Sects. 5 and 6 structural properties of the considered Gaussian processes
are studied, and entropy estimates are stated. These properties enable one to check
general sufficient conditions for upper-bound posterior rates, as we demonstrate in
Sect. 7. Upper-bound rates are then derived in Sect. 8, as well as the corresponding
lower bound result. Sections 9 and 10 contain respectively the definition of Besov
spaces and the proofs of the sharp entropy results. Finally, in Sect. 10.5, a homogeneity
property of measure of balls needed for our results is verified for compact Riemannian
manifolds without boundary.

The notation � means less than or equal to up to some universal constant. For
any sequences of reals (an)n≥0 and (bn)n≥0, the notation an ∼ bn means that the
sequences verify c ≤ lim infn(bn/an) ≤ lim supn(bn/an) ≤ d for some positive
constants c, d, and an � bn stands for limn(bn/an) = 0. For any reals a, b, we denote
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668 I. Castillo et al.

min(a, b) = a ∧ b and max(a, b) = a ∨ b. For a given differentiable function u, we
denote by u′ its derivative.

2 The geometrical framework and our method

2.1 Compact metric doubling space M

Let ρ denote the metric on the space M. The open ball of radius r centered at x ∈ M
is denoted by B(x, r) and to simplify the notation we put μ(B(x, r)) =: |B(x, r)|.
Without loss of generality, we impose in the abstract proofs that both the total mass
μ(M) and the diameter of M are equal to 1. Although this is typically not the case in
practical situations, see Sect. 3, considering the general case only changes constants
in the proofs.

We assume that M has the so called doubling property: i.e. there exists 0 < D < ∞
such that:

for all x ∈ M, 0 < r, 0 < |B(x, 2r)| ≤ 2D|B(x, r)| (1)

We say that M verifies the Ahlfors property (see e.g. [16]) if there exist positive
c1, c2, d such that

for all x ∈ M, for all 0 < r ≤ 1, c1rd ≤ |B(x, r)| ≤ c2rd . (2)

If (2) holds, then one must have d ≤ D. Indeed, successive applications of (1) imply
|B(x, r)| ≥ (r/2)D . In the rates obtained in the sequel as well as in the specific
examples we consider, d plays the role of a dimension. Notice, however, that there is
no need for d to be an integer.

2.2 Previous work on the real line

To motivate our approach, let us start with the simple case where the space M is
a compact interval on the real line, say M = [0, 1]. This is the case considered in
[33]. The statistical goal, for anyone of the models considered in the introduction
(white noise, regression and density), is to estimate the unknown function f . To do
so, a Bayesian approach first has to put a prior distribution on f , that is a probability
distribution on, say, continuous functions f on M.

So, how does one build a prior on f ? A possibility to model a random function
on [0, 1] is to take realisations of a stochastic process on this interval. A natural class
which comes to mind is the one of Gaussian processes. Any such process (Zt )t∈[0,1]
is characterised by a mean function, which here will be taken to be identically zero,
and a covariance kernel K (s, t) = E(Zs Zt ), for s, t in [0, 1]. In this case, choosing a
prior reduces to choosing a covariance kernel K .

In [33], the authors make use of the so-called squared-exponential covariance kernel

K (s, t) = e−(s−t)2
, (s, t) ∈ (0, 1)2. (3)
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Thomas Bayes’ walk on manifolds 669

It can be shown that the centered Gaussian process (Zt ) with such covariance has very
smooth paths. To achieve minimax adaptation properties for the Bayesian posterior,
the approach taken by [33] is to additionally allow for some extra freedom in the
rescaling by considering (Z At ) with A random with properly chosen distribution.

There is a simple reason why the squared-exponential kernel cannot be used in a
geometric context for general M. Although (3) admits the immediate generalisation
(recall that ρ is the metric on M)

κρ(s, t) = e−ρ(s,t)2
, (s, t) ∈ M2, (4)

it can be shown that this function is not positive definite in general already for the
simplest examples such as M taken to be the sphere in R

k , k ≥ 2.

2.3 Building a positive-definite kernel on M via an operator L

Following the previous idea of building a Gaussian process on M, the question is now
how to build an appropriate covariance kernel on M.

Suppose one is given a decomposition of the space of square-integrable functions
on M

L
2(M) = ⊕k≥0Hk, (5)

where the Hk are finite-dimensional subspaces of L
2 consisting of continuous

functions on M, and orthogonal in L
2. Then, the projector Qk on Hk is actu-

ally a kernel operator Qk(x, y) := ∑
1≤i≤dim(Hk )

ei
k(x)ei

k(y), where {ei
k} is any

orthonormal basis of Hk ; so it is obviously a positive-definite kernel. Also, given
ϕ : N → (0,+∞) such that ∀x ∈ M,

∑
k≥0 ϕ(k)Qk(x, x) < ∞, the function

Kϕ(x, y) =∑k≥0 ϕ(k)Qk(x, y) is a positive definite kernel which is the covariance
kernel of a Gaussian process. Constructing explicitely a Gaussian process with this
covariance is not difficult, this will be done in Sect. 2.6.

A simple way of obtaining a decomposition (5) is by diagonalisation of a self-
adjoint positive operator L on M with discrete spectrum, finite dimension spectral
spaces and eigenfunctions continuous on M. In this case the subspaces Hk =: Hλk

can be taken to be the eigenspaces of L . Such an operator has non-negative eigenvalues
λk that we order in an increasing way (0 ≤ λ0 < λ1 < · · · ).

While many such operators L could in principle be used, we will be especially
interested in the cases where L reflects quite well some geometrical properties of M.
A central example when M is a compact Riemannian manifold without boundary is
L = −�, where � is the Laplacian (or weighted Laplacian) on M, see Sect. 3 for
details.

The operator L being given, we still need to choose the function ϕ. For this purpose,
we will concentrate on another important aspect of the approach developed in [31]
and [33]: the rescaling At . In these papers, the rescaling drives the regularity and its
proper choice is essential for the properties of the estimators. In the case of a general
set M, a multiplicative rescaling At has typically no sense. To find a meaningful
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670 I. Castillo et al.

generalisation of the rescaling, we will use a standard tool of the theory of operators
(see [10]), the semi-group associated to the operator L , which ultimately yields the
choice ϕ(k) = e−tλk . Note that a slightly similar point of view has been considered
recently in statistical learning with Laplacian-based spectral methods (diffusion maps,
diffusion wavelets...) propagating information on the data through a Markov kernel
(see for instance [8,21]).

2.4 Heat kernel

Let us now give the properties on the operator L that we will need. These conditions
arise naturally in the theory of heat kernels. Though no prerequisites on heat kernels are
needed for the present paper, we refer the interested reader to [14,22,26] for standard
expositions on heat kernel theory.

We suppose that the self-adjoint positive operator L is defined on a domain D ⊂
L

2 dense in L
2. Then −L is the infinitesimal generator of a contraction self-adjoint

semigroup e−t L , see [10, Thm. 4.6].
We suppose in addition that e−t L is a Markov kernel operator i.e. there exists a non

negative continuous kernel Pt (x, y) (the ‘heat kernel’) such that:

e−t L f (x) =
∫

M
Pt (x, y) f (y)dμ(y) (6)

Pt (x, y) = Pt (y, x), (7)
∫

M
Pt (x, y)dμ(y) = 1, (8)

∀x, y ∈ M, ∀s, t > 0, Pt+s(x, y) =
∫

M
Pt (x, u)Ps(u, y)du. (9)

Clearly, from (7), (9) and Pt (x, y) ≥ 0, we have

Pt (x, y) =
∫

M
Pt/2(x, u)Pt/2(y, u)du =

∫

M
Pt/2(x, u)Pt/2(y, u)du,

which immediately implies that Pt (x, y) is a positive-definite kernel.
We will further assume the following bounds on the heat kernel, which are satisfied

in a large variety of situations, in particular all the examples considered in Sect. 3 (see
[14,22,26]):

Suppose that there exist C1, C2 > 0, c1, c2 > 0, such that, for all t ∈]0, 1[, and
any x, y ∈ M,

C2
√
|B(x,

√
t)||B(y,

√
t)|

e−
c2ρ2(x,y)

t ≤ Pt (x, y) ≤ C1
√
|B(x,

√
t)||B(y,

√
t)|

e−
c1ρ2(x,y)

t .

(10)
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Thomas Bayes’ walk on manifolds 671

It is also known ([9], and references therein), that Pt (x, y) is a continuous function,
the eigenspaces Hλk of L are of finite dimension and the eigenvectors are continuous.
That is, L

2(M) = ⊕k≥0Hλk , and the orthogonal projectors PHλk
on the eigenspaces

Hλk are kernel operators Qk(x, y) with

Qk(x, y) =
∑

1≤l≤dim(Hλk )

el
k(x)el

k(y),

as soon as {el
k, 1 ≤ l ≤ dim(Hλk )} is an orthonormal basis of Hλk .

The Markov kernel Pt writes

Pt (x, y) =
∑

k

e−tλk Qk(x, y). (11)

A direct consequence of (10) is that for all x ∈ M and all t ∈]0, 1[,

C2

|B(x,
√

t)| ≤ Pt (x, x) ≤ C1

|B(x,
√

t)| . (12)

2.5 Why is the heat kernel a canonical kernel on M?

Consider the already large class of compact Riemannian manifolds without boundary
for M. In that case we set L = −�, where � is the Laplacian on M, see Sect. 3 for
details. We claim that in this case the associated heat kernel is a natural choice for the
following reasons

1. The heat kernel Pt is a positive definite kernel on M. Thus Pt is at least a possible
candidate for use as a covariance kernel of a Gaussian process.

2. The heat kernel associated to L = −� on M verifies (10), see Sect. 3. In particular,
up to constants, the heat kernel appears as a natural geometric generalisation of
the squared-exponential kernel (3) on the real line ! Also, we see that the ‘time’ t
is a natural candidate for a (inverse-) scale parameter. We will indeed allow t to
vary in the definition of our prior below.

3. In the context of harmonic analysis on geometric spaces M, the Laplacian on M,
or equivalently the associated heat kernel semi-group, are known as natural carriers
of the information about the ‘geometry’ of M. The collection of eigenspaces Hλk

defined above can very much be interpreted as an harmonic analysis of M. For
instance, in the case of the circle S

1 ∼ R/2πZ, one has λk = k2 and Hλk = Hk

is generated by x → cos(kx) and x → sin(kx), see Sect. 3.

2.6 Our method: Prior, definition

For the statistical results of the paper, we always assume that both conditions (1) and
(2) on the set M hold. In particular, the prior depends on the ‘dimension parameter’ d
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672 I. Castillo et al.

in (2). However, the key entropy property stated in Sect. 5 holds more generally under
(1) only.

We consider a prior on functions from M to R constructed hierarchically as follows.
First, generate a collection of independent standard normal variables {Xl

k} with
indexes k ≥ 0 and 1 ≤ l ≤ dim(Hλk ). Set, for x ∈ M and any t ∈ (0, 1],

W t (x) =
∑

k≥0

∑

1≤l≤dim Hλk

e−λk t/2 Xl
kel

k(x). (13)

To simplify the notation, and when no confusion is possible, we omit in the sequel
the range for indexes k, l in summations. Equation (13) defines a Gaussian stochastic
process W t (·) indexed by M. This process is centered and has covariance kernel
precisely Pt , as follows from computing

E(W t (x)W t (y)) =
∑

k

e−λk t
∑

l

el
k(x)el

k(y) = Pt (x, y).

Also, W t defines a Gaussian variable in various separable Banach spaces B, see [32] for
definitions. In particular, it is a Gaussian random element in both B = (C0(M), ‖·‖∞)

and B = (L2(M, μ), ‖ · ‖2), the two Banach spaces we consider in the sequel. To
check this, apply Theorem 4.2 in [32], where almost sure convergence of the series
(13) in B follows from the properties of the Markov kernel (11).

Second, draw a positive random variable T according to a density g on (0, 1]. This
variable can be interpreted as a random scaling, or ‘time’. It turns out that convenient
choices of g are deeply connected to the geometry of M. We choose the density g of
T such that, for a real a > 1 and positive constants C1, C2, q, with d defined in (2),

C1t−ae−t−d/2 logq (1/t) ≤ g(t) ≤ C2t−ae−t−d/2 logq (1/t), t ∈ (0, 1]. (14)

We show below that the choice q = 1 + d/2 leads to sharp rates.
The full (non-Gaussian) prior we consider is W T, where T is random with density g.

Hence, this construction leads to a prior 	w, which is the probability measure induced
by

W T (x) =
∑

k

∑

l

e−λk T/2 Xl
kel

k(x). (15)

Some comments are in order. First, one could be tempted to use the Gaussian prior
W t (with t fixed) as prior. Nevertheless, similar to what happens for the squared expo-
nential prior on the real line [33], the paths of the corresponding Gaussian process
are infinitely differentiable almost surely, which would lead to slow rates of conver-
gence for the posterior, see [30]. This difficulty can be overcome by making t random,
allowing the prior to adapt to regularity of the unknown function. The choice of the
particular form for the prior on T is related to the form taken by the entropy of the
Reproducing Kernel Hilbert Space (RKHS) of W t , as will be seen in Sect. 5. For more
discussion on this, see also Sect. 4.3.
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Thomas Bayes’ walk on manifolds 673

3 Examples

This section is devoted to the presentation of a variety of examples which naturally fit
into the framework introduced above. The three first examples reflect a situation with
no boundary where Condition (2) is verified.

The last case gives an illustration of a more complicated situation, where a boundary
is present and (2) may or may not be valid, depending on the type of measure μ and
operator L .

It is interesting to observe in these examples that, in the situations where (2) is true,
the constant d has a natural interpretation as the dimension of the problem.

Torus case Let M = S
1 be the torus, parameterised by [−π, π ], with identification

of π and −π , and equipped with the normalised Lebesgue measure. The metric ρ

reflects the previous identification.

ρ(x, y) = |x − y| ∧ (2π − |x − y|), x, y ∈ [−π, π ].

In particular, for any 0 < r ≤ π one has |B(x, r)| = r/π , which ensures condition
(2) with d = 1. The spectral decomposition of the Laplacian operator � = −L gives
rise to the classical Fourier basis, with λk = k2 and

H0 = span{1}; Hλk = span{eikx , e−ikx } = span{sin kx, cos kx}.

From this one deduces that Qk(x, y) = 2 cos k(x − y) and

e−t L(x, y) = et�(x, y) = 1 +
∑

k≥1

e−k2t 2 cos k(x − y) =
√

π

t

∑

l∈Z

e−
(x−y−2lπ)2

4t .

Clearly, for all t > 0, et�(x, x) ≥ 1, and

for all 0< t <1, x, y ∈ [−π, π ], C ′ 1√
t
e−c′ ρ(x,y)2

t ≤ et�(x, y)≤C
1√
t
e−c ρ(x,y)2

t .

Sphere case Let now M = S
d−1 ⊂ R

d . The geodesic distance on S
d−1 is given by

ρ(x, y) = cos−1(〈x, y〉), 〈x, y〉 =
d∑

i=1

xi yi .

We take as μ the natural measure on S
d−1 which is rotation invariant. It follows that

|B(x, r)| = |Sd−2|
r∫

0

(sin t)d−2dt,
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From this one deduces the following inequalities ensuring (2) with ‘dimension’
d − 1,

for all x ∈ M, for all 0 ≤ r ≤ π = diam(Sd−1), c1rd−1 ≤ |B(x, r)| ≤ c2rd−1.

As M = S
d−1 is a Riemannian manifold, there is a natural Laplacian on

S
d−1, �Sd−1 = −L , which is a negative self-adjoint operator, whose spectral decom-

position we describe next. The eigenspaces Hλk turn out to be the restriction to S
d−1

of polynomials of degree k which are homogeneous (i.e. P(x) =∑|α|=k aαxα, α =
(α1, . . . , αn), |α| =∑αi , αi ∈ N) and harmonic on R

d (i.e. �P =∑d
i=1

∂2 P
∂x2

i
= 0.)

We have,

P ∈ Hλk ⇐⇒ L P = −�Sd−1 P = k(k + d − 2)P := λk P

Moreover dim(Hλk ) = 2k+d−2
d−2

(d+k−3
k

) := Nk(d). This space is called the space of
spherical harmonics of order k. Moreover, if (Yki )1≤i≤Nk is any orthonormal basis of
Hλk , the projector writes

Qk(x, y) =
∑

1≤i≤Nk

Yki (x)Yki (y).

In fact, Qk further has an explicit expression in terms of Gegenbauer polynomials, see
[28]. Now for all 0 < t ≤ 1, it can be proved (as a consequence of a general result on
compact Riemannian manifolds, see below) that

C ′

t (d−1)/2
e−c′ ρ(x,y)2

t ≤ e−t L(x, y) =
∑

k

e−tk(k+d−2)Qk(x, y) ≤ C

t (d−1)/2
e−c ρ(x,y)2

t .

Compact Riemannian manifold, without boundary This case obviously generalises
the two examples above. Let M be a compact Riemannian manifold of dimension d
without boundary. Associated to the Riemannian structure we have a measure dx , a
metric ρ, and a Laplacian �, such that

∫

M
� f (x)g(x)dx = −

∫

∇( f )(x) · ∇(g)(x)dx .

So L = −� is a symmetric nonnegative operator. Now the associated semigroup et�

is a positive kernel operator verifying: for all t ∈]0, 1[, (see [7])

C ′ 1
√
|B(x,

√
t)||B(y,

√
t)|

e−c′ ρ2(x,y)
t ≤ et�(x, y)

≤ C
1

√
|B(x,

√
t)||B(y,

√
t)|

e−c ρ2(x,y)
t .
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Thomas Bayes’ walk on manifolds 675

The main property proved in Sect. 10.5 is that there exist 0 < c1 < c2 < ∞, such that

for all x ∈ M, for all r ≤ diam(M), c1rd ≤ |B(x, r)| ≤ c2rd ,

which is exactly (2) with dimension d.

Jacobi case Consider M = [−1, 1], equipped with the measure ω(x)dx with ω(x) =
(1− x)α(1 + x)β and α > −1, β > −1. (So we have, in fact, a family of measures.)
Consider the metric

ρ(x, y) = | arccos x − arccos y| = arccos(xy +
√

1 − x2
√

1 − y2).

If σ(x) = (1 − x)2, then τ := (σω)′
ω

is a polynomial of degree 1, and we set

−L( f ) = DJ ( f ) = (σω f ′)′

ω
= σ f ′′ + τ f ′.

The operator L is a nonnegative symmetric second order differential operator in
L2(ω(x)dx). Using Gram Schmidt orthonormalisation (again, in L2(ω(x)dx)) of
{xk, k ∈ N} we get a family of orthonormal polynomials {πk, k ∈ N} called Jacobi
polynomials, which coincides with the spectral decomposition of DJ . More precisely,

DJ πk := −λkπk = −k(k + 1 + α + β))πk

Then, for any k ∈ N, Hλk = span{πk}, dim(Hλk ) = 1 and

Qk(x, y) = πk(x)πk(y); λk = k(k + α + β + 1).

e−t L(x, y) = cα,β +
∑

k≥1

e−tk(k+1+α+β))πk(x)πk(y), cα,β

∫

M

ω(x)dx = 1.

It can be proved, see [9], that for any x, y on M and any t ∈]0, 1[,

C ′ 1
√
|B(x,

√
t)||B(y,

√
t)|

e−c′ ρ2(x,y)
t ≤ e−t L(x, y)

≤ C
1

√
|B(x,

√
t)||B(y,

√
t)|

e−c ρ2(x,y)
t .

Furthermore it can be checked, see [23], that for all x ∈ [−1, 1] and 0 < r ≤ π ,

|B(x, r)| ∼ r((1 − x) ∨ r2)α+1/2((1 + x) ∨ r2)β+1/2.

So, in this case, condition (2) is true for α = β = −1/2 and not fulfilled for other
values of α and β.
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4 Main results

Before stating the main results, we briefly present the general Bayesian framework.

4.1 Bayesian framework and general result

Data Given a metric space F equipped with a σ -field T , consider a sequence of sta-
tistical experiments (Xn,An, {P(n)

f } f ∈F ). Suppose there exists a common (σ -finite)

dominating measure μ(n) to all probability measures {P(n)
f } f ∈F , that is

d P(n)
f (x (n)) = p(n)

f (x (n))dμ(n)(x (n)).

We assume that the map (x (n), f ) → p(n)
f (x (n)) is jointly measurable relative to

An ⊗ T .

Prior We equip the space (F , T ) with a probability measure 	 that is called prior.
Then the space Xn × F can be naturally equipped of the σ -field An ⊗ T and of the
probability measure

P(An × T ) =
∫ ∫

An×T

p(n)
f (x (n))dμ(n)(x (n))d	( f ).

The marginal in f of this measure is the prior 	. The law X | f is P(n)
f .

Bayes formula Under the preceding framework, the conditional distribution of f given
the data X (n) is absolutely continuous with respect to 	 and is given by, for any
measurable set A ∈ T ,

	(A |X (n)) =
∫

A p(n)
f (X (n))d	( f )

∫
p(n)

f (X (n))d	( f )
.

We study the convergence of the posterior measure in a frequentist sense in that
we suppose that there exists a ‘true’ parameter, here an unknown function, denoted
f0. That is, we consider convergence under the law P(n)

f0
. The expectation under this

distribution is denoted E f0 . Theorem 1 in [13] gives sufficient conditions for the
posterior to concentrate at rate εn → 0 towards f0, when n goes to infinity,

E f0	( f : dn( f, f0) ≤ Mεn | X (n)) → 1, (16)

where dn is a semi-distance for which certain exponential tests exist, see [13] for details.
In [31,33], the case of plain and randomly rescaled Gaussian priors is considered and
the authors establish that, as soon as the statistical distance dn of the problem properly
relates to the Banach space norm B, then Conditions (23), (24), (25) defined in the
sequel imply the convergence (16).
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4.2 Concentration results

Let us recall that we assume that the compact metric space M satisfies the conditions
of Sect. 2, that is the doubling property (1) together with the polynomial-type growth
(2) of volume of balls. The operator L is also supposed to verify the properties listed
in Sect. 2.4.

Gaussian white noise One observes

d X (n)(x) = f (x)dx + 1√
n

d Z(x), x ∈ M.

In this case, set (B, ‖ · ‖) = (L2, ‖ · ‖2). We set the prior 	 to be the law 	w induced
by W T , see (15). Here 	 serves directly as a prior on f (so w = f here). Besov
spaces are defined in Sect. 9.

Theorem 1 (Gaussian white noise on (M, ρ), upper-bound) Let the set M and the
operator L satisfy the properties listed above. Suppose that f0 is in the Besov space
Bs

2,∞(M) with s > 0 and that the prior 	 on f is W T given by (15). Let q = 1+d/2

in (14). Set εn ∼ ε̄n ∼ (log n/n)2s/(2s+d). For M large enough, as n → ∞,

E f0	(‖ f − f0‖2 ≥ Mεn | X (n)) → 0.

The proof of Theorem 1 is given in Sect. 8. For the next two examples, we only
give a sketch of the argument.

Fixed design regression With the notation from Sect. 1, the observations are

Yi = f (xi ) + εi , 1 ≤ i ≤ n.

The prior 	 is, as above, the law induced by W T , see (15), and serves directly as a
prior on f (so w = f here).

If f0 is in Bs∞,∞(M), with s > 0, and q = 1 + d/2 in (14), it follows from
Sect. 7 that (23), (24), (25) are satisfied with εn ∼ ε̄n ∼ (log n/n)2s/(2s+d) and
(B, ‖ · ‖) = (C0(M), ‖ · ‖∞). This implies, as in [31]-Section 3.3, that if dn is the
semi-distance defined by, for f1, f2 in F ,

dn( f1, f2)
2 =

∫

( f1 − f2)
2dP

t
n = 1

n

n∑

i=1

( f1 − f2)
2(xi ),

then posterior concentration (16) holds at rate εn .

Density estimation The observations are a sample

(Xi )1≤i≤n i.i.d. ∼ f,

for a density f on M. The true density f0 is assumed to be continuous and bounded
away from 0 and infinity on M. In order to build a prior on densities, we consider the
transformation, for any given continuous function w : M → R,
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f �
w (x) := �(w(x))

∫
M �(w(u))dμ(u)

, x ∈ M,

where � : R → (0,+∞) is such that log � is Lipschitz on R and has an inverse
�−1 : (0,+∞) → R. For instance, one can take the exponential function as �. Here,
the function w0 is taken to be w0 := �−1 f0. The law of W T , see (15), here serves
as a prior 	w on w’s, which induces a prior 	 on densities via the transformation
f �
w . That is, the final prior 	 on densities we consider is f �

W T . In this case we set

(B, ‖ · ‖) = (C0(M), ‖ · ‖∞), the Banach space in which the function w and the prior
	w live.

If f0 is in Bs∞,∞(M), with s > 0, and q = 1 + d/2 in (14), it follows from
Sect. 7 that (23), (24), (25) are satisfied with εn ∼ ε̄n ∼ (log n/n)2s/(2s+d) and
(B, ‖ · ‖) = (C0(M), ‖ · ‖∞). This implies, as in [31, Section 3.1] (see also [33, Thm.
3.1]), that (16) holds with the previous rate, where dn is the Hellinger distance between
densities. The verification is as in [31], extending their Lemma 3.1 to the case of a
general � with log � Lipschitz. The proof is not difficult and is left to the reader.

Discussion In the case that M is a compact connected orientable manifold without
boundary, minimax rates of convergence have been obtained in [11], where Sobolev
balls of smoothness index s are considered and data are generated from a regression
setting. In particular, in this framework, our procedure is adaptive in the minimax
sense for Besov regularities, up to a logarithmic factor.

We have obtained convergence rates for the posterior distribution associated to the
geometrical prior in a variety of statistical frameworks. Obtaining these rates does not
presuppose any a priori knowledge of the regularity of the function f0. Therefore our
procedure is not only nearly minimax, but also nearly adaptive.

Note also that another attractive property of the method is that it does not assume
a priori any (upper or lower) bound on the regularity index s > 0. This is related to
the fact that approximation is via the spaces Ht , which are made of (super)-smooth
functions.

4.3 Lower bound for the rate

Works obtaining (nearly-)adaptive rates of convergence for posterior distributions are
relatively recent and so far were obtained for density or regression on subsets of the
real line or the Euclidian space. Often, logarithmic factors are reported in the (upper-
bound) rates, but it is unclear whether the rate must include such a logarithmic term.
We aim at giving an answer to this question in our setting by providing a lower bound
for the rate of convergence of our general procedure. This lower bound implies that the
rates obtained in Sect. 4 are, in fact, sharp. One can conjecture that the same phenom-
enon appears for hierarchical Bayesian procedures with randomly rescaled Gaussian
priors when the initial Gaussian prior has a RKHS which is made of super-smooth
functions (e.g. infinitely differentiable functions), for instance the priors considered
in [25,33].
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For simplicity we consider the Gaussian white noise model

d X (n)(x) = f (x)dx + 1√
n

d Z(x), x ∈ M.

We set (B, ‖ · ‖) = (L2(M), ‖ · ‖2). As before, for this model the prior sits on the
same space as the function f to be estimated, so w = f . Again, the set M and the
operator L are as in Sect. 4.2.

Theorem 2 (Gaussian white noise on (M, ρ), lower bound) Let εn =(log n/n)s/(2d+s)

for s > 0 and let the prior on f be the law induced by W T , see (15), with q > 0 in
(14). Then there exist f0 in the unit ball of Bs

2,∞(M) and a constant c > 0 such that

E f0	(‖ f − f0‖2 ≤ c(log n)0∨(q−1− d
2 )εn | X (n)) → 0.

As a consequence, for any prior of the type (15) with any q > 0 in (14), the posterior
convergence rate cannot be faster than εn above. If q is larger than 1 + d/2, the rate
becomes slower than εn .

Remark 1 More generally, an adaptation of the proof of Theorem 2 yields that, for
any ‘reasonable’ prior on T , in that, for εn ∼ (log n/n)s/(2d+s), it holds

	[‖ f − f0‖2 ≤ εn] ≥ e−Cnε2
n ,

then 	[‖ f − f0‖2 ≤ cεn|X ] → 0 for small enough c > 0. This condition is the
standard ‘prior mass’ condition in checking upper-bound rates, see (23). Note that the
previous display is automatically implied if the prior satisfies 	[‖ f − f0‖2 ≤ ε∗n] ≥
e−Cnε∗n 2

for ε∗n = n−s/(2d+s), or more generally for any rate at least as fast as εn . For
instance, this can be used to check that taking a uniform prior on (0, 1) as law for T
leads to the same lower bound rate.

4.4 Structure of the proofs

The proof of Theorem 1 is split in two different parts. The first part considers the prop-
erties of the heat kernel Gaussian process and the concentration of the corresponding
posterior measure. A key result for this part lies in sharp entropy estimates for the
process and is stated in Sect. 5. Establishing such sharp estimates is considered in the
second part of the proofs.

5 RKHS and heat kernel Gaussian process

This section focuses on the analysis of the underlying Gaussian process W t in (13),
for t > 0, x ∈ M,

W t (x) =
∑

k

∑

l

e−λk t/2 Xl
kel

k(x).
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The Gaussian process (W t (x))x∈M is centered and its covariance kernel precisely
coincides with the heat kernel on M, as noted above. Since Pt (·, ·) is a covariance
kernel for any fixed t > 0, it is associated to a Reproducing Kernel Hilbert Space
(RKHS) Ht , which is also the RKHS of the Gaussian process W t , see [32] for definition
and properties of the RKHS. Also, Ht is the isometric image of L

2 by P1/2
t = Pt/2. So

the family {e−λk t/2el
k, k ∈ N, 1 ≤ l ≤ dim(Hλk )} is a ‘natural’ orthonormal basis of

Ht .
The RKHS Ht has also the following description, for any t > 0:

Ht =
⎧
⎨

⎩
ht =

∑

k

∑

l

al
ke−λk t/2el

k,
∑

k,l

|al
k |2 < +∞

⎫
⎬

⎭
,

equipped with the inner product

〈
∑

k

∑

l

al
ke−λk t/2el

k ,
∑

k

∑

l

bl
ke−λk t/2el

k

〉

Ht

=
∑

k

∑

l

al
kbl

k .

Hence, if we denote by H
1
t the unit ball of Ht :

f ∈ H
1
t ⇐⇒ f =

∑

k

∑

l

al
ke−λk t/2el

k(x),
∑

k,l

|al
k |2 ≤ 1.

5.1 Entropy of the RKHS unit ball

Let (X, ρ) be a metric space. For ε > 0, we define, as usual, the covering number
N (ε, X) as the smallest number of balls of radius ε covering X . The entropy H(ε, X)

is by definition H(ε, X) = log2 N (ε, X).

An important result of this section is the link between the covering number
N (ε,M, ρ) of the space M, and H(ε, H

1
t , L

p) for p = 2, ∞, where H
1
t is the unit

ball of the RKHS defined above. More precisely we prove in Sect. 10 the following
theorem:

Theorem 3 Let M be a compact metric space satisfying (1), on which a self-adjoint
positive operator L exists such that e−t L has kernel Pt satisfying the properties listed
in Sect. 2.4. Let us fix ν > 0, a > 0. There exists ε0 > 0 such that for ε, t with εν ≤ at
and 0 < ε ≤ ε0,

H(ε, H
1
t , L

2) ∼ H(ε, H
1
t , L

∞) ∼ N (δ(t, ε), M) · log
1

ε
where

1

δ(t, ε)
:=
√

1

t
log

(
1

ε

)

.

Remark 2 Theorem 3 gives the precise behaviour up to constants, from above and
below, of the entropy of the RKHS unit ball H

1
t . The constants involved depend only

on M, a, ν. The mild restriction on the range of t arises from technical reasons in the
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proof of the upper-bound. As an examination of the proof reveals, this restriction is
not needed in the proof of the lower bound.

5.2 Entropy under Ahlfors’ condition

In Sect. 10, the general case is considered, but for sake of simplicity, in the sequel we
focus on the case where Ahlfors’ condition (2) is fullfilled. In this case, Theorem 3
takes the following form.

Proposition 1 Under the conditions of Theorem 3, suppose additionally that M sat-
isfies (2). If �ε is a maximal ε-net of M, then

1

c2

(
1

ε

)d

≤ N (ε,M) ≤ card(�ε) ≤ 2d

c1

(
1

ε

)d

(17)

H(ε, H
1
t , L

2) ∼ H(ε, H
1
t , L

∞) ∼
(

1

δ(t, ε)

)d

log
1

ε
, (18)

for all 0 < ε ≤ ε0, where we suppose that for some ν > 0 and a > 0, it holds εν ≤ at.

Proof Let (B(xi , ε))i∈I be a minimal covering of M. Then,

1 = |M| ≤
∑

i∈I

|B(xi , ε)| ≤ N (ε,M)c2ε
d .

On the other hand, if �ε is any maximal ε−net, we have:

1 = |M| ≥
∑

ξ∈�ε

|B(ξ, ε/2)| ≥ card(�ε)c1(ε/2)d .

��

6 Proofs I: Geometrical Prior, concentration function

6.1 Approximation and small ball probabilities

The so-called concentration function of a Gaussian process defined below turns out to
be fundamental to prove sharp concentration of the posterior measure. For this reason
we focus now on the detailed study of this function for the geometrical prior.

In the sequel, the notation (B, ‖ · ‖B) is used for anyone of the two spaces

(B, ‖ · ‖B) = (C0(M), ‖ · ‖∞) or (B, ‖ · ‖B) = (L2, ‖ · ‖2).

Any property stated below with a ‖ · ‖B-norm holds for both spaces.

123



682 I. Castillo et al.

Concentration function Consider the Gaussian process W t defined in (13), for a fixed
t ∈ (0, 1]. Its concentration function within B is defined, for any function w0 in B, as
the sum of two terms

ϕt
w0

(ε) = inf
ht∈Ht , ‖w0−ht‖B<ε

‖ht‖2
Ht

2
− log P(‖W t‖B < ε)

:= At
w0

(ε) + St (ε).

The approximation term At
w0

(ε)quantifies how wellw0 is approximable by elements of
the RKHS Ht of the prior while keeping the ‘complexity’ of those elements, quantified
in terms of RKHS-norm, as small as possible. The term At

w0
(ε) is finite for all ε > 0

if and only if w0 lies in the closure in B of Ht (which can be checked to coincide with
the support of the Gaussian prior, see [32, Lemma 5.1]) It turns out that for the prior
W t , this closure is B itself, as follows from the approximation results below.

In order to have a precise calibration of At
w0

(ε), we will assume regularity conditions
on the function w0, which in turn will yield the rate of concentration. Namely we shall
assume that w0 belongs to a regularity class Fs(M), s > 0, taken equal to a Besov
space

Fs(M) = Bs∞,∞(M) if B = C0(M) (resp. Bs
2,∞(M) if B = L

2).

The problem of the regularity assumption in a context like here is not a simple one.
We took here a natural generalisation of the definition of usual spaces on the real line,
by means of approximation properties. For more details we refer to Sect. 9.

Approximation term At
w0

(ε)-regularity assumption on M. For any w0 in the Banach
space B, consider the following sequence of approximations. For δ → 0, the operator
L and � a Littlewood–Paley function, see (33) in Sect. 9, define

�(δ
√

L)w0 :=
∑

λk≤δ−2

�(δ
√

λk)PHλk
w0,

where PHλk
is the projector onto the eigenspace Hλk . For any δ > 0, the sum in the last

display is finite thus �(δ
√

L)w0 belongs to Ht . It directly follows from the definition
of the considered Besov spaces, see (36) in Sect. 9, that, for w0 ∈ Fs(M),

‖�(δ
√

L)w0 − w0‖B ≤ Cδs =: Cε.

On the other hand, making use of the choice δs =: ε,

‖�(δ
√

L)w0‖2
Ht

=
∑

λk≤δ−2

|�(δ
√

λk)|2eλk t‖PHλk
w0‖2

2

≤ C
∑

λk≤δ−2

eλk t‖PHλk
w0‖2

2

≤ Cetε−2/s‖w0‖2
2.
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Note that ‖w0‖2 ≤ 1 if we suppose that w0 is in the unit ball of Fs(M) (since
necessarily ‖w0‖B is bounded by 1 and, for the case of the sup-norm, since M is
compact with μ-measure 1). Hence,

At
w0

(ε) ≤ Cetε−2/s
, if w0 ∈ Fs(M). (19)

Note that this is precisely the place where the regularity of the function plays a role.

Small ball probability St (ε). Let us now show in successive steps that the following
upper-bound on the small ball probability of the Gaussian process W t viewed as a
random element in B holds.

Proposition 2 Fix A > 0. There exists a universal constant ε0 > 0, and constants
C0, C1 > 0 which depend on d, A, B only, such that, for any ε ≤ ε0 and any t ∈
[C1ε

A, 1],

− log P
(‖W t‖B ≤ ε

) ≤ C0

(
1√
t

)d (

log
1

ε

)1+ d
2

. (20)

The steps of the proof follow the method proposed by [33]. The starting point is a
bound on the entropy of the sunit ball H

1
t of Ht with respect to the sup-norm, which

is a direct consequence of (18) and is summarised by the following:
There exists a universal constant ε1 > 0, and constants C2, C3 > 0 which depend

on d, A only, such that, for any ε ≤ ε1 and any t ∈ [C2ε
A, 1],

log N (ε, H
1
t , ‖ · ‖B) ≤ C3

(
1√
t

)d (

log
1

ε

)1+ d
2

. (21)

Step 1, crude bound. Let ut be the mapping canonically associated to W t consid-
ered in [18] and, as in this paper, set

en(ut ) := inf {η > 0, N (η, H
1
t , ‖ · ‖B) ≤ 2n−1}

≤ inf{0 < η < t, log N (η, H
1
t , ‖ · ‖B) ≤ (n − 1) log 2}.

By definition, the previous quantity is smaller than the solution of the following equa-
tion in η, where we use the bound (21),

Ct−
d
2 log1+ d

2
1

η
= n

that is η = exp{−Cn
2

2+d t
d

2+d }. Thus

en(ut ) ≤ exp{−Cn
2

2+d t
d

2+d }, n ≥ 1.
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The first equation of [29], p. 300 can be written

sup
k≤n

kαek(u
∗
t ) ≤ 32 sup

k≤n
kαek(ut ).

We have, for any k ≥ 1 and any m ≥ 1,

k2mek(ut ) ≤ k2m exp{−Ck
2

2+d t
d

2+d }
≤ t−md(k2td)m exp{−C(k2td)

1
2+d }

≤ t−md Vm(k2td),

where Vm : x → xme−Cx
1

2+d is uniformly bounded on (0,+∞) by a finite constant
cm (we omit the dependence in d in the notation). It follows that for any n ≥ 1,

n2men(u∗t ) ≤ sup
k≤n

k2mek(u
∗
t )

≤ 32 sup
k≤n

k2mek(ut )

≤ 32cmt−md .

We have obtained ek(ut ) ≤ 32cmt−mdk−2m for any k ≥ 1. Lemma 2.1 in [18], itself
cited from [24], can be written as follows. If �n(ut ) denotes the n-th approximation
number of ut as defined in [18, p. 1562],

�n(ut ) ≤ c1

∑

k≥c2n

ek(u
∗
t )k

−1/2(1 + log k).

From the bound on ek(u∗t ) above one deduces, for some constant c′m depending
only on m, for any n ≥ 1,

�n(ut ) ≤ c′mt−dn1−2m .

Consider the definitions, for any ε > 0 and t > 0,

nt (ε) := max{n : 4�n(ut ) ≥ ε}, σ (W t ) = E

[
‖W t‖2

]1/2
.

A sufficient condition for nt (ε) to exist is 4σ(W t ) ≥ ε, since �n(ut ) ≤
�1(ut ) = σ(W t ). So, provided ε ≤ 4σ(W t ), the bound on �n implies nt (ε) ≤
Cm(ε−1t−d)1/(2m−1).

The following result makes Proposition 2.3 in [18] precise with respect to constants
involving the process under consideration. This is important in our context since we
consider a collection of processes {Wt } indexed by t and need to keep track of the
dependence in t .
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Proposition 3 Let X be centered Gaussian in a real separable Banach space (E, ‖·‖).
Define n(ε) and σ(X) as above. Then for a universal constant C4 > 0, any ε ≤
1 ∧ (4σ(X)),

− log P [‖X‖ < ε] ≤ C4n(ε) log

[
6n(ε)(σ (X) ∨ 1)

ε

]

.

Explicit upper and lower bounds for σ(W t ) are given in Sect. 10, see (50). In
the ‘polynomial case’, see (2), these bounds imply, uniformly in the interval of t’s
considered, that 1 � σ(W t ) � ε−B for some B > 0.

Combining this fact with Proposition 3 and the previous bound on nt , we obtain
that for some positive constants C7, ε3, ζ , for any ε ≤ ε3 and t ∈ [C2ε

A, 1]

St (ε) = − log P
(‖|W t‖B ≤ ε

) ≤ C7ε
−ζ . (22)

Step 2, general link between entropy and small ball. According to Lemma 1 in
[17], we have, if G is the distribution function of the standard Gaussian distribution
(see their formula (3.19), or (3.2)),

St (2ε) + log G(λ + G−1(e−St (ε))) ≤ log N
( ε

λ
, H

1
t , ‖ · ‖B

)
.

Lemma 4.10 in [33] implies, for every x > 0,

G(
√

2x + G−1(e−x )) ≥ 1/2.

Take λ = √
2St (ε) in the previous display. Then for values of t, ε such that (21) holds,

St (2ε) + log
1

2
≤ C

(
1√
t

)d (

log
St (ε)

ε

)1+ d
2

.

Finally combine this with (22) to obtain the desired Equation (20) that is

St (ε) ≤ C

(
1√
t

)d (

log
1

ε

)1+ d
2

.

under the conditions ε ≤ ε3 and C2ε
A ≤ t ≤ 1.

7 Proofs I: General conditions for posterior rates

A general theory to obtain convergence rates for posterior distributions for some dis-
tances is presented in [12,13]. The object of interest is a function f0 (e.g. a regression
function, a density function etc.). In some cases, for instance density estimation with
Gaussian priors, one cannot directly put the prior on the density itself (a Gaussian prior
does not lead to positive paths). This is why we parameterise the considered statistical
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problem with the help of a function w0 in some separable Banach space (B, ‖ · ‖B)

of functions defined over (M, ρ). As already noticed in Sect. 4, in some cases (e.g.
regression) w0 and f0 coincide, in others not (e.g. density estimation). As before, B

is either C0(M) or L
2.

In this section we check that there exist Borel measurable subsets Bn in (B, ‖ · ‖B)

such that, for some vanishing sequences εn and ε̄n , some C > 0 and n large enough,

P(‖W T − w0‖B ≤ εn) ≥ e−Cnε2
n (23)

P(W T /∈ Bn) ≤ e−(C+4)nε2
n (24)

log N (ε̄n, Bn, ‖ · ‖B) ≤ nε̄2
n (25)

This will imply, as in [31], that the posterior concentrates at rate εn around f0,
see Sect. 8. In [33], the authors also follow this approach. One advantage of the prior
considered here is that, contrary to [33], the RKHS unit balls are precisely nested as
the time parameter t varies, see (28). This leads to slightly simplified proofs.

Prior mass For any fixed function w0 in B and any ε > 0, by conditioning on the
value taken by the random variable T ,

P(‖W T − w0‖B < 2ε) =
1∫

0

P(‖W t − w0‖B < 2ε)g(t)dt.

The following inequality links mass of Banach-space balls for Gaussian priors with
their concentration function in B, see [32, Lemma 5.3],

e−ϕt
w0

(ε) ≤ P(‖W t − w0‖B < 2ε) ≤ e−ϕt
w0

(2ε)
,

for any w0 in the support of W t . We have seen above that any f0 in F s(M) belongs
to the support of the prior. It is not hard to adapt the argument to check that in fact
any f0 in B can be approximated in B by a sequence of elements in the RKHS Ht and
thus belongs to the support in B of the prior by Lemma 5.1 in [32]. Then

P(‖W T − w0‖B < 2ε) ≥
1∫

0

e−ϕt
w0

(ε)g(t)dt

≥
2t∗ε∫

t∗ε

e−ϕt
w0

(ε)g(t)dt,

for some t∗ε to be chosen.
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The concentration function is bounded from above, assuming ε ≤ ε3 and t ∈
[C2ε

A, 1], by

ϕt
w0

(ε) ≤ C

[

eε−2/s t +
(

1√
t

)d (

log
1

ε

)1+ d
2
]

Set t∗ε = δε
2
s log 1

ε
with δ small enough to be chosen. This is compatible with the

above conditions provided A > 2/s. Then for ε small enough and any t ∈ [t∗ε , 2t∗ε ],

ϕt
w0

(ε) ≤ C

[

ε−2δ + δ−dε−
d
s

(

log
1

ε

)]

.

Set δ = d/(4s). One obtains, for any t ∈ [t∗ε , 2t∗ε ],

ϕt
w0

(ε) ≤ Cdε−
d
s

(

log
1

ε

)

.

Inserting this estimate in the previous bound on the prior mass, one gets, together
with (14), for ε small enough and q ≤ 1 + d/2,

P(‖W T − w0‖B < 2ε) ≥ t∗ε e
−Cε− d

s
(

log 1
ε

) [

inf
t∈[t∗ε ,2t∗ε ]

g(t)

]

≥ Ct∗ε
1−ae

−t∗ε
− d

2
(

log 1
t∗ε
)q−Cε− d

s
(

log 1
ε

)

≥ Cε2(1−a)/s(log
1

ε
)1−ae

−Cε− d
s
(

log 1
ε

)q− d
2 −Cε− d

s
(

log 1
ε

)

≥ Ce
−C ′ε− d

s
(

log 1
ε

)

. (26)

Condition (23) is satisfied for the choice

εn ∼
(

n

log n

)− s
2s+d

. (27)

Sieve The idea is to build sieves using Borell’s inequality. Recall here that H
1
r is the

unit ball of the RKHS of the centered Gaussian process W r , viewed as a process on
the Banach space B. The notation B1 (as well as H

1
r ) stands for the unit ball of the

associated space.
First, notice that from the explicit form of the RKHS of W t , we have

If t2 ≥ t1, then H
1
t2 ⊂ H

1
t1 . (28)

Let us set for M = Mn , ε = εn and r > 0 to be chosen later,

Bn = MH
1
r + εB1,
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Consider the case t ≥ r , then using (28)

P(W t /∈ Bn) = P(W t /∈ MH
1
r + εB1)

≤ P(W t /∈ MH
1
t + εB1)

≤ 1 − G(G−1(e−St (ε)) + M). (29)

where the last line follows from Borell’s inequality.
Choices of ε, r and M . Let us set ε = εn given by (27) and

r−
d
2 ∼ nε2

n

(log n)1+ d
2

and M2 ∼ nε2
n . (30)

First, one checks that r belongs to [C2ε
A, 1]. This is clear from the definition since

we have assumed A > 2/s. Then any t ∈ [r, 1] also belongs to [C2ε
A, 1] so we can

use the entropy bound and write

St (ε) ≤ Ct−
d
2

(

log
1

εn

)1+ d
2 ≤ Cr−

d
2

(

log
1

εn

)1+ d
2 =: S∗n .

Now the bounds −√2 log(1/u) ≤ G−1(u) ≤ − 1
2

√
log(1/u) valid for u ∈ (0, 1/4)

imply that

1 − G(G−1(e−St (ε)) + M) ≤ 1 − G(G−1(e−S∗n ) + M) ≤ e−M2/8,

as soon as M ≥ 4
√

S∗n and e−S∗n < 1/4.
To check e−S∗n < 1/4 note that S∗n ≥ Sr (ε) which can be further bounded from

below using Equation (3.1) in [17] which leads to, for any ε, λ > 0,

Sr (ε) ≥ H(2ε, λH
1
r ) −

λ2

2
≥ Cr−

d
2

(

log
λ

ε

)1+ d
2 − λ2

2
.

Here we have used the bound from below of the entropy see (18). Then take λ = 1 to
obtain S∗n (ε) ≥ log(4) for ε small enough.

The first inequality M ≥ 4
√

S∗n is satisfied if

M2 ≥ 16r−
d
2

(

log
1

εn

)1+ d
2

,

and this holds for the choices of r and M given by (30). Hence for large enough n,

P(W t /∈ Bn) ≤ e−M2/8

≤ e−Cnε2
n .
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Then we can write, if q ≥ 1 + d/2,

P(W T /∈ Bn) =
1∫

0

P(W t /∈ Bn)g(t)dt

≤ P(T < r) +
1∫

r

P(W t /∈ Bn)g(t)dt

≤ Cr−ce−C ′r−d/2 logq ( 1
r ) + e−M2/8 ≤ e−Cnε2

n .

Entropy It is enough to bound from above

log N (2εn, MH
1
r + εnB1, ‖ · ‖B) ≤ log N (εn, MH

1
r , ‖ · ‖B)

≤ r−d/2
(

log
M

εn

)1+ d
2

≤ Cnε2
n,

where we have used (21) to obtain the one but last inequality.

8 Proofs I: Posterior concentration

Proof of Theorem 1 We check that (23), (24) and (25) are satisfied with (B, ‖ · ‖B) =
(L2, ‖ · ‖2). With the considered prior, it follows from Sect. 7 that, since q ≤ 1+ d/2,
Condition (23) holds and, since q ≥ 1 + d/2, Condition (24) holds. Also, (25) holds
with the choice of Bn from Sect. 7, regardless of the value of q. One can then apply
the general rate result (Theorem 1 in [13]), with the distance dn in (16) chosen to be
the L

2-norm, see [13] Sect. 5. The end of the proof is as in [31], Theorem 3.1 and 3.4,
and is omitted. ��
Proof of Theorem 2 We use a general approach to prove lower bounds for posterior
measures introduced in [5] (see [5,6] for examples). The idea is to apply the following
lemma (Lemma 1 in [13]) to the sets { f ∈ B, ‖ f − f0‖B ≤ ζn}, for some rate ζn → 0
and f0 in Bs

2,∞, with s > 0.

Lemma 1 Let αn → 0 such that nα2
n → +∞ as n → ∞ and let Bn be a measurable

set such that

	(Bn)/	(BK L( f0, αn)) ≤ e−2nα2
n ,

where, in the white noise model, BK L( f0, αn) = { f : ‖ f − f0‖2 ≤ αn}. Then
E f0	(Bn | X (n)) → 0.
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In our context this specialises as follows. Let αn → 0 and nα2
n → +∞. Suppose

that, as n → +∞,

	(‖ f − f0‖2 ≤ ζn)

	(‖ f − f0‖2 ≤ αn)
= o(e−2nα2

n ).

Then ζn is a lower bound for the rate of the posterior in that, as n → +∞,

E f0	(‖ f − f0‖2 ≤ ζn) | X (n)) → 0.

We first deal with the case where q ≤ 1+ d/2. In this case let us choose αn = 2εn ,
where εn = (log n/n)2s/(2s+d). In Sect. 7, we have established in (26) that, for the
prior W T with q ≤ 1 + d/2 in (14), there exists C > 0 with

	(‖ f − f0‖2 ≤ εn) = P(‖W T − w0‖B ≤ εn) ≥ e−Cnε2
n .

So it is enough to show that, for some well-chosen ζn → 0,

	(‖ f − f0‖2 ≤ ζn)) = o(e−(8+C)nε2
n ). (31)

We would like to take ζn = cεn , for some (small) constant c > 0. In order to bound
from above the previous probability, we write

	[‖ f − f0‖2 ≤ ζn] =
1∫

0

	[‖W t − f0‖2 ≤ ζn]g(t)dt

≤
1∫

0

exp
[
−ϕt

f0
(ζn)

]
g(t)dt.

We separate the above integral in two parts. The first one is T1 := {μn ≤ t ≤ Bt∗n },
where t∗n is a similar cut-off as in the upper-bound proof t∗n = ζ

2/s
n log(1/ζn). On T1,

one can bound from below ϕt
f0
(ζn) by its small ball probability part ϕt

0(ζn). Moreover,
thanks to relation (3.1) in [17], we have, for any λ > 0 and t ∈ (0, 1],

ϕt
0(ζn) = − log P[‖W t‖2 < ζn] ≥ H(2ζn, λH

1
t , ‖ · ‖2) − λ2

2
.

Set λ = 1 and recall from Remark 2 that the lower bound on the entropy can be
used for any t regardless of the value of ε. This yields, for large enough n, if ζn = o(1),

ϕt
0(ζn) ≥ C(Bt∗n )−d/2 log1+d/2(1/ζn) − 1

2
≥ C B−d/2ζ

−d/s
n log(1/ζn).
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Thus we obtain

Bt∗n∫

0

exp
[
−ϕt

f0
(ζn)

]
g(t)dt ≤ e−C B−d/2ζ

−d/s
n log(1/ζn)

Bt∗n∫

0

g(t)dt

≤ e−C B−d/2ζ
−d/s
n log(1/ζn).

This is less than e−(8+C)nε2
n provided ζn = κεn and κ > 0 is small enough.

It remains to bound the integral from above on T2 := {Bt∗n ≤ t ≤ 1}. Here we
bound ϕt

f0
(ζn) from below by its approximation part. For any t ∈ T2,

ϕt
f0
(ζn) ≥ 1

2
· inf

h∈Ht , ‖h− f0‖2<ζn

‖h‖2
Ht

.

We prove in Sect. 9, see Theorem 4, that there exist constants c, C and f0 in
Bs

2,∞(M) such that

ϕt
f0
(ζn) ≥ Cζ 2

n ecζ−2/s
n t . (32)

Now, under (32) for the previous fixed function f0, taking ζn = κεn for small (but
fixed) enough κ , it holds, when t belongs to T2,

ϕt
f0
(ζn) ≥ C(κεn)aecκ−2/s B log(1/ζn).

For κ small enough, this is larger that any given power of εn . In particular, it is larger
than (8 + C)nε2

n if the (upper-bound) rate εn is no more than polynomial in n, which
is the case here since εn = (log n/n)s/(2s+p). We have verified that (31) is satisfied,
which gives the desired lower bound result when q ≤ 1 + d/2 using Lemma 1.

In the case that q > 1 + d/2, the proof is similar, except that the exponent of the
logarithmic factor in (26) has now the power q − d/2, due to the assumption on the

prior density g, and that εn is now replaced by ε̃n = (log n)q−1− d
2 εn . ��

9 Proofs II: Besov spaces and needlets

In this section we start by introducing some standard notation useful in the context of
Besov spaces, mainly the concepts of Littlewood–Paley function and decomposition
into low-frequency subspaces. Let L be the operator whose properties are listed in
Sect. 2.4.

A Littlewood–Paley function is any even function � in D(R) with

0 ≤ �, 1 = �(x) for |x | ≤ 1/2, supp(�) ⊂ [−1, 1]. (33)
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Given a Littlewood–Paley function, let us also define

�(x) = �(
x

2
) − �(x).

From this it follows that 0 ≤ �(x) ≤ 1, that the support of � is included in
{ 1

2 ≤ |x | ≤ 2} and that

∀ δ > 0, 1 ≡ �(δx) +
∑

j≥0

�(2− jδx).

For any even Θ in D(R) (in the sequel we apply (34) below for Θ = �, Θ = � or
rescaled versions of them) and 0 < δ ≤ 1, define the kernel operator Θ(δ

√
L) using

the spectral decomposion of L , by setting

Θ(δ
√

L)(x, y) =
∑

k

Θ(δ
√

λk)Qk(x, y). (34)

So any square-integrable function f on M can be expanded f = �(δ
√

L) f +∑
j≥0 �(2− jδ

√
L) f, where

�(δ
√

L) f (x) =
∫

M

�(δ
√

L)(x, y) f (y)dμ(y),

�(δ2− j
√

L) f (x) =
∫

M

�(δ2− j
√

L)(x, y) f (y)dμ(y).

Moreover, if we define the ‘low frequency’ functions using the eigenspaces Hλk of
the operator L by

�t =
⊕

λ≤√t

Hλ, (35)

for any t > 0, we have from the definitions of � and � that

�(δ
√

L) f ∈ � 1
δ
, �(2− jδ

√
L) f ∈ � 2 j+1

δ

∩ [� 2 j+1
δ

]⊥.

Also recall that an ε− net � ⊂ M is a set such that ξ �= ξ ′, ξ, ξ ′ ∈ � implies
ρ(ξ, ξ ′) > ε. A maximal ε−net �, is a an ε−net such that for all x ∈ X \�, �∪{x}
is no more an ε−net.
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9.1 Definition of Besov spaces

We follow [9] to introduce the Besov spaces Bs
pq in this setting with s > 0, 1 ≤ p ≤ ∞

and 0 < q ≤ ∞. To do so, let us choose any Littlewood–Paley function � as in (33)
and let � j (λ) := �(2− jλ) for j ≥ 1. Again, L is the operator from Sect. 2.4.

Definition 1 Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. The Besov space Bs
pq =

Bs
pq(M) = Bs

pq(M, L) is defined as the set of all f ∈ L
p(M, μ) such that

‖ f ‖Bs
pq

:=
⎛

⎝
∑

j≥0

(
2s j‖� j (

√
L) f (·) − f (·)‖Lp

)q

⎞

⎠

1/q

< ∞. (36)

Here the �q -norm is replaced by the sup-norm if q = ∞.

Remark 3 One can prove, as a consequence of the Gaussian estimate (10), see [9],
that this definition is independent of the choice of � and that the Besov spaces can
also be introduced via the following approximation properties: If Et ( f )p denotes the
best approximation of f ∈ L

p from �t , see (35), i.e.

Et ( f )p := inf
g∈�t

‖ f − g‖p,

(where, here L
∞ is identified as the space UCB of all uniformly continuous and

bounded functions on M) then it is proved in [9] that

Bs
pq :=

⎧
⎪⎨

⎪⎩
f ∈ Lp, ‖ f ‖As

pq
:= ‖ f ‖p +

⎛

⎝
∑

j≥0

(
2s j

E2 j ( f )p
)q

⎞

⎠

1/q

< ∞

⎫
⎪⎬

⎪⎭
.

9.2 Smooth functional calculus and ‘sampling-father-wavelets’

In addition to the orthogonal analysis provided by the projectors PHλk
onto eigenspaces

of the operator L , one can build, following [9], a wavelet-type analysis onM associated
to L . The properties of the operator L given in Sect. 2.4 have the following important
consequences, see [9],

Localisation [9, Section 3] For any even Θ in D(R), there exists a constant C(Θ) such
that

for all 0 < δ≤1,∀ x, y∈M, |Θ(δ
√

L)(x, y)|≤ 1

|B(x, δ)|
C(Θ)

(1 + ρ(x,y)
δ

)D+1
. (37)

From (37) one can easily deduce the symmetrical bound |Θ(δ
√

L)(x, y)| ≤
1√|B(x,δ)||B(y,δ)|

C(Θ)

(1+ ρ(x,y)
δ

)D+1
.
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Father wavelet One can deduce from [9] (Lemmas 5.2 and 5.4) that there exist 0 <

C0 < ∞, 0 < γ structural constants such that for any 0 < δ ≤ 1 , for any �γδ

maximal γ δ−net, there exists a family of functions : (Dδ
ξ )ξ∈�γδ such that

|Dδ
ξ (x)| ≤ 1

|B(ξ, δ)|
C0

(1 + ρ(x,ξ)
δ

)D+1
, ∀ x ∈ M (38)

we have the following wavelet-type representation:

∀ ϕ ∈ �1/δ, ϕ(x) =
∑

ξ∈�γδ

ϕ(ξ)|B(ξ, δ)|Dδ
ξ (x), (39)

∀ (αξ )ξ∈�γδ ,

∥
∥
∥
∥
∥
∥

∑

ξ∈�γδ

αξ |B(ξ, δ)|Dδ
ξ (x)

∥
∥
∥
∥
∥
∥∞

� sup
ξ∈�γδ

|αξ |. (40)

We see on the formulae (39) and (40) that the functions |B(ξ, δ)|Dδ
ξ behave like

father-wavelets, with coefficients directly obtained by sampling. We will see in Sect.
10 that these functions play an important role for instance to bound the entropy of
various functional spaces.

10 Proofs II: Entropy properties

10.1 Covering number, entropy, ε-net

Let � be a maximal ε−net over a metric space (X, ρ). We have :

X ⊂ ∪ξ∈� B(ξ, ε), ξ �= ξ ′, ξ, ξ ′ ∈ � ⇒ B(ξ, ε/2) ∩ B(ξ ′, ε/2) = ∅.

Hence, for �ε a maximal ε−net it holds

N (ε/2, X) ≥ card(�ε) ≥ N (ε, X).

Now if (X, ρ) is a doubling metric space then we have the following prop-
erty : If x1, . . . , xN ∈ B(x, r) are such that, ρ(xi , x j ) > r2−l (l ∈ N) clearly
B(x, r) ⊂ B(xi , 2r) = B(xi , 2l+2(r2−l−1)) and the balls B(xi , r2−l−1) are disjoint
and contained in B(x, 2r). so:

N2−(l+2)D|B(x, r)| ≤
N∑

i=1

|B(xi , r2−l−1)| ≤ B(x, 2r)| ≤ 2D|B(x, r)| (41)

If �r2−l is any r2−l−net then: Card(�r2−l ) ≤ 2(l+3)d N (X, r).
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So if �ε is any maximal ε−net and for l ∈ N, �2lε is any maximal 2lε−net then :

N (X, ε2l) ≤ N (X, ε) ≤ Card(�ε) ≤ 2(l+3)D N (X, 2lε) ≤ 2(l+3)DCard(�2lε).

(42)

For l = 0

2−3DCard(�ε) ≤ N (X, ε) ≤ Card(�ε).

So for any ε > 0, and for any maximal ε−net �ε, Card(�ε) and N (X, ε) are of the
same order.
Moreover clearly, taking r = 1 in (41), so that B(x, 1) = M, we get:

N (δ,M) ≤ 4D
(

1

δ

)D

(43)

10.2 Dimension of spectral spaces, covering number, and trace of Pt

Let us now use the heat kernel’ assumptions. The following proposition gives the link
between the covering number N (δ,M) of the underlying space M, the behavior of
the trace of e−t L and the dimension of the spectral spaces. Let us recall:

�λ = ⊕√
λk≤λHλk .

Denote by P�λ the orthogonal projector onto this space and also, with a slight abuse
of notation, the associated kernel

P�λ(x, y) =
∑

√
λk≤λ

Qk(x, y).

Then one can prove the following bounds (see [9], Lemma 3.19): For any λ ≥ 1,

and δ = 1
λ
,

∃C2, C ′
2, such that

C ′
2

|B(x, δ)| ≤ P�λ(x, x) ≤ C2

|B(x, δ)| (44)

Let us recall that T r(e−t L)=∑k e−λk t dim(Hλk ). In addition we have
∫
M Pt (x, x)

dμ(x) = T r(e−t L). Moreover, as

Pt (x, x) =
∫

M
Pt/2(x, u)Pt/2(u, x)dμ(u) =

∫

M
(Pt/2(x, u))2dμ(u)

we have, if ‖ ‖H S stands for the Hilbert-Schmidt norm,

T r(e−t L) =
∫

M
Pt (x, x)dμ(x) =

∫

M

∫

M
(Pt/2(x, u))2dμ(u)dμ(x) = ‖e−

t
2 L‖2

H S .
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Proposition 4 1. For λ ≥ 1, δ = 1
λ
,

C ′
2

∫

M

1

|B(x, δ)|dμ(x)≤dim(�λ)=
∫

M
P�λ(x, x)dμ(x)≤C2

∫

M

1

|B(x, δ)|dμ(x)

(45)

2.

2−2D N (δ,M) ≤ 2−2Dcard(�δ) ≤
∫

M

1

|B(x, δ)|dμ(x) ≤ 2Dcard(�δ)

≤ 24D N (δ,M) (46)

where �δ is any δ−maximal net.
3.

C ′
1

∫

M

1

|B(x,
√

t)|dμ(x) ≤ T r(e−t L) ≤ C1

∫

M

1

|B(x,
√

t)|dμ(x)

Proof of the Proposition Point 1. is a consequence of (44) while 3. is a consequence
of (12). Let us now prove 2. Let �δ be any δ−maximal net.

∑

ξ∈�δ

∫

B(ξ,δ/2)

1

|B(x, δ)|dμ(x) ≤
∫

M

1

|B(x, δ)|dμ(x) ≤
∑

ξ∈�δ

∫

B(ξ,δ)

1

|B(x, δ)|dμ(x)

But:

x ∈ B(ξ, δ/2) !⇒ B(x, δ) ⊂ B(ξ, 2δ), so
1

|B(x, δ)| ≥
2−2D

|B(ξ, δ/2)|

and in the same way:

x ∈ B(ξ, δ) !⇒ B(ξ, δ) ⊂ B(x, 2δ), so
1

|B(x, δ)| ≤
2D

|B(ξ, δ)|

This implies:

2−2Dcard(�δ) ≤
∫

M

1

|B(x, δ)|dμ(x) ≤ 2Dcard(�δ).

��
The former results can be summarised in the following corollary:
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Corollary 1

T race(e−δ2 L) ∼ dim(�λ) ∼ N (δ,M); δ = 1

λ

10.3 Connection between the covering number of M and the entropy of H
1
t

In this section we establish the link between the covering number N (ε,M) of the
space M, and H(ε, H

1
t , L

p) for p = 2, ∞ stated in Theorem 3.
Notice, of course, that, using the previous section, one can replace N (δ(t, ε),M)

at any place by card(�δ(t,ε)), where �δ(t,ε) is a maximal δ(t, ε)−net. Also, since
μ(M) = 1, we have

H(ε, H
1
t , L

2) ≤ H(ε, H
1
t , L

∞).

So the proof will be done in two steps:
1-We prove the lower bound for H(ε, H

1
t , L

2) in the next subsection, using Carl’s
inequality.
2-We prove next the upper bound for H(ε, H

1
t , L

∞).

10.3.1 Proof of Theorem 3: Lower estimates for H(ε, H
1
t , L

2)

Let us recall some classical facts: see the following references [3,4].
For any subset X of a metric space, we define, for any k ∈ N,

ek(X) = inf{ε ≥ 0, ∃ 2k balls of radius ε, covering X.}.

Clearly

ε < ek(X) !⇒ H(ε, X) > k

Now for the special case of a compact positive selfadjoint operator T : H "→ H we
have the following Carl inequality (see [3]) relating ek(T (B)) where B is the unit ball
of H and the eigenvalues 0 ≤ μ1 ≤ μ2, . . . (possibly repeated with their multiplicity
order) of T :

for all k ∈ N
∗, n ∈ N

∗, ek(T (B)) ≥ 2−
k

2n

n∏

i=1

μ
1/n
i . (47)

In our case, let us take: T = Pt/2, μi = e−(t/2)λi , T (B) = H
1
t . Let us fix:

λ =
√

1

t
log

1

ε
= 1

δ
= 1

δ(t, ε)
.

n = dim(�λ); k ∼ n log
1

ε

1

log 2
.
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Carl’s inequality gives:

ek ≥ 2−
k

2n e
− 1

n

∑
tλi≤log 1

ε
(t/2)λi ≥ ε.

So

H(ε, H
1
t , L

2) ≥ k ∼ n log
1

ε

1

log 2
∼ dim(�λ) log

1

ε
,

but by Corollary 1, it holds dim(�λ) ∼ N (δ,M), with δ = 1
λ
. So,

H(ε, H
1
t , L

2) � log
1

ε
N (δ,M),

1

δ
= λ =

√
1

t
log

1

ε
.

10.3.2 Proof of Theorem 3: Upper estimate for H(ε, H1
t , L∞)

Recall the notation introduced in Sect. 9 (especially 9.2). Let us suppose : εν ≤ at, ν >

0, a > 0.

First, we prove that for all ε > 0, small enough, there exists δ (∼ δ(t, ε) :=√
1
t log 1

ε
) such that

for all f ∈ H
1
t , ‖�(δ

√
L) f − f ‖∞ ≤ ε

2
.

In a second step, we use (39) to expand on the |B(ξ, δ)|Dδ
ξ ’s:

�(δ
√

L) f (x) =
∑

ξ∈�γδ

�(δ
√

L) f (ξ)|B(ξ, δ)|Dδ
ξ (x).

In a third step, we use a family of points of � 1
δ

as centers of balls of radius ε/2

covering �(δ
√

L)(H1
t ) so that the balls centered in these points is an ε− covering in

L
∞ norm of H

1
t .

The next lemma gives evaluations of ‖�(δ
√

L) f − f ‖∞ and ‖�(δ
√

L)(H1
t )‖∞.

Lemma 2 for all f ∈ H
1
t

1.

‖�(δ
√

L) f ‖∞ � 1

t D/4

2.

‖�(δ
√

L) f ‖∞ � e−
t

8δ2
1

δD/2

123



Thomas Bayes’ walk on manifolds 699

3.

‖�(δ
√

L) f − f ‖∞ ≤
∑

j≥0

‖�(2− jδ
√

L) f ‖∞ � 1

δD/2 e−
A
4 A−1, A = t

8δ2

Proof of the Lemma First, f ∈ H
1
t so f =∑k

∑
l al

kel
k(.)e

−λk t/2,
∑

k
∑

l |al
k |2 ≤ 1.

As �(δ
√

L)(x, y) =∑k �(δ
√

λk)Pk(x, y),

�(δ
√

L) f (x) = 〈�(δ
√

L)(x, .), f (.)〉 =
∑

k

∑

l

�(δ
√

λk)a
l
kel

k(x)e−λk t/2, hence

|�(δ
√

L) f (x)| ≤
(
∑

k

∑

l

|al
k |2
)1/2 (

∑

k

e−λk t�2(δ
√

λk

)
∑

l

(el
k(x)2)1/2

≤
(
∑

k

e−λk t�2(δ
√

λk)Pk(x, x)

)1/2

≤
(
∑

k

�2(δ
√

λk)Pk(x, x)

)1/2

∧
(
∑

k

e−λk t Pk(x, x)

)1/2

= [�2(δ
√

L)(x, x) ∧ Pt (x, x)]1/2

≤
√

C(�2)√|B(x, δ)| ∧
√

C1
√
|B(x,

√
t)|

� 1

t D/4

using (12), (37) and the lower bound |B(x, r)| ≥ (r/2)D obtained in Sect. 2.1. In the
same way,

�(δ
√

L) f (x) = 〈�(δ
√

L)(x, .), f (.)〉 =
∑

k

∑

l

�(δ
√

λk)a
l
kel

k(x)e−λk t/2, hence

|�(δ
√

L) f (x)| ≤
(
∑

k

∑

l

|al
k |2
)1/2 (

∑

k

e−λk t �2(δ
√

λk)
∑

l

(el
k(ξ))2

)1/2

≤ e−
1

4δ2 t/2

(
∑

k

�2(δ
√

λk)Pk(x, x)

)1/2

= e−
t

8δ2 [�2(δ
√

L)(x, x)]1/2

≤ C(�2)e−
t

8δ2
1

|B(x, δ)|1/2

≤ 2D/2C(�2)e−
t

8δ2
1

δD/2

� e−
t

8δ2
1

δD/2 .
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So, we have

∑

j≥0

‖�(2− jδ
√

L) f ‖∞ � 1

δD/2

∑

j≥0

e−22 j t
8δ2 2 j D/2.

Put A = t
8δ2 ; as:

2 j+1∫

2 j

x D/2e−
A
4 x2 Dx

x
≥ 2

D
2 j e−A22 j

log 2

∞∑

j=0

2
D
2 j e−A22 j ≤ 1

log 2

∞∫

1

x D/2e−
A
4 x2 Dx

x
= 1

log 2

1

2
(

4

A
)D/4

∞∫

A/4

u D/4e−u Du

u

as

for all a ∈ R, X > 0,

∞∫

X

ta−1e−t dt ≤ 2e−X Xa−1, if X ≥ 2(a − 1)

∞∑

j=0

2
D
2 j e−A22 j ≤ 4

log 2
e−

A
4 A−1, if A ≥ 8(D − 2)

Conclude that

∑

j≥0

‖�(2− jδ
√

L) f ‖∞ ≤ Ct−D/4(
A

4
)D/4e−

A
4 (

A

4
)−1. ��

��
First step Fix δ such that ‖ f − �(δ

√
L) f ‖∞ < ε

2
Using the previous lemma, we need to choose δ so that

ε

2
> Ct−D/4

(
t

32δ2

)D/4

e−
A
4

(
A

4

)−1

,
A

4
= t

32δ2 . (48)

Let us take

A

4
= t

32δ2 = α log
1

ε
.
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Then, as εν ≤ at,

Ct−D/4
(

A

4

)D/4

e−
A
4

(
A

4

)−1

= Ct−D/4
(

α log
1

ε

)D/4−1

εα

≤ C(aεν)−D/4
(

α log
1

ε

)D/4−1

εα ≤ ε

2

if α is suitably chosen. So for 1
δ
∼
√

1
t log 1

ε
,

‖ f − �(δ
√

L) f ‖∞ <
ε

2

Second step ε− covering of H
1
t .

Now if f ∈ H
1
t , using Lemma 2, ‖�(δ

√
L) f ‖∞ � t−D/4. Moreover �(δ

√
L) f ∈

�1/δ, so, using (39)

�(δ
√

L) f (x) =
∑

ξ∈�γδ

�(δ
√

L) f (ξ)|B(ξ, δ)|Dδ
ξ (x).

Let us consider the following family :

f(k.) = C
∑

ξ∈�γδ

kξ ε|B(ξ, δ)|Dδ
ξ (x), kξ ∈ N, |kξ | ≤ K ∈ N, K Cε ≤ 1

t D/4 .

Certainly for all f ∈ H
1
t , there exists (kξ ) in the previous family such that

‖�(δ
√

L) f −
∑

ξ∈�γδ

kξ C
ε

2
|B(ξ, δ)|Dδ

ξ (x)‖∞

= ‖
∑

ξ∈�γδ

(�(δ
√

L) f (ξ) − Ckξ ε)|B(ξ, δ)|Dδ
ξ (x)‖∞

� sup
ξ∈�γδ

|�(δ
√

L) f (ξ) − Ckξ ε| <
ε

2
.

As ‖�(δ
√

L) f − f ‖∞ ≤ ε
2 , one can cover H

1
t by balls centered in the f(k.) of radius ε.

The cardinality of this family of balls is: (2K + 1)card(�γ δ). As γ is a structural
constant, εν ≤ at and δ ∼ δ(t, ε), clearly

H(ε, H
1
t , L

∞) � N (δ(t, ε),M) · log
1

ε
.

��
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10.4 Bounds for E(‖W t‖2
B
)

In the two remaining subsections, we prove some useful results used in Sect. 6 and
the proof of Theorem 2 respectively. The next Proposition provides a control on the
expectation of the squared sup-norm of W t . Similar bounds in the L

2 norm are obtained
along the way (even slightly more precise).

Proposition 5 There exist universal constants C1 and C2 such that

C1 sup
x∈M

1

|B(x,
√

t)| ≤ E‖W t‖2∞ ≤ C2 N (
√

t,M) sup
x∈M

1

|B(x,
√

t)| . (49)

We recall that W t writes

W t (x) =
∑

k

∑

1≤l≤dim Hλk

e−λk t/2 Xl
kel

k(x)

where Xl
k is a family of independent N (0, 1) Gaussian variables. Clearly since M is

supposed to have measure 1,

E(‖W t‖2
2) ≤ E(‖W t‖2∞).

As ‖W t‖2
2 =∑k e−λk t ∑

1≤l≤dim Hλk
(Xl

k)
2, we get

E(‖W t‖2
2) =

∑

k

e−λk t dim Hλk = T race(e−t L) =
∫

M
Pt (u, u)dμ(u).

Hence using Proposition 4, one obtains

∫

M

1

|B(x,
√

t)|dμ(x) � E(‖W t‖2
2) =

∫

M

Pt (u, u)dμ(u)�
∫

M

1

|B(x,
√

t)|dμ(x). (50)
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Now, let us first observe, using again Proposition 4, that

E(‖W t‖2∞) = E( sup
x∈M

|W t (x)|2)

≥ sup
x∈M

E(|W t (x)|2)

= sup
x∈M

E

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣

∑

k

∑

1≤l≤dim Hλk

e−λk t/2 Xl
kel

k(x)

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

= sup
x∈M

∑

k

∑

1≤l≤dim Hλk

e−λk t (el
k(x))2

= sup
x∈M

∑

k

e−λk t Pk(x, x)

= sup
x∈M

Pt (x, x) ∼ sup
x∈M

1

|B(x,
√

t)|

On the other side, using Cauchy-Schwarz inequality,

|W t (x)|2 = |
∑

k

∑

1≤l≤dim Hλk

e−λk t/2 Xl
kel

k(x)|2

≤
⎧
⎨

⎩

∑

k

∑

1≤l≤dim Hλk

e−λk t/2(Xl
k)

2

⎫
⎬

⎭

⎧
⎨

⎩

∑

k

∑

1≤l≤dim Hλk

e−λk t/2(el
k(x))2

⎫
⎬

⎭

=
⎧
⎨

⎩

∑

k

∑

1≤l≤dim Hλk

e−λk t/2(Xl
k)

2

⎫
⎬

⎭

{
∑

k

e−λk t/2 Pk(x, x)

}

=
⎧
⎨

⎩

∑

k

∑

1≤l≤dim Hλk

e−λk t/2(Xl
k)

2

⎫
⎬

⎭
Pt/2(x, x).

So

E(‖W t‖2∞) ≤ E

⎧
⎨

⎩

∑

k

∑

1≤l≤dim Hλk

e−λk t/2(Xl
k)

2

⎫
⎬

⎭
. sup

x∈M
Pt/2(x, x)

= T race(e−t/2L) sup
x∈M

Pt/2(x, x)

=
⎛

⎝
∫

M
Pt/2(u, u)dμ(u)

⎞

⎠
(

sup
x∈M

Pt/2(x, x)

)

.
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Hence, we get

sup
x∈M

1

|B(x,
√

t)| ∼ sup
x∈M

Pt (x, x) ≤ E(‖W t‖2∞)

≤
⎛

⎝
∫

M
Pt/2(u, u)dμ(u)

⎞

⎠
(

sup
x∈M

Pt/2(x, x)

)

∼ N (
√

t,M) sup
x∈M

1

|B(x,
√

t)| .

And we have in addition: N (
√

t,M) ∼ ∫M 1
|B(x,

√
t)|dμ(x) � supx∈M 1

|B(x,
√

t)| .

10.5 Lower bound for At
f (ε)

Theorem 4 For s > 0 fixed, there exists f ∈ Bs
2,∞(M), (the unit ball of the Besov

space ) with ‖ f ‖2
2 = 1 and constants c > 0, C > 0 such that:

for all 1 ≥ t > 0, for all 1 > ε > 0, inf‖ f −h‖2≤ε
‖h‖2

Ht
≥ Cε2ectε−2/s

Let us take f such that

‖ f ‖2 = 1 > ε > 0.

We are interested in:

inf‖ f −Pt/2g‖2=ε
‖g‖2

2.

Let us put

�(g)=‖ f − Pt/2g‖2
2=‖ f ‖2

2−2〈Pt/2 f, g〉+〈Pt g, g〉=ε2, �(g) = ‖g‖2
2. (51)

We have,

D�(g) = −2Pt/2 f + 2Pt (g), D�(g) = 2g

So, inf
�(g)=ε2

�(g) = �(g0) !⇒ D�(g0) = −μD�(g0)

with g0 = −μPt (g0) + μPt/2 f.
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Necessarily μ �= 0, otherwise g0 = 0 and �(g0) = ‖ f ‖2
2 # ε2. Let us put λ = 1

μ
.

We necessarily have λg0 = Pt/2 f − Pt (g0), hence (λ + Pt )(g0) = Pt/2 f , so

g0 = (λ + Pt )
−1 Pt/2 f.

Let us now write the constraint:

ε2 = ‖ f − Pt/2g‖2
2 = ‖ f − Pt/2(λ + Pt )

−1 Pt/2 f ‖2
2

= ‖ f − (λ + Pt )
−1 Pt f ‖2

2 = ‖λ(λ + Pt )
−1 f ‖2

2.

Clearly:

λ "→ ‖λ(λ + Pt )
−1 f ‖2

2

is increasing from 0 to ‖ f ‖2
2. As well,

λ "→ ‖(λ + Pt )
−1 Pt/2 f ‖2

2

is decreasing.
On the other way: if L = ∫ xd Ex , and

‖λ(λ + Pt )
−1 f ‖2

2 =
∞∫

0

(
λ

λ + e−t x

)2

d〈Ex f, f 〉 ≥ ε2

and

‖g0‖2
2 = ‖(λ + Pt )

−1 Pt/2 f ‖2
2 =

∞∫

0

(
1

λ + e−t x

)2

e−t x d〈Ex f, f 〉.

Let us recall the following result from [9, Lemma 3.19].

Theorem 5 There exists b > 1, C ′′
1 > 0, C ′′

2 > 0, such that for all λ ≥ 1, δ = 1
λ
,

then

dim(�bλ) − dim(�λ) = dim(�bλ $ �λ)

=
∫

M

P�bλ
(x, x)dμ(x) −

∫

M
P�λ(x, x)dμ(x) �= 0

and more precisely:

C ′′
1

∫

M

1

|B(x, δ)|dμ(x) ≤ dim(�bλ $ �λ) ≤ C ′′
2

∫

M

1

|B(x, δ)|dμ(x). (52)
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As P�√
a
= Ea , one can build a function f ∈ L

2 such that:

‖ f − P�√
a

f ‖2
2 =

∞∫

a

〈Ex f, f 〉 = ‖ f ‖2
2 − ‖Ea f ‖2

2 = ‖ f − Ea f ‖2
2 = a−s

for a = b2 j, and j ∈ N. It is enough to have:

‖P�b j+1$�b j ( f )‖2
2 = b−2 js − b−2( j+1)s

and this could be done by the previous theorem.
Let us choose for ε > 0, b−2 js ≥ 4ε2 ≥ b−2( j+1)s . So

∞∫

b2 j

〈Ex f, f 〉 = b−2 js ≥ 4ε2 ≥ b−2( j+1)s =
∞∫

b2( j+1)

〈Ex f, f 〉

so, if λ = e−ta, a = b2 j ,

∞∫

0

(
λ

λ + e−t x

)2

d〈Ex f, f 〉 ≥
∞∫

a

(
λ

λ + e−t x

)2

d〈Ex f, f 〉

≥
∞∫

a

(
e−ta

e−ta+e−t x

)2

d〈Ex f, f 〉= 1

4

∞∫

a

d〈Ex f, f 〉≥ε2.

But

‖g0‖2
2 ≥ ‖(λ + Pt )

−1 Pt/2 f ‖2
2 =

∞∫

0

(
1

λ + e−t x

)2

e−t x d〈Ex f, f 〉

= eta

∞∫

0

(
1

e−ta + e−t x

)2

e−tae−t x d〈Ex f, f 〉

= eta

∞∫

0

(
e−t/2x e−t/2a

e−ta + e−t x

)2

d〈Ex f, f 〉

= eta

∞∫

0

(
1

e−t/2(a−x) + e−t/2(x−a)

)2

d〈Ex f, f 〉

≥ eta 1

4

∞∫

0

e−t |a−x |d〈Ex f, f 〉 ≥ eta 1

4

a∫

a
b2

e−t (a−x)d〈Ex f, f 〉
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≥ e
t a

b2
1

4

a∫

a
b2

d〈Ex f, f 〉 = e
t a

b2
1

4

b2 j∫

b2 j−2

d〈Ex f, f 〉 = e
t a

b2
1

4
(b−(2 j−2)s − b−2 js)

= e
t a

b2
1

4
b−2 js(b2s − 1) ≥ ε2(b2s − 1)etb2 j−2

≥ ε2(b2s − 1)etcε−2/s ; c = 4−1/sb−4.

��
Acknowledgments The authors would like to thank Richard Nickl, Aad van der Vaart and Harry van
Zanten for insightful comments on this work.

Appendix: Compact Riemannian manifold

We investigate now the case described in Sect. 3 where M is a compact Riemannian
manifold of dimension d without boundary. Our aim here is to prove Ahlfors’ condition
(2) for this special case.

Proposition 6 Let M be a compact Riemannian manifold of dimension d without
boundary. Then there exist 0 < c ≤ C < ∞ such that,

for all x ∈ M, for all 0 < r < Diam(M), crd ≤ |B(x, r)| ≤ Crd .

Proof Let μ and ρ be the (non normalised) Riemannian measure and metric on M.

The proposition is a consequence of the Bishop-Gromov comparison Theorem, see
[15] and [7].

As M is compact, clearly

∃κ ∈ R, such that : for all x ∈ M, Riccx ≥ (d − 1)κgx

where Ricc is the Ricci tensor and g is the metric tensor. Let Vκ(r) be the volume of
the (any) ball of radius r in the model space of dimension d and constant sectional
curvature κ. Let Vd be the volume of the unit ball of R

d .

1. For κ > 0, the model space is the sphere 1√
κ
Sd of R

d+1 of radius 1√
κ

and

Vκ(r) = dVd

r∫

0

(
sin

√
κt√

κ

)d−1

dt; so

(
2

π

)d−1

Vdrd ≤ Vκ(r) ≤ Vdrd

2. For κ = 0, the model space is R
d and

Vκ(r) = Vdrd
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3. For κ < 0 the model space is the hyperbolic space of constant sectional curvature
κ.

Vκ(r) = dVd

r∫

0

(
sinh

√|κ|t√|κ|
)d−1

dt; so Vdrd ≤ Vκ(r) ≤ Vdrde(d−1)
√|κ|r

as s ≤ sinh(s) ≤ ses .

Moreover by the Bishop-Gromov comparaison comparison Theorem: r "→ |B(x,r)|
Vκ (r)

is non increasing. So if 0 < ε < r < s ≤ R = diam(M) :
μ(M)

Vκ(R)
= |B(x, R)|

Vκ(R)
≤ |B(x, s)|

Vκ(s)
≤ |B(x, r)|

Vκ(r)
≤ |B(x, ε)|

Vκ(ε)
"→ 1, when ε "→ 0.

So

Vκ(s)

Vκ(r)
≤ |B(x, r)|

|B(x, s)| ; μ(M)
Vκ(r)

Vκ(R)
≤ |B(x, r)| ≤ Vκ(r)

So

A(
r

s
)d ≤ |B(x, r)|

|B(x, s)| (doubling); crd ≤ |B(x, r)| ≤ CVdrd (homogeneity);

for κ > 0, C = 1, c =
(

2

π

)d−1
μ(M)

Rd
. A =

(
2

π

)d−1

.

for κ = 0, C = 1, c = μ(M)

Rd
. A = 1.

for κ < 0, C = e(d−1)
√|κ|R; c = μ(M)

Rde(d−1)
√|κ|R . A = 1

e(d−1)
√|κ|R . ��

Remark 4 If (M, μ, ρ) is a compact metric space with a Borel measure μ, then if we
have the doubling condition:

0 < r < s !⇒ |B(x, s)| ≤ 1

A

( s

r

)m |B(x, r)|

then

for all r ≤ R = diam(M), Crm ≤ |B(x, r)|, with C = A|M|
Rm

.
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