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Abstract We consider here estimation of an unknown probability density s belonging
to L2(μ) where μ is a probability measure. We have at hand n i.i.d. observations with
density s and use the squared L2-norm as our loss function. The purpose of this
paper is to provide an abstract but completely general method for estimating s by
model selection, allowing to handle arbitrary families of finite-dimensional (possibly
non-linear) models and any s ∈ L2(μ). We shall, in particular, consider the cases of
unbounded densities and bounded densities with unknown L∞-norm and investigate
how the L∞-norm of s may influence the risk. We shall also provide applications to
adaptive estimation and aggregation of preliminary estimators. One major technical
tool of our approach is a proof of the existence of suitable tests between L2-balls with
centers belonging to L∞. Although of a purely theoretical nature, our method leads
to results that cannot presently be reached by more concrete ones.

Keywords Density estimation · L2-loss · Model selection ·
Estimator selection · Histograms

Mathematics Subject Classification (1991) Primary 62G07 · Secondary 62G10

1 Introduction

In this paper we shall deal with the problem of estimating an unknown density s
with respect to the measure μ on the measurable space (X ,W) from an i.i.d. sample
X = (X1, . . . , Xn) of random variables Xi ∈ X with distribution Ps = s · μ. We
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534 L. Birgé

shall measure the quality of an estimator ŝ(X1, . . . , Xn) of s by its quadratic risk
Es
[

d2 ( ŝ, s)
]

for a suitable distance d, where Es denotes the expectation when s
obtains. We shall denote by ‖ · ‖q the norm in Lq(μ), omitting the subscript when
q = 2 for simplicity and by d2 the distance in L2(μ) : d2(t, u) = ‖t − u‖. For
1 ≤ q ≤ +∞ we consider the set Lq of those densities with respect to μ that belong
to Lq(μ), i.e.

Lq =
{

t ∈ Lq(μ)

∣

∣

∣

∣

t ≥ 0 and
∫

t dμ = 1

}

.

We shall also make use of the Hellinger distance h and the variation distance v given
by

h2(t, u) = 1

2

∫

(√
t − √

u
)2

dμ and v(t, u) = 1

2

∫

|t − u| dμ.

When s is assumed to belong to the metric space (M, d), a common method of
estimation that can be called model-based estimation chooses a subset S of M and an
estimation method which results in an estimator that automatically belongs to S. Of
this type is the maximum likelihood estimator over S, for instance. When the distance
d is either h or v, it is possible to get very general risk bounds for some special
estimators based on finite-dimensional models. Indeed, if we choose for S a model
with a metric dimension (to be defined in Sect. 1.2 below and generalizing to subsets
of metric spaces the usual dimension of a finite-dimensional linear space) bounded
by D, one can design an estimator s̃ with values in S satisfying, whatever the true
unknown density s,

Es

[

d2 ( s̃, s)
]

≤ C

[

inf
t∈S

d2(s, t)+ n−1 D

]

, (1.1)

where C denotes a universal constant (independent of n, s and S). When s belongs to
S, (1.1) provides the following upper bound for the minimax risk over S:

inf
ŝ

sup
s∈S

Es

[

d2 ( ŝ, s)
]

≤ Cn−1 D, (1.2)

where the infimum is over all possible estimators ŝ, a result which actually dates back
to Le Cam [23] for the Hellinger distance.

Nevertheless, the square of the L2-distance d2 has been much more popular in the
past, as a loss function for density estimation, than either the Hellinger or variation
distances, mainly because of its simplicity due to the classical “squared bias plus
variance” decomposition of the risk. But, although hundreds of papers have been
devoted to the derivation of risk bounds for various specific estimators, we do not
know of any universal bound for the risk similar to (1.1) when d = d2, universal
meaning here valid for any model S with a metric dimension bounded by D and any
density s ∈ L2(μ), only partial results valid for some special cases being available.
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Model selection for density estimation with L2-loss 535

This is actually not surprising for the following reason. While h and v are distances
between probabilities so that h(s, t) = h(Ps, Pt ) is independent of the choice of the
underlying dominating measure μ, this is definitely not the case of the L2-distance
between densities which depends on the choice of μ and is not a distance between
probabilities. Given a probability P and a dominating measure μ, even the fact that
d P/dμ belong or not to L2(μ) depends on μ. Further remarks on this subject can be
found in [16,17].

It is indeed the distortion between the Hellinger and L2-distances that explains the
problems that may occur when we use the L2-risk as can be shown by the following
elementary computations. When t and u are bounded by L ,

‖t − u‖2 =
∫

(√
t − √

u
)2 (√

t + √
u
)2

dμ ≤ 4L
∫

(√
t − √

u
)2

dμ

= 8Lh2(t, u). (1.3)

Although this is only an upper bound, there are situations where it is rather sharp as
in the following case. Let μ be the Lebesgue measure on [0, 1], t = L1[0,a) + (1 −
aL)(1−a)−11[a,1] with L > 1 and 0 < a < L−1, and u(x) = t (1−x) for 0 ≤ x ≤ 1.
Then ‖t‖∞ = ‖u‖∞ = L and

‖t − u‖2 = 2a

(

L − 1 − aL

1 − a

)2

= 2a
(L − 1)2

(1 − a)2
,

while

h2(t, u) = a

(√
L −

√

1 − aL

1 − a

)2

= a

1 − a

(

L − 1√
L(1 − a)+ √

1 − aL

)2

≤ a(L − 1)2

L(1 − a)2
.

Therefore ‖t −u‖2 ≥ 2Lh2(t, u). If a is chosen in such a way that h2(t, u) = (4n)−1,
it follows from Le Cam [23] (see Proposition 5 below) that one cannot test between t
and u with n i.i.d. observations and small errors, i.e. one cannot distinguish between t
and u with only n observations. As a consequence the minimax risk over the set {t, u}
will be of order n−1 when the loss function is the squared Hellinger distance while it
will be of order Ln−1 if the loss function is the squared L2-distance.

1.1 The example of projection estimators

1.1.1 The special case of histograms

A simple illustration of the difference that occurs when one computes risk bounds using
the L2-distance rather than the Hellinger distance is provided by the case of histograms.
Assuming that μ is a finite measure and given a finite partition I = {I1, . . . , Ik} of
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536 L. Birgé

X with μ(I j ) = l j > 0 for 1 ≤ j ≤ k, the histogram ŝI based on this partition is
defined by

ŝI(X1, . . . , Xn) = 1

nl j

k
∑

j=1

N j1I j with N j =
n
∑

i=1

1I j (Xi ). (1.4)

Let

p j =
∫

I j

s dμ, sI =
k
∑

j=1

p j

l j
1I j , SI =

⎧

⎨

⎩

k
∑

j=1

β j1I j

∣

∣

∣

∣

∣

∣

β j ∈ R for 1 ≤ j ≤ k

⎫

⎬

⎭

and S
0
I be the convex set SI ∩ L1. If s ∈ L2(μ), then sI ∈ S

0
I is the orthogonal

projection of s onto the k-dimensional linear space SI spanned by the functions 1I j

and onto S
0
I as well. It follows that ŝI is an estimator based on the model S

0
I .

Choosing d2
2 as our loss function, we derive that

Es

[

‖ ŝI − s‖2
]

= ‖sI − s‖2 + 1

n

k
∑

j=1

p j (1 − p j )

l j
. (1.5)

The simplest and most common situation is the one of regular histograms for which
all l j are equal to k−1. In this case we derive from (1.5) and a convexity argument that

Es

[

‖ ŝI − s‖2
]

≤ ‖sI − s‖2 + n−1(k − 1). (1.6)

We then get a risk bound which is the sum of the square of the bias and n−1 times
the dimension of the model, i.e. the number of parameters (p1, . . . , pk−1) which are

needed to describe an element of the model S
0
I . It can therefore be viewed as an

analogue of (1.1).
In the general situation of unequal values of the l j the previous elementary argument

does not work but, if s ∈ L∞(μ) with norm ‖s‖∞, the quadratic risk of ŝI can
alternatively be bounded by

Es

[

‖ ŝI − s‖2
]

≤ ‖sI − s‖2 + n−1(k − 1)‖s‖∞, (1.7)

which is much worse than (1.6) when ‖s‖∞ is large. This bound may be far from
sharp for a given s but it is essentially unimprovable if we want it to hold for arbitrary
partitions I with k elements and any s ∈ L∞ as shown by the following example.
Define the partition I on X = [0, 1] by I j = [( j − 1)α, jα) for 1 ≤ j < k and
Ik = [(k − 1)α, 1] with 0 < α < (k − 1)−1. Set s = sI = [(k − 1)α]−1

[

1 − 1Ik

]

.
Then p j = (k − 1)−1 for 1 ≤ j < k, s = sI (a case of no bias) and it follows from
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Model selection for density estimation with L2-loss 537

(1.5) that

Es

[

‖̂sI − s‖2
]

= k − 2

(k − 1)αn
= (k − 2)‖s‖∞

n
. (1.8)

This shows that there is little space for improvement in (1.7) and that there are cases
when the quadratic risk based on d2 does involve the L∞-norm of s. It also demon-
strates that there is no hope to bound the risk of an histogram ŝI based on an arbitrary
partition I with cardinality |I| = k by an analogue of (1.6). Indeed, letting α go to
zero in (1.8) shows that

sup
{I | |I|=k}

sup
s∈S

0
I

Es

[

‖̂sI − s‖2
]

= +∞.

If, instead, we use as our loss function the squared Hellinger distance h as we
previously did we get an analogue of (1.6) and (1.1), namely

Es

[

h2(̂sI , s)
]

≤ h2(s, sI)+ (k − 1)/(2n),

whatever the partition I of cardinality k and the density s, as shown in [12]. A similar
result holds if d = v. In both cases, whatever the partition I, we can bound the risk
by a universal constant times the sum of the squared of the bias and n−1 times the size
of the partition. This is a bound of the form (1.1), since |I| is the dimension of our
model, i.e. the linear space generated by the functions 1I j to which ŝI belongs.

1.1.2 Projection estimators

More generally, instead of the linear space generated by the functions 1I j , 1 ≤ j ≤ k,
we can take as a model for estimating s any k-dimensional linear subspace S of
L2(μ). Given an orthonormal basis (ϕ1, . . . , ϕk) of S the projection s of s onto S
can be written s = ∑k

j=1 β jϕ j . The estimation method of Cencov [13] consists in
replacing each coefficient β j = ∫

ϕ j s dμ in this expansion by its empirical version
̂β j = n−1∑n

i=1 ϕ j (Xi ). This results in the so called projection estimator ŝ =
∑k

j=1
̂β jϕ j (which in general is not a density) with risk

Es

[

‖̂s − s‖2
]

= ‖s − s‖2 + n−1
k
∑

j=1

Vars
(

ϕ j (X1)
)

(1.9)

≤ ‖s − s‖2 + n−1
∫

⎡

⎣

k
∑

j=1

ϕ2
j (x)

⎤

⎦ s(x) dμ(x) (1.10)

≤ ‖s − s‖2 + kn−1 min

⎧

⎨

⎩

k−1

∥

∥

∥

∥

∥

∥

k
∑

j=1

ϕ2
j

∥

∥

∥

∥

∥

∥∞
; ‖s‖∞

⎫

⎬

⎭

. (1.11)
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538 L. Birgé

The histogram based on the partition I is merely the projection estimator correspond-

ing to ϕ j = l−1/2
j 1I j . For regular histograms, l j = k−1 and

∥

∥

∥

∑k
j=1 ϕ

2
j

∥

∥

∥∞ = k.

It has been shown in [9] that the quantity
∥

∥

∥

∑k
j=1 ϕ

2
j

∥

∥

∥∞ only depends on S and not

on the choice of the basis. For an arbitrary subset of a uniformly bounded basis like
the trigonometric basis, it is bounded by Ck for a constant C depending on the basis
only. In such a case we get a risk bound of the form ‖s − s‖2 + n−1Ck which does
not involve ‖s‖∞. If we use the projection onto the first k elements of a wavelet basis,
the bound Ck still holds but this is not true any more if we project onto an arbitrary
subset with k elements of the same wavelet basis. We end up with the same dichotomy
we found between regular and irregular histograms: bounding the variance term of the
risk is sometimes straightforward, leading to a bound of the form n−1Ck but for some
other models the risk bound we derive involves ‖s‖∞.

A similar difficulty occurs in more complex examples, for instance for the estimators
that are considered by Reynaud-Bouret et al. [29]. Their Theorem 1 leads to a risk
bound that also involves a variance term depending on the unknown density s which
is the analogue of

∑k
j=1 Vars

(

ϕ j (X1)
)

. In some cases, this term can be bounded
independently of s but in some other cases this bounding involves ‖s‖∞.

It follows from these illustrations that it does not seem easy to get an analogue of
(1.1) in full generality when d is the L2-distance (at first sight it may sometimes work
and sometimes not, depending on the type of model we use). It will be the subject of
our next section to formally prove that a general result of the form (1.1) cannot hold
when d = d2.

1.2 Model based estimation

As we already mentioned, a common method for estimating s consists in choosing a
particular subset S of (M, d) that we shall call a model for s and design an estimator
with values in S. Let us set M = L1 and choose for d either the Hellinger distance
h or the variation distance v. It follows from Le Cam [23–25] and subsequent results
by Birgé [2,4] that the risk of suitably designed estimators with values in S is the
sum of two terms, an approximation term depending on the distance from s to S and
an estimation term depending on the metric dimension of the model S which can be
defined as follows.

Definition 1 Let S be a subset of some metric space (M, d) and let Bd(t, r) denote
the open ball of center t and radius r with respect to the metric d. Given η > 0, a
subset Sη of M is called an η-net for S if, for each t ∈ S, one can find t ′ ∈ Sη with
d(t, t ′) ≤ η.

We say that S has a metric dimension bounded by D ≥ 0 if, for every η > 0, there
exists an η-net Sη for S such that

|Sη ∩ Bd(t, xη)| ≤ exp
[

Dx2
]

for all x ≥ 2 and t ∈ M. (1.12)
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Model selection for density estimation with L2-loss 539

Remark One can always assume that Sη ⊂ S at the price of replacing D by 25D/4
according to Proposition 7 of [4].

When (M, d) is a normed linear space, typical examples of sets with metric dimen-
sion bounded by D are subsets of 2D-dimensional linear subspaces of M , as shown
in [4], where the following generalization of Le Cam [23] is also proven.

Proposition 1 Assume that we observe n i.i.d. random variables with unknown dis-
tribution Ps, s ∈ (L1, d), d being either the Hellinger distance h or the variation
distance v, and that we have at disposal a subset S of L1 with metric dimension
bounded by D ≥ 1/2. One can build an estimator s̃ with values in S such that, for all
s ∈ L1 and some universal constant C,

Es

[

d2 ( s̃, s)
]

≤ C

[

inf
t∈S

d2(s, t)+ n−1 D

]

hence sup
s∈S

Es

[

d2 ( s̃, s)
]

≤ Cn−1 D.

The risk bounds (1.1) and (1.2) that we mentioned earlier actually derive from this
proposition.

1.3 Some negative results for the L2-loss

Unfortunately, the analogue of Proposition 1 when we deal with arbitrary densities
and models belonging to L2 and set d = d2 cannot be true. To see this, let us take
X = [0, 1], μ the Lebesgue measure on X and assume that, for some S with metric
dimension bounded by D ≥ 1/2,

inf
ŝ

sup
s∈S

Es

[

d2
2 ( ŝ(X), s)

]

= cn−1 D

for some c > 0. For λ > 1, consider the mapping Gλ between elements of L2 given
by Gλ(s)(x) = λs(λx)1[0,λ−1](x). Then d2 (Gλ(t)− Gλ(u)) = λ1/2d2(t, u). This
implies that Gλ

(

S
)

has the same metric dimension as S, therefore bounded by D.
Moreover, any estimator ŝ of s can be turned into an estimator Gλ ( ŝ) for Gλ(s) and
vice-versa, so that the minimax risk over Gλ

(

S
)

is λcn−1 D. Since λ can be arbitrary
large, the bound (1.2) cannot be universally true.

The fact that the L∞-norm of s may come into the risk based on L2-loss, as we
noticed when studying histograms on irregular partitions, is actually not due to the use
of specific estimators like histograms but it is a more general phenomenon as shown
by another negative result provided by Proposition 4 of [5] that we recall below for
the sake of completeness.

Proposition 2 For each L > 0 and each integer D with 1 ≤ D ≤ 3n, one can find a
finite set S of densities with the following properties:

(i) it is a subset of some D-dimensional affine subspace of L2([0, 1], dx) with a
metric dimension bounded by D/2;

(ii) sups∈S ‖s‖∞ ≤ L + 1;
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540 L. Birgé

(iii) for any estimator ŝ(X1, . . . , Xn) belonging to L2([0, 1], dx) and based on an
i.i.d. sample with density s ∈ S,

sup
s∈S

Es

[

‖ ŝ − s‖2
]

> 0.0139DLn−1. (1.13)

It follows from this lower bound that the best universal risk bound one can expect to
prove for an estimator ŝ with values in an arbitrary model S with metric dimension
bounded by D when s is arbitrary in L∞ is

Es

[

d2
2 ( ŝ, s)

]

≤ C

[

inf
t∈S

d2
2 (s, t)+ n−1 D‖s‖∞

]

. (1.14)

The situation becomes worse when s �∈ L∞(μ) or if sups∈S ‖s‖∞ =+∞. It may even
happen that, whatever the estimator ŝ, sups∈S Es

[

d2 ( ŝ, s)
]

be infinite even if
S ⊂ L2(μ) has a bounded metric dimension as shown by the following lower bound,
to be proved in Sect. 6.1.

Proposition 3 Let S = {sθ , 0 < θ ≤ 1/3} be the set of densities with respect to the
Lebesgue measure on [0, 1] given by

sθ = θ−21[0,θ3] +
(

θ2 + θ + 1
)−1

1(θ3,1].

If we have at disposal n i.i.d. observations with density sθ ∈ S, we can build an
estimator s̃n such that sup0<θ≤1/3 Esθ

[

nh2(sθ , s̃n)
] ≤ C for some C independent

of n. On the other hand, although the metric dimension of S with respect to the
distance d2 is bounded by 2, sup0<θ≤1/3 Esθ

[‖sθ−ŝn‖2
]=+∞, whatever n and the

estimator ŝn.

These three counter-examples show that there is absolutely no hope that Proposition 1
could be true when d = d2. They also suggest that it is impossible to build a general
theory of model selection (or even of estimation based on one single model) with
L2-loss without taking the L∞-norm into account, even if there do exist some special
situations, like for regular histograms, for which the introduction of the L∞-norm is
superfluous and Bound (1.14) can be substantially improved.

1.4 About this paper

We have seen in the previous section that Proposition 1, which deals with one single
model S, cannot be true when d is the L2-distance and the situation is obviously worse
for model selection among many models. The general results about model selection
or estimator aggregation (that can be viewed as a special case of model selection as
explained in Sect. 9 of [4]) which are valid when d = h or v and described precisely
in Theorem 1 below cannot hold in full generality when d = d2. Of course, they
may hold in some specific situations or under some additional restrictions and many
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Model selection for density estimation with L2-loss 541

results have already been obtained in this direction but there is presently no general
theory for model selection available when the risk is based on the L2-distance. This
major difference between the L2-distance and L1 or Hellinger distance was the main
motivation to write this paper.

Our purpose, in the remainder of this paper, will be to explain to what extent the
general theory for model selection which has been developed in Birgé [4] for d = h
or v can be rescued when d = d2 with the additional introduction of L∞-norms in
the procedures, even when the density s does not belong to L∞(μ), and what type of
results about adaptation in Besov spaces can be derived from this general approach.
In particular, for the case of a single model, this will lead to a generalized version
of (1.2) that can also handle the case of s �∈ L∞. When s ∈ L∞ (with an unknown
value of ‖s‖∞), the risk bounds we get completely parallel (apart from some constants
depending on ‖s‖∞) those obtained for estimating s when d = h or v.

In order to achieve our goal, we shall use the construction of what we have called
T-estimators in [4]. These estimators are based on suitable tests between balls with
respect to the relevant distance d. In the i.i.d. case when d = h, tests between Hellinger
balls were constructed quite a long time ago by Le Cam and there are many other
frameworks for which such tests exist; see [7] for various examples. In order to apply
our construction to the case of d = d2 we shall have to derive suitable tests between
L2-balls.

In the next section we shall recall general results for model selection, based on
what we have called T-estimators in [4], that hold when d = h or v and what is
presently known when d = d2. Section 3 will be devoted to the statement of the main
theorems and we shall give a few applications of them, in particular to aggregation
of preliminary estimators and estimation of densities belonging to Besov spaces, in
Sect. 4. We shall explain precisely the construction of our estimators, which can be
viewed as a modification of T-estimators, in Sect. 5. The last section will be devoted
to the most technical proofs.

2 Model selection

Let us now go back to histograms. As we noticed, the risk bound we get heavily depends
on the choice of the partition. If we have at disposal a finite (although possibly very
large) family {Im,m ∈ M} of finite partitions of X with respective cardinalities |Im |,
we can consider the corresponding families of models

{

SIm ,m ∈ M}

and histogram
estimators

{

ŝIm ,m ∈ M}

. It is then natural to try to find a partition in the family
which leads, at least approximately, to the minimal risk infm∈M Es

[‖̂sIm − s‖2
]

.
But one cannot select such a partition from either (1.5) or (1.7) since the risk
depends on the unknown density s via sIm . Methods of model or estimator selec-
tion base the choice of a suitable partition Im̂ with m̂ = m̂(X1, . . . , Xn) on the
observations.

This problem of partition selection is actually a particular case of model selection.
Going back to the general framework of Sect. 1.2 with d = h or v, we can consider
a family of models

{

Sm,m ∈ M}

, each one with metric dimension bounded by Dm

so that it leads to an estimator ŝm with a risk bounded, according to Proposition 1,
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542 L. Birgé

by C
[

inf t∈Sm
d2(s, t)+ n−1 Dm

]

. Since the bias term inf t∈Sm
d2(s, t) is unknown, it

is impossible to decide which m leads to the best bound and a natural problem is to
design a method for choosing a value m̂(X1, . . . , Xn) of m from the observations in
order to minimize the risk bound. There is actually a solution to this problem which
is provided by the following result from Birgé [4].

Theorem 1 Let X = (X1, . . . , Xn) be an i.i.d. sample with unknown density s belong-
ing to L1, d be either h or v and

{

Sm,m ∈ M}

a finite or countable family of subsets
of L1 with metric dimensions bounded by Dm ≥ 1/2 respectively. Let the nonegative
weights �m,m ∈ M satisfy

∑

m∈M
exp[−�m] = 	′ < +∞. (2.1)

Then there exists a universal constant C and an estimator s̃(X) such that, for any
s ∈ L1,

Es

[

d2 ( s̃, s)
]

≤ C(1 +	′) inf
m∈M

[

inf
t∈Sm

d2(s, t)+ n−1 max {Dm;�m}
]

. (2.2)

Proposition 1 simply follows by setting M = {0}, S0 = S, D0 = D and �0 = 1/2.
One should notice here the Bayesian role of the weights �m . The choice of weights
that satisfy (2.1) amounts to putting a prior positive measure with total mass 	′ on
M or equivalently on the collection of models with a measure exp[−�m] for the
model Sm .

2.1 What is presently known

There exists a considerable amount of literature dealing with problems of model or
estimator selection. Most of it is actually devoted to the analysis of Gaussian problems,
or regression problems, or density estimation with either Hellinger or Kullback loss and
it is not our aim here to review this literature. Only a few papers are actually devoted to
our subject, namely model or estimator selection for estimating densities with L2-loss,
and we shall therefore concentrate on these papers only. They can roughly be divided
into three groups: the ones dealing with penalized projection estimators, the ones
that study aggregation by selection of preliminary estimators and the more specific
ones which use methods based on the thresholding of empirical coefficients within a
given wavelet basis. The last ones, which are especially designed for the estimation of
densities belonging to various kinds of Besov spaces, are typically not advertised as
dealing with model selection but, as explained for instance in Sect. 5.1.2 of [11], can
be viewed as very special instances of model selection methods for models that are
spanned by some finite subsets of an orthonormal wavelet basis. They are definitely not
general methods of model selection (i.e. which handle arbitrary densities and families
of models) but specific ones dealing only with some special families of models and
targeted to estimate special densities.
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All these papers have in common the fact that they require more or less severe
restrictions on the families of models or densities to be estimated. For instance, aggre-
gation of estimators by selection only deals with models which are singletons while
thresholding of wavelet coefficients amounts to deal with models which are linear
spaces spanned by finite subsets of a wavelet basis. Moreover, apart from a few special
cases to be mentioned below, they typically assume that s ∈ L∞(μ) with a known or
estimated bound for ‖s‖∞.

In order to see how such methods apply to the problem of partition selection for
histograms that we mentioned at the beginning of Sect. 2, let us be more specific
and assume that X = [0, 1], μ is the Lebesgue measure and N = { j/(N + 1), 1 ≤
j ≤ N } for some (possibly very large) positive integer N . For any subset m of N ,
we denote by Im the partition of X generated by the intervals with set of endpoints
m ∪{0, 1} and we set Sm = SIm and ŝm = ŝIm . This leads to a family of partitions M
with cardinality 2N and to the corresponding families of linear models

{

Sm,m ∈ M}

and related histogram estimators
{

ŝm,m ∈ M}

. Then all models Sm are subsets
of the largest one SN . Given a sample X1, . . . , Xn with unknown density s, which
partition Im̂ with m̂ = m̂(X1, . . . , Xn) depending on the observations should we
choose to estimate s and what sort of risk bound could we derive for the resulting
estimator?

Since subset selection within a given basis applies here only when N = 2K − 1
and we use the Haar basis, we shall only consider this particular case in order to
be able to deal with the three above-mentioned methods, keeping in mind that the
third one does not apply to arbitrary values of N . In this case, SN is the linear span
of the 2K first elements of the Haar basis. To each non-empty subset q of these
2K elements, we can associate its linear span S

′
q and the family of linear models

{

S
′
q , q ∈ Q

}

where Q denotes the set of those q. To each S
′
q corresponds a pro-

jection estimator (as defined in Sect. 1.1.2) ŝq which looks like a histogram estima-
tor (piecewise constant) and one can consider the problem of selecting an optimal
value q̂ of q, for instance by a proper thresholding of the empirical coefficients. One
should nevertheless keep in mind that the two problems (selecting an m or a q) are
different because the two families of models and estimators are different. In particu-
lar the families of models have different approximation properties. For instance, the
density 2K1[0,2−K ) belongs to the two-dimensional model S{1} but its expansion in
the Haar basis has K non-zero coefficients so that it cannot belong to any model
S

′
q with dimension smaller than K . As to the estimators, one should notice that his-

tograms are always genuine densities which is not the case of the projection estimators
ŝq .

Penalized projection estimators have been considered by Birgé and Massart [8]
and an improved version is to be found in Chapter 7 of [27]. The method either deals
with polynomial collections of linear models, i.e. collections for which the number
of D-dimensional models is bounded by a polynomial in D (which does not apply
to our case) or with subset selection within a given basis. Moreover, it requires that
N < n/ log n and a bound on ‖sIN ‖∞ be known or estimated, as in Sect. 4.4.4 of [8],
since the penalty depends on it.
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Methods based on wavelet thresholding, as described in Donoho et al. [18] or
Kerkyacharian and Picard [22] (see also the numerous references therein) typically
require the same type of restrictions and, in particular, a known upper bound for ‖s‖∞
in order to properly calibrate the threshold. A noticeable exception appears to be the
paper by Reynaud-Bouret et al. [29] which is devoted to the estimation of an unknown
density on the real line (with possibly unbounded support) by a method which can be
viewed as a specific model selection method, the models being linear spaces spanned
by finite subsets of a given wavelet basis (for our problem it should be the Haar basis).
Their Theorem 1 is some sort of an oracle inequality which does not involve ‖s‖∞ at
all but, instead, variance terms which are similar to those in the right-hand side of (1.9).
To apply it to densities s belonging to Besov spaces Bαp,∞(R) (with α > (1/p)−(1/2)
as is always required) they have to bound these variance terms like we did for (1.9) in
Sect. 1.1.2. They derive risk bounds which show the same dichotomy we mentioned
above for histograms. In the “nice” case (here when p > 2) the bound does not involve
‖s‖∞. But in the more classical case of p ≤ 2 they require that s belong to L∞ with
risk bounds depending on ‖s‖∞.

Aggregation of estimators by selection assumes that preliminary estimators (one
for each model in our case) are given in advance (we should here use the histograms)
and typically leads to a risk bound including a term of the form n−1‖s‖∞ log |M| =
n−1 N‖s‖∞ log 2 so that all such results are useless for N ≥ n. Moreover, most
of them also require that an upper bound for ‖s‖∞ be known since it enters the
construction of the aggregate estimator. This is the case in Rigollet [30] (see for instance
his Corollary 2.7) and Juditsky et al. [21, Corollary 5.7] since the parameter β that
governs their mirror averaging method depends crucially on an upper bound for ‖s‖∞.
As to Samarov and Tsybakov [32], their Assumption 1 requires that N be not larger
than C log n. Similar restrictions are to be found in Yang [33] in his developments
for mixing strategies and in Rigollet and Tsybakov [31] for linear aggregation of
estimators. Lounici [26] does not assume that s ∈ L∞ but, instead, that all preliminary
estimators are uniformly bounded. One can always truncate the estimators to get this
but, to be efficient, the truncation should be adapted to the unknown parameter s, and
therefore chosen from the data in a suitable way. We do not know of any paper that
allows such a data driven choice.

Consequently, none of these results can solve our partition selection problem with
arbitrary partitions in a completely satisfactory way when N is at least of size n
and whatever the unknown s ∈ L2(μ). This fact was one motivation for our study
of model selection for density estimation with L2-loss. As already mentioned, some
results about adaptive estimation on particular smoothness classes that are akin to
model selection with special models and do not assume the boundedness of s can
be found in the literature. One can mention estimation of densities belonging to
Sobolev classes Wα

2 (R) = Bα2,2(R), α > 0 studied by Efromovich [20] and den-
sities in Bαp,∞(R), p > 2 considered by Reynaud-Bouret et al. [29]. Both results are
quite nice but they address specific situations. The results by Efromovich are actually
extremely precise since he does not only get the optimal adaptive rates of conver-
gence but also the exact optimal asymptotic constant which was first computed by
Pinsker [28] for Gaussian ellipsoids. He designs a special estimator of the charac-
teristic function based on an application of the Efromovich-Pinsker method to the
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empirical characteristic function. Then he proceeds by Fourier inversion. This works
remarkably well on Sobolev classes which are defined via the characteristic functions
but cannot be extended to more general models. We actually do not know of a general
model selection result that applies to any s ∈ L2(μ) and arbitrary countable fami-
lies of finite-dimensional models (possibly nonlinear). There is a counterpart to this
level of generality: our procedure is of a purely abstract nature and not constructive,
only indicating what is theoretically feasible. Unfortunately, we are unable to design
a practical procedure with similar properties.

2.2 Some notations

Let us now fix our framework and notations. We want to estimate an unknown density
s, with respect to some probability measure μ on the measurable space (X ,W), from
an i.i.d. sample X = (X1, . . . , Xn) of random variables Xi ∈ X with distribution
Ps = s · μ. The natural domain of application of our results is therefore a compact
space X with a finite reference measure ν, in which case we shall set μ = ν(X )−1ν.
Because of this restriction that μ should be a probability, our result does not apply to
estimating densities with respect to the Lebesgue measure on R but would apply to
densities with respect to a Gaussian probability on the line for instance.

Throughout the paper we denote by Ps the probability that gives X the distribution
P⊗n

s and by Es the corresponding expectation operator. For � > 1, we set

L
�

∞ =
{

t ∈ L∞
∣

∣

∣ ‖t‖∞ ≤ �
}

and, for each s ∈ L2, we define the function Qs on R+ by

Qs(z) =
∫

[s(x)− z]21{s(x)>z} dμ(x) for z ≥ 0. (2.3)

We measure the performance at s ∈ L2 of an estimator ŝ(X) ∈ L2 by its quadratic risk
Es
[

d2
2 ( ŝ(X), s)

]

. More generally, if (M, d) is a metric space of measurable functions
on X such that M ∩L1 �= ∅, the quadratic risk of some estimator ŝ ∈ M at s ∈ M ∩L1
is defined as Es

[

d2 ( ŝ(X), s)
]

. We denote by |I| the cardinality of the set I and set
a∨b and a∧b for the maximum and the minimum of a and b, respectively. Throughout
the paper C (or C ′, . . . ) will denote a universal (numerical) constant and C(a, b, . . .)
or Cq a function of the parameters a, b, . . . or q. Both may vary from line to line.
Finally, from now on, countable will always mean “finite or countable”.

3 Main results

In order to define estimators based on families of models with bounded metric dimen-
sions, we shall follow the approach of Birgé [4] based on what we have called T-
estimators. We refer to this paper for the definition and construction of these estimators
derived from tests between balls.
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3.1 Model selection with bounded T-estimators

Our first result deals with the performance of special T-estimators that are by con-

struction bounded by � and therefore belong to L
�

∞.

Theorem 2 Assume we are given a countable collection
{

Sm,m ∈ M}

of models in
L2(μ) with metric dimensions bounded respectively by Dm ≥ 1/2 and a family of
weights �m such that

	 = 1 +
∑

m∈M
exp[−�m] < +∞. (3.1)

One can build, for each � ≥ 3, a T-estimator ŝ � ∈ L
�

∞ which satisfies, for all s ∈ L2
and q ≥ 1,

Es

[∥

∥

∥s−ŝ �
∥

∥

∥

q] ≤ Cq	

⎡

⎣ inf
m∈M

⎧

⎨

⎩

d2
(

s, Sm
)+
√

�
(

Dm ∨�m
)

n

⎫

⎬

⎭

+√Qs(�)

⎤

⎦

q

, (3.2)

with Qs given by (2.3) and Cq some constant depending only on q. If ‖s‖∞ ≤ �, then

Es

[

∥

∥s − ŝ �
∥

∥

2
]

≤ C	 inf
m∈M

{

d2
2

(

s, Sm
)+ n−1�

(

Dm ∨�m
)

}

. (3.3)

3.2 General model selection in L2

Clearly, the performance of the estimator ŝ � provided by Theorem 2 depends on the
choice of � since the right-hand side of (3.2) includes a sum of two terms, the first one
being increasing with respect to � and the second one, [Qs(�)]1/2, nonincreasing. An
optimal value of � should balance between these two terms. Unfortunately both of
them depend on the unknown parameter s. We therefore need a way to choose � from
the data in order to optimize the bound in (3.2).

The idea is to build a sequence of estimators ( ŝ 2i
)i≥2 and select a convenient value

of i from our data. Since we only have at disposal a single sample X to build the
estimators ŝ 2i

and to choose i , we shall proceed by sample splitting using one half of
the sample for the construction of the estimators and the second half to select a suitable
value of i . We therefore now consider the general situation where we observe n = 2n′
i.i.d. random variables X1, . . . , Xn with an unknown density s ∈ L2, not necessarily
bounded, and have at disposal a countable collection

{

Sm,m ∈ M}

of models in
L2(μ) with metric dimensions bounded respectively by Dm ≥ 1/2 together with a
family of weights�m which satisfy (3.1). We split our sample X = (X1, . . . , Xn) into
two subsamples X1 and X2 of the same size n′. We use X1 to build the T-estimators
ŝi (X1) = ŝ 2i+1

(X1), i ≥ 1, which are provided by Theorem 2. It then follows from
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(3.2) that each such estimator satisfies, for q ≥ 1,

Es
[‖s − ŝi (X1)‖q]

≤ Cq	

⎧

⎨

⎩

inf
m∈M

⎡

⎣d2
(

s, Sm
)+

(

2i
(

Dm ∨�m
)

n

)1/2
⎤

⎦+
√

Qs(2i+1)

⎫

⎬

⎭

q

,

with Qs given by (2.3). We now work conditionally on X1, fix a convenient value of
A ≥ 1 (for instance A = 1 if we just want to bound the quadratic risk) and use the
second half of the sample X2 to select one estimator among the previous family. This
requires a special argument to select a density from an unbounded sequence which is
provided by the following proposition to be proved in Sect. 5.4.

Proposition 4 Let (ti )i≥1 be a sequence of densities such that ti ∈ L
2i+1

∞ for each i
and X be an n-sample with density s ∈ L2. Given A ≥ 1, one can design an estimator
ŝA(X) such that

Es
[

dq
2 ( ŝA, s)

] ≤ C(A, q) inf
i≥1

[

d2(s, ti ) ∨
√

n−1i2i
]q

for 1 ≤ q < 2A/ log 2.

The selection, based on the sample X2, of an estimator in the sequence ( ŝi (X1))i≥1
according to Proposition 4 results in a new estimator s̃A(X) which satisfies

Es
[

dq
2 ( s̃A(X), s)

∣

∣ X1
] ≤ C(A, q) inf

i≥1

[

d2(s, ŝi (X1)) ∨
√

n−1i2i
]q
,

provided that q < 2A/ log 2. Integrating with respect to X1 and using our previous
risk bound gives

Es
[‖s − s̃A(X)‖q ] ≤ C(A, q) inf

i≥1

{

Es
[‖s − ŝi (X1)‖q ]+

(

n−1i2i
)q/2

}

≤ C(A, q)	 inf
i≥1

⎧

⎨

⎩

inf
m∈M

⎡

⎣dq
2

(

s, Sm
)+

(

2i (Dm ∨�m ∨ i
)

n

)q/2
⎤

⎦

+[Qs(2
i+1)]q/2

⎫

⎬

⎭

.

For 2i ≤ z < 2i+1, log z ≥ i log 2 and Qs(z) ≥ Qs(2i+1) since Qs is nonincreasing.
Modifying accordingly the constants in our bounds, we get the main result of this
paper which provides adaptation with respect to both the models and the truncation
constant.

Theorem 3 Let X = (X1, . . . , Xn) with n ≥ 2 be an i.i.d. sample with unknown
density s ∈ L2 and

{

Sm,m ∈ M}

be a countable collection of models in L2(μ) with
metric dimensions bounded respectively by Dm ≥ 1/2. Let {�m,m ∈ M} be a family
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of weights which satisfy (3.1) and Qs(z) be given by (2.3). For each A ≥ 1, there
exists an estimator s̃A(X) such that, whatever s ∈ L2 and 1 ≤ q < (2A/ log 2),

Es
[‖s−s̃A(X)‖q ]

≤C(A, q)	 inf
z≥2

inf
m∈M

⎡

⎣dq
2

(

s, Sm
)+
(

z
(

Dm ∨�m ∨ log z
)

n

)q/2

+[Qs(z)]q/2
⎤

⎦ . (3.4)

In particular, for s̃ = s̃1 and s ∈ L∞(μ),

Es

[

‖s − s̃(X)‖2
]

≤ C	 inf
m∈M

[

d2
2
(

s, Sm
)+ n−1‖s‖∞

(

Dm ∨�m ∨ log ‖s‖∞
)

]

. (3.5)

3.3 Some remarks

We see that (3.4) is a generalization of (3.2) and (3.5) of (3.3) at the modest price
of the extra log z (or log ‖s‖∞). We do not know whether this log z is necessary or
not but, in a typical model selection problem, when s belongs to L∞(μ) but not to
∪m∈MSm , the optimal value of Dm goes to +∞ with n, so that, for this optimal value,
asymptotically Dm ∨�m ∨ log ‖s‖∞ = Dm ∨�m .

Up to constants depending on ‖s‖∞, (3.5) is the exact analogue of (1.14) which
shows that, when s ∈ L∞(μ), all the results about model selection obtained for the
Hellinger distance can be translated in terms of the L2-distance.

Note that Theorem 3 applies to a single model S with metric dimension bounded
by D, in which case one can use a weight � = 1/2 ≤ D which results, if A = 1, in
the risk bound

Es

[

‖s − s̃(X)‖2
]

≤ C

[

d2
2

(

s, S
)+ inf

z≥2

{

z
(

D ∨ log z
)

n
+ Qs(z)

}]

, (3.6)

and, if s ∈ L∞(μ),

Es

[

‖s − s̃(X)‖2
]

≤ C
[

d2
2

(

s, S
)+ n−1‖s‖∞

(

D ∨ log ‖s‖∞
)

]

. (3.7)

Apart from the extra log ‖s‖∞, which is harmless when it is smaller than D, we recover
what we expected, namely the bound (1.14).

Even if s ∈ L∞(μ) the bound (3.4) may be much better than (3.5). This is actually
already visible with one single model, comparing (3.6) with (3.7). It is indeed easy to
find an example of a very spiky density s for which (3.6) is much better than (3.7) or
the classical bound (1.11) obtained for projection estimators. Of course, this is just a
comparison of universal bounds, not of the true risk of estimators for a given s.

More surprising is the fact that our estimator can actually dominate a histogram
based on the same model, although our counter-example is rather caricatural and
more an advertising against the use of the L2-loss than against the use of histogram
estimators. Let us consider a partition I of [0, 1] into 2D intervals I j , 1 ≤ j ≤
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2D with the integer D satisfying 2 ≤ D ≤ n and fix some γ ≥ 10. We then set
α = (

γ 2n
)−1

. For 1 ≤ j ≤ D, the intervals I2 j−1 have length α while the intervals
I2 j have length β with D(α + β) = 1. We denote by S the 2D-dimensional linear
space spanned by the indicator functions of the I j . It is a model with metric dimension
bounded by D. We assume that the underlying density s with respect to Lebesgue
measure belongs to S and is defined as

s = pα−1
D
∑

j=1

1I2 j−1 + qβ−1
D
∑

j=1

1I2 j with p = γα and D(p + q) = 1,

so that β > q since α < p. We consider two estimators of s derived from the same
model S: the histogram ŝI based on the partition I and the estimator s̃ based on S and
provided by Theorem 3. According to (1.5) the risk of ŝI is

Dn−1
[

α−1 p(1 − p)+ β−1q(1 − q)
]

≥ 0.9Dn−1α−1 p = 0.9Dγ n−1,

since p ≤ 1/10. The risk of s̃ can be bounded by (3.4) with z = 4 which gives

Es

[

‖s − s̃(X)‖2
]

≤ C

[

4Dn−1 + D
∫

I1

(p/α)2 dμ

]

= C D
[

4n−1 + p2α−1
]

= 5C Dn−1.

For large enough values of γ our estimator is better than the histogram. The problem
actually comes from the observations falling in some of the intervals I2 j−1 which will
lead to a very bad estimation of s on those intervals. Note that this fact will happen
with a small probability since Dp = D(γ n)−1 ≤ γ−1. Nevertheless, this event of
small probability is important enough to lead to a large risk when we use the L2-loss.

4 Some applications

4.1 Aggregation of preliminary estimators

Theorem 3 applies in particular to the problem of aggregating preliminary estimators,
built from an independent sample, either by selecting one of them or by combining
them linearily.

4.1.1 Aggregation by selection

Let us begin with the problem, that we already considered in Sect. 3.2, of selecting a
point among a countable family {tm,m ∈ M}. Typically, as in Rigollet [30], the tm are
preliminary estimators based on an independent sample (derived by sample splitting
if necessary) and we want to choose the best one in the family. This is a situation for
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which one can choose Dm = 1/2 for all m and A = 1 which leads to the following
corollary

Corollary 1 Let X = (X1, . . . , Xn) with n ≥ 2 be an i.i.d. sample with unknown
density s ∈ L2 and {tm,m ∈ M} be a countable collection of points in L2(μ). Let
{�m,m ∈ M} be a family of weights which satisfy (3.1) and Qs(z) be given by (2.3).
There exists an estimator s̃(X) such that, whatever s ∈ L2,

Es

[

‖s − s̃(X)‖2
]

≤ C	 inf
z≥2

{

inf
m∈M

[

d2
2 (s, tm)+ z(�m ∨ log z)

n

]

+ Qs(z)

}

.

4.1.2 Linear aggregation

Rigollet and Tsybakov [31] have considered the problem of linear aggregation. Given a
finite set {t1, . . . , tN } of preliminary estimators of s, they use the observations to build
a linear combination of the t j in order to get a new and potentially better estimator of s.
For λ = (λ1, . . . , λN ) ∈ R

N , let us set tλ = ∑N
j=1 λ j t j . Rigollet and Tsybakov build

a selector̂λ(X1, . . . , Xn) such that the corresponding estimator ŝ(X) = t̂λ satisfies,
for all s ∈ L∞,

Es

[

‖s − ŝ(X)‖2
]

≤ inf
λ∈RN

d2
2 (s, tλ)+ n−1‖s‖∞N . (4.1)

Unfortunately, this bound, which is shown to be sharp for such an estimator, can be
really poor, as compared to the minimal risk inf1≤ j≤N d2

2 (s, t j ) of the preliminary
estimators when one of these is already quite good and n−1‖s‖∞N is large, which
is likely to happen when N is quite large. Moreover, this result tells nothing when
s �∈ L∞. In [4, Sect. 9.3] we proposed an alternative way of selecting a linear combi-
nation of the t j based on T-estimators. In the particular situation of densities belonging
to L2, we proceed as follows: we choose for M the collection of all nonvoid subsets
m of {1, . . . , N } and, for m ∈ M, we take for Sm the linear span of the t j with j ∈ m
so that the dimension of Sm is bounded by |m| and its metric dimension Dm by |m|/2.

Since the number of elements of M with cardinality j is
( N

j

)

< (eN/j) j , we may

set �m = |m|[2 + log(N/|m|)] so that (3.1) is satisfied with 	 < 2. An application
of Theorem 3 leads to the following corollary.

Corollary 2 Let X = (X1, . . . , Xn) with n ≥ 2 be an i.i.d. sample with unknown
density s ∈ L2 and {t1, . . . , tN } be a finite set of points in L2(μ). Let M be the
collection of all nonvoid subsets m of {1, . . . , N } and, for m ∈ M,

m =
{

λ ∈ R
N
∣

∣

∣ λ j = 0 for j �∈ m
}

.

For each A ≥ 1, there exists an estimator s̃A(X) such that, whatever s ∈ L2 and
1 ≤ q < (2A/ log 2),

Es
[‖s − s̃A(X)‖q] ≤ C(A, q) inf

z≥2
inf

m∈M
R(q, s, z,m),
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where

R(q, s, z,m) = inf
λ∈m

dq
2 (s, tλ)+

(

z
[|m| (1 + log(N/|m|)) ∨ log z

]

n

)q/2

+[Qs(z)]q/2

and Qs(z) is given by (2.3).

There are many differences between this bound and (4.1), apart from the nasty constant
C(A, q). Firstly, it applies to densities s that do not belong to L∞ and handles the case
of q > 2 for a convenient choice of A. Also, when s ∈ L∞ and one of the preliminary
estimators is already close to s, it may very well happen, when N is large, that

R (2, s, ‖s‖∞,m) ≤ inf
λ∈m

d2
2 (s, tλ)+ n−1‖s‖∞

[|m| (1 + log(N/|m|)) ∨ log ‖s‖∞
]

be much smaller than the right-hand side of (4.1) for some m of small cardinality.

4.2 Selection of projection estimators

In this section, we assume that s ∈ L∞(μ). This assumption is not needed for the design
of the estimator but only to derive suitable risk bounds. We have at hand a countable
family

{

Sm,m ∈ M}

of linear subspaces of L2(μ) with respective dimensions Dm

and we choose corresponding weights �m satisfying (3.1). For each m, we consider
the projection estimator ŝm defined in Sect. 1.1. Each such estimator has a risk bounded
by (1.11), i.e.

Es

[

‖̂sm − s‖2
]

≤ ‖sm − s‖2 + n−1 Dm‖s‖∞,

where sm denotes the orthogonal projection of s onto Sm . If we apply Corollary 1 to
this family of estimators, we get an estimator s̃(X) satisfying, for all s ∈ L∞,

Es

[

‖s − s̃(X)‖2
]

≤ C	 inf
m∈M

[

‖sm − s‖2 + n−1‖s‖∞ (Dm ∨�m ∨ log ‖s‖∞)
]

.

With this bound at hand, we can now go back to the problem we considered in Sect. 2.1,
starting with an arbitrary countable family {Im,m ∈ M} of finite partitions of X and
weights�m satisfying (3.1). To each partition Im we associate the linear space Sm of
piecewise constant functions of the form

∑

I∈Im
βI1I . The dimension of this linear

space is the cardinality of Im and its metric dimension is bounded by |Im |/2. If we
know that s ∈ L∞(μ), we can proceed as we just explained, building the family of
histograms ŝIm (X1) corresponding to our partitions and using Corollary 1 to get

Es

[

‖s − s̃(X)‖2
]

≤ C	 inf
m∈M

[

‖sIm − s‖2 + n−1‖s‖∞ (|Im | ∨�m ∨ log ‖s‖∞)
]

,

(4.2)
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which should be compared with (1.7). Apart from the unavoidable complexity term
�m due to model selection, we have only lost (up to the universal constant C) the
replacement of |Im | by |Im | ∨ log ‖s‖∞. Examples of families of partitions and cor-
responding weights satisfying (3.1) are given in Sect. 9 of [4].

In the general case of s ∈ L2(μ), we may apply Theorem 3 to the family of linear
models

{

Sm,m ∈ M}

derived from these partitions, getting an estimator s̃ with a risk
satisfying

Es

[

‖s − s̃(X)‖2
]

≤ C	 inf
z≥2

{

inf
m∈M

[

‖sIm − s‖2 + z(|Im | ∨�m ∨ log z)

n

]

+ Qs(z)

}

.

4.3 A comparison with Gaussian model selection

A benchmark for model selection in general is the particular (simpler) situation of
model selection for the so-called white noise framework in which we observe a
Gaussian process X = {Xz, z ∈ [0, 1]} with Xz = ∫ z

0 s(x) dx + σWz , where s is
an unknown element of L2([0, 1], dx), σ > 0 a known parameter and Wz a Wiener
process. For such a problem, an analogue of Theorem 1 has been proved in Birgé [4],
namely

Theorem 4 Let X be the Gaussian process given by

Xz =
∫ z

0
s(x) dx + n−1/2Wz, 0 ≤ z ≤ 1,

where s is an unknown element of L2([0, 1], dx) to be estimated and Wz a Wiener
process. Let

{

Sm,m ∈ M}

be a countable collection of models in L2(μ) with metric
dimensions bounded respectively by Dm ≥ 1/2. Let {�m,m ∈ M} be a family
of weights which satisfy (3.1). There exists an estimator s̃(X) such that, whatever
s ∈ L2([0, 1], dx),

Es

[

‖s − s̃(X)‖2
]

≤ C inf
m∈M

[

d2
2

(

s, Sm
)+ n−1 (Dm ∨�m

)

]

.

Comparing this bound with (3.5) shows that, when s ∈ L∞(μ), we get a similar
risk bound for estimating the density s from n i.i.d. random variables, apart from an
additional factor depending on ‖s‖∞. Similar analogies are valid with bounds obtained
for estimating densities with squared Hellinger loss or for estimating the intensity of
a Poisson process as shown in Birgé [4,6]. Therefore, all the many examples that
have been treated in these papers as well as those in Baraud and Birgé [1] could be
transferred to the case of density estimation with L2-loss with minor modifications due
to the appearence of ‖s‖∞ in the bounds. We leave all these translations as exercices
for the concerned reader.
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Model selection for density estimation with L2-loss 553

4.4 Adaptive estimation in Besov spaces

The Besov space Bαp,∞([0, 1])withα, p > 0 is defined in Devore and Lorentz [15] and
it is known that a necessary and sufficient condition for Bαp,∞([0, 1]) ⊂ L2([0, 1], dx)
is δ = α + 1/2 − 1/p > 0, which we shall assume in the sequel. The problem of
estimating densities that belong to some Besov space Bαp,∞([0, 1]) adaptively (i.e.
without knowing α and p) has been solved for a long time when α > 1/p which
is a necessary and sufficient condition for Bαp,∞([0, 1]) ⊂ L∞([0, 1], dx). See for
instance [14,18] (under the assumption that an upper bound for ‖s‖∞ is known) or
[8] (with an estimated value of ‖s‖∞). It can be treated in the usual way leading to
the minimax rate of convergence n−2α/(2α+1) for the quadratic risk when n goes to
infinity. The situation is quite different when α ≤ 1/p even when α and p are known.

4.4.1 Wavelet expansions

It is known from analysis that functions s ∈ L2 ([0, 1], dx) can be represented by their
expansion with respect to some orthonormal wavelet basis {ϕ j,k, j ≥ −1, k ∈ ( j)}
with |(−1)| ≤ K and 2 j ≤ |( j)| ≤ K 2 j for all j ≥ 0. Such a wavelet basis
satisfies
∥

∥

∥

∥

∥

∥

∑

k∈( j)

|ϕ j,k |
∥

∥

∥

∥

∥

∥∞
≤ K ′2 j/2 for j ≥ −1 and

∥

∥

∥

∥

∥

∥

q
∑

j=−1

∑

k∈( j)

ϕ2
j

∥

∥

∥

∥

∥

∥∞
≤ K ′′2q (4.3)

and we can write

s =
∞
∑

j=−1

∑

k∈( j)

β j,kϕ j,k with β j,k =
∫

ϕ j,k(x)s(x) dx . (4.4)

Moreover, for a convenient choice of the wavelet basis (depending on α), the fact that
s belongs to the Besov space Bαp,∞([0, 1]) with semi-norm |s|αp is equivalent to

sup
j≥0

2 j (α+1/2−1/p)

⎛

⎝

∑

k∈( j)

|β j,k |p

⎞

⎠

1/p

= |s|α,p,∞ < +∞, (4.5)

where |s|α,p,∞ < +∞ is equivalent to the Besov semi-norm |s|αp.
Moreover, it follows from Birgé and Massart [8,10], as summarized in [4, Propo-

sition 13], that, given the integer r , one can find a wavelet basis (depending on r )
and a universal family of linear models {Sm,m ∈ M = ∪J≥0MJ } with respective
dimensions Dm , and weights {�m,m ∈ M} satisfying (3.1), with the following prop-
erties. Each Sm is the linear span of {ϕ−1,k, k ∈ (−1)} ∪ {ϕ j,k, ( j, k) ∈ m} with
m ⊂ ∪ j≥0( j); Dm ∨�m ≤ c2J for m ∈ MJ and

inf
m∈MJ

inf
t∈Sm

‖s − t‖ ≤ C(α, p)2−Jα|s|α,p,∞ for s ∈ Bαp,∞([0, 1]), α < r. (4.6)
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4.4.2 The bounded case

Actually, only the assumption that s ∈ Bαp,∞([0, 1])∩L∞(μ), rather than α > 1/p, is

needed to get the optimal rate of convergence n−2α/(2α+1). Indeed, we may apply the
results of Sect. 4.2 to the family of models which satisfies (4.6) and derive an estimator
s̃ with a risk bounded by

Es

[

‖s − s̃(X)‖2
]

≤ C(α, p) inf
J≥0

[

2−2Jα (|s|α,p,∞
)2 + n−1‖s‖∞

(

2J ∨ log ‖s‖∞
)]

.

Choosing 2J of the order of n1/(2α+1) leads to the bound

Es

[

‖s − s̃(X)‖2
]

≤ C
(

α, p, |s|α,p,∞, ‖s‖∞
)

n−2α/(2α+1),

which is valid for all s ∈ Bαp,∞([0, 1])∩ L∞(μ), whatever α < r and p and although
α, p, |s|α,p,∞ and ‖s‖∞ are unknown.

4.4.3 Further upper bounds for the risk

When α ≤ 1/p, i.e. 0 < δ ≤ 1/2, s may be unbounded and the classical theory does
not apply any more. Results that do not involve ‖s‖∞ are available in Efromovich [20]
for Sobolev classes Wα

2 (R) = Bα2,2(R) and for Besov spaces Bαp,∞(R) with p > 2 in
Reynaud-Bouret et al. [29]. Nevertheless a general formula for the adaptive minimax
risk over balls in Bαp,∞([0, 1]) for p ≤ 2 and 1/p − 1/2 < α ≤ 1/p is presently
unknown. Our study will not, unfortunately, solve this problem but, at least, provide
some partial information. In this section we assume thatα ≤ 1/p and restrict ourselves
to the case p ≤ 2 so that δ ≤ α.

We consider the wavelet expansion of s which has been described in Sect. 4.4.1
and, to avoid unnecessary complications, we also assume that |s|α,p,∞ ≥ 1. In what
follows, the generic constant C (changing from line to line) depends on the choice of
the basis and δ. Since p ≤ 2, by (4.5),

⎛

⎝

∑

k∈( j)

β2
j,k

⎞

⎠

1/2

≤
⎛

⎝

∑

k∈( j)

|β j,k |p

⎞

⎠

1/p

≤ |s|α,p,∞2− j (α+1/2−1/p)

= |s|α,p,∞2− jδ,

hence, for J ∈ N,

∥

∥

∥

∥

∥

∥

∑

j>J

∑

k∈( j)

β j,kϕ j,k

∥

∥

∥

∥

∥

∥

2

=
∑

j>J

∑

k∈( j)

β2
j,k ≤ |s|2α,p,∞

∑

j>J

2−2 jδ

= |s|2α,p,∞2−2Jδ. (4.7)
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The simplest estimators of s are the projection estimators ŝq over the linear spaces S
′
q

where S
′
q is spanned by {ϕ j,k,−1 ≤ j ≤ q, k ∈ ( j)}

ŝq(X) =
q
∑

j=−1

∑

k∈( j)

̂β j,k(X)ϕ j,k with ̂β j,k(X) = n−1
n
∑

i=1

ϕ j,k(Xi ).

The risk of these estimators can be bounded using (1.11), (4.3) and (4.7) by

Es

[

∥

∥s − ŝq(X)
∥

∥

2
]

≤ d2
2

(

s, S
′
q

)

+ C2q/n ≤ 2−2qδ|s|2α,p,∞ + C2q/n.

A convenient choice of q, depending on δ (therefore nonadaptive), then leads to

Es

[

∥

∥s − ŝq(X)
∥

∥

2
]

≤ C |s|2α,p,∞n−2δ/(2δ+1).

In particular, when p = 2 we recover the usual minimax rate n−2α/(1+2α) for all values
of α but without adaptation.

One can actually choose q from the data using a penalized least squares estimator
and get a similar risk bound without knowing δ as shown by Theorem 7.5 of [27]
which proves adaptation to the minimax risk when p = 2. It also leads to an adaptive
risk bound for the case α ≤ 1/p, p < 2 (hence δ < α), without the restriction
s ∈ L∞([0, 1]) but with a rate which is then slower than n−2α/(1+2α).

Let us now see what our method can do. Since s is a density, it follows from (4.4)
and (4.3) that |β−1,k | ≤ ‖ϕ−1,k‖∞ ≤ K ′/

√
2, hence

∥

∥

∥

∥

∥

∥

∑

k∈(−1)

β−1,kϕ−1,k

∥

∥

∥

∥

∥

∥∞
≤
(

K ′/
√

2
)

∥

∥

∥

∥

∥

∥

∑

k∈(−1)

|ϕ−1,k |
∥

∥

∥

∥

∥

∥∞
≤ K ′2/2.

Moreover, for j ≥ 0, (4.5) implies that sup k∈( j) |β j,k | ≤ 2− jδ|s|α,p,∞. Therefore,
by (4.3),

∥

∥

∥

∥

∥

∥

∑

k∈( j)

β j,kϕ j,k

∥

∥

∥

∥

∥

∥∞
≤ K ′2− j (α−1/p)|s|α,p,∞

and, for J ≥ 0,

∥

∥

∥

∥

∥

∥

J
∑

j=0

∑

k∈( j)

β j,kϕ j,k

∥

∥

∥

∥

∥

∥∞
≤
⎧

⎨

⎩

C |s|α,p,∞ if α > 1/p;
C(J + 1)|s|α,p,∞ if α = 1/p;
C2J (1/p−α)|s|α,p,∞ if α < 1/p.
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Finally,

∥

∥

∥

∥

∥

∥

J
∑

j=−1

∑

k∈( j)

β j,kϕ j,k

∥

∥

∥

∥

∥

∥∞
≤ C0 L J |s|α,p,∞ with L J =

⎧

⎨

⎩

1 if α > 1/p;
(J + 1) if α = 1/p;
2J (1/p−α) if α < 1/p.

Observing that if s = u + v with ‖u‖∞ ≤ z, then Qs(z) ≤ ‖v‖2, we can conclude
from (4.7) that

Qs
(

C0 L J |s|α,p,∞
) ≤ 2−2Jδ|s|2α,p,∞.

Let us now turn back to the family of linear models described in Sect. 4.4.1 that satisfy
(4.6). Theorem 3 asserts the existence of an estimator s̃(X) based on this family of
models and satisfying

Es

[

‖s − s̃(X)‖2
]

≤ C inf
z≥2

inf
m∈M

[

d2
2

(

s, Sm
)+ z

(

Dm ∨�m ∨ log z
)

n
+ Qs(z)

]

.

Given the integers J, J ′, we may set z = z J ′ = C0 L J ′ |s|α,p,∞ and restrict the
minimization to m ∈ MJ which leads by (4.6) to

Es

[

‖s − s̃(X)‖2
]

≤ C
[

|s|2α,p,∞
(

2−2Jα + 2−2J ′δ
)

+ n−1L J ′ |s|α,p,∞
(

2J ∨ log z J ′
)]

.

Since L J ′
(

2J ∨ log z J ′
)

is a nondecreasing function of both J and J ′, this last bound
is optimized when Jα and J ′δ are approximately equal which leads to choosing the
integer J ′ so that Jα/δ ≤ J ′ < Jα/δ + 1, hence 2−2J ′δ ≤ 2−2Jα . Assuming,
moreover, that 2J ≥ log |s|α,p,∞, which implies that 2J ≥ C ′ log z J ′ , we get

Es

[

‖s − s̃(X)‖2
]

≤ C |s|2α,p,∞
[

2−2Jα + 2J (n|s|α,p,∞
)−1

L J ′
]

.

We finally fix J so that 2J ≥ G > 2J−1, where G is defined below. This choice
ensures that G ≥ log |s|α,p,∞ for n large enough (depending on |s|α,p,∞), which we
assume here.

– If α > 1/p we set G = (

n|s|α,p,∞
)1/(2α+1) which leads to a risk bound of the

form

Cn−2α/(2α+1) (|s|α,p,∞
)(2α+2)/(2α+1)

.

– If α = 1/p, L ′
J < Jα/δ + 2 and we take G = (

n|s|α,p,∞/ log n
)1/(2α+1) which

leads to the risk bound

C(n/ log n)−2α/(2α+1) (|s|α,p,∞
)(2α+2)/(2α+1)

.
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– Finally, for α < 1/p, L J ′ <
√

2 2(Jα/δ)(1/p−α) and we set G =
(

n|s|α,p,∞
)1/[α+1+α/(2δ)] which leads to the bound

Cn−2α/[α+1+α/(2δ)] (|s|α,p,∞
)(2+(α/δ)/[α+1+α/(2δ)]

.

4.4.4 Some lower bounds

Lower bounds of the form n−2α/(1+2α) for the minimax risk over Besov balls are
well-known (deriving from lower bounds for Hölder spaces) and they are sharp for
α > 1/p, as shown in Donoho et al. [18]. To derive new lower bounds for the case
α < 1/p we shall use the following proposition which results easily from classical
arguments of Le Cam [23]—see also [19] or [35].

Proposition 5 Let X1, . . . , Xn be i.i.d. observations with an unknown density belong-
ing to a subset S of L1(μ) and d a distance on S. Let t, u ∈ S such that

h(t, u) = h(Pt , Pu) = an−1/2, a < 2−1/2.

Whatever the estimator ŝ with values in S and p ≥ 1,

max
{

Et
[

d p (̂s, t)
]

,Eu
[

d p (̂s, u)
]} ≥ 2−p

(

1 − a
√

2
)

d p(t, u). (4.8)

Let us consider some probability density f ∈ Bαp,∞([0, 1]) with compact support
included in (0, 1) and Besov semi-norm | f |αp. We set g(x) = a f (2anx) for some
a > (2n)−1 to be fixed later. Then g(x) = 0 for x �∈ (0, (2an)−1

)

,

‖g‖q = a(2an)−1/q‖ f ‖q and |g|αp = a(2an)α−1/p| f |αp.

Let us now set t = g + [

1 − (2n)−1
]

1[0,1], so that t is a density belonging to
Bαp,∞([0, 1]) with Besov semi-norm

|t |αp = |g|αp = K a1+α−1/pnα−1/p with K = 2α−1/p| f |αp.

For a given value of the constant K ′ > 0, the choice a = [

K ′n1/p−α]1/(1+α−1/p)
>

(2n)−1 (at least for n large) leads to |t |αp = K K ′ so that K ′ determines |t |αp. We also
consider the density u(x) = t (1 − x) which has the same Besov semi-norm. Then

h2(t, u) =
∫ (2an)−1

0

(
√

g + [

1 − (2n)−1
]−

√

1 − (2n)−1

)2

<

∫ (2an)−1

0
g = (2n)−1

and it follows from Proposition 5 that any estimator ŝ based on n i.i.d. observations
satisfies

max
{

Et

[

‖t − ŝ‖2
]

,Eu

[

‖u − ŝ‖2
]}

≥ C‖t − u‖2 = 2C‖g‖2 = Can−1‖ f ‖2.
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Since an−1 = K ′1/(δ+1/2)n−2δ/(δ+1/2), we finally get

max
{

Et

[

‖t − ŝ‖2
]

,Eu

[

‖u − ŝ‖2
]}

≥ C ′ (|t |αp
)2/(2δ+1)

n−4δ/(2δ+1),

where C ′ depends on K ′, ‖ f ‖, | f |αp and δ.

4.4.5 Conclusion

In the case α > 1/p, the estimator that we built in Sect. 4.4.3 has the usual rate of
convergence with respect to n, namely n−2α/(2α+1), which is known to be optimal, and
we can extend the result to the borderline case α = 1/p with only a logarithmic loss.
We do not know whether this additional logarithmic factor is necessary or not. When
α ≤ 1/p only partial results are known which do not involve ‖s‖∞. Efromovich [20]
proves the same adaptive estimation rate n−2α/(2α+1) for the Sobolev spaces Wα

2 (R) �

Bα2,∞(R) (and even gets the exact asymptotic constants) and Reynaud-Bouret et al.
[29] for Bαp,∞(R) with p > 2. As far as we are aware, nothing is known when p < 2

and for Bα2,∞(R) \ Wα
2 (R). Our lower bound n−4δ/(2δ+1) is slower than n−2α/(1+2α)

when 0 < δ < α[2(α+ 1)]−1 or, equivalently, when α+ [2(α+ 1)]−1 < 1/p (which
is only possible for p < 2). This means that the minimax rate n−2α/(1+2α) cannot hold
in this range (even without adaptation) but this lower bound tells us nothing when
1/2 ≤ 1/p ≤ α + [2(α + 1)]−1, in particular when p = 2.

In the range p < 2 and α < 1/p, our upper bound n−2α/[α+1+α/(2δ)] can be
compared with the risk bound for the penalized least squares estimators based on the
nested models S

′
q , which is, as we have seen, of order n−2δ/(2δ+1). Our rate is better

when α > 2δ/(2δ + 1), which is always true for α ≥ 1/2 since δ < 1/2. When
α < 1/2 this requires that p < 2(1 − α)/

(

1 − 2α2
)

, which is true independently of
α when p < 1 + 2−1/2. In any case, these upper bounds never match our lower bound
n−4δ/(2δ+1) and we have no idea about the true minimax rate (even without adaptation)
although we suspect that the rate we have found is suboptimal in the range α < 1/p.

4.5 Using a nonlinear model

Let us now come back to the parametric problem that we considered in Sect. 1.3.
We can use the whole set S = {sθ , 0 < θ ≤ 1/3} as our model which, in this case,
contains the true density s so that there is no approximation term d2

(

sθ , S
)

. It follows
from Proposition 3 that the dimension of S is bounded by 2 so that Theorem 3 applies
leading to the following bound derived from (3.6):

Eθ

[

‖sθ − s̃(X)‖2
]

≤ C inf
z≥2

{

n−1z log z + Qsθ (z)
}

for all θ ∈ (0, 1/3]. (4.9)

For 2 ≤ z < θ−2, Qsθ (z) = θ3
(

θ−2 − z
)2

and Qsθ (z) = 0 for z ≥ θ−2. Optimizing
the right-hand side of (4.9) with respect to z leads to the risk bound
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Eθ

[

‖sθ − s̃(X)‖2
]

≤ Cθ−1
[

(nθ)−1 log
(

θ−1
)

∧ 1
]

, (4.10)

which goes to infinity with θ−1.
Let us now see to what extent this result is sharp. It follows from Lemma 2 that if

λ = θ + (12n)−1, h2(θ; λ) < (8n)−1, hence h(θ, λ) < 2−3/2n−1/2. Also

d2
2 (θ; λ) > θ−1 − (

θ + (12n)−1)−1 = [θ(nθ + (1/12))]−1 ≥ (2θ)−1 [(nθ)−1 ∧ 12
]

.

It then follows from (4.8) that, whatever the estimator ŝ, we get a lower bound for the
risk of the form

max
{

Eθ

[

‖sθ−ŝ(X)‖2
]

,Eλ

[

‖sλ−ŝ(X)‖2
]}

≥ (8θ)−1
[

(nθ)−1 ∧ 12
]

, (4.11)

which shows that (4.10) is optimal up to the logarithmic factor.

5 The construction of T-estimators for L2-loss

It will actually require several steps since we cannot simply apply the results of Birgé
[4] straightforwardly. We recall that the construction of T-estimators of parameters
belonging to the metric space (M, d) relies on the existence of suitable tests between
balls in this space. It is required that the errors of these tests satisfy some specific
properties. Unfortunately, in the metric space (L2, d2) tests with such properties cannot
exist for arbitrary balls but can be built under the assumption that the centers of the
two balls are bounded by some number �, the performance of these tests depending
on �. With this result at hand, we can build estimators based on families of special

models Sm , following [4]. These models need to be discrete subsets of L
�

∞ (for some
given �) with bounded metric dimension. Since there is no reason that our initial
models Sm be of this type (think of linear models) we shall have to build such special
models Sm satisfying these conditions from ordinary ones. This construction will lead

to an estimator ŝ � belonging to L
�

∞, the performance of which is given by Theorem 2.
The last step involves the choice of � among the sequence (2i+1)i≥1 as previously
explained in Sect. 3.2.

5.1 Tests between L2-balls

To derive such tests, we need a few specific technical tools to deal with the L2-distance.

5.1.1 Randomizing our sample

In the sequel we shall make use of randomized tests based on a randomization trick
due to Yang and Barron [34, page 106] which has the effect of replacing all densities
involved in our problem by new ones which are uniformly bounded away from zero.
For this, we choose some number λ ∈ (0, 1) and consider the mapping τ from L2 to
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560 L. Birgé

L2 given by τ(u) = λu +1−λ. Note that τ is one-to-one and isometric, up to a factor

λ, i.e. d2(τ (u), τ (v)) = λd2(u, v). If u ∈ L
�

∞, then τ(u) ∈ L
�′
∞ with �′ = λ�+1−λ.

Let s′ = τ(s). Given our initial i.i.d. sample X , we want to build new i.i.d. vari-
ables X ′

1, . . . , X ′
n with density s′. For this, we consider two independent n-samples,

Z1, . . . , Zn and ε1, . . . , εn with respective distributions μ and Bernoulli with para-
meter λ. Both samples are independent of X . We then set X ′

i = εi Xi + (1 − εi )Zi for
1 ≤ i ≤ n. It follows that X ′

i has density s′ as required. We shall still denote by Ps

the probability on � that gives X ′ = (X ′
1, . . . , X ′

n) the distribution P⊗n
s′ . Given two

distinct points t, u ∈ L2 we define a test function ψ(X ′) between t and u as a mea-
surable function with values in {t, u}, ψ(X ′) = t meaning deciding t and ψ(X ′) = u
meaning deciding u.

Once we have used the randomization trick of Yang and Barron, for instance with
λ = 1/2, we deal with an i.i.d. sample X ′ with a density s′ which is bounded from
below by 1/2 and we may therefore work within the set of densities that satisfy this
property.

5.1.2 Preliminary results about tests between some convex sets

The main tool for the design of tests between L2-balls of densities is the following
proposition which derives from the results of Birgé [3] (keeping here the notations of
that paper) and in particular from Corollary 3.2, specialized to the case of I = {t} and
c = 0.

Proposition 6 Let M be some linear space of finite measures on some measurable
space (�,A) with a topology of a locally convex separated linear space. Let P,Q be
two disjoint sets of probabilities in M and F a set of positive measurable functions
on � with the following properties (with respect to the given topology on M):

(i) P and Q are convex and compact;
(ii) for any f ∈ F and 0 < z < 1 the function P �→ ∫

f z d P is well-defined and
upper semi-continuous on P ∪ Q;

(iii) for any P ∈ P, Q ∈ Q, t ∈ (0, 1) and ε > 0, there exists an f ∈ F such that

(1 − t)
∫

f t d P + t
∫

f 1−t d Q <

∫

(d P)1−t (d Q)t + ε;

(iv) all probabilities in P (respectively in Q) are mutually absolutely continuous.

Then one can find P ∈ P and Q ∈ Q such that

sup
P∈P

∫

(

Q

P

)t

d P = sup
Q∈Q

∫

(

P

Q

)1−t

d Q = sup
P∈P,Q∈Q

∫

(d P)1−t (d Q)t

=
∫

(

d P
)1−t (

d Q
)t
.

In Birgé [3], we assumed that M was the set of all finite measures on (�,A) but the
proof actually only uses the fact that P and Q are subsets of M. Recalling that the
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Hellinger affinity between two densities u and v is defined by ρ(u, v) = ∫ √
uv dμ =

1 − h2(u, v), we get the following corollary.

Corollary 3 Let μ be a probability measure on (X ,W) and, for 1 ≤ i ≤ n, let
(Pi ,Qi ) be a pair of disjoint convex and weakly compact subsets of L2(μ) such that

s > 0 μ-a.s. and
∫

s dμ = 1 for all s ∈
n
⋃

i=1

(Pi ∪ Qi ). (5.1)

For each i , one can find pi ∈ Pi and qi ∈ Qi such that

sup
u∈Pi

∫

√

qi/pi u dμ = sup
v∈Qi

∫

√

pi/qi v dμ = sup
u∈Pi ,v∈Qi

ρ(u, v) = ρ(pi , qi ).

Let X = (X1, . . . , Xn) be a random vector on X n with distribution
⊗n

i=1(si ·μ) with
si ∈ Pi for 1 ≤ i ≤ n and let x ∈ R. Then

P

[

n
∑

i=1

log(qi/pi )(Xi ) ≥ 2x

]

≤ e−x
n
∏

i=1

ρ(pi , qi ) ≤ exp

[

−x −
n
∑

i=1

h2(pi , qi )

]

.

If X has distribution
⊗n

i=1(ui · μ) with ui ∈ Qi for 1 ≤ i ≤ n, then

P

[

n
∑

i=1

log(qi/pi )(Xi ) ≤ 2x

]

≤ ex
n
∏

i=1

ρ(pi , qi ) ≤ exp

[

x −
n
∑

i=1

h2(pi , qi )

]

.

Proof We apply Proposition 6 with t = 1/2, (X ,W) = (�,A) and M the set of
measures of the form u ·μ, u ∈ L2(μ) endowed with the weak L2-topology. In view
of (5.1), Pi and Qi can be identified with two sets of probabilities and we can take
for F the set of all positive functions such that log f is bounded. As a consequence,
all four assumptions of Proposition 6 are satisfied. In order to get (iii) we simply take
for f a suitably truncated version of s/u when P = s · μ and Q = u · μ. As to the
probability bounds they derive from classical exponential inequalities, as for Lemma 7
of Birgé [4]. ��

5.1.3 Abstract tests between L2-balls

The purpose of this section is to prove the following result, which is of independent
interest, about the performance of some tests between L2-balls.

Theorem 5 Let t, u ∈ L
�

∞ for some � ∈ (1,+∞). For any x ∈ R, there exists a test
ψt,u,x between t and u, based on the randomized sample X ′ defined in Sect. 5.1.1 with
λ = √

64/65, which satisfies

sup
{

s∈L2 | d2(s,t)≤d2(t,u)/4
}

Ps[ψt,u,x (X ′) = u] ≤ exp

[

−n
(‖t − u‖2 + x

)

65�

]

(5.2)
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and

sup
{

s∈L2 | d2(s,u)≤d2(t,u)/4
}

Ps[ψt,u,x (X ′) = t] ≤ exp

[

−n
(‖t − u‖2 − x

)

65�

]

. (5.3)

Proof It requires several steps. To begin with, we use the randomization trick of Yang
and Barron described in Sect. 5.1.1, replacing our original sample X by the randomized
sample X ′ = (X ′

1, . . . , X ′
n) for some convenient value of λ to be chosen later. Each X ′

i
has density s′ ≥ 1 − λ when Xi has density s. Then we build a test between t ′ = τ(t)
and u′ = τ(u) based on X ′ and Corollary 3. To do this, we set � = ‖t − u‖,

P = τ
(

Bd2(t,�/4) ∩ L2

)

and Q = τ
(

Bd2(u,�/4) ∩ L2

)

.

Then P is the subset of the ball Bd2(t
′, λ�/4) of those densities bounded from below

by 1−λ. Densities v with such properties are characterized by the fact that 〈v,1X 〉 =
1 (1X ∈ L2(μ) because μ is a probability) and 〈v,1A〉 ≥ (1 − λ)μ(A) for any
measurable set A, a fact which is preserved under weak convergence and convex
combinations. This shows that P is convex and weakly closed. Since Bd2(t

′, λ�/4)
is weakly compact, it is also the case for P and the same argument shows that Q is
also convex and weakly compact. Moreover d2(P,Q) ≥ λ�/2. It then follows from
Corollary 3 that one can find t̄ ∈ P and ū ∈ Q such that

Ps

[

n
∑

i=1

log
(

ū(X ′
i )/t̄(X

′
i )
) ≥ 2y

]

≤ exp
[

−nh2 (t̄, ū
)− y

]

if s ∈ P, (5.4)

while

Ps

[

n
∑

i=1

log
(

ū(X ′
i )/t̄(X

′
i )
) ≤ 2y

]

≤ exp
[

−nh2 (t̄, ū
)+ y

]

if s ∈ Q. (5.5)

Fixing y = nx/(65�), we finally define ψt,u,x (X ′) by setting ψt,u,x (X ′) = u if and
only if

∑n
i=1 log

(

ū(X ′
i )/t̄(X

′
i )
) ≥ 2y. Since s′ ∈ P is equivalent to s ∈ Bd2(t,�/4)

or d2(s, t) ≤ �/4 and similarily s ∈ Q is equivalent to d2(s, u) ≤ �/4, to derive
(5.2) and (5.3) from (5.4) and (5.5), we just have to show that h2

(

t̄, ū
) ≥ (65�)−1�2.

We start from the fact, to be proved below, that

‖t̄ ∨ ū‖∞ ≤ 2(λ� + 1 − λ). (5.6)

It implies that

h2 (t̄, ū
) = 1

2

∫

(√
t̄ − √

ū
)2

dμ = 1

2

∫
(

t̄ − ū
)2

(√
t̄ + √

ū
)2 dμ ≥ ‖t̄ − ū‖2

16(λ� + 1 − λ)

≥ (λ�)2

64(λ� + 1 − λ)
= �2

65�[λ+ �−1(1 − λ)] ≥ �2

65�
,
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since� > 1. As to (5.6), it is a consequence of the next lemma to be proved in Sect. 6.2.
We apply this lemma to the pair t ′, u′ which satisfies ‖t ′ ∨ u′‖∞ ≤ λ� + 1 − λ. If
(5.6) were wrong, we could find t̄ ′ ∈ P and ū′ ∈ Q with h

(

t̄ ′, ū′) < h
(

t̄, ū
)

, which,
by Corollary 3, is impossible. ��
Lemma 1 Let us consider four elements t, u, v1, v2 in L2 with t �= u, v1 �= v2 and
‖t ∨ u‖∞ = B. If ‖v1 ∨ v2‖∞ > 2B, there exists v′

1, v
′
2 ∈ L2 with d2(v

′
1, t) ≤

d2(v1, t), d2(v
′
2, u) ≤ d2(v2, u) and h(v′

1, v
′
2) < h(v1, v2).

5.2 The performance of T-estimators for discrete models

We are now in a position to prove an analogue of Corollary 6 of [4].

Theorem 6 Assume that we observe n i.i.d. random variables with unknown density
s ∈ (L2, d2) and that we have at disposal a countable family of discrete subsets

{Sm}m∈M of L
�

∞ for some given � > 1. Let each set Sm satisfy

|Sm ∩ Bd2(t, xηm)| ≤ exp
[

Dm x2
]

for all x ≥ 2 and t ∈ L2, (5.7)

with ηm > 0, Dm ≥ 1/2,

η2
m ≥ 273�Dm

n
for all m ∈ M and

∑

m∈M
exp

[

− nη2
m

1365�

]

= 	′ < +∞.

(5.8)

Then one can build a T-estimator ŝ such that, for all s ∈ L2,

Es
[

dq
2 (s, ŝ )

] ≤ Cq(	
′ + 1) inf

m∈M
{d2(s, Sm) ∨ ηm}q , for all q ≥ 1. (5.9)

Proof Since (5.9) is merely a version of (7.6) of [4] with d = d2, we just have to
show that Theorem 5 of this paper applies to our situation. It relies on Assumptions 1
and 3 of the paper. Assumption 3 follows from (5.7). As to Assumption 1 (with
a = n/(65�), B = B ′ = 1 and δ = 4d2, hence κ = 4), it is a consequence of our
Theorem 5. The conditions (7.2) and (7.4) of [4] on ηm and Dm follow from (5.8). ��

In the case of a single D-dimensional model S ⊂ L
�

∞ we get the following corollary:

Corollary 4 Assume that we observe n i.i.d. random variables with unknown distrib-

ution Ps, s ∈ (L2, d2) and that we have at disposal a D-dimensional model S ⊂ L
�

∞
for some given � > 1. One can build a T-estimator ŝ such that, for all s ∈ L2,

Es

[

‖s − ŝ‖2
]

≤ C

[

inf
t∈S

d2
2 (s, t)+ n−1 D�

]

.
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Proof By Definition 1 and the remark following it, for each η0 > 0, one can find an

η0-net S0 ⊂ S for S, hence S0 ⊂ L
�

∞, satisfying (5.7) with D0 = 25D/4. Moreover
d(s, S0) ≤ η0 + d

(

s, S
)

. Choosing η2
0 = 273 × 25�D/4, we may apply Theorem 6.

The result then follows from (5.9) with q = 2. ��
Theorem 6 applies in particular to the special situation of each model Sm being reduced
to a single point {tm} so that we can take Dm = 1/2 for each m. We then get the
following useful corollary.

Corollary 5 Assume that we observe n i.i.d. random variables with unknown distribu-
tion Ps, s ∈ (L2, d2) and that we have at disposal a countable subset S = {tm}m∈M of

L
�

∞ for some given � > 1. Let {�m}m∈M be a family of weights such that�m ≥ 1/10
for all m ∈ M satisfying (3.1). We can build a T-estimator ŝ such that, for all s ∈ L2,

Es
[

dq
2 (s, ŝ )

] ≤ Cq	 inf
m∈M

{

d2(s, tm) ∨√��m/n
}q

for all q ≥ 1.

Proof Let us set here Sm = {tm}, Dm = 1/2 and ηm = 37
√
��m/n for m ∈ M.

One can then check that (5.7) and (5.8) are satified so that (5.9) holds. Our risk bound
follows. ��

5.3 Model selection with uniformly bounded models

At this stage, there is a major difficulty to apply Theorem 6 or Corollary 5 which is

to build suitable subsets Sm (or S) of L
�

∞ from classical approximating sets (models),
finite dimensional linear spaces for instance, that belong to L2(μ). We shall now
address this problem.

5.3.1 The projection operator onto L
�

∞

Our first task is to define a projection operator π� from L2(μ) onto L
�

∞ (� > 1) and
to study its properties. In the sequel, we systematically identify a real number a with
the function a1X for the sake of simplicity. The following proposition is the corrected
version, by Yannick Baraud, of the initially mistaken result of the author.

Proposition 7 For t ∈ L2(μ) and 1 < � < +∞ we set π�(t) = [(t + γ ) ∨ 0] ∧ �
where γ is defined by

∫ [(t + γ )∨ 0] ∧� dμ = 1. Then π� is the projection operator

from L2(μ) onto the convex set L
�

∞. Moreover, if s ∈ L2 and � > 2, then

‖s − π�(s)‖2 ≤ �2 − � − 1

�(� − 2)
Qs(�),

with Qs(z) given by (2.3).

Proof First note that the existence of γ follows from the continuity and monotonicity

of the mapping z �→ ∫ [(t + z) ∨ 0] ∧ � dμ and that π�(t) ∈ L
�

∞. Since L
�

∞ is a
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closed convex subset of a Hilbert space, the projection operator π onto L
�

∞ exists and
is characterized by the fact that

〈t − π(t), u − π(t)〉 ≤ 0 for all u ∈ L
�

∞. (5.10)

Since
∫ [u −π(t)] dμ = 0 for u ∈ L

�

∞, (5.10) implies that 〈t +z−π(t), u −π(t)〉 ≤ 0
for z ∈ R, hence π(t) = π(t + z). Since π�(t) = π�(t + z) as well, we may assume
that

∫ [t ∨ 0] ∧ � dμ = 1, hence π�(t) = [t ∨ 0] ∧ � and π�(t) = t on the set

0 ≤ t ≤ �. Then, for u ∈ L
�

∞,

〈t − π�(t), u − π�(t)〉 =
∫

t<0
tu dμ+

∫

t>�
(t − �)(u − �) dμ ≤ 0,

since 0 ≤ u ≤ �. This concludes the proof that π = π� .
Let us now bound ‖s − π�(s)‖ when s ∈ L2, setting s = s ∧ � + v with

v = (s − �)1s>� . Since there is nothing to prove when ‖s‖∞ ≤ �, we assume
that

∫

v dμ > 0. By Cauchy-Schwarz inequality,

(∫

v dμ

)2

≤ μ({s > �})
∫

v2 dμ ≤ �−1‖v‖2. (5.11)

Moreover, since
∫

s ∧ � dμ < 1, π�(s) = (s + γ ) ∧ � with 0 < γ ≤ 1. Hence

1 =
∫

[(s + γ ) ∧ �] dμ ≥
∫

(s ∧ �) dμ+ γμ({s ≤ � − γ })

≥ 1 −
∫

v dμ+ γ

(

1 − 1

� − γ

)

> 1 −
∫

v dμ+ γ
� − 2

� − 1

and γ < (� − 1)/(� − 2)
∫

v dμ. Now, since 0 ≤ π�(s)− s ≤ γ when s ≤ �,

‖s − π�(s)‖2 =
∫

s≤�
[π�(s)− s]2 dμ+ ‖v‖2 ≤ γ

∫

s≤�
[π�(s)− s] dμ+ ‖v‖2

<
� − 1

� − 2

(∫

v dμ

)∫

s>�
[s − π�(s)] dμ+ ‖v‖2

≤ � − 1

� − 2

(∫

v dμ

)2

+ ‖v‖2 ≤
(

1 + � − 1

�(� − 2)

)

‖v‖2,

where we used (5.11). This concludes our proof. ��

5.3.2 Selection with uniformly bounded models

Typical models S for density estimation in L2(μ) are finite-dimensional linear spaces

which are not subsets of L
�

∞ but merely spaces of functions with nice approximation
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properties. To apply Theorem 6 we have to replace them by discrete subsets of L
�

∞
that satisfy (5.7). Unfortunately, they cannot simply be derived by a discretization
of S followed by a projection π� or a discretization of π�

(

S
)

. A more complicated
construction is required to preserve both the metric and approximation properties of
S. It is provided by the following preliminary result.

Proposition 8 Let S be a subset of L2(μ) with metric dimension bounded by D.

For � > 2 and η > 0, one can find a discrete subset S′ of L
�

∞ with the following
properties:

|S′ ∩ Bd2(t, xη)| ≤ exp
[

9Dx2
]

for all x ≥ 2 and t ∈ L2(μ); (5.12)

for any s ∈ L2, one can find some s′ ∈ S′ such that

‖s − s′‖ ≤ 3.1

[

η + inf
t∈S

‖s − t‖
]

+ 4.1

(

�2 − � − 1

�(� − 2)
Qs(�)

)1/2

. (5.13)

Proof According to Definition 1, we choose some η-net Sη for S such that (1.12) holds

for all t ∈ L2(μ). Since, by Proposition 7, the operator π� from L2(μ) to L
�

∞ satisfies

‖u − π�(t)‖ ≤ ‖u − t‖ for all u ∈ L
�

∞, we may apply Proposition 12 of [4] with

M ′ = L2(μ), d = d2, M0 = L
�

∞, T = Sη, π = π� and λ = 1. It shows that one
can find a subset S′ of π�(Sη) such that (5.12) holds and d2(u, S′) ≤ 3.1d2(u, Sη) for

all u ∈ L
�

∞. If s is an arbitrary element of L2, then

d2
(

π�(s), S′) ≤ 3.1d2
(

π�(s), Sη
) ≤ 3.1

[

d2 (π�(s), s)+ d2
(

s, S
)+ η

]

,

hence

d2
(

s, S′) ≤ 3.1
[

d2
(

s, S
)+ η

]+ 4.1d2 (π�(s), s) . (5.14)

The conclusion follows from Proposition 7. ��

We are now in a position to derive our main result about bounded model selection.
We start with a countable collection {Sm,m ∈ M} of models in L2(μ) with metric
dimensions bounded respectively by Dm ≥ 1/2 and a family of weights�m satisfying
(3.1). We fix some � ≥ 3 and, for each m ∈ M, we set

ηm =
[(

50
√

Dm

)

∨
(

37
√

�m

)

]

√

�/n.

By Proposition 8 (with η = ηm), each Sm gives rise to a subset S�m which satisfies
(5.7) with Dm = 9Dm . It follows from our choice of ηm that (5.8) is also satisfied so

123



Model selection for density estimation with L2-loss 567

that we may apply Theorem 6 to the family of sets
{

S�m,m ∈ M}

. This results in a
T-estimator ŝ � such that, for all s ∈ L2,

Es
[

dq
2

(

s, ŝ �
)] ≤ Cq	 inf

m∈M
{

d2
(

s, S�m
) ∨ ηm

}q
for q ≥ 1.

We also derive from Proposition 8 that

d2
(

s, S�m
) ≤ 3.1

[

ηm + inf
t∈Sm

‖s − t‖
]

+ 4.1
√

(5/3)Qs(�).

Putting the bounds together and rearranging the terms leads to Theorem 2.

5.4 An additional selection theorem

In order to derive Theorem 3 we need an additional selection step in order to choose a
proper estimator among the sequence of estimators (̂s 2i

)i≥1. We start with a general
selection result, to be proved in Sect. 6.3, that we state for an arbitrary statistical
framework since it may apply to other situations than density estimation from an i.i.d.
sample. We observe some random object X with distribution Ps on X where s belongs
to a metric space M (carrying a distance d) which indexes a family P = {Pt , t ∈ M}
of probabilities on X .

Theorem 7 Let (tp)p≥1 be a sequence in M such that the following assumption holds:
for all pairs (n, p) with 1 ≤ n < p and all x ∈ R, one can find a test ψtn ,tp,x based
on the observation X and satisfying

sup
{s∈M | d(s,tn)≤d(tn ,tp)/4}

Ps[ψtn ,tp,x (X) = tp] ≤ B exp
[

−a2−pd2(tn, tp)− x
]

(5.15)

and

sup
{s∈M | d(s,tp)≤d(tn ,tp)/4}

Ps[ψtn ,tp,x (X) = tn] ≤ B exp
[

−a2−pd2(tn, tp)+ x
]

(5.16)

with positive constants a and B independent of n, p and x. For each A ≥ 1, one can
design an estimator ŝA with values in {tp, p ≥ 1} such that, for all s ∈ M,

Es
[

dq ( ŝA, s)
] ≤ BC(A, q) inf

p≥1

[

d(s, tp) ∨
√

a−1 p2p

]q

for 1 ≤ q < 2A/ log 2.

(5.17)

This general result applies to our specific framework of density estimation based on
an observation X with distribution Ps, s ∈ L2, provided that the sequence (tp)p≥1

be suitably chosen. We shall simply assume here that tp ∈ L2 with ‖tp‖∞ ≤ 2p+1
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for each p ≥ 1. This implies that, for 1 ≤ i < j, ti and t j belong to L
2 j+1

∞ so that
Theorem 5 applies with X replaced by the randomized sample X ′ and the assumption
of Theorem 7 is therefore satisfied with d = d2, B = 1 and a = n/65, leading to
Proposition 4.

6 Proofs

6.1 Proof of Proposition 3

For simplicity, we shall write h(θ, λ) for h(sθ , sλ) and analogously d2(θ, λ) for
d2(sθ , sλ) and start with a preliminary lemma.

Lemma 2 For the parametric problem described in Proposition 3, the following holds
for all θ and λ in (0, 1/3]:

h2(θ, λ) = C(θ, λ)|θ − λ| with 2/9 < C(θ, λ) < 3/2 (6.1)

and

d2
2 (θ, λ) = C(θ, λ)

∣

∣

∣θ
−1 − λ−1

∣

∣

∣ with 1 < C(θ, λ) < 3. (6.2)

Proof Let us first evaluate h2(θ, λ) for 0<θ <λ≤1/3. Setting βθ =(θ2+θ+1
)−1 ∈

[9/13, 1), we get

2h2(θ, λ) =
∫ 1

0

(
√

sθ (x)−√

sλ(x)
)2

dx

= θ3
(

θ−1 − λ−1
)2 +

(

λ3 − θ3
) (

λ−1 −√

βθ

)2

+
(

1 − λ3
) (
√

βθ −√

βλ

)2

= (λ− θ)
θ

λ

(

1 − θ

λ

)

+ (λ− θ)

[

1 + θ

λ
+
(

θ

λ

)2
]

(

1 − λ
√

βθ

)2

+
(

1 − λ3
) (
√

βθ −√

βλ

)2
.

Note that the monotonicity of θ �→ βθ implies that

4/9 <
(

1 − λ
√

βθ

)2
< 1,

√

βθ +√

βλ > 2
√

β1/3 = 6/
√

13

and

0 < βθ − βλ = (λ− θ)(λ+ θ + 1)

(θ2 + θ + 1)(λ2 + λ+ 1)
< λ− θ. (6.3)
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It follows that

0 <
(
√

βθ −√

βλ

)2 = (βθ − βλ)
2

(√
βθ + √

βλ
)2 <

13

36
(λ− θ)2 = 13λ

36
(λ− θ)

(

1 − θ

λ

)

and

0<
(

1 − λ3
)(
√

βθ −√

βλ

)2
<

13λ
(

1 − λ3
)

36
(λ− θ)

(

1 − θ

λ

)

<
2(λ− θ)

17

(

1 − θ

λ

)

.

We can therefore write

G = 2(λ− θ)−1h2(θ, λ) = z(1 − z)+ c1(θ, λ)
(

1 + z + z2
)

+ c2(θ, λ)(1 − z)

with z = θ/λ ∈ (0, 1), 4/9 < c1(θ, λ) < 1 and 0 < c2(θ, λ) < 2/17. Since, for
given values of c1 and c2, the right-hand side is increasing with respect to z, 4/9 <
c1 < G < 3c1 < 3 and (6.1) follows.

Let us now proceed with the L2-distance d2.

d2
2 (θ, λ) = θ3

(

θ−2 − λ−2
)2 +

(

λ3 − θ3
) (

λ−2 − βθ

)2 +
(

1 − λ3
)

(βθ − βλ)
2

=
(

1

θ
− 1

λ

)(

1 − θ

λ

)(

1 + θ

λ

)2

+
(

1

θ
− 1

λ

)

[

θ

λ
+
(

θ

λ

)2

+
(

θ

λ

)3
]

(

1 − λ2βθ

)2

+
(

1

θ
− 1

λ

)(

1 − θ

λ

)

θλ2
(

1 − λ3
)

(

βθ − βλ

λ− θ

)2

.

Since 8/9 < 1 − λ2βθ < 1 and, by (6.3),

0 < θλ2
(

1 − λ3
)

(

βθ − βλ

λ− θ

)2

<
1

27
,

we conclude that

G =
(

θ−1 − λ−1
)−1

d2
2 (θ, λ)

= (1 − z)(1 + z)2 + c1(θ, λ)
(

z + z2 + z3
)

+ c2(θ, λ)(1 − z)

with z = θ/λ ∈ (0, 1), 8/9 < c1(θ, λ) < 1 and 0 < c2(θ, λ) < 1/27. It follows that

1 < 1 + z − z2 − z3 + (8/9)
(

z + z2 + z3
)

< G < 1 + 2z + (1/27)(1 − z) < 3,

which finally implies (6.2). ��
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It immediately follows from (6.1) that the set Sη = {sλ j , j ≥ 0} with λ j =
(2 j + 1)2η2/3 is an η-net for the family S with respect to the Hellinger distance.
On the other hand, given λ ∈ (0, 1/3) and r ≥ 2η, in order that sλ j ∈ B(sλ, r), it is
required that h2(λ j , λ) = C(λ j , λ)|λ j −λ| < r2 which implies that |λ j −λ| < (9/2)r2

and therefore

|Sη ∩ B(sλ, r)| ≤ 1 + (27/4)(r/η)2 ≤ exp
[

0.84(r/η)2
]

for all sλ ∈ S.

It follows from Lemma 2 of [4] that S has a metric dimension bounded by 3.4 and
Corollary 3 of [4] implies that a suitable T-estimator s̃ built on Sη has a risk satisfying

sup
0<θ≤1/3

Esθ

[

h2(sθ , s̃)
]

≤ Cn−1.

Now setting Sη = {sλ j , j ≥ 0} with λ j = (

3 + 2 jη2/3
)−1

we deduce as before
that Sη is an η-net for S with respect to the L2-distance. In order that sλ j ∈ B(sλ, xη),

it is required that d2
2 (λ j , λ) = C(θ, λ)|λ−1

j −λ−1| < x2η2, which implies that |λ−1
j −

λ−1| < x2η2. It follows that the number of elements of Sη contained in the ball is
bounded by 3x2/2 + 1 ≤ exp

(

x2/2
)

for x ≥ 2. Hence the metric dimension of S
with respect to the L2-distance is bounded by 2. It nevertheless follows from (4.11)
that the minimax risk over S is infinite when we use the L2-loss.

6.2 Proof of Lemma 1

Let us begin with a preliminary lemma.

Lemma 3 Let F and G be two disjoint sets with positive measures α = μ(F) and
β = μ(G) and g ∈ L2 such that infx∈F g(x) > 0. Set gε = g + ε(α1G − β1F ) for
ε > 0. Then gε is a density for ε small enough and, for any f ∈ L2,

lim
ε→0

1

2ε

[

d2
2 (gε, f )− d2

2 (g, f )
]

= α

∫

G
(g − f ) dμ− β

∫

F
(g − f ) dμ (6.4)

and

lim
ε→0

2

ε

[

h2(gε, f )− h2(g, f )
]

= β

∫

F

√

f g−1 dμ− α

∫

G

√

f g−1 dμ (6.5)

with the convention that
∫

G

√

f g−1 dλ = +∞ if eitherμ(G∩{g = 0}∩{ f > 0}) > 0
or the integral diverges.

Proof Since
∫

gε dμ = 1 and gε ≥ 0 for ε small enough gε is a density. Moreover,
setting k = α1G − β1F , we get

d2
2 (gε, f ) =

∫

(g + εk − f )2 dμ = d2
2 (g, f )+ ε2‖k‖2 + 2ε

∫

k(g − f ) dμ
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and (6.4) follows. Let now �(ε) = ε−1
[

h2(gε, f )− h2(g, f )
]

. Then

�(ε) = ε−1
[∫

√

g f dμ−
∫

√

(g + εk) f dμ

]

= ε−1
[ ∫

F

[
√

g f −√

(g − εβ) f
]

dμ+
∫

G

[
√

g f −√

(g + εα) f
]

dμ

]

=
∫

F

β
√

f√
g − εβ + √

g
dμ−

∫

G∩{g>0}
α
√

f√
g + εα + √

g
dμ

−
∫

G∩{g=0}∩{ f>0}

√

α f/ε dμ.

When ε tends to 0, the first integral converges to (β/2)
∫

F

√

f g−1 dμ and the second

one converges to (α/2)
∫

G∩{g>0}
√

f g−1 dμ, by monotone convergence. The last one
converges to +∞ if μ(G ∩ {g = 0} ∩ { f > 0}) > 0 and 0 otherwise, which achieves
the Proof of (6.5). ��

If ‖v1∨v2‖∞ > 2B, we may assume, exchanging the roles of v1 and v2 if necessary,
that μ(A) > 0 with A = {v1 ≥ v2 and v1 > 2B}. Let C = {v1 < B ∧ v2}. If
μ(C) > 0, we may apply Lemma 3 with F = A, G = C, g = v1 and v′

1 = gε. We
first set f = t . Since v1 − t < B on C while v1 − t > B on A, it follows from (6.4)
that d2(v

′
1, t) < d2(v1, t) for ε small enough. If we now set f = v2 and use (6.5), we

see that h(v′
1, v2) < h(v1, v2) since v2 ≤ v1 on A and v2 > v1 on C . We conclude

by setting v′
2 = v2. If μ(C) = 0, then μ({B ≤ v1 < v2}) + μ({v2 ≤ v1 < B}) = 1

and both sets have positive μ-measure since v1 �= v2. In this case we set F = {B ≤
v1 < v2}, G = {v2 ≤ v1 ∧ u} and g = v2. Then μ(F) > 0 and μ(G) > 0 since
u ≤ B < v2 on F and they are densities. If we use (6.4) with f = u, we derive that
d2(v

′
2, u) < d2(v2, u) for ε small enough and if we use (6.5) with f = v1, we derive

that h(v′
2, v1) < h(v2, v1), in which case we set v′

1 = v1.

6.3 Proof of Theorem 7

We consider the family of testsψ(tn, tp, X) = ψtn ,tp,x (X) provided by the assumption
with x = A|p−n|. Given this family of tests and S = {ti , i ≥ 1}, we define the random
function DX on S as in Birgé [4], i.e. we set Ri = {t j ∈ S, j �= i |ψ(ti , t j , X) = t j }
and

DX (ti ) =
⎧

⎨

⎩

sup
t j ∈Ri

{

d(ti , t j )
}

if Ri �= ∅;
0 if Ri = ∅.

(6.6)

Given some ti ∈ S, we want to bound

Ps [DX (ti ) > xyi ] for x ≥ 1 and yi = 4d(s, ti ) ∨
√

Aa−1i2i .
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Let us define the integer K by x2 < 2K ≤ 2x2. Then

K ≥ 1, a2−i−K (xyi )
2 ≥ a2−i−1 y2

i ≥ Ai/2 and e−AK ≤ x−2A/ log 2. (6.7)

Now, setting y = xyi , observe that

Ps [DX (ti ) > y] = Ps
[ ∃ j with d(ti , t j ) > y and ψ(ti , t j , X) = t j

] ≤ 	1 +	2,

with

	1 =
∑

j<i

1d(ti ,t j )>y Ps
[

ψ(ti , t j , X) = t j
] ;

	2 =
∑

j>i

1d(ti ,t j )>y Ps
[

ψ(ti , t j , X) = t j
]

.

If i = 1, then 	1 = 0 and if i ≥ 2, we can use (5.16) and y ≥ 4d(s, ti ) to derive that

	1 ≤ B
∑

j<i

1d(ti ,t j )>y exp
[

−a2−i d2(ti , t j )+ A|i − j |
]

≤ B exp
[

−a2−i y2
i x2 + Ai

]
∑

j≥1

e−Aj

≤ B
e−A

1 − e−A
exp

[

−Ai
(

x2 − 1
)]

≤ B
e−A

1 − e−A
exp

[

−A
(

x2 − 1
)]

≤ B
(

1 − e−A
)−1

exp
[

−Ax2
]

≤ B
(

1 − e−A
)−1

x−2A/ log 2,

where we used (6.7), i ≥ 1 and x ≥ 1. Also, by (5.15),

	2 ≤ B
∑

j>i

1d(ti ,t j )>y exp
[

−a2− j d2(ti , t j )− A|i − j |
]

≤ B
∑

j>i

exp
[

−a2− j y2 − A( j − i)
]

= B
+∞
∑

k=1

exp
[

−a2−i−k y2 − Ak
]

≤ B

[

K
∑

k=1

exp
[

−a2−i−k y2 − Ak
]

+
∑

k>K

exp[−Ak]
]

= B(	3 +	4)

with 	4 = e−AK
(

eA − 1
)−1

and, by (6.7),

	3 = e−AK
K−1
∑

j=0

exp
[

−a2−i−K+ j y2 + Aj
]

≤ e−AK
K−1
∑

j=0

exp
[

−A(i2 j−1 − j)
]

≤ e−AK
∑

j≥0

exp
[

−
(

2 j−1 − j
)]

< 3e−AK .
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We finally get, putting all the bounds together and using (6.7) again,

Ps [DX (ti ) > xyi ] ≤ BC(A)x−2A/ log 2 for x ≥ 1. (6.8)

As a consequence DX (ti ) < +∞ a.s. and we can define

ŝA = tp with p = min

{

j

∣

∣

∣

∣

DX (t j ) < inf
i

DX (ti )+
√

Aa−1

}

.

In view of the definition of DX , d(ti , t j ) ≤ DX (ti ) ∨ DX (t j ), hence, for all ti ∈ S,

d ( ŝA, ti ) ≤ DX (ti )+ √
Aa−1 and

d ( ŝA, s) ≤ DX (ti )+
√

Aa−1 + d(s, ti ) < DX (ti )+ yi .

It then follows from (6.8) that

Ps [d ( ŝA, s) > zyi ] ≤ BC(A)(z − 1)−2A/ log 2 for z ≥ 2.

Integrating with respect to z leads to

Es
[

(d ( ŝA, s) /yi )
q] ≤ BC(A, q) for 1 ≤ q < 2A/ log 2,

and, since ti is arbitrary in S,

Es
[

dq ( ŝA, s)
] ≤ BC(A, q) inf

i≥1

[

dq(s, ti ) ∨
(

a−1i2i
)q/2

]

for 1 ≤ q < 2A/ log 2.
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